WO2020004293A1 - Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device - Google Patents

Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device Download PDF

Info

Publication number
WO2020004293A1
WO2020004293A1 PCT/JP2019/024862 JP2019024862W WO2020004293A1 WO 2020004293 A1 WO2020004293 A1 WO 2020004293A1 JP 2019024862 W JP2019024862 W JP 2019024862W WO 2020004293 A1 WO2020004293 A1 WO 2020004293A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
residue
polyimide film
film
less
Prior art date
Application number
PCT/JP2019/024862
Other languages
French (fr)
Japanese (ja)
Inventor
勝哉 坂寄
太田 貴之
滉大 岡田
小林 義弘
綾 勝又
前田 高徳
敬輔 脇田
怜次郎 吉野
奈保美 金澤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019115395A external-priority patent/JP7388011B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2020004293A1 publication Critical patent/WO2020004293A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a polyimide film, a polyimide material, a laminate, a display member, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device.
  • Thin sheet glass is excellent in hardness, heat resistance, etc., but is difficult to bend, easily breaks when dropped, has a problem in workability, and has a disadvantage that it is heavier than plastic products. Therefore, in recent years, resin products such as a resin base material and a resin film are being replaced with glass products from the viewpoint of workability and weight reduction, and research on resin products as glass substitute products has been conducted.
  • polyimide is a highly heat-resistant resin obtained by subjecting a polyamic acid obtained by a condensation reaction between an aromatic tetracarboxylic anhydride and an aromatic diamine to a dehydration ring-closing reaction.
  • polyimide generally shows yellow or brown coloring, it has been difficult to use it in fields requiring transparency, such as display applications and optical applications. Therefore, application of a polyimide with improved transparency to a display member has been studied.
  • Patent Document 1 discloses 1,2,4,5-cyclohexanetetracarboxylic acid and 1,2,4,5-cyclohexanetetracarboxylic acid as polyimide resins having high heat resistance, high transparency and low water absorption.
  • a polyimide obtained by reacting with an imino-forming compound is disclosed, and is described as being suitable for a substrate material of a flat panel display, a mobile phone device, and the like.
  • Patent Document 2 includes a unit structure derived from an aromatic dianhydride and an aromatic diamine, an additive for improving tear strength, or a functional group selected from the group consisting of a hexafluoro group, a sulfone group, and an oxy group.
  • a transparent polyimide film further including a unit structure derived from a monomer having the same is disclosed.
  • Patent Document 3 discloses a polyimide film used for a substrate of a flexible device, which is a colorless and transparent polyimide film having a low residual stress generated between the film and an inorganic film and having excellent mechanical and thermal properties.
  • a polyimide film obtained by imidizing a polyimide precursor using a specific fluorine-based aromatic diamine and a silicone compound having a siloxane skeleton having 3 to 200 silicon atoms as a monomer component.
  • SiN film an inorganic film
  • Patent Document 4 discloses that as a polyimide having a low refractive index and high folding resistance, a silicone diamine having 2 to 21 silicon atoms is contained in an amount of 10% by weight or more based on the weight of the diamine raw material.
  • Patent Document 5 a diamine residue having one or two silicon atoms in the main chain as a resin film in which a decrease in surface hardness is suppressed while improving bending resistance.
  • the present invention has been made in view of the above problems, and has as its main object to provide a polyimide film having excellent transparency and improved bending resistance. Further, the present invention provides a polyimide material for producing the polyimide film, a laminate having the polyimide, a display member that is the polyimide film or the laminate, and a touch panel member including the polyimide film or the laminate. , A liquid crystal display device, and an organic electroluminescence display device.
  • the polyimide film of the present invention contains a polyimide having a structure represented by the following general formula (1),
  • the content of the organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of 100 ° C. or more is 100 ppm or less.
  • the total light transmittance measured according to JIS K7361-1 is 85% or more.
  • R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group that is a diamine residue
  • 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic.
  • a diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.
  • the polyimide film of the present invention has a tensile modulus of 1.8 GPa or more at 25 ° C. when a test piece of 15 mm ⁇ 40 mm is measured according to JIS K7127 at a tensile speed of 10 mm / min and a distance between chucks of 20 mm. It is preferable from the viewpoint of excellent surface hardness.
  • the polyimide film of the present invention preferably has a value obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness ( ⁇ m) of 0.10 or less from the viewpoint of excellent transparency.
  • the polyimide film of the present invention is a polyimide having a structure represented by the general formula (1), wherein R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic acid Dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride residue, 2,2', 3,3'-biphenyltetracarboxylic dianhydride residue, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexaflu
  • R 2 in the general formula (1) does not have the silicon atom and has an aromatic ring or an aliphatic ring.
  • a diamine residue having a ring is a trans-cyclohexanediamine residue, a trans-1,4-bismethylenecyclohexanediamine residue, a 4,4′-diaminodiphenylsulfone residue, a 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane- 2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3 A hexafluoropropane residue
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • R 2 has a diamine residue having no silicon atom and one or two silicon atoms in a main chain.
  • the present invention is a polyimide material for producing a polyimide film of the present invention, It has a structure represented by the general formula (1), and has a content of an organic solvent having a boiling point of less than 100 ° C. under 1 atm at 2000 ppm or less as a residual solvent, and a boiling point at 1 atm of 100.
  • a polyimide material having an organic solvent content of 100 ° C. or higher and 100 ppm or lower.
  • the present invention also provides a laminate having the polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the present invention also provides a display member, which is the polyimide film of the present invention or the laminate of the present invention.
  • the display member can be for a flexible display.
  • the present invention the polyimide film of the present invention or the laminate of the present invention, A transparent electrode composed of a plurality of conductive portions, disposed on one surface side of the polyimide film or the laminate, And a plurality of lead wires electrically connected to at least one of the ends of the conductive portion.
  • a liquid crystal display device comprising: a liquid crystal display portion having a liquid crystal layer between opposing substrates, the liquid crystal display portion being disposed on one surface side of the polyimide film or the laminate.
  • an organic electroluminescent display device comprising: an organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates, the organic electroluminescent display portion being disposed on one surface side of the polyimide film or the laminate.
  • the present invention it is possible to provide a polyimide film having excellent transparency and improved bending resistance. Further, the present invention provides a polyimide material for producing the polyimide film, a laminate having the polyimide, a display member that is the polyimide film or the laminate, and a touch panel member including the polyimide film or the laminate. , A liquid crystal display device, and an organic electroluminescence display device.
  • FIG. 1 is a schematic sectional view illustrating an example of a liquid crystal display device of the present invention.
  • FIG. 4 is a schematic sectional view showing another example of the liquid crystal display device of the present invention.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the organic electroluminescence display device of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the organic electroluminescence display device of the present invention.
  • the polyimide film according to the present invention a polyimide material for producing the polyimide film, a laminate using the polyimide film, a display member, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device will be described in detail.
  • shape and geometric conditions and the degree thereof for example, such as “parallel”, “orthogonal”, “identical” and the like, and the value of the length and angle, etc., strict Without being constrained by the meaning, it should be interpreted to include a range in which a similar function can be expected.
  • (meth) acryl represents each of acryl and methacryl.
  • light means actinic rays or radiation, for example, a bright line spectrum of a mercury lamp, far ultraviolet represented by excimer laser, extreme ultraviolet (EUV light), X-ray, electron beam and the like. Included. Further, in the drawings attached to this specification, for convenience of illustration and ease of understanding, the scale and vertical / horizontal ratio may be appropriately changed from those of the actual product and exaggerated. In this specification, "ppm" used as a unit of the content of the organic solvent in the polyimide film represents ppm by mass.
  • the polyimide film of the present invention contains a polyimide having a structure represented by the following general formula (1), As the residual solvent in the film, the content of the organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of 100 ° C. or more is 100 ppm or less. Yes, The total light transmittance measured according to JIS K7361-1 is 85% or more.
  • R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group that is a diamine residue
  • 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic.
  • a diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.
  • the polyimide contained in the polyimide film has a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a diamine residue having a silicon atom in a main chain as a diamine residue. It has a specific structure containing from 5 mol% to 50 mol%, and containing from 50 mol% to 97.5 mol% of a diamine residue having an aromatic ring or an aliphatic ring without a silicon atom, As a residual solvent, the content of the organic solvent having a boiling point of less than 100 ° C. at 1 atm is 2,000 ppm or less, and the content of the organic solvent having a boiling point of 100 ° C. or more at 1 atm is 100 ppm or less.
  • a polyimide film having a total light transmittance a polyimide film having excellent transparency and improved bending resistance can be provided.
  • Patent Document 5 the present inventors have found that when a diamine residue having one or two silicon atoms in the main chain is contained at an appropriate ratio in the total amount of diamine residues, the bending resistance is improved. Is disclosed. Further, as described in Patent Document 4, it is described that a polyimide film containing silicone diamine having 2 to 21 silicon atoms in an amount of 10% by weight or more based on the weight of the diamine raw material has high folding resistance. However, it has been found that even when the structure of the polyimide constituting the polyimide film is the same, the bending resistance changes depending on the method of manufacturing the polyimide film.
  • the present inventors in a polyimide film containing a diamine residue having a silicon atom in the main chain at an appropriate ratio of the total amount of the diamine residue, among the residual solvent in the film, the boiling point at 1 atm (hereinafter, referred to as The content of an organic solvent having a boiling point of less than 100 ° C. is 2,000 ppm or less, and the content of an organic solvent having a boiling point of 100 ° C. or more at 1 atm is 100 ppm or less. Thereby, it was found that the bending resistance of the polyimide film was improved. Since the residual solvent is a solvent used for producing the polyimide film, it is often a good solvent for the polyimide film.
  • the organic solvent having a boiling point of 100 ° C. or more exceeds 100 ppm as a residual solvent amount in the film, a part of the polyimide constituting the film is dissolved in the residual solvent, and the film is easily damaged during dynamic bending. It is presumed that it may be easily broken.
  • the organic solvent having a boiling point of less than 100 ° C. is not yet clear, but is less likely to affect the dynamic bending resistance of the film than the organic solvent having a boiling point of 100 ° C. or more, and a larger residual amount is acceptable. Is done.
  • An organic solvent having a boiling point of less than 100 ° C. is more likely to affect the static bending resistance of the film than an organic solvent having a boiling point of 100 ° C.
  • the organic solvent having a boiling point of less than 100 ° C. and the organic solvent having a boiling point of 100 ° C. or more are respectively set to a specific content ratio or less. It is presumed that a polyimide film that is hardly damaged at times and can be easily restored during static bending can be obtained.
  • the polyimide film according to the present invention contains polyimide and has the above-mentioned specific properties. As long as the effects of the present invention are not impaired, the composition may further contain other components or may have other configurations.
  • Polyimide Polyimide is obtained by reacting a tetracarboxylic acid component with a diamine component. It is preferable to obtain a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component and imidize the polyamic acid.
  • the imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also be manufactured by a method using both thermal imidization and chemical imidization.
  • the polyimide used in the present invention contains a polyimide having a structure represented by the following general formula (1).
  • R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group that is a diamine residue
  • 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic.
  • a diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.
  • the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as the residue obtained by removing the acid dianhydride structure from tetracarboxylic dianhydride.
  • the diamine residue refers to a residue obtained by removing two amino groups from a diamine.
  • the tetracarboxylic acid residue in R 1 of the general formula (1) is a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or a tetracarboxylic acid having an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from dianhydride.
  • tetracarboxylic dianhydride having an aromatic ring examples include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3 ′ -Benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis ( 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphen
  • tetracarboxylic dianhydride having an aliphatic ring examples include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride.
  • Anhydride, cyclobutanetetracarboxylic dianhydride and the like can be mentioned. These can be used alone or in combination of two or more.
  • the diamine residue having a silicon atom in the main chain in R 2 of the general formula (1) may be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
  • the polyimide film used in the present invention as described above, by introducing a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component.
  • the bending resistance can be improved.
  • a functional layer such as a hard coat layer to be described later is laminated, the adhesiveness between the functional layer such as a hard coat layer and the like can be improved.
  • the diamine residue having a silicon atom in the main chain may be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
  • Examples of the diamine residue having a silicon atom in the main chain include a diamine represented by the following general formula (A).
  • L is each independently a direct bond or —O— bond
  • R 10 is each independently a substituent, and may contain an oxygen atom or a nitrogen atom
  • R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, each of which may be independently a carbon atom which may have a substituent and may contain an oxygen atom or a nitrogen atom.
  • k is a number from 0 to 200.
  • a plurality of L, R 10 and R 11 may be the same or different.
  • Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and a combination thereof.
  • the alkyl group may be linear, branched, or cyclic, or may be a combination of linear or branched and cyclic.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples include a t-butyl group, a pentyl group, and a hexyl group.
  • the cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group.
  • the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, such as a benzyl group, a phenylethyl group, and a phenylpropyl group.
  • Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described below and the monovalent hydrocarbon group. And a group bonded by at least one of the bonds (—NH—).
  • the substituent which the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include a halogen atom such as a fluorine atom and a chlorine atom. And a hydroxyl group.
  • an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms is preferable from the viewpoint of improvement in bending resistance and compatibility of surface hardness.
  • it is an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
  • Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof.
  • the alkylene group may be linear, branched, or cyclic, or may be a combination of linear, branched, and cyclic.
  • the alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms, for example, a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, and a cyclohexylene group. And the like, and a combination of a cyclic or branched alkylene group and a cyclic alkylene group.
  • the arylene group is preferably an arylene group having 6 to 12 carbon atoms.
  • Examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for an aromatic ring described later. It may be.
  • the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom the divalent hydrocarbon groups may be formed by forming an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond (—NH—). A group bonded by at least one is exemplified.
  • the substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
  • an alkylene group having 1 to 6 carbon atoms or an arylene group having 6 to 10 carbon atoms is preferred from the viewpoint of improving bending resistance and compatibility of surface hardness.
  • the alkylene group is more preferably an alkylene group having 2 to 4 carbon atoms, and the alkylene group is preferably linear or branched.
  • K is a number from 0 to 200.
  • the average of k is preferably 0 or more and 6 or less, and more preferably 0 or more and 4 or less from the viewpoint of the improvement of the bending resistance and the compatibility of the surface hardness. Among them, k is preferably 0 or 1.
  • the diamine residue having a silicon atom in the main chain in R 2 has one or two silicon atoms in the main chain from the viewpoint of excellent bending resistance and excellent compatibility with surface hardness.
  • it is a diamine residue.
  • L is each independently a direct bond or —O— bond
  • R 10 is each independently a substituent.
  • And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain an oxygen atom or a nitrogen atom, wherein R 11 each independently may have a substituent, and Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom.
  • a plurality of L, R 10 and R 11 may be the same or different.
  • the molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3,000 or less, and is 2,000 or less. Is preferably 1,000 or less, more preferably 800 or less, even more preferably 500 or less, and particularly preferably 300 or less. Furthermore, the molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1,000 or less, more preferably 800 or less, even more preferably 500 or less, and 300 or less. Is particularly preferred. The molecular weight of the diamine residue is calculated by subtracting the molecular weight (32) of two amino groups (—NH 2 ) from the molecular weight of the diamine. Diamine residues having a silicon atom in the main chain can be used alone or in combination of two or more.
  • the diamine residue having a silicon atom in the main chain of R 2 in the general formula (1) is a diamine residue having two silicon atoms. Is preferable in terms of light transmittance, bending resistance and surface hardness. Further, 1,3-bis (3-aminopropyl) tetramethyldisiloxane residue and 1,3-bis (4- Aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, and the like are preferable from the viewpoint of easy availability and compatibility between light transmittance and surface hardness.
  • the diamine residue having an aromatic ring without a silicon atom in R 2 of the general formula (1) is a residue obtained by removing two amino groups from a diamine having an aromatic ring without a silicon atom. can do.
  • the diamine having no silicon atom and having an aromatic ring include, for example, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diamin
  • the diamine residue having an aliphatic ring without a silicon atom in R 2 of the general formula (1) may be a residue obtained by removing two amino groups from a diamine having an aliphatic ring.
  • the diamine having an aliphatic ring include 1,4-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 5-bis (aminomethyl) bicyclo [2,2,1] heptane and the like. These can be used alone or in combination of two or more.
  • R 2 of the general formula (1) 2.5 mol% or more and 50 mol% or less of the total amount of R 2 are diamine residues having a silicon atom in a main chain, When 50 mol% or more and 97.5 mol% or less are diamine residues having no aromatic atom or an aromatic ring without a silicon atom, static bending resistance and dynamic bending resistance are improved.
  • R 2 in the general formula (1) is preferably 3 mol% or more, more preferably 4 mol% or more of the total amount of R 2 , from the viewpoint of bending resistance, the diamine residue having a silicon atom in the main chain. Preferably, it is more preferably 5 mol% or more.
