WO2020004628A1 - Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product - Google Patents

Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product Download PDF

Info

Publication number
WO2020004628A1
WO2020004628A1 PCT/JP2019/025854 JP2019025854W WO2020004628A1 WO 2020004628 A1 WO2020004628 A1 WO 2020004628A1 JP 2019025854 W JP2019025854 W JP 2019025854W WO 2020004628 A1 WO2020004628 A1 WO 2020004628A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
fiber product
chenille
agent
processed fiber
Prior art date
Application number
PCT/JP2019/025854
Other languages
French (fr)
Japanese (ja)
Inventor
学志 前
田中 基巳
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201980035051.9A priority Critical patent/CN112189044B/en
Priority to JP2020527686A priority patent/JP7111160B2/en
Publication of WO2020004628A1 publication Critical patent/WO2020004628A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form

Definitions

  • the present invention relates to a non-slip agent, a non-slip processed fiber product, and a method for producing a non-slip processed fiber product.
  • This application claims priority based on Japanese Patent Application No. 2018-124172 for which it applied to Japan on June 29, 2018, and uses the content here.
  • the textile products such as rugs (entrance mats, kitchen mats, rugs, carpets, tablecloths, luncheon mats, etc.)
  • the textile products may slip and fall
  • the back surface of the processed fiber product may be subjected to a non-slip processing by a non-slip processing agent.
  • aqueous anti-slip agents in which a polymer component is dispersed in an aqueous medium can be easily used in various processing dimensions and various forms, and contain almost no organic solvent, making them suitable for a wide range of applications. Is expected to expand.
  • An aqueous resin composition for backing a rug comprising a urethane resin having a crosslinked structure (Patent Document 1).
  • the fiber processed product which is non-slip processed by the aqueous resin composition for backing backing of (1) has a non-adhesive back surface and is unlikely to stain floors and the like.
  • the processed fiber product subjected to the non-slip processing by the aqueous dispersion of (2) has excellent anti-slip properties on a dry floor or the like.
  • the anti-slip properties on wet floors and the like are not sufficient, and the non-adhesiveness on the floors and the like are poor, and the applications are limited.
  • the present invention relates to a non-slip processed fiber product having excellent non-slip properties on wet floors and non-adhesion to floors and the like, a method for producing the same, and non-slip properties on wet floors and non-adhesion to floors and the like.
  • an anti-slip agent capable of obtaining an anti-slip processed fiber product having excellent properties.
  • the present invention has the following aspects.
  • An anti-slip agent for imparting anti-slip properties to a processed fiber product An anti-slip agent having a shear adhesive strength of less than 15 N determined by "Method I of determining shear adhesive strength” and a coefficient of static friction determined by a method of determining static coefficient of static I of 0.6 or more.
  • An anti-slip agent for imparting anti-slip properties to a processed fiber product A non-slip processing agent having a shear adhesive strength of less than 15 N determined by "Method I of determining shear adhesive strength” and a water contact angle of 80 ° or more determined by "Method I of determining water contact angle” described later. .
  • the non-slip agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
  • An anti-slip agent for imparting anti-slip properties to a processed fiber product is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium, The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer, An anti-slip agent having a coefficient of static friction of 0.6 or more, as determined by "Method I for determining coefficient of static friction I" below.
  • An anti-slip agent for imparting anti-slip properties to a textile product is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium, The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer, A non-slip agent having a water contact angle of 80 ° or more, as determined by the “method I for determining a water contact angle” described below. (How to determine water contact angle) An anti-slip agent is applied to the surface of a glass plate (120 mm ⁇ 120 ⁇ 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes.
  • a non-slip in which the shear adhesive strength determined by “Method II for determining shear adhesive strength II” is less than 15 N and the coefficient of static friction determined by “Method II for determining static friction coefficient II” is 0.6 or more.
  • a processed fiber product [10] A slip having a shear adhesive strength of less than 15 N determined by "Method II of determining shear adhesive strength” and a water contact angle of 80 ° or more determined by "Method II of determining water contact angle”. Finished fiber processed product. [11] The non-slip processed fiber product according to [9] or [10], wherein the urethane polymer and the acrylic polymer are attached.
  • the sum of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 to 500 g / m 2 , according to [11].
  • Non-slip processed fiber products [13] In order to obtain a processed fiber product coated with the anti-slip agent, the anti-slip agent according to any of [1] to [7] is applied to the processed fiber product, A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
  • a method for producing a non-slip processed fiber product including spraying a non-slip processing agent on a textile product, The fiber product satisfies one or both of the following conditions A and B, A method for producing a non-slip processed fiber product, wherein a dry particle size of the atomized anti-slip agent in the spray obtained by the following method is less than 150 ⁇ m.
  • Condition A The fiber product cut into a size of 5 cm ⁇ 5 cm was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption A converted to the water absorption per 1 m 2 of the fiber product was: It is 1000 g / m 2 or more.
  • a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / was applied using a hand spray so that m 2, a non-slip machined chenille base cloth obtained by drying for 5 minutes at ambient temperature 120 ° C., the Rubberized side down ABS resin substrate ( 90 mm ⁇ 50 mm ⁇ thickness 3 mm), with the adhesive surface being 50 mm ⁇ 50 mm, and applying an atmosphere of 6.86 N (700 g) from the upper side of the non-slip chenille base cloth to the atmosphere.
  • the non-slip-processed chenille base cloth and the ABS resin base material which were allowed to stand at a temperature of 40 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours, Using a tension measuring device, the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material are pulled parallel to the bonding surface at an ambient temperature of 23 ° C. and a test speed of 100 mm / min. Is defined as the shear adhesive strength.
  • a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / m 2 was applied using a hand sprayer, and the non-slip chenille base fabric obtained by drying at an ambient temperature of 120 ° C. for 5 minutes was coated with water on the surface with the non-slip surface down. 26.46 N (2.7 kg) from the upper side of a non-slip chenille base cloth placed on a horizontal stainless steel plate (SUS304 No.
  • a non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, under a load of 6.86 N (700 g) applied from the upper side of the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 40 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours.
  • the lower end of the non-slip processed fiber product and the ABS were bonded to the bonded non-slip processed fiber product and the ABS resin substrate at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device.
  • the upper end of the resin substrate is pulled in parallel with the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
  • the non-slip processed textiles excellent in the anti-slip property with respect to a wet floor etc. and the non-adhesion with respect to a floor etc. can be obtained.
  • INDUSTRIAL APPLICABILITY The non-slip processed fiber product of the present invention is excellent in anti-slip properties against wet floors and the like and non-adhesiveness to floors and the like, and can be used for a wide range of applications.
  • a non-slip processed fiber product which is excellent in non-slip properties on wet floors and the like and non-adhesiveness on floors and the like and can be used for a wide range of applications is provided. Can be manufactured.
  • the “viscosity” in this specification is a value measured using a B-type viscometer at a rotation speed of 60 rpm for a sample temperature-controlled at 25 ° C.
  • the “solid content” in the present specification is a value obtained from a residue obtained by drying 1 g of a sample with a dryer at 105 ° C. for 2 hours.
  • the “mass average molecular weight” in the present specification is a value obtained by dissolving a polymer in a solvent, measuring the molecular weight using gel permeation chromatography, and calculating the value in terms of polystyrene.
  • Urethane polymer having crystallinity "in the present specification is a urethane polymer having an endothermic peak observed by differential scanning calorimetry (DSC).
  • the endothermic peak was measured using a differential scanning calorimeter (EXSTAR6000, manufactured by Seiko Instruments Inc.) to precisely weigh 0.005 to 0.01 g of the sample in an aluminum pan, and the temperature was raised from 0 ° C. to 200 ° C. at a rate of 10 ° C./min. It can be confirmed by a DSC curve when the temperature was raised to ° C.
  • the “glass transition temperature” (hereinafter also referred to as “Tg”) in the present specification uses the Tg value of a homopolymer of a monomer described in a polymer handbook [Polymer Handbook (J. Brandrup, Interscience, 1989)]. Is calculated from the FOX equation.
  • the Tg value of the homopolymer of the monomer is the value described in the catalog of the monomer manufacturer, and when not described in the catalog, the differential scanning is performed according to JIS K 7121: 1987.
  • the midpoint glass transition temperature determined by calorimetry (DSC) is employed.
  • the “average particle diameter” in the present specification is measured at room temperature using a particle diameter distribution measuring device (for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.) by a photon correlation method, and is analyzed by cumulant analysis. It is the calculated harmonic mean particle diameter based on the scattered light intensity standard.
  • a particle diameter distribution measuring device for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • (Meth) acryl in this specification is a general term for acryl and methacryl.
  • (Meth) acrylate” in this specification is a general term for acrylate and methacrylate.
  • Polymer component "in this specification is a resin component such as a condensation polymer (urethane polymer or the like) or an addition polymer (acrylic polymer or the like) contained in the anti-slip agent.
  • the anti-slip agent of the present invention is for imparting anti-slip properties to a processed fiber product.
  • the non-slip processing agent of the present invention By subjecting one or both of the back surface and the front surface of the processed fiber product to the non-slip processing agent of the present invention, when touching the processed fiber product, the processed fiber product is likely to slip and fall, It is possible to prevent the position of the fiber processed product from being shifted.
  • non-slip processing agent of the present invention examples include an aqueous dispersion in which the polymer component is dispersed in an aqueous medium, a polymer solution in which the polymer component is dissolved in an organic solvent, and the like.
  • An aqueous dispersion is preferred because it does not contaminate.
  • the viscosity of the anti-slip agent is preferably from 10 to 100,000 mPa ⁇ s.
  • the viscosity of the anti-slip agent is equal to or more than the lower limit, the anti-slip agent does not easily permeate into the fiber processed product, and the anti-slip property is easily exhibited. If the viscosity of the non-slip processing agent is equal to or less than the upper limit, the method of non-slip processing of a processed fiber product is not easily limited.
  • the solid content of the anti-slip agent is preferably from 10 to 60% by mass.
  • the solid content of the anti-slip agent is equal to or more than the lower limit, drying of the anti-slip agent after application to the textile product is fast.
  • the solid content of the anti-slip agent is equal to or less than the upper limit, the method of anti-slip processing of a processed fiber product is less likely to be limited.
  • the first embodiment of the anti-slip agent of the present invention is such that the shear adhesive strength obtained by the above-mentioned "method I of determining shear adhesive strength I" is less than 15 N, and the above-mentioned “method I of calculating static friction coefficient I"
  • the static friction coefficient obtained in the above is 0.6 or more.
  • the non-slip surface of the non-slip processed fiber processed product is excellent in non-adhesion to floors and the like, and is used for a long time. Also, it is difficult to stain floors.
  • the shear bond strength is preferably less than 12N.
  • the anti-slip agent having a static friction coefficient of 0.6 or more as determined by the “method I of obtaining static friction coefficient” the anti-slip property of the non-slip processed fiber product on a wet floor or the like is excellent. Further, according to the non-slip agent having a static friction coefficient of 0.7 or more obtained by the “method I of obtaining a static friction coefficient I”, even a non-slip processed fiber product having a small area has a sufficient resistance to a wet floor or the like. Demonstrates anti-slip properties.
  • the coefficient of static friction is more preferably 0.85 or more.
  • the processing agent include an aqueous dispersion X described below.
  • the shear adhesive strength obtained by the “method I for obtaining shear adhesive strength” is less than 15 N, and the “determination of the coefficient of static friction” is performed. Since the static friction coefficient obtained in Method I is 0.6 or more, it is possible to obtain a non-slip processed fiber processed product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. it can. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
  • a second aspect of the antiskid agent of the present invention is that the shear adhesive strength obtained by the above-mentioned “method of obtaining shear adhesive strength I” is less than 15 N, and the above-mentioned “method of obtaining the water contact angle” The water contact angle determined in “I” is 80 ° or more.
  • the non-slip surface of the non-slip processed fiber processed product is excellent in non-adhesion to floors and the like, and is used for a long time. Also, it is difficult to stain floors.
  • the shear bond strength is preferably less than 12N.
  • the non-slip agent having a water contact angle of 80 ° or more determined by “Method I for determining water contact angle I”, the non-slip property of the non-slip processed fiber product to a wet floor or the like is excellent.
  • the water contact angle is preferably 85 or more.
  • the stop processing agent include an aqueous dispersion X described below.
  • the shear adhesive strength determined by “Method I for determining shear adhesive strength I” is less than 15 N, and “the water contact angle is less than 15 N”. Since the water contact angle obtained by the “method I” is 80 ° or more, it is necessary to obtain a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. Can be. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
  • a third aspect of the anti-slip agent of the present invention is an aqueous dispersion X described below, wherein the static friction coefficient obtained by the above-mentioned "method I of obtaining static friction coefficient I" is 0.6 or more.
  • the anti-slip property and non-adhesive balance of the non-slip processed fiber product are excellent.
  • the non-slip agent having a static friction coefficient of 0.6 or more determined by “method I of calculating static friction coefficient” the non-slip property of the processed fiber product on a wet floor is excellent. Further, according to the non-slip agent having a static friction coefficient of 0.7 or more obtained by the “method I of obtaining a static friction coefficient I”, even a non-slip processed fiber product having a small area has a sufficient resistance to a wet floor or the like. Demonstrates anti-slip properties.
  • the coefficient of static friction is more preferably 0.85 or more.
  • the aqueous dispersion liquid X described later, and the static friction coefficient obtained by the “method I of obtaining a static friction coefficient I” is 0.6 or more. Therefore, it is possible to obtain a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
  • a third embodiment of the antiskid agent of the present invention is an aqueous dispersion X described below, and the water contact angle obtained by the above-mentioned “method I of obtaining a water contact angle I” is 80 ° or more. .
  • the anti-slip property and non-adhesive balance of the non-slip processed fiber product are excellent.
  • the non-slip agent having a water contact angle of 80 ° or more determined by “Method I for determining water contact angle I”, the non-slip property of the non-slip processed fiber product to a wet floor or the like is excellent.
  • the water contact angle is preferably 85 ° or more.
  • the aqueous dispersion X described below, and the water contact angle obtained by the "method I of obtaining a water contact angle" is 80 ° or more. Therefore, it is possible to obtain a non-slip processed fiber product having excellent non-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
  • the aqueous dispersion X includes an aqueous medium and polymer particles dispersed in the aqueous medium.
  • the aqueous dispersion X may further contain components other than the aqueous medium and the polymer particles (hereinafter, also referred to as “other components”) as needed, as long as the effects of the present invention are not impaired.
  • the aqueous medium serves as a dispersion medium for the polymer particles and contains water.
  • the aqueous medium may be composed of only water, or may be composed of water and a water-soluble organic solvent.
  • the water-soluble organic solvent include alcohols (eg, methanol, ethanol, isopropanol), ketones (eg, acetone, methyl ethyl ketone), and glycol ethers (eg, butyl cellosolve, propylene glycol monomethyl ether).
  • the aqueous medium only water is preferable, but it may contain a water-soluble organic solvent.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less.
  • the water-soluble organic solvent is preferably an alcohol solvent or a glycol solvent.
  • the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer.
  • the polymer particles consist of a composite containing a urethane polymer and an acrylic polymer, which can be dispersed in an aqueous medium.
  • the composite may be, for example, one obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer in the presence of a urethane polymer.
  • Polymer particles composed of a composite containing a urethane polymer and an acrylic polymer have an excellent balance between non-slip properties and non-stick properties.
  • the composite constituting the polymer particles may further contain a component other than the urethane polymer and the acrylic polymer, if necessary, as long as the effects of the present invention are not impaired.
  • the proportion of the acrylic polymer in the total of the urethane polymer and the acrylic polymer is preferably from 10% by mass to less than 90% by mass.
  • the proportion of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the polymer particles is further excellent.
  • the proportion of the acrylic polymer is less than the upper limit, the non-adhesiveness of the polymer particles is further excellent.
  • the non-slip processed fiber product is excellent in washing resistance.
  • a urethane polymer is a resin obtained by reacting a polyhydric alcohol with a polyvalent isocyanate.
  • Polyhydric alcohols are organic compounds having two or more hydroxy groups in one molecule. Examples of the polyhydric alcohol include the following.
  • Low molecular weight diols ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, cyclohexanedimethanol and the like.
  • -Low molecular weight polyol having three or more hydroxy groups glycerin, trimethylolpropane, pentaerythritol and the like.
  • -Polyether diol Polyether diol obtained by addition polymerization of at least one of polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and low molecular weight diol with ethylene oxide, propylene oxide, tetrahydrofuran and the like.
  • a polyester diol obtained by polycondensing at least one low molecular weight diol with a dicarboxylic acid eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid.
  • a dicarboxylic acid eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid.
  • -Other polyhydric alcohols polycaprolactone diol, polycarbonate diol, polybutadiene diol, hydrogenated polybutadiene diol, polyacrylate diol and the like.
  • polyhydric alcohol may be used alone, or two or more types may be used in combination.
  • the polyhydric alcohol preferably contains polyether diol from the viewpoint of increasing the flexibility of the coating film formed from the anti-slip agent.
  • the polyhydric alcohol preferably contains a polycarbonate diol from the viewpoint of increasing the non-adhesiveness.
  • a polyvalent isocyanate is an organic compound having two or more isocyanate groups in one molecule.
  • Examples of the polyvalent isocyanate include the following.
  • -Aliphatic polyvalent isocyanate 1,6-hexamethylene diisocyanate and the like.
  • Alicyclic polyvalent isocyanate dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, etc.
  • -Aromatic polyvalent isocyanate 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate and the like.
  • polyvalent isocyanate one type may be used alone, or two or more types may be used in combination.
  • polyvalent isocyanate an aliphatic polyvalent isocyanate or an alicyclic polyvalent isocyanate is preferable because the urethane polymer is unlikely to yellow.
  • the mass average molecular weight of the urethane polymer is preferably 500 or more, more preferably 1000 or more, from the viewpoint of improving the reactivity of the radical polymerizable monomer in the production of polymer particles described below.
  • the mass average molecular weight of the urethane polymer is preferably 500,000 or less, more preferably 100,000 or less, from the viewpoint of the durability of the non-slip processed fiber product.
  • the mass average molecular weight of the urethane polymer is preferably 500 to 500,000, more preferably 1,000 to 100,000.
  • urethane polymer a urethane polymer having crystallinity is preferable in terms of excellent non-slip properties of a non-slip processed fiber product on a wet floor or the like.
  • urethane polymer having crystallinity include those using polyester diol as a raw material polyhydric alcohol.
  • Examples of the method for producing the urethane polymer include a method in which a polyhydric alcohol and a polyvalent isocyanate are reacted in an ether such as dioxane using a catalyst such as dibutyltin dilaurate.
  • the acrylic polymer is a polymer obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer.
  • the acrylic polymer may be a homopolymer composed of one type of (meth) acrylic monomer, or a copolymer composed of two or more types of (meth) acrylic monomer, A copolymer of a (meth) acrylic monomer and another radical polymerizable monomer may be used.
  • Examples of the (meth) acrylic monomer include the following.
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, sec-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate and the like.
  • Polyoxyalkylene group-containing (meth) acrylate hydroxypolyethylene oxide mono (meth) acrylate, hydroxypolypropylene oxide mono (meth) acrylate, hydroxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-propylene oxide) ) Mono (meth) acrylate, hydroxy (polyethylene oxide-polytetramethylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-tetramethylene oxide) mono (meth) acrylate, hydroxy (polypropylene oxide-polytetramethylene oxide) mono ( (Meth) acrylate, hydroxy (polypropylene oxide-tetramethylene oxide) mono (meth) acrylate Rate, methoxy polyethylene oxide mono (meth) acrylate, lauroxy polyethylene oxide mono (meth) acrylate, stearoxy polyethylene oxide mono (meth) acrylate, allyloxy poly
  • -Oxirane group-containing (meth) acrylate glycidyl (meth) acrylate and the like.
  • -Hydroxycycloalkyl (meth) acrylate p-hydroxycyclohexyl (meth) acrylate, o-hydroxycyclohexyl (meth) acrylate and the like.
  • -Lactone-modified hydroxyl group-containing (meth) acrylate Praxel (registered trademark; the same applies hereinafter) FM1 (trade name, manufactured by Daicel), Plaxel FM2 (trade name, manufactured by Daicel) and the like.
  • -Aminoalkyl (meth) acrylate 2-aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 2-butylaminoethyl (meth) acrylate, and the like.
  • Amide group-containing (meth) acrylic monomers (meth) acrylamide, N-methylolacrylamide, N-butoxymethyl (meth) acrylamide, diacetoneacrylamide and the like.
  • Carboxy group-containing (meth) acrylic monomers (meth) acrylic acid, monohydroxyethyl oxalate (meth) acrylate, monohydroxyethyl tetrahydrophthalate (meth) acrylate, monohydroxypropyl tetrahydrophthalate (meth) acrylate Monohydroxyethyl (meth) acrylate, 5-methyl-1,2-cyclohexanedicarboxylate, monohydroxyethyl (meth) acrylate phthalate, monohydroxypropyl (meth) acrylate phthalate, monohydroxyethyl (meth) acrylate maleate, Hydroxypropyl (meth) acrylate maleate, monohydroxybutyl (meth) acrylate tetrahydrophthalate, and the like.
  • -Multifunctional (meth) acrylate ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and the like.
  • Metal-containing (meth) acrylic monomers zinc diacrylate, zinc dimethacrylate, and the like.
  • -UV-resistant group-containing (meth) acrylate 2- (2'-hydroxy-5 '-(meth) acryloxyethylphenyl) -2H-benzotriazole, 1- (meth) acryloyl-4-hydroxy-2,2, 6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-methoxy-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-amino-4-cyano-2,2,2 6,6-tetramethylpiperidine and the like.
  • -Other (meth) acrylic monomers dimethylaminoethyl (meth) acrylate methyl chloride salt, allyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylonitrile, phenyl (meth) acrylate, benzyl (meth)
  • examples include acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxyethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • Examples of other radically polymerizable monomers include the following.
  • -Aromatic vinyl monomers styrene, methylstyrene, etc.
  • -Conjugated diene monomers 1,3-butadiene, isoprene and the like.
  • -Other radically polymerizable monomers vinyl acetate, vinyl chloride, ethylene, itaconic acid, citraconic acid, maleic acid, monomethyl maleate, monobutyl maleate, monomethyl itaconate, monobutyl itaconate, vinylbenzoic acid, and the like.
  • the weight average molecular weight of the acrylic polymer is preferably 50,000 to 5,000,000.
