WO2020004473A1 - セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法 - Google Patents

セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法 Download PDF

Info

Publication number
WO2020004473A1
WO2020004473A1 PCT/JP2019/025404 JP2019025404W WO2020004473A1 WO 2020004473 A1 WO2020004473 A1 WO 2020004473A1 JP 2019025404 W JP2019025404 W JP 2019025404W WO 2020004473 A1 WO2020004473 A1 WO 2020004473A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulase
glucosidase
microorganism
cellulase agent
activity
Prior art date
Application number
PCT/JP2019/025404
Other languages
English (en)
French (fr)
Inventor
真司 ▲濱▼
真希 木原
野田 秀夫
Original Assignee
関西化学機械製作株式会社
Bio-energy株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西化学機械製作株式会社, Bio-energy株式会社 filed Critical 関西化学機械製作株式会社
Priority to JP2020527583A priority Critical patent/JP7289480B2/ja
Publication of WO2020004473A1 publication Critical patent/WO2020004473A1/ja
Priority to PH12020552268A priority patent/PH12020552268A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a cellulase agent and a method for producing a saccharified fermentation product using the cellulase agent.
  • Non-Patent Document 1 In order for a saccharified fermentation product manufacturer to obtain a high-performance enzyme used for enzymatic saccharification from a supplier of the enzyme, it is necessary to transport a large amount of the enzyme, and in some cases, the distance is long and the transportation cost is high. . Further, depending on the manufacturer's production scale, storage of the enzyme is required until use in the production of saccharified fermentation products. For this reason, selection may occur in the location environment and production scale of the manufacturer of the saccharified fermentation product such as ethanol, and this may lead to inhibition of the spread or expansion of the production technology of the saccharified fermentation product.
  • Non-Patent Document 2 discloses Celluclastuc1.5L (manufactured by Novozymes: mainly containing endo- and exo-type glucanases; non-improved cellulase preparation) and Novozyme 188 (manufactured by Novozymes: mainly containing ⁇ -glucosidase) And a method used for enzymatic saccharification by blending is described.
  • Non-patent Document 3 describes that the ratio of ⁇ -glucosidase (equivalent to Novozyme 188) to Celluclast 1.5 L (based on the mass concentration of the enzyme) is, for example, 0.5 or 1.0 upon hydrolysis of carboxymethyl cellulose. Have been. In this method, ⁇ -glucosidase is replenished to the cellulase in very large amounts.
  • Non-Patent Document 4 discloses that ⁇ -glucosidase supplemented to cellulase is reused by immobilization on calcium alginate.
  • Non-Patent Document 5 discloses that Trichoderma reesei is often used as a cellulase-producing bacterium, and that Trichoderma reesei RUT-C30 and the like, which have a mutation induced in comparison to the parent strain Trichoderma reesei QM6a, and the like, It is described to show higher cellulase production capacity.
  • Non-Patent Document 6 discloses that an equivalent amount of a commercially available cellulase, that is, Cellic ⁇ ⁇ ⁇ CTec2 or Cellic HTec2 (both manufactured by Novozymes: an improved cellulase preparation) and Novozyme 188 are added to a culture solution of Trichoderma reesei RUT-C30. By doing so, it is reported that the activity of decomposing biomass is enhanced, and as a result, the amount of the improved cellulase preparation used can be suppressed.
  • a commercially available cellulase that is, Cellic ⁇ ⁇ ⁇ CTec2 or Cellic HTec2 (both manufactured by Novozymes: an improved cellulase preparation) and Novozyme 188 are added to a culture solution of Trichoderma reesei RUT-C30.
  • Non-Patent Document 7 discloses that Trichoderma reesei exhibiting low ⁇ -glucosidase activity ( ⁇ -glucosidase activity close to 0 for about 8 FPU / mL) is compared with a filamentous fungus of the genus Aspergillus that produces ⁇ -glucosidase. It is shown that co-culturing can make the ratio of ⁇ -glucosidase activity to cellulase activity (avicelase activity) of the culture solution equivalent to that of a mixture of Celluclast 1.5L and Novozyme 188.
  • Patent Document 1 describes a method for saccharifying cellulosic biomass by obtaining a transformant that expresses the ⁇ -glucosidase gene of an Aspergillus microorganism under the control of a Trichoderma microorganism promoter.
  • various promoters linked to a gene encoding ⁇ -glucosidase are examined and optimized.
  • Non-Patent Document 8 discloses that yeast transformed to secrete and express ⁇ -glucosidase from cellulosic biomass is restricted in Trichoderma reesei because there is a restriction in the selection and optimization of a promoter that expresses the desired ⁇ -glucosidase. It is described that it is used for ethanol production.
  • the present invention aims to provide a method for efficiently producing a saccharified and fermented product from cellulosic biomass regardless of the location environment and production scale of the manufacturer.
  • the present invention provides a method for producing a cellulase agent, the method comprising: Culturing a microorganism of the genus Trichoderma at a pH of 1 or more and less than 5 in a medium containing a polysaccharide in which at least two glucoses are ⁇ -1,4 linked, and producing a cellulase agent;
  • the ratio of ⁇ -glucosidase activity in the cellulase agent to filter paper decomposition activity of the cellulase agent is less than 3.
  • the Trichoderma microorganism is Trichoderma reesei.
  • the Trichoderma microorganism is a non-genetically modified microorganism for a cellulase agent.
  • the cellulase agent comprises cellobiohydrolase and endoglucanase.
  • the cellulase agent further comprises xylanase.
  • the present invention provides a method for producing a saccharified fermentation product, the method comprising: A step of culturing a ⁇ -glucosidase surface-displaying microorganism using a medium containing a cellulose material treated with a cellulase agent produced by the above method to obtain a saccharified fermentation product.
  • the enzyme titer of the ⁇ -glucosidase surface-displaying microorganism is 0.02 to 2.5 as a ratio of the ⁇ -glucosidase activity of the microorganism to the filter paper decomposition activity of the cellulase agent.
  • the cellulosic material is cellulosic biomass.
  • the saccharified fermentation product is ethanol.
  • the ⁇ -glucosidase surface-displaying microorganism is a ⁇ -glucosidase surface-displaying yeast.
  • the saccharified fermentation product is lactic acid.
  • the ⁇ -glucosidase surface-displaying microorganism is a ⁇ -glucosidase surface-displaying lactic acid bacterium.
  • the method for producing a saccharified fermentation product further includes a step of producing the cellulase agent by the method for producing a cellulase agent.
  • the present invention further provides a method for producing a saccharified fermentation product, the method comprising: Using a medium containing a material containing a xylose-containing polysaccharide treated with a cellulase agent produced by the above method, culturing a microorganism that metabolizes xylose and displays xylosidase on the surface to obtain a saccharified fermentation product.
  • the method for producing a saccharified fermentation product further includes a step of producing the cellulase agent by the method for producing a cellulase agent.
  • the present invention further provides a method for culturing a surface-displaying microorganism, the method comprising: A step of treating a material containing a polysaccharide that is decomposed by the cellulase agent with the cellulase agent produced by the above method, and a step of culturing the surface-displaying microorganism in a medium containing the treated material.
  • the surface-displaying microorganisms surface-display enzymes that produce sugars that are metabolized by the microorganisms from the processed material.
  • a method for producing a cellulase agent useful for producing a saccharified fermentation product from cellulosic biomass According to the present invention, saccharified and fermented products can be efficiently produced from cellulosic biomass regardless of the location environment and production scale of the manufacturer.
  • FIG. 2 is a graph showing changes in pH and changes in cellulase activity (filter paper degrading activity “FPU”) and protein concentration in a culture supernatant of Trichoderma reesei RUT-C30 in Example 1 over the main culture period. Electropherogram showing the results of protein separation and detection (by Coomassie brilliant blue (CBB) staining) of the cellulase agent (5 lots) obtained by the method of Example 1 and a commercially available improved cellulase preparation by SDS-PAGE. It is.
  • CBB Coomassie brilliant blue
  • ⁇ -glucosidase activity BGL in the culture supernatant 171 hours after the start of the main culture was started.
  • CBH Cellobiohydrolase activity
  • FPA cellulase activity
  • concentration b
  • a culture solution obtained by culturing a lactic acid bacterium (pCUA-Rumal 2816 strain) presenting a ⁇ -glucosidase surface layer at a wet weight of 20 g (per liter of culture solution) using the cellulosic biomass treated with the cellulase agent obtained by the method of Example 1 2 shows the time-dependent changes in lactic acid concentration (A) and cellobiose concentration (B).
  • cellulase agent refers to a composition containing at least one enzyme having an ability to degrade plant cell wall components including cellulose and having the ability to degrade plant cell wall components as a whole cellulase agent.
  • cell wall components in which the cellulase agent has the ability to degrade include cellulose and hemicellulose, and degradation products thereof, and the “degradation product” is a sugar composed of two or more disaccharides.
  • Cellulose is a polymer in which glucose is linearly polymerized by ⁇ -1,4 glycosidic bonds (also referred to as “ ⁇ -1,4 bonds”).
  • Hemicellulose is a generic term for insoluble dietary fibers other than cellulose and pectin among plant cell wall components, and is composed of xylan, mannan, galactan and the like.
  • Examples of enzymes having the resolution of cell wall components include cellulase and hemicellulase.
  • cellulase refers to an enzyme that hydrolyzes the ⁇ -1,4 bond of ⁇ -1,4-glucan (eg, cellulose).
  • ⁇ -1,4-glucan eg, cellulose
  • cellulase refers to any one of endoglucanase, cellobiohydrolase and ⁇ -glucosidase.
  • endoglucanase is an enzyme also referred to as “cellulase” in a narrow sense, cuts cellulose from the inside of the molecule, and removes glucose, cellobiose, and / or cellooligosaccharide (polymerized). Degrees of ⁇ 3, and preferably ⁇ 10, but is not limited to).
  • cellobiohydrolase degrades cellulose from either its reducing or non-reducing end, releasing cellobiose.
  • ⁇ -glucosidase is an exo-type hydrolase that separates a glucose unit from a non-reducing end in cellulose.
  • ⁇ -glucosidase cleaves ⁇ -1,4 bond between aglycone or sugar chain and ⁇ -D-glucose, and hydrolyzes cellobiose or cellooligosaccharide to produce glucose.
  • ⁇ -glucosidase is one example of an enzyme that hydrolyzes cellobiose or cellooligosaccharides.
  • hemicellulase is a general term for enzymes that degrade hemicellulose.
  • Hemicellulases include xylan-degrading enzymes, which include, for example, xylanase and xylosidase.
  • xylan is a heterosaccharide having a polymer in which xylose is linearly polymerized by ⁇ -1,4 bonds as a main chain and various sugars in a side chain.
  • xylanase ( ⁇ 1,4-xylanase) refers to an enzyme that hydrolyzes the ⁇ -1,4 bond of xylan.
  • Xylanase randomly cleaves the backbone portion of xylan from the interior, yielding xylose, xylobiose and / or xylo-oligosaccharides with a degree of polymerization of 3 or more and preferably 10 or less, but not limited thereto.
  • xylosidase ⁇ -xylosidase refers to an enzyme that hydrolyzes xylan from its non-reducing end to its ⁇ -1,4 bond to release xylose.
  • the “cellulase activity” is an activity of hydrolyzing ⁇ -1,4 bond of cellulose.
  • a filter paper decomposing activity (Filter Paper Unit: FPU) is used as an index.
  • the filter paper degrading activity can be measured based on the method of Mandels et al. (1976), as described in Industrial Crops and Products 20 (2004) 49-57.
  • the filter paper decomposing activity is expressed as one unit (FPU) of an enzyme that releases 1 ⁇ mol of glucose per minute using a filter paper (for example, Advantec No. 1: Toyo Roshi Kaisha, Ltd.) as a substrate.
  • ⁇ -glucosidase activity was determined using Berghem and p-nitrophenyl ⁇ -D-glucopyranoside (pNPG) as substrates, as described in Journal of Bioscience and Bioengineering, VOL. 111 No. 2, 121-127, 2011. It can be measured based on Pettersson's method.
  • the ⁇ -glucosidase activity is expressed as one unit (U) of the enzyme which releases 1 ⁇ mol of nitrophenol from the substrate p-nitrophenyl ⁇ -D-glucopyranoside (pNPG) in one minute.
  • Cellobiohydrolase activity can be measured in the same manner as for ⁇ -glucosidase activity except that p-nitrophenyl- ⁇ -D-cellobiose was used as a substrate.
  • the cellobiohydrolase activity is expressed as one unit (U) of the enzyme which releases 1 ⁇ mol of nitrophenol from the substrate p-nitrophenyl- ⁇ -D-cellobiose in one minute.
  • the term “Trichoderma microorganism” refers to a microorganism belonging to the genus Trichoderma.
  • the “Trichoderma microorganism” is not particularly limited as long as it can produce a cellulase agent.
  • the Trichoderma microorganism is Trichoderma reesei, Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma viride, and the like.
  • it is Trichoderma reesei QM6a and its derivative (nonpatent literature 5).
  • Trichoderma reesei QM6a is available from, for example, the ATCC (ATCC 13631), and as its derivatives, for example, Trichoderma reesei RUT-C30 (ATCC 56765) and Trichoderma reesei QM9414 (ATCC 26921) are available.
  • Trichoderma Risei QM6a NBRC31326), Trichoderma Risei QM9414 (NBRC31329), and the like are also available from the National Institute of Technology and Evaluation (NITE).
  • the Trichoderma microorganism is a non-genetically modified strain for a cellulase agent.
  • ⁇ Culture the microorganism of the genus Trichoderma to produce a cellulase agent In culturing a microorganism of the genus Trichoderma, a Mandels medium is usually used.
  • the Mandels medium can be prepared, for example, according to the method described in M. Mandels and R.E. Andreotti, Problems and Challenges in the Cellulose to Cellulase Fermentation. Process Biochem 13 (1978) 6-13.
  • the culture medium of the microorganism of the genus Trichoderma contains a polysaccharide in which at least two glucoses are ⁇ -1,4 linked. Thereby, production of a cellulase agent of a microorganism of the genus Trichoderma can be induced.
  • polysaccharide in which at least two glucoses are ⁇ -1,4 bonded examples include cellobiose, cellobiooligosaccharide, cellulose (for example, crystalline cellulose (for example, Avicel (Avicel)), etc. “At least two glucoses are ⁇ .
  • the “-1,4 linked polysaccharide” may be a cellulosic biomass as described below, for example, a sugarcane bagasse steamed with steam may be used. It may further contain other components commonly used for culturing microorganisms (for example, peptone).
  • the microorganism of the genus Trichoderma is cultured at pH 1 or more and less than 5.
  • the pH is 3 or more and less than 5.
  • the above-mentioned predetermined pH can be adjusted by adding a salt, and such a salt is a salt (for example, sodium hydroxide) which is usually used for pH adjustment in culturing microorganisms.
  • the culture may be performed without adjusting the pH before the culture at the predetermined pH, and the present invention also includes such culture.
  • the pH of the culture medium can be 5 or more (for example, around 5 to 6). As the cultivation progresses, the pH may drop below 5 (eg, around 3.5). Thereafter, the microorganism of the genus Trichoderma may be cultured while adjusting to the lowered pH.
  • the cellulase having a ratio of ⁇ -glucosidase activity to filter paper decomposition activity of less than 3 can be produced by the microorganism of the genus Trichoderma.
  • the produced cellulase has a ratio of ⁇ -glucosidase activity to filter paper degrading activity of less than 1, less than 0.5, less than 0.3, less than 0.2, less than 0.1. Lower, lower than 0.06, lower than 0.04, lower than 0.03 or lower than 0.02.
  • the numerical value of the above ratio is a value obtained when the ⁇ -glucosidase activity is measured at 50 ° C. (a temperature that can be usually used for liquefaction). ⁇ -glucosidase activity measured at 50 ° C. tends to show higher activity than that measured at 35 ° C.
  • the cellulase agents produced preferably include endoglucanases and cellobiohydrolases. If the pH is less than 1, the growth of the microorganism of the genus Trichoderma may be suppressed.
  • the cellulase agent produced further comprises xylanase.
  • the cellulase agent produced may also include xylosidase.
  • culturing conditions such as temperature, aeration, cell amount and the like during the culturing
  • conditions usually used for culturing Trichoderma microorganisms can be used.
  • the culturing time depends on the initial cell amount or the final cellulase activity to be recovered, but is, for example, 24 hours to 240 hours, preferably 72 hours to 192 hours.
  • preliminary culture may be performed before culture for production and recovery of the cellulase agent (“main culture”).
  • TP cellulase agent produced by the above-mentioned method for producing a cellulase agent is also referred to as “TP cellulase agent” in this specification.
  • This “TP cellulase agent” can be recovered from a culture of a microorganism of the genus Trichoderma by, for example, solid-liquid separation (eg, centrifugation and filter filtration). After recovery, the “TP cellulase agent” may be concentrated, if necessary, by a method commonly used by those skilled in the art (for example, using an evaporator).
  • the "surface-displaying microorganism" used in the present invention will be described below.
  • the surface-displaying microorganism refers to a microorganism that presents a target molecule (for example, a protein such as an enzyme) on the surface of the bacterial cell.
  • ⁇ -glucosidase surface-displaying microorganism refers to a microorganism that presents ⁇ -glucosidase on the surface of its cells. For example, by transforming a host microorganism using a surface display cassette containing a ⁇ -glucosidase gene, a ⁇ -glucosidase surface-displayed transformed microorganism (also simply referred to as “ ⁇ -glucosidase surface-displayed microorganism”) is produced.
  • ⁇ -glucosidase surface-displayed microorganism also simply referred to as “ ⁇ -glucosidase surface-displayed microorganism”
  • ⁇ -glucosidase 1 and ⁇ -glucosidase 2 are two types of ⁇ -glucosidase 1 and ⁇ -glucosidase 2, respectively.
  • ⁇ -glucosidase examples include ⁇ -glucosidase from Aspergillus acreeatus (especially BGL1) (eg, WO2015 / 33948) and ⁇ -glucosidase gene from Ruminococcus albus (GenBank ⁇ Sequence ⁇ ID: X1545.1), but is not limited thereto.
  • a xylosidase surface-displaying microorganism refers to a microorganism that presents xylosidase on the surface of its cells.
  • the xylosidase includes, for example, ⁇ -xylosidase (XylA) derived from Aspergillus oryzae.
  • Xylosidase surface-displaying microorganisms are created using microorganisms that metabolize xylose.
  • a microorganism that is genetically modified to be able to metabolize xylose that metabolizes xylose may be used.
  • Saccharomyces cerevisiae which normally metabolizes hexose glucose and cannot metabolize pentose xylose
  • Saccharomyces cerevisiae which normally metabolizes hexose glucose and cannot metabolize pentose xylose
  • a genetically modified microorganism has a xylose metabolic gene. As described above.
  • the xylose assimilating gene includes a xylose metabolic enzyme gene, for example, a xylose reductase (XR) gene (for example, derived from Pichia stipitis: INSD accession number X59465 or A16164), and xylitol dehydrogenase (XDH) Genes (eg, from Pichia stippitis: INSD accession number X55392 or A16166), and xylulokinase (XK) genes (eg, from Saccharomyces cerevisiae: INSD accession number X82408). Saccharomyces cerevisiae genetically modified to express these three genes can be preferably used for producing a xylosidase surface-displaying microorganism.
  • XR xylose reductase
  • XDH xylitol dehydrogenase
  • XK xylulokinase
  • the surface-displaying microorganism may be one that displays both ⁇ -glucosidase and xylosidase on the surface.
  • Microorganisms displaying both ⁇ -glucosidase and xylosidase on the surface are useful, for example, when the medium in which the microorganisms are cultured contains cellulose and hemicellulose.
  • the term “ ⁇ -glucosidase surface-displaying microorganism” also includes microorganisms that further display another protein (eg, xylosidase) on the surface as long as ⁇ -glucosidase is surface-displayed.
  • microorganism displaying xylosidase on the surface also includes microorganisms that further display another protein (eg, ⁇ -glucosidase) on the surface as long as xylosidase is displayed on the surface.
  • another protein eg, ⁇ -glucosidase
  • the host microorganism is not particularly limited, but examples include yeast, lactic acid bacteria, filamentous fungi, coryneform bacteria, Escherichia coli, and Zymonas bacteria. From the viewpoint of utilization in alcohol production, microorganisms having an ability to ferment alcohol (for example, ethanol) are preferable, and such microorganisms include, for example, yeast. From the viewpoint of utilization in lactic acid production, lactic acid bacteria are preferred.
  • yeast examples include Saccharomyces, Pichia, Schizosaccharomyces, Kluyveromyces, and Candida.
  • yeast belonging to the genus Saccharomyces is preferred, and Saccharomyces cerevisiae is more preferred.
  • strains of Saccharomyces cerevisiae include, for example, Saccharomyces cerevisiae NBRC1440 strain (available from National Institute of Technology and Evaluation) and Saccharomyces cerevisiae TJ14 strain (Moukamnerd et al., Appl. @ Microbiol. @ Biotechnol., 2010, No. 88). 87, p.
  • yeast examples include the following strains: Pichia pastoris GS115 (manufactured by Invitrogen) and Pichia anomala NBRC10213 strain, Schizosaccharomyces pombe NBRC1628 strain, and Kleu strain NBRC1628.
  • Kluyveromyces lactis strain NBRC1267 and Kluyveromyces marxianus NBRC1777 strain (Yanase et al., Appl. Microbiol. Biotechnol, 2010, vol. 88, pp. 381-388), Candida utilis Candida utilis) NBRC 0988 strain (Tomita et al., PLoS One. 2012; 57 (5): e37226) (all NBRC strains are available from National Institute of Technology and Evaluation).
  • Lactic acid bacteria is a general term for bacteria that produce lactic acid from sugars by metabolism or fermentation. Lactic acid bacteria can be mainly classified into four types: bifidobacteria, enterococci, lactobacilli, and streptococci. Preferably, Lactobacillus bacteria can be used. As lactic acid bacteria, Streptococcus (Streptococcus), Lactobacillus (Lactobacillus), Bifidobacterium (Bifidobacterium), Lactococcus (Lactococcus), Pediococcus (Pediococcus), or Leuconostoc (Leuconostoc) Belonging bacteria.