  • the diamine residue having a silicon atom in the main chain may be at least 10 mol% or at least 15 mol% of the total amount of R 2 .
  • the diamine residue having a silicon atom in the main chain is 45 mol% or less of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. It is more preferably at most 40 mol%, and from the viewpoint of compatibility between excellent surface hardness and dynamic bending resistance, it is also preferably less than 10 mol%.
  • the diamine residue having an aromatic ring or an aliphatic ring having no silicon atom is preferably at least 55 mol% of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. And more preferably 60 mol% or more, and may be more than 90 mol% from the viewpoint of excellent surface hardness. Further, the diamine residue having no aromatic ring or aromatic ring having no silicon atom is preferably 97 mol% or less, more preferably 96 mol% or less of the total amount of R 2 from the viewpoint of bending resistance. It is more preferable that the content is even more preferably 95 mol% or less.
  • the other diamines residues is preferably from 10 mol% of the total amount of R 2, still preferably 5 or less mol%, is preferably more or less further 3 mol%, particularly 1 mol% The following is preferred.
  • Examples of the other diamine residue include a diamine residue having no silicon atom and not having an aromatic ring and an aliphatic ring.
  • R 2 in the general formula (1) is a diamine residue having no silicon atom, and has one or two silicon atoms in the main chain, from the viewpoint of improving both bending resistance and surface hardness.
  • R 2 in the general formula (1) is preferably a diamine residue having one or two silicon atoms in the main chain at 3 mol% or more of the total amount of R 2 from the viewpoint of improving the bending resistance. And more preferably 4 mol% or more, and further preferably 5 mol% or more. From the viewpoint of reducing optical distortion, the diamine residue having one or two silicon atoms in the main chain may be at least 10 mol% or at least 15 mol% of the total amount of R 2. Is also good.
  • R 2 in the general formula (1) is a diamine residue having one or two silicon atoms in the main chain in an amount of 45 mol% of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance.
  • 2.5 mol% or more and 50 mol% or less of the total amount of R 2 are diamine residues having one or two silicon atoms in the main chain, and among the total amount of R 2 (100 mol%), The remainder (100% -x%) of the mole% (x mole%) of the diamine residue having one or two silicon atoms in the main chain is not less than 50 mole% and not more than 97.5 mole%. Instead, it is preferably a diamine residue having an aromatic ring or an aliphatic ring.
  • the diamine residue having one or two silicon atoms in the main chain accounts for 2.5 mol% or more and less than 10 mol% of the total amount of R 2. And the remainder (100% -x%) of the mole% (x mole%) of the diamine residue having one or two silicon atoms in the main chain of the total amount of R 2 (100 mole%). It is also preferable that a certain excess of 90 mol% to 97.5 mol% or less is a diamine residue having no aromatic atom or an aromatic ring or an aliphatic ring.
  • the polyimide used in the present invention preferably has a silicon atom content ratio (% by mass) of 0.7% by mass or more and 6.5% by mass or less from the viewpoint of bending resistance and surface hardness. It is more preferably from 0.7% by mass to 5.5% by mass, and still more preferably from 0.7% by mass to 4.2% by mass.
  • the content ratio (% by mass) of silicon atoms in the polyimide refers to the content ratio (% by mass) of silicon atoms in the total of two or more types of polyimide when two or more types of polyimides are used. At the time of polyimide production, it can be determined from the molecular weight of the charge.
  • the content (% by mass) of the silicon atom in the polyimide was determined by decomposing the polyimide in the same manner as described below, using a high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA and TOF. -Can be determined using SIMS. (Silicon atom content of polyimide (% by mass)) For example, 2,2'-bis (trifluoromethyl) benzidine (TFMB) is used as a diamine component per 1 mol of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as an acid dianhydride component.
  • TFMB 2,2'-bis (trifluoromethyl) benzidine
  • 6FDA 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • From TFMB: ⁇ (C) 12.01 ⁇ 14 + (F) 19.00 ⁇ 6 + (N) 14.01 ⁇ 2 + (H) 1.01 ⁇ 6 ⁇ ⁇ 0.9 284.60
  • polyimide having the structure represented by the general formula (1) from the viewpoint of improving light transmittance and improving surface hardness, among others, an aromatic ring is contained, and (i) a fluorine atom;
  • the polyimide having the structure represented by the general formula (1) has a rigid molecular skeleton by containing at least one selected from tetracarboxylic acid residues having an aromatic ring and diamine residues having an aromatic ring.
  • the rigid aromatic ring skeleton tends to increase the absorption wavelength to a longer wavelength, and the transmittance in the visible light region tends to decrease.
  • the polyimide contains (i) a fluorine atom, light transmission is improved because charge transfer of the electronic state in the polyimide skeleton can be made difficult.
  • the polyimide contains (ii) an aliphatic ring, light transmission is improved because the transfer of charges in the skeleton can be inhibited by cutting off the conjugation of ⁇ electrons in the polyimide skeleton.
  • the polyimide contains (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted with fluorine, the transfer of electric charge in the skeleton is prevented by cutting off the conjugation of ⁇ electrons in the polyimide skeleton.
  • the light transmittance is improved because it can be inhibited.
  • polyimide containing a fluorine atom is preferably used in terms of improving light transmittance and improving surface hardness.
  • the content ratio of fluorine atoms the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is preferably 0.01 or more, Further, it is preferably 0.05 or more.
  • the content ratio of fluorine atoms is too high, the inherent heat resistance of the polyimide may be reduced.
  • the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less. And more preferably 0.8 or less.
  • the above ratio determined by X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectroscopy apparatus (for example, Thermo Probe, Theta Probe). .
  • polyimide having a structure represented by the general formula (1) has a higher aromaticity when the total of R 1 and R 2 in the general formula (1) is 100 mol% from the viewpoint of improving the surface hardness.
  • the total of the tetracarboxylic acid residue having an aromatic ring and the diamine residue having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and preferably 75 mol% or more. Even more preferred.
  • the polyimide having the structure represented by the general formula (1) has a tetracarboxylic acid residue of R 1 and an aromatic compound having no silicon atom of R 2 because the surface hardness and light transmittance are improved.
  • At least one of the diamine residues having an aromatic ring or an aliphatic ring preferably contains an aromatic ring and a fluorine atom, and further has no tetracarboxylic acid residue of R 1 and no silicon atom of R 2 It is preferable that both of the diamine residue having an aromatic ring or an aliphatic ring include an aromatic ring and a fluorine atom.
  • the polyimide having the structure represented by the general formula (1) has a surface hardness and a light transmittance that are improved, and when the total of R 1 and R 2 in the general formula (1) is 100 mol%.
  • the total of tetracarboxylic acid residues having an aromatic ring and a fluorine atom and diamine residues having an aromatic ring and a fluorine atom is preferably at least 50 mol%, more preferably at least 60 mol%, Even more preferably, it is at least 75 mol%.
  • the polyimide having a structure represented by the general formula (1) is a polyimide in which 50% or more of the hydrogen atoms bonded to carbon atoms contained in the polyimide are hydrogen atoms directly bonded to an aromatic ring. Is preferably used in terms of improving light transmittance and improving surface hardness.
  • the proportion of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is preferably 60% or more, more preferably 70% or more.
  • the polyimide When 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide is a polyimide which is a hydrogen atom directly bonded to an aromatic ring, the polyimide is stretched at, for example, 200 ° C. or more even after a heating step in the air. Is preferable from the viewpoint that there is little change in the optical characteristics, particularly the total light transmittance and the yellowness YI value.
  • the polyimide has a low chemical reactivity due to low reactivity with oxygen. It is presumed that it is difficult to do so.
  • Polyimide films use their high heat resistance and are often used for devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to carbon atoms contained in the polyimide are converted to aromatic rings.
  • polyimide which is a hydrogen atom directly bonded
  • the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by decomposing the polyimide by high-performance liquid chromatography or gas chromatography.
  • the sample is decomposed with an aqueous alkaline solution, or supercritical methanol, and the decomposed product of the obtained polyimide is separated by high-performance liquid chromatography.
  • the ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all the hydrogen atoms (number) contained in the polyimide can be determined by quantification using high performance liquid chromatography.
  • R 1 in the general formula (1) is preferably cyclohexanetetracarboxylic acid from the viewpoints of light transmittance, bending resistance, and surface hardness.
  • R 1 in the general formula (1) is a 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-( Hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalic acid residue More preferably, it is at least one tetravalent group selected from the group consisting of acid anhydride residues.
  • R 1 in the general formula (1) pyromellitic dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, and 2,2 ′, 3 A group of tetracarboxylic acid residues (Group A) suitable for improving rigidity, such as at least one selected from the group consisting of 3'-biphenyltetracarboxylic dianhydride residues; Anhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, 4, 4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene
  • the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving the light transmittance is as follows.
  • the amount of the tetracarboxylic acid residue group (Group A) suitable for improving the rigidity is 0.1 mol per 1 mol of the tetracarboxylic acid residue group (Group B) suitable for improving the light transmittance.
  • the group B includes a fluorine atom-containing residue of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride and a residue of 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
  • the diamine residue not having the silicon atom in R 2 in the general formula (1) and having an aromatic ring or an aliphatic ring is trans.
  • R 3 and R 4 are more preferably perfluoroalkyl groups, and among them, a perfluoroalkyl group having 1 to 3 carbon atoms is preferable, More preferably, it is a trifluoromethyl group or a perfluoroethyl group. Further, as the alkyl group for R 3 and R 4 in the following general formula (2), an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • the content ratio of each repeating unit in the polyimide and the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue can be determined from the molecular weight charged during the production of the polyimide.
  • the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide was determined by using a high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR , Elemental analysis, XPS / ESCA and TOF-SIMS.
  • n represents the number of repeating units, and is 1 or more.
  • the number n of repeating units in the polyimide is preferably appropriately selected according to the structure so as to exhibit a preferable glass transition temperature described later, but is not particularly limited.
  • the average number of repeating units is usually from 10 to 2,000, and preferably from 15 to 1,000. Note that R 1 in each repeating unit may be the same or different, and R 2 in each repeating unit may be the same or different.
  • the polyimide having the structure represented by the general formula (1) preferably has a number average molecular weight of 10,000 or more, more preferably 20,000 or more, from the viewpoint of strength and bending resistance when formed into a film. Preferably, it is still more preferably 30,000 or more, and particularly preferably 50,000 or more.
  • the upper limit is not particularly limited, but is preferably 1000000 or less, more preferably 500,000 or less, from the viewpoint of easy synthesis and availability.
  • the number average molecular weight of the polyimide can be measured in the same manner as the number average molecular weight of the polyimide precursor described later.
  • the polyimide having the structure represented by the general formula (1) preferably has a weight average molecular weight of 20,000 or more, and more preferably 30,000 or more, from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is still more preferably 40,000 or more, and particularly preferably 80,000 or more.
  • the upper limit is not particularly limited, but is preferably 1000000 or less, more preferably 500,000 or less, from the viewpoint of easy synthesis and availability.
  • the weight average molecular weight of the polyimide can be measured by gel permeation chromatography (GPC).
  • a polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by weight
  • a developing solvent is a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less
  • a GPC apparatus HPC- 8120, column used: GPC LF-804 manufactured by SHODEX
  • measurement is performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.4 mL / min, and 37 ° C.
  • the weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • the polyimide used in the present invention may partially have a structure different from the structure represented by the general formula (1) as long as the effects of the present invention are not impaired.
  • the structure represented by the general formula (1) is preferably 95% or more, more preferably 98% or more, and more preferably 100% or more of the total number of repeating units of the polyimide. It is even more preferred.
  • Examples of the structure different from the structure represented by the general formula (1) include a case where a tetracarboxylic acid residue having no aromatic ring or aliphatic ring is included, and a polyamide structure.
  • polyamide structure examples include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
  • the polyimide used in the present invention in the tan ⁇ curve which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, that having a peak apex only in a temperature region of 150 ° C. or more, improves flex resistance. Is preferred.
  • the polyimide used in the present invention preferably has a peak apex only in a temperature region of 200 ° C. or higher in the tan ⁇ curve from the viewpoint of improving bending resistance and surface hardness, and has a temperature of 220 ° C. or higher. It is even more preferred that it has only in the region.
  • the peak of the peak in the tan ⁇ curve is preferably in a temperature range of 380 ° C. or less.
  • the polyimide used in the present invention preferably has one peak of a tan ⁇ curve in a temperature range of 150 ° C. or more and 400 ° C. or less.
  • the polyimide used in the present invention preferably has no tan ⁇ curve peak in a temperature range of ⁇ 150 ° C. or more and less than 0 ° C. in a temperature region of ⁇ 150 ° C. or more and less than 150 ° C., whereby the polyimide The surface hardness of the film at room temperature can be improved.
  • the tan ⁇ curve of the polyimide used in the present invention can be measured in the same manner as the tan ⁇ curve of a polyimide film described later.
  • the polyimide film of the present invention may further contain an additive, if necessary.
  • the additive include inorganic particles, a silica filler for facilitating winding, and a surfactant for improving film forming property and defoaming property.
  • the polyimide film of the present invention has the specific residual solvent amount and the specific total light transmittance. It is preferable that the polyimide film of the present invention further has the following characteristics.
  • the polyimide film of the present invention has, as a residual solvent in the film, a content of an organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and a boiling point under 1 atm.
  • the content of the organic solvent at 100 ° C. or higher is 100 ppm or lower.
  • the content of the organic solvent having a boiling point of less than 100 ° C. is preferably 1000 ppm or less, more preferably 400 ppm or less, and even more preferably 100 ppm or less, from the viewpoint of improving static flex resistance and dynamic flex resistance.
  • the content of the organic solvent having a boiling point of less than 100 ° C. is preferably as small as possible and may be 0 ppm from the viewpoint of improving the static bending resistance and the dynamic bending resistance.
  • the content of the organic solvent having a boiling point of 100 ° C. or more is preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and even more preferably 20 ppm or less, from the viewpoint of improving the dynamic bending resistance.
  • the content of the organic solvent having a boiling point under 1 atm of 70 ° C. or less may be 2000 ppm or less, and the content of the organic solvent having a boiling point under 1 atm of more than 70 ° C. may be 100 ppm or less.
  • the content of the organic solvent having a boiling point at 1 atm of 60 ° C. or less may be 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of more than 60 ° C. may be 100 ppm or less, and furthermore
  • the content of the organic solvent having a boiling point of 50 ° C. or less at 1 atm may be 2000 ppm or less, and the content of the organic solvent having a boiling point of more than 50 ° C. at 1 atm may be 100 ppm or less.
  • Examples of the organic solvent having a boiling point of less than 100 ° C. at 1 atm included as a residual solvent include organic solvents used in a process for producing a polyimide film. Examples thereof include chloroform, carbon tetrachloride, 1,2-dichloroethane, and 1,2-dichloroethane.
  • Examples of the organic solvent having a boiling point of not less than 100 ° C. at 1 atm included in the residual solvent include the organic solvents used in the production process of the polyimide film.
  • the residual solvent amount of the polyimide film can be measured as follows. [Specification of residual solvent type] First, the type of the residual solvent is specified using a GC-MS connected to a purge & trap device (heat desorption device). A sample tube containing 10 mg of a polyimide film was set in a purge & trap device (product name: JTD505-III, Nippon Kagaku Kogyo Co., Ltd.), and the gas generated by heating at 200 ° C. for 30 minutes and heating at ⁇ 60 ° C. Is collected at a temperature of 315 ° C. and sent to a GC-MS for qualitative analysis of the components of the generated organic gas.
  • a purge & trap device product name: JTD505-III, Nippon Kagaku Kogyo Co., Ltd.
  • a polyimide film is added to N, N-dimethylformamide (DMF) so that the concentration of the polyimide film becomes 5% by mass, to prepare a polyimide film / N, N-dimethylformamide (DMF) solution.
  • An internal standard solution (0.2% by mass anisole / DMF solution) is added to prepare a sample solution.
  • the sample solution is subjected to GC-MS measurement under the following conditions using a GC-MS device (eg, Agilent, 6890/5973 GC / MS). The GC-MS measurement is performed three times, and the measurement result is an average value of the three measurements.
  • a calibration curve is created for each of the residual solvents specified as described above, and the amount of each residual solvent is quantified based on the calibration curve.
  • the residual solvent contained is N, N-dimethylacetamide (DMAc)
  • the contents were adjusted so that the DMAc content was, for example, 0.01% by mass, 0.05% by mass, and 0.1% by mass, respectively.
  • GC-MS measurement is performed on each calibration curve solution prepared by adding an internal standard solution to each DMAc (measurement target compound) / DMF solution in the same manner as the above-mentioned sample solution, and a calibration curve is created. Note that the GC-MS measurement is performed three times, and the measurement result is an average value of the three measurements.
