JP2018111893A - Non-slip glove and method for manufacturing the same - Google Patents

Non-slip glove and method for manufacturing the same Download PDF

Info

Publication number
JP2018111893A
JP2018111893A JP2017002306A JP2017002306A JP2018111893A JP 2018111893 A JP2018111893 A JP 2018111893A JP 2017002306 A JP2017002306 A JP 2017002306A JP 2017002306 A JP2017002306 A JP 2017002306A JP 2018111893 A JP2018111893 A JP 2018111893A
Authority
JP
Japan
Prior art keywords
glove
slip
fiber
liquid
gloves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002306A
Other languages
Japanese (ja)
Other versions
JP6893787B2 (en
Inventor
敏行 立原
Toshiyuki Tachihara
敏行 立原
好亮 常見
Yoshiaki Tsunemi
好亮 常見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ST Corp
Original Assignee
ST Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ST Corp filed Critical ST Corp
Priority to JP2017002306A priority Critical patent/JP6893787B2/en
Publication of JP2018111893A publication Critical patent/JP2018111893A/en
Application granted granted Critical
Publication of JP6893787B2 publication Critical patent/JP6893787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gloves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-slip glove with sufficient slip resistance and high flexibility and also suitable for fine work, and a method for manufacturing the same.SOLUTION: Provided is a non-slip glove 10, being a cut resistant glove, obtained by spraying a latex liquid and a liquid coagulating agent alternately by a spray to an external surface of a fiber glove base and then performing heat treatment, in which a granular rubber hardened body formed in a particle diameter 10-500 μm is formed on the external surface of the fiber glove base in the amount of 0.1-5.0 g per 10 cm2 surface area of the fiber glove base. Also, provided is a method for manufacturing the non-slip glove in which the latex liquid and the liquid coagulating agent are alternately sprayed by the spray to the external surface of the fiber glove base.SELECTED DRAWING: Figure 1

Description

本発明は滑り止め性手袋及びその製造方法に関し、更に詳しくは、表面に極めて小さい粒状のゴム硬化体が形成され、優れた滑り止め性と柔軟性とを兼ね備える滑り止め手袋及びその製造方法に関する。   The present invention relates to an anti-slip glove and a method for producing the same, and more particularly to an anti-slip glove having an extremely small granular rubber cured body formed on the surface and having excellent anti-slip properties and flexibility and a method for producing the same.

従来より、手袋の滑止め性を向上させるために、手袋の表面にゴムまたは樹脂により凹凸を形成した手袋が知られている。
例えば、手袋本体の甲部を除く掌部の略全面に第一弾性材料よりなる滑り止め突起が散点状に付着形成されているとともに、前記掌部の略全面に第二弾性材料よりなる塗膜面が前記滑り止め突起が突出するように一体に塗着形成された作業用手袋が開示されている(特許文献1参照)。また、製品の表面となる未固化状態の液状樹脂組成物の表面に、固化した樹脂組成物を溶解しない溶液に溶ける粉粒物を付着させてから、その液状樹脂組成物を固化し、次いで粉粒物を溶解除去することにより、樹脂組成物からなる表皮に凹凸を付けた手袋が開示されている(例えば、特許文献2参照)。また、化学発泡剤または機械的に発泡させたゴム又は樹脂を繊維性手袋の上に被覆させた手袋が提案されている(例えば特許文献3)。
2. Description of the Related Art Conventionally, in order to improve the non-slip property of a glove, a glove having an uneven surface made of rubber or resin is known.
For example, non-slip protrusions made of a first elastic material are adhered and formed on substantially the entire surface of the palm portion excluding the back of the glove body, and a coating made of a second elastic material is applied to the substantially entire surface of the palm portion. A work glove is disclosed in which a film surface is integrally formed so that the anti-slip protrusion protrudes (see Patent Document 1). In addition, after adhering powder particles that dissolve in a solution that does not dissolve the solidified resin composition to the surface of the unsolidified liquid resin composition that becomes the surface of the product, the liquid resin composition is solidified and then powdered. There has been disclosed a glove having an uneven surface formed of a resin composition by dissolving and removing granules (see, for example, Patent Document 2). In addition, a glove in which a chemical foaming agent or mechanically foamed rubber or resin is coated on a fibrous glove has been proposed (for example, Patent Document 3).

特開2000−328328号公報JP 2000-328328 A 特許第2639415号公報Japanese Patent No. 2639415 特開2000−96322号公報JP 2000-96322 A

しかしながら、特許文献1及び2の手袋は表面に設けられた突起や凹部の径が大きく、かつ手袋表面の単位面積当たりの突起や凹部の数が少ないため、滑り止め効果が十分とはいえない。
また特許文献3の手袋は、滑り止め性は優れているものの、手袋をラテックス液に浸漬してから硬化させているため、手袋表面が連続した滑り止め層で被覆されるうえ、ラテックス液が繊維製手袋に浸透し、内部で硬化してしまうことから、柔軟性に乏しく、細かい作業での使用には向かないという問題がある。
一方、ガラスや刃物などの鋭利な物を扱う作業時に手を保護する目的で耐切創手袋が提供されている。この耐切創手袋に用いられる繊維として高強度延伸ポリエチレン繊維を用いたものは特に滑りやすくナイフやカッターを用いた作業では事故が生じる可能性が高い。しかし、ゴムや樹脂で滑り止め層を形成すると柔軟性が著しく劣るものとなり、作業性と滑り止め性を両立させることが困難であった。特に児童用の耐切創手袋では、表面積が小さく指部も短いため、その傾向が顕著であった。
However, since the gloves of Patent Documents 1 and 2 have large diameters of protrusions and recesses provided on the surface and a small number of protrusions and recesses per unit area on the surface of the glove, the anti-slip effect is not sufficient.
Moreover, although the glove of patent document 3 is excellent in non-slip property, since the glove is hardened after being immersed in the latex liquid, the glove surface is covered with a continuous non-slip layer, and the latex liquid is a fiber. Since it penetrates into gloves and hardens inside, it has poor flexibility and is not suitable for use in fine work.
On the other hand, cut-resistant gloves have been provided for the purpose of protecting hands when working with sharp objects such as glass and blades. A fiber using a high-strength stretched polyethylene fiber as a fiber used in this cut-resistant glove is particularly slippery and has a high possibility of causing an accident in an operation using a knife or a cutter. However, when the anti-slip layer is formed of rubber or resin, the flexibility is extremely inferior, and it is difficult to achieve both workability and anti-slip properties. Particularly in cut-resistant gloves for children, the tendency was remarkable because the surface area was small and the fingers were short.