  • lactic acid bacteria examples include Streptococcus thermophilus (Streptococcus thermophilus), Streptococcus cremoris (Streptococcus cremoris), Streptococcus faecalis (Streptococcus faecalis), Streptococcus lactis bacillus, and Lactobacillus lactis bacillus, Streptococcus lactobacillus Acidophilus (Lactobacillus acidophilus), Lactobacillus casei (Lactobacillus casei), Lactobacillus delbrueckii (Lactobacillus delbrueckii), Lactobacillus arabinose (Lactobacillus arabinosus), Lactobacillus saccharus (Lactobacillus sacylus) ), Lactobacillus ⁇ ⁇ Leishmanni, Lactobacillus muscicus (Lactob) acillus musicus), Lactobacillus thermophilus
  • Lactic acid bacteria also include sporulated lactic acid bacteria.
  • Spore-forming lactic acid bacteria are a general term for sporic lactic acid bacteria.
  • Examples of the sporulated lactic acid bacteria include bacteria belonging to the genus Bacillus.
  • the spore-forming lactic acid bacteria belonging to the genus Bacillus may have heat resistance (for example, can grow under high heat such as 45 ° C.), high fermentation rate, and wide saccharide utilization.
  • Examples of the bacteria belonging to the genus Bacillus include, for example, Bacillus coagulans (also known as "sporalactic acid bacteria") and Bacillus lincheniformis.
  • the lactic acid bacteria may be those that have been genetically modified.
  • a recombinant microorganism into which either the L- or D-lactate synthase gene has been incorporated or destroyed can be mentioned.
  • genetically modified microorganisms for example, Lactobacillus plantarum ldhL1 :: amyA strain (Okano et al., Appl. Environ. Microbiol. 2009, Vol.75, 462-467), and Lactobacillus plantarum ⁇ ldhL1 :: PxylAB-xpk1: : tkt- ⁇ xpk2 :: PxylAB strain (Yoshida et al., Appl. Microbiol.
  • Lactobacillus plantarum ldhL1 amyA strain is a recombinant strain that secretes ⁇ -amylase and produces D-lactic acid from glucose, and is a Lactobacillus plantarum ⁇ ldhL1 :: PxylAB-xpk1 :: tkt- ⁇ xpk2 :: PxylAB strain Is a recombinant strain that produces D-lactic acid from both glucose and xylose.
  • Examples of the surface display technology relating to various host microorganisms used for producing the surface display microorganism include, for example, JP-A-11-290078, WO02 / 085935, WO2015 / 033948, and WO2007 / 033948. 2016/017736, Biotechnology for Biofuels, 7 (1): 8 (2014), and K. Onodera et al., Biochemical Engineering Journal 128 (2017) 195-200 (yeast); Journal of Biotechnology, Vol. 89, No. 4, , 154-160 (2011), Abstracts of Research Presentations of the 70th Annual Meeting of the Chemical Engineering Society, Session ID F123 (http://doi.org/10.11491/scej.2005.0.255.0), Appl. Environ.
  • the surface display cassette uses a surface display cassette, and the surface display cassette can be used to combine DNA encoding the anchor domain of the anchor protein and DNA encoding the secretion signal together with DNA encoding ⁇ -glucosidase to be displayed on the surface. May be included in any arrangement.
  • the surface display cassette may be located between the promoter and the terminator. Anchor domains and secretion signals are also described in the literature.
  • anchor domain examples include an anchor domain of a GPI anchor protein (eg, SED1, ⁇ - or a-agglutinin (AG ⁇ 1, AGA1), FLO1, etc.) for yeast, a CA domain of a peptidoglycan binding protein AcmA and a bacillus for lactic acid bacteria.
  • GPI anchor protein eg, SED1, ⁇ - or a-agglutinin (AG ⁇ 1, AGA1), FLO1, etc.
  • CA domain of a peptidoglycan binding protein AcmA a peptidoglycan binding protein AcmA
  • bacillus for lactic acid bacteria.
  • -PgsA protein which is a subunit of a poly- ⁇ -glutamic acid biosynthetic enzyme complex (PgsBCA) derived from Baccilus subtilis.
  • the surface-displaying microorganism may be fixed on a carrier. This allows for reuse in the method described below.
  • the carrier and the method for immobilization those usually used by those skilled in the art are used.
  • the fixing method include a carrier binding method, an entrapment method, a crosslinking method, and the like.
  • a porous body is preferably used.
  • foams or resins such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, and silicone foam are preferable.
  • the size of the opening of the porous body can be determined in consideration of the microorganism to be used and the size thereof.
  • the size is preferably in the range of 50 to 1000 ⁇ m.
  • the shape of the carrier is not limited. In consideration of the strength of the carrier, the culture efficiency, and the like, a spherical or columnar (eg, cubic) shape is preferable. The size may be determined depending on the microorganism to be used. In general, the diameter is preferably 2 to 50 mm in the case of a sphere, and 2 to 50 mm square in the case of a column.
  • a material containing a polysaccharide substrate that is decomposed by a TP cellulase agent (“a material containing a TP cellulase agent-decomposed substrate”) is treated with the cellulase agent (“TP cellulase agent”) produced by the above-described cellulase production method.
  • TP cellulase agent the cellulase agent
  • the enzyme that produces sugars metabolized by the microorganism from the treated product can be used for culturing microorganisms that display on the surface.
  • the “TP cellulase agent-decomposing substrate-containing material” includes, for example, a material containing a cellulose material and a xylose-containing polysaccharide, and a mixture thereof.
  • a cellulosic material is treated with a TP cellulase agent, and the treated material can be used for culturing a ⁇ -glucosidase surface-displaying microorganism.
  • the ⁇ -glucosidase surface-displaying microorganism can produce a saccharified fermentation product by such culture.
  • a material containing a xylose-containing polysaccharide is treated with a TP cellulase agent, and the treated product can be used for culturing a microorganism that has xylose metabolism ability and displays xylosidase on the surface ("a microorganism presenting on the surface of xylose-metabolized xylosidase"). it can.
  • xylose-containing polysaccharide refers to a polysaccharide containing xylose as a component, and includes at least the disaccharide xylose.
  • a xylose-metabolizing xylosidase surface-displaying microorganism can produce a saccharified fermentation product by such culture.
  • Cellulose material refers to any material containing cellulose.
  • examples of the xylose-containing polysaccharide include xylan and hemicellulose containing xylan. Both cellulose and xylose-containing polysaccharides hydrolyze to lower saccharides (eg, glucose or cellobiose from cellulose, xylose or xylobiose from xylose-containing polysaccharides) (this reaction is also referred to as "saccharification").
  • Glucose and / or xylose obtained by the saccharification reaction can be used as a substrate by a fermenting microorganism (eg, yeast, lactic acid bacteria, etc.) to produce a fermentation product (eg, ethanol, lactic acid, etc.) (this reaction is referred to as “fermentation”). Or “fermentation production”).
  • Saccharification and fermentation by a microorganism using a sugar obtained by the saccharification as a substrate are also referred to as “saccharification fermentation”.
  • saccharification and fermentation The product obtained by saccharification and fermentation is also referred to herein as “saccharification and fermentation product”.
  • Cellulose-based biomass is an example of the cellulosic material.
  • Cellulosic biomass refers to a material derived from biological resources and containing cellulose. Use of cellulosic biomass is preferred because it does not compete with food.
  • Examples of the material containing the xylose-containing polysaccharide include a material containing xylan and a material containing hemicellulose.
  • Cellulosic biomass includes plant biomass. Plant biomass includes cellulose and hemicellulose, and thus can be used both as a cellulosic material and as a material containing a xylose-containing polysaccharide.
  • Examples of the cellulosic biomass or plant biomass include wastes generated when processing biological materials such as rice, wheat, corn, sugar cane, palm, wood (pulp), and napier grass.
  • Examples of the cellulosic biomass or plant biomass include rice straw, wheat straw, palm empty fruit cluster, bagasse (residue after squeezing sugarcane).
  • the TP cellulase agent-decomposing substrate-containing material may be pretreated.
  • the pretreatment is a treatment performed on a material containing the substrate before the substrate is decomposed by the enzyme, thereby facilitating the action of the enzyme on the substrate contained in the material.
  • a material containing the substrate for example, to hydrolyze cellulose to glucose, prior to treatment with cellulose hydrolase, to facilitate the action of the enzyme on cellulose, cellulose is converted from a cellulosic material (eg, biomass) prior to the enzymatic reaction. It refers to the process of separating and exposing.
  • the pretreatment method is not particularly limited. For example, hydrothermal decomposition, squeezing, steaming and the like can be mentioned, and these methods may be used in combination.
  • hydrothermal decomposition method for example, cellulosic biomass is pulverized, if necessary, mixed with water so as to have a content of, for example, about 20% by mass (dry mass), and the mixture is heat-treated.
  • the hydrothermal treatment is performed at 120 to 300 ° C., preferably 150 to 280 ° C., more preferably 180 to 250 ° C. for 15 seconds to 1 hour.
  • the processing temperature and time can vary depending on the biomass used, and increasing the processing temperature can shorten the processing time. Note that pressure may be applied during the heat treatment.
  • the pressing is not particularly limited, and examples thereof include a method of pressing the cellulosic biomass with a hydraulic pressing machine, a screw press, a meat extractor, a press dehydrator, a centrifuge, or the like.
  • the steaming method is not particularly limited, and examples thereof include a method of steaming cellulosic biomass with high-temperature steam.
  • the conditions for the steaming are not particularly limited.
  • the lignocellulosic biomass is impregnated with 1% by mass to 5% by mass of sulfuric acid, and heated at 180 ° C. to 1.0 Mpa to 1.6 Mpa.
  • the conditions for steaming at 200 ° C. for 5 minutes to 30 minutes are mentioned.
  • the amount of cellulose and hemicellulose obtained by the pretreatment can be adjusted.
  • the plant biomass may be treated with ammonium oxalate to remove pectin after delignification treatment as necessary, and then treated with alkali to obtain hemicellulose.
  • a pretreatment method such as an ammonia explosion treatment, a pulverization treatment, or an ionic liquid treatment is used, cellulose and hemicellulose can be obtained from plant biomass.
  • Treat the TP cellulase agent-decomposing substrate-containing material with the TP cellulase agent can be performed by mixing the TP cellulase agent and the TP cellulase agent decomposition substrate-containing material, preferably with stirring.
  • the treatment conditions are not limited as long as the solid content of the material is liquefied.
  • the amount of the TP cellulase agent to the cellulosic material depends on the type of the cellulosic material used, but is, for example, 1 to 50 FPU / g dry material weight, preferably 5 to 20 FPU / g dry material weight.
  • the amount of TP cellulase agent to the material containing the xylose-containing polysaccharide depends on the type of material used, but is, for example, 10-2000 g / kg dry material weight, preferably 50-800 g / kg dry material weight.
  • the temperature of the treatment is, for example, 25 to 70 ° C, preferably 35 to 55 ° C.
  • the ⁇ -glucosidase surface-displaying microorganism is cultured in a medium containing a cellulose material treated with a TP cellulase agent. By such culture, the ⁇ -glucosidase surface-displaying microorganism can produce a saccharified fermentation product.
  • the enzyme titer of the ⁇ -glucosidase surface-displaying microorganism is determined based on the filter paper-degrading activity of cellulase (in this method, a TP cellulase agent) added for the treatment of the cellulosic material (from outside the microorganism).
  • the ratio of ⁇ -glucosidase activity of the microorganism When expressed as a ratio of ⁇ -glucosidase activity of the microorganism, it is 0.02 to 2.5, preferably 0.1 to 0.7.
  • the above numerical values are values obtained when the ⁇ -glucosidase activity of the ⁇ -glucosidase surface-displaying microorganism is measured at 35 ° C. (a temperature that can be generally used for culturing microorganisms for saccharification and fermentation).
  • the ratio of the enzyme titer is within such a range, the production of a saccharified fermentation product by the microorganism displaying the ⁇ -glucosidase surface layer can be efficiently performed.
  • the enzyme titer of the ⁇ -glucosidase surface-displaying microorganism that is, the ratio of the ⁇ -glucosidase activity of the microorganism to the filter paper-degrading activity of the TP cellulase agent, is determined by the type of the ⁇ -glucosidase surface-displaying microorganism, culture (for example, culture for saccharification and fermentation). )) And the temperature (for example, in the case of ⁇ -glucosidase surface display yeast, it can be set to 35 ° C. or 50 ° C.).
  • the ratio of the enzyme titer is determined by using an activity value measured at 50 ° C., which is a temperature usually used for measuring ⁇ -glucosidase activity, and is, for example, a higher value as shown in Examples below. Can be indicated.
  • a xylosidase surface-displaying microorganism is treated with a TP cellulase agent and cultured in a medium containing a material containing a xylose-containing polysaccharide. By such culture, the xylosidase surface-displaying microorganism can produce a saccharified fermentation product.
  • This culture medium may contain the treated TP cellulase agent-decomposing substrate-containing material and the TP cellulase agent.
  • the culture medium may further contain other components commonly used in culturing surface-displaying microorganisms.
  • the treatment of the TP cellulase agent-decomposing substrate-containing material with the TP cellulase agent can be performed before the culture of the surface-displaying microorganism. Further, the treatment of the TP cellulase agent-decomposing substrate-containing material with the TP cellulase agent and the culture of the surface-display microorganism may be performed in parallel.
  • the culturing conditions for the surface-displayed microorganism depend on the type of the host microorganism, but the growth rate of the microorganism, the amount of saccharified fermentation product produced by the microorganism, and the activity of enzymes ( ⁇ -glucosidase, xylosidase, etc.) displayed on the surface. It can be set appropriately in consideration of the above.
  • the culturing conditions will be described below with reference to a case where the ⁇ -glucosidase surface-displaying microorganism is a ⁇ -glucosidase surface-displaying yeast, but is not limited thereto.
  • the cell concentration at the start is not particularly limited, and may be, for example, about 2 g to 20 g wet weight / L (1 ⁇ 10 7 cells / mL to 1 ⁇ 10 8 cells / mL).
  • the culture conditions are not particularly limited, and may be the conditions for ethanol fermentation using glucose as a substrate.
  • the culture temperature is, for example, 30 ° C. to 37 ° C.
  • the culture pH is, for example, 4 to 8.
  • the culture time is, for example, 2 to 3 days.
  • the end of fermentation is determined based on, for example, that the amount of generated carbon dioxide gas is reduced to one tenth or less of the start of fermentation.
  • the surface-displaying microorganism may be collected after the completion of the culture and used repeatedly for the next culture.
  • the method described in WO 2013/146540 can be used.
  • the present invention also provides a method for producing a saccharified fermentation product.
  • the microorganism can produce a saccharified fermentation product from a cellulose material.
  • the saccharified fermentation product depends on the type of the surface-displaying microorganism to be cultured, and includes, for example, ethanol (for example, by culturing surface-displaying yeast) and lactic acid (for example, by culturing surface-displaying lactic acid bacteria).
  • ethanol for example, by culturing surface-displaying yeast
  • lactic acid for example, by culturing surface-displaying lactic acid bacteria.
  • yeast ethanol can be produced as a saccharified fermentation product, but is not limited thereto.
  • the surface display microorganism may be modified (for example, by genetic recombination) other than the surface display technology as described above. Such modifications include, for example, modification of the metabolic system of fermentation for the purpose of changing the produced saccharified fermentation product or improving the production efficiency of the saccharified fermentation product.
  • a microorganism that displays multiple proteins eg, a combination of enzymes (eg, ⁇ -glucosidase and xylosidase)
  • a microorganism that displays multiple proteins eg, a combination of enzymes (eg, ⁇ -glucosidase and xylosidase)
  • the method for producing a saccharified fermentation product further includes the step of producing a cellulase agent by the above-described cellulase agent production method.
  • a cellulase agent used for producing a saccharified fermentation product for example, ethanol
  • the cellulase agent can be prepared at a site where the saccharified fermentation product is produced.
  • the saccharified and fermented product obtained by culturing the surface-displaying microorganism can be collected from the microorganism culture medium by a method commonly used by those skilled in the art, and can be separated and purified as necessary.
  • filter paper decomposition activity As the cellulase activity, filter paper decomposition activity (FP activity) was measured according to the method of Mandels et al. (1976) as described in Industrial Crops and Products 20 (2004) 49-57. More specifically, a 1 cm ⁇ 6 cm filter paper (Advantec No. 1: Toyo Filter Paper Co., Ltd.) was used as a substrate, and this was used as a sample solution (0.5 mL of a diluted cellulase solution (culture supernatant) and 1.0 mL of a 0. 1 mL solution). The mixture was added to a 05 M citrate buffer (containing pH 5.0), left at 50 ° C. for 60 minutes, and stopped by adding 3 mL of DNS reagent.
  • FP activity filter paper decomposition activity
  • the amount of reducing sugars in this mixture was assayed by the DNS method.
  • the filter paper decomposing activity was expressed as 1 FPU / mL of an enzyme capable of releasing 1 ⁇ mol of glucose per minute by this method.
  • the protein concentration was measured by the Bradford method using Quick Start TM Bradford (Bio-Rad Laboratories, Inc.) (bovine serum albumin (BSA) was used as a calibration curve substrate).
  • ⁇ -glucosidase activity was determined using p-nitrophenyl ⁇ -D-glucopyranoside (pNPG) as a substrate, as described in Journal of Bioscience and Bioengineering, VOL. 111 No. 2, 121-127, 2011. , Berghem and Pettersson. More specifically, a reaction solution consisting of 100 ⁇ L of 3 mM @pNPG, 15 ⁇ L of 1 M acetate buffer (pH 5.0), 155 ⁇ L of sterilized water and 30 ⁇ L of enzyme diluent was stirred at 50 ° C. or 35 ° C. for 10 minutes, The reaction was stopped by adding 0.3 mL of 1 M sodium carbonate.
  • pNPG p-nitrophenyl ⁇ -D-glucopyranoside
  • the released p-nitrophenol was measured at 400 nm using a microplate reader (SH-1000Lab, Hitachi High-Tech Science Corporation).
  • ⁇ -glucosidase activity was expressed as the amount of enzyme that releases 1 ⁇ mol of nitrophenol from the substrate per minute as 1 unit (U).
  • CBH activity Cellobiohydrolase activity
  • EG activity Endoglucanase activity
  • CMC p-nitrophenyl- ⁇ -D-carboxymethylcellulose
  • xylanase activity 0.1 mL of the diluted sample and 0.1 mL of 2 (w / v)% xylan substrate solution were added to a 1.5 mL tube, and reacted at 50 ° C. for 30 minutes with stirring. The reaction was stopped by adding 0.6 mL of DNS reagent, and the mixture was heated at 100 ° C. for 5 minutes to develop color.
  • the 2 (w / v)% xylan substrate solution is obtained by suspending 2% (w / v)% xylan derived from beechwood (manufactured by SIGMA) in a 0.1 M citrate buffer solution (pH 5.0) and heating at 4 ° C.
  • the insoluble xylan was collected by centrifugation (10000 ⁇ g, 10 minutes, 4 ° C.) and suspended in 10 mL of the same buffer to prepare a substrate solution for measuring xylanase activity.
  • the control value was a color obtained by adding a 2% (w / v) xylan substrate solution to a sample stirred at 50 ° C. for 30 minutes without incubating at 50 ° C.
  • the xylanase activity was expressed as the amount of enzyme that produces 1 ⁇ mol of xylose from the substrate in one minute as one unit (U).
  • xylosidase activity Xyd activity
  • a sample and a synthetic substrate p-nitrophenyl- ⁇ -D-xylopyranoside manufactured by Wako Pure Chemical Industries, Ltd.
  • 1 mM acetate buffer pH 5.0
  • the reaction was stopped by adding the same amount of a 1 M aqueous sodium carbonate solution, and the color was developed.
  • the supernatant after centrifugation (15000 rpm, 5 minutes, 4 ° C.) was measured for absorbance at 440 nm, and the amount of generated p-nitrophenol was converted.
  • the control value was a color developed without performing the incubation operation at 50 ° C.
  • the xylosidase activity was expressed as 1 unit (U) of the amount of the enzyme that produced 1 ⁇ mol of p-nitrophenol from the substrate in 1 minute.
  • the measurement of the enzyme activity of the microbial cells was performed at 50 ° C. or 35 ° C. using a culture supernatant or a cell suspension as an enzyme diluent for the reaction with the substrate.
  • the culture supernatant was prepared by collecting 1 mL of the bacterial cell culture solution after the following 72-hour flask culture and centrifuging at 3500 rpm for 5 minutes to obtain a supernatant.
  • For the cell suspension 1 mL of the cell culture liquid after flask culture for 72 hours was collected and centrifuged at 3500 rpm for 5 minutes to obtain a precipitate, which was washed with sterile water, and then subjected to wet cell weight. Was measured, and the pellet was prepared by suspending the pellet in 1 mL of sterile water.
  • the enzyme activity of the cells was determined as the enzyme activity (U / g) per gram of wet weight of the cells.
  • the ethanol concentration and sugar (eg, cellobiose, glucose, xylose, and reducing sugar) concentrations in the liquefied liquid and the saccharified fermentation broth were quantified by HPLC (High-performance liquid chromatography system; Hitachi High-Tech Fielding, LaChrom Elite).
  • HPLC High-performance liquid chromatography system; Hitachi High-Tech Fielding, LaChrom Elite.
  • ULTRON @ PS-80H (Shinwa Kako Co., Ltd., 300 mm (L) x 8 mm (ID)) was used for the HPLC separation column, and ultrapure water (purified water by Milli-Q manufactured by Nippon Millipore Co., Ltd.) was used for the mobile phase.
  • a 3 mM aqueous solution of perchloric acid to which perchloric acid was added was used, and a refractive index detector was used as a detector.
  • the HPLC conditions were as follows: liquid sending amount 0.7 mL / min and column temperature 80 ° C.