  • the content of DMAc is calculated as a mass ratio to the polyimide film.
  • a calibration curve is appropriately re-created based on the detected amount.
  • a calibration curve solution is prepared for each of the residual solvents as in the case of DMAc, and a calibration curve is created based on the measurement result of each calibration curve solution by GC-MS measurement. Based on line.
  • N N-dimethylformamide
  • a sample solution is prepared using a good polyimide solvent not contained as a residual solvent, such as N-methyl-2-pyrrolidone. .
  • the polyimide film of the present invention has a total light transmittance of 85% or more as measured according to JIS K7361-1. Since the transmittance is high as described above, the transparency is improved and the glass can be used as a substitute material for glass.
  • the total light transmittance of the polyimide film of the present invention measured in accordance with JIS K7361-1 is preferably 88% or more, more preferably 89% or more, and particularly preferably 90% or more. Is preferred.
  • the total light transmittance measured according to JIS K7361-1 can be measured, for example, with a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory).
  • the converted value of the total light transmittance of a different thickness can be obtained by Lambert-Beer's law and can be used.
  • c is also a constant.
  • the polyimide film of the present invention preferably has a yellowness (YI value) of 12 or less, calculated according to JIS K7373-2006.
  • YI value yellowness
  • the yellowness (YI value) calculated according to JIS K7373-2006 is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
  • the yellowness (YI value) is determined by a spectral colorimetric method using an ultraviolet-visible-near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006.
  • tristimulus values X, Y, and Z in the XYZ color system are obtained based on the transmittance measured in the range of 250 nm or more and 800 nm or less at 1 nm intervals.
  • Z can be calculated from the following equation.
  • YI 100 (1.2769X-1.0592Z) / Y
  • the yellowness of a different thickness is obtained by measuring the total transmittance at each wavelength measured at 1 nm intervals between 250 nm and 800 nm of a sample having a specific thickness.
  • a converted value of each transmittance at each wavelength having a different thickness is obtained by Lambert-Beer's law, and can be calculated and used based on the converted value.
  • the polyimide film of the present invention has a yellow color calculated in accordance with JIS K7373-2006 from the viewpoint that coloring of yellow tint is suppressed, light transmittance is improved, and the polyimide film can be suitably used as a glass substitute material.
  • the value obtained by dividing the degree (YI value) by the film thickness ( ⁇ m) (YI value / film thickness ( ⁇ m)) is preferably 0.10 or less, more preferably 0.04 or less, and 0.03 or less. It is even more preferred that:
  • the value obtained by dividing the yellowness (YI value) by the film thickness ( ⁇ m) (YI value / film thickness ( ⁇ m)) is in the second decimal place according to JIS Z8401: 1999 Rule B. Use the rounded value.
  • the polyimide film of the present invention has a tensile modulus at 25 ° C. of 1.8 GPa or more when a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127 at a tensile speed of 10 mm / min and a distance between chucks of 20 mm. Is preferred.
  • the tensile modulus at 25 ° C. (room temperature) is high, sufficient surface hardness as a protective film can be maintained even at room temperature, and the protective film can be used as a surface material or a substrate.
  • the tensile modulus is preferably 2.0 GPa or more, more preferably 2.1 GPa or more, and even more preferably 2.3 GPa or more.
  • the tensile modulus is preferably 5.2 GPa or less from the viewpoint of improving the bending resistance. From the viewpoint of improving the bending resistance, the tensile modulus may be 4.0 GPa or less, 3.5 GPa or less, or 2.9 GPa or less.
  • the tensile elastic modulus was measured at 25 ° C. by cutting a 15 mm wide ⁇ 40 mm long test piece from a polyimide film using a tensile tester (for example, Autograph AG-X 1N, load cell: SBL-1KN, manufactured by Shimadzu Corporation). It can be measured with a pulling speed of 8 mm / min and a distance between chucks of 20 mm. It is preferable that the polyimide film for determining the tensile modulus has a thickness of 55 ⁇ m ⁇ 5 ⁇ m.
  • the polyimide film of the present invention preferably has a peak apex only in a temperature region of 150 ° C. or higher in a tan ⁇ curve obtained by dividing a loss elastic modulus by a storage elastic modulus.
  • a peak apex when the peak apex is present at less than 150 ° C., the molecular chain of the polyimide is easily moved, plastic deformation is likely to occur, and the bending resistance may be deteriorated, whereas the peak apex is less than 150 ° C. This is because, if it does not exist, the mobility of the molecular chain is suppressed, plastic deformation becomes difficult, and bending resistance can be improved.
  • the tan ⁇ curve when the peak apex is located only in a temperature region of 150 ° C. or higher, even under a high temperature environment, for example, in a summer car, the bending resistance is suppressed from being impaired by thermal deformation. Bending resistance is improved even in an environment.
  • the peak of the tan ⁇ curve has a peak only in a temperature range of 150 ° C. or higher, the tensile modulus tends to increase, and the surface hardness tends to increase.
  • the polyimide film of the present invention more preferably has the peak apex only in the temperature region of 200 ° C.
  • the peak of the peak in the tan ⁇ curve is preferably in a temperature range of 380 ° C. or less. Further, it is preferable that the polyimide film of the present invention has no peak apex in the tan ⁇ curve, particularly, in a temperature region of ⁇ 150 ° C. or higher and lower than 150 ° C. in a temperature region of ⁇ 150 ° C. or higher and lower than 150 ° C.
  • the tan ⁇ curve has no peak apex in a temperature range of 100 ° C. or less, and it is more preferable that the tan ⁇ curve has no peak apex in a temperature range of 0 ° C. or less.
  • the main chain has a diamine residue having a long siloxane bond or when the main chain contains a large amount of a diamine residue having a silicon atom, when the peak of the peak in the tan ⁇ curve is in such a low temperature region There is.
  • the dynamic viscoelasticity measurement is performed by, for example, using a dynamic viscoelasticity measuring device RSA-G2 (TA Instruments Japan Co., Ltd.) with a measurement range of ⁇ 150 ° C. to 490 ° C., a frequency of 1 Hz, and an increase of 1 Hz. It can be performed at a temperature rate of 5 ° C./min.
  • the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
  • data is digitized and analyzed from numerical values without visual evaluation.
  • the peak means that the value of tan ⁇ is 0.2 or more, It is preferably 0.3 or more and has a maximum value, and the peak width between the valleys of the peaks is 3 ° C or more. , Is not observed as the peak at the top of the peak.
  • a polyimide film which was left standing for 24 hours in an environment of 23 ° C. ⁇ 2 ° C. RH 30 to 50% was sampled into a square of 10 cm or more.
  • a cutting jig with a slit a cutout having a width of 5 mm and a length of 50 mm (so that the sample length becomes 20 mm at the time of chucking) is used.
  • the width is measured using a caliper, and the average value measured three times at different positions is recorded. At this time, if a part of the width measurement has a fluctuation width of 3% or more of the average value, the sample is not used.
  • the pencil hardness is preferably 2B or more, more preferably B or more, and even more preferably HB or more.
  • the pencil hardness of the polyimide film is determined by adjusting the humidity of a measurement sample at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours and then using a test pencil specified in JIS-S-6006 according to JIS K5600-5-4. This can be performed by performing a pencil hardness test (load of 0.98 N) specified in (1999) on the film surface and evaluating the highest pencil hardness that does not damage the film.
  • a pencil scratching film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • Adhesion of Film in the polyimide film of the present invention, when the adhesion test is carried out according to the following adhesion test method, the peeling of the coating film does not occur. From the viewpoint of adhesion and the surface hardness of a laminate in which a hard coat layer is laminated adjacent to a polyimide film.
  • Adhesion evaluation resin composition prepared by adding 10 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone to 100 parts by weight of pentaerythritol triacrylate to a 40% by weight solution of pentaerythritol triacrylate in methyl isobutyl ketone Is applied on a test piece of a polyimide film cut into a size of 10 cm ⁇ 10 cm, and is cured by irradiating ultraviolet rays at a light exposure of 200 mJ / cm 2 under a nitrogen stream to form a cured film having a thickness of 10 ⁇ m. The cured film is subjected to a cross-cut test according to JIS K 5600-5-6, and the peeling operation using a tape is repeated five times, and then the presence or absence of peeling of the coating film is observed.
  • the thickness of the polyimide film of the present invention may be appropriately selected depending on the application, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more. . On the other hand, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, further more preferably 100 ⁇ m or less, and still more preferably 90 ⁇ m or less. If the thickness is small, the strength is reduced. If the thickness is large, the difference between the inner diameter and the outer diameter at the time of bending is increased, and the load on the film is increased, so that the bending resistance may be reduced.
  • the polyimide film of the present invention may have been subjected to a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, and a flame treatment.
  • a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, and a flame treatment.
  • the method for producing the polyimide film of the present invention is not particularly limited as long as it can produce the polyimide film of the present invention.
  • a first production method A step of preparing a polyimide precursor resin composition containing a polyamic acid that is a polyimide precursor and an organic solvent (hereinafter, referred to as a polyimide precursor resin composition preparation step), A step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter, referred to as a polyimide precursor resin coating film forming step); A step of imidizing the polyimide precursor by heating (hereinafter, referred to as an imidation step); And a method for producing a polyimide film containing the same.
  • the residual solvent amount of the obtained polyimide film is measured, and as a residual solvent in the film, the content of an organic solvent having a boiling point under 1 atmosphere of less than 100 ° C. It is preferable to include a step of determining whether or not the content of the organic solvent having a boiling point of 100 ppm or more at 2000 ppm or less and 1 atm is 100 ppm or less. If the residual solvent amount of the obtained polyimide film exceeds the value specified in the present invention, by further performing a step of heating the polyimide film, the residual solvent amount of the polyimide film was specified in the present invention. It is preferable to set the value equal to or less than the value.
  • a step of stretching at least one of the polyimide precursor resin coating film and an imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as a stretching step) ) May be included.
  • a stretching step a step of stretching at least one of the polyimide precursor resin coating film and an imidized coating film obtained by imidizing the polyimide precursor resin coating film
  • the polyimide precursor resin composition prepared in the first manufacturing method contains a polyimide precursor and an organic solvent, and optionally contains additives and the like. It may be.
  • the polyimide precursor include a polyimide precursor represented by the following general formula (1 ′).
  • the polyimide precursor represented by the general formula (1 ′) includes a tetracarboxylic acid component serving as a tetracarboxylic acid residue in R 1 of the general formula (1 ′) and R 2 of the general formula (1 ′). Is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue in the above.
  • R 1 , R 2 and n in the general formula (1 ′) those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
  • the polyimide precursor represented by the general formula (1 ′) preferably has at least one of a number average molecular weight and a weight average molecular weight of 10,000 or more from the viewpoint of strength when formed into a film, and more preferably 20,000. It is preferable that this is the case.
  • the polyimide precursor represented by the general formula (1 ′) preferably has a weight average molecular weight of 70,000 or more, more preferably 80,000 or more, from the viewpoint of improving bending resistance. It is preferably 85,000 or more.
  • the average molecular weight is preferably 1000000 or less, more preferably 500,000 or less.
  • the number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by Bruker). For example, a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes. Then, 10 mg of the solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and subjected to NMR measurement to bind to the aromatic ring. The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms. The weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the polyimide precursor was a 0.5% by weight N-methylpyrrolidone (NMP) solution, and the developing solvent used was a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less.
  • the weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • the polyimide precursor solution is obtained by reacting the above-described tetracarboxylic dianhydride with the above-described diamine in a solvent.
  • the solvent used for the synthesis of the polyimide precursor is not particularly limited as long as it can dissolve the above-mentioned tetracarboxylic dianhydride and diamine.
  • an aprotic polar solvent or a water-soluble alcohol solvent can be used. Can be used.
  • N-methyl-2-pyrrolidone N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like
  • an organic solvent containing a nitrogen atom of ⁇ -butyrolactone it is preferable to use an organic solvent containing a nitrogen atom, among which N, N-dimethylacetamide, N- It is preferred to use methyl-2-pyrrolidone or a combination thereof.
  • the organic solvent is a solvent containing a carbon atom.
  • an acid dianhydride may be added to a mixed solution of at least two diamines to synthesize a polyamic acid
  • the two diamine components may be added to the reaction solution stepwise at an appropriate molar ratio to control the sequence in which each raw material is incorporated into the polymer chain to some extent.
  • an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is added to a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and the reaction is performed.
  • a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride.
  • Polymerizing the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
  • b / a may be 0.9 or more and 1.1 or less. It is more preferably 0.95 or more and 1.05 or less, further preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less.
  • the molecular weight (degree of polymerization) of the obtained polyamic acid can be appropriately adjusted by setting the content in such a range.
  • the procedure of the polymerization reaction can be appropriately selected from known methods, and is not particularly limited. Alternatively, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed as necessary, or the solvent of the polyimide precursor solution may be dried and dissolved in another solvent. May be used.
  • the viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps to 200,000 cps from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the polyimide precursor resin composition may contain an additive as needed.
  • the additive include, for example, inorganic particles for reducing optical distortion of the polyimide film, silica filler for smooth winding, and a surfactant for improving film forming property and defoaming property.
  • the same one as described in the above-mentioned polyimide film can be used.
  • the organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved.
  • a nitrogen atom such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like.
  • Organic solvent; ⁇ -butyrolactone and the like can be used, and among them, it is preferable to use an organic solvent containing a nitrogen atom for the reasons described above.
  • the content of the polyimide precursor in the polyimide precursor resin composition is 50% by mass or more in the solid content of the resin composition from the viewpoint of forming a uniform coating film and a polyimide film having handleable strength. It is preferable that the content is not less than 60% by mass, and the upper limit may be appropriately adjusted depending on the contained components.
  • the organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more, more preferably 50% by mass or more in the resin composition. It is preferably at most 99% by mass.
  • the polyimide precursor resin composition has a water content of 1,000 ppm or less from the viewpoint that the storage stability of the polyimide precursor resin composition becomes good and the productivity can be improved. If the polyimide precursor resin composition contains a large amount of water, the polyimide precursor may be easily decomposed.
  • the water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture meter CA-200, manufactured by Mitsubishi Chemical Corporation).
  • the viscosity of the polyimide precursor resin composition at a solid content of 15% by weight at 25 ° C. is preferably 500 cps to 100,000 cps from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. with a sample volume of 0.8 ml.
  • the support used has a smooth surface and heat resistance.
  • the material has water resistance and solvent resistance.
  • an inorganic material such as a glass plate, a metal plate whose surface is mirror-finished, and the like can be given.
  • the shape of the support is selected according to the coating method, and may be, for example, a plate, a drum, a belt, a sheet that can be wound up on a roll, or the like.
  • the coating means is not particularly limited as long as it is a method capable of coating with a desired film thickness.
  • a known means such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, a spray coater, and a lip coater can be used.
  • the coating may be performed by a single-wafer coating device or a roll-to-roll coating device.
  • the solvent in the coating is dried at a temperature of 150 ° C. or lower, preferably 30 ° C. or higher and 120 ° C. or lower until the coating becomes tack-free.
  • the drying time may be appropriately adjusted depending on the thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, and the like, and is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. Is preferred. Exceeding the upper limit is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, when the value is below the lower limit, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
  • the method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature.
  • an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
  • the atmosphere at the time of drying the solvent is preferably an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, and the oxygen concentration is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the film may be oxidized, colored, or deteriorate in performance.
  • the polyimide precursor is imidized by heating.
  • the present invention to reduce the residual solvent amount of the polyimide film to the value specified in the present invention or less, by peeling the polyimide precursor resin coating from the support used when applying, by heating, It is preferable to perform a step of imidizing the polyimide precursor.
  • the solvent can be volatilized from both surfaces of the film, and the residual solvent is removed according to the present invention. Can be sufficiently reduced below the value specified in.
  • the polyimide precursor resin coating film after peeling from the support is preferably heated after fixing the end portion in order to prevent shrinkage during heating.
  • a method of fixing the end portion of the polyimide precursor resin coating for example, when the polyimide precursor resin coating is sheet-like, metal having approximately the same outer dimensions and appropriate inner dimensions as the polyimide precursor resin coating.
  • the fixing jig is used to fix the two metal frames and the polyimide precursor resin coating film.
  • the polyimide precursor resin coating film is in a roll form, for example, using a device capable of transporting the resin film by holding the left and right ends of a continuous resin film with a fixing jig such as a clip, the polyimide precursor There is a method of fixing the end of the resin coating film.
  • the imidization step may be performed on the polyimide precursor in the polyimide precursor resin coating film before the stretching step, or the polyimide precursor resin after the stretching step It may be performed on the polyimide precursor in the coating film, and both the polyimide precursor in the polyimide precursor resin coating film before the stretching step and the polyimide precursor present in the film after the stretching step You may go.
