WO2017111473A1 - Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant - Google Patents

Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant Download PDF

Info

Publication number
WO2017111473A1
WO2017111473A1 PCT/KR2016/015040 KR2016015040W WO2017111473A1 WO 2017111473 A1 WO2017111473 A1 WO 2017111473A1 KR 2016015040 W KR2016015040 W KR 2016015040W WO 2017111473 A1 WO2017111473 A1 WO 2017111473A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
heat treatment
austenite
manufacturing
Prior art date
Application number
PCT/KR2016/015040
Other languages
English (en)
Korean (ko)
Inventor
조원태
김태호
진광근
김영하
송태진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP16879340.4A priority Critical patent/EP3395978B1/fr
Priority to CN201680075456.1A priority patent/CN108474082B/zh
Priority to JP2018532710A priority patent/JP2019504208A/ja
Priority to US16/061,134 priority patent/US20180371586A1/en
Publication of WO2017111473A1 publication Critical patent/WO2017111473A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high Mn steel sheet having excellent dustproof characteristics that can be used where a dustproof characteristic for noise reduction is made by using steel sheets for automobiles or construction.
  • High Mn anti-vibration steel is a steel grade that has high dustproof and excellent mechanical properties by converting noise energy into thermal energy due to interfacial sliding of epsilon martensite during external impact and is suitable for this purpose.
  • An object of the present invention is to provide a high Mn steel sheet excellent in dustproof characteristics and a method of manufacturing the same.
  • One preferred aspect of the present invention is by weight, C: 0 ⁇ 0.1%, Mn: 8 ⁇ 30%, P: 0.1% or less, S: 0.02% or less, N: 0.1% or less, Ti 0 ⁇ 1.0% and
  • the present invention relates to a high Mn steel sheet having excellent anti-vibration characteristics including Fe and unavoidable impurities and consisting of epsilon martensite and austenite, and having an average particle diameter of martensite and austenite of 2 ⁇ m or less.
  • another preferred aspect of the present invention comprises the steps of heating a steel sheet satisfying the composition range to a heat treatment temperature of Ac1 ⁇ Ac3 + 50 °C at a temperature increase rate of 0.01 ⁇ 200 °C / s; Maintaining at the heat treatment temperature for 0.01 seconds to 24 hours; And it relates to a high Mn steel sheet manufacturing method having excellent dustproof characteristics including the step of cooling to room temperature at a cooling rate of 0.01 °C / s or more.
  • the present invention can provide a high Mn steel sheet having excellent dustproof characteristics, the present invention can be utilized in structural parts for automobiles and flooring materials for buildings that require noise reduction.
  • Example 1 is a view showing the microstructure of the Example heat-treated at 600 °C and Comparative Example heat-treated at 700 ⁇ 1000 °C.
  • FIG. 2 is a diagram illustrating a dilator cycle of the heat treatment shown in FIG. 1.
  • the present invention is by weight, C: 0 ⁇ 0.1% or less, Mn: 8 ⁇ 30%, P: 0.1% or less (including 0%), S: 0.02% or less (including 0%), N: 0.1% or less ( 0%), Ti: 1.0% or less (excluding 0) and Fe and inevitable impurities, and the microstructure is composed of epsilon martensite and austenite, and the average particle diameter of martensite and austenite is 2 ⁇ m or less
  • the excellent high Mn steel sheet and its manufacturing method are related.
  • Mn is an essential element to stably secure the austenite structure, and increases the lamination defect energy. At less than 8%, Mn forms martensite that impairs formability, thereby increasing strength but rapidly decreasing ductility. In addition, the partially formed austenite is easily converted into epsilon martensite due to a decrease in stacking defect energy, and the lower limit thereof is limited to 8%. On the other hand, when the amount of Mn added exceeds 30%, the slag cracks are caused by the increase in the manufacturing cost and the increase in the phosphorus content (P) due to the large amount of manganese.
  • the internal grain boundary oxidation occurs excessively when the slab is reheated to cause oxide defects on the surface of the steel sheet, and the surface properties are also inferior in hot dip galvanizing to limit the upper limit of the amount of Mn to 30%.
  • Phosphorus (P) and sulfur (S) are inevitably contained in the manufacture of steel, so the content of phosphorus (P) is 0.1% or less (including 0%) and sulfur (S) is 0.02% or less (including 0%). It is desirable to limit.
