WO2020004434A1 - コンクリートの改質方法および改質材 - Google Patents

コンクリートの改質方法および改質材 Download PDF

Info

Publication number
WO2020004434A1
WO2020004434A1 PCT/JP2019/025287 JP2019025287W WO2020004434A1 WO 2020004434 A1 WO2020004434 A1 WO 2020004434A1 JP 2019025287 W JP2019025287 W JP 2019025287W WO 2020004434 A1 WO2020004434 A1 WO 2020004434A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicate
concrete
crack
water
cement
Prior art date
Application number
PCT/JP2019/025287
Other languages
English (en)
French (fr)
Inventor
豊 富田
Original Assignee
日本プロロング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本プロロング株式会社 filed Critical 日本プロロング株式会社
Priority to CN201980043550.2A priority Critical patent/CN112469876A/zh
Priority to JP2020527562A priority patent/JPWO2020004434A1/ja
Publication of WO2020004434A1 publication Critical patent/WO2020004434A1/ja
Priority to PH12020552131A priority patent/PH12020552131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a method and a material for modifying concrete, and more particularly to a method and a material for repairing cracks formed in concrete.
  • the surface of concrete is exposed to various environments such as drying, solar radiation, temperature change, humidity change, exposure to rain and carbon dioxide, and frost damage. It is important to protect concrete from these factors and prevent concrete deterioration to extend the life. However, it is difficult to actually make concrete without cracks.
  • the crack width is 0.3 mm for a general building structure, and 0.2 mm for a general civil engineering structure.
  • the present invention is a method for modifying concrete, A first step of injecting, spraying or applying a solution containing a silicate containing at least two of sodium silicate, potassium silicate and lithium silicate to the surface of the cracked concrete; A second step of injecting or applying and filling an inorganic material fluidized by water into a crack having a surface of concrete wet with a solution containing silicate; Spraying or applying a solution containing a silicate to the surface of the concrete after the inorganic material is filled in the cracks.
  • the crack can be filled with the gel, and sufficient waterproofness and water stoppage can be imparted.
  • Concrete is prepared by putting cement, aggregate, water, and admixture into a mixer, mixing, kneading, assembling a formwork, placing it in a formwork, curing it so that setting proceeds properly, and removing it from the mold. It is manufactured in a desired shape.
  • Cement is a powder that contains clinker generated by mixing limestone, clay, and the like and firing, and gypsum, and is a powder that hardens by a hydration reaction, polymerization, or the like.
  • the aggregate is made of gravel, sand, or the like, and reduces the proportion of cement, thereby suppressing heat generation due to the hydration reaction of the cement and shrinkage due to evaporation of moisture.
  • the admixture is an agent added for the purpose of improving strength and durability, adjusting the setting speed, and the like.
  • Curing is the work of controlling the temperature and moisture content until the concrete is sufficiently hardened.
  • the concrete is covered with a blue sheet or the like, the temperature is kept at an appropriate temperature by a heater or the like, and water content is kept at a specified level by water sprinkling or the like.
  • Concrete contains excess water, and due to drying shrinkage, temperature change, humidity change, exposure to rain and carbon dioxide, and frost damage caused by evaporation of the excess water, as well as external factors such as building weight and seismic force. Under load, cracks occur.
  • Concrete cracking is acceptable if it has a certain width. On the other hand, it is required to take appropriate measures for a crack width exceeding this. Cracks requiring treatment include small cracks having a width of less than 0.2 mm and large cracks having a width of 0.2 mm or more. A method for repairing both will be described with reference to FIG.
  • FIG. 1 is a flowchart showing a flow of work for repairing cracks formed in concrete.
  • the operation starts from step 100, and in step 101, the surface of the concrete surface is cleaned or the like so that the solution for repair is easily injected.
  • the cleaning of the base is performed by using a brush, high-pressure water such as fresh water, a wire brush, or the like to remove dust and the like.
  • FIG. 2A is a diagram exemplifying a crack visible in appearance
  • FIG. 2B is an enlarged view of a cross section cut along a cutting line AA.
  • the width of cracks on the concrete surface is measured.
  • the crack width is the width of the crack shown in FIG. 2 (b).
  • a crack scale (ruler) or a system that calculates the width by capturing the crack with a camera and analyzing the captured image is used as a measuring instrument. Can be measured.
  • the width of the crack is related to the size of the crack. As the crack width increases, rainwater and the like easily penetrate, and the strength of the concrete decreases.
  • step 103 it is checked whether the crack width is 0.2 mm or more. If it is 0.2 mm or more, proceed to step 104, and if it is less than 0.2 mm, proceed to step 124. In step 104, it is checked whether the crack width is 0.3 mm or more.
  • the determination is made based on the two crack widths of 0.2 mm and 0.3 mm, but is not limited to 0.2 mm and 0.3 mm, and an appropriate width can be set as appropriate.
  • step 105 proceed to step 105 and use a grinding device such as a disc grinder to form a groove with a U-shaped or V-shaped cross section along the crack.
  • a grinding device such as a disc grinder to form a groove with a U-shaped or V-shaped cross section along the crack.
  • step 106 After cleaning the inside of the groove with high-pressure water or a wire brush using clean water, the process proceeds to step 106, where water is sprayed for deep penetration.
  • step 107 a solution containing silicate (hereinafter, referred to as a silicate solution) ) Is injected, sprayed or applied to wet the cracked surface.
  • silicate solution a solution containing silicate
  • the silicate solution is, for example, an alkali silicate aqueous solution prepared by mixing at least two of sodium silicate, potassium silicate, and lithium silicate and adding an appropriate amount of water.
  • the aqueous alkali silicate solution is a solution having a pH of 11 to 12, a small particle size of silicate of about 1 to 10 nm, and a low viscosity of 6 to 8 (mPa ⁇ s).
  • the reason for containing at least two kinds of alkali metals is that by reducing the mobility of alkali metal ions by the mixed alkali effect in water, the reaction with calcium ions is suppressed, and to the deep part of concrete, for example, about 200 mm from the surface.
  • the mixing ratio when mixing the two can be in the range of 1: 9 to 9: 1 in molar ratio, and can be 3: 7 to 7: 1. It is desirable to set it within the range of 7: 3.
  • the mixing ratio of sodium silicate can be 5 to 90 mol%
  • potassium silicate can be 5 to 90 mol%
  • lithium silicate can be 5 to 90 mol%
  • sodium silicate can be 15 to 70 mol%.
  • Potassium silicate is preferably 15 to 70 mol%
  • lithium silicate is preferably 15 to 70 mol%.
  • the time required for gelation is too long, the effect of the gel for preventing intrusion of water or the like is not exhibited, so that the molar ratio of sodium silicate to potassium silicate is 3: 7 to 7: 3. It is desirable to be within the range.
  • an aqueous solution of silicic acid in which alkali metal ions are present in an equimolar ratio of 1: 1 in an aqueous solution of two kinds of silicates selected from sodium silicate, potassium silicate, and lithium silicate is used. It is preferable to use them together as a system concrete modifier.
  • An aqueous solution of silicate in which alkali metal ions are present at a molar ratio of 1: 1 penetrates deeply into concrete due to the mixed alkali effect, and modifies and protects concrete for a long period of time to the deep part. Has an excellent effect.
  • the aqueous silicate solution used in the present embodiment is not particularly limited, and for example, a silicate-based concrete modifier containing at least two kinds of silicates selected from sodium silicate, potassium silicate, and lithium silicate, for example, silicate A silicate-based concrete modifier “Everprolong” manufactured by Nippon Prolong Co., Ltd. containing sodium and potassium silicate at a molar ratio of an alkali metal element of 1: 1 can be used.
  • the amount of water added to the silicate may be any amount as long as the silicate can be dispersed.
  • Examples of the method of applying the silicate solution include brushing, roll coating, spray coating and the like.
  • Examples of a method for spraying the silicate solution include a method using a spray. When using a spray, the nozzle can be brought into close contact with the cracks to attempt deep penetration.
  • a method for injecting the silicate solution a method using an oil jug can be exemplified.
  • the crack 11 after the application of the silicate solution or the like is, for example, as shown in FIG. Referring to FIG. 3A, the silicate solution penetrates by about several mm from the concrete surface inside the crack to form the modified portion 13, and the exposed surface in the crack 11 is covered with the silicate solution 12. It is in a wet state.
  • Step 108 water is sprinkled on the entire construction surface to be kept wet.
  • step 109 at which the inorganic material fluidized by water is injected or applied as an aqueous filler. This is because the crack is filled to some extent by an inorganic material having a relatively large particle diameter.
  • cement can be used as the inorganic material.
  • generally used cement particles are preferably fine particles because of their large particle size.
  • the cement is fluidized into a cement slurry, which can be injected by a hand-operated mortar pump. Further, an admixture may be added as needed to improve fluidization.
  • Portland cement can be used as the cement, but is not limited thereto, and may be blast furnace cement, silica cement, fly ash cement, or the like.
  • Blast furnace cement is a cement in which fine powder of blast furnace slag and Portland cement are mixed.