  • the weight average molecular weight of the acrylic polymer is more preferably 100,000 or more from the viewpoint of the durability of the fiber processed article subjected to the non-slip processing.
  • the mass average molecular weight of the acrylic polymer is more preferably 4,000,000 or less from the viewpoint of the film-forming property of the anti-slip agent.
  • the Tg of the acrylic polymer is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 60 to ⁇ 20 ° C.
  • the Tg of the acrylic polymer is not less than the lower limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
  • the Tg of the acrylic polymer is equal to or less than the upper limit, the non-slip property of the non-slip processed fiber product on a wet floor or the like is further improved.
  • aqueous dispersion X Other components that may be included in the aqueous dispersion X include additives, other emulsion resins, water-soluble resins, and the like.
  • Additives include surfactants, various pigments, antifoaming agents, pigment dispersants, leveling agents, anti-sagging agents, matting agents, ultraviolet absorbers, light stabilizers, antioxidants, heat resistance improvers, preservatives Agents, plasticizers, film-forming auxiliaries, viscosity control agents, curing agents and the like.
  • emulsion resins include polyester resins, acrylic silicone resins, silicone resins, fluorine resins, epoxy resins, and the like.
  • the curing agent include melamines and isocyanates.
  • the aqueous dispersion X can be produced, for example, by the following method. -Urethane polymer particles in an aqueous urethane polymer dispersion liquid are impregnated with a radical polymerizable monomer containing a (meth) acrylic monomer to undergo radical polymerization, from a composite containing a urethane polymer and an acrylic polymer. To form polymer particles.
  • a urethane polymer is formed by reacting a polyhydric alcohol and a polyisocyanate in a mixture of a radical polymerizable monomer containing a (meth) acrylic monomer, a polyhydric alcohol and a polyvalent isocyanate, and mixing A method in which a liquid is dispersed in water and radical polymerizable monomers are radically polymerized to form polymer particles comprising a composite containing a urethane polymer and an acrylic polymer.
  • the urethane polymer aqueous dispersion is obtained by dispersing a urethane polymer in water.
  • a carboxy group and a sulfonic acid group are preferable to introduce into the urethane polymer.
  • the urethane polymer may be emulsified with a surfactant.
  • the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is such that the particle size of the finally obtained polymer particles becomes appropriate, and that the physical properties of the obtained coating film are improved. It is preferably at least 10 nm, more preferably at least 30 nm, even more preferably at least 40 nm.
  • the average particle diameter of the urethane polymer particles in the aqueous urethane polymer dispersion is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less, from the viewpoint of the stability of the urethane polymer aqueous dispersion.
  • the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is preferably from 10 to 1,000 nm, more preferably from 30 to 500 nm, and even more preferably from 40 to 300 nm.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is 10% by mass or more from the viewpoint that the solid content of the anti-slip processing agent comprising the aqueous dispersion X can be easily adjusted to a range of 10 to 60% by mass. Is preferable, and 25 mass% or more is more preferable.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 70% by mass or less, and more preferably 60% by mass or less from the viewpoint that the anti-slip processing agent comprising the aqueous dispersion X exhibits good coating properties. More preferred.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably from 10 to 70% by mass, and more preferably from 25 to 60% by mass.
  • urethane polymer aqueous dispersion a commercially available urethane polymer aqueous dispersion (polyurethane dispersion: PUD) may be used as it is.
  • PUD polyurethane dispersion
  • examples of commercially available aqueous urethane polymer dispersions include the following. -Manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Superflex (registered trademark; the same applies hereinafter) 110, Superflex 150, Superflex 210, Superflex 300, Superflex 420, Superflex 460, Superflex 470, Superflex 500M, Superflex 620, Superflex 650, Superflex 740, Superflex 820, Superflex 840, F-8082D.
  • Bihydrol registered trademark; the same applies hereinafter
  • Hydran registered trademark; the same applies hereinafter
  • NeoSticker registered trademark; the same applies hereinafter
  • 100C Evaphanol (registered trademark; the same applies hereinafter)
  • HA-107C Evaphanol HA-50C
  • Evaphanol HA-170 Evaphanol HA-560.
  • ADEKA Adekabon titer (registered trademark; the same applies hereinafter)
  • UHX-210 Adekabon titer UHX-280, etc.
  • the urethane polymer aqueous dispersion may be used alone or in combination of two or more.
  • radical polymerization initiator used for the polymerization of the radical polymerizable monomer
  • examples of the radical polymerization initiator used for the polymerization of the radical polymerizable monomer include the following.
  • -Persulfate potassium persulfate, sodium persulfate, ammonium persulfate and the like.
  • Oil-soluble azo compounds azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
  • Water-soluble azo compound 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl- N- [2- (1-hydroxyethyl)] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)] propionamide ⁇ , 2,2′-azobis [ 2- (5-methyl-2-imidazolin-2-yl) propane] and salts thereof, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and salts thereof, 2,2′- Azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] and salts thereof, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and salts thereof, 2,2'-azobi ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-y
  • -Organic peroxide benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and the like.
  • the amount of the radical polymerization initiator to be added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the radical polymerizable monomer.
  • the amount is preferably from 2 to 5 parts by mass.
  • a molecular weight modifier may be used to adjust the molecular weight of the acrylic polymer.
  • the molecular weight modifier include the following.
  • Mercaptans n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan and the like.
  • Halogen compounds carbon tetrachloride, ethylene bromide, etc.
  • Known chain transfer agents ⁇ -methylstyrene dimer and the like.
  • the amount of the molecular weight modifier added is usually 1 part by mass or less based on 100 parts by mass of the total amount of the radical polymerizable monomer.
  • the aqueous dispersion X described above contains an aqueous medium and polymer particles dispersed in the aqueous medium, and the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer.
  • the urethane polymer and the acrylic polymer are uniformly present in the coating film formed when the fiber processed product is non-slip processed by the non-slip processing agent composed of the liquid X. As a result, both the anti-slip property of the acrylic polymer and the non-adhesive property of the urethane polymer are sufficiently exhibited.
  • the non-slip processed fiber product of the present invention is a non-slip processed fiber product on one or both of the back surface and the front surface.
  • a processed fiber product is an article having a fabric obtained by processing fibers.
  • the processed fiber product may further have a material (resin film, resin molded product, paper, wood, metal, glass, or the like) other than the fabric.
  • Examples of the fibers include natural fibers and synthetic fibers.
  • Examples of the synthetic fiber material include polyester, acrylic resin, and polyolefin.
  • Examples of the fabric include a woven fabric, a knitted fabric, a nonwoven fabric, a braid, and a combination thereof.
  • the woven fabric is obtained by interweaving warps and wefts.
  • a knitted fabric is a knitted fabric in which a surface is formed by forming a loop with a thread and hooking the next thread on the loop to form a continuous loop.
  • the nonwoven fabric is a sheet made by entanglement without woven fibers.
  • the braid has two yarns woven diagonally.
  • Examples of the processed fiber products include rugs (home-use, business-use, vehicle-mounted mats, etc.) and clothing (gloves, socks, etc.).
  • the first aspect of the non-slip processed fiber processed article of the present invention is any one of the first, second, third, and fourth aspects of the anti-slip agent of the present invention. It is a fiber processed product which is non-slip processed by the anti-slip agent. The method of non-slip processing will be described later.
  • the first, second, third, and fourth aspects of the anti-slip agent of the present invention are provided.
  • the anti-slip processing is performed by any of the anti-slip processing agents, so that the anti-slip property on wet floors and the like and the non-adhesion property on floors and the like are excellent.
  • it since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
  • a second aspect of the non-slip processed fiber processed product of the present invention is that the shear bond strength obtained by the above-mentioned “Method of obtaining shear bond strength II” is less than 15 N and the above-mentioned “method of obtaining a static friction coefficient” II "is 0.6 or more.
  • a non-slip processed fiber product having a shear bond strength of less than 15 N determined by "Method for determining shear bond strength II" is excellent in non-adhesiveness to floors and the like, and hardly stains floors and the like even after long-term use. .
  • the shear bond strength is preferably less than 12N.
  • An anti-slip fiber processed product having a static friction coefficient of 0.6 or more determined by “Method of determining static friction coefficient II” is excellent in anti-slip properties on wet floors and the like.
  • a non-slip fiber processed product having a static friction coefficient of 0.7 or more obtained in "Method of obtaining static friction coefficient II” is sufficient for a non-slip processed fiber processed product having a small area to wet floors or the like. Demonstrates a good anti-slip property.
  • the coefficient of static friction is more preferably 0.85 or more.
  • Examples thereof include a processed fiber product to which a urethane polymer and an acrylic polymer are adhered.
  • the processed fiber product to which the urethane polymer and the acrylic polymer are adhered is one to which other components other than the urethane polymer and the acrylic polymer are further adhered as necessary, as long as the effects of the present invention are not impaired. May be.
  • urethane polymer those similar to the urethane polymer described in the aqueous dispersion X can be mentioned, and the preferred embodiment is also the same.
  • acrylic polymer examples include the same acrylic polymers as those described for the aqueous dispersion X, and the preferred embodiments are also the same.
  • other components those similar to the other components described in the aqueous dispersion X can be mentioned.
  • the total of the attached amount of the urethane polymer and the attached amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 preferably ⁇ 500g / m 2, more preferably 30 ⁇ 400g / m 2, more preferably 50 ⁇ 200g / m 2.
  • the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the non-slip processed fiber product on a wet floor or the like is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • the texture of the non-slip processed fiber product is excellent.
  • the second embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to the non-slip processing according to the first embodiment of the non-slip processing agent of the present invention.
  • the method of non-slip processing will be described later.
  • the shear adhesive strength determined by “Method of determining shear adhesive strength II” is less than 15N, and the “static friction coefficient Since the coefficient of static friction determined by “Method II” is 0.6 or more, it has excellent anti-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
  • the third aspect of the non-slip processed fiber processed product of the present invention is that the shear adhesive strength obtained by the above-described “Method of obtaining shear adhesive strength II” is less than 15 N and the above-mentioned “determination of water contact angle” The water contact angle determined in Method II is 80 ° or more.
  • a non-slip fiber processed product having a shear adhesive strength of less than 15 N determined by "Method for determining shear adhesive strength II" is excellent in non-adhesion to floors and the like, and hardly stains floors and the like even after long-term use. .
  • the shear bond strength is preferably less than 12N.
  • a non-slip processed fiber product having a water contact angle of 80 ° or more determined by “Method for determining water contact angle II” has excellent non-slip properties on wet floors and the like.
  • the water contact angle is preferably 85 ° or more.
  • Non-slip textile processing in which the shear adhesive strength determined by "Method of determining shear adhesive strength II" is less than 15 N and the water contact angle determined by “Method of determining water contact angle II” is 80 ° or more
  • the article include a processed fiber article to which a urethane polymer and an acrylic polymer are attached.
  • the processed fiber product to which the urethane polymer and the acrylic polymer are adhered include the same ones as described in the second embodiment of the non-slip processed fiber product, and the preferred embodiments are also the same.
  • the third aspect of the non-slip processed fiber product of the present invention can be produced, for example, by subjecting the processed fiber product to non-slip processing by the second embodiment of the non-slip processing agent of the present invention.
  • the method of non-slip processing will be described later.
  • the shear adhesive strength determined by “Method for determining shear adhesive strength II” is less than 15 N, and the “water contact angle” Since the water contact angle determined by “Method II” is 80 ° or more, it has excellent anti-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
  • the first aspect of the method for producing a non-slip processed fiber product according to the present invention includes the first aspect, the second aspect, the third aspect, and the fourth aspect of the anti-slip processing agent of the present invention.
  • any one of the anti-slip agents is applied to a processed fiber product and dried.
  • the first aspect of the method for producing a non-slip processed fiber product according to the present invention includes a non-slip processing agent according to the present invention in order to obtain a fiber processed product coated with the non-slip processing agent.
  • an anti-slip agent is applied to a processed fiber product, and the anti-slip agent is applied to the processed fiber product Drying.
  • Examples of the method of applying the non-slip agent to the processed fiber include a spray coating method, a roll coating method, a bar coating method, an air knife coating method, a brush coating method, and a dipping method.
  • a spray coating method is preferable because it can be applied on a continuous production line without any size restrictions.
  • the spray coating method may be performed by spraying a non-slip processing agent using an air spray.
  • the coating amount of Rubberized agent per unit area of the fiber processed article is preferably 10 ⁇ 1000g / m 2, more preferably 20 ⁇ 800g / m 2, more preferably 100 ⁇ 300g / m 2.
  • the application amount of the anti-slip agent is equal to or more than the lower limit, the anti-slip property of the processed non-slip fiber product on a wet floor or the like is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • the applied amount of the anti-slip agent is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
  • a medium such as water or an organic solvent contained in the non-slip agent is removed by drying the fiber processed product to which the anti-slip agent is applied. Drying of the fiber processed product to which the anti-slip agent has been applied may be performed at room temperature or by heating. When heating, the heating temperature is preferably from 50 to 300 ° C. When heating, the heating time is preferably from 0.1 to 60 minutes.
  • the first, second, and third aspects of the anti-slip agent of the present invention are provided.
  • the fourth aspect in which any one of the anti-slip processing agents is applied to the processed fiber product and dried, so that the anti-slip property on wet floors and the non-adhesive property on floors and the like are excellent.
  • a processed fiber product can be manufactured.
  • the non-slip processed fiber product manufactured in the first aspect of the method for producing a non-slip processed fiber product of the present invention has a non-slip property against a wet floor or the like and a non-adhesive property against a floor or the like. Excellent for a wide range of applications.
  • a second aspect of the method for producing a non-slip processed fiber product of the present invention includes spraying a non-slip processing agent on the textile.
  • the fiber product to which the non-slip processing agent is sprayed satisfies one or both of Condition A and Condition B described below.
  • the dry particle size of the atomized anti-slip agent in spraying the non-slip agent on the textile is less than 150 ⁇ m.
  • Spraying of the non-slip processing agent onto the textile product includes a spray coating method, and the spray coating method may be performed by spraying the non-slip processing agent using an air spray.
  • Spraying amount of Rubberized agent per unit area of the textile preferably 10 ⁇ 1000g / m 2, more preferably 20 ⁇ 800g / m 2, more preferably 100 ⁇ 300g / m 2.
  • the spray amount of the anti-slip agent is not less than the lower limit, the anti-slip property of the non-slip fiber processed product on a wet floor or the like is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • the spray amount of the anti-slip agent is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
  • Condition A The textile to which the anti-slip agent is sprayed satisfies one or both of Condition A and Condition B.
  • Condition B The fiber product cut into a size of 5 cm ⁇ 5 cm was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption A converted to the water absorption per 1 m 2 of the fiber product was: It is 1000 g / m 2 or more.
  • Condition B The fiber product cut into a size of 3 g was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption B converted to the water absorption per 1 g of the fiber product was 5 g / g. That is all.
  • the dry particle size of the atomized anti-slip agent in spraying the anti-slip agent on textiles is less than 150 ⁇ m.
  • the dry particle size of the atomized anti-slip agent is determined by the following method. That is, the atomized anti-slip agent is deposited on a clean glass substrate so that the atomized droplets do not overlap, and dried at 120 ° C. for 5 minutes to obtain a particle diameter of 200 dried atomized droplets. Measure with an optical microscope and determine the average value.
  • a fiber product used in the second aspect of the method for producing a non-slip processed fiber product of the present invention a woven fabric, a knitted fabric, a nonwoven fabric, or the like can be given. Above all, a chenille fabric used on a wet floor as a bath mat or the like is preferable.
  • the non-slip agent used in the second aspect of the method for producing a non-slip processed fiber product of the present invention the first, second and third aspects of the anti-slip agent of the present invention are used.
  • the same aspects as those of the fourth and fourth aspects are mentioned, and the preferred aspects are also the same.
  • the sprayed anti-slip agent hardly penetrates into the interior of the textile, and the resin is applied to the surface layer of the processed surface. Since it adheres, it is possible to produce a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like.
  • the non-slip processed fiber product manufactured in the first aspect of the method for producing a non-slip processed fiber product of the present invention has a non-slip property against a wet floor or the like and a non-adhesive property against a floor or the like. Excellent for a wide range of applications.
  • Non-slip property A horizontal stainless steel sheet (SUS304 No. 2B of JIS standard) in which a non-slip processed chenille base cloth is sprayed with water to a surface of 32 mg / cm 2 with the non-slip processed face down by spraying.
  • the chenille base cloth which is placed on the top and subjected to a load of 26.46 N (2.7 kg) from the upper side of the non-slip chenille base cloth, is subjected to a non-slip processing at an ambient temperature of 23 ° C. by a spring.
  • a static friction force was measured by pulling the stainless steel plate in parallel with a stainless steel plate using a hand weighing scale (M506ST series manufactured by Shiro Sangyo Co., Ltd.), and the obtained static friction force was divided by a normal force to obtain a static friction coefficient.
  • the anti-slip property was evaluated according to the following criteria.
  • the above-mentioned anti-slip property was evaluated after repeating the following washing process 10 times with respect to the chenille base fabric subjected to the anti-slip processing.
  • the washing process was performed once for 15 minutes for washing, 3 minutes for rinsing, 3 minutes for rinsing, 2 minutes for rinsing, 2 minutes for rinsing, 5 minutes for dehydration, and 24 hours for indoor drying.
  • Water adjusted to 40 ° C. was used for washing, and water at 23 ° C. was used for rinsing.
  • the amount of water was 25 L for washing and rinsing, and the amount of detergent used for washing was 18 g.
  • a two-layer washing machine was used for washing.
  • the non-slip chenille base cloth is bonded to an ABS resin base material (manufactured by TP Giken Co., black, 90 mm ⁇ 50 mm ⁇ thickness 3 mm) with the non-slip surface down, with an adhesive surface of 50 mm ⁇ 50 mm.
  • the chenille base cloth that has been stacked and slip-proofed is left standing at an ambient temperature of 40 ° C. for 24 hours under a load of 6.86 N (700 g) from the upper side, and further at an ambient temperature of 23 ° C. for 3 hours.
  • the chenille base cloth subjected to anti-slip processing was adhered to the ABS resin base material.
  • the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material were bonded at an ambient temperature of 23 ° C. and a test speed of 100 mm / min.
  • the film was pulled parallel to the bonding surface, and the maximum load at this time was defined as the shear bonding strength.
  • Non-adhesion was evaluated according to the following criteria.
  • the water contact angle was evaluated according to the following criteria. A: The water contact angle is 80 ° or more. B: The water contact angle is less than 80 °.
  • Urethane polymer aqueous dispersion A urethane polymer A obtained by using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as a polyvalent isocyanate and using polybutylene adipate as a polyhydric alcohol and dispersing in water ( (Average particle diameter of urethane polymer particles 0.17 ⁇ m, temperature at endothermic peak (crystal melting temperature) 45 ° C., solid content 40%).
  • Urethane polymer aqueous dispersion B urethane polymer B obtained by using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as polyvalent isocyanate and using polybutylene adipate as polyhydric alcohol, and dispersed in water ( (Average particle diameter of urethane polymer particles 0.155 ⁇ m, temperature at endothermic peak (crystal melting temperature) 48 ° C., solid content 40%).
  • BA n-butyl acrylate (Tg: -49 ° C).
  • Damam diacetone acrylamide (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 77 ° C.).
  • AMA allyl methacrylate (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 52 ° C.).
  • MMA methyl methacrylate (Tg: 105 ° C.).
  • MAA methacrylic acid (Tg: 228 ° C.).
  • Adecaria Soap SR-1025 surfactant, manufactured by ADEKA, solid content 25%.
  • Newcol registered trademark; the same applies hereinafter
  • 707SF surfactant, manufactured by Nippon Emulsifier, solid content 30%.
  • Perbutyl (registered trademark; the same applies hereinafter) H69 t-butyl hydroperoxide aqueous solution, manufactured by NOF Corporation, solid content 69%.
  • Examples 1 to 3 The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, followed by purging with nitrogen.
  • the following monomer mixture as a raw material of the acrylic polymer A was charged into a flask, and the internal temperature of the flask was raised to 40 ° C. while continuing nitrogen replacement.
  • aqueous dispersion of polymer particles The viscosity was 197 mPa ⁇ s, and the solid content was 35.0%.
  • a chenille base fabric subjected to anti-slip processing was obtained.
  • the total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • the non-slip chenille base fabric was excellent in anti-slip properties, washing resistance, and non-adhesiveness.
  • Example 4 Using a water dispersion prepared in the same manner as in Example 1 as a non-slip processing agent, except that the urethane polymer aqueous dispersion A was changed to the urethane polymer aqueous dispersion B, a non-slip chenille base cloth was used. Got. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • Example 5 An aqueous dispersion prepared in the same manner as in Example 1 except that the monomer mixture serving as a raw material of the acrylic polymer A was changed to the following monomer mixture serving as a raw material of the acrylic polymer B, was used as a non-slip processing agent. To obtain a chenille base fabric which has been subjected to a non-slip processing. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • Example 6 A water dispersion prepared in the same manner as in Example 1 was used as an anti-slip agent except that the type of hand spray was changed to LPH-101 (manufactured by Anest Iwata Co., Ltd.) and application was performed at a spray air pressure of 0.1 MPa. Thus, a chenille base cloth subjected to a non-slip processing was obtained. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • the remainder of the monomer mixture as a raw material of the acrylic polymer C was dropped into the flask over 3 hours.
  • the temperature of the flask was maintained at 80 ° C. for 1 hour.
  • the inside of the flask was cooled to 40 ° C., and 2.08 parts of adipic hydrazide and 15.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of an acrylic polymer.
  • the solids content was 45.1%.
  • This aqueous dispersion was diluted to a solid content of 35.0% and used as a non-slip agent to obtain a non-slip chenille base fabric.
  • the adhesion amount of the acrylic polymer was the adhesion amount shown in Table 2. Table 2 shows the evaluation results.
  • the non-slip chenille base fabric was excellent in the initial non-slip properties, but was inferior in washing resistance and non-adhesion.
  • the anti-slip agent of the present invention has excellent anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, and is useful for the production of non-slip processed fiber products that can be used for a wide range of applications.