  • phosphorus segregates to reduce the machinability of steel, sulfur forms coarse manganese sulfide (MnS), which causes defects such as flange cracks, and reduces the expansion of steel sheet, so the amount of addition should be restrained as much as possible.
  • Nitrogen (N) is an element that is inevitably contained in the production, it is preferable to limit the addition range to 0.1% or less (including 0%).
  • Titanium (Ti) is a strong carbide forming element that combines with carbon to form carbide, and the carbide formed at this time is an element effective in miniaturizing grain size by preventing grain growth.
  • the carbide formed at this time is an element effective in miniaturizing grain size by preventing grain growth.
  • boron and the compound is added, high temperature compounds are formed at columnar grain boundaries to prevent grain boundary cracks.
  • it has a scavenging effect of forming a compound with C and N to reduce the fraction thereof, and thus is an essential element for improving dustproof performance.
  • excess titanium is segregated at grain boundaries to cause grain boundary odors, or precipitate phases are excessively coarsened to lower grain growth effects. Therefore, the amount of titanium added is limited to 1.0% or less.
  • High Mn steel according to another aspect of the present invention is additionally in weight percent Si: 0-3%, Cr: 0.005% -5.0%, Ni: 0.005-2.0%, Nb: 0.005-0.5%, B: 0.0001-0.01 %, V: 0.005 to 0.5%, and W: 0.005 to 1%.
  • Silicon (Si) is an element that enhances the yield strength by reducing the grain size due to the solid solution effect.
  • silicon oxide is formed on the surface of the steel sheet during hot rolling, which deteriorates pickling and deteriorates the surface quality of the steel sheet.
  • the addition of large amounts of silicon greatly reduces the weldability of the steel. Therefore, the upper limit of the silicon addition amount can be limited to 3%.
  • Cr reacts with external oxygen during hot rolling or annealing operation, whereby Cr-based oxide film (Cr 2 O 3 ) having a thickness of 20-50 ⁇ m is preferentially formed and Mn, Si, etc. contained in steel are eluted to the surface layer. It can contribute to the stabilization of the surface structure by preventing it can act as an element to improve the surface properties of the plating.
  • the upper limit of the content may be limited to 5.0% because chromium carbide is formed to lower the processability and delayed fracture resistance.
  • Ni is an element that contributes to stabilization of austenite and is advantageous not only for improving elongation but also for contributing to high temperature ductility above all.
  • Ni which is a strong high temperature toughness enhancing element, has a very small effect on high temperature toughness when its content is less than 0.005%, and it shows a great effect on preventing delayed fracture and slab cracking as the added content increases, but it increases the production cost due to high material cost.
  • the content can be limited to 0.005 ⁇ 2.0%.
  • Nb is a carbide-forming element which bonds with carbon in steel to form carbide, and can be added in the present invention for the purpose of increasing strength and minimizing particle size.
  • the precipitated phase is formed at a temperature lower than Ti, 0.005 to 0.5% may be added as an element having a large crystallization size and a precipitation strengthening effect due to the precipitated phase formation.
  • the effect of the addition amount of less than 0.005% is insignificant, whereas if it is added more than 0.5%, excessive Nb segregates in the grain boundary, causing grain boundary embrittlement, or excessively coarsening of the precipitate phase, thereby reducing the effect of grain growth.
  • the recrystallization is delayed to increase the rolling load, so the amount of Nb added may be limited to 0.005 to 0.5%.
  • V and W are elements that form carbonitrides by combining with C and N, such as Ti, and thus, form fine precipitated phases at low temperatures, and thus may have a precipitation strengthening effect and may be important elements for securing austenite.
  • C and N such as Ti
  • V and W are elements that form carbonitrides by combining with C and N, such as Ti, and thus, form fine precipitated phases at low temperatures, and thus may have a precipitation strengthening effect and may be important elements for securing austenite.
  • both components are added in a small amount of less than 0.005%, the effect is insignificant, whereas if V is more than 0.5% and W is more than 1.0%, the precipitated phase is excessively coarsened, which lowers the grain growth effect and causes hot brittleness.