  • Silica cement is a cement in which a natural siliceous mixture containing 60% or more of silica and Portland cement are mixed.
  • Fly ash cement is a cement in which coal incineration ash (fly ash) and Portland cement are mixed.
  • the injection of the cement slurry can be started with a low-concentration slurry, and with a high-concentration slurry having a water-cement ratio of 60 to 80% while changing the composition.
  • the crack 11 after filling in step 109 is as shown in FIG. That is, a certain portion of the crack 11 is filled with the cement 14.
  • the reason is that the cement fluidized by the addition of water has a larger particle diameter and a higher viscosity than the silicate solution, and therefore does not immediately flow downward unlike the silicate solution.
  • the crack filling in this method uses an inorganic material such as cement, and does not use an organic material such as an epoxy resin or an acrylic resin, so that the deterioration of the material over time can be eliminated. Further, by using together with the silicate solution, it is possible to prevent hardening or shrinkage phenomenon from appearing in the injected cement grout, peeling off from the concrete on the cracked surface, and generating new cracks.
  • the method of applying the fluidized inorganic material includes brushing, roll coating, spray coating, and the like, as in the method of applying the silicate solution.
  • a hand-pressed mortar pump can be used.
  • the cement 14 reacts with water in the filled cracks 11, polymerizes and hardens, and integrates with the concrete 10. With this alone, it is not possible to follow the subsequent shrinkage due to drying or temperature change, and new cracks are generated. In addition, when the injection proceeds and the crack width is reduced, a portion where the cement particles cannot be injected occurs, and remains as a defect. In this case, rainwater or the like enters from the defects, deteriorating the concrete, and lowering the durability.
  • the silicate solution is sprayed or applied again on the concrete surface after the inorganic material is filled in Step 111.
  • the silicate solution is permeated into the remaining voids. Since the silicate solution is wetted in step 107, the silicate solution can be spread even between the fine particles of the cement 14 filled in step 109.
  • the application of the silicate solution or the like is performed after the injected inorganic material is cured so as to have a certain level of strength.
  • the standard of the curing time is about 12 hours.
  • the silicate solution is a solution having a small particle diameter of silicate and a low viscosity as described above, it penetrates into narrow gaps between cement particles and the like, and a groove or the like which rises vertically due to a capillary phenomenon. And is retained in the crack 11 without flowing out.
  • a silicate solution it is possible to infiltrate the inside of a concrete surface by spraying or coating only, or even a small crack. After the application of the silicate solution, water is sprayed over the entire construction area in step 112 to sufficiently wet the construction surface.
  • the silicate solution reacts with calcium hydroxide contained in concrete via water (a porazone reaction) to generate alkali calcium silicate (gel).
  • the calcium ions combine with the silicate anion chains to form calcium silicate chains, which combine with each other to cause gelation. Due to this gelation, the above-mentioned space is closed, and intrusion of rainwater or the like is prevented. That is, as shown in FIG. 3C, the voids other than the portion filled with the cement 14 in the crack 11 are closed by the gel 15.
  • the silicate solution is preferably an alkali silicate aqueous solution prepared by mixing sodium silicate and potassium silicate among the above three materials. This is because sodium ions or potassium ions do not lengthen the silicate anion chain, but rather shorten it, thereby delaying gelation. As a result, the time required for gelation becomes longer, and the alkali silicate aqueous solution can be permeated deep into the concrete.
  • the molar ratio of sodium silicate to potassium silicate is 3: 7 to 7: It is desirable to be within the range of 3.
  • the silicate solution can be applied in the same manner as the silicate solution or the fluidized inorganic material.
  • the silicate solution used in step 107 and the silicate solution used in step 111 may be a solution in which the same two or more kinds of alkali silicates are mixed, or a mixture of two or more different kinds of alkali silicates. There may be.
  • the amount of water to be added may be the same or different between the silicate solution used in step 107 and the silicate solution used in step 111.
  • the groove is filled with an inorganic material (cement) as a filler to fill the groove.
  • an inorganic material cement
  • water is sprayed at step 114, and a silicate solution is sprayed or applied at step 115.
  • Watering is performed within a few centimeters on both sides around the crack.
  • the application of the silicate solution and the like are also performed in the same range as the watering.
  • the silicate solution may be a solution obtained by mixing two or more kinds of alkali silicates same as the silicate solution used in step 107 or step 111, or may be a solution obtained by mixing two or more kinds of different alkali silicates. There may be.
  • the amount of water to be added may be the same as that of the silicate solution used in step 107 or step 111, or may be a different amount.
  • step 116 After applying the silicate solution, etc., in step 116, water is sprayed on the entire construction area to sufficiently wet the construction surface.
  • step 104 If the crack width is less than 0.3 mm as determined in step 104, the process proceeds to step 117, and water is sprayed without forming the above-mentioned grooves.
  • step 118 the silicate solution is injected into the concrete surface having cracks. Or spray or apply.
  • step 119 water is sprinkled, and in step 120, the inorganic material fluidized by the addition of water is injected or applied and filled.
  • step 121 water is sprinkled in step 121, and in step 122, the silicate solution is sprayed or applied to the concrete surface after filling the inorganic material. Thereafter, in step 123, water is sprayed on the entire construction section to sufficiently wet the construction surface.
  • step 125 If the crack width is less than 0.2 mm in step 103, water is sprinkled in step 124, and then only spraying or coating of the silicate solution is performed in step 125. This is because the cracks themselves are small and it is not necessary to roughly fill the cracks with cement particles.
  • step 125 a silicate solution is injected to generate the gel 15 and close the void. After the application of the silicate solution or the like, water is sprayed on the entire construction area in step 126 to sufficiently wet the construction surface.
  • step 116 After watering in step 116 or step 123 or step 126, the process proceeds to step 127, where it is checked whether or not another crack exists. If there is, the process returns to step 102, and the same operation is performed for other cracks. Do.
  • step 127 If it is confirmed in step 127 that the object does not exist, the process proceeds to step 128, and curing is performed.
  • water can be supplied by sprinkling water or the like in order to promote the reaction with calcium in the concrete.
  • step 129 repair of concrete cracks is completed.
  • FIG. 4 illustrates only one configuration.
  • FIG. 5 is a view of the case 20 as viewed from above. Thereby, a simulated crack was formed by the gap 26 between the two concrete blocks 24.
  • an alkali silicate aqueous solution 27 containing sodium silicate and potassium silicate in a molar ratio of 5: 5 is provided on the upper surface of two concrete blocks 24 whose periphery is sealed with a caulking material 25. (Produced by Everpro Long Co., Ltd.) was applied to the upper surfaces of the two concrete blocks 24 to make the surfaces wet.
  • the silicate solution was penetrated and reformed by a thickness of about several mm from the concrete surface inside the gap 26, and the reformed portion 28 was formed.
  • cement (cement dispersion liquid) 29 fluidized by water was applied to the upper surfaces of the two concrete blocks 24. After a while, the cement 29 solidifies and loses its tackiness. After confirming that the tackiness had disappeared, the same aqueous alkali silicate solution as described above was again applied to the upper surfaces of the two concrete blocks 24 and cured for one week. The space between the two concrete blocks 24 after curing was filled with a filler (cement and formed gel) 30.
  • the test was performed by placing water 32 on the upper part 31 of the acrylic case 20 and observing whether water leaked to the bottom part 33 of the acrylic case 20, as shown in FIG.
  • the upper part 31 is the upper part of the two concrete blocks 24 sealed by the caulking material 25 and the filler 30 in the case 20, and the bottom part 33 is the lower part of the plate 23 in the case 20.
  • the bottom portion 33 was observed for several days with the intervals of 0.5 mm and 0.75 mm, but no water leakage was observed.
  • a modifier in addition to the method for modifying concrete cracks, a modifier can also be provided.
  • the modifier is composed of a silicate solution and an aqueous filler mixed with an inorganic material.
  • Aqueous fillers can also include admixtures to improve fluidization.
  • Aqueous fillers can be filled by pouring or application into cracks having concrete surfaces moistened with a silicate solution.
  • Aqueous fillers can be produced by adding water and the like to an inorganic material at the site, mixing the resultant, and adding additives as necessary.
  • the present invention is not limited to the above-described embodiment, and may include other embodiments, additions, modifications, and deletions. Such changes can be made within a range that can be conceived by a person skilled in the art, and any aspect of the present invention is included in the scope of the present invention as long as the functions and effects of the present invention are exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