  • the lactic acid concentration in the saccharified fermentation broth was determined by converting calcium lactate to lactic acid with the same amount of 2N hydrochloric acid as the sample, and quantifying this amount by HPLC (High performance liquid chromatography system; Hitachi High-Tech Fielding, LaChrom Elite). .
  • HPLC High performance liquid chromatography system; Hitachi High-Tech Fielding, LaChrom Elite.
  • GL-C610H-S Hitachi High-Tech Science Co., Ltd., 300 mm (L) x 7.8 mm (ID)
  • ultrapure water was used for the mobile phase.
  • the number of viable cells after culturing was determined by counting the number of colonies that appeared after spraying a part of the culture solution on a YPD plate and incubating at 30 ° C.
  • Example 1 Production of Cellulase by Trichoderma reesei RUT-C30 5 mL of a 7-day mycelial suspension of a strain of Trichoderma reesei RUT-C30 (ATCC56765) was placed in a 500 mL baffled Erlenmeyer flask in a preculture medium (1% (w / v) Avicel (crystalline cellulose in Mandels medium)). ) was added, and 100 mL was inoculated and pre-cultured at 28 ° C. at 175 rpm for 3 days.
  • a preculture medium 1% (w / v) Avicel (crystalline cellulose in Mandels medium)
  • the Mandels medium was prepared according to the method described in M. Mandels and REAndreotti, Problems and Challenges in the Cellulose to Cellulase Fermentation. Process Biochem 13 (1978) 6-13. That is, (NH 4 ) 2 SO 4 : 2.1 g / L, KH 2 PO 4 : 2.0 g / L, urea: 0.3 g / L, CaCl 2 .2H 2 O: 0.4 g / L, MgSO 4.
  • the pH was not controlled for a while after the start of the culture, and after the pH dropped to 3.5, the pH was maintained at 3.5 with NaOH.
  • the main culture was continued for 171 hours.
  • the cellulase activity of the culture supernatant was determined as the cellulase activity (“FPU”) and the protein concentration. It was measured.
  • FIG. 1 is a graph showing changes in pH, changes in cellulase activity (filter paper degrading activity “FPU”) and protein concentration in the culture supernatant over the culture period of the main culture.
  • the pH was maintained at 3.5 48 hours after the start of the culture.
  • the filter paper decomposition activity and the protein concentration increased almost in conjunction. 171 hours after the start of the culture, the filter paper decomposition activity and the protein concentration reached 1.39 FPU / mL and 1.43 g / L, respectively.
  • the culture supernatant after 171 hours was centrifuged at 8000 g for 10 minutes, and the filtrate was collected through a nylon filter (11 ⁇ m). Then, the filtrate was concentrated using an evaporator.
  • the obtained concentrate had a filter paper decomposition activity of 22.7 FPU / mL and a protein concentration of 22.3 g / L.
  • a concentrated solution having a filter paper decomposition activity of 25.4 FPU / mL and a protein concentration of 27.4 g / L was obtained.
  • the concentrate thus obtained was used as a cellulase agent.
  • Example 2 Examination of enzyme composition and enzyme activity of cellulase agent and various cellulase preparations of Example 1
  • 2-1 Examination of protein composition by SDS-PAGE
  • the cellulase agent for 5 lots obtained by the method of Example 1 and a commercially available improved cellulase preparation (Cellulase SS (manufactured by Nagase ChemteX Corporation) and Cellic CTec2 (manufactured by Novozymes, Inc .: simply referred to as "CTec2" )) was subjected to SDS-PAGE to examine the protein composition.
  • Cellulase SS manufactured by Nagase ChemteX Corporation
  • Cellic CTec2 manufactured by Novozymes, Inc .: simply referred to as "CTec2"
  • Example 2 is an electrophoretogram showing the results of protein separation and detection (by Coomassie Brilliant Blue (CBB) staining) by SDS-PAGE (lanes M1 and M2: molecular weight markers, lane 1: cellulase SS, lane 2: CTec2, and lanes 3 to 7: cellulase agents obtained by the method of Example 1 (for 5 lots)).
  • CBB Coomassie Brilliant Blue
  • the cellulase obtained by the method of Example 1 is a cellulase mainly composed of CBH and EG, since most proteins are contained in the molecular weight marker range of 40 kDa to 66.2 kDa. .
  • CBH1 63 kDa
  • CBH2 58 kDa
  • EG1 55 kDa
  • EG2 43 kDa
  • the cellulase agent obtained by the method of Example 1 contains the largest amount of CBH1 belonging to family 7 of the major enzyme of Trichoderma cellulase, and also the cellulase agent of Trichoderma cellulase, as seen in lanes 3 to 7 in FIG.
  • the bands presumed to be the major enzyme species CBH2, EG1, and EG2 also tended to be relatively large.
  • the cellulase agent obtained by the method of Example 1 has a large cellulase group without adjusting the mixing ratio of complicated cellulase protein groups (including minor enzyme species called accessory enzymes). It turned out to be an enzyme that occupies a part.
  • the enzyme titer of the cellulase preparation (total titer: filter paper decomposition) was calculated by calculating the ratio “B / A” of ⁇ -glucosidase activity to filter paper decomposition activity in various cellulase preparations and bacterial cellulase production cellulases. (Corresponding to the activity), the relative increase in the ⁇ -glucosidase activity was compared.
  • the cellulase agent of Example 1 has a low ⁇ -glucosidase activity / filter paper degrading activity (B / A), similarly to a commercially available unmodified cellulase preparation (such as Celluclast 1.5 L) and a non-recombinant Trichoderma reesei strain. I found out. Compared with the other strains of Trichoderma reesei, the cellulase agent of Example 1 had an increased filter paper degrading activity when evaluated per ⁇ -glucosidase activity.
  • CTec2 showed an extremely high B / A of 22 to 39 in the literature, and 3.28 even for the cellulase SS of the improved cellulase preparation having a relatively low B / A. .
  • FIG. 3 shows each enzyme activity ( ⁇ -glucosidase activity (BGL: U / mL), cellobiohydrolase activity (CBH: U / mL) and filter paper decomposition activity in the culture supernatant 171 hours after the start of the main culture. (FPA: FPU / mL)).
  • BGL U / mL
  • CBH U / mL
  • FPA FPU / mL
  • Example 3 Saccharification and fermentation of cellulosic biomass using the cellulase agent of Example 1
  • Sugarcane bagasse is steamed at 200 ° C. for 30 minutes with steam, and the water-insoluble fraction after washing with water is dehydrated using a filter cloth until the water content becomes about 70% by weight. used.
  • the cellulase agent obtained by the method of Example 1 was used for saccharification and fermentation of cellulosic biomass. Saccharification and fermentation were performed as follows.
  • Steamed bagasse (cellulosic biomass) was placed in a 300 mL glass container equipped with a three-one motor with helical ribbon blades. While keeping the glass container warm at 50 ° C. in a water bath, a cellulase agent was added so as to be 10 FPU / g (dry biomass weight), and the mixture was stirred at 50 rpm for 4 hours to liquefy biomass solids.
  • This liquefied liquid contained about 24% by weight of solids and contained about 12 g / L glucose and about 30 g / L cellobiose (sugar liberated from biomass by enzymatic saccharification).
  • yeast was inoculated into an Erlenmeyer flask containing 100 mL of YPD medium, cultured at 150 ° C. for 3 days at 30 ° C., and then the cell concentration in the culture solution was adjusted to 200 g (wet weight) / L by centrifugation.
  • a yeast solution was prepared as follows.
  • a liquefied liquid of the biomass solids is adjusted to pH 5.4, and the yeast liquid is added to the liquefied liquid (in a 100 mL glass container) so as to have a wet weight of 2 g or 20 g (per liter of fermentation liquid).
  • the yeast was cultured while keeping the temperature at 35 ° C. in a water bath and stirring with a magnetic stirrer at 200 rpm to start saccharification and fermentation. Under these conditions, the biomass solids in the culture solution (total of the liquefied solution and the yeast solution) was 21.7% by weight, and the glucose component (present as cellulose) was originally 51.8% by weight in the dry solids of the steamed bagasse. %, 57.3 g / L of ethanol would theoretically be produced by yeast fermentation. The ethanol concentration and cellobiose concentration in the culture solution were measured over time.
  • FIG. 4 shows the concentration of ethanol in the culture solution when 2 g and 20 g (per liter of fermentation liquor) of yeast were cultured using the cellulosic biomass treated with the cellulase agent obtained by the method of Example 1.
  • the time course of cellobiose concentration is shown (a: wild-type yeast (TJ14 strain) and b: ⁇ -glucosidase surface display yeast).
  • the cellobiose concentration decreased regardless of the initial yeast concentration, and the ethanol concentration in a 72-hour culture reached 52.1 to 52.5 g / L (90% of the theoretical yield). 0.9 to 91.6%).
  • the 2 h (wet weight) / L has a slightly lower fermentation rate, so the ethanol concentration in the 24-hour culture is slightly lower, but the same in the 48-hour culture.
  • the ethanol concentration reached 49.5 g / L. That is, when the target set value of the ethanol production rate was 1 g / (L ⁇ time), it was found that there was no problem even if the initial yeast concentration was 2 g (wet weight) / L.
  • the secretion of the enzyme into the culture supernatant was extremely low. Therefore, instead of the culture supernatant, a yeast suspension was prepared and the ⁇ -glucosidase activity on the cell side was measured (Table 2).
  • the activity value was below the detection limit (Not detected), and the yeast transformed so that ⁇ -glucosidase was displayed on the surface showed a significantly higher activity value.
  • the ratio of ⁇ -glucosidase activity (U) to filter paper decomposition activity (FPU) was calculated.
  • the ratio was estimated as "the ratio of the ⁇ -glucosidase activity of yeast to the filter paper decomposition activity of externally added cellulase".
  • the cellulase agent obtained by the method of Example 1 was treated as an externally added cellulase. Since this externally added cellulase reacted at 10 FPU / g (dry biomass) at a cellulose (dry matter) concentration of 24% by weight, it was assumed that 1 L of the culture solution contained 2,400 FPU of filter paper decomposing activity.
  • the surface-displaying yeast was used at a wet weight of 2 g / L in the saccharification and fermentation culture, the ⁇ -glucosidase activity contained in 1 L of the culture solution was 409.2 U (at 35 ° C.) and 613.0 U (at 50 ° C.). . Therefore, the ratio of ⁇ -glucosidase activity (U) to filter paper degrading activity (FPU) was 0.17 (evaluated at 35 ° C.) and 0.25 (evaluated at 50 ° C.) using ⁇ -glucosidase surface-displaying yeast. Evaluation). This ratio is not significantly different from the values (B / A) of the non-recombinant strains of Celluclast 1.5L and Trichoderma reesei (T. An unexpected result was shown that the yield was improved.
  • Example 4 repeated fermentation of cellulosic biomass with yeast recovery
  • Example 3 was a one-batch fermentation culture, but in this example, seven batches of repeated fermentation culture involving the recovery of yeast cells were performed. The procedure is the same as that of the third embodiment except that the following points are changed.
  • CSL corn steep liquor
  • the number of viable bacteria per gram of yeast-containing slurry is 2.8 ⁇ 10 7 to 3.9 ⁇ 10 7.
  • the yeast displaying ⁇ -glucosidase on the surface layer also degrades cellobiose and efficiently incorporates sugar into yeast, so that the number of viable bacteria per gram of yeast-containing slurry is 6.9 ⁇ 10 7 to 1.1 ⁇ 10 8 . Reached.
  • Example 5 Production of cellulase by Trichoderma reesei RUT-C30 using bagasse
  • Preculture and main culture of Trichoderma reesei RUT-C30 were performed in the same manner as in Example 1 except that steamed bagasse prepared as described in Example 3 was used instead of Avicel.
  • the main culture was performed for 168 hours.
  • 1 (w / v)% of steamed bagasse was added, and in the main culture, 4 (w / v)% of steamed bagasse was added in consideration of the cellulose content in the steamed bagasse.
  • FIG. 6 is a graph showing changes in pH and changes in cellulase activity (filter paper decomposition activity (FPU / mL)) and protein concentration (mg / mL) of the culture supernatant over the culture period of the main culture.
  • the pH was maintained between 3.5 and 4 hours after the start of the culture.
  • the filter paper-degrading activity and the protein concentration increased almost in tandem, and the filter paper-degrading activity was 1.25 FPU / mL, resulting in a culture supernatant. This was concentrated as described in Example 1 and used in the following examples.
  • Example 6 Saccharification and fermentation of cellulosic biomass using the cellulase agent of Example 5
  • Saccharification and fermentation was carried out in the same manner as in Example 3, except that the cellulase agent obtained by the method of Example 5 was used instead of the cellulase agent obtained by the method of Example 1.
  • the initial yeast concentration in the saccharification and fermentation culture was 2 g (wet weight) / L.
  • the results are shown in FIG. 7 (a: ethanol concentration and b: cellobiose concentration).
  • Example 7 Saccharification and fermentation of cellulosic biomass using the cellulase agent of Example 5
  • Laboratory yeast A ⁇ -glucosidase surface-displaying yeast was prepared in the same manner as in Preparation Example 1, except that Saccharomyces cerevisiae BY4741 strain was used as a host. Saccharification and fermentation was performed in the same manner as in Example 6, except that the ⁇ -glucosidase surface-displaying yeast and the wild-type yeast Saccharomyces cerevisiae BY4741 were used.
  • FIG. 8 A: ethanol concentration and B: cellobiose concentration).
  • ⁇ -glucosidase activity of the yeast displaying the surface layer of ⁇ -glucosidase was measured at 35 ° C. in the same manner as in Example 3. As a result, the value of ⁇ -glucosidase activity per 1 L of the culture solution was 63.6 U. Further, the “ratio of ⁇ -glucosidase activity of yeast to filter paper-degrading activity of externally added cellulase” was determined in the same manner as in Example 3. The externally added cellulase contained a filter paper-degrading activity of 2400 FPU in 1 L of culture solution. Therefore, this ratio was 0.02.
  • Fig. 8 shows the results of saccharification and fermentation using a ⁇ -glucosidase surface-displaying yeast (BY4741 strain) and a wild-type yeast BY4741 strain (A: ethanol concentration and B: cellobiose concentration).
  • A ethanol concentration
  • B cellobiose concentration
  • SEQ ID NO: 1 SEQ ID NO: 1 and a reverse primer (SEQ ID NO: 2)) and a primer pair for disrupting the leucine biosynthesis gene (Leu2 disruption forward primer (SEQ ID NO: 3) and reverse primer (SEQ ID NO: 4)) to obtain a loxP sequence.
  • a fragment of the uracil biosynthesis gene and a part of the leucine biosynthesis gene of yeast are introduced by introducing a PCR fragment obtained by PCR using a pUG6 series plasmid (obtained from EUROSCARF) having a drug resistance marker Prepared. Plasmid pIU-X3 (Appl.
  • Microbiol. Containing a xylose metabolism gene (xylose reductase (XR) gene derived from Pichia stippitis, xylitol dehydrogenase (XDH) gene derived from Pichia stippitis, and xylulokinase (XK) gene derived from Saccharomyces cerevisiae).
  • XR xylose reductase
  • XDH xylitol dehydrogenase
  • XK xylulokinase
  • TJ14 ⁇ L-X3 xylose-metabolizing yeast: this strain is also referred to as “X3 strain” having xylose metabolic ability was obtained by screening for strains that complemented uracil auxotrophy. Subsequently, the xylosidase gene (xyd) derived from Aspergillus oryzae (XylA gene described in APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2004, p.5407-5414) under the control of the GAPDH promoter was ⁇ -agglutinin.
  • xyd xylosidase gene derived from Aspergillus oryzae
  • Aspergillus oryzae XylA gene described in APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2004, p.5407-5414
  • the TJ14 ⁇ L-X3 strain was transformed by cutting the surface display type plasmid pRS405-Xyd, which is expressed so as to be fused with HpaI, from pRS405 (containing the leucine synthesis gene) (obtained from Stratagene). Digested with GAPDH promoter (SEQ ID NO: 5), the glucoamylase secretion signal (SS) gene derived from R.
  • pRS405-Xyd which is expressed so as to be fused with HpaI, from pRS405 (containing the leucine synthesis gene) (obtained from Stratagene).
  • GAPDH promoter SEQ ID NO: 5
  • SS glucoamylase secretion signal
  • a TJ14-X3-Xyd strain (xylose-metabolizing xylosidase surface-displaying yeast: this strain is also referred to as “X3-Xyd # 1 strain”) having both the ability and the ability to degrade xylo-oligosaccharides was obtained.
  • Example 8 Xylan liquefaction fermentation using the cellulase agent of Example 1
  • 8-1 Xylan liquefaction fermentation
  • a 50 mL Corning tube is charged with 2 mL (2 g) of 5 ⁇ YP medium, 2 g of xylan, 2 mL (2 g) of sterilized water and 3 mL (3 g) of the cellulase agent obtained by the method of Example 1, and rotated with a thermoblock rotator (scale 5). ) At 50 ° C for 4 hours to obtain a liquefied liquid.
  • each yeast solution was prepared for the X3 strain and the X3-Xyd ⁇ # 1 strain.
  • One loopful of a yeast culture colony of a YPD plate was inoculated into 5 mL of a preculture medium (2% by weight of YP-xylose), and cultured at 30 ° C. for 6 hours at 150 rpm, and then a main culture medium (2% by weight of YP-xylose) 100 mL was inoculated with 5 mL of the preculture, and cultured at 30 ° C. for 3 days at 150 rpm. Thereafter, a yeast solution was prepared by centrifugation so that the cell concentration in the culture became 200 g (wet weight) / L. .
  • yeast solution 0.999 mL (0.999 g) of yeast solution was added to 8.98 g of the liquefied liquid in the 50 mL Corning tube, and the Corning tube was capped with a silicone rubber stopper with a needle, and rotated under a thermoblock rotator (scale 5). And fermentation culture was performed at 35 ° C.
  • the concentration at the start of liquefaction is 20% by weight of xylan and 30% by weight of the cellulase agent of Example 1 assuming that 5 ⁇ YP medium is 1 ⁇ .
  • the concentration at the start of fermentation using the liquefied liquid obtained at this concentration is as follows.
  • the yeast solution was 10% by weight (cells 20 g / kg (culture solution)).
  • the ethanol concentration in the culture was measured over time.
  • FIG. 9 shows the results.
  • FIG. 9 shows the results of ethanol production of xylose-metabolizing yeast (strain X3) and xylose-metabolizing xylosidase surface display yeast (X3-XydX # 1 strain) using xylan treated with the cellulase agent obtained by the method of Example 1. Is shown. As is clear from FIG. 9, the combination of the cellulase agent of Example 1 and the xylose-metabolizing xylosidase surface-displaying yeast (X3-Xyd # 1 strain) is higher than that of the xylose-metabolizing yeast (X3 strain) to which only the xylose metabolizing ability is imparted. The ethanol concentration was obtained.
  • the cellulase agent of Example 1 By using the cellulase agent of Example 1 in combination with a xylo-oligosaccharide-degrading enzyme (xylosidase) displayed on the surface of yeast, ethanol yield was improved. Therefore, the cellulase agent of Example 1 can be applied to a biomass containing a C5 sugar such as xylan, xylo-oligosaccharide, or xylose, and further used in combination with a yeast displaying a xylo-oligosaccharide-degrading enzyme such as xylosidase on the surface. Thereby, the ethanol yield can be improved.
  • a xylo-oligosaccharide-degrading enzyme xylosidase
  • X Xyd activity of the yeast solution was measured at 35 ° C. No activity was detected in the yeast solution supernatant for both the X3 strain and the X3-Xyd # 1 strain.
  • the X3-Xyd # 1 strain had an Xyd activity of 0.17 U / mL in the cells, whereas the X3 activity was not detected in the X3 strain.
  • pCUA-Rumal2816 A plasmid obtained by cloning a ⁇ -glucosidase gene (GenBank Sequence ID: X1545.1) derived from Ruminococcus albus between BamHI and EcoRI of pCUA (pCU plasmid (Okano et al., Appl Microbiol Biotechnol, 2007, No. 75, p.
  • a plasmid (pCUA) was prepared in which a PgsA anchor (subunit of poly- ⁇ -glutamic acid biosynthetic enzyme complex PgsBCA derived from Bacillus subtilis) was inserted between NdeI and BamHI.
  • PgsA anchor subunit of poly- ⁇ -glutamic acid biosynthetic enzyme complex PgsBCA derived from Bacillus subtilis
  • the above ⁇ -glucosidase gene was cloned between BamHI-EcoRI of pCUA).
  • the transformed lactic acid bacteria were introduced into the MRS medium containing 5 ⁇ g / mL of erythromycin, and the transformed lactic acid bacteria strain (a lactic acid bacterium displaying ⁇ -glucosidase on the surface: this strain is also referred to as “pCUA-Rumal 2816 strain”)
  • the cell ⁇ -glucosidase activity of the transformed lactic acid bacteria strain was 1.41 U / g (wet weight of lactic acid bacteria) at the time of one-day culture.
  • Example 9 Lactic acid fermentation using the cellulase agent of Example 1.
  • a liquefied bagasse solution was prepared using the cellulase agent obtained in the method of Example 1.
  • This liquefied liquid contained about 24% by weight of solids and contained about 21 g / L glucose and about 32 g / L cellobiose (sugar liberated from biomass by enzymatic saccharification).
  • the cellulase agent of this lot had a filter paper decomposition activity of 29.2 FPU / mL and a BGL activity of 0.8 U / mL (50 ° C.) or 0.21 U / mL (35 ° C.).
  • a lactic acid bacterium solution of pCUA-Rumal 2816 strain was prepared. 20 mL of MRS medium supplemented with 5 ⁇ g / ml of erythromycin was inoculated with 2 mL of the passage solution, allowed to stand at 37 ° C. for 8 hours, and then inoculated with 20 mL of the precultured medium in 400 mL of a new MRS medium (adding 5 ⁇ g / ml of erythromycin). And incubated at 37 ° C. for 1 day to obtain a lactic acid bacterium solution having a cell concentration of 20 g (wet weight) / L in the culture solution.
  • An MRS medium (containing no sugar: 10 g of protease peptone No. 3, 10 g of bovine extract, 5 g of yeast extract, 10 g of Tween 80, 2 g of diammonium hydrogen citrate, 5 g of sodium acetate, 5 g of magnesium acetate so that the liquefied liquid is 75% by weight.
  • the lactic acid bacteria were cultured while keeping the temperature at 35 ° C.
  • the initial pH at the start of the culture was set at about 5, and during the culture, the pH was adjusted to about 5 with calcium carbonate. Lactate concentration and cellobiose concentration in the culture solution were measured over time.
  • FIG. 10 shows a case where a cellulosic biomass treated with the cellulase agent obtained by the method of Example 1 was used to culture 20 g (per liter of culture solution) of a lactic acid bacterium (pCUA-Rumal 2816 strain) with a wet weight of 20 g (per liter of culture solution).
  • 2 shows the time course of the lactic acid concentration (A) and cellobiose concentration (B) in the culture solution.
  • lactic acid fermentation can also be performed by using the cellulase agent of Example 1 in combination with a lactic acid bacterium displayed on the surface of ⁇ -glucosidase.
  • the present invention is useful for producing ethanol, lactic acid, and the like, and for producing foods, pharmaceuticals, and various industrial products using ethanol, lactic acid, and the like as raw materials.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