  • the addition amount can be limited to V 0.005 to 0.5% and W 0.005 to 1%.
  • Boron (B) may be added together with Ti to form a high temperature compound of grain boundaries to prevent grain boundary cracks.
  • B Boron
  • the steel having the above components and component ranges and having a microstructure composed of austenite columnar phases is heated at a heating rate of 0.01 to 200 ° C / s to 0.01 at a heat treatment temperature of Ac1 to Ac3 + 50 ° C. After holding for 24 seconds to cool down to room temperature at a cooling rate of 0.01 °C / s or more.
  • the high Mn steel sheet may be a cold rolled steel sheet or a hot rolled steel sheet.
  • the microstructure of the high Mn steel sheet is composed of epsilon martensite and austenite.
  • the heating step exceeds 200 ° C / s Ac1 and Ac3 temperature is up, even if the heat treatment in the range of the present invention has a problem that the average particle diameter of the microstructure exceeds 2 ⁇ m, the upper limit of the temperature increase rate is limited to 200 ° C / s do.
  • coarse carbides may be formed due to phase instability and should be heat treated at a rate of 0.01 °C / s or more.
  • the heat treatment temperature is Ac1 ⁇ Ac3 + 50 It is limited to ° C.
  • the average particle diameter of the microstructure during cooling, as well as coarse carbides may occur due to phase instability, so the lower limit of the cooling rate is 0.01 °C / s It is limited. There is no upper limit to the cooling rate, and the faster it is, the more favorable it is to secure epsilon martensite and to secure a fine average particle size.
  • the embodiment heat-treated at 600 °C according to the present invention can be seen that the average particle diameter of the microstructure is 2 ⁇ m or less.
  • FIG. 2 is a diagram illustrating a dilator cycle of the heat treatment shown in FIG. 1.
  • FIG. 2 the embodiment shows the result of heat treatment at Ac3 + 30 ° C.
  • SDC is the damping ability (the property that the object absorbs vibration).
  • the room temperature SDC value of the anti-vibration steel having a microstructure according to the embodiment heat-treated at 600 ° C has a value 2.5 times higher than the anti-vibration steel according to Comparative Example (4). That is, the SDC value of the Example heat-treated at 600 ° C was 0.00025, and the SDC value of Comparative Example (4) heat-treated at 1000 ° C was measured as 0.0001.
  • the epsilon martensite area fraction of the embodiment heat-treated at 600 ° C. is relatively low, but the particle size is small, the structure is fine and uniformly distributed so that the residual dislocation and the interface are energized when an external impact is applied with the epsilon martensite.
  • the dustproof property is excellent because it contributes to the improvement of damping performance by increasing the ratio of converting to heat energy.
  • the room temperature SDC value is 0.00015 or more, it can be said that the dustproof property is excellent.
  • the epsilon martensite area fraction is higher than that of the example, but the dustproof performance is inferior because the average particle diameter of the microstructure is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention se rapporte à une tôle d'acier à haute teneur en Mn et à un procédé de fabrication s'y rapportant, la tôle d'acier comprenant, en % en poids : 0 à 0,1 % ou moins de C; 8 à 30 % de Mn; 0,1 % ou moins de P; 0,02 % ou moins de S; 0,1 % ou moins de N; 0 à 1,0 % de Ti; et du Fe et des impuretés inévitables, sa microstructure comprenant de la martensite epsilon et de l'austénite et le diamètre moyen des particules de la martensite et de l'austénite étant inférieur ou égal à 2 µm.
PCT/KR2016/015040 2015-12-23 2016-12-21 Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant WO2017111473A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16879340.4A EP3395978B1 (fr) 2015-12-23 2016-12-21 Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant
CN201680075456.1A CN108474082B (zh) 2015-12-23 2016-12-21 防振特性优异的高锰钢板及其制造方法
JP2018532710A JP2019504208A (ja) 2015-12-23 2016-12-21 防振特性に優れた高マンガン鋼板及びその製造方法
US16/061,134 US20180371586A1 (en) 2015-12-23 2016-12-21 High manganese steel sheet having excellent damping property, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0185471 2015-12-23
KR1020150185471A KR101736636B1 (ko) 2015-12-23 2015-12-23 방진특성이 우수한 고Mn강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2017111473A1 true WO2017111473A1 (fr) 2017-06-29