  • the imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
  • the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher.
  • the temperature rise end temperature is preferably set to 250 ° C. or higher, more preferably 270 ° C. or higher.
  • the temperature raising end temperature is preferably 400 ° C. or lower, more preferably 350 ° C. or lower.
  • the rate of temperature rise is preferably selected as appropriate depending on the thickness of the polyimide film to be obtained.
  • the rate of temperature rise is preferably reduced.
  • the temperature is preferably 5 ° C / min or more, more preferably 10 ° C / min or more.
  • the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less.
  • the above-mentioned rate of temperature increase is preferable from the viewpoint that the appearance of the film and the reduction in the strength of the film can be suppressed, the whitening accompanying the imidization reaction can be controlled, and the light transmittance is improved.
  • the temperature may be raised continuously or stepwise, but it is preferable that the temperature be raised continuously from the viewpoint of suppressing the poor appearance and the decrease in the strength of the film and controlling the whitening accompanying the imidization reaction. Further, in the above-mentioned entire temperature range, the heating rate may be constant or may be changed in the middle.
  • the atmosphere at the time of the temperature rise of the imidization is an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, and the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the film may be oxidized, colored, or deteriorate in performance.
  • 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the influence of oxygen on optical characteristics is small, and an inert gas atmosphere can be used. Also, a polyimide having high light transmittance can be obtained.
  • the heating method for imidization is not particularly limited as long as the temperature can be raised at the above temperature, and for example, an oven, a heating furnace, infrared heating, electromagnetic induction heating, or the like can be used.
  • the imidation ratio of the polyimide precursor be 50% or more before the stretching step.
  • the imidation ratio is set to 80% or more in the imidization step before the stretching step, and the reaction proceeds to 90% or more, and further to 100%. Is preferred. It is presumed that the surface hardness is improved by stretching after imidization because the rigid polymer chains are easily oriented.
  • the imidation ratio can be measured by analyzing the spectrum by infrared measurement (IR) or the like.
  • the reaction is allowed to proceed to 90% or more, more preferably 95% or more, and even 100% of imidization.
  • the holding time is usually 1 minute to 180 minutes, and more preferably 5 minutes to 150 minutes. Minutes.
  • the first manufacturing method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film. May be.
  • the stretching step it is particularly preferable to include a step of stretching the coating film after imidization from the viewpoint of improving the surface hardness of the polyimide film.
  • the step of stretching from 101% to 10,000% when the initial dimension before stretching is set to 100% while heating at 80 ° C. or more.
  • the heating temperature at the time of stretching is preferably in the range of the glass transition temperature of the polyimide or polyimide precursor ⁇ 50 ° C., and more preferably in the range of the glass transition temperature ⁇ 40 ° C. If the stretching temperature is too low, the film may not be deformed and orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching may be relaxed at the temperature, and sufficient orientation may not be obtained.
  • the stretching step may be performed simultaneously with the imidization step. Stretching the imidized film after imidization ratio of 80% or more, further 90% or more, even more 95% or more, particularly substantially 100% imidization improves the surface hardness of the polyimide film. Preferred from the point.
  • the stretch ratio of the polyimide film is preferably from 101% to 10,000%, more preferably from 101% to 500%. By performing stretching within the above range, the surface hardness of the obtained polyimide film can be further improved.
  • the method of fixing the polyimide film at the time of stretching is not particularly limited, and is selected according to the type of stretching apparatus and the like.
  • the stretching method is not particularly limited. For example, it is possible to perform stretching while passing through a heating furnace using a stretching apparatus having a transport device such as a tenter.
  • the polyimide film may be stretched in only one direction (longitudinal stretching or transverse stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
  • a second production method A step of preparing a polyimide resin composition containing polyimide and an organic solvent (hereinafter, referred to as a polyimide resin composition preparation step); A method of applying a polyimide resin composition to a support and drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming step).
  • the polyimide When the polyimide is well dissolved in an organic solvent, not the polyimide precursor resin composition, the polyimide is dissolved in an organic solvent, and a polyimide resin composition containing an additive as needed is also preferably used. be able to.
  • the polyimide has a solvent solubility of 5% by mass or more in an organic solvent at 25 ° C., the production method can be suitably used.
  • a polyimide used for producing a polyimide film may be referred to as a polyimide material.
  • the polyimide material is a polyimide that may contain a predetermined amount or less of the residual solvent.
  • the residual solvent amount of the polyimide (polyimide material) used is measured, and the boiling point at 1 atm. It is preferable to have a step of determining whether the content of the organic solvent having a boiling point of less than 100 ° C. is 2000 ppm or less and the content of the organic solvent having a boiling point at 100 ° C. or more at 1 atm is 100 ppm or less. If the residual solvent amount of the polyimide (polyimide material) used exceeds the value specified in the present invention, the residual solvent amount of the polyimide (polyimide material) used is further reduced by using the washing step described later.
  • the polyimide used in the step of preparing the polyimide resin composition has a structure represented by the general formula (1), and as a residual solvent, an organic solvent having a boiling point of less than 100 ° C. at 1 atm. It is preferable to use a polyimide material having a content of 2000 ppm or less and an organic solvent having a boiling point of 100 ° C. or more at 1 atm or less of 100 ppm or less. In the polyimide material, the content of the organic solvent having a boiling point of less than 100 ° C.
  • the content of the organic solvent having a boiling point of 100 ° C. or more is preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and even more preferably 20 ppm or less, from the viewpoint of improving the dynamic bending resistance.
  • the content of the organic solvent having a boiling point under 1 atm of 70 ° C. or less is 2000 ppm or less, and the content of the organic solvent having a boiling point under 1 atm of more than 70 ° C.
  • the content of the organic solvent having a boiling point at 1 atm of 60 ° C. or less is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of more than 60 ° C. is 100 ppm or less.
  • the content of the organic solvent having a boiling point of 50 ° C. or less at 1 atm is not more than 2000 ppm, and the content of the organic solvent having a boiling point of more than 50 ° C. at 1 atm is not more than 100 ppm. May be.
  • the amount of the residual solvent in the obtained polyimide film is further measured, and the residual solvent in the film is an organic solvent having a boiling point under 1 atm. It is preferable to include a step of determining whether the content of the solvent is 2000 ppm or less and the content of the organic solvent having a boiling point at 100 ° C. or more at 1 atm is 100 ppm or less. If the residual solvent amount of the obtained polyimide film exceeds the value specified in the present invention, by further performing a step of heating the polyimide film, the residual solvent amount of the polyimide film was specified in the present invention. It is preferable to set the value equal to or less than the value.
  • the polyimide having the above-mentioned solvent solubility can be selected from the same polyimides as those described for the polyimide film.
  • a method of imidization it is preferable to use chemical imidization using a chemical imidizing agent instead of heat dehydration for the dehydration ring closure reaction of the polyimide precursor.
  • known compounds such as amines such as pyridine and ⁇ -picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as dehydration catalysts.
  • the acid anhydride is not limited to acetic anhydride, but includes, but is not limited to, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride and the like.
  • a tertiary amine such as pyridine or ⁇ -picolinic acid may be used in combination.
  • these amines reduce optical properties, particularly yellowness (YI value) when remaining in the film. It is preferable to purify by reprecipitation or the like, and to remove the components other than the polyimide to 100 ppm or less of the total weight of the polyimide before forming the film.
  • the organic solvent used in the reaction solution for chemically imidizing the polyimide precursor for example, those described in the polyimide precursor resin composition preparing step in the first production method Similar ones can be used.
  • the organic solvent used when purifying the reaction solution reacted with the polyimide by reprecipitation or the like a poor solvent for the polyimide for depositing the polyimide from the reaction solution reacted with the polyimide, if necessary, And a good solvent for polyimide for diluting the reaction solution by using a suitable solvent.
  • the solid concentration of the reaction solution (polyimide solution) when the poor solvent is added dropwise to precipitate polyimide is 0.1% by mass or more and 30% by mass from the viewpoint of yield and efficient removal of impurities. %, More preferably 1% by mass or more and 10% by mass or less.
  • the polyimide solution may be appropriately diluted with a good polyimide solvent.
  • a good solvent for polyimide can be appropriately selected from solvents having a polyimide solubility of 20 g / 100 g or more at 25 ° C. and used.
  • the poor solvent for polyimide can be appropriately selected from solvents having a polyimide solubility of less than 20 g / 100 g at 25 ° C.
  • an organic solvent such as n-butyl acetate, which is a good solvent for polyimide
  • an organic solvent such as n-butyl acetate, which is a good solvent for polyimide
  • the reaction solution is stirred until it becomes uniform to dilute the reaction solution.
  • t-butanol, methanol an alcohol-based organic solvent such as ethanol, isopropyl alcohol, 2-butanol, cyclohexanol, and t-amyl alcohol is gradually added to precipitate polyimide, a white slurry is obtained, and the slurry is filtered to obtain a polyimide.
  • the alcohol-based organic solvent a secondary or tertiary alcohol is preferably used, and more preferably a tertiary alcohol is used, from the viewpoint of excellent polyimide stability. It is preferable to measure the amount of residual solvent in the polyimide obtained by reprecipitation as described above.
  • the residual solvent amount of the polyimide can be measured in the same manner as in the above-mentioned method for measuring the residual solvent amount of the polyimide film except that polyimide is used instead of the polyimide film.
  • the polyimide (polyimide material) is dried at 100 ° C. to 120 ° C. using a vacuum dryer.
  • the drying time may be appropriately adjusted according to the amount of the polyimide (polyimide material). For example, in the case of polyimide (polyimide material) having a solid content of 100 g, drying may be performed for about 3 hours, and if drying is insufficient, an additional drying time may be appropriately added for one hour.
  • the drying of the polyimide (polyimide material) using a vacuum dryer can be performed as a guide until the mass change of the polyimide (polyimide material) before and after the drying becomes 0.1% by mass or less.
  • the polyimide obtained by reprecipitation as described above repeats a washing step using an organic solvent in order to further remove the residual solvent.
  • a washing step of washing a polyimide obtained by reprecipitation and washing with a beaker containing an organic solvent for washing, followed by filtration is repeated, and dried at 100 ° C. to 120 ° C. using a vacuum drier to obtain a polyimide ( Polyimide material).
  • an organic solvent for washing it is highly compatible with the residual solvent contained in the polyimide obtained by reprecipitation, is a poor solvent for polyimide, and is dried at 100 ° C. to 120 ° C. using a vacuum dryer.
  • the organic solvent is selected from organic solvents having a boiling point lower than the drying temperature of the vacuum dryer so that all can be volatilized.
  • the residual solvent is N, N-dimethylacetamide, N-methyl-2-pyrrolidone, or the like used when preparing a polyimide precursor
  • isopropyl alcohol, methanol, or the like is suitably used as the organic solvent for washing.
  • the organic solvent for washing one or more kinds can be used.
  • the content of the organic solvent having a boiling point of less than 100 ° C. is 2000 ppm or less
  • the content of the organic solvent having a boiling point of 100 ° C. or more is 100 ppm or less, which is used for preparing the polyimide resin composition. (Polyimide material) can be obtained.
  • the polyimide material used for preparing the polyimide resin composition is preferably a polyimide powder, and the average particle size of the polyimide powder is 50 ⁇ m to 1000 ⁇ m from the viewpoint of easy handling as a powder. It is more preferable that the thickness be 100 ⁇ m to 500 ⁇ m.
  • the average particle size of the polyimide material (polyimide powder) in the present invention can be determined by observing the polyimide material (polyimide powder) with an optical microscope (Digital Microscope VHX-5000 manufactured by KEYENCE) at a magnification of 100 times. Randomly extract 150 particles of polyimide material, measure the particle diameter of each of the extracted particles, and calculate the average value. When the particle shape of the polyimide material is not spherical, the major axis is measured.
  • the organic solvent used for re-dissolving the polyimide (polyimide material) purified from the reaction solution includes, for example, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono- Normal-butyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, ethyl acetate, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-propyl acetate, normal acetate Pentyl, cyclohexanol, cyclohexanone, 1.4-dioxane, tetrachloroethylene, toluene, methyl isobutyl ketone, methyl cycle Hexanol, methyl cyclo
  • the organic solvent for re-dissolving the polyimide is normally-butyl acetate, ethyl acetate, and propylene, because the amount of the residual solvent is easily reduced. It is preferably at least one selected from the group consisting of glycol monomethyl ether acetate.
  • the organic solvent for re-dissolving the polyimide especially from the point that it is easy to reduce the residual solvent amount at the time of film production, the organic solvent having a boiling point of less than 100 ° C, especially the boiling point is 70 ° C or less It is preferable to use the organic solvent of the above.
  • an organic solvent having a boiling point of less than 100 ° C. particularly an organic solvent having a boiling point of 70 ° C. or less
  • the amount of the residual solvent is easily reduced even when the coating is performed in a closed system environment.
  • at least one selected from the group consisting of dichloromethane, ethyl acetate, chloroform, tetrahydrofuran, normal-butyl acetate, and propylene glycol monomethyl ether acetate from the viewpoint that the amount of residual solvent is easily reduced and the film forming step such as a drying step is advantageous.
  • One type can be preferably used.
  • At least one selected from the group consisting of dichloromethane, chloroform, tetrahydrofuran, and ethyl acetate is preferable in that the amount of the residual solvent is easily reduced and the film formation step such as a drying step is advantageous.
  • the film formation step such as a drying step is advantageous.
  • the polyimide resin composition may optionally contain an additive.
  • the additive the same additives as those described in the step of preparing the polyimide precursor resin composition in the first manufacturing method can be used.
  • the method of reducing the water content of the polyimide resin composition to 1000 ppm or less, and the method of dispersing the inorganic particles in an organic solvent include the polyimide precursor in the first production method. The same method as the method described in the resin composition preparation step can be used.
  • the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first manufacturing method. be able to.
  • the drying step in the polyimide resin coating film forming step of the second manufacturing method is the drying step and the heating for performing the imidization step described in the polyimide precursor resin coating film forming step of the first manufacturing method. It can be performed in the same manner as the process. That is, first, the solvent in the polyimide resin composition is dried on the support in the same manner as in the drying step of the polyimide precursor resin coating film forming step of the first manufacturing method, and then the polyimide resin coating film is supported. It is preferable to have a step of further drying after peeling from the body, from the viewpoint that the amount of the residual solvent in the polyimide film is made equal to or less than the value specified in the present invention and the bending resistance is improved.
  • the temperature at which the polyimide resin coating is further dried after peeling from the support does not need to be as high as the heating temperature of the imidization of the first production method, and the type of the organic solvent and the residual solvent used in forming the coating and The amount may be appropriately adjusted.
  • the temperature is preferably in the range of 80 ° C to 250 ° C, more preferably in the range of 100 ° C to 220 ° C.
  • the temperature is preferably in the range of 10 ° C to 200 ° C, and more preferably in the range of 30 ° C to 160 ° C.
  • the drying time may be appropriately adjusted depending on the amount of the organic solvent and the amount of the residual solvent used at the time of forming the coating film.
  • the drying time is usually 2 minutes to 60 minutes, preferably 5 minutes to 40 minutes. Exceeding the upper limit is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, when the value is below the lower limit, the residual solvent may not be sufficiently reduced, and further, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
  • the method of fixing the end portion of the polyimide resin coating film after peeling from the support can be performed in the same manner as the above-mentioned polyimide precursor resin coating film.
  • the second manufacturing method may include a stretching step of stretching the polyimide resin coating film after the polyimide resin coating film forming step.
  • the stretching step can be the same as the stretching step in the first manufacturing method.
  • the second manufacturing method is preferable because the yellowness (YI value) of the polyimide film is easily reduced. According to the second manufacturing method, it is possible to preferably form a polyimide film in which the value obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness ( ⁇ m) is 0.04 or less. is there.
  • the use of the polyimide film of the present invention is not particularly limited, and the polyimide film can be used as a base material, a surface material, or the like, in which a glass product such as a thin plate glass is conventionally used.
  • the polyimide film of the present invention has improved bending resistance, has a sufficient surface hardness as a protective film, and has a reduced optical distortion, and among others, it is preferably used as a display member capable of dealing with a curved surface. it can.
  • the polyimide film of the present invention specifically, for example, a thin and flexible organic EL display of a flexible type, a mobile terminal such as a smartphone or a wristwatch-type terminal, a display device inside an automobile, a flexible panel used for a wristwatch or the like, It can be suitably used as a substrate or a surface material for a flexible display.
  • the polyimide film of the present invention may be used for a member for an image display device such as a liquid crystal display device or an organic EL display device, a member for a touch panel, a flexible printed circuit board, a member for a solar cell panel such as a surface protective film or a substrate material, and an optical waveguide. And other semiconductor-related members.