ひび割れ幅がある幅以上であっても、ゲルによるひび割れの充填が可能となり、充分な防水性、止水性を付与できる改質方法を提供する。この方法は、ひび割れを有するコンクリートの表面に、珪酸塩を含む溶液を注入もしくは噴霧または塗布する第1の工程と、珪酸塩を含む溶液により湿潤したコンクリートの表面を持つひび割れ内部に、加水により流動化した無機系材料を注入または塗布して充填する第2の工程と、無機系材料がひび割れ内に充填された後のコンクリートの表面に、珪酸塩を含む溶液を噴霧または塗布する第3の工程とを含む。

Description

コンクリートの改質方法および改質材
 本発明は、コンクリートの改質方法および改質材に関し、より詳細にはコンクリートに形成されたひび割れを補修するための改質方法および改質材に関する。
 コンクリートの表層は、乾燥、日射、温度変化、湿度変化、雨や二酸化炭素への暴露、凍害等の様々な環境にさらされる。これらの要因からコンクリートを守り、コンクリートの劣化を防いで長寿命化を目指すことが重要である。ところが、実際にひび割れのないコンクリートを作ることは困難である。
 そこで、一般にコンクリート構造物に対しては、ひび割れ幅をある一定程度許容し、これを超えるひび割れ幅に対して適切な処置を施すことが、建築、土木構造物の設計施工で規定されている。一般的な建築構造物ではそのひび割れ幅は0.3mmとされ、一般的な土木構造物では0.2mmとされている。
 従来、このようなコンクリートのひび割れを補修する方法として、アルカリ金属の珪酸塩水溶液を塗布し、ひび割れに浸透させ、コンクリート中の成分と反応してゲルを形成させ、そのゲルによりひび割れを充填する方法が提案されている(例えば、特許文献1~5参照)。
特開2003-212674号公報 特開2004-323333号公報 特開2005-239523号公報 特開2010-070403号公報 特許第5504414号公報
 しかしながら、ひび割れ幅がある幅以上である場合、ゲルが形成されるまで珪酸塩水溶液をひび割れ内に保持することができないため、ゲルによるひび割れの充填が期待できないという問題があった。
 本発明は、上記課題に鑑み、コンクリートの改質方法であって、
 ひび割れを有するコンクリートの表面に、珪酸ナトリウム、珪酸カリウム、珪酸リチウムの少なくとも2種を含有する珪酸塩を含む溶液を注入もしくは噴霧または塗布する第1の工程と、
 珪酸塩を含む溶液により湿潤したコンクリートの表面を持つひび割れ内部に、加水により流動化した無機系材料を注入または塗布して充填する第2の工程と、
 無機系材料がひび割れ内に充填された後のコンクリートの表面に、珪酸塩を含む溶液を噴霧または塗布する第3の工程とを含む、改質方法が提供される。
 本発明によれば、ひび割れ幅がある幅以上であっても、ゲルによるひび割れの充填が可能となり、充分な防水性、止水性を付与することができる。
コンクリートに形成されたひび割れを補修する作業の流れを示したフローチャート。 コンクリートにひび割れが生じた状態を説明する図。 ひび割れに各溶液が浸透する様子を示す概念図。 2つのコンクリートブロックを収容する透明な容器を例示した面。 容器内に2つのコンクリートブロックを収容し、周囲をコーキング材でシールしたところを例示した図。 2つのコンクリートブロック間の隙間を塞いだところを例示した図。 隙間を塞いだ2つのコンクリートブロックの上部に水を張ったところを例示した図。
 コンクリートは、セメント、骨材、水、混和剤をミキサーに投入し、錬り混ぜ、型枠を組み、型枠内に打設し、凝結が適切に進むように養生し、脱型することにより所望の形状に製造される。
 セメントは、石灰石や粘土等を混ぜ、焼成することにより生成されるクリンカと、石膏とを含む、水和反応や重合等により硬化する粉体である。骨材は、砂利や砂等で、セメントの割合を減らし、セメントの水和反応による発熱や水分の蒸発による収縮を抑制する。混和剤は、強度や耐久性の向上、凝結速度の調整等を目的として添加される薬剤である。
 養生は、コンクリートが充分に硬化するまで、温度や水分含有量を管理する作業である。養生作業では、ブルーシート等でコンクリートを覆い、ヒータ等により温度を適温に保ち、散水する等して水分含有量を規定量に保つ。
 コンクリートは、余剰の水分を含み、余剰水分が蒸発することによる乾燥収縮、温度変化、湿度変化、雨や二酸化炭素への暴露、凍害により、また、建築物の重量や地震力等の外部からの荷重を受けて、ひび割れが発生する。
 コンクリートのひび割れは、ある一定程度の幅であれば許容される。その一方で、これを超えるひび割れ幅に対しては、適切な処置を施すことが要求される。処置が必要なひび割れには、ひび割れ幅が0.2mm未満の小さなひび割れから0.2mm以上の大きなひび割れまで存在する。これらの両方を補修する方法について、図1を参照して説明する。
 図1は、コンクリートに形成されたひび割れを補修する作業の流れを示したフローチャートである。作業は、ステップ100から開始し、ステップ101で、補修するための溶液が注入しやすいようにコンクリート表面の下地を清掃する等して処理する。下地の清掃は、例えば刷毛、清水による高圧水、ワイヤブラシ等を使用して、埃等を払うことにより行われる。
 コンクリート10には、上記の要因により、図2に示すようなひび割れ11が形成される。図2(a)は、外観に見えるひび割れを例示した図で、図2(b)は、切断線A-Aで切断した断面を拡大して示した図である。ひび割れ11が形成されると、雨水や二酸化炭素等がひび割れ11を介してコンクリート10内に入り込み、コンクリート10を劣化させ、内部の鉄筋が錆び等して、耐久性を低下させる。このひび割れを塞ぐために補修が行われる。