したがって、十分な滑り性を有するともに柔軟性が高く、細かい作業にも適した手袋の開発が求められていた。   Accordingly, there has been a demand for the development of gloves that have sufficient slipperiness and high flexibility and are suitable for fine work.

前記課題を解決した本発明の手袋は、繊維製手袋基体の外表面に、粒径10μm〜500μmの粒状ゴム硬化体を形成させたことを特徴とする。   The glove of the present invention that has solved the above problems is characterized in that a granular rubber cured body having a particle size of 10 μm to 500 μm is formed on the outer surface of a fiber glove base.

また本発明は、繊維製手袋基体の外表面に、スプレーによりラテックス液と凝固剤液を交互に吹き付けることを特徴とする滑り止め手袋の製造方法を提供するものである。   The present invention also provides a method for producing a non-slip glove, characterized in that latex liquid and coagulant liquid are alternately sprayed on the outer surface of a fiber glove base by spraying.

さらに本発明は、次の工程(1)〜(4);
(1)繊維製手袋を手型に嵌め込む工程、
(2)繊維製手袋の外表面にスプレーにより凝固剤液とラテックス液を交互に複数回吹き付ける工程、
(3)凝固剤液とラテックス液を吹き付けた繊維製手袋を加熱乾燥する工程、
(4)加熱乾燥した繊維製手袋を手型から抜き取る工程
を含む滑り止め手袋の製造方法を提供するものである。
Furthermore, the present invention provides the following steps (1) to (4);
(1) A process of fitting fiber gloves into a hand mold,
(2) A step of spraying a coagulant liquid and a latex liquid alternately on the outer surface of the fiber glove multiple times by spraying,
(3) a step of heating and drying a fiber glove sprayed with a coagulant liquid and a latex liquid;
(4) Provided is a method for producing a non-slip glove including a step of removing a heat-dried fiber glove from a hand mold.

本発明の滑り止め手袋は、十分な滑り止め性を有しつつ、柔軟性にも優れるため、細かい作業でも安全に効率よく行うことが可能である。特に繊維製手袋として耐切創繊維を用い、さらに小型化した場合でも、柔軟性を損なうことなく十分な滑り止め性を付与できるため、児童が工作作業をする際に、カッターや彫刻刀を安定して把持することができ、接触時にも手を保護して安全に作業することが可能な手袋を提供し得る。   The anti-slip glove of the present invention has sufficient anti-slip properties and is excellent in flexibility, so that it can be safely and efficiently performed even in fine work. In particular, even when cut-resistant fibers are used as fiber gloves and they are further downsized, they can provide sufficient slip resistance without sacrificing flexibility. It is possible to provide a glove that can be gripped and can be safely operated while protecting the hand even in contact.

本発明の滑り止め手袋の一実施形態を示す斜視図である((A)掌側、(B)手の甲側)。It is a perspective view which shows one Embodiment of the anti-slip glove of this invention ((A) palm side, (B) back of hand side). 本発明品1の滑り止め手袋の表面の顕微鏡写真である((A)20倍、(B)200倍)。It is a microscope picture of the surface of the non-slip glove of this invention product 1 ((A) 20 times, (B) 200 times). 本発明品2の滑り止め手袋の表面の顕微鏡写真である((A)20倍、(B)100倍)。It is a microscope picture of the surface of the non-slip glove of this invention product 2 ((A) 20 times, (B) 100 times). 比較品1の手袋の表面の顕微鏡写真である(200倍)。It is a microscope picture of the surface of the glove of comparative product 1 (200 times). 比較品2の手袋の表面の顕微鏡写真である(200倍)。It is a microscope picture of the surface of the glove of comparative product 2 (200 times). 比較品4の手袋の表面の顕微鏡写真である(200倍)。It is a microscope picture of the surface of the glove of comparative product 4 (200 times). 比較品5の手袋の表面の顕微鏡写真である(200倍)。It is a microscope picture of the surface of the glove of comparative product 5 (200 times).

本発明の滑り止め手袋は、繊維製手袋基体の外表面に、粒径10μm〜500μmの粒状ゴム硬化体を形成させたことを特徴とする。この基体として使用される繊維製手袋としては特に制限されるものではなく、例えば綿など従来公知の素材を利用した縫製タイプの手袋を利用することもできるが、シームレスタイプのメリヤス手袋を利用すると、手袋内部の縫代がなくなり使用感が良好であるため好ましく、特に、繊維が7〜18ゲージ程度が好ましく、中でも13ゲージのメリヤス手袋を用いることが好ましい。   The anti-slip glove of the present invention is characterized in that a granular rubber cured body having a particle size of 10 μm to 500 μm is formed on the outer surface of a fiber glove base. The fiber glove used as the substrate is not particularly limited, and for example, a sewn type glove using a conventionally known material such as cotton can be used, but when a seamless type knitted glove is used, This is preferable because there is no seam allowance inside the glove and the feeling of use is good. Particularly, the fiber is preferably about 7 to 18 gauge, and it is particularly preferable to use 13 gauge knitted gloves.