  • the laminate of the present invention is a laminate having the above-described polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound. Since the laminate of the present invention uses the polyimide film of the present invention described above, it is excellent in transparency and has improved bending resistance, and further has a hard coat layer, so that the surface hardness is further improved. Film or resin film.
  • the laminate of the present invention is preferable because the polyimide contained in the polyimide film contains a diamine residue having a silicon atom in the main chain, so that the adhesion between the polyimide film and the hard coat layer is excellent. . This is presumed to be due to excellent mixing between the specific polyimide film and the hard coat layer.
  • the polyimide contained in the polyimide film is preferable in that optical distortion is reduced because the polyimide contains a diamine residue having a silicon atom in the main chain. In this case, when the laminate of the present invention is used as a display member such as a display surface material or a base material, a decrease in display quality of the display can be suppressed.
  • polyimide film used in the laminate of the present invention the above-described polyimide film of the present invention can be used, and a description thereof will be omitted.
  • Hard coat layer used in the laminate of the present invention contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • a radical polymerizable compound is a compound having a radical polymerizable group.
  • the radical polymerizable group of the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group including a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
  • the number of radically polymerizable groups in one molecule of the radically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having a (meth) acryloyl group is preferable, and a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule is preferable.
  • Oligomers having several (meth) acryloyl groups in a molecule called a compound or urethane (meth) acrylate, polyester (meth) acrylate or epoxy (meth) acrylate having a molecular weight of several hundred to several thousand are preferable.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acrylate represents each of acrylate and methacrylate.
  • radical polymerizable compound examples include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, and 9,9-bis [4- (2- ( (Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide-modified bisphenol A di (meth) acrylate (eg, ethoxylated (ethylene oxide-modified) bisphenol A di (meth) acrylate, etc.), trimethylolpropane tri (meth) acrylate, trimethyl Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaery Polyol polyacrylates such as litol tetra (meth) acrylate, dipenta
  • the cationic polymerizable compound is a compound having a cationic polymerizable group.
  • the cationically polymerizable group contained in the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationically polymerizable groups may be the same or different.
  • the number of the cationically polymerizable groups in one molecule of the cationically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • the cationic polymerizable compound among others, a compound having at least one of an epoxy group and an oxetanyl group as a cationic polymerizable group is preferable. Compounds having two or more oxetanyl groups in one molecule are more preferred. Cyclic ether groups such as an epoxy group and an oxetanyl group are preferable in that shrinkage due to the polymerization reaction is small.
  • cyclic ether groups compounds having an epoxy group among compounds having various structures are easily available, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radical polymerizable compound.
  • the oxetanyl group among the cyclic ether groups has a higher degree of polymerization than the epoxy group, has low toxicity, and has a cation in the coating film when the obtained hard coat layer is combined with a compound having an epoxy group.
  • advantages such as increasing the rate of network formation obtained from the polymerizable compound, and forming an independent network without leaving unreacted monomer in the film even in a region where the radical polymerizable compound is mixed.
  • Examples of the cationically polymerizable compound having an epoxy group include, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or a cyclopentene ring-containing compound, with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • alicyclic epoxy resin examples include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (both in parentheses are trade names and manufactured by Dow Chemical).
  • Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), polyglycerol polyglycidyl ether (Denacol EX) -512, denacol EX-521), pentaerythritol polyglycidyl ether (denacol EX-411), diglycerol polyglycidyl ether (denacol EX-421), glycerol polyglycidyl ether (denacol EX-313, denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), Neopenti Glycol diglycidyl ether (Denacol EX- 211), 1,6
  • epoxy resins include trade names Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801 and Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000 Etc. (the above product name, Turbocharger bread epoxy resin) and the like.
  • Examples of cationic polymerizable compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121) , Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3--2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT-221) 211) (both in parentheses are trade names of Toagosei Co., Ltd.) and trade names of etanacol EHO, etanacol OXBP, etanacol OXTP, and etanacol OXMA (trade names, manufactured by Ube Industries).
  • OXT-101 3-ethyl-3-hydroxymethyloxe
  • At least one polymer of the radically polymerizable compound and the cationically polymerizable compound contained in the hard coat layer used in the present invention is, for example, one of the radically polymerizable compound and the cationically polymerizable compound. It can be obtained by adding a polymerization initiator to at least one kind as necessary and conducting a polymerization reaction by a known method.
  • a radical polymerization initiator a cationic polymerization initiator, a radical and cationic polymerization initiator, and the like can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of light irradiation and heating, and generate radicals or cations to promote radical polymerization and cationic polymerization.
  • the radical polymerization initiator only needs to be capable of releasing a substance that initiates radical polymerization by at least one of light irradiation and heating.
  • examples of the photoradical polymerization initiator include imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, and thioxanthone derivatives.
  • the cationic polymerization initiator only needs to be capable of releasing a substance that initiates cationic polymerization by at least one of light irradiation and heating.
  • the cationic polymerization initiator include sulfonic acid esters, imidosulfonates, dialkyl-4-hydroxysulfonium salts, arylsulfonic acid-p-nitrobenzyl esters, silanol-aluminum complexes, ( ⁇ 6 -benzene) ( ⁇ 5 -cyclopentadiene) Enyl) iron (II) and the like, and more specifically, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide, and the like, but are not limited thereto.
  • those used as the cationic polymerization initiator include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like. More specifically, chlorides, bromides, fluorinated salts, hexafluorophosphate salts, hexafluorophosphates of iodonium such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, etc.
  • Iodonium salts such as antimonate salts; sulfonium chlorides such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, and tris (4-methylphenyl) sulfonium; bromides; Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts; 2,4,6-tris (trichloromethyl) -1,3,5-triazine; 2-phenyl-4,6-bis (trichloromethyl) -1, Examples include 2,4,6-substituted-1,3,5-triazine compounds such as 3,5-triazine and 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine. It is not limited to these.
  • the hard coat layer used in the present invention may optionally contain an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, Additives such as a leveling agent and various sensitizers may be contained.
  • At least one kind of a polymerizable compound of a radical polymerizable compound and a cationic polymerizable compound contained in the hard coat layer used in the present invention is obtained by a Fourier transform infrared spectrophotometer (FTIR), a pyrolysis gas chromatograph (GC) -MS) or a decomposition product of a polymer can be analyzed using a combination of high-performance liquid chromatography, gas chromatography / mass spectrometry, NMR, elemental analysis, XPS / ESCA, TOF-SIMS, and the like.
  • FTIR Fourier transform infrared spectrophotometer
  • GC pyrolysis gas chromatograph
  • a decomposition product of a polymer can be analyzed using a combination of high-performance liquid chromatography, gas chromatography / mass spectrometry, NMR, elemental analysis, XPS / ESCA, TOF-SIMS, and the like.
  • the laminate of the present invention is not particularly limited as long as it has the polyimide film and the hard coat layer, and the hard coat layer is laminated on one surface side of the polyimide film. And the hard coat layer may be laminated on both sides of the polyimide film.
  • the laminate of the present invention in a range that does not impair the effects of the present invention, in addition to the polyimide film and the hard coat layer, for example, to improve the adhesion between the polyimide film and the hard coat layer It may have another layer such as a primer layer, or may have the polyimide film and the hard coat layer laminated via another layer such as a primer layer.
  • the laminate of the present invention may be one in which the polyimide film and the hard coat layer are located adjacent to each other.
  • the laminate of the present invention may further have an impact resistant layer, a fingerprint adhesion preventing layer, an adhesive or adhesive layer, and the like.
  • the total thickness of the laminate of the present invention may be appropriately selected depending on the application, but is preferably 10 ⁇ m or more, and more preferably 40 ⁇ m or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, the thickness is preferably 300 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the thickness of each hard coat layer may be appropriately selected depending on the application, but is preferably 2 ⁇ m or more and 80 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less. Further, from the viewpoint of curling prevention, a hard coat layer may be formed on both sides of the polyimide film.
  • the pencil hardness of the surface on the hard coat layer side is preferably H or more, more preferably 2H or more, even more preferably 3H or more.
  • the pencil hardness of the laminate of the present invention can be measured in the same manner as in the method for measuring the pencil hardness of the polyimide film, except that the load is set to 9.8 N.
  • the laminate of the present invention preferably has a total light transmittance of at least 85%, more preferably at least 88%, even more preferably at least 90%, measured in accordance with JIS K7361-1. Is preferred. Since the transmittance is high as described above, the transparency is improved and the glass can be used as a substitute material for glass.
  • the total light transmittance of the laminate of the present invention can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
  • the yellowness (YI value) calculated according to JIS K7373-2006 is preferably 20 or less, more preferably 15 or less, and more preferably 10 or less. More preferably, it is particularly preferably 5 or less.
  • the laminate of the present invention has a yellow color calculated based on JIS K7373-2006 from the viewpoint that coloring of yellow tint is suppressed, light transmittance is improved, and the laminate can be suitably used as a glass substitute material.
  • the value obtained by dividing the degree (YI value) by the film thickness ( ⁇ m) (YI value / film thickness ( ⁇ m)) is preferably 0.10 or less, more preferably 0.04 or less, and 0.03 or less. It is even more preferred that:
  • the yellowness (YI value) of the laminate of the present invention can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
  • Laminate The use of the laminate of the present invention is not particularly limited, and for example, can be used for the same uses as the above-mentioned use of the polyimide film of the present invention.
  • Production method of laminate for example, A step of forming a coating film of a composition for forming a hard coat layer containing at least one of a radically polymerizable compound and a cationically polymerizable compound on at least one surface of the polyimide film of the present invention, And a step of curing the coating film.
  • the composition for forming a hard coat layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like, if necessary.
  • a polymerization initiator e.g., a polymerization initiator, a solvent, an additive, and the like.
  • the radical polymerizable compound, the cationic polymerizable compound, the polymerization initiator and the additive contained in the hard coat layer forming composition may be the same as those described in the hard coat layer.
  • the solvent can be appropriately selected from known solvents and used.
  • the composition for forming a hard coat layer on at least one surface of a polyimide film may be a known method.
  • a method of applying by a coating means is exemplified.
  • the application unit is not particularly limited as long as it is a method capable of applying a desired film thickness, and examples thereof include the same units as those for applying the polyimide precursor resin composition to a support.
  • the coating film of the curable resin composition for a hard coat layer is dried as necessary to remove the solvent.
  • the drying method include a method of drying under reduced pressure or drying by heating, a method of combining these drying methods, and the like. When drying at normal pressure, it is preferable to dry at 30 ° C. or higher and 110 ° C. or lower.
  • the curable resin composition for the hard coat layer is applied and, if necessary, for the dried coating film, depending on the polymerizable groups of the radically polymerizable compound and the cationically polymerizable compound contained in the curable resin composition.
  • a hard coat layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is formed on at least one surface of the polyimide film. Can be formed.
  • UV rays ultraviolet rays emitted from light rays such as an ultrahigh-pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used.
  • the irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the treatment is usually performed at a temperature of 40 ° C. or more and 120 ° C. or less. Alternatively, the reaction may be carried out by leaving at room temperature (25 ° C.) for 24 hours or more.
  • the display member of the present invention includes the above-described polyimide film of the present invention or the laminate of the present invention.
  • Examples of the display member of the present invention include a display surface material and a display substrate.
  • the display member of the present invention may be the above-described polyimide film of the present invention or the laminate of the present invention.
  • the display member of the present invention is used, for example, as a display surface material so as to be located on the surface of various displays.
  • the display member of the present invention is excellent in transparency, improved in bending resistance, and has a sufficient surface hardness as a protective film, like the above-described polyimide film of the present invention and the laminate of the present invention. Can be particularly preferably used.
  • the display member of the present invention can be used for various known displays, and is not particularly limited. For example, it can be used for the display described in the application of the polyimide film of the present invention.
  • the surface that becomes the outermost surface after disposing the laminate on the surface of the display may be the surface on the polyimide film side, or may be hard. It may be the surface on the coat layer side. Above all, it is preferable to arrange the display member of the present invention such that the surface on the hard coat layer side is a more front side surface. Further, the display member of the present invention may have a fingerprint adhesion preventing layer on the outermost surface.
  • the method for arranging the display member of the present invention on the surface of the display is not particularly limited, and examples thereof include a method using an adhesive layer.
  • the adhesive layer a conventionally known adhesive layer that can be used for bonding a display member can be used.
  • the touch panel member of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above, A transparent electrode composed of a plurality of conductive portions, disposed on one surface side of the polyimide film or the laminate, And a plurality of extraction lines electrically connected to at least one of the ends of the conductive portion.
  • the touch panel member of the present invention is provided with the above-described polyimide film or laminate of the present invention and has excellent bending resistance, it can be particularly suitably used for a flexible display and has optical characteristics. Excellent.
  • the laminate of the present invention used for the touch panel member of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both surfaces of a polyimide film. Preferably, there is.
  • the touch panel member of the present invention is not particularly limited, but it is preferable that the transparent electrode is laminated in contact with one surface side of the laminate.
  • the touch panel member of the present invention can be arranged and used, for example, so as to be located on the surface of various displays.
  • the touch panel member of the present invention and the polyimide film or laminate of the present invention as a surface material may be arranged and used in this order on the surface of various displays.
  • FIG. 2 is a schematic plan view of one surface of an example of the touch panel member of the present invention
  • FIG. 3 is a schematic plan view of the other surface of the touch panel member shown in FIG. 2
  • FIG. FIG. 4 is a cross-sectional view taken along the line AA ′ of the touch panel member shown in FIG.
  • the touch panel member 20 shown in FIGS. 2, 3 and 4 includes a laminate 10 of the present invention, the first transparent electrode 4 arranged in contact with one surface of the laminate 10, and the other of the laminate 10.
  • first transparent electrode 4 a plurality of first conductive portions 41, which are strip-shaped electrode pieces extending so as to extend in the x-axis direction, are arranged at predetermined intervals.
  • the first lead wire 7 electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at one of the ends in the longitudinal direction.
  • a first terminal 71 for electrically connecting to an external circuit is preferably provided at an end of the first extraction line 7 extending to the edge 21 of the laminate 10.
  • the first conductive portion 41 and the first extraction line 7 are connected in an inactive area 23 located outside the active area 22 that can be visually recognized by a user of the touch panel.
  • connection between the first conductive portion 41 and the first extraction line 7 can adopt a connection structure with the connection portion 24 interposed therebetween, for example, as shown in FIG.
  • the connection portion 24 can be formed by extending a layer of a conductive material from a longitudinal end of the first conductive portion 41 to a predetermined position in the inactive area 23.
  • a connection structure between the first conductive portion 41 and the first extraction line 7 can be formed by overlapping at least a part of the first extraction line 7 on the connection portion 24.
  • the connection between the first conductive portion 41 and the first extraction line 7 is not limited to the structure forming the connection portion 24 as shown in FIG.
  • the longitudinal end of the first conductive portion 41 is extended to the inactive area 23, and the first conductive portion 41 extended to the inactive area 23 in the inactive area 23. May be electrically connected to each other by riding the first wire 7 on the end of the wire.
  • FIG. 2 shows an embodiment in which one of the longitudinal ends of the first conductive portion 41 is connected to the first extraction line 7.
  • one first conductive portion 41 is connected to the first conductive portion 41.
  • the first extraction line 7 may be electrically connected to both ends of the portion 41 in the longitudinal direction.
  • the touch panel member 20 includes the second transparent electrode 5 disposed in contact with the other surface of the multilayer body 10.
  • the second conductive portions 51 which are a plurality of strip-shaped electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction. I have.
  • a second extraction line 8 that is electrically connected to the second conductive portion 51 is connected. The second extraction line 8 extends from the edge of the stacked body 10 to a position on the edge 21 where the above-described first extraction line 7 extends so as not to overlap the first terminal 71. .
  • a second terminal 81 for electrically connecting to an external circuit is preferably provided at an end of the second extraction line 8 extending to the edge 21 of the laminate 10.
  • the same configuration as the electrical connection between the first extraction line 7 and the first conductive portion 41 can be applied to the electrical connection between the second conductive portion 51 and the second extraction line 8. .
  • the pattern in which the first extraction line 7 is a long wiring and the second extraction line 8 is a short wiring as shown in FIGS. 2 and 3 is only an embodiment of the touch panel member of the present invention, It is also possible to use a pattern in which the first extraction line 7 is a short wiring and the second extraction line 8 is a long wiring. Further, the extension direction of the first extraction line 7 and the extension direction of the second extraction line 8 are not limited to the directions shown in FIGS. 2 and 3 and can be arbitrarily designed.
  • the conductive portion included in the touch panel member of the present invention can be appropriately selected from those that constitute the transparent electrode in the touch panel member, and the pattern of the conductive portion is not limited to those shown in FIGS. 2 and 3.
  • a pattern of a transparent electrode capable of detecting a change in electric capacitance due to contact or close contact with a finger or the like can be appropriately selected and applied by a capacitance method.