 ステップ102では、コンクリート表面におけるひび割れの幅を測定する。ひび割れ幅は、図2(b)に示すひび割れの幅で、クラックスケール(定規)や、ひび割れをカメラで撮像し、撮像画像を解析することにより幅を計算するシステム等を測定器として使用し、測定することができる。ひび割れ幅は、ひび割れの大きさと関係し、大きいほど雨水等が浸透しやすくなり、コンクリートの強度が低下する。
 ステップ103では、ひび割れ幅が0.2mm以上かどうかを確認し、0.2mm以上の場合、ステップ104へ進み、0.2mm未満の場合、ステップ124へ進む。ステップ104では、ひび割れ幅が0.3mm以上かどうかを確認する。ここでは、ひび割れ幅0.2mm、0.3mmの2つを基準として判断しているが、0.2mm、0.3mmに限定されるものではなく、適切な幅を適宜設定することができる。
 ひび割れ幅が0.3mm以上の場合、ステップ105へ進み、ディスクラインダー等の研削装置を使用し、ひび割れに沿って断面がU形またはV形に溝を形成する。この場合、ひび割れが大きく、ひび割れが広がりやすいことから、補強効果を高めるために、このような溝を形成し、接着面積を増やすUカットシール充填工法を併用する。
 溝内を清水による高圧水またはワイヤブラシ等で清掃した後、ステップ106へ進み、深く浸透させるために散水した後、ステップ107で、溝内に、珪酸塩を含む溶液(以下、珪酸塩溶液とする。)を注入もしくは噴霧または塗布し、ひび割れの表面を湿潤状態にする。このように湿潤状態にすることで、ひび割れ内部表面近傍のコンクリートを改質するとともに、後に無機系材料をひび割れに充填した際にコンクリートと一体化する。
 珪酸塩溶液は、例えば珪酸ナトリウム、珪酸カリウム、珪酸リチウムの少なくとも2つを混合し、水を適当量添加して作製されたアルカリシリケート水溶液とされる。アルカリシリケート水溶液は、pHが11~12で、珪酸塩の粒子径が約1~10nmと小さく、6~8(mPa・s)といった低粘度の溶液である。少なくとも2種類のアルカリ金属を含有させる理由は、水中における混合アルカリ効果により、アルカリ金属イオンの移動度を低下させることで、カルシウムイオンとの反応を抑制し、コンクリートの深部まで、例えば表面から200mm程度までアルカリ金属イオンを送達することが可能となるためである。また、アルカリ金属イオンがコンクリート深部にまで達するので、水分の消失後に珪酸ナトリウム、珪酸カリウムといった形で残留した珪酸塩は、事後的に雨水等に曝されると、再度深部におけるカルシウムイオンを溶出させて、シリケートとゲルを形成することにより、自動的にひび割れを補修するという作用を提供し、さらに長期間の補修性を提供することができる。
 これらの珪酸塩を2種類以上配合するのは、単独の珪酸塩の場合に比較して、硬度、密度が増し、化学耐久性が向上するからである。珪酸ナトリウム、珪酸カリウム、珪酸リチウムの少なくとも2つを混合する際の配合比は、2つを混合する場合、モル比で1:9~9:1の範囲内とすることができ、3:7~7:3の範囲内にすることが望ましい。3つを混合する場合は、珪酸ナトリウムを5~90モル%、珪酸カリウムを5~90モル%、珪酸リチウムを5~90モル%の配合比率とすることができ、珪酸ナトリウムを15~70モル%、珪酸カリウムを15~70モル%、珪酸リチウムを15~70モル%の配合比率にすることが望ましい。
 なお、ゲル化にかかる時間が長くなり過ぎると、水等の浸入を防止するゲルの作用が発揮されないため、珪酸ナトリウムと珪酸カリウムとの割合を、モル比で上記の3:7~7:3の範囲内にすることが望ましい。
 また、特定の実施形態においては、珪酸ナトリウム、珪酸カリウム、珪酸リチウムから選択した2種類の珪酸塩の水溶液中に、アルカリ金属イオンが、1:1の等モル比で存在する珪酸水溶液を珪酸塩系コンクリート改質剤として併用することが好ましい。アルカリ金属イオンが、モル比で1:1の割合で存在するケイ酸塩水溶液は、混合アルカリ効果によりコンクリートに深く浸透し、深部まで長期間にわたりコンクリートを改質し、保護するため、ひび割れ補修性に優れた効果を有する。
 本実施形態で使用される珪酸塩水溶液には特に限定はないが、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウムから選択された珪酸塩の少なくとも2種を含む珪酸塩系コンクリート改質剤、例えば珪酸ナトリウムと、珪酸カリウムとを、アルカリ金属元素のモル比で1:1で含有する日本プロロング株式会社製の珪酸塩系コンクリート改質剤「エバープロロング」を使用することができる。
 珪酸塩に添加する水量は、珪酸塩を分散させることができる量であればいかなる量であってもよい。
 珪酸塩溶液を塗布する方法としては、はけ塗り、ロールコーティング、スプレーコート等を挙げることができる。珪酸塩溶液を噴霧する方法としては、スプレーを使用する方法を挙げることができる。スプレーを使用する際は、そのノズルをひび割れ部に密着させ、深い浸透を試みることができる。珪酸塩溶液を注入する方法としては、油差しを使用する方法を挙げることができる。
 珪酸塩溶液を塗布等した後のひび割れ11は、例えば図3(a)に示すようなものとなる。図3(a)を参照すると、ひび割れ内部のコンクリート表面から厚さ数mm程度、珪酸塩溶液が浸透して改質部13を形成し、ひび割れ11内の露出した表面が、珪酸塩溶液12で濡れた状態となっている。
 補修対象のコンクリートスラブがデッキスラブで、ひび割れが貫通している場合は、油差し等を用いて、珪酸塩溶液の底面滞留を意図してたっぷり注入する。
 珪酸塩溶液を塗布等した後、ステップ108で、施工面全体に散水し、湿潤状態に置く。
 このようにして湿潤状態に置いた後、ステップ109へ進み、加水により流動化した無機系材料を水性充填剤として注入または塗布する。粒子径が比較的大きい無機系材料により、ひび割れをある程度充填するためである。