Family

ID=59048542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015040 WO2017111473A1 (fr) 2015-12-23 2016-12-21 Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant

Country Status (6)

Country Link
US (1) US20180371586A1 (fr)
EP (1) EP3395978B1 (fr)
JP (1) JP2019504208A (fr)
KR (1) KR101736636B1 (fr)
CN (1) CN108474082B (fr)
WO (1) WO2017111473A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505375A (ja) * 2018-10-18 2022-01-14 ポスコ 防振性及び成形性に優れた高マンガン鋼材の製造方法、並びにこの製造方法により製造された高マンガン鋼材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794357B (zh) * 2017-10-26 2018-09-14 北京科技大学 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
CN112899577B (zh) * 2021-01-18 2021-12-24 北京科技大学 一种Fe-Mn系高强度高阻尼合金的制备方法
CN114774800B (zh) * 2022-04-19 2023-08-08 河南科技大学 一种超高强度、高塑韧性马氏体钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137579A (ja) * 2002-10-18 2004-05-13 Nisshin Steel Co Ltd 防弾性に優れた高Mnオーステナイト鋼板
KR100840287B1 (ko) * 2006-12-26 2008-06-20 주식회사 포스코 잔류 오스테나이트와 hcp 마르텐사이트 조직이 혼합된복합조직강 및 그의 열처리 방법
JP2011230182A (ja) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd 高マンガン含有鋼の製造方法
KR20140085225A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 용접성이 우수한 고망간 내마모강 및 그 제조방법
KR20140119216A (ko) * 2013-03-27 2014-10-10 주식회사 우진 고망간강 및 그 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445685A (en) * 1993-05-17 1995-08-29 The Regents Of The University Of California Transformation process for production of ultrahigh carbon steels and new alloys
JP2540283B2 (ja) * 1993-07-28 1996-10-02 日本冶金工業株式会社 超塑性2相ステンレス鋼
KR960006453B1 (ko) * 1993-10-22 1996-05-16 최종술 Fe-Mn계 진동 감쇠 합금강과 그 제조 방법
US5891388A (en) * 1997-11-13 1999-04-06 Woojin Inc. Fe-Mn vibration damping alloy steel having superior tensile strength and good corrosion resistance
UA77578C2 (en) * 2002-09-30 2006-12-15 Nano Technology Inst Inc Nano-crystal metal material having high hardness, strength and viscosity and method for making nano-crystal material, steel and cast iron
WO2006109919A1 (fr) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology Alliages amortisseurs a resistance elevee et scie diamentee a faible bruit utilisant ces alliages
JP4529872B2 (ja) * 2005-11-04 2010-08-25 住友金属工業株式会社 高Mn鋼材及びその製造方法
CN100457952C (zh) * 2007-06-26 2009-02-04 郑州航空工业管理学院 一种铸造高速钢刀具及其制备方法
JP5500960B2 (ja) * 2009-12-01 2014-05-21 新日鐵住金ステンレス株式会社 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
KR20110075611A (ko) * 2009-12-28 2011-07-06 주식회사 포스코 내마모강
CN102277539A (zh) * 2011-08-01 2011-12-14 南京钢铁股份有限公司 一种低屈强比高塑性超细晶粒高强钢及其制造方法
KR101382981B1 (ko) * 2011-11-07 2014-04-09 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
CN103774051A (zh) * 2012-10-25 2014-05-07 吴雪 一种高强钢
CN103774050A (zh) * 2012-10-25 2014-05-07 吴雪 一种低屈强比高塑性钢
CN103774052A (zh) * 2012-10-25 2014-05-07 吴雪 一种20mm厚高强钢板的制备方法
KR101518599B1 (ko) * 2013-10-23 2015-05-07 주식회사 포스코 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
KR101536469B1 (ko) * 2013-12-24 2015-07-13 주식회사 포스코 절삭 가공성 및 진동 감쇠능이 우수한 고망간 강재
CN103898401B (zh) * 2014-04-11 2016-04-20 四川大学 一种提高高强度铁锰基阻尼合金阻尼性能的方法
CN103966506B (zh) * 2014-05-09 2016-04-13 曹帅 一种具有高阻尼特性的铁基减振合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137579A (ja) * 2002-10-18 2004-05-13 Nisshin Steel Co Ltd 防弾性に優れた高Mnオーステナイト鋼板
KR100840287B1 (ko) * 2006-12-26 2008-06-20 주식회사 포스코 잔류 오스테나이트와 hcp 마르텐사이트 조직이 혼합된복합조직강 및 그의 열처리 방법
JP2011230182A (ja) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd 高マンガン含有鋼の製造方法
KR20140085225A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 용접성이 우수한 고망간 내마모강 및 그 제조방법
KR20140119216A (ko) * 2013-03-27 2014-10-10 주식회사 우진 고망간강 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395978A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505375A (ja) * 2018-10-18 2022-01-14 ポスコ 防振性及び成形性に優れた高マンガン鋼材の製造方法、並びにこの製造方法により製造された高マンガン鋼材
JP7304415B2 (ja) 2018-10-18 2023-07-06 ポスコ カンパニー リミテッド 防振性及び成形性に優れた高マンガン鋼材の製造方法、並びにこの製造方法により製造された高マンガン鋼材