滑り止め手袋の基体として、綿以外にも、ポリエステル、ポリウレタン、ポリエチレンなどの合成繊維から構成されるものを用いることができる。また耐切創性の高い繊維、例えば高強度延伸ポリエチレン繊維、アラミド繊維、例えば、ケブラー(登録商標)等、既知のフィラメント糸または紡績糸を単独もしくは他の繊維との複合繊維から構成されるものを用いることもでき、このような耐切創性の高い繊維であっても、柔軟性を損なうことなく、十分な滑り止め性を付与できる。高強度延伸ポリエチレン繊維としては具体的にはツヌーガ(登録商標)、ダイニーマ(登録商標)、アラミド繊維としてはケブラー(登録商標)等を挙げることができる。   As the base material of the non-slip gloves, in addition to cotton, those made of synthetic fibers such as polyester, polyurethane, polyethylene, etc. can be used. Also, fibers having high cut resistance, such as high-strength stretched polyethylene fibers, aramid fibers, such as Kevlar (registered trademark), etc., which are composed of known filament yarns or spun yarns alone or composed of composite fibers with other fibers Even if it is such a fiber with high cut resistance, sufficient slip resistance can be imparted without impairing flexibility. Specific examples of high-strength stretched polyethylene fibers include Tunuga (registered trademark) and Dyneema (registered trademark), and examples of aramid fibers include Kevlar (registered trademark).

本発明の滑り止め手袋に用いられるゴムとしては、天然ゴム(NR)、ニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ウレタン樹脂、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)などが例示できる。これらは一般的には水系分散ラテックスとして用いられるが、溶剤系溶液や溶剤系分散液の形態でも使用できる。   The rubber used in the anti-slip gloves of the present invention includes natural rubber (NR), nitrile butadiene rubber (NBR), chloroprene rubber (CR), urethane resin, styrene butadiene rubber (SBR), isoprene rubber (IR), butyl rubber ( IIR). These are generally used as an aqueous dispersion latex, but can also be used in the form of a solvent-based solution or a solvent-based dispersion.

上記ゴムの中でも汎用的かつ安価であるNBRが好ましい。市販品のNBR としては、Nipol(登録商標)Lx−550(日本ゼオン株式会社製)、PERBUNAN(登録商標)N LATEX VT-LA(Polymer Latex 社製)、Synthomer (登録商標)6810(Synthomer 社製)などが使用可能である。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。   Among the rubbers, NBR which is general purpose and inexpensive is preferable. Commercially available NBRs include Nipol (registered trademark) Lx-550 (manufactured by Zeon Corporation), PERBUNAN (registered trademark) N LATEX VT-LA (manufactured by Polymer Latex), Synthomer (registered trademark) 6810 (manufactured by Synthomer) ) Etc. can be used. These may be used alone or in combination of two or more as required.

このような繊維製手袋基体の外表面に、スプレーによりラテックス液と凝固剤液を交互に吹き付けた後、繊維製手袋基体を加熱することによって、その外表面に粒径10μm〜500μmの粒状ゴム硬化体を形成させる。   After spraying latex liquid and coagulant liquid alternately on the outer surface of such a fiber glove base by spraying, the fiber glove base is heated to cure granular rubber having a particle size of 10 μm to 500 μm on the outer surface. Form the body.

上記凝固剤としては、従来より公知の凝固剤を使用することができ、例えば、塩酸、硫酸、硝酸などの酸のカルシウム塩、マグネシウム塩などを挙げることができる。これらの凝固剤は、例えば、水、アルコール又はこれらの混合溶液に溶解ないし分散させた凝固剤液として使用される。凝固剤液中の凝固剤濃度は、好ましくは5〜45質量%、より好ましくは10〜25質量%である。   As the coagulant, conventionally known coagulants can be used, and examples thereof include calcium salts and magnesium salts of acids such as hydrochloric acid, sulfuric acid and nitric acid. These coagulants are used, for example, as a coagulant solution dissolved or dispersed in water, alcohol or a mixed solution thereof. The coagulant concentration in the coagulant liquid is preferably 5 to 45% by mass, more preferably 10 to 25% by mass.

凝固剤液とラテックス液をスプレーにより交互に吹き付ける方法は特に限定されず、従来公知の方法で行うことができる。例えば、スプレイヤーやエアゾール、手動のポンプスプレーなどを用いることができる。スプレーによる噴霧粒径は10〜500μm、好ましくは20〜200μm、より好ましくは50〜100μmである。この粒径の範囲外であると十分な滑り止め効果が得られない場合がある。   The method of spraying the coagulant liquid and the latex liquid alternately by spraying is not particularly limited, and can be performed by a conventionally known method. For example, sprayers, aerosols, manual pump sprays, and the like can be used. The spray particle diameter by spraying is 10 to 500 μm, preferably 20 to 200 μm, more preferably 50 to 100 μm. If the particle size is outside this range, a sufficient anti-slip effect may not be obtained.

凝固剤液およびラテックス液の噴霧量は、噴霧粒径によって異なるが、たとえば噴霧粒径が50〜100μmの場合、それぞれ10cmあたり1〜6gが好ましい。合計の噴霧量がこのような範囲となるように、例えばそれぞれの液を手動のトリガー式ポンプスプレーであれば10〜30回程度吹き付ける。吹き付けられた凝固剤液とラテックス液とが繊維製手袋外表面上で接触し、ラテックス液中のゴムを凝集させ架橋を促進させる。 The spray amount of the coagulant liquid and the latex liquid varies depending on the spray particle diameter. For example, when the spray particle diameter is 50 to 100 μm, 1 to 6 g per 10 cm 2 is preferable. For example, each liquid is sprayed about 10 to 30 times in the case of a manual trigger type pump spray so that the total spray amount falls within such a range. The coagulant liquid sprayed and the latex liquid contact on the outer surface of the fiber glove, and the rubber in the latex liquid is aggregated to promote crosslinking.

次いで、凝固剤液とラテックス液が吹き付けられた繊維製手袋を加熱して、ゴムを架橋する。加熱温度や時間は、使用するラッテクスの種類等により異なるが、例えば、60〜120℃程度の温度で、10〜60分間程度加熱すればよい。より具体的には、ラテックスとして天然ゴムを用いた場合、約100℃で約40分間加熱することにより、ゴムを架橋して粒状の硬化体を形成させることができる。   Subsequently, the fiber glove sprayed with the coagulant liquid and the latex liquid is heated to crosslink the rubber. The heating temperature and time vary depending on the type of latex used, but may be heated at a temperature of about 60 to 120 ° C. for about 10 to 60 minutes, for example. More specifically, when natural rubber is used as the latex, the rubber can be crosslinked to form a granular cured body by heating at about 100 ° C. for about 40 minutes.