 無機系材料としては、例えばセメントを用いることができる。なお、一般に使用されるセメントの粒子は、粒子径が大きいので、微細な粒子であることが好ましい。セメントは流動化してセメントスラリーとすることで、手押しモルタルポンプで注入することが可能となる。また、流動化を改善するために、必要に応じて混和剤を添加してもよい。
 セメントとしては、ポルトランドセメントを用いることができるが、これに限られるものではなく、高炉セメント、シリカセメント、フライアッシュセメント等であってもよい。高炉セメントは、高炉スラグの微粉末とポルトランドセメントを混合したセメントで、シリカセメントは、シリカを60%以上含む天然のシリカ質混合材とポルトランドセメントを混合したセメントである。フライアッシュセメントは、石炭の焼却灰(フライアッシュ)とポルトランドセメントを混合したセメントである。
 セメントスラリーの注入は、低濃度スラリーで開始し、配合を変えながら水セメント比60~80%の高濃度スラリーにより行うことができる。
 ステップ109で充填した後のひび割れ11は、図3(b)に示すようなものとなる。すなわち、ひび割れ11内のある程度の部分がセメント14により埋められる。加水により流動化したセメントは、珪酸塩溶液に比較して、粒子径も大きく、粘度も高いため、珪酸塩溶液のようにすぐに下方へ流れてしまうことはないからである。
 本方法でのひび割れ充填は、セメント等の無機系材料を用い、エポキシ樹脂やアクリル系の樹脂等の有機系材料を使用しないため、材料の経年劣化の発生をなくすことができる。また、珪酸塩溶液と併用することによって、注入したセメントグラウトに硬化や収縮現象が現れて、ひび割れ面でコンクリートと剥離し、新たなひび割れを発生させることを防止することができる。
 流動化した無機系材料を塗布する方法は、珪酸塩溶液を塗布する方法と同様、はけ塗り、ロールコーティング、スプレーコート等を挙げることができる。流動化した無機系材料を注入する方法では、手押しモルタルポンプを使用することができる。
 セメント14は、充填されたひび割れ11内で水と反応し、重合して硬化し、コンクリート10と一体化する。これだけでは、その後の乾燥や温度変化による収縮に追従することができず、新たなひび割れが発生する。また、注入が進み、ひび割れ幅が小さくなると、セメント粒子を注入することができない部分が生じ、欠陥として残ってしまう。これでは、欠陥から雨水等が入り込み、コンクリートを劣化させ、耐久性を低下させてしまう。
 そこで、ステップ110で散水して施工面を充分に湿潤させた後、ステップ111で無機系材料を充填した後のコンクリート表面に、再び珪酸塩溶液を噴霧または塗布する。この作業では、セメント14によりひび割れを粗く充填した後に、残った空隙に珪酸塩溶液を浸透させる。ステップ107で珪酸塩溶液により湿潤状態にしておいたので、ステップ109で充填されたセメント14の細かい粒子間にも珪酸塩溶液を行き渡らせることができる。なお、この珪酸塩溶液の塗布等は、注入した無機系材料がある程度強度を有するように硬化した後に実施される。硬化時間の目安は12時間程度である。
 珪酸塩溶液は、上記のように珪酸塩の粒子径が小さく、低粘度の溶液であるため、セメント粒子間等の狭い隙間にも浸透し、また、毛管現象により、垂直方向に立ち上がった溝等にも浸透し、外部へ流出することなくひび割れ11内に保持される。このような珪酸塩溶液を使用することで、コンクリート表面への噴霧や塗布のみでも、小さいひび割れでも内部に浸透させることができる。珪酸塩溶液の散布後、ステップ112で工区全体に散水し、施工面を充分に湿潤させる。
 珪酸塩溶液は、水を介してコンクリートに含まれる水酸化カルシウムと反応(ポラゾン反応)し、アルカリカルシウムシリケート(ゲル)を生成する。具体的には、カルシウムイオンが珪酸アニオンの鎖と結合し、カルシウムシリケート鎖を作り、これが互いに結合してゲル化が起こる。このゲル化により、上記の空隙が塞がれ、雨水等の浸入を防ぐ。すなわち、図3(c)に示すように、ひび割れ11内のセメント14で埋められた部分以外の空隙がゲル15により塞がれる。
 珪酸塩溶液としては、上記の3つの材料のうちの、特に珪酸ナトリウムと珪酸カリウムとを混合して作製されたアルカリシリケート水溶液が好ましい。これは、ナトリウムイオンやカリウムイオンが珪酸アニオンの鎖を長くせず、むしろ短くするように働き、ゲル化を遅らせるからである。これにより、ゲル化に必要な時間が長くなり、コンクリートの深部までアルカリシリケート水溶液を浸透させることができる。
 この場合、ゲル化にかかる時間が長くなり過ぎると、水等の浸入を防止するゲルの作用が発揮されないため、珪酸ナトリウムと珪酸カリウムとの割合をモル比で、上記の3:7~7:3の範囲内にすることが望ましい。
 この珪酸塩溶液の塗布等も、先の珪酸塩溶液や流動化した無機系材料の塗布等と同様の方法を用いることができる。ステップ107で使用する珪酸塩溶液と、ステップ111で使用する珪酸塩溶液は、同じ2種類以上のアルカリシリケートを混合した溶液であってもよいし、異なる2種類以上のアルカリシリケートを混合したものであってもよい。また、水の添加量も、ステップ107で使用する珪酸塩溶液と、ステップ111で使用する珪酸塩溶液とで、同じ量としてもよいし、異なる量としてもよい。
 ステップ113では、上記の溝に無機系材料(セメント)を充填物として充填し、溝を埋める。この溝を埋めた後も、ステップ114で散水を行い、ステップ115で珪酸塩溶液を噴霧または塗布する。散水は、ひび割れを中心として両側に数センチの範囲に行う。珪酸塩溶液の塗布等も、散水と同じ範囲に行う。この場合の珪酸塩溶液も、ステップ107やステップ111で使用する珪酸塩溶液と同じ2種類以上のアルカリシリケートを混合した溶液であってもよいし、異なる2種類以上のアルカリシリケートを混合したものであってもよい。また、水の添加量も、ステップ107やステップ111で使用する珪酸塩溶液と同じ量としてもよいし、異なる量としてもよい。
 珪酸塩溶液を塗布等した後、ステップ116で工区全体に散水し、施工面を充分に湿潤させる。