  • the material of the conductive portion is preferably a light transmissive material, for example, an indium oxide-based transparent electrode material containing indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), or the like as a main component.
  • the first conductive portion 41 and the second conductive portion 51 may be formed using the same kind of conductive material, or may be formed using different kinds of materials. In particular, it is preferable to form the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material from the viewpoint that the occurrence of warpage and distortion of the touch panel member can be more effectively suppressed.
  • the thickness of the conductive portion is not particularly limited, for example, when the conductive portion is formed by a photolithography technique, it can be generally formed to about 10 nm to 500 nm.
  • the conductive material constituting the lead wire included in the touch panel member of the present invention may or may not have light transmittance.
  • the lead wire can be formed using a metal material having high conductivity, such as silver or copper.
  • a metal material having high conductivity such as silver or copper.
  • Specific examples include a metal simple substance, a composite of a metal, a composite of a metal and a metal compound, and a metal alloy.
  • the simple metal include simple silver, copper, gold, chromium, platinum, and aluminum.
  • the metal composite include MAM (three-layer structure of molybdenum, aluminum, and molybdenum).
  • the composite of a metal and a metal compound include a laminate of chromium oxide and chromium.
  • Silver alloys and copper alloys are commonly used as metal alloys.
  • the metal alloy examples include APC (alloy of silver, palladium, and copper) and the like.
  • a resin component may be appropriately mixed with the above-described metal material.
  • the terminal provided at the end of the wire may be formed using, for example, the same material as the wire.
  • the thickness and width of the lead-out line are not particularly limited. For example, when the lead-out line is formed by photolithography, the thickness is generally about 10 nm to 1000 nm and the width is 5 ⁇ m to 5 ⁇ m. It is formed to about 200 ⁇ m. On the other hand, when forming the extraction line by printing such as screen printing, generally, the thickness is formed to be about 5 ⁇ m to 20 ⁇ m, and the width is formed to be about 20 ⁇ m to 300 ⁇ m.
  • the touch panel member of the present invention is not limited to the forms shown in FIGS. 2 to 4, and is configured by, for example, laminating a first transparent electrode and a second transparent electrode on separate laminates. May be used.
  • 5 and 6 are schematic plan views each showing an example of a conductive member provided with the laminate of the present invention.
  • the first conductive member 201 shown in FIG. 5 includes the laminate 10 of the present invention, and the first transparent electrode 4 arranged in contact with one surface of the laminate 10,
  • the transparent electrode 4 has a plurality of first conductive portions 41.
  • the second conductive member 202 shown in FIG. 6 includes the laminate 10 ′ of the present invention and the second transparent electrode 5 arranged in contact with one surface of the laminate 10 ′.
  • FIG. 7 is a schematic cross-sectional view illustrating another example of the touch panel member of the present invention.
  • the touch panel member 20 ′ illustrated in FIG. 7 includes a first conductive member 201 illustrated in FIG. And a conductive member 202.
  • the surface of the first conductive member 201 that does not have the first transparent electrode 4 and the surface of the second conductive member 202 that has the transparent electrode 5 are disposed via the adhesive layer 6. Laminated.
  • an adhesive layer for bonding the laminate of the present invention to the touch panel member of the present invention for example, an adhesive layer for bonding the touch panel members of the present invention to each other, the touch panel member of the present invention and a display device
  • an adhesive layer for adhering to the like a conventionally known adhesive layer used for an optical member can be appropriately selected and used.
  • the configuration and material of the transparent electrode, the lead wire and the terminal may be the same as those of the transparent electrode, the lead wire and the terminal used in the touch panel member of the present invention described above. it can.
  • the liquid crystal display device of the present invention includes the above-described polyimide film of the present invention or the above-described laminate of the present invention, and a liquid crystal between a counter substrate disposed on one surface side of the polyimide film or the laminate. And a liquid crystal display portion having a layer.
  • the liquid crystal display device of the present invention includes the above-described polyimide film of the present invention or the above-described laminate of the present invention, the liquid crystal display device has excellent bending resistance, and can be particularly suitably used for a flexible display, and has an optical characteristic. Excellent.
  • the laminate of the present invention used in the liquid crystal display device of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. It is preferable that Further, the liquid crystal display device of the present invention may include the touch panel member of the present invention described above.
  • the counter substrate of the liquid crystal display device of the present invention may include the polyimide film or the laminate of the present invention.
  • FIG. 8 is a schematic sectional view showing an example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 100 shown in FIG. 8 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 5 on the other surface. , And a liquid crystal display unit 30.
  • the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other via the adhesive layer 6.
  • the liquid crystal display portion used in the liquid crystal display device of the present invention has a liquid crystal layer formed between substrates disposed opposite to each other, and may employ a configuration used in a conventionally known liquid crystal display device. it can.
  • the driving method of the liquid crystal display device of the present invention is not particularly limited, and a driving method generally used for a liquid crystal display device can be employed. For example, a TN method, an IPS method, an OCB method, and an MVA method And the like.
  • the counter substrate used in the liquid crystal display device of the present invention can be appropriately selected and used depending on the driving method of the liquid crystal display device and the like, and a substrate provided with the polyimide film or the laminate of the present invention may be used.
  • liquid crystal constituting the liquid crystal layer various liquid crystals having different dielectric anisotropy and a mixture thereof can be used according to the driving method of the liquid crystal display device of the present invention and the like.
  • a method for forming the liquid crystal layer a method generally used as a method for manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method.
  • the sealed liquid crystal can be oriented by gradually cooling the liquid crystal cell to room temperature.
  • a plurality of colored layers and a light-shielding portion for defining pixels may be further provided between the opposed substrates.
  • the liquid crystal display section may have a backlight section having a light emitting element and a phosphor at a position on the opposite side to the side where the touch panel member is located outside the substrate disposed opposite to the liquid crystal display section.
  • a polarizing plate may be provided on each of the outer surfaces of the substrates arranged to face each other.
  • FIG. 9 is a schematic sectional view showing another example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 200 shown in FIG. 9 includes a laminate 10 of the present invention, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention,
  • the liquid crystal display unit 30 includes a touch panel member 20 ′ having a second conductive member 202 having the second transparent electrode 5 on one surface of the laminate 10 ′′, and a liquid crystal display unit 30.
  • the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are respectively bonded via the adhesive layer 6.
  • the configuration of the touch panel member 20 ' is, for example, The configuration can be the same as the configuration of the touch panel member 20 'shown in Fig. 7.
  • the conductive member used for the liquid crystal display device of the present invention the same conductive member used for the touch panel member of the present invention can be used. Can be used Kill.
  • Organic electroluminescent display device of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above, and the polyimide film or the laminate of the present invention is disposed on one surface side of the polyimide film or the laminate. And an organic electroluminescence display section having an organic electroluminescence layer between the substrates.
  • the organic electroluminescent display device of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above, it is excellent in bending resistance, so that it is particularly suitably used for a flexible display. It can be used and has excellent optical properties.
  • the laminate of the present invention used in the organic electroluminescent display device of the present invention includes a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both surfaces of a polyimide film. It is preferable to have one.
  • the organic electroluminescent display device of the present invention may include the above-mentioned touch panel member of the present invention.
  • the opposing substrate of the organic electroluminescent display device of the present invention may include the polyimide film or the laminate of the present invention.
  • FIG. 10 is a schematic sectional view showing one example of the organic electroluminescence display device of the present invention.
  • the organic electroluminescence display device 300 shown in FIG. 10 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 4 on the other surface. It has a touch panel member 20 having the electrode 5 and an organic electroluminescence display section 40.
  • the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded together via the adhesive layer 6.
  • the organic electroluminescence display unit (organic EL display unit) used in the organic electroluminescence display device (organic EL display device) of the present invention is an organic electroluminescence layer (organic EL layer) formed between opposed substrates. And a configuration used in a conventionally known organic EL display device can be adopted.
  • the organic EL display unit further includes a support substrate, an organic EL element including an organic EL layer, an anode layer and a cathode layer sandwiching the organic EL layer, and a sealing base material for sealing the organic EL element. May be.
  • the organic EL layer may have at least an organic EL light emitting layer.
  • a hole injection layer, a hole transport layer, an organic EL light emitting layer, an electron transport layer, and an electron injection A layer having a structure in which layers are stacked in this order can be used.
  • the organic EL display device of the present invention can be applied to, for example, a passive drive type organic EL display and an active drive type organic EL display.
  • the opposing substrate used in the organic EL display device of the present invention can be appropriately selected and used according to the driving method of the organic EL display device, and a substrate provided with the laminate of the present invention may be used.
  • FIG. 11 is a schematic sectional view showing another example of the organic electroluminescence display device of the present invention.
  • An organic electroluminescence display device 400 shown in FIG. 11 includes a laminate 10 of the present invention, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, It has a touch panel member 20 ′ having a second conductive member 202 provided with the second transparent electrode 5 on one surface of the laminate 10 ′′ of the present invention, and an organic electroluminescence display section 40.
  • An organic electroluminescence display device In 400, the laminate 10 and the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6.
  • the touch panel member 20 ' Can be the same as, for example, the configuration of the touch panel member 20 'shown in Fig. 7. It is used for the organic electroluminescence display device of the present invention.
  • As the conductive member it can be the same as the conductive member for use in a touch panel member of the present invention.
  • the weight average molecular weight of the polyimide precursor is determined by developing the polyimide precursor into a 0.5% by weight N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore size: 0.45 ⁇ m), and developing the solution.
  • NMP N-methylpyrrolidone
  • a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, a GPC device (manufactured by Tosoh, HLC-8120, column used: GPC LF-804 manufactured by SHOdex) was used, a sample injection amount was 50 ⁇ L, and a solvent flow rate was 0.5 mL.
  • the weight average molecular weight of the polyimide precursor was the same as that of the sample, and the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360, 27,500, 13,030, 6,300, 3,070) as the standard polystyrene conversion value.
  • the elution time was compared with a calibration curve to determine a weight average molecular weight.
  • ⁇ Viscosity of polyimide precursor solution The viscosity of the polyimide precursor solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. with a sample volume of 0.8 ml.
  • NMP N-methylpyrrolidone
  • a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, and a GPC device (manufactured by Tosoh, HLC-8120, detector: differential) Refractive index (RID) detector, column used: two GPC LF-804 manufactured by SHODEX connected in series), sample injection amount 50 ⁇ L, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions.
  • the weight average molecular weight of the polyimide was the same as that of the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300,3, 070) as a standard polystyrene conversion value.
  • the elution time was compared with a calibration curve to determine a weight average molecular weight.
  • polyimide material (polyimide powder)
  • the polyimide material was observed with an optical microscope (manufactured by Keyence, Digital Microscope VHX-5000) at a magnification of 100 times, and randomly extracted 150 polyimide material particles from the observed image, The particle diameter of each of the extracted particles was measured, and the average value was calculated to be the average particle diameter of the polyimide material.
  • the major axis was measured.
  • ⁇ Amount of residual solvent in polyimide film> After specifying the type of residual solvent in the polyimide film, the content of the specified residual solvent was quantified.
  • the type of the residual solvent was specified using a GC-MS connected to a purge & trap device (heat desorption device). A sample tube containing 10 mg of a polyimide film was set in a purge & trap device (product name: JTD505-III, Nippon Kagaku Kogyo Co., Ltd.), and the gas generated by heating at 200 ° C. for 30 minutes and heating at ⁇ 60 ° C. was collected at a temperature of 315 ° C. and sent to a GC-MS for qualitative analysis of the components of the generated organic gas.
  • An internal standard solution (0.2% by mass anisole / DMF solution) was added to prepare a sample solution.
  • the sample solution was subjected to GC-MS measurement under the following conditions using a GC-MS device (eg, Agilent, 6890/5973 GC / MS).
  • the GC-MS measurement was performed three times, and the measurement result was an average value of the three measurements.
  • each DMAc (measurement target compound) / DMF solution prepared so that the DMAc content is 0.01% by mass, 0.05% by mass, and 0.1% by mass, respectively.
  • GC-MS measurement was performed on each calibration curve solution prepared by adding an internal standard solution in the same manner as the sample solution described above, and a calibration curve was created. The GC-MS measurement was performed three times, and the measurement result was an average value of the three measurements. Then, based on the calibration curve, the content of DMAc was calculated as a mass ratio to the polyimide film.
  • a calibration curve solution is prepared for each of the residual solvents as in the case of DMAc, and a calibration curve created from the measurement results of each calibration curve solution by GC-MS measurement. The line was referenced.
  • ⁇ Residual solvent amount of polyimide material The amount of the residual solvent in the polyimide material was measured in the same manner as in the above-mentioned method for measuring the amount of the residual solvent in the polyimide film except that the polyimide material was used instead of the polyimide film.
  • Total light transmittance of polyimide film It was measured by a haze meter (HM150, manufactured by Murakami Color Research Laboratory) according to JIS K7361-1.
  • test piece 1 of a polyimide film cut into a size of 15 mm ⁇ 40 mm was bent at a position corresponding to half of the long side, and both ends of the long side of the test piece 1 were sandwiched between metal pieces 2 (100 mm ⁇ 30 mm ⁇ 2 mm) having a thickness of 2 mm from above and below.
  • the test piece 1 and the metal piece 2 were fixed with tape so that the overlap between the upper and lower surfaces of the metal piece 2 was 10 mm each.
  • the metal piece 2 to which the test piece 1 was fixed was sandwiched between glass plates (100 mm ⁇ 100 mm ⁇ 0.7 mm) 3 a and 3 b from above and below, and the test piece 1 was fixed in a state of being bent at an inner diameter of 2 mm.
  • dummy test pieces 4a and 4b were sandwiched between portions of the metal piece 2 where the test piece 1 was not provided, and fixed with tape so that the glass plates 3a and 3b were parallel.
  • the test piece fixed in the bent state in this manner was allowed to stand for 24 hours in an environment of 60 ⁇ 2 ° C. and 93 ⁇ 2% relative humidity (RH), and then the glass plate and the tape for fixing the test piece were removed. The force on the specimen was released.
  • test piece Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after the force applied to the test piece was released. In addition, when the film completely returns to the original state without being affected by the static bending test, the internal angle is 180 °. (Evaluation criteria) It was fixed in a state of bending at an inner diameter of 2 mm, and was subjected to a static bending test under a more severe condition than the conventional technology of standing for 24 hours in an environment of 60 ⁇ 2 ° C. and 93 ⁇ 2% relative humidity (RH). The interior angles of the test pieces were evaluated as follows. A and B have good static bending resistance, but A is more excellent. A: 110 ° or more B: 90 ° or more and less than 110 ° C: less than 90 °
  • MIT reciprocating bending test (MIT reciprocating bending test)> A MIT tester (Toyo Seiki Seisakusho's folding fatigue tester MIT D-2) was used to cut a polyimide film test piece cut into a size of 15.0 mm wide ⁇ 110 mm long in accordance with JIS 8115-2001. Under the conditions of a bending radius of 1 mm and a load of 500 g, the number of reciprocating bendings until the test piece was broken was measured. The reciprocating bending test was performed three times, and an average value of the number of reciprocating bendings of the three test results was obtained. (Evaluation criteria) AA, A and B have good dynamic bending resistance, but AA and A are more excellent. AA: 50,000 or more times A: 45,000 to less than 50,000 times B: 35,000 to less than 45,000 times C: less than 35,000 times
  • YI value (yellowness) of polyimide film>
  • the YI value was measured using an ultraviolet-visible-near-infrared spectrophotometer (JASCO Corporation V-7100) according to JIS K7373-2006, and using an auxiliary illuminant C and a 2-degree visual field according to a spectrophotometric colorimetric method.
  • ⁇ Thickness measurement method> A total of 5 film thicknesses at the four corners and the center of a polyimide film test piece cut into a size of 10 cm ⁇ 10 cm were measured using a digital linear gauge (model PDN12 digital gauge manufactured by Ozaki Corporation), and the measured values were measured. Was taken as the thickness of the polyimide film.
  • ⁇ Tensile modulus of polyimide film> A test piece of a polyimide film cut into a size of 15 mm ⁇ 40 mm was conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and the tensile speed was set to 10 mm / min and the distance between chucks was set to 20 mm in accordance with JIS K7127. And the tensile modulus at 25 ° C. were measured.
  • a tensile tester manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN was used.
  • ⁇ Pencil hardness> The pencil hardness was determined by conditioning a measurement sample at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and then using a pencil for test prescribed by JIS-S-6006, using a pencil scratching film made by Toyo Seiki Co., Ltd. A pencil hardness test (load of 0.98 N) specified in JIS K5600-5-4 (1999) was performed on the film surface using a tester, and the highest pencil hardness without scratching was evaluated.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • t-butanol (3000 g) was gradually added to obtain a white slurry.