このように形成されたゴム硬化体は、粒径10μm〜500μmの極めて小さい粒状物であり、繊維製手袋の外表面に微細な凹凸を有する滑り止め層を形成する。本発明では、ラテックス液に繊維製手袋基体を含侵させずに、ラテックス液と凝固剤液を交互に吹き付けることから、ラテックス液は繊維製手袋内部に浸透し難く、粒状ゴム硬化体はその外表面に形成される。繊維製手袋外表面上に形成された粒状ゴム硬化体の量は、柔軟性と滑り止め性においてより優れたものとなることから、維製手袋の表面積10cmあたり0.1〜5.0gが好ましく、0.3〜2.0gがより好ましい。 The rubber cured body thus formed is an extremely small granular material having a particle diameter of 10 μm to 500 μm, and forms an anti-slip layer having fine irregularities on the outer surface of the fiber glove. In the present invention, since the latex liquid and the coagulant liquid are alternately sprayed without impregnating the fiber glove base body into the latex liquid, the latex liquid hardly penetrates into the fiber glove, and the granular rubber cured body is outside of it. Formed on the surface. Since the amount of the cured granular rubber formed on the outer surface of the fiber glove is more excellent in flexibility and anti-slip properties, 0.1 to 5.0 g per 10 cm 2 of the surface area of the textile glove is 0.1 to 5.0 g. Preferably, 0.3 to 2.0 g is more preferable.

本発明の滑り止め手袋の実施形態を図面に基づいて説明する。図1は本発明の滑り止め手袋の一実施形態を示す図である。滑り止め手袋10の基体はシームレスタイプのメリヤス手袋である。本実施形態では、手首部11を除いて、掌部12、指部13、甲部14の全面に滑り止め層20が形成されているが、これらの一部のみに形成されていてもよい。滑り止め層20は、粒径10μm〜500μmの粒状ゴム硬化体から形成される。このような微小な粒状体が手袋表面で相互に接するか近接して形成され、微細な凹凸面を構成するため、滑り止め手袋10は非常に高い滑り止め性を示す。またこの粒状ゴム硬化体は、手袋内部ではほとんど形成されないため、良好な柔軟性が維持される。   An embodiment of an anti-slip glove according to the present invention will be described with reference to the drawings. FIG. 1 is a view showing an embodiment of the anti-slip glove of the present invention. The base of the anti-slip glove 10 is a seamless type knitted glove. In the present embodiment, the anti-slip layer 20 is formed on the entire surface of the palm part 12, the finger part 13, and the upper part 14 except for the wrist part 11, but may be formed only on a part thereof. The anti-slip layer 20 is formed from a granular rubber cured body having a particle size of 10 μm to 500 μm. Since such fine granular materials are formed in close contact with or close to each other on the surface of the glove and constitute a fine uneven surface, the anti-slip glove 10 exhibits a very high anti-slip property. Moreover, since this granular rubber hardening body is hardly formed in the inside of a glove, favorable softness | flexibility is maintained.

本発明の滑り止め手袋の製造方法の一実施形態として、次の工程(1)〜(4)を含む方法を示す。
(1)繊維製手袋を手型に嵌め込む工程、
(2)手型に嵌め込んだ繊維製手袋の外表面にスプレーにより凝固剤液とラテックス液を交互に複数回吹き付ける工程、
(3)凝固剤液及びラテックス液を吹き付けた繊維製手袋を加熱乾燥する工程、
(4)加熱乾燥した繊維製手袋を手型から脱離する工程
A method including the following steps (1) to (4) will be described as an embodiment of the method for producing a non-slip glove of the present invention.
(1) A process of fitting fiber gloves into a hand mold,
(2) A step of spraying a coagulant solution and a latex solution alternately on the outer surface of a fiber glove fitted into a hand mold by a plurality of times by spraying,
(3) a step of heating and drying the fiber gloves sprayed with the coagulant liquid and latex liquid;
(4) Step of removing the heated and dried fiber gloves from the hand mold

工程(1)では、上記繊維製手袋を人の手の形を模した手型に挿入して嵌め込む。手型は、樹脂板や金属板等を加工した平板状(平型)のものがラテックス液及び凝固剤液を均一に吹き付けられるため好適である。   In the step (1), the fiber glove is inserted and fitted into a hand shape imitating the shape of a human hand. As the hand mold, a flat plate shape (flat type) obtained by processing a resin plate, a metal plate, or the like is preferable because the latex liquid and the coagulant liquid can be sprayed uniformly.

工程(2)では、工程(1)において、手型に嵌め込んだ繊維製手袋の外表面にスプレーにより凝固剤液とラテックス液を交互に複数回吹き付ける。凝固剤液とラテックス液を吹き付けるにあたっては、手型に嵌め込んだ繊維製手袋の外表面に対し、まず凝固剤液を吹き付け、次いでラテックス液を吹き付けて、以後交互に吹き付けることが好ましい。凝固剤液とラテックス液をスプレーにより吹き付ける方法は特に限定されず、従来公知の方法で行うことができる。例えば、スプレイヤーやエアゾール、手動のポンプスプレーなどを用いることができる。スプレーによる噴霧粒径は10〜500μm、好ましくは20〜200μm、より好ましくは50〜100μmである。この粒径の範囲外であると十分な滑り止め効果が得られない場合がある。   In the step (2), in the step (1), the coagulant liquid and the latex liquid are alternately sprayed a plurality of times on the outer surface of the fiber glove fitted in the hand mold by spraying. When spraying the coagulant liquid and the latex liquid, it is preferable to first spray the coagulant liquid on the outer surface of the fiber glove fitted in the hand mold, then spray the latex liquid, and then spray alternately. The method for spraying the coagulant liquid and the latex liquid by spraying is not particularly limited, and can be performed by a conventionally known method. For example, sprayers, aerosols, manual pump sprays, and the like can be used. The spray particle diameter by spraying is 10 to 500 μm, preferably 20 to 200 μm, more preferably 50 to 100 μm. If the particle size is outside this range, a sufficient anti-slip effect may not be obtained.