Abstract

The present invention provides: an anti-slip processed textile product having excellent anti-slip properties with respect to wet floors etc. and non-tacky properties with respect to floors etc.; a method for producing the same; and an anti-slip processing agent which has excellent anti-slip properties with respect to wet floors etc. and non-tacky properties with respect to floors etc. and with which an anti-slip processed textile product can be obtained. This anti-slip processing agent imparts anti-slip properties to a processed object, has a shear adhesive strength of less than 15 N as determined by a specific method, and has a static friction coefficient of at least 0.6 as determined by a specific method.

Description

滑り止め加工剤、滑り止め加工された繊維加工品、及び滑り止め加工された繊維加工品の製造方法Non-slip finishing agent, non-slip processed fiber product, and method for producing anti-slip processed fiber product
 本発明は、滑り止め加工剤、滑り止め加工された繊維加工品、及び滑り止め加工された繊維加工品の製造方法に関する。
 本願は、2018年6月29日に日本に出願された特願2018-124172号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a non-slip agent, a non-slip processed fiber product, and a method for producing a non-slip processed fiber product.
This application claims priority based on Japanese Patent Application No. 2018-124172 for which it applied to Japan on June 29, 2018, and uses the content here.
 敷物(玄関マット、キッチンマット、ラグ、カーペット、テーブルクロス、ランチョンマット等)等の繊維加工品においては、繊維加工品に触れた際に、繊維加工品が滑って転びそうになったり、繊維加工品の位置がずれたりすることを防止するために、繊維加工品の裏面が滑り止め加工剤によって滑り止め加工されることがある。 In the case of textile products such as rugs (entrance mats, kitchen mats, rugs, carpets, tablecloths, luncheon mats, etc.), when the textile products are touched, the textile products may slip and fall, In order to prevent the position of the product from being shifted, the back surface of the processed fiber product may be subjected to a non-slip processing by a non-slip processing agent.
 滑り止め加工剤の中でも、水性媒体に重合体成分が分散した水性の滑り止め加工剤は、多様な加工寸法、多様な形態に容易に対応でき、有機溶剤をほとんど含まないことから、幅広い用途への展開が期待される。 Among anti-slip agents, aqueous anti-slip agents in which a polymer component is dispersed in an aqueous medium can be easily used in various processing dimensions and various forms, and contain almost no organic solvent, making them suitable for a wide range of applications. Is expected to expand.
 水性樹脂を含む滑り止め加工剤としては、下記のものが提案されている。
 (1)架橋構造を有するウレタン樹脂を含む、敷物裏打ち用水性樹脂組成物(特許文献1)。
 (2)カルボニル基含有アクリル系共重合体、有機ヒドラジン誘導体、及び熱膨張性カプセル粒子を含む水性分散液(特許文献2)。
The following are proposed as anti-slip agents containing an aqueous resin.
(1) An aqueous resin composition for backing a rug, comprising a urethane resin having a crosslinked structure (Patent Document 1).
(2) An aqueous dispersion containing a carbonyl group-containing acrylic copolymer, an organic hydrazine derivative, and thermally expandable capsule particles (Patent Document 2).
特開2001-106896号公報JP 2001-106896 A 特開2009-66782号公報JP 2009-66782 A
 脱衣所、台所等の、水で床が濡れることがある場所で用いられるマット等については、濡れた床に対しても滑らないことが求められる。
 (1)の敷物裏打ち用水性樹脂組成物によって滑り止め加工された繊維加工品は、裏面が非粘着性で床等を汚しにくい。しかし、濡れた床等に対する滑り止め性が十分でなく、用途が限られる。
 (2)の水性分散液によって滑り止め加工された繊維加工品は、乾燥した床等に対する滑り止め性に優れる。しかし、濡れた床等に対する滑り止め性が十分でなく、また、床等に対する非粘着性に劣り、用途が限られる。
Mats used in places where the floor can be wet with water, such as dressing rooms and kitchens, are required not to slip on wet floors.
The fiber processed product which is non-slip processed by the aqueous resin composition for backing backing of (1) has a non-adhesive back surface and is unlikely to stain floors and the like. However, the anti-slipping property against a wet floor or the like is not sufficient, and its use is limited.
The processed fiber product subjected to the non-slip processing by the aqueous dispersion of (2) has excellent anti-slip properties on a dry floor or the like. However, the anti-slip properties on wet floors and the like are not sufficient, and the non-adhesiveness on the floors and the like are poor, and the applications are limited.
 本発明は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品とその製造方法、ならびに濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた、滑り止め加工された繊維加工品を得ることができる滑り止め加工剤を提供する。 The present invention relates to a non-slip processed fiber product having excellent non-slip properties on wet floors and non-adhesion to floors and the like, a method for producing the same, and non-slip properties on wet floors and non-adhesion to floors and the like. Provided is an anti-slip agent capable of obtaining an anti-slip processed fiber product having excellent properties.
 本発明は、下記の態様を有する。
[1]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 後記「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満であり、かつ後記「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上である、滑り止め加工剤。
[2]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 後記「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満であり、かつ後記「水接触角の求め方I」で求めた水接触角が80°以上である、滑り止め加工剤。
[3]前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
 前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなる、[1]又は[2]記載の滑り止め加工剤。
[4]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
 前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなり、
 後記「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上である、滑り止め加工剤。
[5]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
 前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなり、
 後記「水接触角の求め方I」で求めた水接触角が80°以上である、滑り止め加工剤。
 (水接触角の求め方)
 ガラス板(120mm×120×厚さ2mm)の表面に、滑り止め加工剤を、4milのアプリケーターにて塗布し、雰囲気温度120℃で5分間乾燥して形成された塗膜の表面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
[6]前記ウレタン重合体が結晶性を有する、[3]~[5]のいずれかに記載の滑り止め加工剤。
[7]前記アクリル重合体のガラス転移温度が-10℃以下である、[3]~[6]のいずれかに記載の滑り止め加工剤。
[8][1]~[7]のいずれかに記載の滑り止め加工剤によって滑り止め加工された、滑り止め加工された繊維加工品。
[9]後記「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ後記「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である、滑り止め加工された繊維加工品。
[10]後記「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ後記「水接触角の求め方II」で求めた水接触角が80°以上である、滑り止め加工された繊維加工品。
[11]ウレタン重合体及びアクリル重合体が付着している、[9]又は[10]に記載の滑り止め加工された繊維加工品。
[12]前記滑り止め加工された繊維加工品の単位面積当たりの前記ウレタン重合体の付着量と前記アクリル重合体の付着量との合計が3~500g/mである、[11]に記載の滑り止め加工された繊維加工品。
[13]滑り止め加工剤が塗布された繊維加工品を得るために、[1]~[7]のいずれかに記載の滑り止め加工剤を、繊維加工品に塗布し、
 前記滑り止め加工剤が塗布された繊維加工品を乾燥することを含む、滑り止め加工された繊維加工品の製造方法。
[14]前記繊維加工品の単位面積当たりの前記滑り止め加工剤の塗布量が10~1000g/mである、[13]に記載の滑り止め加工された繊維加工品の製造方法。
[15]前記滑り止め加工剤の前記繊維加工品への塗布がスプレーコートにより行われる、[13]又は[14]に記載の滑り止め加工された繊維加工品の製造方法。
[16]繊維製品への滑り止め加工剤の噴霧を含む滑り止め加工された繊維加工品の製造方法であって、
 前記繊維製品は、下記条件A及び下記条件Bのいずれか一方又は両方を満たし、
 下記方法で求めた前記噴霧における霧化した前記滑り止め加工剤の乾燥粒径が150μm未満である、滑り止め加工された繊維加工品の製造方法。
(条件A)
 5cm×5cmの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1mあたりの吸水量に換算した吸水量Aが、1000g/m以上である。
(条件B)
 3gの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1gあたりの吸水量に換算した吸水量Bが、5g/g以上である。
(乾燥粒径の求め方)
 霧化した前記滑り止め加工剤を清浄なガラス基板上に霧化滴が重ならないように付着させ、120℃で5分間乾燥させて得られた乾燥した霧化滴200個の粒径を光学顕微鏡にて測定し平均値を求める。
[17]前記滑り止め加工剤が水性分散体である、[16]に記載の滑り止め加工された繊維加工品の製造方法。
[18]前記滑り止め加工剤がウレタン重合体又はアクリル重合体を含む水性分散体である、[17]に記載の滑り止め加工された繊維加工品の製造方法。
[19]前記繊維製品がシェニール織物である、[16]~[18]のいずれかに記載の滑り止め加工された繊維加工品の製造方法。
[20]繊維製品への滑り止め加工剤の前記噴霧が、スプレーコートにより行われる、[16]~[19]のいずれかに記載の製造方法。
The present invention has the following aspects.
[1] An anti-slip agent for imparting anti-slip properties to a processed fiber product,
An anti-slip agent having a shear adhesive strength of less than 15 N determined by "Method I of determining shear adhesive strength" and a coefficient of static friction determined by a method of determining static coefficient of static I of 0.6 or more.
[2] An anti-slip agent for imparting anti-slip properties to a processed fiber product,
A non-slip processing agent having a shear adhesive strength of less than 15 N determined by "Method I of determining shear adhesive strength" and a water contact angle of 80 ° or more determined by "Method I of determining water contact angle" described later. .
[3] The non-slip agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
The antiskid agent according to [1] or [2], wherein the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer.
[4] An anti-slip agent for imparting anti-slip properties to a processed fiber product,
The non-slip processing agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer,
An anti-slip agent having a coefficient of static friction of 0.6 or more, as determined by "Method I for determining coefficient of static friction I" below.
[5] An anti-slip agent for imparting anti-slip properties to a textile product,
The non-slip processing agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer,
A non-slip agent having a water contact angle of 80 ° or more, as determined by the “method I for determining a water contact angle” described below.
(How to determine water contact angle)
An anti-slip agent is applied to the surface of a glass plate (120 mm × 120 × 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes. At 23 ° C., 1 μL of a water droplet is attached, and the water contact angle after 5 seconds is measured.
[6] The antiskid agent according to any of [3] to [5], wherein the urethane polymer has crystallinity.
[7] The antislip agent according to any of [3] to [6], wherein the glass transition temperature of the acrylic polymer is -10 ° C or lower.
[8] A non-slip processed fiber product which is non-slip processed by the anti-slip agent according to any one of [1] to [7].
[9] A non-slip, in which the shear adhesive strength determined by “Method II for determining shear adhesive strength II” is less than 15 N and the coefficient of static friction determined by “Method II for determining static friction coefficient II” is 0.6 or more. A processed fiber product.
[10] A slip having a shear adhesive strength of less than 15 N determined by "Method II of determining shear adhesive strength" and a water contact angle of 80 ° or more determined by "Method II of determining water contact angle". Finished fiber processed product.
[11] The non-slip processed fiber product according to [9] or [10], wherein the urethane polymer and the acrylic polymer are attached.
[12] The sum of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 to 500 g / m 2 , according to [11]. Non-slip processed fiber products.
[13] In order to obtain a processed fiber product coated with the anti-slip agent, the anti-slip agent according to any of [1] to [7] is applied to the processed fiber product,
A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
[14] The method for producing a non-slip processed fiber product according to [13], wherein the applied amount of the anti-slip processing agent per unit area of the processed fiber product is 10 to 1000 g / m 2 .
[15] The method for producing a non-slip processed fiber product according to [13] or [14], wherein the application of the anti-slip agent to the processed fiber product is performed by spray coating.
[16] A method for producing a non-slip processed fiber product including spraying a non-slip processing agent on a textile product,
The fiber product satisfies one or both of the following conditions A and B,
A method for producing a non-slip processed fiber product, wherein a dry particle size of the atomized anti-slip agent in the spray obtained by the following method is less than 150 μm.
(Condition A)
The fiber product cut into a size of 5 cm × 5 cm was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption A converted to the water absorption per 1 m 2 of the fiber product was: It is 1000 g / m 2 or more.
(Condition B)
The fiber product cut into a size of 3 g was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption B converted to the water absorption per 1 g of the fiber product was 5 g / g. That is all.
(How to determine dry particle size)
The atomized anti-slip agent was deposited on a clean glass substrate so that the atomized droplets did not overlap, and dried at 120 ° C. for 5 minutes. The particle size of 200 dried atomized droplets obtained was measured using an optical microscope. Measure and calculate the average value.
[17] The method for producing a non-slip processed fiber product according to [16], wherein the anti-slip agent is an aqueous dispersion.
[18] The method for producing a non-slip processed fiber product according to [17], wherein the anti-slip agent is an aqueous dispersion containing a urethane polymer or an acrylic polymer.
[19] The method for producing a non-slip processed fiber product according to any one of [16] to [18], wherein the fiber product is a chenille fabric.
[20] The production method according to any one of [16] to [19], wherein the spraying of the non-slip processing agent onto the textile is performed by spray coating.
 (せん断接着強度の求め方I)
 シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりの滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された滑り止め加工されたシェニール基布とABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工されたシェニール基布の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
(How to determine the shear bond strength I)
On the back surface of a chenille base fabric (a chenille woven fabric of polyester microfiber, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / was applied using a hand spray so that m 2, a non-slip machined chenille base cloth obtained by drying for 5 minutes at ambient temperature 120 ° C., the Rubberized side down ABS resin substrate ( 90 mm × 50 mm × thickness 3 mm), with the adhesive surface being 50 mm × 50 mm, and applying an atmosphere of 6.86 N (700 g) from the upper side of the non-slip chenille base cloth to the atmosphere. The non-slip-processed chenille base cloth and the ABS resin base material which were allowed to stand at a temperature of 40 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours, Using a tension measuring device, the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material are pulled parallel to the bonding surface at an ambient temperature of 23 ° C. and a test speed of 100 mm / min. Is defined as the shear adhesive strength.
 (静摩擦係数の求め方I)
 シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりの滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工されたシェニール基布を、ばね式手秤を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、静摩擦力を法線力で除して静摩擦係数を求める。
(How to find the static friction coefficient I)
On the back surface of a chenille base fabric (a chenille woven fabric of polyester microfiber, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / m 2 was applied using a hand sprayer, and the non-slip chenille base fabric obtained by drying at an ambient temperature of 120 ° C. for 5 minutes was coated with water on the surface with the non-slip surface down. 26.46 N (2.7 kg) from the upper side of a non-slip chenille base cloth placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) sprayed with a spray to 32 mg / cm 2. The chenille base cloth which has been non-slip processed at an ambient temperature of 23 ° C. under a load of Measuring the static friction force pulling in the row, obtaining the static friction coefficient by dividing the static frictional force in the normal force.
 (水接触角の求め方I)
 ガラス板(120mm×120×厚さ2mm)の表面に、滑り止め加工剤を、4milのアプリケーターにて塗布し、雰囲気温度120℃で5分間乾燥して形成された塗膜の表面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
(How to determine water contact angle I)
An anti-slip agent is applied to the surface of a glass plate (120 mm × 120 × 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes. At 23 ° C., 1 μL of a water droplet is attached, and the water contact angle after 5 seconds is measured.
 (せん断接着強度の求め方II)
 滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された滑り止め加工された繊維加工品とABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工された繊維加工品の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
(Method of determining shear adhesive strength II)
A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, under a load of 6.86 N (700 g) applied from the upper side of the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 40 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The lower end of the non-slip processed fiber product and the ABS were bonded to the bonded non-slip processed fiber product and the ABS resin substrate at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. The upper end of the resin substrate is pulled in parallel with the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
 (静摩擦係数の求め方II)
 滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工された繊維加工品の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工された繊維加工品を、ばね式手秤を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、静摩擦力を法線力で除して静摩擦係数を求める。
(How to determine static friction coefficient II)
Rubberized fibers workpiece and (70 mm × 50 mm), the Rubberized side down, horizontal stainless steel plate was sprayed with spray so that water on the surface becomes 32 mg / cm 2 of (JIS Standard SUS304 No .2B) and a non-slip processed fiber at an ambient temperature of 23 ° C. under a load of 26.46 N (2.7 kg) applied from above to the non-slip processed fiber product. The product is pulled in parallel to the stainless steel plate using a spring-type hand scale to measure the static friction force, and the static friction force is divided by the normal force to obtain a static friction coefficient.
 (水接触角の求め方II)
 滑り止め加工された繊維加工品の滑り止め加工面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
(How to determine water contact angle II)
A water droplet of 1 μL is adhered to the non-slip surface of the non-slip processed fiber product at an ambient temperature of 23 ° C., and a water contact angle after 5 seconds is measured.
 本発明の滑り止め加工剤によれば、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を得ることができる。
 本発明の滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れ、幅広い用途に利用できる。
 本発明の滑り止め加工された繊維加工品の製造方法によれば、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れ、幅広い用途に利用できる滑り止め加工された繊維加工品を製造できる。
ADVANTAGE OF THE INVENTION According to the anti-slip agent of this invention, the non-slip processed textiles excellent in the anti-slip property with respect to a wet floor etc. and the non-adhesion with respect to a floor etc. can be obtained.
INDUSTRIAL APPLICABILITY The non-slip processed fiber product of the present invention is excellent in anti-slip properties against wet floors and the like and non-adhesiveness to floors and the like, and can be used for a wide range of applications.
According to the method for producing a non-slip processed fiber product of the present invention, a non-slip processed fiber product which is excellent in non-slip properties on wet floors and the like and non-adhesiveness on floors and the like and can be used for a wide range of applications is provided. Can be manufactured.
 本明細書における「粘度」は、B型粘度計を用い、25℃に調温したサンプルを回転数60rpmの条件で測定した値である。
 本明細書における「固形分」は、サンプル1gを105℃の乾燥機にて2時間乾燥した残分から求めた値である。
 本明細書における「質量平均分子量」は、重合体を溶媒に溶解し、ゲルパーミエイションクロマトグラフィーを用いて分子量を測定し、ポリスチレン換算によって求めた値である。
The “viscosity” in this specification is a value measured using a B-type viscometer at a rotation speed of 60 rpm for a sample temperature-controlled at 25 ° C.
The “solid content” in the present specification is a value obtained from a residue obtained by drying 1 g of a sample with a dryer at 105 ° C. for 2 hours.
The “mass average molecular weight” in the present specification is a value obtained by dissolving a polymer in a solvent, measuring the molecular weight using gel permeation chromatography, and calculating the value in terms of polystyrene.
 本明細書における「結晶性を有するウレタン重合体」は、示差走査熱量測定(DSC)において吸熱ピークが観測されるウレタン重合体である。吸熱ピークは、示差走査熱量計(セイコーインスツルメンツ社製、EXSTAR6000)を用い、0.005~0.01gの試料をアルミニウム製パンに精秤し、昇温速度10℃/minで、0℃から200℃まで昇温したときのDSC曲線で確認できる。 「" Urethane polymer having crystallinity "in the present specification is a urethane polymer having an endothermic peak observed by differential scanning calorimetry (DSC). The endothermic peak was measured using a differential scanning calorimeter (EXSTAR6000, manufactured by Seiko Instruments Inc.) to precisely weigh 0.005 to 0.01 g of the sample in an aluminum pan, and the temperature was raised from 0 ° C. to 200 ° C. at a rate of 10 ° C./min. It can be confirmed by a DSC curve when the temperature was raised to ° C.
 本明細書における「ガラス転移温度」(以下、「Tg」とも記す。)は、ポリマーハンドブック[Polymer HandBook(J.Brandrup、Interscience、1989)]に記載されているモノマーのホモポリマーのTg値を用いてFOXの式から算出した値である。ポリマーハンドブックに記載がない場合、モノマーのホモポリマーのTg値は、モノマー製造企業のカタログに記載の値を採用し、カタログにも記載がない場合は、JIS K 7121:1987に準拠し、示差走査熱量測定(DSC)で求めた中間点ガラス転移温度を採用する。
 本明細書における「平均粒子径」は、光子相関法による粒子径分布測定装置(例えば、大塚電子社製の濃厚系粒径アナライザーFPAR-1000)を用いて室温下にて測定し、キュムラント解析によって算出した散乱光強度基準による調和平均粒子径である。
The “glass transition temperature” (hereinafter also referred to as “Tg”) in the present specification uses the Tg value of a homopolymer of a monomer described in a polymer handbook [Polymer Handbook (J. Brandrup, Interscience, 1989)]. Is calculated from the FOX equation. When not described in the polymer handbook, the Tg value of the homopolymer of the monomer is the value described in the catalog of the monomer manufacturer, and when not described in the catalog, the differential scanning is performed according to JIS K 7121: 1987. The midpoint glass transition temperature determined by calorimetry (DSC) is employed.
The “average particle diameter” in the present specification is measured at room temperature using a particle diameter distribution measuring device (for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.) by a photon correlation method, and is analyzed by cumulant analysis. It is the calculated harmonic mean particle diameter based on the scattered light intensity standard.
 本明細書における「(メタ)アクリル」は、アクリル及びメタクリルの総称である。
 本明細書における「(メタ)アクリレート」は、アクリレート及びメタクリレートの総称である。
“(Meth) acryl” in this specification is a general term for acryl and methacryl.
“(Meth) acrylate” in this specification is a general term for acrylate and methacrylate.
 本明細書における「重合体成分」は、滑り止め加工剤に含まれる、縮合重合体(ウレタン重合体等)、付加重合体(アクリル重合体等)等の樹脂成分である。 「" Polymer component "in this specification is a resin component such as a condensation polymer (urethane polymer or the like) or an addition polymer (acrylic polymer or the like) contained in the anti-slip agent.
 本明細書及び請求の範囲において数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 に お い て In this specification and the claims, “to” indicating a numerical range means that the numerical values described before and after the numerical value range are included as the lower limit and the upper limit.
<<滑り止め加工剤>>
 本発明の滑り止め加工剤は、繊維加工品に滑り止め性を付与するためのものである。
 本発明の滑り止め加工剤によって繊維加工品の裏面及び表面のいずれか一方又は両方を滑り止め加工することによって、繊維加工品に触れた際に、繊維加工品が滑って転びそうになったり、繊維加工品の位置がずれたりすることを防止できる。
<< anti-slip agent >>
The anti-slip agent of the present invention is for imparting anti-slip properties to a processed fiber product.
By subjecting one or both of the back surface and the front surface of the processed fiber product to the non-slip processing agent of the present invention, when touching the processed fiber product, the processed fiber product is likely to slip and fall, It is possible to prevent the position of the fiber processed product from being shifted.
 本発明の滑り止め加工剤としては、水性媒体に重合体成分が分散している水性分散液、有機溶媒に重合体成分が溶解している重合体溶液等が挙げられ、加工場において空気環境を汚染しない点から、水性分散液が好ましい。 Examples of the non-slip processing agent of the present invention include an aqueous dispersion in which the polymer component is dispersed in an aqueous medium, a polymer solution in which the polymer component is dissolved in an organic solvent, and the like. An aqueous dispersion is preferred because it does not contaminate.
 滑り止め加工剤の粘度は、10~100000mPa・sが好ましい。
 滑り止め加工剤の粘度が前記下限値以上であれば、滑り止め加工剤が繊維加工品に染み込みにくく、滑り止め性が発現されやすい。滑り止め加工剤の粘度が前記上限値以下であれば、繊維加工品の滑り止め加工方法が限定されにくい。
The viscosity of the anti-slip agent is preferably from 10 to 100,000 mPa · s.
When the viscosity of the anti-slip agent is equal to or more than the lower limit, the anti-slip agent does not easily permeate into the fiber processed product, and the anti-slip property is easily exhibited. If the viscosity of the non-slip processing agent is equal to or less than the upper limit, the method of non-slip processing of a processed fiber product is not easily limited.
 滑り止め加工剤の固形分は、10~60質量%が好ましい。
 滑り止め加工剤の固形分が前記下限値以上であれば、繊維加工品に塗布した後の滑り止め加工剤の乾燥が速い。滑り止め加工剤の固形分が前記上限値以下であれば、繊維加工品の滑り止め加工方法が限定されにくい。
The solid content of the anti-slip agent is preferably from 10 to 60% by mass.
When the solid content of the anti-slip agent is equal to or more than the lower limit, drying of the anti-slip agent after application to the textile product is fast. When the solid content of the anti-slip agent is equal to or less than the upper limit, the method of anti-slip processing of a processed fiber product is less likely to be limited.
<滑り止め加工剤の第1の態様>
 本発明の滑り止め加工剤の第1の態様は、上述した「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ上述した「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものである。
<First embodiment of anti-slip agent>
The first embodiment of the anti-slip agent of the present invention is such that the shear adhesive strength obtained by the above-mentioned "method I of determining shear adhesive strength I" is less than 15 N, and the above-mentioned "method I of calculating static friction coefficient I" The static friction coefficient obtained in the above is 0.6 or more.