 ステップ104における確認で、ひび割れ幅が0.3mm未満の場合、ステップ117へ進み、上記の溝を形成することなく、散水した後、ステップ118で、ひび割れを有するコンクリート表面に、珪酸塩溶液を注入もしくは噴霧または塗布する。そして、ステップ119で散水し、ステップ120で、加水により流動化した無機系材料を注入または塗布して充填する。
 無機系材料の充填後、ステップ121で散水し、ステップ122で、無機系材料を充填した後のコンクリート表面に、珪酸塩溶液を噴霧または塗布する。その後、ステップ123で工区全体に散水し、施工面を充分に湿潤させる。
 ステップ103の確認で、ひび割れ幅が0.2mm未満の場合、ステップ124で散水した後、ステップ125で珪酸塩溶液の噴霧または塗布のみを行う。これは、ひび割れ自体が小さいので、セメント粒子によりひび割れを粗く充填する必要がないからである。ステップ125では、珪酸塩溶液を注入し、ゲル15を生成させて空隙を塞ぐ。珪酸塩溶液の塗布等の後、ステップ126で工区全体に散水し、施工面を充分に湿潤させる。
 ステップ116もしくはステップ123またはステップ126で散水した後、ステップ127へ進み、ひび割れ箇所が他に存在するかを確認し、存在する場合には、ステップ102へ戻り、他のひび割れについても同様の作業を行う。
 テップ127で存在しないことを確認した場合は、ステップ128へ進み、養生を行う。養生の際、コンクリート中のカルシウムとの反応を促進させるために、散水する等して、水を供給することができる。充分に硬化したところで、ステップ129においてコンクリートのひび割れの補修を終了する。
 なお、この作業の流れは一例であり、ひび割れを1つずつ測定、塗布等を行うのではなく、全てのひび割れについて一度に測定し、その後、ひび割れ幅に応じて塗布等を行ってもよい。また、全ての塗布等を待って養生を行うのではなく、1つのひび割れについて塗布等を行う毎に養生を行ってもよい。
 ここに、本方法で補修の効果を試すために行った試験および試験結果を示す。試験には、図4に示すような、透明なアクリル製のケース20内に、ケース20の内面から中央に向けて突出する複数の突起21を設け、複数の突起21上に複数の穴22を有するプレート23を載せ、プレート23上に、2つのコンクリートブロック24を一定の間隔で離間して配置したものを、2組用いた。なお、図4では1組のみの構成を例示している。
 1つは、2つのコンクリートブロック24の間隔を0.5mmとし、もう1つは、2つのコンクリートブロック24の間隔を0.75mmとした。そして、それぞれの2つのコンクリートブロック24の上部周囲を、図5に示すように、市販のコーキング材25でシールした。図5は、ケース20を上から見た図である。これにより、模擬的なひび割れを、2つのコンクリートブロック24間の隙間26により形成した。
 図6に示すように、周囲をコーキング材25でシールされた2つのコンクリートブロック24の上面に、ナトリウムシリケートとカリウムシリケートを5:5のモル比で含有するアルカリシリケート水溶液27(日本プロロング株式会社製、エバープロロング)を、2つのコンクリートブロック24の上面に塗布し、表面を湿潤状態にした。また、隙間26の内部のコンクリート表面から厚さ数mm程度、珪酸塩溶液が浸透して改質され、改質部28が形成された。
 次に、加水により流動化したセメント(セメント分散液)29を、2つのコンクリートブロック24の上面に塗布した。セメント29は、しばらくすると、固化して粘着性がなくなってくる。粘着性がなくなってきたことを確認した後、上記と同じアルカリシリケート水溶液を、再び2つのコンクリートブロック24の上面に塗布し、1週間養生した。養生後の2つのコンクリートブロック24間は、充填物(セメントと生成されたゲル)30により塞がれた。
 試験は、図7に示すように、アクリル製のケース20の上部31に水32を張り、アクリル製のケース20の底部33に水が漏れるかどうかを観察することにより行った。上部31は、ケース20内のコーキング材25と充填物30によりシールされた2つのコンクリートブロック24の上側の部分であり、底部33は、ケース20内のプレート23の下側の部分である。
 間隔を0.5mm、0.75mmにしたものの底部33を数日間観察したが、いずれも水漏れは観測されなかった。
 このことから、ひび割れ幅が0.2mm以上であっても、充分な防水性、止水性を付与することができることが確認できた。
 以上に説明したように、複雑なコンクリートのひび割れに対し、珪酸塩溶液と、加水により流動化した無機系材料とを組み合わせて使用することで、コンクリートのひび割れに適切に対応することができる。したがって、本方法は、コンクリートの漏水対策、止水対策として有効に機能を発揮する。
 本発明では、コンクリートのひび割れの改質方法のほか、改質材も提供することができる。改質材は、珪酸塩溶液と、無機系材料を混合した水性充填材とから構成される。水性充填材は、流動化を改善するために、混和剤を含むこともできる。水性充填剤は、珪酸塩溶液により湿潤したコンクリートの表面を持つひび割れ内部を注入または塗布により充填することができる。
 水性充填剤は、現場において無機系材料に水等を加えて混合し、必要に応じて添加剤を添加することにより製造することができる。
 これまで本発明のコンクリートの改質方法について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
10…コンクリート
11…ひび割れ
12…珪酸塩溶液
13…改質部
14…セメント
15…ゲル
20…ケース
21…突起
22…プレート
23…穴
24…コンクリートブロック
25…コーキング材
26…隙間
27…アルカリシリケート水溶液
28…改質部
29…セメント
30…充填物
31…上部
32…水
33…底部