凝固剤液およびラテックス液の噴霧量は、噴霧粒径によって異なるが、たとえば噴霧粒径が50〜100μmの場合、それぞれ10cmあたり1〜6gが好ましい。合計の噴霧量がこのような範囲となるように、例えばそれぞれの液を10〜30回程度吹き付ける。吹き付けられた凝固剤液とラテックス液とが繊維製手袋外表面上で接触し、ラテックス液中のゴムを凝集させ架橋を促進させる。 The spray amount of the coagulant liquid and the latex liquid varies depending on the spray particle diameter. For example, when the spray particle diameter is 50 to 100 μm, 1 to 6 g per 10 cm 2 is preferable. For example, each liquid is sprayed about 10 to 30 times so that the total spray amount falls within such a range. The coagulant liquid sprayed and the latex liquid contact on the outer surface of the fiber glove, and the rubber in the latex liquid is aggregated to promote crosslinking.

次いで、工程(3)では、工程(2)において凝固剤液とラテックス液を吹き付けた繊維製手袋を加熱乾燥し、ゴムを架橋、硬化する。加熱乾燥の温度や時間は、使用するラテックスの種類等により異なるが、例えば、60〜120℃程度の熱風で、10〜60分間程度加熱乾燥すればよい。より具体的には、ラテックスとして天然ゴムを用いた場合、約100℃の熱風で約40分間加熱乾燥することにより、ゴムを架橋して粒状の硬化体を形成させることができる。上記工程(2)〜(3)は複数回繰り返してもよい。   Next, in the step (3), the fiber glove sprayed with the coagulant liquid and the latex liquid in the step (2) is heated and dried to crosslink and cure the rubber. The temperature and time of heat drying vary depending on the type of latex to be used and the like. For example, the heat drying may be performed with hot air at about 60 to 120 ° C. for about 10 to 60 minutes. More specifically, when natural rubber is used as the latex, the rubber can be cross-linked to form a granular cured body by heating and drying with hot air at about 100 ° C. for about 40 minutes. The above steps (2) to (3) may be repeated a plurality of times.

このように形成されたゴム硬化体は、粒径10μm〜500μmの極めて小さい粒状物であり、繊維製手袋の外表面に微細な凹凸面を形成する。本発明では、ラテックス液に繊維製手袋基体を含侵させずに、ラテックス液と凝固剤液を交互に吹き付けることから、ラテックス液は繊維製手袋内部に浸透し難く、粒状ゴム硬化体はその外表面に形成される。繊維製手袋外表面上に形成された粒状ゴム硬化体の量は、柔軟性と滑り止め性においてより優れたものとなることから、維製手袋の表面積10cmあたり0.1〜5.0gが好ましく、0.3〜2.0がより好ましい。 The rubber cured body thus formed is an extremely small granular material having a particle diameter of 10 μm to 500 μm, and forms a fine uneven surface on the outer surface of the fiber glove. In the present invention, since the latex liquid and the coagulant liquid are alternately sprayed without impregnating the fiber glove base body into the latex liquid, the latex liquid hardly penetrates into the fiber glove, and the granular rubber cured body is outside of it. Formed on the surface. Since the amount of the cured granular rubber formed on the outer surface of the fiber glove is more excellent in flexibility and anti-slip properties, 0.1 to 5.0 g per 10 cm 2 of the surface area of the textile glove is 0.1 to 5.0 g. Preferably, 0.3 to 2.0 is more preferable.

工程(4)では、加熱乾燥した繊維製手袋を必要に応じ冷却したのち、手型から抜き取ることにより、本発明の滑り止め手袋が得られる。   In the step (4), after the heated and dried fiber glove is cooled as necessary, the anti-slip glove of the present invention is obtained by removing it from the hand mold.

次に、実施例等を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例等に何ら制約されるものではない。   EXAMPLES Next, although an Example etc. are given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実 施 例 1
下記方法により、滑り止め手袋を製造した。すなわち、まず、20℃〜50℃に調整した平型の金属製金型に、13ゲージのメリヤス手袋をしわにならないように装着する。このメリヤス手袋に下記表1に示す組成の天然ゴムラテックス液及び表2に示す組成の凝固剤液をそれぞれ市販の300mlトリガースプレー容器(噴霧粒径50μm〜100μm:1ストロークの吐出量0.8g)に入れ、手型の表面側及び裏面側にそれぞれ1ストロークずつ交互に20回スプレーした。凝固剤液を先にスプレーした後天然ゴムラテックス液をスプレーし、以後交互にスプレーした。その後、この手袋を約100℃の熱風で40分間加熱し、冷却したのちに手型から除去して本発明品1の天然ゴム製滑り止め手袋を作成した。その表面の顕微鏡写真を図2に示す。
Example 1
Non-slip gloves were manufactured by the following method. That is, first, a 13 gauge knitted glove is attached to a flat metal mold adjusted to 20 ° C. to 50 ° C. so as not to be wrinkled. A commercial 300 ml trigger spray container (sprayed particle size 50 μm to 100 μm: discharge amount 0.8 g per stroke) is applied to the knitted glove with a natural rubber latex liquid having the composition shown in Table 1 below and a coagulant liquid having the composition shown in Table 2 respectively. And sprayed 20 times alternately for each stroke on the front side and back side of the hand mold. The coagulant solution was sprayed first, then the natural rubber latex solution was sprayed, and then sprayed alternately. Thereafter, this glove was heated with hot air of about 100 ° C. for 40 minutes, cooled, and then removed from the hand mold to produce a natural rubber non-slip glove of the product 1 of the present invention. A micrograph of the surface is shown in FIG.