 「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の床等に対する非粘着性に優れ、長期間の使用においても床等を汚しにくい。せん断接着強度は、12N未満が好ましい。 According to the anti-slip agent having a shear adhesive strength of less than 15 N determined in "Method of determining shear adhesive strength I", the non-slip surface of the non-slip processed fiber processed product is excellent in non-adhesion to floors and the like, and is used for a long time. Also, it is difficult to stain floors. The shear bond strength is preferably less than 12N.
 「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性に優れる。また、「静摩擦係数の求め方I」で求めた静摩擦係数が0.7以上となる滑り止め加工剤によれば、滑り止め加工された面積の小さな繊維加工品においても濡れた床等に対する十分な滑り止め性を発揮する。静摩擦係数は0.85以上がより好ましい。 に よ According to the anti-slip agent having a static friction coefficient of 0.6 or more as determined by the “method I of obtaining static friction coefficient”, the anti-slip property of the non-slip processed fiber product on a wet floor or the like is excellent. Further, according to the non-slip agent having a static friction coefficient of 0.7 or more obtained by the “method I of obtaining a static friction coefficient I”, even a non-slip processed fiber product having a small area has a sufficient resistance to a wet floor or the like. Demonstrates anti-slip properties. The coefficient of static friction is more preferably 0.85 or more.
 「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものである滑り止め加工剤としては、例えば、後述する水性分散液Xが挙げられる。 A non-slip whose shear adhesive strength is less than 15 N determined by "Method I for determining shear adhesive strength" and whose static friction coefficient is 0.6 or more determined by "Method I for determining static friction coefficient I". Examples of the processing agent include an aqueous dispersion X described below.
 以上説明した本発明の滑り止め加工剤の第1の態様にあっては、「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものであるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the first embodiment of the anti-slip agent according to the present invention described above, the shear adhesive strength obtained by the “method I for obtaining shear adhesive strength” is less than 15 N, and the “determination of the coefficient of static friction” is performed. Since the static friction coefficient obtained in Method I is 0.6 or more, it is possible to obtain a non-slip processed fiber processed product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. it can. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
<滑り止め加工剤の第2の態様>
 本発明の滑り止め加工剤の第2の態様は、上述した「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ上述した「水接触角の求め方I」で求めた水接触角が80°以上となるものである。
<Second embodiment of anti-slip agent>
A second aspect of the antiskid agent of the present invention is that the shear adhesive strength obtained by the above-mentioned “method of obtaining shear adhesive strength I” is less than 15 N, and the above-mentioned “method of obtaining the water contact angle” The water contact angle determined in “I” is 80 ° or more.
 「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の床等に対する非粘着性に優れ、長期間の使用においても床等を汚しにくい。せん断接着強度は、12N未満が好ましい。 According to the anti-slip agent having a shear adhesive strength of less than 15 N determined in "Method of determining shear adhesive strength I", the non-slip surface of the non-slip processed fiber processed product is excellent in non-adhesion to floors and the like, and is used for a long time. Also, it is difficult to stain floors. The shear bond strength is preferably less than 12N.
 「水接触角の求め方I」で求めた水接触角が80°以上となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性に優れる。水接触角は、85以上が好ましい。 According to the non-slip agent having a water contact angle of 80 ° or more determined by “Method I for determining water contact angle I”, the non-slip property of the non-slip processed fiber product to a wet floor or the like is excellent. The water contact angle is preferably 85 or more.
 「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ「水接触角の求め方I」で求めた水接触角が80°以上となるものである滑り止め加工剤としては、例えば、後述する水性分散液Xが挙げられる。 A slip whose shear adhesive strength determined by "Method I of determining shear adhesive strength I" is less than 15 N and whose water contact angle determined by "Method I of determining water contact angle I" is 80 ° or more. Examples of the stop processing agent include an aqueous dispersion X described below.
 以上説明した本発明の滑り止め加工剤の第2の態様にあっては、「せん断接着強度の求め方I」で求めたせん断接着強度が15N未満となるものであり、かつ「水接触角の求め方I」で求めた水接触角が80°以上となるものであるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the second embodiment of the anti-slip agent according to the present invention described above, the shear adhesive strength determined by “Method I for determining shear adhesive strength I” is less than 15 N, and “the water contact angle is less than 15 N”. Since the water contact angle obtained by the “method I” is 80 ° or more, it is necessary to obtain a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. Can be. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
<滑り止め加工剤の第3の態様>
 本発明の滑り止め加工剤の第3の態様は、後述する水性分散液Xであり、かつ上述した「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものである。
<Third embodiment of anti-slip agent>
A third aspect of the anti-slip agent of the present invention is an aqueous dispersion X described below, wherein the static friction coefficient obtained by the above-mentioned "method I of obtaining static friction coefficient I" is 0.6 or more.
 後述する水性分散液Xによれば、滑り止め加工された繊維加工品の滑り止め性と非粘着性のバランスに優れる。 According to the aqueous dispersion X described below, the anti-slip property and non-adhesive balance of the non-slip processed fiber product are excellent.
 「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性に優れる。また、「静摩擦係数の求め方I」で求めた静摩擦係数が0.7以上となる滑り止め加工剤によれば、滑り止め加工された面積の小さな繊維加工品においても濡れた床等に対する十分な滑り止め性を発揮する。静摩擦係数は0.85以上がより好ましい。 に よ According to the non-slip agent having a static friction coefficient of 0.6 or more determined by “method I of calculating static friction coefficient”, the non-slip property of the processed fiber product on a wet floor is excellent. Further, according to the non-slip agent having a static friction coefficient of 0.7 or more obtained by the “method I of obtaining a static friction coefficient I”, even a non-slip processed fiber product having a small area has a sufficient resistance to a wet floor or the like. Demonstrates anti-slip properties. The coefficient of static friction is more preferably 0.85 or more.
 以上説明した本発明の滑り止め加工剤の第3の態様にあっては、後述する水性分散液Xであり、かつ「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものであるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the third embodiment of the anti-slip agent of the present invention described above, the aqueous dispersion liquid X described later, and the static friction coefficient obtained by the “method I of obtaining a static friction coefficient I” is 0.6 or more. Therefore, it is possible to obtain a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
<滑り止め加工剤の第4の態様>
 本発明の滑り止め加工剤の第3の態様は、後述する水性分散液Xであり、かつ上述した「水接触角の求め方I」で求めた水接触角が80°以上となるものである。
<Fourth embodiment of anti-slip agent>
A third embodiment of the antiskid agent of the present invention is an aqueous dispersion X described below, and the water contact angle obtained by the above-mentioned “method I of obtaining a water contact angle I” is 80 ° or more. .
 後述する水性分散液Xによれば、滑り止め加工された繊維加工品の滑り止め性と非粘着性のバランスに優れる。 According to the aqueous dispersion X described below, the anti-slip property and non-adhesive balance of the non-slip processed fiber product are excellent.
 「水接触角の求め方I」で求めた水接触角が80°以上となる滑り止め加工剤によれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性に優れる。水接触角は、85°以上が好ましい。 According to the non-slip agent having a water contact angle of 80 ° or more determined by “Method I for determining water contact angle I”, the non-slip property of the non-slip processed fiber product to a wet floor or the like is excellent. The water contact angle is preferably 85 ° or more.
 以上説明した本発明の滑り止め加工剤の第4の態様にあっては、後述する水性分散液Xであり、かつ「水接触角の求め方I」で求めた水接触角が80°以上となるものであるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the fourth embodiment of the anti-slip agent according to the present invention described above, the aqueous dispersion X described below, and the water contact angle obtained by the "method I of obtaining a water contact angle" is 80 ° or more. Therefore, it is possible to obtain a non-slip processed fiber product having excellent non-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, these non-slip processed fiber products are excellent in anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, so that they can be used for a wide range of applications.
<水性分散液X>
 水性分散液Xは、水性媒体と、水性媒体に分散した重合体粒子とを含む。
 水性分散液Xは、本発明の効果を損なわない範囲において、必要に応じて水性媒体及び重合体粒子以外の成分(以下、「他の成分」とも記す。)をさらに含んでいてもよい。
<Aqueous dispersion X>
The aqueous dispersion X includes an aqueous medium and polymer particles dispersed in the aqueous medium.
The aqueous dispersion X may further contain components other than the aqueous medium and the polymer particles (hereinafter, also referred to as “other components”) as needed, as long as the effects of the present invention are not impaired.
 (水性媒体)
 水性媒体は、重合体粒子の分散媒となるものであり、水を含む。
 水性媒体は、水のみからなるものであってもよく、水と水溶性有機溶媒とからなるものであってもよい。
 水溶性有機溶媒としては、アルコール(メタノール、エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン等)、グリコールエーテル(ブチルセロソルブ、プロピレングリコールモノメチルエーテル等)等が挙げられる。
(Aqueous medium)
The aqueous medium serves as a dispersion medium for the polymer particles and contains water.
The aqueous medium may be composed of only water, or may be composed of water and a water-soluble organic solvent.
Examples of the water-soluble organic solvent include alcohols (eg, methanol, ethanol, isopropanol), ketones (eg, acetone, methyl ethyl ketone), and glycol ethers (eg, butyl cellosolve, propylene glycol monomethyl ether).
 VOC低減の観点から、水性媒体としては水のみが好ましいが、水溶性有機溶媒を含んでもよい。水性媒体が水溶性有機溶媒を含む場合、水性媒体に占める水溶性有機溶媒の含有割合は、0質量%を超え20質量%以下が好ましく、0質量%を超え10質量%以下がより好ましい。
 水性媒体が水溶性有機溶媒を含む場合、水溶性有機溶媒としては、アルコール系溶媒またはグリコール系溶媒等が好ましい。
From the viewpoint of VOC reduction, as the aqueous medium, only water is preferable, but it may contain a water-soluble organic solvent. When the aqueous medium contains a water-soluble organic solvent, the content of the water-soluble organic solvent in the aqueous medium is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less.
When the aqueous medium contains a water-soluble organic solvent, the water-soluble organic solvent is preferably an alcohol solvent or a glycol solvent.
 (重合体粒子)
 重合体粒子は、ウレタン重合体及びアクリル重合体を含む複合体からなる。特に、重合体粒子は、水性媒体に分散しうる、ウレタン重合体及びアクリル重合体を含む複合体からなる。
(Polymer particles)
The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer. In particular, the polymer particles consist of a composite containing a urethane polymer and an acrylic polymer, which can be dispersed in an aqueous medium.
 複合体は、例えば、ウレタン重合体の存在下に(メタ)アクリル系単量体を含むラジカル重合性単量体を重合して得られるものであってよい。ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子は、滑り止め性と非粘着性のバランスに優れる。 The composite may be, for example, one obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer in the presence of a urethane polymer. Polymer particles composed of a composite containing a urethane polymer and an acrylic polymer have an excellent balance between non-slip properties and non-stick properties.
 重合体粒子を構成する複合体は、本発明の効果を損なわない範囲において、必要に応じてウレタン重合体及びアクリル重合体以外の成分をさらに含んでいてもよい。 複合 The composite constituting the polymer particles may further contain a component other than the urethane polymer and the acrylic polymer, if necessary, as long as the effects of the present invention are not impaired.
 ウレタン重合体及びアクリル重合体の合計のうち、アクリル重合体の割合は、10質量%以上90質量%未満が好ましい。
 アクリル重合体の割合が前記下限値以上であれば、重合体粒子による滑り止め性がさらに優れる。アクリル重合体の割合が前記上限値未満であれば、重合体粒子による非粘着性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。
The proportion of the acrylic polymer in the total of the urethane polymer and the acrylic polymer is preferably from 10% by mass to less than 90% by mass.
When the proportion of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the polymer particles is further excellent. When the proportion of the acrylic polymer is less than the upper limit, the non-adhesiveness of the polymer particles is further excellent. In addition, the non-slip processed fiber product is excellent in washing resistance.
 (ウレタン重合体)
 ウレタン重合体は、多価アルコールと多価イソシアネートとを反応させて得られる樹脂である。
(Urethane polymer)
A urethane polymer is a resin obtained by reacting a polyhydric alcohol with a polyvalent isocyanate.
 多価アルコールは、1分子中に2つ以上のヒドロキシ基を有する有機化合物である。
 多価アルコールとしては、例えば、下記のものが挙げられる。
Polyhydric alcohols are organic compounds having two or more hydroxy groups in one molecule.
Examples of the polyhydric alcohol include the following.
 ・低分子量ジオール:エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ヘキサンジオール、シクロヘキサンジメタノール等。
 ・3つ以上のヒドロキシ基を有する低分子量ポリオール:グリセリン、トリメチロールプロパン、ペンタエリスリトール等。
 ・ポリエーテルジオール:ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、低分子量ジオールの少なくとも一種とエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等とを付加重合させて得られるポリエーテルジオール等。
 ・低分子量ジオールの少なくとも一種とジカルボン酸(アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、テレフタル酸、イソフタル酸等)とを重縮合して得られるポリエステルジオール。
 ・他の多価アルコール:ポリカプロラクトンジオール、ポリカーボネートジオール、ポリブタジエンジオール、水添ポリブタジエンジオール、ポリアクリル酸エステルジオール等。
Low molecular weight diols: ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, cyclohexanedimethanol and the like.
-Low molecular weight polyol having three or more hydroxy groups: glycerin, trimethylolpropane, pentaerythritol and the like.
-Polyether diol: Polyether diol obtained by addition polymerization of at least one of polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and low molecular weight diol with ethylene oxide, propylene oxide, tetrahydrofuran and the like.
A polyester diol obtained by polycondensing at least one low molecular weight diol with a dicarboxylic acid (eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid).
-Other polyhydric alcohols: polycaprolactone diol, polycarbonate diol, polybutadiene diol, hydrogenated polybutadiene diol, polyacrylate diol and the like.
 多価アルコールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多価アルコールは、滑り止め加工剤から形成される塗膜の柔軟性を高くする点からは、ポリエーテルジオールを含むことが好ましい。多価アルコールは、非粘着性を高くする点からは、ポリカーボネートジオールを含むことが好ましい。
One type of polyhydric alcohol may be used alone, or two or more types may be used in combination.
The polyhydric alcohol preferably contains polyether diol from the viewpoint of increasing the flexibility of the coating film formed from the anti-slip agent. The polyhydric alcohol preferably contains a polycarbonate diol from the viewpoint of increasing the non-adhesiveness.
 多価イソシアネートは、1分子中に2つ以上のイソシアネート基を有する有機化合物である。
 多価イソシアネートとしては、例えば、下記のものが挙げられる。
A polyvalent isocyanate is an organic compound having two or more isocyanate groups in one molecule.
Examples of the polyvalent isocyanate include the following.
 ・脂肪族多価イソシアネート:1,6-ヘキサメチレンジイソシアネート等。
 ・脂環式多価イソシアネート:ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート等。
 ・芳香族多価イソシアネート:2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート等。
-Aliphatic polyvalent isocyanate: 1,6-hexamethylene diisocyanate and the like.
Alicyclic polyvalent isocyanate: dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, etc.
-Aromatic polyvalent isocyanate: 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate and the like.
 多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多価イソシアネートとしては、ウレタン重合体が黄変しにくい点から、脂肪族多価イソシアネート又は脂環式多価イソシアネートが好ましい。
As the polyvalent isocyanate, one type may be used alone, or two or more types may be used in combination.
As the polyvalent isocyanate, an aliphatic polyvalent isocyanate or an alicyclic polyvalent isocyanate is preferable because the urethane polymer is unlikely to yellow.
 ウレタン重合体の質量平均分子量は、後述する重合体粒子の製造の際にラジカル重合性単量体の反応性が向上する点から、500以上が好ましく、1000以上がより好ましい。ウレタン重合体の質量平均分子量は、滑り止め加工された繊維加工品の耐久性の点から、50万以下が好ましく、10万以下がより好ましい。例えば、ウレタン重合体の質量平均分子量は、500~50万が好ましく、1000~10万がより好ましい。 The mass average molecular weight of the urethane polymer is preferably 500 or more, more preferably 1000 or more, from the viewpoint of improving the reactivity of the radical polymerizable monomer in the production of polymer particles described below. The mass average molecular weight of the urethane polymer is preferably 500,000 or less, more preferably 100,000 or less, from the viewpoint of the durability of the non-slip processed fiber product. For example, the mass average molecular weight of the urethane polymer is preferably 500 to 500,000, more preferably 1,000 to 100,000.
 ウレタン重合体としては、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性に優れる点から、結晶性を有するウレタン重合体が好ましい。
 結晶性を有するウレタン重合体としては、原料多価アルコールとしてポリエステルジオールを用いたものが挙げられる。
As the urethane polymer, a urethane polymer having crystallinity is preferable in terms of excellent non-slip properties of a non-slip processed fiber product on a wet floor or the like.
Examples of the urethane polymer having crystallinity include those using polyester diol as a raw material polyhydric alcohol.
 ウレタン重合体の製造方法としては、例えば、ジオキサン等のエーテル中で、多価アルコールと多価イソシアネートとを、ジブチル錫ジラウレート等の触媒を用いて反応させる方法が挙げられる。 Examples of the method for producing the urethane polymer include a method in which a polyhydric alcohol and a polyvalent isocyanate are reacted in an ether such as dioxane using a catalyst such as dibutyltin dilaurate.
 (アクリル重合体)
 アクリル重合体は、(メタ)アクリル系単量体を含むラジカル重合性単量体を重合してなる重合体である。
 アクリル重合体は、(メタ)アクリル系単量体の1種からなる単独重合体であってもよく、(メタ)アクリル系単量体の2種以上からなる共重合体であってもよく、(メタ)アクリル系単量体と他のラジカル重合性単量体との共重合体であってもよい。
(Acrylic polymer)
The acrylic polymer is a polymer obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer.
The acrylic polymer may be a homopolymer composed of one type of (meth) acrylic monomer, or a copolymer composed of two or more types of (meth) acrylic monomer, A copolymer of a (meth) acrylic monomer and another radical polymerizable monomer may be used.
 (メタ)アクリル系単量体としては、例えば、下記のものが挙げられる。 Examples of the (meth) acrylic monomer include the following.
 ・炭素原子数1~18のアルキル基を有するアルキル(メタ)アクリレート:メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート等。
 ・ヒドロキシ基含有(メタ)アクリレート:2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等。
 ・ポリオキシアルキレン基含有(メタ)アクリレート:ヒドロキシポリエチレンオキシドモノ(メタ)アクリレート、ヒドロキシポリプロピレンオキシドモノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-ポリプロピレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-プロピレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-ポリテトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-テトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリプロピレンオキシド-ポリテトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリプロピレンオキシド-テトラメチレンオキシド)モノ(メタ)アクリレート、メトキシポリエチレンオキシドモノ(メタ)アクリレート、ラウロキシポリエチレンオキシドモノ(メタ)アクリレート、ステアロキシポリエチレンオキシドモノ(メタ)アクリレート、アリロキシポリエチレンオキシドモノ(メタ)アクリレート、ノニルフェノキシポリエチレンオキシドモノ(メタ)アクリレート、ノニルフェノキシポリプロピレンオキシドモノ(メタ)アクリレート、オクトキシ(ポリエチレンオキシド-ポリプロピレンオキシド)モノ(メタ)アクリレート、ノニルフェノキシ(ポリエチレンオキシド-プロピレンオキシド)モノ(メタ)アクリレート等。
 ・オキシラン基含有(メタ)アクリレート:グリシジル(メタ)アクリレート等。
 ・ヒドロキシシクロアルキル(メタ)アクリレート:p-ヒドロキシシクロヘキシル(メタ)アクリレート、o-ヒドロキシシクロヘキシル(メタ)アクリレート等。
 ・ラクトン変性ヒドロキシル基含有(メタ)アクリレート:プラクセル(登録商標。以下同様。)FM1(商品名、ダイセル社製)、プラクセルFM2(商品名、ダイセル社製)等。
 ・アミノアルキル(メタ)アクリレート:2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-アミノプロピル(メタ)アクリレート、2-ブチルアミノエチル(メタ)アクリレート等。
 ・アミド基含有(メタ)アクリル系単量体:(メタ)アクリルアミド、N-メチロールアクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジアセトンアクリルアミド等。
 ・カルボキシ基含有(メタ)アクリル系単量体:(メタ)アクリル酸、シュウ酸モノヒドロキシエチル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシエチル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシプロピル(メタ)アクリレート、5-メチル-1,2-シクロヘキサンジカルボン酸モノヒドロキシエチル(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、フタル酸モノヒドロキシプロピル(メタ)アクリレート、マレイン酸モノヒドロキシエチル(メタ)アクリレート、マレイン酸ヒドロキシプロピル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシブチル(メタ)アクリレート等。
 ・多官能(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等。
 ・金属含有(メタ)アクリル系単量体:ジアクリル酸亜鉛、ジメタクリル酸亜鉛等。
 ・耐紫外線基含有(メタ)アクリレート:2-(2’-ヒドロキシ-5’-(メタ)アクリロキシエチルフェニル)-2H-ベンゾトリアゾール、1-(メタ)アクリロイル-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-メトキシ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-アミノ-4-シアノ-2,2,6,6-テトラメチルピペリジン等。
 ・他の(メタ)アクリル系単量体;ジメチルアミノエチル(メタ)アクリレートメチルクロライド塩、アリル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等が挙げられる。
Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, sec-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate and the like.
・ Hydroxy group-containing (meth) acrylate: 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate Acrylate and the like.
・ Polyoxyalkylene group-containing (meth) acrylate: hydroxypolyethylene oxide mono (meth) acrylate, hydroxypolypropylene oxide mono (meth) acrylate, hydroxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-propylene oxide) ) Mono (meth) acrylate, hydroxy (polyethylene oxide-polytetramethylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-tetramethylene oxide) mono (meth) acrylate, hydroxy (polypropylene oxide-polytetramethylene oxide) mono ( (Meth) acrylate, hydroxy (polypropylene oxide-tetramethylene oxide) mono (meth) acrylate Rate, methoxy polyethylene oxide mono (meth) acrylate, lauroxy polyethylene oxide mono (meth) acrylate, stearoxy polyethylene oxide mono (meth) acrylate, allyloxy polyethylene oxide mono (meth) acrylate, nonylphenoxy polyethylene oxide mono (meth) acrylate And nonylphenoxy polypropylene oxide mono (meth) acrylate, octoxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, nonylphenoxy (polyethylene oxide-propylene oxide) mono (meth) acrylate, and the like.
-Oxirane group-containing (meth) acrylate: glycidyl (meth) acrylate and the like.
-Hydroxycycloalkyl (meth) acrylate: p-hydroxycyclohexyl (meth) acrylate, o-hydroxycyclohexyl (meth) acrylate and the like.
-Lactone-modified hydroxyl group-containing (meth) acrylate: Praxel (registered trademark; the same applies hereinafter) FM1 (trade name, manufactured by Daicel), Plaxel FM2 (trade name, manufactured by Daicel) and the like.
-Aminoalkyl (meth) acrylate: 2-aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 2-butylaminoethyl (meth) acrylate, and the like.
Amide group-containing (meth) acrylic monomers: (meth) acrylamide, N-methylolacrylamide, N-butoxymethyl (meth) acrylamide, diacetoneacrylamide and the like.
Carboxy group-containing (meth) acrylic monomers: (meth) acrylic acid, monohydroxyethyl oxalate (meth) acrylate, monohydroxyethyl tetrahydrophthalate (meth) acrylate, monohydroxypropyl tetrahydrophthalate (meth) acrylate Monohydroxyethyl (meth) acrylate, 5-methyl-1,2-cyclohexanedicarboxylate, monohydroxyethyl (meth) acrylate phthalate, monohydroxypropyl (meth) acrylate phthalate, monohydroxyethyl (meth) acrylate maleate, Hydroxypropyl (meth) acrylate maleate, monohydroxybutyl (meth) acrylate tetrahydrophthalate, and the like.
-Multifunctional (meth) acrylate: ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and the like.
Metal-containing (meth) acrylic monomers: zinc diacrylate, zinc dimethacrylate, and the like.
-UV-resistant group-containing (meth) acrylate: 2- (2'-hydroxy-5 '-(meth) acryloxyethylphenyl) -2H-benzotriazole, 1- (meth) acryloyl-4-hydroxy-2,2, 6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-methoxy-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-amino-4-cyano-2,2,2 6,6-tetramethylpiperidine and the like.
-Other (meth) acrylic monomers; dimethylaminoethyl (meth) acrylate methyl chloride salt, allyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylonitrile, phenyl (meth) acrylate, benzyl (meth) Examples include acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxyethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
 他のラジカル重合性単量体としては、例えば、下記のものが挙げられる。 Examples of other radically polymerizable monomers include the following.
 ・芳香族ビニル系単量体:スチレン、メチルスチレン等。
 ・共役ジエン系単量体:1,3-ブタジエン、イソプレン等。
 ・他のラジカル重合性単量体:酢酸ビニル、塩化ビニル、エチレン、イタコン酸、シトラコン酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル、イタコン酸モノメチル、イタコン酸モノブチル、ビニル安息香酸等。
-Aromatic vinyl monomers: styrene, methylstyrene, etc.
-Conjugated diene monomers: 1,3-butadiene, isoprene and the like.
-Other radically polymerizable monomers: vinyl acetate, vinyl chloride, ethylene, itaconic acid, citraconic acid, maleic acid, monomethyl maleate, monobutyl maleate, monomethyl itaconate, monobutyl itaconate, vinylbenzoic acid, and the like.
 アクリル重合体の質量平均分子量は、5万~500万が好ましい。
 アクリル重合体の質量平均分子量は、滑り止め加工された繊維加工品の耐久性の点から、10万以上がより好ましい。
 アクリル重合体の質量平均分子量は、滑り止め加工剤の成膜性の点から、400万以下がより好ましい。
The weight average molecular weight of the acrylic polymer is preferably 50,000 to 5,000,000.
The weight average molecular weight of the acrylic polymer is more preferably 100,000 or more from the viewpoint of the durability of the fiber processed article subjected to the non-slip processing.
The mass average molecular weight of the acrylic polymer is more preferably 4,000,000 or less from the viewpoint of the film-forming property of the anti-slip agent.
 アクリル重合体のTgは、-10℃以下が好ましく、-60~-20℃がより好ましい。
 アクリル重合体のTgが前記下限値以上であれば、滑り止め加工された繊維加工品の非粘着性がさらに優れる。アクリル重合体のTgが前記上限値以下であれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性がさらに優れる。