  • the process of filtering the slurry, washing the slurry in a beaker containing isopropyl alcohol (130 g), and then filtering is repeated 18 times, and dried at 110 ° C. using a vacuum dryer to obtain polyimide A1 (polyimide material, polyimide material). Powder).
  • the white slurry obtained by gradually adding t-butanol (3000 g) was filtered to obtain a polyimide powder (0 th time) after filtration, and 5 times, 10 times, 13 times, and 15 times of isopropyl alcohol washing.
  • Polyimide A2 had an average particle size of 240 ⁇ m and a residual solvent amount of DMAc of 50 ppm.
  • the polyimide A3 had an average particle size of 230 ⁇ m and a residual solvent content of 95 ppm DMAc.
  • the polyimide CA2 had an average particle size of 250 ⁇ m and a residual solvent amount of DMAc of 220 ppm.
  • the polyimide CA3 had an average particle size of 240 ⁇ m and a residual solvent amount of DMAc of 2500 ppm.
  • C2 A polyimide oven A1 dichloromethane solution (solid content concentration: 17% by mass) was placed on a sheet-like support (thickness: 100 ⁇ m, SUS304, SUS304 CSP-H-TA, manufactured by Nissin Steel Co., Ltd.), and then circulated in an oven described below. The film was dried so as to have a film thickness as shown in Table 1 after drying in the air, and after natural drying, the polyimide resin coating film was peeled off. (C3) The peeled polyimide resin coating film was cut into a size of 150 mm ⁇ 200 mm.
  • the peeled polyimide precursor resin coating film was cut into a size of 150 mm ⁇ 200 mm. Using two metal frames (external dimensions 150 mm x 200 mm, internal dimensions 130 mm x 180 mm), the cut polyimide precursor resin coating was sandwiched, and the metal frame and the polyimide precursor resin coating were fixed with a fixing jig. .
  • the fixed polyimide precursor resin coating film was heated in an oven under a nitrogen stream (oxygen concentration: 100 ppm or less) at a heating rate of 10 ° C./min to a heating temperature (° C.) shown in Table 1, and at that temperature. Heating was performed for the time (minute) shown in Table 1 to form a polyimide film.
  • Examples 7 and 8, Comparative Examples 8 and 9 In the same manner as in Example 1, except that the polyimides A2 and A3 of Synthesis Examples 3 to 4 and the polyimides CA2 and CA3 of Comparative Synthesis Examples 2 to 3 were used instead of using the polyimide A1 of Synthesis Example 2, respectively. Then, polyimide films having the thicknesses shown in Table 3 were produced. Table 3 shows the evaluation results of the obtained polyimide films.
  • the metal frame and the polyimide resin coating were fixed with a fixing jig, and the fixed polyimide resin coating was dried in a circulating oven at a heating temperature (° C.) and a time (minute) shown in Table 4 to obtain a polyimide.
  • a film was prepared. Table 4 shows the evaluation results of the obtained polyimide films.
  • Examples 15 to 20 In the same manner as in Example 1 except that the polyimides A4 to A9 obtained in Synthesis Examples 5 to 10 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 6 were obtained. Polyimide films were prepared respectively. Table 6 shows the evaluation results of the obtained polyimide films.
  • Examples 21 to 27 In the same manner as in Example 1 except that the polyimides A10 to A16 obtained in Synthesis Examples 11 to 17 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 8 were obtained. Polyimide films were prepared respectively. Table 8 shows the evaluation results of the obtained polyimide films.
  • the weight average molecular weight of the polyimide A17 measured by GPC was 176,000.
  • the type of the residual solvent was only DMAc, and the residual solvent amount was 22 ppm for DMAc.
  • the weight average molecular weight of the polyimide A18 measured by GPC was 178,000.
  • the type of the residual solvent was only DMAc, and the residual solvent amount was 20 ppm of DMAc.
  • Examples 28 to 29 In the same manner as in Example 1 except that the polyimides A17 to A18 obtained in Synthesis Examples 18 to 19 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 8 were obtained. Polyimide films were prepared respectively. Table 9 shows the evaluation results of the obtained polyimide films.
  • Example 30 to 58 Production of laminated body
  • pentaerythritol triacrylate methyl isobutyl ketone
  • 10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone Irgacure 184, manufactured by BASF
  • a resin composition for a coat layer was prepared.
  • the resin composition for a hard coat layer was coated on each of the polyimide films of Examples 1 to 29, and was irradiated with ultraviolet rays at a light exposure of 200 mJ / cm 2 under a nitrogen gas flow to be cured to form a cured film having a thickness of 10 ⁇ m.
  • the laminated body was manufactured. Since the polyimide film contains silicon atoms, the adhesion to the hard coat layer was also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The main objective of the present invention is to provide a film having excellent transparency and improved resistance to bending. The invention is a polyimide film comprising a polyimide having the structure represented by general formula (1), wherein as residual solvents within the film, the content of organic solvents having a boiling point of lower than 100°C under 1 atmosphere is 2,000 ppm or lower, and the content of organic solvents having a boiling point of 100°C or higher under 1 atmosphere is 100 ppm or lower; and the total light transmittance as measured according to JIS K7361-1 is 85% or greater. Formula (1) (As per the description in the specifications)

Description

ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置Polyimide film, polyimide material, laminate, display member, touch panel member, liquid crystal display device, and organic electroluminescence display device
 本発明は、ポリイミドフィルム、ポリイミド材料、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置に関するものである。 The present invention relates to a polyimide film, a polyimide material, a laminate, a display member, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device.
 薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすく、加工性に問題があり、また、プラスチック製品と比較して重いといった欠点があった。このため、近年、樹脂基材や樹脂フィルム等の樹脂製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあり、ガラス代替製品となる樹脂製品の研究が行われてきている。 Thin sheet glass is excellent in hardness, heat resistance, etc., but is difficult to bend, easily breaks when dropped, has a problem in workability, and has a disadvantage that it is heavier than plastic products. Therefore, in recent years, resin products such as a resin base material and a resin film are being replaced with glass products from the viewpoint of workability and weight reduction, and research on resin products as glass substitute products has been conducted.
 例えば、液晶や有機EL等のディスプレイや、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスには従来、薄い板ガラス上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、この薄い板ガラスを樹脂フィルムに変えることにより、パネル自体の耐衝撃性の強化、フレキシブル化、薄型化や軽量化が図れる。 For example, with the rapid progress of displays such as liquid crystal and organic EL, and electronics such as touch panels, devices have been required to be thinner and lighter and more flexible. In these devices, various electronic elements, such as thin transistors and transparent electrodes, are conventionally formed on a thin sheet glass. By changing this thin sheet glass to a resin film, the impact resistance of the panel itself is enhanced. In addition, flexibility, thinness and weight reduction can be achieved.
 一般にポリイミドは、芳香族テトラカルボン酸無水物と芳香族ジアミンとの縮合反応により得られたポリアミド酸を脱水閉環反応させて得られる高耐熱性の樹脂である。しかしながら、一般にポリイミドは黄色或いは褐色に着色を示すことから、ディスプレイ用途や光学用途など透明性が要求される分野に用いることは困難であった。そこで、透明性を向上したポリイミドを、ディスプレイ部材へ適用することが検討されている。例えば、特許文献1には、高耐熱性、高透明性、低吸水性のポリイミド樹脂として、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、特定の式で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させてなるポリイミドが開示されており、フラットパネルディスプレイや携帯電話機器等の基板材料に好適であると記載されている。 Generally, polyimide is a highly heat-resistant resin obtained by subjecting a polyamic acid obtained by a condensation reaction between an aromatic tetracarboxylic anhydride and an aromatic diamine to a dehydration ring-closing reaction. However, since polyimide generally shows yellow or brown coloring, it has been difficult to use it in fields requiring transparency, such as display applications and optical applications. Therefore, application of a polyimide with improved transparency to a display member has been studied. For example, Patent Document 1 discloses 1,2,4,5-cyclohexanetetracarboxylic acid and 1,2,4,5-cyclohexanetetracarboxylic acid as polyimide resins having high heat resistance, high transparency and low water absorption. At least one acyl-containing compound selected from the group consisting of anhydrides and reactive derivatives thereof and at least one compound selected from compounds having at least one phenylene group and isopropylidene group represented by a specific formula A polyimide obtained by reacting with an imino-forming compound is disclosed, and is described as being suitable for a substrate material of a flat panel display, a mobile phone device, and the like.
 さらに、特許文献2には、芳香族ジアンヒドリドおよび芳香族ジアミンに由来する単位構造を含み、引裂強度改善用添加剤、またはヘキサフルオロ基、スルホン基およびオキシ基よりなる群から選ばれる官能基を有するモノマーに由来する単位構造をさらに含む、透明ポリイミドフィルムが開示されている。 Further, Patent Document 2 includes a unit structure derived from an aromatic dianhydride and an aromatic diamine, an additive for improving tear strength, or a functional group selected from the group consisting of a hexafluoro group, a sulfone group, and an oxy group. A transparent polyimide film further including a unit structure derived from a monomer having the same is disclosed.
 また、特許文献3には、フレキシブルデバイスの基板に用いられるポリイミドフィルムとして、無色透明であり、無機膜との間に発生する残留応力が低く、機械的物性及び熱物性に優れたポリイミドフィルムを得ることを目的として、特定のフッ素系芳香族ジアミンと、ケイ素原子数が3~200個のシロキサン骨格を有するシリコーン化合物とをモノマー成分として用いたポリイミド前駆体をイミド化したポリイミドフィルムが開示されている。特許文献3には、前記ポリイミド前駆体を用いて無機膜(SiN膜)付きポリイミドフィルムを形成したところ、折り曲げを10回繰り返し行った折り曲げ試験後にクラックも剥離も観察されないか(○)、クラックが観察された(△)と記載されている。 In addition, Patent Document 3 discloses a polyimide film used for a substrate of a flexible device, which is a colorless and transparent polyimide film having a low residual stress generated between the film and an inorganic film and having excellent mechanical and thermal properties. For this purpose, there is disclosed a polyimide film obtained by imidizing a polyimide precursor using a specific fluorine-based aromatic diamine and a silicone compound having a siloxane skeleton having 3 to 200 silicon atoms as a monomer component. . In Patent Document 3, when a polyimide film with an inorganic film (SiN film) was formed using the polyimide precursor, no crack or peeling was observed after a bending test in which bending was repeated 10 times (O), and cracks were observed. It is described as observed (△).
 また、特許文献4には、低屈折率でかつ耐折性が高いポリイミドとして、ケイ素原子数が2~21個のシリコーンジアミンをジアミン原料重量の10重量%以上含むことが記載されている。 Patent Document 4 discloses that as a polyimide having a low refractive index and high folding resistance, a silicone diamine having 2 to 21 silicon atoms is contained in an amount of 10% by weight or more based on the weight of the diamine raw material.
 更に、発明者らは、特許文献5に、屈曲耐性を向上しながら、表面硬度の低下が抑制された樹脂フィルムとして、主鎖にケイ素原子を1個又は2個有するジアミン残基をジアミン残基の総量の10モル%以上50モル%以下含むポリイミドを含有し、特定の全光線透過率、特定の黄色度、特定のガラス転移温度、及び特定の引張弾性率を有するポリイミドフィルムを開示している。 Further, the inventors have disclosed in Patent Document 5 a diamine residue having one or two silicon atoms in the main chain as a resin film in which a decrease in surface hardness is suppressed while improving bending resistance. Discloses a polyimide film having a specific total light transmittance, a specific yellowness, a specific glass transition temperature, and a specific tensile modulus, comprising a polyimide containing 10 mol% or more and 50 mol% or less of the total amount of .
特開2006-199945号公報JP 2006-199945 A 特表2014-501301号公報JP 2014-501301 A 国際公開2014/098235号公報International Publication No. 2014/098235 特開2008-64905号公報JP 2008-64905 A 特開2018-28073号公報JP 2018-28073 A
 ガラス代替製品となる樹脂製品には、そもそも優れた透明性が求められる。
 画面が折り畳めるモバイル機器は、持ち運ぶ際には折り畳んだ状態とし、使用する際には折り畳みを開いた状態とする。そのため、モバイル機器に搭載されるフレキシブルディスプレイには、繰り返し屈曲させても表示不良が発生しないことが求められ、フレキシブルディスプレイ用の基材や表面材には、繰り返し屈曲させたときの屈曲耐性(以下、動的屈曲耐性という場合がある)が求められる。更に、画面が折り畳めるモバイル機器は、折り畳んだ状態で持ち運ばれることが多いため、モバイル機器に搭載されるフレキシブルディスプレイには、長時間折り曲げられた状態が続いても、平坦に戻した時に元通りになることが求められ、フレキシブルディスプレイ用の基材や表面材にも、長時間折り曲げられた状態が続いた後の復元性(以下、静的屈曲耐性という場合がある)が求められる。
 しかしながら、従来技術の透明性を有するポリイミドフィルムの屈曲耐性は更なる向上が求められていた。
In the first place, resin products as glass substitute products are required to have excellent transparency.
The mobile device whose screen can be folded is in a folded state when being carried, and is in an opened state when being used. Therefore, it is required that a flexible display mounted on a mobile device does not cause display defects even if it is repeatedly bent. , Dynamic bending resistance). Furthermore, since mobile devices that can fold the screen are often carried in a folded state, the flexible display mounted on the mobile device will not return to its original state when it is folded back even if it is folded for a long time. It is also required that the substrate and the surface material for a flexible display have resilience after being folded for a long time (hereinafter, sometimes referred to as static bending resistance).
However, the bending resistance of the transparent polyimide film of the prior art has been required to be further improved.
 本発明は、上記問題点に鑑みてなされたものであり、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することを主目的とする。
 また、本発明は、前記ポリイミドフィルムを製造するためのポリイミド材料、前記ポリイミドを有する積層体、前記ポリイミドフィルム又は前記積層体であるディスプレイ用部材、並びに、前記ポリイミドフィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its main object to provide a polyimide film having excellent transparency and improved bending resistance.
Further, the present invention provides a polyimide material for producing the polyimide film, a laminate having the polyimide, a display member that is the polyimide film or the laminate, and a touch panel member including the polyimide film or the laminate. , A liquid crystal display device, and an organic electroluminescence display device.
 本発明のポリイミドフィルムは、下記一般式(1)で表される構造を有するポリイミドを含有し、
 フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。
The polyimide film of the present invention contains a polyimide having a structure represented by the following general formula (1),
As the residual solvent in the film, the content of the organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of 100 ° C. or more is 100 ppm or less. Yes,
The total light transmittance measured according to JIS K7361-1 is 85% or more.
Figure JPOXMLDOC01-appb-C000003
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring; R 2 represents a divalent group that is a diamine residue; 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic. A diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.)
 本発明のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であることが、表面硬度に優れる点から好ましい。 The polyimide film of the present invention has a tensile modulus of 1.8 GPa or more at 25 ° C. when a test piece of 15 mm × 40 mm is measured according to JIS K7127 at a tensile speed of 10 mm / min and a distance between chucks of 20 mm. It is preferable from the viewpoint of excellent surface hardness.
 本発明のポリイミドフィルムは、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.10以下であることが、透明性に優れる点から好ましい。 (4) The polyimide film of the present invention preferably has a value obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness (μm) of 0.10 or less from the viewpoint of excellent transparency.
 本発明のポリイミドフィルムは、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。 The polyimide film of the present invention is a polyimide having a structure represented by the general formula (1), wherein R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic acid Dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride residue, 2,2', 3,3'-biphenyltetracarboxylic dianhydride residue, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiene Talic anhydride residue, and at least one tetravalent group selected from the group consisting of 3,4′-oxydiphthalic anhydride residue, light transmittance, bending resistance and surface hardness It is preferable from the point of view.
 本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。 In the polyimide film of the present invention, in the polyimide having a structure represented by the general formula (1), R 2 in the general formula (1) does not have the silicon atom and has an aromatic ring or an aliphatic ring. A diamine residue having a ring is a trans-cyclohexanediamine residue, a trans-1,4-bismethylenecyclohexanediamine residue, a 4,4′-diaminodiphenylsulfone residue, a 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane- 2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3 A hexafluoropropane residue, a 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, and a compound represented by the following general formula (2) It is preferable that it is at least one kind of divalent group selected from the group consisting of the divalent groups represented in view of light transmittance, bending resistance and surface hardness.
Figure JPOXMLDOC01-appb-C000004
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 本発明のポリイミドフィルムは、前記一般式(1)で表される構造を有するポリイミドにおいて、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性及び表面硬度を向上する点から好ましい。 In the polyimide film of the present invention, in the polyimide having a structure represented by the general formula (1), R 2 has a diamine residue having no silicon atom and one or two silicon atoms in a main chain. Represents a divalent group of at least one kind selected from diamine residues, wherein 2.5 to 50 mol% of the total amount of R 2 is a diamine residue having one or two silicon atoms in the main chain. It is preferable from the viewpoint of improving bending resistance and surface hardness that 50 mol% or more and 97.5 mol% or less are a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring. .