実 施 例 2
下記方法により、NBR製滑り止め手袋を製造した。すなわち、まず、温度が20℃〜50℃程度の平型の金属製金型に13ゲージの耐切創手袋(高強度延伸ポリエチレン繊維:ツヌーガ(東洋紡製)により編製した手袋)をしわにならないように装着する。この耐切創手袋に下記表3の組成のNBRラテックス及び表4の組成の凝固剤をそれぞれ市販のトリガースプレー容器(噴霧粒径50μm〜100μm:1ストロークの吐出量0.8g)に入れ、手型の表面側及び裏面側にそれぞれ1ストロークずつ交互に20回スプレーした。凝固剤液を先にスプレーした後NBRラテックス液をスプレーし、以後交互にスプレーした。その後、この手袋を約100℃の熱風で40分間乾燥し、冷却したのちに手型から除去して本発明品2のNBR製滑り止め手袋を作成した。その表面の顕微鏡写真を図3に示す。
Example 2
NBR anti-slip gloves were manufactured by the following method. That is, first, 13 gauge cut-resistant gloves (high-strength stretched polyethylene fiber: gloves knitted with Tunuga (Toyobo)) are not wrinkled on a flat metal mold having a temperature of about 20 ° C. to 50 ° C. Installing. In this cut-resistant glove, NBR latex having the composition shown in Table 3 below and a coagulant having the composition shown in Table 4 are respectively put in a commercially available trigger spray container (spray particle size 50 μm to 100 μm: discharge amount 0.8 g per stroke). Each surface was sprayed with 20 strokes alternately on the front side and back side. The NBR latex liquid was sprayed after spraying the coagulant liquid first, and then sprayed alternately. Then, this glove was dried with hot air of about 100 ° C. for 40 minutes, cooled, and then removed from the hand mold to prepare NBR anti-slip gloves of Product 2 of the present invention. A micrograph of the surface is shown in FIG.

比 較 品 1
下記方法により、滑り止め手袋を製造した。すなわち、まず、温度が20℃〜50℃程度の平型の金属製金型に13ゲージのメリヤス手袋をしわにならないように装着する。このメリヤス手袋に上記表2の凝固剤溶液に浸漬した後引上げ100℃で5分間乾燥させた。その後上記表1の組成の天然ゴムラテックスに1分間浸漬した後、100℃で1分間乾燥させ60℃の温水へ17分浸漬させた後、100℃で40分間架橋させ冷却したのちに手型から除去して比較品1の天然ゴム製滑り止め手袋を作成した。その表面の顕微鏡写真を図4に示す。
Comparative product 1
Non-slip gloves were manufactured by the following method. That is, first, a 13 gauge knitted glove is attached to a flat metal mold having a temperature of about 20 ° C. to 50 ° C. so as not to be wrinkled. The knitted gloves were dipped in the coagulant solution shown in Table 2 and then pulled up and dried at 100 ° C. for 5 minutes. Then, after immersing in natural rubber latex having the composition shown in Table 1 for 1 minute, drying at 100 ° C. for 1 minute, immersing in hot water at 60 ° C. for 17 minutes, crosslinking at 100 ° C. for 40 minutes, cooling, and then from the hand mold The natural rubber non-slip gloves of comparative product 1 were prepared by removing. A micrograph of the surface is shown in FIG.

比 較 品 2
下記方法により、滑り止め手袋を製造した。すなわち、まず、温度が20℃〜50℃程度の平型の金属製金型に13ゲージのメリヤス手袋をしわにならないように装着する。このメリヤス手袋に上記表1の組成の天然ゴムラテックスを市販の300mlトリガースプレー容器(噴霧粒径50μm〜100μm:1ストロークの吐出量0.8g)に入れ、手型の表面側及び裏面側に20ストロークスプレーした。
その後、この手袋を約100℃の熱風で40分間乾燥し、冷却したのちに手型から除去して比較品1の天然ゴム製滑り止め手袋を作成した。その表面の顕微鏡写真を図5に示す。
Comparison product 2
Non-slip gloves were manufactured by the following method. That is, first, a 13 gauge knitted glove is attached to a flat metal mold having a temperature of about 20 ° C. to 50 ° C. so as not to be wrinkled. In this knitted glove, natural rubber latex having the composition shown in Table 1 above is placed in a commercially available 300 ml trigger spray container (spray particle size 50 μm to 100 μm: discharge amount 0.8 g per stroke). Stroke sprayed.
Thereafter, the glove was dried with hot air at about 100 ° C. for 40 minutes, cooled, and then removed from the hand mold to prepare a comparative rubber 1 non-slip glove made of natural rubber. A micrograph of the surface is shown in FIG.

比 較 品 3
比較品3として13ゲージのメリヤス手袋のみを用いた。
Comparison product 3
As comparative product 3, only 13 gauge knitted gloves were used.

比較品 4
下記方法により、滑り止め手袋を製造した。すなわち、まず、温度が20℃〜50℃程度の平型の金属製金型に13ゲージのメリヤス手袋をしわにならないように装着する。このメリヤス手袋に上記表4の凝固剤溶液に浸漬した後引上げ100℃で5分間乾燥させた。その後上記表3の組成のNBRラテックスに1分間浸漬し、次いで100℃で1分間乾燥させ60℃の温水へ17分浸漬させた後、100℃で10分間、120℃で30分間架橋させ冷却したのちに手型から除去して、比較品2のNBR5ゴム製滑り止め手袋を作成した。その表面の顕微鏡写真を図6に示す。
Comparative product 4
Non-slip gloves were manufactured by the following method. That is, first, a 13 gauge knitted glove is attached to a flat metal mold having a temperature of about 20 ° C. to 50 ° C. so as not to be wrinkled. The knitted gloves were dipped in the coagulant solution shown in Table 4 and then pulled up and dried at 100 ° C. for 5 minutes. After that, it was immersed in NBR latex having the composition shown in Table 3 for 1 minute, then dried at 100 ° C. for 1 minute and immersed in hot water at 60 ° C. for 17 minutes, and then crosslinked and cooled at 100 ° C. for 10 minutes and 120 ° C. for 30 minutes. Later, it was removed from the hand mold, and an NBR5 rubber non-slip glove of comparative product 2 was prepared. A micrograph of the surface is shown in FIG.