セルラーゼ剤を製造する方法を開示する。この方法は、トリコデルマ属微生物を、pH1以上かつ5未満にて、少なくとも2つのグルコースがβ-1,4結合した多糖を含有する培地にて培養し、セルラーゼ剤を生産させる工程を含み、該セルラーゼ剤の濾紙分解活性に対する該セルラーゼ剤におけるβ-グルコシダーゼ活性の比率が3より低い。さらに、上記方法で製造されたセルラーゼ剤で処理したセルロース材料を含有する培地を用いる、糖化発酵産物の製造方法および表層提示微生物の培養方法を開示する。これらの方法によれば、製造者の立地環境や生産規模に関わらず、セルロース系バイオマスから糖化発酵産物を効率よく製造し得る。

Description

セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法
 本発明は、セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法に関する。
 セルロース系バイオマスの酵素糖化を工業的に利用するにあたり、エタノールなどの糖化発酵産物の製造地と酵素生産の立地的関係が注目されている(非特許文献1)。糖化発酵産物の製造者が、酵素糖化に用いられる高性能酵素を当該酵素の供給者から入手するには、大容量の酵素の運搬を要し、場合によっては長距離となるため輸送コストがかかる。さらに、製造者の生産規模によっては、糖化発酵産物の製造への使用までの酵素の保管を要する。このため、エタノールなどの糖化発酵産物の製造者の立地環境および生産規模に淘汰が生じ得、当該糖化発酵産物の生産技術の普及または拡大の阻害につながり得る。
 一方、糖化発酵産物を製造する性能を高めるための酵素配合、高いセルラーゼ生産能力を示す菌株の作出やプロセスの開発などの種々の試みがなされている。
 非特許文献2には、Celluclast 1.5L(ノボザイムズ社製:主にエンド型およびエキソ型のグルカナーゼを含む。非改良型セルラーゼ製剤)を、Novozyme 188(ノボザイムズ社製:主にβ-グルコシダーゼを含む)とブレンドして酵素糖化に用いる方法が記載されている。
 非特許文献3には、カルボキシメチルセルロースの加水分解に際し、Celluclast 1.5Lに対するβ-グルコシダーゼ(Novozyme 188相当)のブレンド比率(酵素の質量濃度を基準にした)が、例えば0.5あるいは1.0であることが記載されている。この方法では、β-グルコシダーゼを、セルラーゼに対して非常に多くの量で補充する。
 非特許文献4には、セルラーゼに補充するβ-グルコシダーゼを、アルギン酸カルシウムへの固定化により再利用することが示されている。
 非特許文献5には、トリコデルマ・リーセイ(Trichoderma reesei)がセルラーゼ生産菌としてよく用いられること、また、親株のトリコデルマ・リーセイQM6aに比べて突然変異を誘発したトリコデルマ・リーセイRUT-C30などが、親株より高いセルラーゼ生産能力を示すことが記載されている。
 非特許文献6には、トリコデルマ・リーセイRUT-C30の培養液に、それと同等量の市販のセルラーゼ、すなわちCellic CTec2またはCellic HTec2(ともにノボザイムズ社製:改良型セルラーゼ製剤)と、Novozyme 188とを添加することにより、バイオマスの分解活性が高められ、その結果、改良型セルラーゼ製剤の使用量を抑えられることが報告されている。
 非特許文献7には、低いβ-グルコシダーゼ活性(約8FPU/mLに対してほぼ0に近いβ-グルコシダーゼ活性)を示すトリコデルマ・リーセイを、β-グルコシダーゼを生産するアスペルギルス(Aspergillus)属糸状菌と共培養すると、その培養液のセルラーゼ活性(アビセラーゼ活性)に対するβ-グルコシダーゼの活性の比率を、Celluclast 1.5LとNovozyme 188との混合液と同等にできることが示されている。
 特許文献1には、アスペルギルス属微生物のβ-グルコシダーゼ遺伝子をトリコデルマ属微生物のプロモーター制御下で発現する形質転換体を得ることにより、セルロース系バイオマスを糖化する方法が記載されている。本文献では、β-グルコシダーゼをコードする遺伝子と連結する種々のプロモーターを検討し、最適化を図っている。
 非特許文献8には、トリコデルマ・リーセイにおいて目的のβ-グルコシダーゼを発現するプロモーターの選定と最適化には制約があるため、β-グルコシダーゼを分泌発現するように形質転換した酵母をセルロース系バイオマスからのエタノール生産に利用することが記載されている。
 しかし、上記非特許文献および特許文献のいずれに記載の技術を用いたとしても、依然として、酵素提供者に対する製造者の立地環境や生産規模による淘汰の懸念は存在する。このため、製造者の立地環境や生産規模に関わらず、セルロース系バイオマスから糖化発酵産物を効率よく製造し得る新たな技術開発が望まれている。
国際公開第2013/115305号
E. Johnsonら,Biofuels. Bioprod. Bioref 10:164-174 (2016) Rosales-Calderonら,PeerJ 2:e402 (2014) V Braboら,J Chem Technol Biotechnol 2002, 77:15-20 Chien-Tai TsaiおよびAnne S. Meyer,Molecules 2014, 19, 19390-19406 Robyn PetersonおよびHelena Nevalainen,Microbiology (2012), 158, 58-68 Rana V and Ahring BK,Molecular Enzymology and Drug Targets, 2015, volume 1, issue 1:3 Kolasaら、Bioresource Technology 169 (2014) 143-148 T. Treebupachatsakulら,Journal of Bioscience and Bioengineering, VOL. 121 No. 1, 27-35, 2016
 本発明は、製造者の立地環境や生産規模に関わらず、セルロース系バイオマスから糖化発酵産物を効率よく製造し得る方法を提供することを目的とする。
 本発明は、セルラーゼ剤を製造する方法を提供し、この方法は、
 トリコデルマ属微生物を、pH1以上かつ5未満にて、少なくとも2つのグルコースがβ-1,4結合した多糖を含有する培地にて培養し、セルラーゼ剤を生産させる工程
を含み、
 該セルラーゼ剤の濾紙分解活性に対する該セルラーゼ剤におけるβ-グルコシダーゼ活性の比率が3より低い。
 1つの実施形態では、上記トリコデルマ属微生物はトリコデルマ・リーセイである。
 1つの実施形態では、上記トリコデルマ属微生物は、セルラーゼ剤に関して非遺伝子組換えの微生物である。
 1つの実施形態では、上記セルラーゼ剤は、セロビオヒドロラーゼおよびエンドグルカナーゼを含む。
 1つの実施形態では、上記セルラーゼ剤は、キシラナーゼをさらに含む。
 本発明は、糖化発酵産物の製造方法を提供し、この方法は、
 上記方法で製造されたセルラーゼ剤で処理したセルロース材料を含有する培地を用いて、β-グルコシダーゼ表層提示微生物を培養し、糖化発酵産物を得る工程
を含む。
 1つの実施形態では、上記β-グルコシダーゼ表層提示微生物の酵素力価は、上記セルラーゼ剤の濾紙分解活性に対する該微生物のβ-グルコシダーゼ活性の比率として、0.02~2.5である。
 1つの実施形態では、上記セルロース材料は、セルロース系バイオマスである。
 1つの実施形態では、上記糖化発酵産物はエタノールである。
 1つの実施形態では、上記β-グルコシダーゼ表層提示微生物はβ-グルコシダーゼ表層提示酵母である。
 1つの実施形態では、上記糖化発酵産物は乳酸である。
 1つの実施形態では、上記β-グルコシダーゼ表層提示微生物はβ-グルコシダーゼ表層提示乳酸菌である。
 1つの実施形態では、上記糖化発酵産物の製造方法は、上記セルラーゼ剤を、上記セルラーゼ剤の製造方法により製造する工程をさらに含む。
 本発明はさらに、糖化発酵産物の製造方法を提供し、この方法は、
 上記方法で製造されたセルラーゼ剤で処理したキシロース含有多糖を含む材料を含有する培地を用いて、キシロースを代謝しかつキシロシダーゼを表層提示する微生物を培養し、糖化発酵産物を得る工程を含む。
 1つの実施形態では、上記糖化発酵産物の製造方法は、上記セルラーゼ剤を、上記セルラーゼ剤の製造方法により製造する工程をさらに含む。
 本発明はさらに、表層提示微生物の培養方法を提供し、この方法は、
 上記方法で製造されたセルラーゼ剤で該セルラーゼ剤が分解する多糖を含む材料を処理する工程、および
 該処理された材料を含む培地で該表層提示微生物を培養する工程
を含み、
 該表層提示微生物は、該処理された材料から該微生物が代謝する糖を生成する酵素を表層提示する。
 本発明によれば、セルロース系バイオマスからの糖化発酵産物の製造に有用なセルラーゼ剤を製造する方法が提供される。本発明によれば、製造者の立地環境や生産規模に関わらず、セルロース系バイオマスから糖化発酵産物を効率よく製造し得る。
実施例1におけるトリコデルマ・リーセイRUT-C30の本培養の培養期間にわたるpH変化および培養上清のセルラーゼ活性(濾紙分解活性「FPU」)とタンパク質濃度の変化を示すグラフである。 実施例1の方法で得られたセルラーゼ剤(5ロット分)および市販の改良型セルラーゼ製剤のSDS-PAGEによるタンパク質の分離および検出(クマシーブリリアントブルー(CBB)染色による)の結果を示す電気泳動図である。 実施例1におけるトリコデルマ・リーセイRUT-C30の本培養においてpH3.5調整およびpH5.0調整のそれぞれの場合について、本培養の培養開始から171時間後の培養上清中のβ-グルコシダーゼ活性(BGL)、セロビオヒドロラーゼ活性(CBH)およびセルラーゼ活性(FPA)を示すグラフである。 実施例1の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて湿重量2gおよび20g(発酵液1Lあたり)の酵母(野生型酵母(a)またはβ-グルコシダーゼ表層提示酵母(b))を培養した場合の、培養液中のエタノール濃度およびセロビオース濃度の経時変化を示すグラフである。 実施例1の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて野生型酵母またはβ-グルコシダーゼ表層提示酵母(BGL表層提示酵母)の繰り返し発酵培養を行った場合の培養液中のエタノール濃度(a)およびセロビオース濃度(b)の経時変化を示すグラフである。 実施例5におけるトリコデルマ・リーセイRUT-C30の本培養の培養期間にわたるpH変化および培養上清のセルラーゼ活性(濾紙分解活性:FPU/mL)とタンパク質濃度(mg/mL)の変化を示すグラフである。 実施例5の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて野生型酵母TJ14またはそのβ-グルコシダーゼ表層提示酵母TJ14-BGL(SED1)を培養した場合の、培養液中のエタノール濃度(a)およびセロビオース濃度(b)の経時変化を示すグラフである。 実施例5の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて野生型酵母(野生型(BY4741))またはそのβ-グルコシダーゼ表層提示酵母(BGL表層提示酵母(BY4741))を培養した場合の、培養液中のエタノール濃度(A)およびセロビオース濃度(B)の経時変化を示すグラフである。 実施例1の方法で得られたセルラーゼ剤で処理したキシランを用いた、キシロース代謝性酵母(X3株)およびキシロース代謝性キシロシダーゼ表層提示酵母(X3-Xyd #1株)のエタノール生産の結果を示す。 実施例1の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて湿重量20g(培養液1Lあたり)のβ-グルコシダーゼ表層提示乳酸菌(pCUA-Rumal2816株)を培養した場合の、培養液中の乳酸濃度(A)およびセロビオース濃度(B)の経時変化を示す。
 (セルラーゼ剤の製造方法)
 本明細書において「セルラーゼ剤」とは、セルロースを含む植物細胞壁成分の分解能を有する酵素のうち、少なくとも1つの酵素を含み、セルラーゼ剤全体として植物細胞壁成分の分解能を有する組成物をいう。セルラーゼ剤が分解能を有する細胞壁成分としては、セルロースおよびヘミセルロース、ならびにそれらの分解物が挙げられ、この「分解物」は、二糖以上からなる糖である。セルロースは、グルコースがβ-1,4グリコシド結合(「β-1,4結合」ともいう)により直鎖状に重合した高分子である。ヘミセルロースは、植物細胞壁成分のうち、セルロースおよびペクチン以外の不溶性食物繊維の総称であり、キシラン、マンナン、ガラクタンなどから構成される。
 細胞壁成分の分解能を有する酵素としては、例えば、セルラーゼおよびヘミセルラーゼが挙げられる。
 本明細書において「セルラーゼ」とは、β-1,4-グルカン(例えば、セルロース)のβ-1,4結合を加水分解する酵素をいう。本明細書における「セルラーゼ」は、エンドグルカナーゼ、セロビオヒドロラーゼおよびβ-グルコシダーゼのいずれもを包含していう。
 本明細書において、エンドグルカナーゼ(エンドβ1,4-グルカナーゼ)は、狭義にて「セルラーゼ」とも称される酵素であり、セルロースを分子内部から切断し、グルコース、セロビオース、および/またはセロオリゴ糖(重合度が3以上であり、そして好ましくは10以下であるが、これに限定されない)を生じる。
 本明細書において、セロビオヒドロラーゼ(エキソグルカナーゼ)は、セルロースをその還元末端または非還元末端のいずれかから分解し、セロビオースを遊離する。
 本明細書において、β-グルコシダーゼは、セルロースにおいては、非還元末端からグルコース単位を切り離していくエキソ型の加水分解酵素である。β-グルコシダーゼは、アグリコンまたは糖鎖とβ-D-グルコースとのβ-1,4結合を切断し、セロビオースまたはセロオリゴ糖を加水分解してグルコースを生成する。β-グルコシダーゼは、セロビオースまたはセロオリゴ糖を加水分解する酵素の一つの例である。
 本明細書において「ヘミセルラーゼ」とは、ヘミセルロースを分解する酵素の総称である。ヘミセルラーゼにはキシラン分解酵素が含まれ、キシラン分解酵素として、例えば、キシラナーゼおよびキシロシダーゼが挙げられる。本明細書において「キシラン」は、キシロースがβ-1,4結合により直鎖状に重合した高分子を主鎖とし、種々の糖を側鎖に有するヘテロ糖である。本明細書において、キシラナーゼ(β1,4-キシラナーゼ)」は、キシランのβ-1,4結合を加水分解する酵素をいう。キシラナーゼは、キシランの主鎖部分を内部からランダムに切断し、キシロース、キシロビオースおよび/またはキシロオリゴ糖(重合度が3以上であり、そして好ましくは10以下であるが、これに限定されない)を生じる。本明細書において、キシロシダーゼ(β-キシロシダーゼ)は、キシランを非還元末端からそのβ-1,4結合を加水分解してキシロースを遊離する酵素をいう。
 本明細書において「セルラーゼ活性」とは、セルロースのβ-1,4結合を加水分解する活性であり、例えば、濾紙分解活性(Filter Paper Unit:FPU)がその指標とされる。濾紙分解活性は、Industrial Crops and Products 20 (2004) 49-57に記載のように、Mandelsら(1976)の方法に基づき測定され得る。濾紙分解活性は、濾紙(例えば、Advantec No.1:東洋濾紙株式会社)を基質として用いて1分間に1μmolのグルコースを遊離する酵素量を1ユニット(FPU)として表される。β-グルコシダーゼ活性は、Journal of Bioscience and Bioengineering, VOL.111 No.2, 121-127, 2011に記載のように、p-ニトロフェニルβ-D-グルコピラノシド(pNPG)を基質として用いて、BerghemおよびPetterssonの方法に基づいて測定され得る。β-グルコシダーゼ活性は、1分間に基質p-ニトロフェニルβ-D-グルコピラノシド(pNPG)から1μmolのニトロフェノールを遊離する酵素量を1ユニット(U)として表される。セロビオヒドロラーゼ活性は、基質としてp-ニトロフェニル-β-D-セロビオースに用いた以外はβ-グルコシダーゼ活性と同様にして測定され得る。セロビオヒドロラーゼ活性は、1分間に基質p-ニトロフェニル-β-D-セロビオースから1μmolのニトロフェノールを遊離する酵素量を1ユニット(U)として表される。
 本発明において「トリコデルマ属微生物」とは、トリコデルマ(Trichoderma)属に属する微生物をいう。「トリコデルマ属微生物」は、セルラーゼ剤を生産可能なものであれば特に制限はない。1つの実施形態では、トリコデルマ属微生物は、トリコデルマ・リーセイ(Trichoderma reesei)、トリコデルマ・ハルジアナム(Trichoderma harzianum)、トリコデルマ・ロンギブラキアタム(Trichoderma longibrachiatum)、トリコデルマ・ビリデ(Trichoderma viride)などである。好ましくは、トリコデルマ・リーセイQM6aおよびその派生株である(非特許文献5)。トリコデルマ・リーセイQM6aは例えばATCCより入手可能(ATCC13631)であり、その派生株として、例えばトリコデルマ・リーセイRUT-C30(ATCC56765)やトリコデルマ・リーセイQM9414(ATCC26921)が入手可能である。なお、製品評価技術基盤機構(NITE)からもトリコデルマ・リーセイQM6a(NBRC31326)およびトリコデルマ・リーセイQM9414(NBRC31329)などが入手可能である。1つの実施形態では、トリコデルマ属微生物は、セルラーゼ剤に関して非遺伝子組換え菌株である。
 トリコデルマ属微生物を培養してセルラーゼ剤を生産させる。トリコデルマ属微生物の培養では、通常、マンデルス培地が用いられる。マンデルス培地は、例えば、M.MandelsおよびR.E.Andreotti,Problems and Challenges in the Cellulose to Cellulase Fermentation. Process Biochem 13 (1978) 6-13に記載の方法に従って調製され得る。トリコデルマ属微生物の培養培地は、少なくとも2つのグルコースがβ-1,4結合した多糖を含む。これにより、トリコデルマ属微生物のセルラーゼ剤の生産を誘導し得る。「少なくとも2つのグルコースがβ-1,4結合した多糖」としては、セロビオース、セロビオオリゴ糖、セルロース(例えば、結晶性セルロース(例えば、Avicel(アビセル))などが挙げられる。「少なくとも2つのグルコースがβ-1,4結合した多糖」は、以下に説明するようなセルロース系バイオマスであってもよく、例えば、サトウキビバガスを水蒸気で蒸煮したものが用いられ得る。トリコデルマ属微生物の培養培地は、トリコデルマ属微生物の培養に通常用いられる他の成分(例えば、ペプトン)をさらに含んでもよい。
 本発明においては、トリコデルマ属微生物をpH1以上5未満にて培養する。好ましくは、pH3以上5未満である。上記所定のpHは塩の添加によって調整され得、このような塩としては、微生物培養の際にpH調整に通常用いられる塩(例えば、水酸化ナトリウム)である。上記所定のpHでの培養前にpHを調整することなく培養を行ってもよく、本発明はこのような培養も包含する。例えば、トリコデルマ属微生物を「少なくとも2つのグルコースがβ-1,4結合した多糖」を含有する培地で培養を開始した際、培養培地のpHは5以上(例えば5~6付近)になり得るが、培養の進行につれてpHは5未満(例えば3.5付近)に低下し得る。その後、その低下したpHに調整しながらトリコデルマ属微生物の培養を行ってよい。
 上記所定のpH範囲でトリコデルマ属微生物を培養することにより、トリコデルマ属微生物により、濾紙分解活性に対するβ-グルコシダーゼ活性の比率が3より低いセルラーゼが生産され得る。1つの実施形態では、生産されるセルラーゼは、その濾紙分解活性に対するβ-グルコシダーゼ活性の比率が、1より低い、0.5より低い、0.3より低い、0.2より低い、0.1より低い、0.06より低い、0.04より低い、0.03より低いまたは0.02より低いものである。上記比率の数値は、β-グルコシダーゼ活性を50℃(液化に通常用いられ得る温度)にて測定した場合に得られる値である。50℃で測定したβ-グルコシダーゼ活性は、35℃で測定した場合に比べると高い活性を示す傾向にある。生産されるセルラーゼ剤は、好ましくは、エンドグルカナーゼおよびセロビオヒドロラーゼを含む。pH1未満であれば、トリコデルマ属微生物の生育を抑制するおそれがある。pH5以上であると、生産されるセルラーゼ剤において、β-グルコシダーゼ活性を高め得ても、セルラーゼ総体としての分解能力を示す濾紙分解活性およびセロビオヒドロラーゼ活性を損ない得る。1つの実施形態では、生産されるセルラーゼ剤は、キシラナーゼをさらに含む。生産されるセルラーゼ剤にはキシロシダーゼもまた含まれ得る。