Claims (9)

  1.  コンクリートの改質方法であって、
     ひび割れを有するコンクリートの表面に、珪酸ナトリウム、珪酸カリウム、珪酸リチウムの少なくとも2種を含有する珪酸塩を含む溶液を注入もしくは噴霧または塗布する第1の工程と、
     前記珪酸塩を含む溶液により湿潤したコンクリートの表面を持つひび割れ内部に、加水により流動化した無機系材料を注入または塗布して充填する第2の工程と、
     前記無機系材料がひび割れ内に充填された後のコンクリートの表面に、珪酸塩を含む溶液を噴霧または塗布する第3の工程とを含む、改質方法。
  2.  前記無機系材料は、セメントであり、前記珪酸塩は、珪酸ナトリウム、珪酸カリウム、珪酸リチウムのうちの少なくとも2つを含む、請求項1に記載の改質方法。
  3.  前記珪酸塩は、珪酸ナトリウム、珪酸カリウム、珪酸リチウムのうちの2つを含み、2つの前記珪酸塩が、モル比で1:9~9:1の割合で配合される、請求項2に記載の改質方法。
  4.  前記珪酸塩は、珪酸ナトリウム、珪酸カリウム、珪酸リチウムのうちの2つを含み、2つの前記珪酸塩が、モル比で1:1の割合で配合される、請求項1に記載の改質方法
  5.  前記コンクリートに形成されたひび割れの幅を測定する第4の工程を含み、
     測定された幅が所定の幅以上である場合に、前記第1の工程と、前記第2の工程と、第3の工程とを実施する、請求項1~4のいずれか1項に記載の改質方法。
  6.  前記第3の工程の後に、前記コンクリートに対して散水する第5の工程を含む、請求項1~5のいずれか1項に記載の改質方法。
  7.  前記ひび割れに沿って溝を形成する第6の工程と、前記溝を充填物により充填する第7の工程とを含む、請求項1~6のいずれか1項に記載の改質方法。
  8.  コンクリートの改質材であって、
     ひび割れを有するコンクリートの表面に注入もしくは噴霧または塗布され、珪酸ナトリウム、珪酸カリウム、珪酸リチウムから選択される少なくとも2種の珪酸塩を含む溶液と、
     前記珪酸塩を含む溶液により湿潤したコンクリートの表面を持つひび割れ内部を注入または塗布により充填する、無機系材料を混合した水性充填剤とから構成され、
     前記珪酸塩を含む溶液は、前記水性充填剤によりひび割れ内が充填された後のコンクリートの表面に噴霧または塗布される、改質材。
  9.  前記溶液は、少なくともナトリウム元素と、カリウム元素とを等モル含有してなる、請求項8に記載の改質材。
PCT/JP2019/025287 2018-06-28 2019-06-26 コンクリートの改質方法および改質材 WO2020004434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980043550.2A CN112469876A (zh) 2018-06-28 2019-06-26 混凝土的改性方法及改性材料
JP2020527562A JPWO2020004434A1 (ja) 2018-06-28 2019-06-26 コンクリートの改質方法および改質材
PH12020552131A PH12020552131A1 (en) 2018-06-28 2020-12-10 Concrete modifying method and modifying material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/024530 WO2020003430A1 (ja) 2018-06-28 2018-06-28 コンクリートの補修方法および補修剤
JPPCT/JP2018/024530 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004434A1 true WO2020004434A1 (ja) 2020-01-02