The Tg of the acrylic polymer is preferably −10 ° C. or lower, more preferably −60 to −20 ° C.
When the Tg of the acrylic polymer is not less than the lower limit, the non-adhesiveness of the non-slip processed fiber product is further improved. When the Tg of the acrylic polymer is equal to or less than the upper limit, the non-slip property of the non-slip processed fiber product on a wet floor or the like is further improved.
 (他の成分)
 水性分散液Xが含んでもよい他の成分としては、添加剤、他のエマルション樹脂、水溶性樹脂等が挙げられる。
(Other ingredients)
Other components that may be included in the aqueous dispersion X include additives, other emulsion resins, water-soluble resins, and the like.
 添加剤としては、界面活性剤、各種顔料、消泡剤、顔料分散剤、レベリング剤、たれ防止剤、艶消し剤、紫外線吸収剤、光安定化剤、酸化防止剤、耐熱性向上剤、防腐剤、可塑剤、造膜助剤、粘性制御剤、硬化剤等が挙げられる。
 他のエマルション樹脂としては、ポリエステル系樹脂、アクリルシリコーン系樹脂、シリコーン系樹脂、フッ素系樹脂、エポキシ系樹脂等が挙げられる。
 硬化剤としては、メラミン類、イソシアネート類等が挙げられる。
Additives include surfactants, various pigments, antifoaming agents, pigment dispersants, leveling agents, anti-sagging agents, matting agents, ultraviolet absorbers, light stabilizers, antioxidants, heat resistance improvers, preservatives Agents, plasticizers, film-forming auxiliaries, viscosity control agents, curing agents and the like.
Examples of other emulsion resins include polyester resins, acrylic silicone resins, silicone resins, fluorine resins, epoxy resins, and the like.
Examples of the curing agent include melamines and isocyanates.
 (水性分散液Xの製造)
 水性分散液Xは、例えば、下記の方法によって製造できる。
 ・ウレタン重合体水分散液中のウレタン重合体粒子に(メタ)アクリル系単量体を含むラジカル重合性単量体を含浸させてラジカル重合し、ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子を形成する方法。
 ・(メタ)アクリル系単量体を含むラジカル重合性単量体、多価アルコール及び多価イソシアネートの混合液中で多価アルコールと多価イソシアネートとを反応させてウレタン重合体を形成し、混合液を水に分散し、ラジカル重合性単量体をラジカル重合し、ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子を形成する方法。
(Production of aqueous dispersion X)
The aqueous dispersion X can be produced, for example, by the following method.
-Urethane polymer particles in an aqueous urethane polymer dispersion liquid are impregnated with a radical polymerizable monomer containing a (meth) acrylic monomer to undergo radical polymerization, from a composite containing a urethane polymer and an acrylic polymer. To form polymer particles.
・ A urethane polymer is formed by reacting a polyhydric alcohol and a polyisocyanate in a mixture of a radical polymerizable monomer containing a (meth) acrylic monomer, a polyhydric alcohol and a polyvalent isocyanate, and mixing A method in which a liquid is dispersed in water and radical polymerizable monomers are radically polymerized to form polymer particles comprising a composite containing a urethane polymer and an acrylic polymer.
 ウレタン重合体水分散液は、ウレタン重合体を水に分散させたものである。ウレタン重合体の水への分散性を高めるために、ウレタン重合体にカルボキシ基及びスルホン酸基の少なくとも一方を導入することが好ましい。特に、ウレタン重合体にスルホン酸基を導入すると、ラジカル重合性単量体の重合安定性が向上する。また、ウレタン重合体を界面活性剤によって乳化してもよい。 The urethane polymer aqueous dispersion is obtained by dispersing a urethane polymer in water. In order to enhance the dispersibility of the urethane polymer in water, it is preferable to introduce at least one of a carboxy group and a sulfonic acid group into the urethane polymer. In particular, when a sulfonic acid group is introduced into the urethane polymer, the polymerization stability of the radically polymerizable monomer is improved. Further, the urethane polymer may be emulsified with a surfactant.
 ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、最終的に得られる重合体粒子の粒子径が適切なものになり、また、得られる塗膜の物性が向上する点から、10nm以上が好ましく、30nm以上がより好ましく、40nm以上がさらに好ましい。ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、ウレタン重合体水分散液の安定性の点から、1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましい。
 例えば、ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、10~1000nmが好ましく、30~500nmがより好ましく、40~300nmがさらに好ましい。
The average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is such that the particle size of the finally obtained polymer particles becomes appropriate, and that the physical properties of the obtained coating film are improved. It is preferably at least 10 nm, more preferably at least 30 nm, even more preferably at least 40 nm. The average particle diameter of the urethane polymer particles in the aqueous urethane polymer dispersion is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less, from the viewpoint of the stability of the urethane polymer aqueous dispersion.
For example, the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is preferably from 10 to 1,000 nm, more preferably from 30 to 500 nm, and even more preferably from 40 to 300 nm.
 ウレタン重合体水分散液中のウレタン重合体の含有量は、水性分散液Xからなる滑り止め加工剤の固形分濃度を10~60質量%の範囲に容易に調整できる点から、10質量%以上が好ましく、25質量%以上がより好ましい。ウレタン重合体水分散液中のウレタン重合体の含有量は、水性分散液Xからなる滑り止め加工剤が良好な塗工性を発現する点から、70質量%以下が好ましく、60質量%以下がより好ましい。
 例えば、ウレタン重合体水分散液中のウレタン重合体の含有量は、10~70質量%が好ましく、25~60質量%がより好ましい。
The content of the urethane polymer in the urethane polymer aqueous dispersion is 10% by mass or more from the viewpoint that the solid content of the anti-slip processing agent comprising the aqueous dispersion X can be easily adjusted to a range of 10 to 60% by mass. Is preferable, and 25 mass% or more is more preferable. The content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 70% by mass or less, and more preferably 60% by mass or less from the viewpoint that the anti-slip processing agent comprising the aqueous dispersion X exhibits good coating properties. More preferred.
For example, the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably from 10 to 70% by mass, and more preferably from 25 to 60% by mass.
 ウレタン重合体水分散液は、市販のウレタン重合体水分散液(ポリウレタンディスパージョン:PUD)をそのまま用いてもよい。市販のウレタン重合体水分散液としては、例えば、下記のものが挙げられる。
 ・第一工業製薬社製:スーパーフレックス(登録商標。以下同様。)110、スーパーフレックス150、スーパーフレックス210、スーパーフレックス300、スーパーフレックス420、スーパーフレックス460、スーパーフレックス470、スーパーフレックス500M、スーパーフレックス620、スーパーフレックス650、スーパーフレックス740、スーパーフレックス820、スーパーフレックス840、F-8082D。
 ・住化コベストロウレタン社製:バイヒドロール(登録商標。以下同様。)UH2606、バイヒドロールUH650、バイヒドロールUHXP2648、バイヒドロールUHXP2650、インプラニールDLE、インプラニールDLC-F、インプラニールDLN、インプラニールDLP-R、インプラニールDLS、インプラニールDLU、インプラニールXP2611、インプラニールLPRSC1380、インプラニールLPRSC1537、インプラニールLPRSC1554、インプラニールDL3040、ディスパコール(登録商標。以下同様。)U53。
 ・DIC社製:ハイドラン(登録商標。以下同様。)HW-301、HW-310、HW-311、HW-312B、HW-333、HW-340、HW-350、HW-375、HW-920、HW-930、HW-940、HW-950、HW-970、AP-10、AP-20、ECOS3000。
 ・三洋化成工業社製:ユーコート(登録商標。以下同様。)UWS-145、パーマリン(登録商標。以下同様。)UA-150、パーマリンUA-200、パーマリンUA-300、パーマリンUA-310、ユーコートUX-320、パーマリンUA-368、パーマリンUA-385、ユーコートUX-2510。
 ・日華化学社製:ネオステッカー(登録商標。以下同様。)100C、エバファノール(登録商標。以下同様。)HA-107C、エバファノールHA-50C、エバファノールHA-170、エバファノールHA-560。
 ・ADEKA社製:アデカボンタイター(登録商標。以下同様。)UHX-210、アデカボンタイターUHX-280等。
As the urethane polymer aqueous dispersion, a commercially available urethane polymer aqueous dispersion (polyurethane dispersion: PUD) may be used as it is. Examples of commercially available aqueous urethane polymer dispersions include the following.
-Manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Superflex (registered trademark; the same applies hereinafter) 110, Superflex 150, Superflex 210, Superflex 300, Superflex 420, Superflex 460, Superflex 470, Superflex 500M, Superflex 620, Superflex 650, Superflex 740, Superflex 820, Superflex 840, F-8082D.
-Manufactured by Sumika Kovestoururethane Co .: Bihydrol (registered trademark; the same applies hereinafter) UH2606, Bihydrol UH650, Bihydrol UHXP2648, Bihydrol UHXP2650, Impranyl DLE, Impranyl DLC-F, Impranyl DLN, Impranyl DLP-R, Impra Neal DLS, Impranyl DLU, Impranyl XP2611, Impranyl LPRSC1380, Impranyl LPRSC1537, Impranyl LPRSC1554, Impranyl DL3040, Dispacoll (registered trademark) U53.
-DIC Corporation: Hydran (registered trademark; the same applies hereinafter) HW-301, HW-310, HW-311, HW-312B, HW-333, HW-340, HW-350, HW-375, HW-920, HW-930, HW-940, HW-950, HW-970, AP-10, AP-20, ECOS3000.
-Sanyo Kasei Kogyo Co., Ltd .: Ucoat (registered trademark; the same applies hereinafter) UWS-145, Permarin (registered trademark; the same applies hereinafter) UA-150, Permarin UA-200, Permarin UA-300, Permarine UA-310, Ucoat UX -320, Permarine UA-368, Permarine UA-385, Ucoat UX-2510.
-Nikka Chemical Co., Ltd .: NeoSticker (registered trademark; the same applies hereinafter) 100C, Evaphanol (registered trademark; the same applies hereinafter) HA-107C, Evaphanol HA-50C, Evaphanol HA-170, Evaphanol HA-560.
-Made by ADEKA: Adekabon titer (registered trademark; the same applies hereinafter) UHX-210, Adekabon titer UHX-280, etc.
 ウレタン重合体水分散液は、1種を単独で用いてもよく、2種以上を併用してもよい。 The urethane polymer aqueous dispersion may be used alone or in combination of two or more.
 ラジカル重合性単量体の重合に用いるラジカル重合開始剤としては、例えば、下記のものが挙げられる。
 ・過硫酸塩:過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等。
 ・油溶性アゾ化合物:アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等。
 ・水溶性アゾ化合物:2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシエチル)]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]及びその塩類、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]及びその塩類、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]及びその塩類、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)及びその塩類、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}及びその塩類、2,2’-アゾビス(2-メチルプロピオンアミジン)及びその塩類、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]及びその塩類等。
 ・有機過酸化物:過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート等。
Examples of the radical polymerization initiator used for the polymerization of the radical polymerizable monomer include the following.
-Persulfate: potassium persulfate, sodium persulfate, ammonium persulfate and the like.
Oil-soluble azo compounds: azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
Water-soluble azo compound: 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl- N- [2- (1-hydroxyethyl)] propionamide {, 2,2′-azobis {2-methyl-N- [2- (1-hydroxybutyl)] propionamide}, 2,2′-azobis [ 2- (5-methyl-2-imidazolin-2-yl) propane] and salts thereof, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and salts thereof, 2,2′- Azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] and salts thereof, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and salts thereof, 2,2'-azobi {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} and salts thereof, 2,2′-azobis (2-methylpropionamidine) and salts thereof, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] and salts thereof.
-Organic peroxide: benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and the like.
 ラジカル重合開始剤の添加量は、ラジカル重合性単量体の総量100質量部に対して、通常0.01~10質量部であり、重合の進行や反応の制御を考慮に入れると、0.02~5質量部が好ましい。 The amount of the radical polymerization initiator to be added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the radical polymerizable monomer. The amount is preferably from 2 to 5 parts by mass.
 アクリル重合体の分子量を調整するために分子量調整剤を用いてもよい。分子量調整剤としては、例えば、下記のものが挙げられる。 分子 A molecular weight modifier may be used to adjust the molecular weight of the acrylic polymer. Examples of the molecular weight modifier include the following.
 メルカプタン類:n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-テトラデシルメルカプタン、n-ヘキシルメルカプタン等。
 ハロゲン化合物:四塩化炭素、臭化エチレン等。
 公知の連鎖移動剤:α-メチルスチレンダイマー等。
Mercaptans: n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan and the like.
Halogen compounds: carbon tetrachloride, ethylene bromide, etc.
Known chain transfer agents: α-methylstyrene dimer and the like.
 分子量調整剤の添加量は、ラジカル重合性単量体の総量100質量部に対して、通常1質量部以下である。 添加 The amount of the molecular weight modifier added is usually 1 part by mass or less based on 100 parts by mass of the total amount of the radical polymerizable monomer.
 (作用機序)
 以上説明した水性分散液Xにあっては、水性媒体と、水性媒体に分散した重合体粒子とを含み、重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなるため、水性分散液Xからなる滑り止め加工剤によって繊維加工品を滑り止め加工した際に形成される塗膜において、ウレタン重合体及びアクリル重合体が均一に存在する。その結果、アクリル重合体による滑り止め性と、ウレタン重合体による非粘着性の両方が十分に発揮されることになる。
(Mechanism of action)
The aqueous dispersion X described above contains an aqueous medium and polymer particles dispersed in the aqueous medium, and the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer. The urethane polymer and the acrylic polymer are uniformly present in the coating film formed when the fiber processed product is non-slip processed by the non-slip processing agent composed of the liquid X. As a result, both the anti-slip property of the acrylic polymer and the non-adhesive property of the urethane polymer are sufficiently exhibited.
<<滑り止め加工された繊維加工品>>
 本発明の滑り止め加工された繊維加工品は、裏面及び表面のいずれか一方又は両方が滑り止め加工された繊維加工品である。
<< Fiber processed goods with anti-slip processing >>
The non-slip processed fiber product of the present invention is a non-slip processed fiber product on one or both of the back surface and the front surface.
 繊維加工品は、繊維を加工した布帛を有する物品である。繊維加工品は、布帛以外の材料(樹脂フィルム、樹脂成形品、紙、木材、金属、ガラス等)をさらに有していてもよい。 A processed fiber product is an article having a fabric obtained by processing fibers. The processed fiber product may further have a material (resin film, resin molded product, paper, wood, metal, glass, or the like) other than the fabric.
 繊維としては、天然繊維、合成繊維等が挙げられる。合成繊維の材料としては、ポリエステル、アクリル樹脂、ポリオレフィン等が挙げられる。
 布帛としては、織物、編物、不織布、組物、これらを組み合わせたもの等が挙げられる。織物は、経糸と緯糸とを交差させて織り込んだものである。編物は、糸でループを作り、そのループに次の糸を引っ掛けて連続してループを作ることによって面を形成した編地である。不織布は、繊維を織らずに絡み合わせてシート状にしたものである。組物は、2本の糸を斜めに織り込んだものである。
Examples of the fibers include natural fibers and synthetic fibers. Examples of the synthetic fiber material include polyester, acrylic resin, and polyolefin.
Examples of the fabric include a woven fabric, a knitted fabric, a nonwoven fabric, a braid, and a combination thereof. The woven fabric is obtained by interweaving warps and wefts. A knitted fabric is a knitted fabric in which a surface is formed by forming a loop with a thread and hooking the next thread on the loop to form a continuous loop. The nonwoven fabric is a sheet made by entanglement without woven fibers. The braid has two yarns woven diagonally.
 繊維加工品としては、例えば、敷物(家庭用、業務用、車載用のマット類等)、衣類(手袋、靴下等)等が挙げられる。 加工 Examples of the processed fiber products include rugs (home-use, business-use, vehicle-mounted mats, etc.) and clothing (gloves, socks, etc.).
<滑り止め加工された繊維加工品の第1の態様>
 本発明の滑り止め加工された繊維加工品の第1の態様は、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様のうち、いずれかの滑り止め加工剤によって滑り止め加工された繊維加工品である。滑り止め加工の方法については、後述する。
<First embodiment of non-slip processed fiber product>
The first aspect of the non-slip processed fiber processed article of the present invention is any one of the first, second, third, and fourth aspects of the anti-slip agent of the present invention. It is a fiber processed product which is non-slip processed by the anti-slip agent. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第1の態様にあっては、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様のうち、いずれかの滑り止め加工剤によって滑り止め加工されたものであるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れる。また、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the first aspect of the non-slip processed fiber product of the present invention described above, the first, second, third, and fourth aspects of the anti-slip agent of the present invention are provided. Among the aspects described above, the anti-slip processing is performed by any of the anti-slip processing agents, so that the anti-slip property on wet floors and the like and the non-adhesion property on floors and the like are excellent. In addition, since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の第2の態様>
 本発明の滑り止め加工された繊維加工品の第2の態様は、上述した「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ上述した「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である。
<Second embodiment of non-slip processed fiber product>
A second aspect of the non-slip processed fiber processed product of the present invention is that the shear bond strength obtained by the above-mentioned “Method of obtaining shear bond strength II” is less than 15 N and the above-mentioned “method of obtaining a static friction coefficient” II "is 0.6 or more.
 「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満である滑り止め加工された繊維加工品は、床等に対する非粘着性に優れ、長期間の使用においても床等を汚しにくい。せん断接着強度は、12N未満が好ましい。 A non-slip processed fiber product having a shear bond strength of less than 15 N determined by "Method for determining shear bond strength II" is excellent in non-adhesiveness to floors and the like, and hardly stains floors and the like even after long-term use. . The shear bond strength is preferably less than 12N.
 「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性に優れる。また、「静摩擦係数の求め方II」で求めた静摩擦係数が0.7以上である滑り止めされた繊維加工品は、滑り止め加工された面積の小さな繊維加工品においても濡れた床等に対する十分な滑り止め性を発揮する。静摩擦係数は0.85以上がより好ましい。 繊 維 An anti-slip fiber processed product having a static friction coefficient of 0.6 or more determined by “Method of determining static friction coefficient II” is excellent in anti-slip properties on wet floors and the like. In addition, a non-slip fiber processed product having a static friction coefficient of 0.7 or more obtained in "Method of obtaining static friction coefficient II" is sufficient for a non-slip processed fiber processed product having a small area to wet floors or the like. Demonstrates a good anti-slip property. The coefficient of static friction is more preferably 0.85 or more.
 「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である滑り止め加工された繊維加工品としては、例えば、ウレタン重合体及びアクリル重合体が付着している繊維加工品が挙げられる。
 ウレタン重合体及びアクリル重合体が付着している繊維加工品は、本発明の効果を損なわない範囲において、必要に応じてウレタン重合体及びアクリル重合体以外の他の成分がさらに付着したものであってもよい。
A non-slip processed fiber product having a shear adhesive strength of less than 15 N determined by "Method of determining shear adhesive strength II" and less than or equal to 0.6 determined by a "determination of static friction coefficient II" of 0.6 or more. Examples thereof include a processed fiber product to which a urethane polymer and an acrylic polymer are adhered.
The processed fiber product to which the urethane polymer and the acrylic polymer are adhered is one to which other components other than the urethane polymer and the acrylic polymer are further adhered as necessary, as long as the effects of the present invention are not impaired. May be.
 ウレタン重合体としては、水性分散液Xにおいて説明したウレタン重合体と同様のものが挙げられ、好ましい形態も同様である。
 アクリル重合体としては、水性分散液Xにおいて説明したアクリル重合体と同様のものが挙げられ、好ましい形態も同様である。
 他の成分としては、水性分散液Xにおいて説明した他の成分と同様のものが挙げられる。
As the urethane polymer, those similar to the urethane polymer described in the aqueous dispersion X can be mentioned, and the preferred embodiment is also the same.
Examples of the acrylic polymer include the same acrylic polymers as those described for the aqueous dispersion X, and the preferred embodiments are also the same.
As other components, those similar to the other components described in the aqueous dispersion X can be mentioned.
 ウレタン重合体及びアクリル重合体が付着している繊維加工品においては、滑り止め加工された繊維加工品の単位面積当たりのウレタン重合体の付着量とアクリル重合体の付着量との合計は、3~500g/mが好ましく、30~400g/mがより好ましく、50~200g/mがさらに好ましい。
 ウレタン重合体の付着量とアクリル重合体の付着量との合計が前記下限値以上であれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。ウレタン重合体の付着量とアクリル重合体の付着量との合計が前記上限値以下であれば、滑り止め加工された繊維加工品の風合いに優れる。
In the case of a fiber processed product to which a urethane polymer and an acrylic polymer are attached, the total of the attached amount of the urethane polymer and the attached amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 preferably ~ 500g / m 2, more preferably 30 ~ 400g / m 2, more preferably 50 ~ 200g / m 2.
When the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the non-slip processed fiber product on a wet floor or the like is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance. When the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer is equal to or less than the upper limit, the texture of the non-slip processed fiber product is excellent.
 本発明の滑り止め加工された繊維加工品の第2の態様は、例えば、本発明の滑り止め加工剤の第1の態様によって繊維加工品を滑り止め加工することによって製造できる。滑り止め加工の方法については、後述する。 The second embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to the non-slip processing according to the first embodiment of the non-slip processing agent of the present invention. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第2の態様にあっては、「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上であるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れる。また、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the second embodiment of the non-slip processed fiber product of the present invention described above, the shear adhesive strength determined by “Method of determining shear adhesive strength II” is less than 15N, and the “static friction coefficient Since the coefficient of static friction determined by “Method II” is 0.6 or more, it has excellent anti-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の第3の態様>
 本発明の滑り止め加工された繊維加工品の第3の態様は、上述した「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ上述した「水接触角の求め方II」で求めた水接触角が80°以上である。
<Third embodiment of non-slip processed fiber product>
The third aspect of the non-slip processed fiber processed product of the present invention is that the shear adhesive strength obtained by the above-described “Method of obtaining shear adhesive strength II” is less than 15 N and the above-mentioned “determination of water contact angle” The water contact angle determined in Method II is 80 ° or more.
 「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満である滑り止め加工された繊維加工品は、床等に対する非粘着性に優れ、長期間の使用においても床等を汚しにくい。せん断接着強度は、12N未満が好ましい。 A non-slip fiber processed product having a shear adhesive strength of less than 15 N determined by "Method for determining shear adhesive strength II" is excellent in non-adhesion to floors and the like, and hardly stains floors and the like even after long-term use. . The shear bond strength is preferably less than 12N.
 「水接触角の求め方II」で求めた水接触角が80°以上である滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性に優れる。水接触角は、85°以上が好ましい。 止 め A non-slip processed fiber product having a water contact angle of 80 ° or more determined by “Method for determining water contact angle II” has excellent non-slip properties on wet floors and the like. The water contact angle is preferably 85 ° or more.
 「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ「水接触角の求め方II」で求めた水接触角が80°以上である滑り止め加工された繊維加工品としては、例えば、ウレタン重合体及びアクリル重合体が付着している繊維加工品が挙げられる。
 ウレタン重合体及びアクリル重合体が付着している繊維加工品としては、滑り止め加工された繊維加工品の第2の態様で説明したものと同様のものが挙げられ、好ましい形態も同様である。
Non-slip textile processing in which the shear adhesive strength determined by "Method of determining shear adhesive strength II" is less than 15 N and the water contact angle determined by "Method of determining water contact angle II" is 80 ° or more Examples of the article include a processed fiber article to which a urethane polymer and an acrylic polymer are attached.
Examples of the processed fiber product to which the urethane polymer and the acrylic polymer are adhered include the same ones as described in the second embodiment of the non-slip processed fiber product, and the preferred embodiments are also the same.
 本発明の滑り止め加工された繊維加工品の第3の態様は、例えば、本発明の滑り止め加工剤の第2の態様によって繊維加工品を滑り止め加工することによって製造できる。滑り止め加工の方法については、後述する。 The third aspect of the non-slip processed fiber product of the present invention can be produced, for example, by subjecting the processed fiber product to non-slip processing by the second embodiment of the non-slip processing agent of the present invention. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第3の態様にあっては、「せん断接着強度の求め方II」で求めたせん断接着強度が15N未満であり、かつ「水接触角の求め方II」で求めた水接触角が80°以上であるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れる。また、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the third embodiment of the non-slip processed fiber product of the present invention described above, the shear adhesive strength determined by “Method for determining shear adhesive strength II” is less than 15 N, and the “water contact angle” Since the water contact angle determined by “Method II” is 80 ° or more, it has excellent anti-slip properties on wet floors and the like and non-adhesion on floors and the like. In addition, since it has excellent anti-slip properties on wet floors and non-adhesion on floors and the like, it can be used for a wide range of applications.
<<滑り止め加工された繊維加工品の製造方法>>
<滑り止め加工された繊維加工品の製造方法の第1の態様>
 本発明の滑り止め加工された繊維加工品の製造方法の第1の態様は、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様のうち、いずれかの滑り止め加工剤を、繊維加工品に塗布し、乾燥する方法である。
 より具体的には、本発明の滑り止め加工された繊維加工品の製造方法の第1の態様は、滑り止め加工剤が塗布された繊維加工品を得るために、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様のうち、いずれかの滑り止め加工剤を繊維加工品に塗布し、滑り止め加工剤が塗布された繊維加工品を乾燥することを含む方法である。
<< Production method of non-slip processed textile products >>
<A first embodiment of a method for producing a non-slip processed fiber product>
The first aspect of the method for producing a non-slip processed fiber product according to the present invention includes the first aspect, the second aspect, the third aspect, and the fourth aspect of the anti-slip processing agent of the present invention. In this method, any one of the anti-slip agents is applied to a processed fiber product and dried.
More specifically, the first aspect of the method for producing a non-slip processed fiber product according to the present invention includes a non-slip processing agent according to the present invention in order to obtain a fiber processed product coated with the non-slip processing agent. Of any of the first, second, third, and fourth aspects of the present invention, wherein an anti-slip agent is applied to a processed fiber product, and the anti-slip agent is applied to the processed fiber product Drying.