 培養の際の温度、通気、細胞量等の培養条件は、トリコデルマ属微生物の培養で通常用いる条件を用いることができる。培養時間は、初期細胞量または回収する最終セルラーゼ活性に依存するが、例えば、24時間~240時間、好ましくは、72時間~192時間である。トリコデルマ属微生物の培養は、セルラーゼ剤の製造および回収のための培養(「本培養」)を行う前に、予備的な培養(「前培養」)を行ってもよい。
 上記セルラーゼ剤の製造方法で製造されたセルラーゼ剤を、本明細書中では、「TPセルラーゼ剤」ともいう。この「TPセルラーゼ剤」は、例えば、固液分離(例えば、遠心分離およびフィルタ濾過)により、トリコデルマ属微生物の培養液から回収され得る。「TPセルラーゼ剤」は、回収後、必要に応じて、当業者が通常用いる方法(例えば、エバポレーターの使用)によって濃縮されたものであってもよい。
 (表層提示微生物の作製)
 本発明において用いられる「表層提示微生物」について以下に説明する。表層提示微生物は、目的分子(例えば、酵素のようなタンパク質)をその菌体細胞の表層に提示する微生物をいう。
 β-グルコシダーゼ表層提示微生物は、β-グルコシダーゼをその菌体細胞の表層で提示する微生物をいう。例えば、β-グルコシダーゼ遺伝子を含む表層提示カセットを用いて宿主微生物の形質転換を行うことにより、β-グルコシダーゼ表層提示形質転換微生物(単に「β-グルコシダーゼ表層提示微生物」ともいう)が作出される。β-グルコシダーゼは現在、2種類知られており、それぞれβ-グルコシダーゼ1、β-グルコシダーゼ2と称される。β-グルコシダーゼとしては、例えば、アスペルギルス・アクレアタス(Aspergillus aculeatus)由来β-グルコシダーゼ(特に、BGL1)(例えば、国際公開第2015/33948号)、ルミノコッカス・アルブス(Ruminococcus albus)由来のβ-グルコシダーゼ遺伝子(GenBank Sequence ID:X15415.1)が挙げられるが、これに限定されない。
 キシロシダーゼ表層提示微生物は、キシロシダーゼをその菌体細胞の表層で提示する微生物をいう。キシロシダーゼとして、例えば、アスペルギルス・オリゼ(Aspergillus oryzae)由来β-キシロシダーゼ(XylA)が挙げられる。キシロシダーゼ表層提示微生物は、キシロースを代謝する微生物を用いて作出される。キシロースを代謝するキシロースを代謝することができるように遺伝子組換えされた微生物であってもよい。そのような遺伝子組換え微生物として、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)(通常は六炭糖のグルコースを代謝し、五炭糖のキシロースは代謝することができない)が、キシロース代謝性遺伝子を有するように形質転換され得る。キシロース資化性遺伝子としては、キシロース代謝系酵素の遺伝子、例えば、キシロースレダクターゼ(XR)遺伝子(例えば、ピチア・スチピチス(Pichia stipitis)由来:INSDアクセッション番号X59465またはA16164)、およびキシリトールデヒドロゲナーゼ(XDH)遺伝子(例えば、ピチア・スチピチス由来:INSDアクセッション番号X55392またはA16166)、およびキシルロキナーゼ(XK)遺伝子(例えば、サッカロマイセス・セレビシエ由来:INSDアクセッション番号X82408)が挙げられる。これらの3つの遺伝子を発現するように遺伝子組換えされたサッカロマイセス・セレビシエが、キシロシダーゼ表層提示微生物の作製のために好ましく用いられ得る。
 表層提示微生物は、β-グルコシダーゼおよびキシロシダーゼを共に表層提示するものであってもよい。β-グルコシダーゼおよびキシロシダーゼを共に表層提示する微生物は、例えば、微生物を培養する培地がセルロースおよびヘミセルロースを含む場合に有用である。「β-グルコシダーゼ表層提示微生物」は、β-グルコシダーゼを表層提示する限り、他のタンパク質(例えば、キシロシダーゼ)をさらに表層提示する微生物もまた包含する。「キシロシダーゼ表層提示微生物」は、キシロシダーゼを表層提示する限り、他のタンパク質(例えば、β-グルコシダーゼ)をさらに表層提示する微生物もまた包含する。
 宿主微生物は、特に限定されないが、例えば、酵母、乳酸菌、糸状菌、コリネ菌、大腸菌、ザイモナス菌などが挙げられる。アルコール製造への利用の観点からは、アルコール(例えば、エタノール)の発酵能を有する微生物が好ましく、このような微生物としては例えば、酵母が挙げられる。乳酸製造への利用の観点からは、好ましくは乳酸菌である。
 酵母としては、例えば、サッカロマイセス属(Saccharomyces)、ピキア属(Pichia)、シゾサッカロマイセス属(Schizosaccharomyces)、クルイベロマイセス属(Kluyveromyces)、カンジダ属(Candida)などが挙げられる。サッカロマイセス属に属する酵母が好ましく、サッカロマイセス・セレビシエがさらに好ましい。サッカロマイセス・セレビシエの菌株としては、例えば、サッカロマイセス・セレビシエNBRC1440株(独立行政法人製品評価技術基盤機構から入手可能)、サッカロマイセス・セレビシエTJ14株(Moukamnerdら、Appl. Microbiol. Biotechnol.、2010年、第88巻、p.87-94)、サッカロマイセス・セレビシエBY4741株(EUROSCARF等より入手可能)およびサッカロマイセス・セレビシエKF-7株(Tingら、Process Biochem.、2006年、第41巻、p.909-914)が挙げられる。さらに、酵母としては、以下の菌株も挙げられる:ピキア・パストリス(Pichia pastoris)GS115(Invitrogen社製)およびピキア・アノマラ(Pichia anomala)NBRC10213株、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)NBRC1628株、クルイベロマイセス・ラクテイス(Kluyveromyces lactis)NBRC1267株およびクルイベロマイセス・マルシアヌス(Kluyveromyces marxianus)NBRC1777株(Yanaseら、Appl Microbiol Biotechnol、2010年、第88巻、p.381-388)、カンジダ・ユチリス(Candida utilis)NBRC0988株(Tomitaら、PLoS One. 2012; 7(5): e37226)(NBRC株はいずれも独立行政法人製品評価技術基盤機構から入手可能)。
 「乳酸菌」とは、代謝または発酵によって糖類から乳酸を産生する細菌の総称である。乳酸菌は、主として、ビフィズス菌、エンテロコッカス菌、ラクトバチルス菌、ストレプトコッカス菌の4種に分類され得る。好ましくは、ラクトバチルス菌が用いられ得る。乳酸菌としては、ストレプトコッカス属(Streptococcus)、ラクトバチルス属(Lactobacillus)、ビフィドバクテリウム属(Bifidobacterium)、ラクトコッカス属(Lactococcus)、ペディオコッカス属(Pediococcus)、またはリューコノストック属(Leuconostoc)に属する菌が挙げられる。乳酸菌としては、例えば、ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)、ストレプトコッカス・クレモリス(Streptococcus cremoris)、ストレプトコッカス・フェカーリス(Streptococcus faecalis)、ストレプトコッカス・ラクテイス(Streptococcus lactis)、ラクトバチルス・ブルカリカス(Lactobacillus bulgaricus)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・デルブルツキイ(Lactobacillus  delbrueckii)、ラクトバチルス・アラビノースス(Lactobacillus arabinosus)、ラクトバチルス・カウカシクス(Lactobacillus caucasicus)、ラクトバチルス・ラクテイス(Lactobacillus lactis)、ラクトバチルス・ライシュマニ(Lactobacillus Leishmanni)、ラクトバチルス・ムシカス(Lactobacillus musicus)、ラクトバチルス・サーモフィルス(Lactobacillus thermophilus)、ラクトバチルス・プランタルム(Lactobacillus plantarum)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・アドレスセンティス(Bifidobacterium adolescentis)、ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ビフィドバクテリウム・インファンティス(Bifidobacterium infantis)、ラクトコッカス・ラクテイス(Lactococcus lactis)、ラクトコッカス・クレモリス(Lactococcus cremoris)、ペディオコッカス・ダムノサス(Pediococcus damnosus)、およびロイコノストック・メゼンテロイデス(Leuconostoc mesenteroides)などが挙げられる。乳酸菌には、有胞子性乳酸菌もまた包含される。有胞子性乳酸菌は、有胞子性の乳酸菌の総称である。有胞子性乳酸菌としては、例えば、バチルス属(Bacillus)に属する菌が挙げられる。バチルス属に属する有胞子性乳酸菌は、耐熱性(例えば45℃のような高熱下にて生育可能)、高い発酵速度、および広い糖資化性を有するものであり得る。バチルス属(Bacillus)に属する菌としては、例えば、バチルス・コアグランス(Bacillus coagulans、「スポロ乳酸菌」としても知られる)およびバチルス・リンチェニフォルマイス(Bacillus lincheniformis)が挙げられる。
 乳酸菌は、遺伝子組換えがされたものであってもよい。例えば、L-またはD-乳酸合成酵素遺伝子のいずれかを組み込むあるいは破壊した組換え微生物が挙げられる。遺伝子組換え微生物として、例えば、ラクトバチルス・プランタルムldhL1::amyA株(Okanoら, Appl. Environ. Microbiol. 2009, Vol.75, 462-467)、およびラクトバチルス・プランタルムΔldhL1::PxylAB-xpk1::tkt-Δxpk2::PxylAB株(Yoshidaら, Appl. Microbiol. Biotechnol., 2011, Vol.92, 67-76)が挙げられる。ラクトバチルス・プランタルムldhL1::amyA株は、α-アミラーゼを分泌しグルコースからD-乳酸を生成する組換え株であり、ラクトバチルス・プランタルムΔldhL1::PxylAB-xpk1::tkt-Δxpk2::PxylAB株は、グルコースとキシロースの両方からD-乳酸を生成する組換え株である。
 表層提示微生物の作出のために用いられる、各種宿主微生物に関する表層提示技術としては、例えば、特開平11-290078号公報、国際公開第02/085935号、国際公開第2015/033948号、国際公開第2016/017736号、Biotechnology for Biofuels, 7(1):8 (2014)、およびK. Onoderaら,Biochemical Engineering Journal 128 (2017) 195-200(酵母);生物工学会誌,第89巻,第4号,154-160 (2011)、化学工学会第70年会研究発表講演要旨集、セッションID F123(http://doi.org/10.11491/scej.2005.0.255.0)、Appl. Environ. Microbiol., 72(1), 269-275 (2006)およびAppl. Environ. Microbiol., 74(4), 1117-1123 (2008)(乳酸菌)などに記載の技術を用いることができる。表層提示技術では表層提示カセットが用いられ、この表層提示カセットは、アンカータンパク質のアンカードメインをコードするDNAおよび分泌シグナルをコードするDNAを、表層提示されるべきβ-グルコシダーゼをコードするDNAと共に、適切な配置で含み得る。表層提示カセットは、プロモーターとターミネーターとの間に配置され得る。アンカードメインおよび分泌シグナルに関してもまた、上記文献に記載される。アンカードメインとしては、例えば、酵母について、GPIアンカータンパク質(例えば、SED1、α-またはa-アグルチニン(AGα1、AGA1)、FLO1など)のアンカードメイン、乳酸菌については、ペプチドグリカン結合タンパク質AcmAのCAドメインおよびバシルス・ズブチリス(Baccilus subtilis)由来のポリ-γ-グルタミン酸生合成酵素複合体(PgsBCA)のサブユニットであるPgsAタンパク質などが挙げられる。
 表層提示微生物は、担体に固定されてもよい。そのことにより、下述する方法において再使用が可能となる。固定する担体および方法は、当業者が通常用いる担体および方法が用いられる。固定方法としては、例えば、担体結合法、包括法、架橋法などが挙げられる。担体としては、多孔質体が好ましく用いられる。例えば、ポリビニルアルコール、ポリウレタンフォーム、ポリスチレンフォーム、ポリアクリルアミド、ポリビニルフォルマール樹脂多孔質体、シリコンフォームなどの発泡体あるいは樹脂が好ましい。多孔質体の開口部の大きさは、用いる微生物およびその大きさを考慮して決定され得るが、実用酵母の場合、50~1000μmの範囲内が好ましい。また、担体の形状は問わない。担体の強度、培養効率などを考慮すると、球状あるいは柱状(例えば、立方体状)が好ましい。大きさは、用いる微生物により決定すればよいが、一般には、球状の場合、直径が2~50mm、柱状の場合、2~50mm角が好ましい。
 (表層提示微生物の培養方法および糖化発酵産物の製造方法)
 本発明においては、上記のセルラーゼの製造方法で製造されたセルラーゼ剤(「TPセルラーゼ剤」)で、TPセルラーゼ剤が分解する多糖基質を含む材料(「TPセルラーゼ剤分解基質含有材料」)を処理し、この処理物から該微生物が代謝する糖を生成する酵素を表層提示する微生物の培養に用いることができる。「TPセルラーゼ剤分解基質含有材料」として、例えば、セルロース材料およびキシロース含有多糖を含む材料ならびにこれらの混合物が挙げられる。例えば、TPセルラーゼ剤でセルロース材料を処理し、この処理物をβ-グルコシダーゼ表層提示微生物の培養に用いることができる。β-グルコシダーゼ表層提示微生物は、このような培養によって、糖化発酵産物を生産し得る。TPセルラーゼ剤で、キシロース含有多糖を含む材料を処理し、この処理物を、キシロースの代謝能を有しかつキシロシダーゼを表層提示する微生物(「キシロース代謝キシロシダーゼ表層提示微生物」)の培養に用いることができる。「キシロース含有多糖」とは、キシロースを構成成分に含む多糖をいい、少なくとも二糖のキシロースを含む。例えば、キシロース代謝キシロシダーゼ表層提示微生物は、このような培養によって、糖化発酵産物を生産し得る。
 セルロース材料とは、セルロースを含む任意の材料をいう。キシロース含有多糖としては、例えば、キシラン、キシランを含むヘミセルロースが挙げられる。セルロースおよびキシロース含有多糖はともに、加水分解によってより低分子の糖が生じる(例えば、セルロースからグルコースまたはセロビオース、キシロース含有多糖からキシロースまたはキシロビオース)(この反応を「糖化」ともいう)。糖化反応により得られるグルコースまたはキシロース、あるいはその両方を、発酵微生物(例えば、酵母、乳酸菌など)が基質として利用し、発酵産物(例えば、エタノール、乳酸など)を生産し得る(この反応を「発酵」または「発酵生産」ともいう)。糖化および当該糖化により得られる糖を基質に用いた微生物による発酵を合わせて「糖化発酵」ともいう。糖化発酵によって得られる産物を、本明細書では、「糖化発酵産物」ともいう。
 セルロース材料として、セルロース系バイオマスが挙げられる。セルロース系バイオマスとは、生物資源に由来する材料であって、セルロースを含むものをいう。セルロース系バイオマスの利用は、食糧と競合しない点で好ましい。キシロース含有多糖を含む材料としては、例えば、キシランを含む材料およびヘミセルロースを含む材料が挙げられる。セルロース系バイオマスとして植物バイオマスが挙げられる。植物バイオマスは、セルロースおよびヘミセルロースを含み、よって、セルロース材料としても、キシロース含有多糖を含む材料としても用いられ得る。セルロース系バイオマスまたは植物バイオマスとしては、コメ、ムギ、トウモロコシ、サトウキビ、パーム、木材(パルプ)、ネピアグラスなどの生物材料の処理に際して生じる廃棄物などが挙げられる。セルロース系バイオマスまたは植物バイオマスとしては、例えば、稲ワラ、麦ワラ、パーム空果房、バガス(サトウキビ搾汁後の残渣)などが挙げられる。
 TPセルラーゼ剤分解基質含有材料は、前処理が施されたものであってもよい。前処理とは、酵素で基質を分解する前に、その基質を含む材料に対して行う処理であり、これにより、その材料中に含まれていた基質への酵素の作用を容易にする。例えば、セルロースをグルコースまで加水分解するために、セルロース加水分解酵素で処理する前に、酵素のセルロースへの作用を容易にするために、酵素反応の前にセルロースをセルロース材料(例えば、バイオマス)から分離し、露出させる処理をいう。前処理法としては、特に限定されない。例えば、水熱分解、圧搾、蒸煮などが挙げられ、これらの方法を組み合わせて用いてもよい。水熱分解法では、例えば、セルロース系バイオマスを、必要に応じて粉砕し、例えば、約20質量%(乾燥質量)の含量となるように水と混合し、この混合物を熱処理する。水熱処理は、120℃~300℃、好ましくは150℃~280℃、より好ましくは180℃~250℃にて、15秒間~1時間行われる。処理温度および時間は用いるバイオマスによって変動し得、処理温度の上昇は処理時間を短縮し得る。なお、熱処理中に加圧してもよい。圧搾としては、特に限定されないが、例えば、油圧式圧搾機、スクリュープレス、採肉機、プレス脱水機、または遠心分離機等によりセルロース系バイオマスを圧搾する方法が挙げられる。蒸煮方法としては、特に限定されないが、例えば、セルロース系バイオマスを高温の水蒸気により蒸煮する方法が挙げられる。蒸煮するための条件としては、特に限定されないが、例えば、リグノセルロース系バイオマスに対して1質量%~5質量%の硫酸を含浸させて、1.0Mpa~1.6Mpaの圧力下、180℃~200℃にて5分~30分間蒸煮する条件が挙げられる。植物バイオマスの場合、前処理によって得られるセルロースおよびヘミセルロースの量を調整することができる。材料が植物バイオマスである場合、例えば、植物バイオマスを必要に応じて脱リグニン処理後、シュウ酸アンモニウムで処理してペクチンを除去し、次いでアルカリで処理してヘミセルロースを得ることができる。例えば、アンモニア爆砕処理、粉砕処理、イオン液体処理のような前処理法を用いる場合、植物バイオマスからセルロースおよびヘミセルロースを取得することができる。
 TPセルラーゼ剤でTPセルラーゼ剤分解基質含有材料を処理する。この処理は、TPセルラーゼ剤とTPセルラーゼ剤分解基質含有材料とを、好ましくは撹拌下、混合することによりなされ得る。TPセルラーゼ剤でのTPセルラーゼ剤分解基質含有材料の処理について、当該材料の固形分が液化されれば、処理条件は限定されない。例えば、TPセルラーゼ剤のセルロース材料に対する量は、用いるセルロース材料の種類に依存するが、例えば、1~50FPU/g乾燥材料重量、好ましくは5~20FPU/g乾燥材料重量である。例えば、TPセルラーゼ剤のキシロース含有多糖を含む材料に対する量は、用いる材料の種類に依存するが、例えば、10~2000g/kg乾燥材料重量、好ましくは50~800g/kg乾燥材料重量である。処理の温度は、例えば、25~70℃、好ましくは、35~55℃である。
 β-グルコシダーゼ表層提示微生物は、TPセルラーゼ剤で処理されたセルロース材料を含有する培地にて培養される。このような培養によって、β-グルコシダーゼ表層提示微生物は、糖化発酵産物を生産し得る。1つの実施形態では、β-グルコシダーゼ表層提示微生物の酵素力価は、セルロース材料の処理のために(当該微生物の外部から)添加したセルラーゼ(本方法では、TPセルラーゼ剤)の濾紙分解活性に対する該微生物のβ-グルコシダーゼ活性の比率として表した場合、0.02~2.5、好ましくは、0.1~0.7である。上記数値は、β-グルコシダーゼ表層提示微生物が示すβ-グルコシダーゼ活性を35℃(糖化発酵のための微生物培養に通常用いられ得る温度)にて測定した場合に得られる値である。このようなこの酵素力価の比率の範囲内にあることで、β-グルコシダーゼ表層提示微生物による糖化発酵産物の製造を効率的に行い得る。β-グルコシダーゼ表層提示微生物の酵素力価、すなわちTPセルラーゼ剤の濾紙分解活性に対する該微生物のβ-グルコシダーゼ活性の比率は、β-グルコシダーゼ表層提示微生物の種類、培養(例えば、糖化発酵のための培養)の際の初期菌体濃度および温度(例えば、β-グルコシダーゼ表層提示酵母の場合35℃または50℃に設定し得る)によって調整され得る。この酵素力価の比率は、β-グルコシダーゼ活性の測定に通常用いられる温度である50℃にて測定した活性値を用いて求めた場合、例えば、下記の実施例に示すような、より高い値を示し得る。