Family

ID=68985452

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/024530 WO2020003430A1 (ja) 2018-06-28 2018-06-28 コンクリートの補修方法および補修剤
PCT/JP2019/025287 WO2020004434A1 (ja) 2018-06-28 2019-06-26 コンクリートの改質方法および改質材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024530 WO2020003430A1 (ja) 2018-06-28 2018-06-28 コンクリートの補修方法および補修剤

Country Status (4)

Country Link
JP (1) JPWO2020004434A1 (ja)
CN (1) CN112469876A (ja)
PH (1) PH12020552131A1 (ja)
WO (2) WO2020003430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123860A (ja) * 2020-01-31 2021-08-30 恒謙 葭葉 外壁タイルの補強方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113140A (ja) * 2020-01-17 2021-08-05 株式会社グリーンドゥ セメント系構造物の強度向上方法
CN114354081B (zh) * 2022-01-10 2023-12-05 镇江市建设工程质量检测中心有限公司 一种混凝土板渗漏点检测装置及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578764A (en) * 1978-11-08 1980-06-13 Onoda Kenzai Kk Repair and restoration of reinforced concrete or inorganic material
JPH1179868A (ja) * 1997-09-03 1999-03-23 Mitsubishi Materials Corp 中性化したコンクリートのアルカリ性回復工法
JP2003137674A (ja) * 2001-10-29 2003-05-14 Eiwa:Kk コンクリート構造物の劣化防止方法
JP2004323333A (ja) * 2003-04-28 2004-11-18 Soma Takafumi コンクリート改質材
JP2007009487A (ja) * 2005-06-29 2007-01-18 Chubu Renewale Kk コンクリートのひび割れ補修工法
JP2010070403A (ja) * 2008-09-17 2010-04-02 Linack Co Ltd 新規コンクリートの乾燥収縮ひび割れ抑制方法及びひび割れ抑制剤、並びに既設コンクリートのひび割れ閉塞方法及びひび割れ閉塞剤
JP2011256066A (ja) * 2010-06-08 2011-12-22 Shimoda Gijutsu Kenkyusho:Kk コンクリート構造物の保護方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100523408C (zh) * 2008-05-15 2009-08-05 浙江中富建筑集团股份有限公司 一种建筑墙体裂缝修补方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578764A (en) * 1978-11-08 1980-06-13 Onoda Kenzai Kk Repair and restoration of reinforced concrete or inorganic material
JPH1179868A (ja) * 1997-09-03 1999-03-23 Mitsubishi Materials Corp 中性化したコンクリートのアルカリ性回復工法
JP2003137674A (ja) * 2001-10-29 2003-05-14 Eiwa:Kk コンクリート構造物の劣化防止方法
JP2004323333A (ja) * 2003-04-28 2004-11-18 Soma Takafumi コンクリート改質材
JP2007009487A (ja) * 2005-06-29 2007-01-18 Chubu Renewale Kk コンクリートのひび割れ補修工法
JP2010070403A (ja) * 2008-09-17 2010-04-02 Linack Co Ltd 新規コンクリートの乾燥収縮ひび割れ抑制方法及びひび割れ抑制剤、並びに既設コンクリートのひび割れ閉塞方法及びひび割れ閉塞剤
JP2011256066A (ja) * 2010-06-08 2011-12-22 Shimoda Gijutsu Kenkyusho:Kk コンクリート構造物の保護方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123860A (ja) * 2020-01-31 2021-08-30 恒謙 葭葉 外壁タイルの補強方法
JP7049377B2 (ja) 2020-01-31 2022-04-06 恒謙 葭葉 外壁タイルの補強方法

Also Published As

Publication number Publication date
CN112469876A (zh) 2021-03-09
JPWO2020004434A1 (ja) 2021-08-02
PH12020552131A1 (en) 2021-06-21
WO2020003430A1 (ja) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2020004434A1 (ja) コンクリートの改質方法および改質材
AU673408B2 (en) Corrosion inhibiting composition for reinforced concrete and method of applying same
KR101528120B1 (ko) 콘크리트 구조물 보수 보강제 및 이를 이용한 콘크리트 구조물의 보수 보강 공법
CN104684864A (zh) 用于建筑应用的多用途砂浆或水泥组合物
CN109336531A (zh) 一种双组份渗透结晶混凝土裂缝防水修补液及施工方法
KR102035720B1 (ko) 콘크리트 침목 표면보호 또는 균열 보수용 액상형 무기계 조성물 및 이를 이용한 콘크리트 침목 표면보호 또는 균열 보수 방법
KR100849528B1 (ko) 속경성 아크릴 개질콘크리트와 표층강화제를 이용한 교면포장 및 도로 보수공법
Smoak Guide to concrete repair
JP3884118B2 (ja) コンクリート補修液内包骨材及びそれを配合したコンクリート並びにその製造方法
KR101556231B1 (ko) 콘크리트 구조물의 보수 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
KR101888662B1 (ko) 시멘트계 지수제, 방청제, 단면보수제 및 방수제를 이용한 습윤구역에 배치된 철근콘크리트의 누수 방지, 철근방청처리, 단면보수 및 역수압에 대한 방수공법
CN112408851A (zh) 一种抗辐射半永久纳米渗透结晶密封致密剂及其使用方法
KR100335826B1 (ko) 철근이 노출된 콘크리트구조물의 결함부 재생보수 공법
KR101102249B1 (ko) 방청 몰탈을 이용한 철근콘크리트 구조물 보수보강공법
KR102259809B1 (ko) 고 황산염 시멘트 및 이를 이용한 콘크리트 보수 모르타르 및 그 시공 방법
JP2003165759A (ja) 構造物の補修材および補修方法
JP5385715B2 (ja) 防草モルタル吹付け工法
KR101931721B1 (ko) 친환경 무기계 폴리머를 사용하는 콘크리트구조물 보수 공법
JP6831508B2 (ja) コンクリートの補修方法
JP2015124138A (ja) 海底トンネル補修用ポリマーセメントグラウト材及び海底トンネルの補修方法
KR101262717B1 (ko) 구조물 보수용 몰탈 조성물
KR100559150B1 (ko) 나노 합성 무기질 폴리머를 함유하는 콘크리트 및건축구조물의 균열보수 · 보강재 조성물
JP4555066B2 (ja) コンクリート構造物の補修工法
KR102672111B1 (ko) 구조물 표면용 무기질 수성 방수제의 시공방법
KR102506548B1 (ko) 타설 초기 및 장기 팽창효과가 우수한 그라우팅용 팽창 모르타르

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824879

Country of ref document: EP

Kind code of ref document: A1