 滑り止め加工剤の繊維加工品への塗布方法としては、スプレーコート法、ロールコート法、バーコート法、エアナイフコート法、刷毛塗り法、ディッピング法等が挙げられる。滑り止め加工剤の繊維加工品への塗布方法としては、連続生産ラインで、大きさの制約なしで塗布できる点から、スプレーコート法が好ましい。スプレーコート法は、滑り止め加工剤を、エアスプレーを用いて噴霧することによって行われてもよい。 塗布 Examples of the method of applying the non-slip agent to the processed fiber include a spray coating method, a roll coating method, a bar coating method, an air knife coating method, a brush coating method, and a dipping method. As a method for applying the anti-slip agent to the processed fiber product, a spray coating method is preferable because it can be applied on a continuous production line without any size restrictions. The spray coating method may be performed by spraying a non-slip processing agent using an air spray.
 繊維加工品の単位面積当たりの滑り止め加工剤の塗布量は、10~1000g/mが好ましく、20~800g/mがより好ましく、100~300g/mがさらに好ましい。
 滑り止め加工剤の塗布量が前記下限値以上であれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。滑り止め加工剤の塗布量が前記上限値以下であれば、滑り止め加工された繊維加工品の非粘着性がさらに優れる。
The coating amount of Rubberized agent per unit area of the fiber processed article is preferably 10 ~ 1000g / m 2, more preferably 20 ~ 800g / m 2, more preferably 100 ~ 300g / m 2.
When the application amount of the anti-slip agent is equal to or more than the lower limit, the anti-slip property of the processed non-slip fiber product on a wet floor or the like is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance. When the applied amount of the anti-slip agent is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
 滑り止め加工剤が塗布された繊維加工品を乾燥することによって、滑り止め加工剤に含まれる水、有機溶媒等の媒体を除去する。
 滑り止め加工剤が塗布された繊維加工品の乾燥は、常温で行ってもよく、加熱によって行ってもよい。加熱する場合、加熱温度は、50~300℃が好ましい。また、加熱する場合、加熱時間は、0.1~60分間が好ましい。
A medium such as water or an organic solvent contained in the non-slip agent is removed by drying the fiber processed product to which the anti-slip agent is applied.
Drying of the fiber processed product to which the anti-slip agent has been applied may be performed at room temperature or by heating. When heating, the heating temperature is preferably from 50 to 300 ° C. When heating, the heating time is preferably from 0.1 to 60 minutes.
 以上説明した本発明の滑り止め加工された繊維加工品の製造方法の第1の態様にあっては、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様のうち、いずれかの滑り止め加工剤を、繊維加工品に塗布し、乾燥する方法であるため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を製造できる。また、本発明の滑り止め加工された繊維加工品の製造方法の第1の態様で製造された滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the first aspect of the method for producing a non-slip processed fiber product of the present invention described above, the first, second, and third aspects of the anti-slip agent of the present invention are provided. And the fourth aspect, in which any one of the anti-slip processing agents is applied to the processed fiber product and dried, so that the anti-slip property on wet floors and the non-adhesive property on floors and the like are excellent. A processed fiber product can be manufactured. Further, the non-slip processed fiber product manufactured in the first aspect of the method for producing a non-slip processed fiber product of the present invention has a non-slip property against a wet floor or the like and a non-adhesive property against a floor or the like. Excellent for a wide range of applications.
<滑り止め加工された繊維加工品の製造方法の第2の態様>
 本発明の滑り止め加工された繊維加工品の製造方法の第2の態様は、繊維製品への滑り止め加工剤の噴霧を含む。
 本発明の滑り止め加工された繊維加工品の製造方法の第2の態様において、滑り止め加工剤が噴霧される繊維製品は、後述の条件A及び後述の条件Bのいずれか一方又は両方を満たす。
 本発明の滑り止め加工された繊維加工品の製造方法の第2の態様において、繊維製品への滑り止め加工剤の噴霧における霧化した滑り止め加工剤の乾燥粒径は150μm未満である。
<Second embodiment of method for producing non-slip processed fiber product>
A second aspect of the method for producing a non-slip processed fiber product of the present invention includes spraying a non-slip processing agent on the textile.
In the second aspect of the method for producing a non-slip processed fiber product of the present invention, the fiber product to which the non-slip processing agent is sprayed satisfies one or both of Condition A and Condition B described below. .
In the second aspect of the method for producing a non-slip processed fiber product according to the present invention, the dry particle size of the atomized anti-slip agent in spraying the non-slip agent on the textile is less than 150 μm.
 繊維製品への滑り止め加工剤の噴霧としては、スプレーコート法が挙げられ、スプレーコート法は、滑り止め加工剤を、エアスプレーを用いて噴霧することによって行われてもよい。 噴霧 Spraying of the non-slip processing agent onto the textile product includes a spray coating method, and the spray coating method may be performed by spraying the non-slip processing agent using an air spray.
 繊維製品の単位面積当たりの滑り止め加工剤の噴霧量は、10~1000g/mが好ましく、20~800g/mがより好ましく、100~300g/mがさらに好ましい。
 滑り止め加工剤の噴霧量が前記下限値以上であれば、滑り止め加工された繊維加工品の濡れた床等に対する滑り止め性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。滑り止め加工剤の噴霧量が前記上限値以下であれば、滑り止め加工された繊維加工品の非粘着性がさらに優れる。
Spraying amount of Rubberized agent per unit area of the textile, preferably 10 ~ 1000g / m 2, more preferably 20 ~ 800g / m 2, more preferably 100 ~ 300g / m 2.
When the spray amount of the anti-slip agent is not less than the lower limit, the anti-slip property of the non-slip fiber processed product on a wet floor or the like is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance. When the spray amount of the anti-slip agent is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
 滑り止め加工剤が噴霧される繊維製品は、条件A及び条件Bのいずれか一方又は両方を満たす。
(条件A)
 5cm×5cmの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1mあたりの吸水量に換算した吸水量Aが、1000g/m以上である。
(条件B)
 3gの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1gあたりの吸水量に換算した吸水量Bが、5g/g以上である。
The textile to which the anti-slip agent is sprayed satisfies one or both of Condition A and Condition B.
(Condition A)
The fiber product cut into a size of 5 cm × 5 cm was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption A converted to the water absorption per 1 m 2 of the fiber product was: It is 1000 g / m 2 or more.
(Condition B)
The fiber product cut into a size of 3 g was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption B converted to the water absorption per 1 g of the fiber product was 5 g / g. That is all.
 繊維製品への滑り止め加工剤の噴霧における霧化した滑り止め加工剤の乾燥粒径は150μm未満である。本発明において、霧化した滑り止め加工剤の乾燥粒径は以下の方法で求める。すなわち、霧化した前記滑り止め加工剤を清浄なガラス基板上に霧化滴が重ならないように付着させ、120℃で5分間乾燥させて得られた乾燥した霧化滴200個の粒径を光学顕微鏡にて測定し平均値を求める。 乾燥 The dry particle size of the atomized anti-slip agent in spraying the anti-slip agent on textiles is less than 150 μm. In the present invention, the dry particle size of the atomized anti-slip agent is determined by the following method. That is, the atomized anti-slip agent is deposited on a clean glass substrate so that the atomized droplets do not overlap, and dried at 120 ° C. for 5 minutes to obtain a particle diameter of 200 dried atomized droplets. Measure with an optical microscope and determine the average value.
 本発明の滑り止め加工された繊維加工品の製造方法の第2の態様において用いられる繊維製品としては、織物や編物、不織布等が挙げられる。中でも、バスマット等として濡れた床の上で使用されるシェニール織物が好ましい。 繊 維 As a fiber product used in the second aspect of the method for producing a non-slip processed fiber product of the present invention, a woven fabric, a knitted fabric, a nonwoven fabric, or the like can be given. Above all, a chenille fabric used on a wet floor as a bath mat or the like is preferable.
 本発明の滑り止め加工された繊維加工品の製造方法の第2の態様において用いられる滑り止め加工剤としては、本発明の滑り止め加工剤の第1の態様、第2の態様、第3の態様、及び第4の態様と同様のものが挙げられ、好ましい形態も同様である。 As the non-slip agent used in the second aspect of the method for producing a non-slip processed fiber product of the present invention, the first, second and third aspects of the anti-slip agent of the present invention are used. The same aspects as those of the fourth and fourth aspects are mentioned, and the preferred aspects are also the same.
 以上説明した本発明の滑り止め加工された繊維加工品の製造方法の第2の態様にあっては、噴霧した滑り止め加工剤が繊維製品の内部に浸透しにくく、加工面の表層に樹脂が付着するため、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れた滑り止め加工された繊維加工品を製造できる。また、本発明の滑り止め加工された繊維加工品の製造方法の第1の態様で製造された滑り止め加工された繊維加工品は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れるため、幅広い用途に利用できる。 In the second embodiment of the method for producing a non-slip processed fiber product of the present invention described above, the sprayed anti-slip agent hardly penetrates into the interior of the textile, and the resin is applied to the surface layer of the processed surface. Since it adheres, it is possible to produce a non-slip processed fiber product having excellent anti-slip properties on wet floors and non-adhesion to floors and the like. Further, the non-slip processed fiber product manufactured in the first aspect of the method for producing a non-slip processed fiber product of the present invention has a non-slip property against a wet floor or the like and a non-adhesive property against a floor or the like. Excellent for a wide range of applications.
 以下に本発明の実施例を示す。なお、本実施例における「部」は「質量部」であり、「%」は「質量%」である。 実 施 Examples of the present invention will be described below. In this example, “parts” is “parts by mass”, and “%” is “% by mass”.
 (滑り止め加工された繊維加工品の製造)
 シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりのウレタン重合体の付着量及びアクリル重合体の付着量の合計が表1又は表2に示す付着量となるようにハンドスプレー(アネスト岩田社製、W-101)を用いて、噴霧エアー圧0.35MPaで塗布し、雰囲気温度120℃で5分間乾燥し、滑り止め加工されたシェニール基布を得た。
(Manufacture of non-slip processed textile products)
On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm x 50 mm), a non-slip agent is applied, and the total amount of the urethane polymer and the acrylic polymer per unit area of the chenille base fabric is shown in Table. Using hand spray (manufactured by Anest Iwata Co., W-101) at a spray air pressure of 0.35 MPa so as to obtain the adhesion amount shown in Table 1 or Table 2, dried at an ambient temperature of 120 ° C. for 5 minutes, and non-slip A processed chenille base fabric was obtained.
 (滑り止め性)
 滑り止め加工されたシェニール基布を、その滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工されたシェニール基布を、ばね式手秤(シロ産業社製、M506STシリーズ)を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、得られた静摩擦力を法線力で除して静摩擦係数を求めた。
(Non-slip property)
A horizontal stainless steel sheet (SUS304 No. 2B of JIS standard) in which a non-slip processed chenille base cloth is sprayed with water to a surface of 32 mg / cm 2 with the non-slip processed face down by spraying. The chenille base cloth, which is placed on the top and subjected to a load of 26.46 N (2.7 kg) from the upper side of the non-slip chenille base cloth, is subjected to a non-slip processing at an ambient temperature of 23 ° C. by a spring. A static friction force was measured by pulling the stainless steel plate in parallel with a stainless steel plate using a hand weighing scale (M506ST series manufactured by Shiro Sangyo Co., Ltd.), and the obtained static friction force was divided by a normal force to obtain a static friction coefficient.
 下記基準にて滑り止め性を評価した。
 A:静摩擦係数が0.85以上である。
 B:静摩擦係数が0.70以上0.85未満である。
 C:静摩擦係数が0.60以上0.70未満である。
 D:静摩擦係数が0.60未満である。
The anti-slip property was evaluated according to the following criteria.
A: The coefficient of static friction is 0.85 or more.
B: The coefficient of static friction is 0.70 or more and less than 0.85.
C: The coefficient of static friction is 0.60 or more and less than 0.70.
D: The coefficient of static friction is less than 0.60.
 (耐洗濯性)
 滑り止め加工されたシェニール基布について、下記洗濯工程を10回繰り返した後に上述の滑り止め性を評価した。
 洗濯工程は、洗い15分、すすぎ3分、すすぎ3分、すすぎ2分、すすぎ2分、脱水5分、屋内乾燥24時間を1回とした。洗いには40℃に調温した水を用い、すすぎには23℃の水を用いた。水量は洗い、すすぎとも25Lであり、洗いに用いた洗剤の量は18gとした。洗濯には2層式洗濯機を用いた。
(Washing resistance)
The above-mentioned anti-slip property was evaluated after repeating the following washing process 10 times with respect to the chenille base fabric subjected to the anti-slip processing.
The washing process was performed once for 15 minutes for washing, 3 minutes for rinsing, 3 minutes for rinsing, 2 minutes for rinsing, 2 minutes for rinsing, 5 minutes for dehydration, and 24 hours for indoor drying. Water adjusted to 40 ° C. was used for washing, and water at 23 ° C. was used for rinsing. The amount of water was 25 L for washing and rinsing, and the amount of detergent used for washing was 18 g. A two-layer washing machine was used for washing.
 (非粘着性)
 滑り止め加工されたシェニール基布を、その滑り止め加工面を下にしてABS樹脂基材(TP技研社製、黒色、90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して滑り止め加工されたシェニール基布とABS樹脂基材とを接着した。引張測定装置(島津製作所社製、オートグラフAG-IS5kN)を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工されたシェニール基布の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とした。
(Non-adhesive)
The non-slip chenille base cloth is bonded to an ABS resin base material (manufactured by TP Giken Co., black, 90 mm × 50 mm × thickness 3 mm) with the non-slip surface down, with an adhesive surface of 50 mm × 50 mm. The chenille base cloth that has been stacked and slip-proofed is left standing at an ambient temperature of 40 ° C. for 24 hours under a load of 6.86 N (700 g) from the upper side, and further at an ambient temperature of 23 ° C. for 3 hours. The chenille base cloth subjected to anti-slip processing was adhered to the ABS resin base material. Using a tensile measurement device (Shimadzu Corporation, Autograph AG-IS5kN), the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material were bonded at an ambient temperature of 23 ° C. and a test speed of 100 mm / min. The film was pulled parallel to the bonding surface, and the maximum load at this time was defined as the shear bonding strength.
 下記基準にて非粘着性を評価した。
 A:せん断接着強度が15.0N未満である。
 B:せん断接着強度が15.0N以上である。
Non-adhesion was evaluated according to the following criteria.
A: Shear adhesive strength is less than 15.0N.
B: Shear adhesive strength is 15.0N or more.
 (水接触角)
 ガラス板(120mm×120×厚さ2mm)の表面に、滑り止め加工剤を、4milのアプリケーターにて塗布し、雰囲気温度120℃で5分間乾燥し、塗膜を形成した。得られた塗膜の表面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定した。
(Water contact angle)
An anti-slip agent was applied to the surface of a glass plate (120 mm × 120 × 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes to form a coating film. A water droplet of 1 μL was adhered to the surface of the obtained coating film at an ambient temperature of 23 ° C., and a water contact angle after 5 seconds was measured.
 下記基準にて水接触角を評価した。
 A:水接触角が80°以上である。
 B:水接触角が80°未満である。
The water contact angle was evaluated according to the following criteria.
A: The water contact angle is 80 ° or more.
B: The water contact angle is less than 80 °.
 (略号)
 ウレタン重合体水分散液A:多価イソシアネートとしてイソホロンジイソシアネート及び1,6-ヘキサメチレンジイソシアネートを用い、多価アルコールとしてポリブチレンアジペートを用いて得られたウレタン重合体Aを水に分散させたもの(ウレタン重合体粒子の平均粒子径0.17μm、吸熱ピークにおける温度(結晶融解温度)45℃、固形分40%)。
 ウレタン重合体水分散液B:多価イソシアネートとしてイソホロンジイソシアネート及び1,6-ヘキサメチレンジイソシアネートを用い、多価アルコールとしてポリブチレンアジペートを用いて得られたウレタン重合体Bを水に分散させたもの(ウレタン重合体粒子の平均粒子径0.155μm、吸熱ピークにおける温度(結晶融解温度)48℃、固形分40%)。
 BA:n-ブチルアクリレート(Tg:-49℃)。
 Daam:ジアセトンアクリルアミド(三菱ケミカル社製、カタログ記載のTg:77℃)。
 AMA:アリルメタクリレート(三菱ケミカル社製、カタログ記載のTg:52℃)。
 MMA:メタクリル酸メチル(Tg:105℃)。
 MAA:メタクリル酸(Tg:228℃)。
 アデカリアソープSR-1025:界面活性剤、ADEKA社製、固形分25%。
 ニューコール(登録商標。以下同様。)707SF:界面活性剤、日本乳化剤社製、固形分30%。
 パーブチル(登録商標。以下同様。)H69:t-ブチルハイドロパーオキサイド水溶液、日油社製、固形分69%。
(Abbreviation)
Urethane polymer aqueous dispersion A: urethane polymer A obtained by using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as a polyvalent isocyanate and using polybutylene adipate as a polyhydric alcohol and dispersing in water ( (Average particle diameter of urethane polymer particles 0.17 μm, temperature at endothermic peak (crystal melting temperature) 45 ° C., solid content 40%).
Urethane polymer aqueous dispersion B: urethane polymer B obtained by using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as polyvalent isocyanate and using polybutylene adipate as polyhydric alcohol, and dispersed in water ( (Average particle diameter of urethane polymer particles 0.155 μm, temperature at endothermic peak (crystal melting temperature) 48 ° C., solid content 40%).
BA: n-butyl acrylate (Tg: -49 ° C).
Damam: diacetone acrylamide (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 77 ° C.).
AMA: allyl methacrylate (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 52 ° C.).
MMA: methyl methacrylate (Tg: 105 ° C.).
MAA: methacrylic acid (Tg: 228 ° C.).
Adecaria Soap SR-1025: surfactant, manufactured by ADEKA, solid content 25%.
Newcol (registered trademark; the same applies hereinafter) 707SF: surfactant, manufactured by Nippon Emulsifier, solid content 30%.
Perbutyl (registered trademark; the same applies hereinafter) H69: t-butyl hydroperoxide aqueous solution, manufactured by NOF Corporation, solid content 69%.
[実施例1~3]
 撹拌機、還流冷却管、温度制御装置及び滴下ロートを備えたフラスコに下記の初期原料混合物を仕込み、窒素置換を行った。
[Examples 1 to 3]
The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, followed by purging with nitrogen.
 (初期原料混合物)
 脱イオン水:73部
 ウレタン重合体水分散液A:500部(固形分200部)
 アデカリアソープSR-1025:8.00部(固形分2部)
(Initial raw material mixture)
Deionized water: 73 parts Urethane polymer aqueous dispersion A: 500 parts (solid content: 200 parts)
Adecaria Soap SR-1025: 8.00 parts (2 parts solids)
 続いて、下記のアクリル重合体Aの原料となる単量体混合物をフラスコに仕込み、窒素置換を継続しながら、フラスコの内温を40℃に昇温した。 Subsequently, the following monomer mixture as a raw material of the acrylic polymer A was charged into a flask, and the internal temperature of the flask was raised to 40 ° C. while continuing nitrogen replacement.
 (アクリル重合体Aの原料となる単量体混合物)
 BA:197.2部
 AMA:1.00部
 Daam:1.80部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
(Monomer mixture as raw material of acrylic polymer A)
BA: 197.2 parts AMA: 1.00 parts Damam: 1.80 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts
 続いて、下記の開始剤水溶液及び還元剤水溶液をフラスコ内に添加した。重合発熱によるピークトップ温度を確認した後、フラスコの内温を60℃に保持した。 Subsequently, the following aqueous initiator solution and aqueous reducing agent solution were added to the flask. After confirming the peak top temperature due to the heat generated by the polymerization, the internal temperature of the flask was maintained at 60 ° C.
 (開始剤水溶液)
 パーブチルH69:0.10部
 脱イオン水:2.00部
(Initiator aqueous solution)
Perbutyl H69: 0.10 parts Deionized water: 2.00 parts
 (還元剤水溶液)
 硫酸鉄(II)七水和物:0.0004部
 エチレンジアミン四酢酸:0.00054部
 イソアスコルビン酸ナトリウム一水和物:0.044部
 脱イオン水:2.00部
(Reducing agent aqueous solution)
Iron (II) sulfate heptahydrate: 0.0004 parts Ethylenediaminetetraacetic acid: 0.00054 parts Sodium isoascorbate monohydrate: 0.044 parts Deionized water: 2.00 parts
 その後、フラスコ内を40℃まで冷却し、アジピン酸ヒドラジド0.834部、脱イオン水6.0部をフラスコ内に添加して重合体粒子の水分散液を得た。粘度は197mPa・sであり、固形分は35.0%であった。この水分散液を滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
 滑り止め加工されたシェニール基布は、滑り止め性、耐洗濯性、非粘着性に優れていた。
Thereafter, the inside of the flask was cooled to 40 ° C., and 0.834 part of adipic hydrazide and 6.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of polymer particles. The viscosity was 197 mPa · s, and the solid content was 35.0%. Using this aqueous dispersion as an anti-slip agent, a chenille base fabric subjected to anti-slip processing was obtained. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
The non-slip chenille base fabric was excellent in anti-slip properties, washing resistance, and non-adhesiveness.
[実施例4]
 ウレタン重合体水分散液Aをウレタン重合体水分散液Bに変更した以外は、実施例1と同様にして作成した水分散液を滑り止め加工剤として用いて、滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
[Example 4]
Using a water dispersion prepared in the same manner as in Example 1 as a non-slip processing agent, except that the urethane polymer aqueous dispersion A was changed to the urethane polymer aqueous dispersion B, a non-slip chenille base cloth was used. Got. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
[実施例5]
 アクリル重合体Aの原料となる単量体混合物を以下のアクリル重合体Bの原料となる単量体混合物に変更した以外は、実施例1と同様にして作成した水分散液を滑り止め加工剤として用いて、滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
[Example 5]
An aqueous dispersion prepared in the same manner as in Example 1 except that the monomer mixture serving as a raw material of the acrylic polymer A was changed to the following monomer mixture serving as a raw material of the acrylic polymer B, was used as a non-slip processing agent. To obtain a chenille base fabric which has been subjected to a non-slip processing. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
(アクリル重合体Bの原料となる単量体混合物)
 MMA:64.6部
 BA:132.6部
 AMA:1.00部
 Daam:1.80部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
(Monomer mixture as raw material of acrylic polymer B)
MMA: 64.6 parts BA: 132.6 parts AMA: 1.00 parts Damam: 1.80 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts
[実施例6]
 ハンドスプレーの種類をLPH-101(アネスト岩田社製)に変更し、噴霧エアー圧0.1MPaで塗布した以外は、実施例1と同様にして作成した水分散液を滑り止め加工剤として用いて、滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
[Example 6]
A water dispersion prepared in the same manner as in Example 1 was used as an anti-slip agent except that the type of hand spray was changed to LPH-101 (manufactured by Anest Iwata Co., Ltd.) and application was performed at a spray air pressure of 0.1 MPa. Thus, a chenille base cloth subjected to a non-slip processing was obtained. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
[比較例1]
 撹拌機、還流冷却管、温度制御装置及び滴下ロートを備えたフラスコに下記の初期原料混合物を仕込み、窒素置換を行い、80℃に昇温した。
[Comparative Example 1]
The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, and the mixture was purged with nitrogen and heated to 80 ° C.
 (初期原料混合物)
 脱イオン水:510部
 アデカリアソープSR-1025:0.60部(固形分0.15部)
(Initial raw material mixture)
Deionized water: 510 parts Adecaria Soap SR-1025: 0.60 parts (solid content 0.15 parts)
 続いて、下記のアクリル重合体Cの原料となる単量体混合物の5%をフラスコに仕込み、下記の開始剤水溶液をフラスコ内に添加した。重合発熱によるピークトップ温度を確認した後、フラスコの内温を80℃で30分間保持した。 Next, 5% of a monomer mixture as a raw material of the following acrylic polymer C was charged into a flask, and the following aqueous initiator solution was added to the flask. After confirming the peak top temperature due to the heat generated by the polymerization, the internal temperature of the flask was maintained at 80 ° C. for 30 minutes.
 (アクリル重合体Cの原料となる単量体混合物)
 BA:488部
 AMA:2.50部
 Daam:4.50部
 MAA:5.00部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
(Monomer mixture as raw material of acrylic polymer C)
BA: 488 parts AMA: 2.50 parts Damam: 4.50 parts MAA: 5.00 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts
 (開始剤水溶液)
 過硫酸アンモニウム:0.50部
 脱イオン水:25.0部
(Initiator aqueous solution)
Ammonium persulfate: 0.50 parts Deionized water: 25.0 parts
 続いて、フラスコの内温を80℃に維持しながら、上記アクリル重合体Cの原料となる単量体混合物の残りを3時間かけてフラスコ内に滴下した。滴下した後、フラスコの内温を80℃に維持しながら1時間保持した。
 その後、フラスコ内を40℃まで冷却し、アジピン酸ヒドラジド2.08部、脱イオン水15.0部をフラスコ内に添加してアクリル重合体の水分散液を得た。固形分は45.1%あった。この水分散液を固形分35.0%に希釈し、滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。アクリル重合体の付着量は、表2に示す付着量とした。
 評価結果を表2に示す。
 滑り止め加工されたシェニール基布は、初期の滑り止め性に優れるものの、耐洗濯性及び非粘着性に劣っていた。
Subsequently, while maintaining the internal temperature of the flask at 80 ° C., the remainder of the monomer mixture as a raw material of the acrylic polymer C was dropped into the flask over 3 hours. After the dropwise addition, the temperature of the flask was maintained at 80 ° C. for 1 hour.
Thereafter, the inside of the flask was cooled to 40 ° C., and 2.08 parts of adipic hydrazide and 15.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of an acrylic polymer. The solids content was 45.1%. This aqueous dispersion was diluted to a solid content of 35.0% and used as a non-slip agent to obtain a non-slip chenille base fabric. The adhesion amount of the acrylic polymer was the adhesion amount shown in Table 2.
Table 2 shows the evaluation results.
The non-slip chenille base fabric was excellent in the initial non-slip properties, but was inferior in washing resistance and non-adhesion.
[比較例2]
 ウレタン重合体水分散液Aを固形分35.0%に希釈し、滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量は、表2に示す付着量とした。
 評価結果を表2に示す。
 滑り止め加工されたシェニール基布は、非粘着性に優れていたが、滑り止め性に劣っていた。
[Comparative Example 2]
The urethane polymer aqueous dispersion A was diluted to a solid content of 35.0%, and a non-slip chenille base fabric was obtained using the non-slip processing agent. The adhesion amount of the urethane polymer was the adhesion amount shown in Table 2.
Table 2 shows the evaluation results.
The non-slip chenille base fabric was excellent in non-adhesiveness, but poor in anti-slip properties.
[比較例3]
 ウレタン重合体水分散液Bを固形分35.0%に希釈し、滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量は、表2に示す付着量とした。
 評価結果を表2に示す。
 滑り止め加工されたシェニール基布は、非粘着性に優れていたが、滑り止め性に劣っていた。
[Comparative Example 3]
The urethane polymer aqueous dispersion B was diluted to a solid content of 35.0%, and a non-slip chenille base fabric was obtained using the anti-slip agent. The adhesion amount of the urethane polymer was the adhesion amount shown in Table 2.
Table 2 shows the evaluation results.
The non-slip chenille base fabric was excellent in non-adhesiveness, but poor in anti-slip properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の滑り止め加工剤は、濡れた床等に対する滑り止め性及び床等に対する非粘着性に優れ、幅広い用途に利用できる滑り止め加工された繊維加工品の製造に有用である。 The anti-slip agent of the present invention has excellent anti-slip properties on wet floors and the like and non-adhesiveness on floors and the like, and is useful for the production of non-slip processed fiber products that can be used for a wide range of applications.