 キシロシダーゼ表層提示微生物は、TPセルラーゼ剤で処理されキシロース含有多糖を含む材料を含有する培地にて培養される。このような培養によって、キシロシダーゼ表層提示微生物は、糖化発酵産物を生産し得る。
 この培養培地は、処理されたTPセルラーゼ剤分解基質含有材料およびTPセルラーゼ剤を含むものであってよい。培養培地は、表層提示微生物の培養において通常用いる他の成分をさらに含んでもよい。TPセルラーゼ剤でのTPセルラーゼ剤分解基質含有材料の処理は、表層提示微生物の培養前に予め行い得る。また、TPセルラーゼ剤でのTPセルラーゼ剤分解基質含有材料の処理と、表層提示微生物の培養とを並行して行ってもよい。
 表層提示微生物の培養条件は、宿主の微生物の種類に依存するが、当該微生物の生育速度、当該微生物による糖化発酵産物の生産量、および表層提示された酵素(β-グルコシダーゼ、キシロシダーゼなど)の活性などを考慮して適宜設定され得る。培養の条件について、β-グルコシダーゼ表層提示微生物がβ-グルコシダーゼ表層提示酵母である場合を例示して以下に説明するが、これに限定されない。開始時の菌体濃度は特に限定されず、例えば、2g~20g湿重量/L(1×10個/mL~1×10個/mL)程度が挙げられる。培養条件は特に限定されず、通常、グルコースを基質としてエタノール発酵する際の条件であってよい。培養温度は、例えば、30℃~37℃であり、培養pHは、例えば、4~8である。培養時間は、例えば、2日間~3日間である。発酵の終了は、例えば、炭酸ガスの発生量が発酵開始時の10分の1以下になったことなどを目安に判断する。
 表層提示微生物は、培養終了後に回収し、次の培養に繰り返し利用してもよい。このような微生物の回収および繰り返し培養について、例えば、国際公開第2013/146540号に記載された方法が用いられ得る。
 本発明は、糖化発酵産物の製造方法もまた提供する。上記に説明した表層提示微生物の培養の工程により、当該微生物によって、セルロース材料からの糖化発酵産物が生産され得る。糖化発酵産物は、培養する表層提示微生物の種類に依存するが、例えばエタノール(例えば、表層提示酵母の培養により)、乳酸(例えば、表層提示乳酸菌の培養により)などが挙げられる。例えば、表層提示微生物が酵母である場合、糖化発酵産物としてエタノールを製造し得るが、これに限定されない。表層提示微生物は、上記のような表層提示技術以外の改変(例えば、遺伝子組換えによる)を行ってもよい。このような改変として、例えば、生産される糖化発酵産物の変更または糖化発酵産物の生産効率の改善などを目的とした、発酵の代謝系の改変が挙げられる。例えば、複数種のタンパク質(例えば、酵素の組合せ(例えば、β-グルコシダーゼおよびキシロシダーゼ))を表層提示する微生物もまた用いることができる。
 1つの実施形態では、上記の糖化発酵産物の製造方法は、上記のセルラーゼ剤製造方法によりセルラーゼ剤を製造する工程をさらに含む。例えば、糖化発酵産物(例えば、エタノール)を製造する際に用いるセルラーゼ剤を上記セルラーゼ剤の製造方法により製造することによって、当該糖化発酵産物を製造する現場でセルラーゼ剤の調製を行うことができる。
 上記表層提示微生物の培養により得られた糖化発酵産物は、当業者が通常用いる方法によって微生物培養培地から回収され、必要に応じて分離および精製され得る。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 (測定方法)
 本実施例においては、種々の測定を下記のように行った。
 セルラーゼ活性として、濾紙分解活性(FP活性)をIndustrial Crops and Products 20 (2004) 49-57に記載のように、Mandelsら(1976)の方法に基づき測定した。より詳細には、1cm×6cmの濾紙(Advantec No.1:東洋濾紙株式会社)を基質として用いて、これを試料溶液(0.5mLの希釈セルラーゼ液(培養上清)および1.0mLの0.05Mクエン酸緩衝液(pH5.0)を含む)に添加し、50℃にて60分間置いた後、3mLのDNS試薬を添加して反応を停止させた。この混合物の還元糖量をDNS法でアッセイした。DNS法では、混合物を100℃にて5分間加熱した後、5分間氷冷し、ボルテックス後に15000rpmにて5分間遠心分離し、上清を0.2mL得た。次いでこの上清を蒸留水2.5mLに添加してOD=540にて測定した。濾紙分解活性は、この方法で1分間に1μmolのグルコースを遊離する酵素量を1FPU/mLとして表した。
 タンパク質濃度をQuick StartTM Bradford(Bio-Rad Laboratories, Inc.)を用いてブラッドフォード法にて測定した(検量線の基質としてウシ血清アルブミン(BSA)を用いた)。
 β-グルコシダーゼ活性(BGL活性)をJournal of Bioscience and Bioengineering, VOL.111 No.2, 121-127, 2011に記載のように、p-ニトロフェニルβ-D-グルコピラノシド(pNPG)を基質として用いて、BerghemおよびPetterssonの方法に基づいて行った。より詳細には、100μLの3mM pNPG、15μLの1M酢酸緩衝液(pH5.0)、155μLの滅菌水および30μLの酵素希釈液からなる反応液を50℃または35℃にて10分間撹拌した後、0.3mLの1M炭酸ナトリウムを添加して反応を停止させた。遊離したp-ニトロフェノールをマイクロプレートリーダー(SH-1000Lab、株式会社日立ハイテクサイエンス)を用いて400nmにて測定した。β-グルコシダーゼ活性は、1分間に基質から1μmolのニトロフェノールを遊離する酵素量を1ユニット(U)として表した。
 セロビオヒドロラーゼ活性(CBH活性)は、基質としてp-ニトロフェニル-β-D-セロビオースを用いた以外はβ-グルコシダーゼ活性と同様にして測定した。セロビオヒドロラーゼ活性は、1分間に基質から1μmolのニトロフェノールを遊離する酵素量を1ユニット(U)として表した。エンドグルカナーゼ活性(EG活性)は、基質としてp-ニトロフェニル-β-D-カルボキシメチルセルロース(CMC)を用いた以外はβ-グルコシダーゼ活性と同様にして測定した。エンドグルカナーゼ活性は、1分間に基質から1μmolのニトロフェノールを遊離する酵素量を1ユニット(U)として表した。
 キシラナーゼ活性(Xyn活性)の測定では、1.5mLチューブに0.1mLの希釈した試料と0.1mLの2(w/v)%キシラン基質溶液とを加え、撹拌しながら50℃で30分間反応させ、DNS試薬0.6mLを加えて反応を停止し、100℃で5分間加熱し、発色させた。氷上に置き急冷した後、遠心分離(15000rpm、5分、4℃)で上清0.4mLを2mLのイオン交換水と混合し、540nmにおける吸光度を測定し、生成した遊離還元糖をキシロース量に換算した。2(w/v)%キシラン基質溶液は2(w/v)%のブナ(Beechwood)由来キシラン(SIGMA社製)を0.1Mクエン酸緩衝液(pH5.0)に懸濁し、4℃で16時間撹拌したものを遠心分離(10000×g、10分、4℃)により不溶性のキシランを集め10mLの同緩衝液に懸濁し、キシラナーゼ活性測定用の基質溶液とした。コントロール値は50℃で30分間撹拌した試料に2(w/v)%キシラン基質溶液を加え50℃でのインキュベーションを行わずに発色させたものとした。キシラナーゼ活性は、1分間に基質からキシロースを1μmol生成する酵素量を1ユニット(U)として表した。
 キシロシダーゼ活性(Xyd活性)の測定では、1.5mLチューブに試料と合成基質p-ニトロフェニル-β-D-キシロピラノシド(和光純薬工業株式会社製)とを加え、1mM酢酸緩衝液(pH5.0)を50mMになるように調整し、50℃で30分間撹拌しながら反応させ、同量の1M炭酸ナトリウム水溶液を加えて反応を停止し、発色させた。遠心分離(15000rpm、5分、4℃)後の上清を440nmにおける吸光度を測定し、生じたp-ニトロフェノール量を換算した。コントロール値は50℃でのインキュベーション操作を行わずに発色させたものとした。キシロシダーゼ活性は、1分間に基質から1μmolのp-ニトロフェノールを生成する酵素量を1ユニット(U)として表した。
 微生物菌体の酵素活性の測定では、基質との反応のために、酵素希釈液として培養上清または菌体懸濁液を用い、50℃または35℃にて行った。培養上清は、以下に示す72時間フラスコ培養後の菌体培養液を1mL分取し、3500rpmにて5分間の遠心分離により上清を得ることで調製した。菌体懸濁液は、72時間フラスコ培養後の菌体培養液を1mL分取し、3500rpmにて5分間の遠心分離して沈殿物を得、これを滅菌水で洗浄後、湿菌体重量を測定し、このペレットを滅菌水1mLに懸濁して調製した。菌体の酵素活性を、菌体の湿重量1gあたりの酵素活性(U/g)として決定した。
 液化液および糖化発酵培養液中のエタノール濃度および糖(例えば、セロビオース、グルコース、キシロースおよび還元糖)濃度は、HPLC(High performance liquid chromatographyシステム;株式会社日立ハイテクフィールディング、LaChrom Elite)により定量した。HPLCの分離用カラムにはULTRON PS-80H(信和化工株式会社,300mm(L)×8mm(ID))を用い、移動相には超純水(日本ミリポア株式会社製Milli-Qによる精製水)に過塩素酸を添加した3mM過塩素酸水を用い、そして検出器には屈折率検出器を用いた。HPLCの条件は、送液量0.7mL/分およびカラム温度80℃とした。
 糖化発酵培養液中の乳酸濃度は、サンプルと同量の2N塩酸にて乳酸カルシウムを乳酸に変換し、この量をHPLC(High performance liquid chromatographyシステム;株式会社日立ハイテクフィールディング、LaChrom Elite)により定量した。HPLCの分離用カラムにはGL-C610H-S(株式会社日立ハイテクサイエンス,300mm(L)×7.8mm(ID))を用い、移動相には超純水(日本ミリポア株式会社製Milli-Qによる精製水)に過塩素酸を添加したpH2.1の3mM過塩素酸水を用い、そして検出器には紫外検出器を用いた(検出波長:UV400nm)。HPLCの条件は、送液量0.7mL/分およびカラム温度80℃とした。乳酸のDL比を、重量希釈上清を希釈して、イオン交換クロマトグラフィー(Sys1)により決定した。分離用カラムにはMCIGEL CRS15W(三菱ケミカル株式会社製)を用い、移動相には2mM硫酸銅水を用い、そして検出器には紫外検出器を用いた(検出波長:UV254nm)。
 培養後の生菌数を、培養液の一部をYPDプレートに散布して30℃でインキュベートした後に出現するコロニーを計数することにより求めた。
 (調製例1:β-グルコシダーゼ表層提示酵母の調製)
 β-グルコシダーゼ表層提示酵母の調製のため、宿主酵母としてサッカロマイセス・セレビシエTJ14株(Moukamnerdら、Appl. Microbiol. Biotechnol.、2010年、第88巻、p.87-94)を用いた。プラスミドpAUR101-SED1p-OptBGL-SED1-SAG1t(K. Onoderaら,Biochemical Engineering Journal 128 (2017) 195-200:アスペルギウス・アクレアータス由来のβ-グルコシダーゼ遺伝子を含む)をStuIで切断後、酢酸リチウム法によりTJ14株を形質転換し、β-グルコシダーゼ表層提示酵母を得た。
 (実施例1:トリコデルマ・リーセイRUT-C30によるセルラーゼの生産)
 トリコデルマ・リーセイRUT-C30(ATCC56765)の菌株の7日培養菌糸懸濁液5mLを、500mLバッフル付き三角フラスコ中に入れた前培養培地(マンデルス培地に1(w/v)%アビセル(結晶性セルロース)を添加したもの)100mLに接種し、28℃にて175rpmで3日間、前培養した。次いで、この前培養液50mLを、3Lジャー中の本培養培地(マンデルス培地に0.2(w/v)%ペプトンおよび2(w/v)%アビセルを添加したもの)1Lに接種し、通気条件0.2L/分にて上記菌株を培養した。
 なおマンデルス培地は、M.MandelsおよびR.E.Andreotti,Problems and Challenges in the Cellulose to Cellulase Fermentation. Process Biochem 13 (1978) 6-13に記載の方法に従って調製した。すなわち(NHSO:2.1g/L、KHPO:2.0g/L、urea:0.3g/L、CaCl・2HO:0.4g/L、MgSO・7HO:0.3g/L、FeSO・7HO:0.005g/L、CoCl・6HO:0.0037g/L、MnSO・5HO:0.0017g/LおよびZnSO・7HO:0.0014g/Lになるようイオン交換水に混合して使用した。
 本培養では、培養開始後しばらくはpHを制御せず、pHが3.5まで低下した後、NaOHにてpHを3.5に維持するという操作を行った。本培養を171時間続けた。培養開始時、24時間後、48時間後、72時間後、96時間後および171時間後(終了時)に、培養上清のセルラーゼ活性として濾紙分解活性(「FPU」)と、タンパク質濃度とを測定した。
 図1は、本培養の培養期間にわたるpH変化および培養上清のセルラーゼ活性(濾紙分解活性「FPU」)とタンパク質濃度の変化を示すグラフである。pHは、培養開始から48時間後には3.5に維持した。濾紙分解活性とタンパク質濃度とはほぼ連動して増大した。培養開始から171時間後には、濾紙分解活性とタンパク質濃度とはそれぞれ1.39FPU/mL、1.43g/Lに達した。
 171時間後の培養上清を8000gにて10分間遠心分離後、ナイロンフィルター(11μm)を通して濾液を回収し、次いでこの濾液をエバポレーターで濃縮した。得られた濃縮液は、濾紙分解活性が22.7FPU/mL、タンパク質濃度が22.3g/Lであった。また、同様にセルラーゼの生産および濃縮を行ったところ、濾紙分解活性が25.4FPU/mL、タンパク質濃度が27.4g/Lの濃縮液が得られた。このようにして得られた濃縮液をセルラーゼ剤として用いた。
 (実施例2:実施例1のセルラーゼ剤および各種セルラーゼ製剤の酵素組成および酵素活性の検討)
 (2-1:SDS-PAGEによるタンパク質の組成検討)
 実施例1の方法で得られたセルラーゼ剤(5ロット分)および市販の改良型セルラーゼ製剤(セルラーゼSS(ナガセケムテックス株式会社製)およびCellic CTec2(ノボザイムズ社製:本明細書中では単に「CTec2」ともいう))をSDS-PAGEに供し、タンパク質の組成を調べた。図2は、SDS-PAGEによるタンパク質の分離および検出(クマシーブリリアントブルー(CBB)染色による)の結果を示す電気泳動図である(レーンM1およびM2:分子量マーカー、レーン1:セルラーゼSS、レーン2:CTec2、ならびにレーン3~7:実施例1の方法で得られたセルラーゼ剤(5ロット分))。
 既報(D. Tanedaら,Bioresource Technology 121 (2012) 154-160)に基づいて分子量から酵素種(エンドグルカナーゼEG、セロビオヒドロラーゼCBH、β-グルコシダーゼBGL)を推定すると、BGL(78kDa)、CBH1(63kDa)、CBH2(58kDa)、EG1(55kDa)およびEG2(43kDa)となる。実施例1の方法で得られたセルラーゼは、図2では分子量マーカーの40kDaから66.2kDaの範囲にほとんどのタンパク質が含まれていることから、CBHおよびEGを主体とするセルラーゼであることが分かる。
 一方で、各種の改良が施されている市販セルラーゼ製剤(セルラーゼSSとCTec2)のレーンでは、40kDaから66.2kDaの範囲以外にも著量のタンパク質が検出された。特に、CTec2のレーンでは、上記の範囲より高い分子量および低い分子量の両方で、数多くのバンドが検出される傾向があった。本酵素はさまざまなバイオマス種に対して高い糖化能力を示すセルラーゼ製剤であり、上記で推定された酵素種(CBH1(63kDa)、CBH2(58kDa)、EG1(55kDa)およびEG2(43kDa))以外にも、セルロース系バイオマスの糖化を直接的に触媒する、あるいは間接的に触媒を介助するさまざまなタンパク質を含むものと考えられる。
 実施例1の方法で得られたセルラーゼ剤は、図2のレーン3~7に見られるように、トリコデルマ属セルラーゼの主要な酵素のファミリー7に属するCBH1を最も多く含み、さらに同じくトリコデルマ属セルラーゼの主要な酵素種であるCBH2、EG1、およびEG2と推定されるバンドも比較的多い傾向がみられた。このように、実施例1の方法で得られたセルラーゼ剤は、煩雑なセルラーゼ蛋白質群(アクセサリー酵素と呼ばれるマイナーな酵素種を含む)の混合比の調整を伴うことなく、主要なセルラーゼ群が大部分を占める酵素であるということが分かった。
 (2-2:酵素活性の検討)
 実施例1の方法で得られたセルラーゼ剤の中で濾紙分解活性が25.4FPU/mLを示したロット(「2-2」中においては「実施例1のセルラーゼ剤」)について、β-グルコシダーゼ活性(50℃にて測定)を測定した。濾紙分解活性(FPU)(「A」)に対するβ-グルコシダーゼ活性(U)(「B」)の比率(「B/A」)を算出した。以下の表1に示す市販セルラーゼ製剤とトリコデルマ・リーセイの他の菌株および遺伝子改変株については、それらを記載する文献値に基づき同様にB/Aを求めた。この結果を併せて表1に示す(表1中の文献Aは、Hsieh et al. Biotechnology for Biofuels (2015) 8:52であり、および文献Bは、Moreno et al. Biotechnology for Biofuels 2013, 6:160である)。
Figure JPOXMLDOC01-appb-T000001
 表1に見られるように、各種セルラーゼ製剤および菌株生産セルラーゼにおいて、濾紙分解活性に対するβ-グルコシダーゼ活性の比率「B/A」を算出することにより、セルラーゼ製剤の酵素力価(総力価:濾紙分解活性が該当する)においてβ-グルコシダーゼ活性がどの程度高められているのかを相対的に比較した。
 実施例1のセルラーゼ剤は、市販の非改良型のセルラーゼ製剤(Celluclast 1.5Lなど)および非組換えトリコデルマ・リーセイ菌株と同様に、低いβ-グルコシダーゼ活性/濾紙分解活性(B/A)を有することが分かった。他のトリコデルマ・リーセイ菌株と比べて、実施例1のセルラーゼ剤は、β-グルコシダーゼ活性当たりで評価すると、濾紙分解活性が高められた。他方、改良型のセルラーゼ製剤では、CTec2が文献値で22~39と極めて高いB/Aを示し、比較的B/Aが低い改良型セルラーゼ製剤のセルラーゼSSであっても3.28を示した。
 (2-3:トリコデルマ・リーセイ培養条件がセルラーゼ活性に与える影響)
 実施例1の本培養にて調整していた培養時pHを3.5から5.0に変更し、生産される酵素の活性に影響があるかを調べた。図3は、本培養の培養開始から171時間後の培養上清中の各酵素活性(β-グルコシダーゼ活性(BGL:U/mL)、セロビオヒドロラーゼ活性(CBH:U/mL)および濾紙分解活性(FPA:FPU/mL))の結果を示す。各酵素活性について、pH5.0調整(左)および3.5調整(右)の結果を示す。
 図3に示されるように、pHを5.0に調整した場合、pHを3.5に調整した場合と比べて培養上清のβ-グルコシダーゼ活性は増加したが、セロビオヒドロラーゼ活性およびセルラーゼ総体としての分解能力(濾紙分解活性)は減少した。
 (実施例3:実施例1のセルラーゼ剤を用いたセルロース系バイオマスの糖化発酵)
 サトウキビバガスを200℃にて30分間水蒸気により蒸煮し、さらに水洗後の水不溶画分を水分が約70重量%になるまで濾布を用いて脱水した固形分(蒸煮バガス)をセルロース系バイオマスとして使用した。実施例1の方法で得られたセルラーゼ剤を、セルロース系バイオマスの糖化発酵の際に使用した。糖化発酵を以下のように行った。