Also Published As

Publication number Publication date
CN108474082B (zh) 2020-06-02
EP3395978A4 (fr) 2019-01-02
EP3395978A1 (fr) 2018-10-31
KR101736636B1 (ko) 2017-05-17
EP3395978B1 (fr) 2020-12-16
US20180371586A1 (en) 2018-12-27
JP2019504208A (ja) 2019-02-14
CN108474082A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017111473A1 (fr) Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant
WO2020130560A1 (fr) Tôle d'acier laminée à froid ayant une excellente aptitude au façonnage, tôle d'acier galvanisée et leurs procédés de fabrication
WO2012081871A2 (fr) Tôle d'acier austénitique, légère, à résistance élevée dont le coefficient d'élasticité et la flexibilité sont remarquables et procédé de production de celle-ci
WO2014209064A1 (fr) Tôle d'acier à haute résistance et procédé de fabrication associé
WO2021100995A1 (fr) Tôle d'acier ayant une résistance élevée et une grande aptitude au formage et son procédé de fabrication
WO2017034216A1 (fr) Tôle d'acier à dureté élevée et son procédé de fabrication
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l'oxydation à haute température et procédé de fabrication associé
WO2009145562A2 (fr) Tôle d'acier à haute résistance et excellente ductilité présentant un bord sans crique, tôle d'acier galvanisé à chaud et procédé de production correspondant
WO2020060051A1 (fr) Tôle d'acier inoxydable ferritique laminée à chaud et non recuite ayant une excellente solidité au choc, et son procédé de fabrication
WO2017052005A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2016105092A1 (fr) Acier inoxydable à base de ferrite et procédé pour le fabriquer
WO2011081236A1 (fr) Feuille d'acier trempé ayant une excellente aptitude au formage à chaud par pression, et son procédé de fabrication
WO2015030324A1 (fr) Tôle d'acier plaquée laminée à chaud à haute résistance et son procédé de fabrication
WO2010074458A2 (fr) Tôle d'acier laminée à froid de haute résistance présentant une aptitude à l'emboutissage profond améliorée et un rapport d'élasticité élevé, tôle d'acier galvanisée utilisant celle-ci, tôle d'acier allié galvanisée et procédé de fabrication correspondant
WO2015099214A1 (fr) Tôle d'acier trempé présentant une excellente résistance et ductilité et procédé pour sa fabrication
WO2019117432A1 (fr) Acier inoxydable à base de ferrite à excellente ténacité à l'impact, et son procédé de production
WO2021125793A1 (fr) Fil-machine pour acier de qualité de frappe à froid à haute résistance présentant une excellente résistance à la fragilisation par l'hydrogène, et procédé de fabrication associé
WO2021125564A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de fabrication
KR102098501B1 (ko) 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
KR101736637B1 (ko) 방진특성이 우수한 고Mn강판 및 그 제조방법
WO2020130257A1 (fr) Tôle d'acier à haute résistance ayant une excellente ductilité et une excellente aptitude au façonnage, et son procédé de fabrication
KR20210102421A (ko) 고강도 알루미늄 클래드 기판용 강철 및 그 제조방법
WO2018110866A1 (fr) Acier inoxydable à base de ferrite à résistance au choc améliorée, et son procédé de production
WO2020004710A1 (fr) Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879340

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879340

Country of ref document: EP

Effective date: 20180723