Claims (20)

  1.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     下記方法で求めたせん断接着強度が15N未満であり、かつ下記方法で求めた静摩擦係数が0.6以上である、滑り止め加工剤。
     (せん断接着強度の求め方)
     シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工されたシェニール基布と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工されたシェニール基布の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
     (静摩擦係数の求め方)
     シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工されたシェニール基布を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
    An anti-slip agent for imparting anti-slip properties to textile products.
    An anti-slip agent having a shear adhesion strength determined by the following method of less than 15 N and a coefficient of static friction determined by the following method of 0.6 or more.
    (How to determine shear bond strength)
    On the back surface of a chenille base cloth (a chenille cloth made of polyester microfiber, 70 mm × 50 mm), an anti-slip agent is applied, and the amount of the polymer component contained in the anti-slip agent per unit area of the chenille base cloth is reduced. The non-slip chenille base cloth obtained by applying the composition to a hand at 35 g / m 2 by hand spray and drying at an ambient temperature of 120 ° C. for 5 minutes is coated on an ABS resin base with the non-slip face down. Laminated material (90 mm × 50 mm × thickness 3 mm) so that the adhesive surface is 50 mm × 50 mm, and a load of 6.86 N (700 g) was applied from the upper side of the non-slip chenille base cloth. And the non-slip chenille base cloth, which was stood still at an ambient temperature of 40 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours, and The lower end of the non-slip-processed chenille base cloth and the upper end of the ABS resin base material are bonded to the BS resin base material at an atmosphere temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measurement device. Pull in parallel. The maximum load at this time is defined as the shear bond strength.
    (How to find the static friction coefficient)
    On the back surface of a chenille base cloth (a chenille cloth made of polyester microfiber, 70 mm × 50 mm), an anti-slip agent is applied, and the amount of the polymer component contained in the anti-slip agent per unit area of the chenille base cloth is reduced. A non-slip chenille base cloth obtained by applying the composition by hand spraying at 35 g / m 2 and drying at an ambient temperature of 120 ° C. for 5 minutes is applied to the surface with the non-slip surface down. Water was placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) sprayed with a spray to 32 mg / cm 2, and 26.46 N (2 Under a load of 0.7 kg), the non-slip chenille base cloth was placed at an ambient temperature of 23 ° C. using a spring-type hand scale. Measuring the static friction force pulling parallel to Nresu steel, determining the static friction coefficient by dividing the static frictional force in the normal force.
  2.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     下記方法で求めたせん断接着強度が15N未満であり、かつ下記方法で求めた水接触角が80°以上である、滑り止め加工剤。
     (せん断接着強度の求め方)
     シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工されたシェニール基布と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工されたシェニール基布の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
     (水接触角の求め方)
     ガラス板(120mm×120×厚さ2mm)の表面に、滑り止め加工剤を、4milのアプリケーターにて塗布し、雰囲気温度120℃で5分間乾燥して形成された塗膜の表面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
    An anti-slip agent for imparting anti-slip properties to textile products.
    A non-slip agent having a shear adhesive strength determined by the following method of less than 15 N and a water contact angle determined by the following method of 80 ° or more.
    (How to determine shear bond strength)
    On the back surface of a chenille base cloth (a chenille cloth made of polyester microfiber, 70 mm × 50 mm), an anti-slip agent is applied, and the amount of the polymer component contained in the anti-slip agent per unit area of the chenille base cloth is reduced. The non-slip chenille base cloth obtained by applying the composition to a hand at 35 g / m 2 by hand spray and drying at an ambient temperature of 120 ° C. for 5 minutes is coated on an ABS resin base with the non-slip face down. Laminated material (90 mm × 50 mm × thickness 3 mm) so that the adhesive surface is 50 mm × 50 mm, and a load of 6.86 N (700 g) was applied from the upper side of the non-slip chenille base cloth. And the non-slip chenille base cloth, which was stood still at an ambient temperature of 40 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours, and The lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material are bonded to the BS resin base material at an atmosphere temperature of 23 ° C. and a test speed of 100 mm / min. Pull in parallel. The maximum load at this time is defined as the shear bond strength.
    (How to determine water contact angle)
    An anti-slip agent is applied to the surface of a glass plate (120 mm × 120 × 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes. At 23 ° C., 1 μL of a water droplet is attached, and the water contact angle after 5 seconds is measured.
  3.  前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
     前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなる、請求項1又は2記載の滑り止め加工剤。
    The non-slip processing agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
    The anti-slip agent according to claim 1 or 2, wherein the polymer particles comprise a composite containing a urethane polymer and an acrylic polymer.
  4.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
     前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなり、
     下記方法で求めた静摩擦係数が0.6以上である、滑り止め加工剤。
     (静摩擦係数の求め方)
     シェニール基布(ポリエステル製マイクロファイバーのシェニール織物、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工されたシェニール基布を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
    An anti-slip agent for imparting anti-slip properties to textile products.
    The non-slip processing agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
    The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer,
    An anti-slip agent having a coefficient of static friction of 0.6 or more determined by the following method.
    (How to find the static friction coefficient)
    On the back surface of a chenille base cloth (a chenille cloth made of polyester microfiber, 70 mm × 50 mm), an anti-slip agent is applied, and the amount of the polymer component contained in the anti-slip agent per unit area of the chenille base cloth is reduced. A non-slip chenille base cloth obtained by applying the composition by hand spraying at 35 g / m 2 and drying at an ambient temperature of 120 ° C. for 5 minutes is applied to the surface with the non-slip surface down. Water was placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) sprayed by spraying to a concentration of 32 mg / cm 2, and 26.46 N (2) from the upper side of the non-slip chenille base fabric. Under a load of 0.7 kg), the non-slip chenille base cloth was placed at an ambient temperature of 23 ° C. using a spring-type hand scale. Measuring the static friction force pulling parallel to Nresu steel, determining the static friction coefficient by dividing the static frictional force in the normal force.
  5.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     前記滑り止め加工剤が、水性媒体と、前記水性媒体に分散した重合体粒子とを含む水性分散液であり、
     前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなり、
     下記方法で求めた水接触角が80°以上である、滑り止め加工剤。
     (水接触角の求め方)
     ガラス板(120mm×120×厚さ2mm)の表面に、滑り止め加工剤を、4milのアプリケーターにて塗布し、雰囲気温度120℃で5分間乾燥して形成された塗膜の表面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
    An anti-slip agent for imparting anti-slip properties to textile products.
    The non-slip processing agent is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium,
    The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer,
    A non-slip agent having a water contact angle of 80 ° or more determined by the following method.
    (How to determine water contact angle)
    An anti-slip agent is applied to the surface of a glass plate (120 mm × 120 × 2 mm thick) using a 4 mil applicator, and dried at an ambient temperature of 120 ° C. for 5 minutes. At 23 ° C., 1 μL of a water droplet is attached, and the water contact angle after 5 seconds is measured.
  6.  前記ウレタン重合体が結晶性を有する、請求項3~5のいずれか一項に記載の滑り止め加工剤。 止 め The anti-slip agent according to any one of claims 3 to 5, wherein the urethane polymer has crystallinity.
  7.  前記アクリル重合体のガラス転移温度が-10℃以下である、請求項3~6のいずれか一項に記載の滑り止め加工剤。 止 め The non-slip agent according to any one of claims 3 to 6, wherein the acrylic polymer has a glass transition temperature of -10 ° C or lower.
  8.  請求項1~7のいずれか一項に記載の滑り止め加工剤によって滑り止め加工された、滑り止め加工された繊維加工品。 (8) A non-slip processed fiber product which is non-slip processed by the anti-slip agent according to any one of (1) to (7).
  9.  下記方法で求めたせん断接着強度が15N未満であり、かつ下記方法で求めた静摩擦係数が0.6以上である、滑り止め加工された繊維加工品。
     (せん断接着強度の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工された繊維加工品と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工された繊維加工品の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
     (静摩擦係数の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にして、表面に水を32mg/cmとなるように霧吹きで吹き付けた水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工された繊維加工品の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工された繊維加工品を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
    A non-slip processed fiber product having a shear bond strength determined by the following method of less than 15 N and a coefficient of static friction determined by the following method of 0.6 or more.
    (How to determine shear bond strength)
    A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, with a load of 6.86 N (700 g) applied from above to the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 40 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The non-slip processed fiber product and the ABS resin base material are bonded to each other at an ambient temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. And the upper end of the ABS resin substrate is pulled in parallel to the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
    (How to find the static friction coefficient)
    Rubberized fibers workpiece and (70 mm × 50 mm), the Rubberized side down, horizontal stainless steel plate was sprayed with spray so that water on the surface becomes 32 mg / cm 2 of (JIS Standard SUS304 No .2B), and subjected to the non-slip processing at an ambient temperature of 23 ° C. under a load of 26.46 N (2.7 kg) from the upper side of the non-slip processed fiber product. The processed fiber product is pulled parallel to the stainless steel plate using a spring-type hand scale to measure the static friction force, and the static friction force is divided by a normal force to obtain a static friction coefficient.
  10.  下記方法で求めたせん断接着強度が15N未満であり、かつ下記方法で求めた水接触角が80°以上である、滑り止め加工された繊維加工品。
     (せん断接着強度の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度40℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工された繊維加工品と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工された繊維加工品の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    (水接触角の求め方)
     滑り止め加工された繊維加工品の滑り止め加工面に、雰囲気温度23℃にて、1μLの水滴を付着させ、5秒後の水接触角を測定する。
    A non-slip processed fiber product having a shear adhesive strength determined by the following method of less than 15 N and a water contact angle determined by the following method of 80 ° or more.
    (How to determine shear bond strength)
    A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, with a load of 6.86 N (700 g) applied from above to the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 40 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The non-slip processed fiber product and the ABS resin base material are bonded to each other at an ambient temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. And the upper end of the ABS resin substrate is pulled in parallel to the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
    (How to determine water contact angle)
    A water droplet of 1 μL is adhered to the non-slip surface of the non-slip processed fiber product at an ambient temperature of 23 ° C., and a water contact angle after 5 seconds is measured.
  11.  ウレタン重合体及びアクリル重合体が付着している、請求項9又は10に記載の滑り止め加工された繊維加工品。 The non-slip processed fiber product according to claim 9 or 10, wherein the urethane polymer and the acrylic polymer are attached.
  12.  前記滑り止め加工された繊維加工品の単位面積当たりの前記ウレタン重合体の付着量と前記アクリル重合体の付着量との合計が3~500g/mである、請求項11に記載の滑り止め加工された繊維加工品。 Wherein the deposition amount of the urethane polymer per unit area of Rubberized fibers workpiece sum of the adhesion weight of the acrylic polymer is 3 ~ 500g / m 2, cleat according to claim 11 A processed fiber product.
  13.  滑り止め加工剤が塗布された繊維加工品を得るために、請求項1~7のいずれか一項に記載の滑り止め加工剤を、繊維加工品に塗布し、
     前記滑り止め加工剤が塗布された繊維加工品を乾燥することを含む、滑り止め加工された繊維加工品の製造方法。
    Applying a non-slip agent according to any one of claims 1 to 7 to a fiber product to obtain a fiber product to which the non-slip agent is applied;
    A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
  14.  前記繊維加工品の単位面積当たりの前記滑り止め加工剤の塗布量が10~1000g/mである、請求項13に記載の滑り止め加工された繊維加工品の製造方法。 14. The method for producing a non-slip processed fiber product according to claim 13, wherein the applied amount of the anti-slip processing agent per unit area of the processed fiber product is 10 to 1000 g / m 2 .
  15.  前記滑り止め加工剤の前記繊維加工品への塗布がスプレーコートにより行われる、請求項13又は14に記載の滑り止め加工された繊維加工品の製造方法。 15. The method for producing a non-slip processed fiber product according to claim 13 or 14, wherein the application of the anti-slip agent to the processed fiber product is performed by spray coating.
  16.  繊維製品への滑り止め加工剤の噴霧を含む滑り止め加工された繊維加工品の製造方法であって、
     前記繊維製品は、下記条件A及び下記条件Bのいずれか一方又は両方を満たし、
     下記方法で求めた前記噴霧における霧化した前記滑り止め加工剤の乾燥粒径が150μm未満である、滑り止め加工された繊維加工品の製造方法。
    (条件A)
     5cm×5cmの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1mあたりの吸水量に換算した吸水量Aが、1000g/m以上である。
    (条件B)
     3gの大きさに切断した前記繊維製品を脱イオン水に2分間浸漬し、吸水した脱イオン水の量を計量し、前記繊維製品1gあたりの吸水量に換算した吸水量Bが、5g/g以上である。
    (乾燥粒径の求め方)
     霧化した前記滑り止め加工剤を清浄なガラス基板上に霧化滴が重ならないように付着させ、120℃で5分間乾燥させて得られた乾燥した霧化滴200個の粒径を光学顕微鏡にて測定し平均値を求める。
    A method for producing a non-slip processed fiber product including spraying a non-slip processing agent on a textile product,
    The fiber product satisfies one or both of the following conditions A and B,
    A method for producing a non-slip processed fiber product, wherein a dry particle size of the atomized anti-slip agent in the spray obtained by the following method is less than 150 μm.
    (Condition A)
    The fiber product cut into a size of 5 cm × 5 cm was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption A converted to the water absorption per 1 m 2 of the fiber product was: It is 1000 g / m 2 or more.
    (Condition B)
    The fiber product cut into a size of 3 g was immersed in deionized water for 2 minutes, the amount of deionized water absorbed was measured, and the water absorption B converted to the water absorption per 1 g of the fiber product was 5 g / g. That is all.
    (How to determine dry particle size)
    The atomized anti-slip agent was attached to a clean glass substrate so that the atomized droplets did not overlap, and dried at 120 ° C. for 5 minutes. The particle size of 200 dried atomized droplets was measured using an optical microscope. Measure and calculate the average value.
  17.  前記滑り止め加工剤が水性分散体である、請求項16に記載の滑り止め加工された繊維加工品の製造方法。 17. The method for producing a non-slip processed fiber product according to claim 16, wherein the anti-slip agent is an aqueous dispersion.
  18.  前記滑り止め加工剤がウレタン重合体又はアクリル重合体を含む水性分散体である、請求項17に記載の滑り止め加工された繊維加工品の製造方法。 18. The method for producing a non-slip processed fiber product according to claim 17, wherein the anti-slip agent is an aqueous dispersion containing a urethane polymer or an acrylic polymer.
  19.  前記繊維製品がシェニール織物である、請求項16~18のいずれか一項に記載の滑り止め加工された繊維加工品の製造方法。 方法 The method for producing a non-slip processed fiber product according to any one of claims 16 to 18, wherein the fiber product is a chenille fabric.
  20.  繊維製品への滑り止め加工剤の前記噴霧が、スプレーコートにより行われる、請求項16~19のいずれか一項に記載の製造方法。 The production method according to any one of claims 16 to 19, wherein the spraying of the non-slip processing agent onto the textile product is performed by spray coating.
PCT/JP2019/025854 2018-06-29 2019-06-28 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product WO2020004628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980035051.9A CN112189044B (en) 2018-06-29 2019-06-28 Anti-slip agent, anti-slip fiber processed product, and method for producing anti-slip fiber processed product
JP2020527686A JP7111160B2 (en) 2018-06-29 2019-06-28 ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124172 2018-06-29
JP2018124172 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004628A1 true WO2020004628A1 (en) 2020-01-02