 ヘリカルリボン翼付きのスリーワンモーターを備え付けた全容300mLのガラス容器内に蒸煮バガス(セルロース系バイオマス)を入れた。このガラス容器をウォーターバスにて50℃で保温しながら、セルラーゼ剤を10FPU/g(乾燥バイオマス重量)となるよう添加し、50rpmで4時間撹拌し、バイオマス固形分を液化させた。この液化液は約24重量%の固形分を含み、約12g/Lのグルコースと約30g/Lのセロビオース(バイオマスから酵素糖化により遊離した糖)が存在していた。
 別途、YPD培地100mLを含む三角フラスコに酵母を植菌し、30℃、3日間、150rpmで培養しておき、その後、遠心分離により培養液中の菌体濃度が200g(湿重量)/Lとなるような酵母液を調製した。
 バイオマス固形分の液化液をpH5.4に調製しておき、この液化液(100mLのガラス容器内)に上記の酵母液を湿重量2gまたは20g(発酵液1Lあたり)となるように添加し、ウォーターバスにて35℃で保温しマグネティックスターラーにより200rpmで撹拌しながら酵母を培養し、糖化発酵を開始した。この条件では、培養液(液化液と酵母液との合計)中のバイオマス固形分は21.7重量%であり、もともと蒸煮バガスの乾燥固形分にグルコース成分(セルロースとして存在)が51.8重量%含まれることを考慮すると、理論上は57.3g/Lのエタノールが酵母による発酵で生成することになる。培養液中のエタノール濃度およびセロビオース濃度を経時的に測定した。
 図4は、実施例1の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて湿重量2gおよび20g(発酵液1Lあたり)の酵母を培養した場合の、培養液中のエタノール濃度およびセロビオース濃度の経時変化を示す(a:野生型酵母(TJ14株)およびb:β-グルコシダーゼ表層提示酵母)。
 β-グルコシダーゼ表層提示酵母(図4b)では、初期酵母濃度にかかわらずセロビオース濃度が低下し、72時間培養でのエタノール濃度は52.1~52.5g/Lに達した(理論収率の90.9~91.6%)。初期酵母濃度が20g(湿重量)/Lに比べると、2g(湿重量)/Lの場合は発酵速度が若干遅いために24時間培養でのエタノール濃度はやや低いものの、48時間培養では同等のエタノール濃度49.5g/Lに到達していた。すなわち、エタノール生産速度の目標設定値を1g/(L×時間)にする場合、初期酵母濃度は2g(湿重量)/Lであっても問題ないことが分かった。
 野生型酵母(図4a)では、発酵液あたりの初期酵母濃度にかかわらずセロビオースの蓄積は顕著であり、72時間培養でのエタノール濃度は18.3~19.7g/Lに留まった(理論収率の31.9~34.4%)。
 実施例1の方法で得られたセルラーゼ剤とβ-グルコシダーゼ表層提示酵母との併用により、エタノール生産収率(糖化発酵収率)の向上が見られた。
 さらに、糖化発酵培養前に調製した酵母液(72時間フラスコ培養の酵母)のβ-グルコシダーゼ活性(U/g(湿重量):酵母の湿重量1gあたりのβ-グルコシダーゼ活性(U/g)として求めた)を35℃または50℃の各場合において測定した。表層提示酵母では培養上清への酵素の分泌が極めて少ないため、培養上清ではなく、酵母懸濁液を調製して菌体側のβ-グルコシダーゼ活性を測定した(表2)。TJ14株(野生株)では検出限界以下(Not detected)の活性値であり、β-グルコシダーゼを表層提示するように形質転換した酵母の方が顕著に高い活性値を示した。
Figure JPOXMLDOC01-appb-T000002
 上記2-2と同様にして、濾紙分解活性(FPU)に対するβ-グルコシダーゼ活性(U)の比率を算出した。但し、「外部添加セルラーゼの濾紙分解活性に対する、酵母のβ-グルコシダーゼ活性の比率」として見積もった。本実施例では、実施例1の方法で得られたセルラーゼ剤を外部添加セルラーゼとして扱った。この外部添加セルラーゼは、セルロース(乾燥物)濃度24重量%にて10FPU/g(乾燥バイオマス)にて反応しているので、培養液1L中では2400FPUの濾紙分解活性を含むと想定した。糖化発酵の培養で表層提示酵母を湿重量2g/Lで用いたため、培養液1Lに含まれるβ-グルコシダーゼ活性は409.2U(35℃の場合)および613.0U(50℃の場合)となる。従って、濾紙分解活性(FPU)に対するβ-グルコシダーゼ活性(U)の比率は、β-グルコシダーゼ表層提示酵母を用いた場合に0.17(35℃での評価)および0.25(50℃での評価)を示す。この比率は表1で示したCelluclast 1.5Lやトリコデルマ・リーセイ(T. reesei)の非組換え株の値(B/A)と大きな違いは無いにもかかわらず、糖化発酵において顕著な糖化発酵収率の向上がみられるという、予想外の結果が示された。
 (実施例4:酵母回収を伴うセルロース系バイオマスの繰り返し発酵)
 実施例3は1バッチ発酵培養であったが、本実施例では酵母菌体回収を伴う7バッチの繰り返し発酵培養を行った。手順は、以下の点を変更した以外は、実施例3と同様である。
 バイオマス固形分を液化する際に、コーンスティープリカー(CSL)をあらかじめ添加し、糖化発酵開始時のCSL濃度が1.5重量%となるように調製した。また、糖化発酵のための培養開始時の酵母濃度を4g(湿重量)/Lとし、1バッチを48時間培養とし、各バッチ培養終了時の液を2,400×gで2分間遠心分離し、沈殿したスラリーの上部を次バッチの発酵液の10重量%となるように添加した。
 各バッチ培養の間に培養液中のエタノール濃度およびセロビオース濃度を経時的に測定した。この結果を図5に示す(a:エタノール濃度およびb:セロビオース濃度)。
 野生株の場合は、発酵液中のセロビオースの蓄積が顕著であり、エタノール濃度も10.3~17.3g/Lに留まった。一方、β-グルコシダーゼ表層提示酵母はセロビオースの蓄積が抑えられ、繰り返し発酵においても各バッチ内でエタノール濃度は47.0~51.8g/Lを維持した。すなわち、表層提示されたβ-グルコシダーゼは酵母とともに容易に回収・再利用できることが分かった。
 また、各バッチ培養終了時に回収したスラリー中の酵母生菌数を測定した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 各バッチ終了後、野生型酵母の場合はセロビオースが蓄積し糖が効率よく酵母に取り込まれないため、酵母を含むスラリー1gあたりの生菌数は2.8×10~3.9×10個に留まった。一方、β-グルコシダーゼ表層提示酵母は、セロビオースも分解して糖を効率よく酵母に取り込むため、酵母を含むスラリー1gあたりの生菌数は6.9×10~1.1×10個に達した。よって、実施例1の方法で得られたセルラーゼ剤で処理したセルロース含有培地を用いることにより、β-グルコシダーゼ表層提示酵母では野生型酵母よりも高い生菌数が得られ、よって、β-グルコシダーゼ表層提示酵母が良好に培養し得ることが分かった。
 (実施例5:バガスを用いたトリコデルマ・リーセイRUT-C30によるセルラーゼの生産)
 実施例3に記載のように調製した蒸煮バガスをアビセルの代わりに用いた以外は、実施例1と同様にして、トリコデルマ・リーセイRUT-C30の前培養および本培養を行った。本実施例では、本培養を168時間行った。前培養で1(w/v)%の蒸煮バガスを、本培養で蒸煮バガス中のセルロース含量を考慮して4(w/v)%の蒸煮バガスを添加した。
 図6は、本培養の培養期間にわたるpH変化および培養上清のセルラーゼ活性(濾紙分解活性(FPU/mL))とタンパク質濃度(mg/mL)の変化を示すグラフである。pHは、培養開始から48時間後には3.5~4の間に維持した。濾紙分解活性とタンパク質濃度とはほぼ連動して増大し、濾紙分解活性は1.25FPU/mLの培養上清が得られた。これを実施例1に記載のように濃縮して、以下の実施例に用いた。
 (実施例6:実施例5のセルラーゼ剤を用いたセルロース系バイオマスの糖化発酵)
 実施例1の方法で得られたセルラーゼ剤の代わりに、実施例5の方法で得られたセルラーゼ剤を用いたこと以外は、実施例3と同様に糖化発酵を行った。糖化発酵の培養における初期酵母濃度を2g(湿重量)/Lとした。結果を図7に示す(a:エタノール濃度およびb:セロビオース濃度)。
 実施例5の方法で得られたセルラーゼ剤を用いた場合でも、β-グルコシダーゼ表層提示酵母では、セロビオース濃度が低下し、72時間培養でのエタノール濃度は50g/Lに達した。安価な材料(バガス)を用いて製造されたセルラーゼ製剤であっても、β-グルコシダーゼ表層提示酵母と組み合わせることで、セロビオースの蓄積が十分に抑えられ、野生型酵母よりも高いエタノール濃度に到達することが分かった。
 (実施例7:実施例5のセルラーゼ剤を用いたセルロース系バイオマスの糖化発酵)
 実験室酵母サッカロマイセス・セレビシエBY4741株を宿主に用いた以外は、調製例1と同じ方法にてβ-グルコシダーゼ表層提示酵母を調製した。このβ-グルコシダーゼ表層提示酵母と、野生型酵母サッカロマイセス・セレビシエBY4741株とを用いたこと以外は、実施例6と同様に糖化発酵を行った。結果を図8に示す(A:エタノール濃度およびB:セロビオース濃度)。
 実施例3と同様にして、β-グルコシダーゼ表層提示酵母(BY4741株)のβ-グルコシダーゼ活性を35℃にて測定したところ、培養液1L当たりβ-グルコシダーゼ活性が63.6Uの値を得た。さらに、実施例3と同様にして、「外部添加セルラーゼの濾紙分解活性に対する、酵母のβ-グルコシダーゼ活性の比率」を求めたところ、外部添加セルラーゼは培養液1L中では2400FPUの濾紙分解活性を含むため、この比率は0.02であった。
 図8は、β-グルコシダーゼ表層提示酵母(BY4741株)と、野生型酵母BY4741株とを用いた糖化発酵の結果を示す(A:エタノール濃度およびB:セロビオース濃度)。図8においても、β-グルコシダーゼ表層提示酵母を用いた場合にセロビオースの蓄積が抑えられ、野生型酵母よりも高いエタノール濃度に到達した。本実施例の「外部添加セルラーゼの濾紙分解活性に対する、酵母のβ-グルコシダーゼ活性の比率」は、実施例3と比較して低い値(0.02)であるにも関わらず、エタノール生産効率に関してβ-グルコシダーゼ表層提示酵母の野生型酵母に対する優位性がみられた。
 (調製例2:キシロース代謝キシロシダーゼ表層提示酵母の調製)
 宿主酵母として、ウラシルおよびロイシン栄養要求性マーカーを付与したサッカロマイセス・セレビシエTJ14株を用いた。この宿主酵母は、サッカロマイセス・セレビシエTJ14株(Moukamnerdら、Appl. Microbiol. Biotechnol.、2010年、第88巻、p.87-94)において、ウラシル生合成遺伝子破壊用プライマー対(URA3破壊用フォワードプライマー(配列番号1)およびリバースプライマー(配列番号2))とロイシン生合成遺伝子破壊用プライマー対(Leu2破壊用フォワードプライマー(配列番号3)およびリバースプライマー(配列番号4))を使用して、loxP配列で挟まれた薬剤耐性マーカーを有するpUG6系プラスミド(EUROSCARFより入手)をテンプレートにしたPCRによって得られたPCR断片を導入し、酵母のウラシル生合成遺伝子およびロイシン生合成遺伝子の一部を相同組換えすることによって調製した。キシロース代謝遺伝子(ピチア・スチピチス由来キシロースレダクターゼ(XR)遺伝子、ピチア・スチピチス由来キシリトールデヒドロゲナーゼ(XDH)遺伝子、およびサッカロマイセス・セレビシエ由来キシルロキナーゼ(XK)遺伝子)を含むプラスミドpIU-X3(Appl. Microbiol. Biotechnol., 2006 Oct;72(6):1136-43に記載のプラスミドpIUX1X2XK)をPstIで切断後、酢酸リチウム法により宿主酵母を形質転換した。ウラシル要求性を相補した株のスクリーニングにより、キシロース代謝能力を有するTJ14ΔL-X3(キシロース代謝酵母:この株を「X3株」ともいう)を取得した。続いて、GAPDHプロモーター支配下にアスペルギルス・オリゼ(Aspergillus oryzae)由来のキシロシダーゼ遺伝子(xyd)(Katahiraら(APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept.2004, p.5407-5414に記載のXylA遺伝子)をα-アグルチニンと融合するように発現する表層提示型プラスミドpRS405-XydをHpaIで切断してTJ14ΔL-X3株を形質転換した。このpRS405-Xydは、pRS405(ロイシン合成遺伝子を含む)(Stratageneより入手)をNotIで消化し、GAPDHプロモーター(配列番号5)、リソプス・オリゼ(R.oryzae)由来グルコアミラーゼ分泌シグナル(SS)遺伝子(塩基配列(配列番号6)およびコードされる分泌シグナルペプチドのアミノ酸配列(配列番号7))、アスペルギルス・オリゼ由来β-キシロシダーゼ遺伝子(塩基配列(配列番号8)およびコードされるタンパク質のアミノ酸配列(配列番号9))、α-アグルチニン遺伝子(塩基配列(配列番号10)は、C末端から320アミノ酸(配列番号11)をコードする領域を含む)およびGAPDHターミネーター(配列番号12)を含むDNA(配列番号13)を、上記NotIで消化したpRS405に挿入して得た。ロイシン要求性を相補した株のスクリーニングにより、キシロース代謝能力とキシロオリゴ糖の分解能力の両方を有するTJ14-X3-Xyd株(キシロース代謝キシロシダーゼ表層提示酵母:この株を「X3-Xyd #1株」ともいう))を取得した。
 (実施例8:実施例1のセルラーゼ剤を用いたキシラン液化発酵)
 (8-1:キシラン液化発酵)
 50mLコーニング管に、5×YP培地2mL(2g)、キシラン2g、滅菌水2mL(2g)および実施例1の方法で得られたセルラーゼ剤3mL(3g)を入れ、サーモブロックローテーターによる回転(目盛5)下にて50℃にて4時間混合し、液化液を得た。液化液について、混合開始時では、約4.4g/kgのグルコース、約13.7g/kgのキシロース、および約47.3g/kgの還元糖が存在していたのに対し、混合終了時には、約6.2g/kgのグルコース、約32.4g/kgのキシロース、および約73.2g/kgの還元糖が存在していた。
 別途、X3株およびX3-Xyd #1株についてそれぞれの酵母液を調製した。前培養培地(YP-キシロース2重量%)5mLにYPDプレート酵母培養コロニーを1白金耳接種し、30℃、6時間、150rpmで培養しておき、次いで本培養培地(YP-キシロース2重量%)100mLに前培養液5mLを接種し、30℃、3日間、150rpmで培養し、その後、遠心分離により培養液中の菌体濃度が200g(湿重量)/Lとなるような酵母液を調製した。
 50mLコーニング管中の液化液8.98gに対して酵母液0.999mL(0.999g)を加え、コーニング管を針付きシリコンゴム栓で栓をし、サーモブロックローテーターによる回転(目盛5)下にて35℃にて発酵培養を行った。液化開始時の濃度は、5×YP培地を1×として、キシラン20重量%、実施例1のセルラーゼ剤30重量%であり、当該濃度で得られた液化液を用いた発酵開始時の濃度は、酵母液10重量%(菌体20g/kg(培養液))であった。培養液中のエタノール濃度を経時的に測定した。結果を図9に示す。
 図9は、実施例1の方法で得られたセルラーゼ剤で処理したキシランを用いた、キシロース代謝酵母(X3株)およびキシロース代謝キシロシダーゼ表層提示酵母(X3-Xyd #1株)のエタノール生産の結果を示す。図9から明らかなように、実施例1のセルラーゼ剤とキシロース代謝キシロシダーゼ表層提示酵母(X3-Xyd #1株)とを組み合わせることで、キシロース代謝能力のみ付与したキシロース代謝酵母(X3株)より高いエタノール濃度を得た。実施例1のセルラーゼ剤を酵母に表層提示されたキシロオリゴ糖分解酵素(キシロシダーゼ)と併用することで、エタノール収率が向上した。したがって、キシラン、キシロオリゴ糖、キシロースのようなC5糖を含むバイオマスに対しても実施例1のセルラーゼ剤を適用することができ、さらにキシロシダーゼのようなキシロオリゴ糖分解酵素を表層提示する酵母との併用によってエタノール収率を向上させることができる。
 (8-2:セルラーゼ剤およびキシロシダーゼ表層提示酵母の酵素活性)
 実施例1と同様に171時間後の培養上清を濃縮して得られた濃縮液について、酵素活性を測定した。濾紙分解活性が24.4FPU/mL、BGL活性が4.8U/mL(50℃)または2.2U/mL(35℃)、EG活性が614.5U/mL、CBH活性が4.6U/mL、Xyn活性が12.3U/mL、Xyd活性が5.8U/mL、そしてタンパク質濃度が27.5mg/mLであった。キシラナーゼおよびキシロシダーゼについては、本実施例のキシラン液化および酵素活性で示されるように、セルラーゼ剤中に明らかに含まれることを確認した。
 酵母液(3日培養後の酵母)のXyd活性を35℃において測定した。X3株およびX3-Xyd #1株とも、酵母液上清では活性は検出されなかった。X3-Xyd #1株は、菌体におけるXyd活性が0.17U/mLであるのに対し、X3株では検出されなかった。
 (調製例3:β-グルコシダーゼ表層提示乳酸菌の調製)
 ラクトバチルス・プランタルムΔldhL1::PxylAB-xpk1::tkt-Δxpk2::PxylAB株(Yoshidaら, Appl. Microbiol. Biotechnol., 2011, Vol.92, 67-76:「PxylAB株」)に、pCUA-Rumal2816(pCUAのBamHI-EcoRI間にルミノコッカス・アルブス(Ruminococcus albus)由来のβ-グルコシダーゼ遺伝子(GenBank Sequence ID:X15415.1)をクローニングしたプラスミド(pCUプラスミド(Okanoら, Appl Microbiol Biotechnol、2007年、第75巻、p.1007-1013)のNdeI-BamHI間にPgsAアンカー(バシルス・ズブチリス由来のポリ-γ-グルタミン酸生合成酵素複合体PgsBCAのサブユニット)を挿入したプラスミド(pCUA)を用意し、このpCUAのBamHI-EcoRI間に上記β-グルコシダーゼ遺伝子をクローニングして作製した)をエレクトロポレーション法により導入し、エリスロマイシン5μg/mLを含むMRS培地で形質転換体のコロニーを取得し、形質転換乳酸菌株(β-グルコシダーゼ表層提示乳酸菌:この株を「pCUA-Rumal2816株」ともいう)を得た。本形質転換乳酸菌株の菌体β-グルコシダーゼ活性は、1日培養時点で1.41U/g(乳酸菌湿重量)であった。
 (実施例9:実施例1のセルラーゼ剤を用いた乳酸発酵)
 実施例3と同様にして、実施例1の方法で得られたセルラーゼ剤を用いてバガス液化液を調製した。この液化液は約24重量%の固形分を含み、約21g/Lのグルコースと約32g/Lのセロビオース(バイオマスから酵素糖化により遊離した糖)が存在していた。本ロットのセルラーゼ剤は、濾紙分解活性が29.2FPU/mLであり、BGL活性が0.8U/mL(50℃)または0.21U/mL(35℃)であった。
 別途、pCUA-Rumal2816株の乳酸菌液を調製した。エリスロマイシン5μg/mlを添加したMRS培地20mLに継代液2mL接種し、37℃にて8時間静置後、新たなMRS培地(エリスロマイシン5μg/mlを添加)400mLにこの前培養液20mLを接種し、37℃にて1日静置して培養し、培養液中の菌体濃度が20g(湿重量)/Lとなるような乳酸菌液を得た。
 液化液が75重量%となるようにMRS培地(但し糖を含まない:プロテアーゼペプトンNo.3 10g、牛エキス10g、酵母エキス5g、Tween80 10g、クエン酸水素二アンモニウム2g、酢酸ナトリウム5g、酢酸マグネシウム・7HO 0.2g、硫酸マンガン・5HO 0.07g、リン酸二カリウム2gを100mL中に含む)とガラス容器内で混合し、上記乳酸菌液を湿重量20g(培養液1Lあたり)となるように添加し、ウォーターバスにて35℃で保温しマグネティックスターラーにより200rpmで撹拌しながら乳酸菌を培養し、糖化発酵を開始した。培養開始時の初発pHを5ぐらいに設定し、培養中は、炭酸カルシウムによりpHを5ぐらいに調整した。培養液中の乳酸濃度およびセロビオース濃度を経時的に測定した。
 図10は、実施例1の方法で得られたセルラーゼ剤で処理したセルロース系バイオマスを用いて湿重量20g(培養液1Lあたり)のβ-グルコシダーゼ表層提示乳酸菌(pCUA-Rumal2816株)を培養した場合の、培養液中の乳酸濃度(A)およびセロビオース濃度(B)の経時変化を示す。
 バガス液化液の量を発酵培養液全体の75重量%の仕込み量として、β-グルコシダーゼ表層提示乳酸菌(pCUA-Rumal2816株)を培養することにより、セロビオースの蓄積も少なく、98.8g/Lの乳酸濃度を得た。製造された乳酸のD-乳酸過剰率は94.2%であった。したがって、実施例1のセルラーゼ剤をβ-グルコシダーゼ表層提示乳酸菌と併用して、乳酸発酵を行うこともできる。
 本発明は、エタノール、乳酸等の製造、ならびにエタノール、乳酸等を原材料とする食品、医薬品および各種工業製品の製造に有用である。