比 較 品 5
下記方法により、滑り止め手袋を製造した。すなわち、まず、温度が20℃〜50℃程度の平型の金属製金型に13ゲージのメリヤス手袋をしわにならないように装着する。このメリヤス手袋に上記表3の組成のNBRラテックスを市販の300mlトリガースプレー容器(噴霧粒径50μm〜100μm:1ストロークの吐出量0.8g)に入れ、手型の表面側及び裏面側に20ストロークスプレーした。
その後、この手袋を約100℃の熱風で40分間乾燥し、冷却したのちに手型から除去して比較品5のNBR製滑り止め手袋を作成した。その表面の顕微鏡写真を図7に示す。
Comparison product 5
Non-slip gloves were manufactured by the following method. That is, first, a 13 gauge knitted glove is attached to a flat metal mold having a temperature of about 20 ° C. to 50 ° C. so as not to be wrinkled. In this knitted glove, NBR latex having the composition shown in Table 3 above is placed in a commercially available 300 ml trigger spray container (spray particle size 50 μm to 100 μm: discharge amount 0.8 g per stroke), and 20 strokes on the front and back sides of the hand mold. Sprayed.
Thereafter, the gloves were dried with hot air at about 100 ° C. for 40 minutes, cooled, and then removed from the hand mold to prepare a comparative NBR anti-slip glove made of NBR. A micrograph of the surface is shown in FIG.

試 験 例1
本発明品1〜2及び比較品1〜5を用いて以下の方法により滑り止め性試験及び柔軟性試験を行った。
Test Example 1
A non-slip property test and a flexibility test were performed by the following methods using the inventive products 1 and 2 and the comparative products 1 to 5.

(滑り止め性試験方法)
重量が6kgになるように調整した外寸500mm(幅)×300mm(奥行)×250mm(高さ)の段ボールを準備する。
試験1:右手に比較品1を装着し、左手に本発明品1を装着する。段ボールの500mm×250mmの両側面をそれぞれの手で、段ボールを挟み込むように持ち滑り具合を比較した。評価結果は比較品1を基準に、「滑らない」場合は1点、「変わらない」場合は0点、「滑る場合」は‐1点とし、被験者3名にて評価を行った。以降左手に比較品2、3を装着し比較評価を行い、平均点を出し、小数点第3位を四捨五入しで算出し比較した。
試験2:試験1と同様の試験方法で、比較品4を評価の基準として右手に装着し、左手に本発明品2、比較品3,5を装着し同様の評価を行った。結果を表5に示す。
(Slip resistance test method)
A corrugated cardboard having an outer dimension of 500 mm (width) x 300 mm (depth) x 250 mm (height) adjusted to a weight of 6 kg is prepared.
Test 1: Wear comparative product 1 on the right hand and wear product 1 of the present invention on the left hand. The sides of the corrugated cardboard of 500 mm × 250 mm were held with their hands so that the cardboard was sandwiched, and the degree of sliding was compared. The evaluation results were based on the comparative product 1, with 1 point for “no slip”, 0 for “no change”, and −1 for “slide”, and the evaluation was performed by 3 subjects. After that, comparative products 2 and 3 were attached to the left hand, comparative evaluation was performed, an average score was calculated, and the third decimal place was calculated and compared.
Test 2: In the same test method as in Test 1, the comparative product 4 was mounted on the right hand as an evaluation standard, and the present product 2 and comparative products 3 and 5 were mounted on the left hand, and the same evaluation was performed. The results are shown in Table 5.

(柔軟性試験方法)
滑り止め性試験方法の試験1,2の実施時に合わせて、柔軟性についても比較評価を行った。試験1では比較品1を基準に、試験2では比較品4を基準に「柔らかい」場合は2点、「やや柔らかい」場合は1点、「変わらない」場合は0点、「やや硬い」場合は‐1点、「硬い」場合は‐2点とし平均点を出し、小数点第3位を四捨五入しで算出し比較した。結果を表6に示す。
(Flexibility test method)
In accordance with the tests 1 and 2 of the anti-slip test method, a comparative evaluation was also conducted on the flexibility. Test 1 is based on Comparative Product 1 and Test 2 is based on Comparative Product 4 2 points for “soft”, 1 point for “slightly soft”, 0 point for “no change”, “slightly hard” -1 points, and for "hard", -2 points were averaged, and the third decimal place was rounded off. The results are shown in Table 6.

以上の結果より、本発明品1は滑り止め性、柔軟性ともに比較品1に比べ優れたものであった。一方、比較品2は比較品1に比較して柔軟性は優れたものであったが、滑り止め性で満足いくものではなかった。さらに比較品3は比較品1に対し柔軟性では優れていたが、滑り止め性では劣っていた。以上の結果より、本発明品1は比較品1、2、3いずれと比較しても柔軟性且つ滑り止め性を有する優れた手袋であることが分かった。
また、本発明品2は滑り止め性、柔軟性ともに比較品4に比べ優れたものであった。一方比較品3及び比較品5は、柔軟性は比較品4に比べ優れたものであったが、滑り止め性で劣るものであった。以上の結果より、本発明品2は比較品3、4、5のいずれと比較してもより優れた柔軟性且つ滑り止め性を有する手袋であることが分かった。
From the above results, the product 1 of the present invention was superior to the comparative product 1 in terms of anti-slip properties and flexibility. On the other hand, the comparative product 2 was superior in flexibility as compared with the comparative product 1, but was not satisfactory in terms of anti-slip properties. Further, the comparative product 3 was superior in flexibility to the comparative product 1, but was inferior in slip resistance. From the above results, it was found that the product 1 of the present invention is an excellent glove having flexibility and anti-slip properties as compared with any of the comparative products 1, 2, and 3.
The product 2 of the present invention was superior to the comparative product 4 in terms of anti-slip properties and flexibility. On the other hand, the comparative product 3 and the comparative product 5 were superior in flexibility to the comparative product 4 but were inferior in anti-slip property. From the above results, it was found that the product 2 of the present invention is a glove having more excellent flexibility and anti-slip properties than any of the comparative products 3, 4 and 5.