Family

ID=68987106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025854 WO2020004628A1 (en) 2018-06-29 2019-06-28 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product

Country Status (3)

Country Link
JP (1) JP7111160B2 (en)
CN (1) CN112189044B (en)
WO (1) WO2020004628A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144107A (en) * 1998-11-09 2000-05-26 Toyo Ink Mfg Co Ltd Non-slip sheet for tape
JP2000506558A (en) * 1996-02-08 2000-05-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Curable aqueous coating composition and cured product thereof
JP2006150274A (en) * 2004-11-30 2006-06-15 Lion Corp Method for preventing fine particle from rising
JP2010515839A (en) * 2007-01-11 2010-05-13 ザ プロクター アンド ギャンブル カンパニー Fabric color recovery compositions, articles and methods
KR101325024B1 (en) * 2013-04-16 2013-11-04 한서포리머주식회사 A construction process of non-slip pavement of tennis court and its top coating composition
KR101463184B1 (en) * 2014-04-17 2014-11-21 주식회사 케이엠지 Anti-slip adhesive composition, anti-slip adhesive and method of manufacturing the same
JP2018111893A (en) * 2017-01-11 2018-07-19 エステー株式会社 Non-slip glove and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080152867A1 (en) * 2005-02-09 2008-06-26 Sandro Di Pede Waterproofing Membrane For Use on Inclined Surfaces
CN101811833A (en) * 2009-11-30 2010-08-25 南通白金顿玻璃制品有限公司 Anti-slip glass, multifunctional anti-slip glass floor and preparation methods thereof
KR101947974B1 (en) * 2011-08-17 2019-02-13 가부시키가이샤 시드 Medical treatment device, composition for coating solution, and method for manufacturing medical treatment device
CN104710926B (en) * 2015-02-15 2017-03-22 中国人民解放军国防科学技术大学 SiC fiber reinforced polyurethane series skid-resistant coating and preparation method thereof
EP3315571B1 (en) * 2015-06-25 2020-05-06 Asahi Kasei Kabushiki Kaisha Coating film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506558A (en) * 1996-02-08 2000-05-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Curable aqueous coating composition and cured product thereof
JP2000144107A (en) * 1998-11-09 2000-05-26 Toyo Ink Mfg Co Ltd Non-slip sheet for tape
JP2006150274A (en) * 2004-11-30 2006-06-15 Lion Corp Method for preventing fine particle from rising
JP2010515839A (en) * 2007-01-11 2010-05-13 ザ プロクター アンド ギャンブル カンパニー Fabric color recovery compositions, articles and methods
KR101325024B1 (en) * 2013-04-16 2013-11-04 한서포리머주식회사 A construction process of non-slip pavement of tennis court and its top coating composition
KR101463184B1 (en) * 2014-04-17 2014-11-21 주식회사 케이엠지 Anti-slip adhesive composition, anti-slip adhesive and method of manufacturing the same
JP2018111893A (en) * 2017-01-11 2018-07-19 エステー株式会社 Non-slip glove and method for manufacturing the same

Also Published As

Publication number Publication date
JP7111160B2 (en) 2022-08-02
CN112189044B (en) 2022-07-29
JPWO2020004628A1 (en) 2021-04-30
CN112189044A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
EP0018847B1 (en) Polyolefins having addition polymer adherent thereto, their preparation and articles comprising them
US4507342A (en) Polymers adherent to polyolefins
JPWO2015080060A1 (en) Water / oil repellent composition, article, and method for producing article
MX2012008130A (en) One-component, ambient curable waterborne coating compositions, related methods and coated substrates.
JP6094585B2 (en) Water / oil repellent composition and article
JP5949853B2 (en) Moisture permeable waterproof fabric and method for producing the same
TW201807155A (en) Water-repellent composition and process for producing article with moisture-permeable waterproof film
JP5344076B2 (en) Fluorine-containing composition
US4424240A (en) Polymers adherent to polyolefins
JP7111160B2 (en) ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS
JP7088289B2 (en) Manufacturing method of non-slip processing agent, non-slip processed fiber product, and non-slip processed fiber product
JP5922774B2 (en) Moisture permeable waterproof fabric
JP6255896B2 (en) Fluorine-containing release agent composition
WO2023119695A1 (en) Water-repellent organic fine particles having slip prevention effect
JP2007262386A (en) Aqueous dispersion of (meth)acrylic resin
TW202235525A (en) Water-repellent organic fine particles having water pressure resistance improving effects
JP2004036018A (en) Anti-soil finishing method, and substrate to which anti-soil finishing method is applied
JP2021105229A (en) Nonslip socks and method of producing the same
US11326038B2 (en) Crushed foam coating
JP4792226B2 (en) Two-component adhesive composition
JPS642514B2 (en)
JP2003213566A (en) Water vapor transmitting coating composite material and method for producing the same
WO2022176290A1 (en) Water- and oil-repellent composition, fiber treating agent, fiber treatment method, processed fiber product and coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825865

Country of ref document: EP

Kind code of ref document: A1