Claims (16)

  1.  セルラーゼ剤を製造する方法であって、
     トリコデルマ属微生物を、pH1以上かつ5未満にて、少なくとも2つのグルコースがβ-1,4結合した多糖を含有する培地にて培養し、セルラーゼ剤を生産させる工程
    を含み、
     該セルラーゼ剤の濾紙分解活性に対する該セルラーゼ剤におけるβ-グルコシダーゼ活性の比率が3より低い、
     方法。
  2.  前記トリコデルマ属微生物がトリコデルマ・リーセイである、請求項1に記載のセルラーゼ剤を製造する方法。
  3.  前記トリコデルマ属微生物が、セルラーゼ剤に関して非遺伝子組換えの微生物である、請求項1または2に記載のセルラーゼ剤を製造する方法。
  4.  前記セルラーゼ剤がセロビオヒドロラーゼおよびエンドグルカナーゼを含む、請求項1から3のいずれかに記載のセルラーゼ剤を製造する方法。
  5.  前記セルラーゼ剤がキシラナーゼをさらに含む、請求項1から4のいずれかに記載のセルラーゼ剤を製造する方法。
  6.  糖化発酵産物の製造方法であって、
     請求項1から5のいずれかの方法で製造されたセルラーゼ剤で処理したセルロース材料を含有する培地を用いて、β-グルコシダーゼ表層提示微生物を培養し、糖化発酵産物を得る工程
    を含む、方法。
  7.  前記β-グルコシダーゼ表層提示微生物の酵素力価が、前記セルラーゼ剤の濾紙分解活性に対する該微生物のβ-グルコシダーゼ活性の比率として、0.02~2.5である、請求項6に記載の方法。
  8.  前記セルロース材料がセルロース系バイオマスである、請求項6または7に記載の方法。
  9.  前記糖化発酵産物がエタノールである、請求項6から8のいずれかに記載の方法。
  10.  前記β-グルコシダーゼ表層提示微生物がβ-グルコシダーゼ表層提示酵母である、請求項6から9のいずれかに記載の方法。
  11.  前記糖化発酵産物が乳酸である、請求項6から8のいずれかに記載の方法。
  12.  前記β-グルコシダーゼ表層提示微生物がβ-グルコシダーゼ表層提示乳酸菌である、請求項6から8、および11のいずれかに記載の方法。
  13.  前記セルラーゼ剤を、請求項1から5のいずれかの方法により製造する工程をさらに含む、請求項6から12のいずれかに記載の方法。
  14.  糖化発酵産物の製造方法であって、
     請求項1から5のいずれかの方法で製造されたセルラーゼ剤で処理したキシロース含有多糖を含む材料を含有する培地を用いて、キシロースを代謝しかつキシロシダーゼを表層提示する微生物を培養し、糖化発酵産物を得る工程
    を含む、方法。
  15.  前記セルラーゼ剤を、請求項1から5のいずれかの方法により製造する工程をさらに含む、請求項14に記載の方法。
  16.  表層提示微生物の培養方法であって、この方法は、
     請求項1から5のいずれかの方法により製造されたセルラーゼ剤で該セルラーゼ剤が分解する多糖を含む材料を処理する工程、および
     該処理された材料を含む培地で該表層提示微生物を培養する工程
    を含み、
     該表層提示微生物が、該処理された材料から該微生物が代謝する糖を生成する酵素を表層提示する、
     方法。
PCT/JP2019/025404 2018-06-28 2019-06-26 セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法 WO2020004473A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527583A JP7289480B2 (ja) 2018-06-28 2019-06-26 セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法
PH12020552268A PH12020552268A1 (en) 2018-06-28 2020-12-28 Method for Producing Cellulase Agent, and Method for Producing Saccharification/Fermentation Product in which said Cellulase Agent is Used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122997 2018-06-28
JP2018-122997 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004473A1 true WO2020004473A1 (ja) 2020-01-02

Family

ID=68984862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025404 WO2020004473A1 (ja) 2018-06-28 2019-06-26 セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法

Country Status (3)

Country Link
JP (1) JP7289480B2 (ja)
PH (1) PH12020552268A1 (ja)
WO (1) WO2020004473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540430A (zh) * 2022-03-23 2022-05-27 清华大学 棕榈空果串的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011479A1 (ja) * 2004-07-27 2006-02-02 Asahi Kasei Chemicals Corporation セロオリゴ糖の製造方法
JP2006296358A (ja) * 2005-04-25 2006-11-02 Asahi Kasei Chemicals Corp セルラーゼの製造方法
JP2010536391A (ja) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション 補助酵素を使用するリグノセルロース系原料の酵素的加水分解
JP2010536390A (ja) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション セルラーゼを生成するための方法
JP2014521359A (ja) * 2011-08-19 2014-08-28 イエフペ エネルジ ヌヴェル 低い酸素移動容量係数KLaを有する、発酵槽に適した糸状菌を用いるセルラーゼの生産方法
WO2015033948A1 (ja) * 2013-09-04 2015-03-12 関西化学機械製作株式会社 エタノールの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011479A1 (ja) * 2004-07-27 2006-02-02 Asahi Kasei Chemicals Corporation セロオリゴ糖の製造方法
JP2006296358A (ja) * 2005-04-25 2006-11-02 Asahi Kasei Chemicals Corp セルラーゼの製造方法
JP2010536391A (ja) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション 補助酵素を使用するリグノセルロース系原料の酵素的加水分解
JP2010536390A (ja) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション セルラーゼを生成するための方法
JP2014521359A (ja) * 2011-08-19 2014-08-28 イエフペ エネルジ ヌヴェル 低い酸素移動容量係数KLaを有する、発酵槽に適した糸状菌を用いるセルラーゼの生産方法
WO2015033948A1 (ja) * 2013-09-04 2015-03-12 関西化学機械製作株式会社 エタノールの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAILEY, M. J. ET AL.: "Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media, Appl. Microbiol", BIOTECHNOL, vol. 40, 1993, pages 224 - 229, XP055667957 *
LI, C. ET AL.: "Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis", J. BIOTECHNOL., vol. 168, 2013, pages 470 - 477 *
NARITA, J. ET AL.: "Display of a-Amylase on the Surface of Lactobacillus casei Cells by Use of the PgsA Anchor Protein, and Production of Lactic Acid from Starch", APPL. ENVIRON. MICROBIOL., vol. 72, no. 1, 2006, pages 269 - 275, XP055312989, DOI: 10.1128/AEM.72.1.269-275.2006 *
OKANO, KENJI ET AL.: "Development of cell surface display system for Escherichia coli and lactic acid bacteria using PgsA protein", LECTURE ABSTRACTS OF 70TH ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, 2005 *
SAKAMOTO, T. ET AL.: "Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells", J. BIOTECHNOL., vol. 158, 2012, pages 203 - 210 *
TARGONSKI, Z. ET AL.: "Effect of pH on biosynthesis of cellulase, xylanase and lytic enzymes by Trichoderma reesei M-7 in fed-batch culture", ACTA MICROBIOLOGICA POLONICA, vol. 42, no. 3 / 4, pages 281 - 289 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540430A (zh) * 2022-03-23 2022-05-27 清华大学 棕榈空果串的处理方法

Also Published As

Publication number Publication date
JPWO2020004473A1 (ja) 2021-08-02
PH12020552268A1 (en) 2021-07-19
JP7289480B2 (ja) 2023-06-12

Similar Documents

Publication Publication Date Title
EP2706119B1 (en) Recombinant beta-glucosidase variants for production of soluble sugars from cellulosic biomass
US9309538B2 (en) Beta-glucosidase variants having improved activity, and uses thereof
US8034596B2 (en) Method for producing cellulase and hemicellulase having high hydrolytic activity
US20190169586A1 (en) Lactic acid-utilizing bacteria genetically modified to secrete polysaccharide-degrading enzymes
CN110730824A (zh) 用于乙醇生产的改善的酵母
US9816113B2 (en) Method for producing ethanol
CN112166197A (zh) 用于增强酵母生长和生产力的方法
CN114423296A (zh) 从全酒糟副产物生产高蛋白饲料成分的酶共混物和工艺
WO2017177289A1 (en) Process for conversion of biomass into fermentable sugars with integrated enzyme
JP5752049B2 (ja) エタノールの製造方法
Naidoo et al. Purification and Characterization of an Endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 Mutant
JP5616226B2 (ja) セルロース加水分解力強化酵母の作製および使用
US9109235B2 (en) Methods and compositions for degrading pectin
JP7289480B2 (ja) セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法
KR102088764B1 (ko) 커피 찌꺼기를 이용한 젖산 생산 방법
Guerfali et al. Hydrolytic potential of Talaromyces thermophilus β-xylosidase and its use for continuous xylose production
WO2018207889A1 (ja) α-ガラクトシダーゼ表層提示微生物およびその使用
JP6849749B2 (ja) 新規キシラナーゼ
US10689634B2 (en) Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes
Kameshnee Naidoo et al. Purification and characterization of an endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 mutant.
FONSECA DEVELOPMENT OF A (HEMI) CELLULASES PRODUCTION PROCESS UNDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827578

Country of ref document: EP

Kind code of ref document: A1