10 … … 滑り止め手袋
11 … … 手首部
12 … … 掌部
13 … … 指部
14 … … 甲部
20 … … 滑り止め層

10 ... ... Non-slip gloves 11 ... ... Wrist 12 ... ... Palm 13 ... ... Finger 14 ... ... Back 20 ... ... Non-slip layer

Claims (8)

繊維製手袋基体の外表面に、粒径10μm〜500μmの粒状ゴム硬化体を形成させたことを特徴とする滑り止め手袋。   A non-slip glove characterized in that a granular rubber cured body having a particle size of 10 μm to 500 μm is formed on the outer surface of a fiber glove base. 粒状ゴム硬化体が、繊維製手袋基体の表面積10cmあたり0.1〜5.0gの量で形成された請求項1記載の滑り止め手袋。 The anti-slip glove according to claim 1, wherein the granular rubber cured body is formed in an amount of 0.1 to 5.0 g per 10 cm 2 of the surface area of the fiber glove base. 耐切創手袋である請求項1または2記載の滑り止め手袋。   The anti-slip glove according to claim 1 or 2, which is a cut-resistant glove. 繊維製手袋基体の外表面に、スプレーによりラテックス液と凝固剤液を交互に吹き付けた後、加熱処理することによって得られる滑り止め手袋。   An anti-slip glove obtained by spraying latex liquid and coagulant liquid alternately on the outer surface of a fiber glove base by spraying, followed by heat treatment. 繊維製手袋基体の外表面に、スプレーによりラテックス液と凝固剤液を交互に吹き付けることを特徴とする滑り止め手袋の製造方法。   A method for producing a non-slip glove, characterized in that a latex liquid and a coagulant liquid are alternately sprayed on the outer surface of a fiber glove base by spraying. 次の工程(1)〜(4);
(1)繊維製手袋を手型に嵌め込む工程、
(2)手型に嵌め込んだ繊維製手袋の外表面に、スプレーにより凝固剤液とラテックス液とを交互に複数回吹き付ける工程、
(3)凝固剤液及びラテックス液を吹き付けた繊維製手袋を加熱乾燥する工程、
(4)加熱乾燥した繊維製手袋を手型から抜き取る工程
を含む滑り止め手袋の製造方法。
Next steps (1) to (4);
(1) A process of fitting fiber gloves into a hand mold,
(2) A step of spraying a coagulant liquid and a latex liquid alternately on the outer surface of a fiber glove fitted in a hand mold a plurality of times by spraying,
(3) a step of heating and drying the fiber gloves sprayed with the coagulant liquid and latex liquid;
(4) A method for producing a non-slip glove comprising a step of extracting a heated and dried fiber glove from a hand mold.
手型が平板型である請求項6記載の滑り止め手袋の製造方法。   The method for producing a non-slip glove according to claim 6, wherein the hand mold is a flat plate mold. 繊維製手袋が耐切創手袋である請求項6または7に記載の滑り止め手袋の製造方法。

The method for producing anti-slip gloves according to claim 6 or 7, wherein the fiber gloves are cut-resistant gloves.

JP2017002306A 2017-01-11 2017-01-11 Non-slip gloves and their manufacturing method Active JP6893787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017002306A JP6893787B2 (en) 2017-01-11 2017-01-11 Non-slip gloves and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002306A JP6893787B2 (en) 2017-01-11 2017-01-11 Non-slip gloves and their manufacturing method

Publications (2)

Publication Number Publication Date
JP2018111893A true JP2018111893A (en) 2018-07-19
JP6893787B2 JP6893787B2 (en) 2021-06-23

Family

ID=62911758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002306A Active JP6893787B2 (en) 2017-01-11 2017-01-11 Non-slip gloves and their manufacturing method

Country Status (1)

Country Link
JP (1) JP6893787B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109013229A (en) * 2018-09-28 2018-12-18 孙军海 A kind of glove surface coagulator spraying process
WO2020004628A1 (en) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product
CN114085407A (en) * 2021-11-08 2022-02-25 山东英科医疗制品有限公司 Production process of novel anti-skid disposable gloves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693503A (en) * 1991-12-05 1994-04-05 S T Chem Co Ltd Glove and its production
JPH0647319U (en) * 1991-11-29 1994-06-28 船山株式会社 Non-slip gloves
JP2001192915A (en) * 1999-12-28 2001-07-17 Sumitomo Rubber Ind Ltd Anti-slipping-processed glove

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647319U (en) * 1991-11-29 1994-06-28 船山株式会社 Non-slip gloves
JPH0693503A (en) * 1991-12-05 1994-04-05 S T Chem Co Ltd Glove and its production
JP2001192915A (en) * 1999-12-28 2001-07-17 Sumitomo Rubber Ind Ltd Anti-slipping-processed glove

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004628A1 (en) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product
JPWO2020004628A1 (en) * 2018-06-29 2021-04-30 三菱ケミカル株式会社 Manufacturing method of non-slip processing agent, non-slip processed fiber product, and non-slip processed fiber product
JP7111160B2 (en) 2018-06-29 2022-08-02 三菱ケミカル株式会社 ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS
CN109013229A (en) * 2018-09-28 2018-12-18 孙军海 A kind of glove surface coagulator spraying process
CN114085407A (en) * 2021-11-08 2022-02-25 山东英科医疗制品有限公司 Production process of novel anti-skid disposable gloves

Also Published As

Publication number Publication date
JP6893787B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
EP1843672B1 (en) Latex gloves and articles with geometrically defined surface texture providing enhanced grip and method for in-line processing thereof
CA2677482C (en) Glove coating and manufacturing process
EP3073850B1 (en) Polymeric gloves having grip features
EP3160278B1 (en) Glove having durable ultra-thin polymeric coating
CN106666879A (en) Production method of butyronitrile superfine foam glove
JP6893787B2 (en) Non-slip gloves and their manufacturing method
US20130074242A1 (en) Glove having crush-resistant fingertips
KR20220035168A (en) Elastomer Gloves and Methods of Making
JP7167917B2 (en) Laminate manufacturing method
CN112739761B (en) Polymer latex and laminate
JP2019203224A (en) Manufacturing method of gloves, and gloves
JP7163919B2 (en) Laminate manufacturing method
JP2001079863A (en) Rubber glove and its production
JP2004091940A (en) Working glove and method for producing the glove, and glove mold for dip molding
JP2007100283A (en) Glove and method for producing the same
AU2013209339A1 (en) Glove coating and manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210602

R150 Certificate of patent or registration of utility model

Ref document number: 6893787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250