 また、本発明は、前記本発明のポリイミドフィルム製造用ポリイミド材料であり、
 前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料を提供する。
Further, the present invention is a polyimide material for producing a polyimide film of the present invention,
It has a structure represented by the general formula (1), and has a content of an organic solvent having a boiling point of less than 100 ° C. under 1 atm at 2000 ppm or less as a residual solvent, and a boiling point at 1 atm of 100. Provided is a polyimide material having an organic solvent content of 100 ° C. or higher and 100 ppm or lower.
 また、本発明は、前記本発明のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体を提供する。 The present invention also provides a laminate having the polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
 また、本発明は、前記本発明のポリイミドフィルム、又は、前記本発明の積層体である、ディスプレイ用部材を提供する。当該ディスプレイ用部材は、フレキシブルディスプレイ用とすることができる。 The present invention also provides a display member, which is the polyimide film of the present invention or the laminate of the present invention. The display member can be for a flexible display.
 また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
 前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材を提供する。
Further, the present invention, the polyimide film of the present invention or the laminate of the present invention,
A transparent electrode composed of a plurality of conductive portions, disposed on one surface side of the polyimide film or the laminate,
And a plurality of lead wires electrically connected to at least one of the ends of the conductive portion.
 また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置を提供する。
Further, the present invention, the polyimide film of the present invention or the laminate of the present invention,
A liquid crystal display device, comprising: a liquid crystal display portion having a liquid crystal layer between opposing substrates, the liquid crystal display portion being disposed on one surface side of the polyimide film or the laminate.
 また、本発明は、前記本発明のポリイミドフィルム又は前記本発明の積層体と、
前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置を提供する。
Further, the present invention, the polyimide film of the present invention or the laminate of the present invention,
An organic electroluminescent display device, comprising: an organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates, the organic electroluminescent display portion being disposed on one surface side of the polyimide film or the laminate.
 本発明によれば、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。
 また、本発明は、前記ポリイミドフィルムを製造するためのポリイミド材料、前記ポリイミドを有する積層体、前記ポリイミドフィルム又は前記積層体であるディスプレイ用部材、並びに、前記ポリイミドフィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することができる。
According to the present invention, it is possible to provide a polyimide film having excellent transparency and improved bending resistance.
Further, the present invention provides a polyimide material for producing the polyimide film, a laminate having the polyimide, a display member that is the polyimide film or the laminate, and a touch panel member including the polyimide film or the laminate. , A liquid crystal display device, and an organic electroluminescence display device.
静的屈曲試験の方法を説明するための図である。It is a figure for explaining the method of a static bending test. 本発明のタッチパネル部材の一例の一方の面の概略平面図である。It is an outline top view of one side of an example of the touch panel member of the present invention. 図2に示すタッチパネル部材のもう一方の面の概略平面図である。FIG. 3 is a schematic plan view of another surface of the touch panel member shown in FIG. 2. 図2及び図3に示すタッチパネル部材のA-A’断面図である。FIG. 4 is a sectional view taken along line A-A ′ of the touch panel member shown in FIGS. 2 and 3. 本発明の積層体を備える導電性部材の一例を示す概略平面図である。It is a schematic plan view showing an example of a conductive member provided with a layered product of the present invention. 本発明の積層体を備える導電性部材の別の一例を示す概略平面図である。It is a schematic plan view which shows another example of the conductive member provided with the laminated body of this invention. 本発明のタッチパネル部材の別の一例を示す概略断面図である。It is an outline sectional view showing another example of the touch panel member of the present invention. 本発明の液晶表示装置の一例を示す概略断面図である。FIG. 1 is a schematic sectional view illustrating an example of a liquid crystal display device of the present invention. 本発明の液晶表示装置の別の一例を示す概略断面図である。FIG. 4 is a schematic sectional view showing another example of the liquid crystal display device of the present invention. 本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of the organic electroluminescence display device of the present invention. 本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。FIG. 2 is a schematic sectional view showing another example of the organic electroluminescence display device of the present invention.
 以下、本発明に係るポリイミドフィルム、当該ポリイミドフィルムの製造用ポリイミド材料、当該ポリイミドフィルムを用いた積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置について詳細に説明する。
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 また、本明細書において(メタ)アクリルとは、アクリル及びメタアクリルの各々を表す。
 また、本明細書において「光」とは、活性光線又は放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等が包含されるものである。
 また、本明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある場合がある。
 また、本明細書において、ポリイミドフィルム中の有機溶剤の含有量の単位として用いられている「ppm」は、質量ppmを表す。
Hereinafter, the polyimide film according to the present invention, a polyimide material for producing the polyimide film, a laminate using the polyimide film, a display member, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device will be described in detail.
Further, in this specification, to specify the shape and geometric conditions and the degree thereof, for example, such as "parallel", "orthogonal", "identical" and the like, and the value of the length and angle, etc., strict Without being constrained by the meaning, it should be interpreted to include a range in which a similar function can be expected.
Moreover, in this specification, (meth) acryl represents each of acryl and methacryl.
Further, in the present specification, “light” means actinic rays or radiation, for example, a bright line spectrum of a mercury lamp, far ultraviolet represented by excimer laser, extreme ultraviolet (EUV light), X-ray, electron beam and the like. Included.
Further, in the drawings attached to this specification, for convenience of illustration and ease of understanding, the scale and vertical / horizontal ratio may be appropriately changed from those of the actual product and exaggerated.
In this specification, "ppm" used as a unit of the content of the organic solvent in the polyimide film represents ppm by mass.
I.ポリイミドフィルム
 本発明のポリイミドフィルムは、下記一般式(1)で表される構造を有するポリイミドを含有し、
 フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。
I. Polyimide film The polyimide film of the present invention contains a polyimide having a structure represented by the following general formula (1),
As the residual solvent in the film, the content of the organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of 100 ° C. or more is 100 ppm or less. Yes,
The total light transmittance measured according to JIS K7361-1 is 85% or more.
Figure JPOXMLDOC01-appb-C000005
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring; R 2 represents a divalent group that is a diamine residue; 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic. A diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.)
 本発明によれば、ポリイミドフィルムが含有するポリイミドが、芳香族環又は脂肪族環を有するテトラカルボン酸残基を有し、ジアミン残基として、主鎖にケイ素原子を有するジアミン残基を2.5モル%以上50モル%以下含み、ケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基を50モル%以上97.5モル%以下含む特定の構造を有し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量を2000ppm以下、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量を100ppm以下とし、前記特定の全光線透過率を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。 According to the present invention, the polyimide contained in the polyimide film has a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a diamine residue having a silicon atom in a main chain as a diamine residue. It has a specific structure containing from 5 mol% to 50 mol%, and containing from 50 mol% to 97.5 mol% of a diamine residue having an aromatic ring or an aliphatic ring without a silicon atom, As a residual solvent, the content of the organic solvent having a boiling point of less than 100 ° C. at 1 atm is 2,000 ppm or less, and the content of the organic solvent having a boiling point of 100 ° C. or more at 1 atm is 100 ppm or less. By using a polyimide film having a total light transmittance, a polyimide film having excellent transparency and improved bending resistance can be provided.
 本発明者らは、特許文献5にも記載したように、主鎖にケイ素原子を1個又は2個有するジアミン残基をジアミン残基総量のうち適切な割合で含有すると、屈曲耐性が良好になることを開示している。また、特許文献4に記載されているように、ケイ素原子数が2~21個のシリコーンジアミンをジアミン原料重量の10重量%以上含むポリイミドフィルムは耐折性が高いと記載されている。しかし、ポリイミドフィルムを構成するポリイミドの構造が同じであっても、ポリイミドフィルムの製造の仕方によって、屈曲耐性が変化することがわかってきた。 As described in Patent Document 5, the present inventors have found that when a diamine residue having one or two silicon atoms in the main chain is contained at an appropriate ratio in the total amount of diamine residues, the bending resistance is improved. Is disclosed. Further, as described in Patent Document 4, it is described that a polyimide film containing silicone diamine having 2 to 21 silicon atoms in an amount of 10% by weight or more based on the weight of the diamine raw material has high folding resistance. However, it has been found that even when the structure of the polyimide constituting the polyimide film is the same, the bending resistance changes depending on the method of manufacturing the polyimide film.
 本発明者らは、主鎖にケイ素原子を有するジアミン残基をジアミン残基総量のうち適切な割合で含有するポリイミドフィルムにおいて、フィルム内の残留溶剤のうち、1気圧下での沸点(以下、本明細書で単に“沸点”という場合がある)が100℃未満の有機溶剤の含有量を2000ppm以下、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量を100ppm以下とすることにより、前記ポリイミドフィルムの屈曲耐性が向上することを見出した。
 残留溶剤は、ポリイミドフィルムの製造に使用された溶剤のため、基本的にポリイミドフィルムの良溶媒であることが多い。沸点が100℃以上の有機溶剤がフィルム内の残留溶剤量として100ppmを超えると、フィルムを構成するポリイミドの一部がその残留溶剤に溶解してしまい、動的屈曲時にフィルムが損傷を受けやすくなって破断しやすくなるのではないかと推定される。
 一方、沸点が100℃未満の有機溶剤は、未だ理由は明らかではないが、沸点が100℃以上の有機溶剤に比べて、フィルムの動的屈曲耐性に影響を与え難く、より多い残留量が許容される。沸点が100℃未満の有機溶剤は、沸点が100℃以上の有機溶剤に比べて、フィルムの静的屈曲耐性に影響を与えやすい。これは、沸点が100℃未満の有機溶剤がフィルム中に多く残留していると、フィルムが長時間折り曲げられた状態で、沸点が100℃未満の有機溶剤の一部が揮発することにより、フィルムの一部が収縮してしまい、平坦に戻した時に復元し難くなるのではないかと推定される。
 本発明においては、ポリイミドフィルム内の残留溶剤の含有量について、沸点が100℃未満の有機溶剤と、沸点が100℃以上の有機溶剤とをそれぞれ特定の含有割合以下としたことから、動的屈曲時にフィルムが損傷を受け難く、静的屈曲時に復元しやすいポリイミドフィルムを得ることができると推定される。
The present inventors, in a polyimide film containing a diamine residue having a silicon atom in the main chain at an appropriate ratio of the total amount of the diamine residue, among the residual solvent in the film, the boiling point at 1 atm (hereinafter, referred to as The content of an organic solvent having a boiling point of less than 100 ° C. is 2,000 ppm or less, and the content of an organic solvent having a boiling point of 100 ° C. or more at 1 atm is 100 ppm or less. Thereby, it was found that the bending resistance of the polyimide film was improved.
Since the residual solvent is a solvent used for producing the polyimide film, it is often a good solvent for the polyimide film. When the organic solvent having a boiling point of 100 ° C. or more exceeds 100 ppm as a residual solvent amount in the film, a part of the polyimide constituting the film is dissolved in the residual solvent, and the film is easily damaged during dynamic bending. It is presumed that it may be easily broken.
On the other hand, the organic solvent having a boiling point of less than 100 ° C. is not yet clear, but is less likely to affect the dynamic bending resistance of the film than the organic solvent having a boiling point of 100 ° C. or more, and a larger residual amount is acceptable. Is done. An organic solvent having a boiling point of less than 100 ° C. is more likely to affect the static bending resistance of the film than an organic solvent having a boiling point of 100 ° C. or more. This is because, when a large amount of the organic solvent having a boiling point of less than 100 ° C. remains in the film, a part of the organic solvent having a boiling point of less than 100 ° C. volatilizes in a state where the film is bent for a long time. It is presumed that a part of the part shrinks, and it becomes difficult to restore when it is returned to the flat state.
In the present invention, regarding the content of the residual solvent in the polyimide film, the organic solvent having a boiling point of less than 100 ° C. and the organic solvent having a boiling point of 100 ° C. or more are respectively set to a specific content ratio or less. It is presumed that a polyimide film that is hardly damaged at times and can be easily restored during static bending can be obtained.
 なお、後述の実施例と比較例で、同じ分子構造を有するポリイミド前駆体を用いてポリイミドフィルムを製造した場合であっても、ポリイミドの製法やポリイミドフィルムの製造方法が異なりフィルムの状態が異なると、残留溶剤量が変化し、屈曲耐性が変化することが示されている。このことは、ポリイミドフィルムの屈曲耐性は、ポリイミドの化学構造のみに依存するわけではないこと、また、残留溶剤量が、屈曲耐性に関連したポリイミドフィルムの状態を表すことを示している。
 また、更に、前記特定の全光線透過率を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上したポリイミドフィルムを提供することができる。
In Examples and Comparative Examples described below, even when a polyimide film is manufactured using a polyimide precursor having the same molecular structure, the manufacturing method of the polyimide and the manufacturing method of the polyimide film are different and the state of the film is different. It shows that the amount of residual solvent changes and the bending resistance changes. This indicates that the bending resistance of the polyimide film does not depend only on the chemical structure of the polyimide, and that the amount of the residual solvent indicates the state of the polyimide film related to the bending resistance.
Further, by using the polyimide film having the specific total light transmittance, a polyimide film having excellent transparency and improved bending resistance can be provided.
 以下、本発明に係るポリイミドフィルムについて詳細に説明する。
 本発明に係るポリイミドフィルムは、ポリイミドを含有し、前記特定の特性を有するものである。本発明の効果が損なわれない限り、更にその他の成分を含有していても良いし、他の構成を有していてもよい。
1.ポリイミド
 ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよい。また、熱イミド化と化学イミド化とを併用した方法で製造することもできる。
 本発明で用いられるポリイミドは、下記一般式(1)で表される構造を有するポリイミドを含有する。
Hereinafter, the polyimide film according to the present invention will be described in detail.
The polyimide film according to the present invention contains polyimide and has the above-mentioned specific properties. As long as the effects of the present invention are not impaired, the composition may further contain other components or may have other configurations.
1. Polyimide Polyimide is obtained by reacting a tetracarboxylic acid component with a diamine component. It is preferable to obtain a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component and imidize the polyamic acid. The imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also be manufactured by a method using both thermal imidization and chemical imidization.
The polyimide used in the present invention contains a polyimide having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (1), R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring; R 2 represents a divalent group that is a diamine residue; 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic. A diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.)
 ここで、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。
 また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
Here, the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as the residue obtained by removing the acid dianhydride structure from tetracarboxylic dianhydride. .
The diamine residue refers to a residue obtained by removing two amino groups from a diamine.
 前記一般式(1)のRにおけるテトラカルボン酸残基は、芳香族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基、又は、脂肪族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。
 芳香族環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 脂肪族環を有するテトラカルボン酸二無水物としては、例えば、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
The tetracarboxylic acid residue in R 1 of the general formula (1) is a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or a tetracarboxylic acid having an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from dianhydride.
Examples of the tetracarboxylic dianhydride having an aromatic ring include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3 ′ -Benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis ( 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3 , 4-zika Boxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4- Bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis} 4 -[3- (1,2-dicarboxy) Phenoxy] phenyl} ketone dianhydride, 4,4′-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4,4′-bis [3- (1,2-dicarboxy) Phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} Ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfone Anhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride, 4, 4'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, , 3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride and the like.
Examples of the tetracarboxylic dianhydride having an aliphatic ring include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride. Anhydride, cyclobutanetetracarboxylic dianhydride and the like can be mentioned.
These can be used alone or in combination of two or more.
 前記一般式(1)のRにおける、主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。本発明に用いられるポリイミドフィルムは、主成分として芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入することで、上述のように、屈曲耐性を向上することができる。また、後述するハードコート層などの機能層を積層した場合に、ハードコート層などの機能層との間の密着性を向上することができる。 The diamine residue having a silicon atom in the main chain in R 2 of the general formula (1) may be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain. The polyimide film used in the present invention, as described above, by introducing a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component. In addition, the bending resistance can be improved. Further, when a functional layer such as a hard coat layer to be described later is laminated, the adhesiveness between the functional layer such as a hard coat layer and the like can be improved.
 主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 主鎖にケイ素原子を有するジアミン残基としては、例えば、下記一般式(A)で表されるジアミンが挙げられる。
The diamine residue having a silicon atom in the main chain may be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
Examples of the diamine residue having a silicon atom in the main chain include a diamine represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000007
(一般式(A)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。kは0~200の数である。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (A), L is each independently a direct bond or —O— bond, R 10 is each independently a substituent, and may contain an oxygen atom or a nitrogen atom. R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, each of which may be independently a carbon atom which may have a substituent and may contain an oxygen atom or a nitrogen atom. Represents a divalent hydrocarbon group having a number of 1 to 20. k is a number from 0 to 200. A plurality of L, R 10 and R 11 may be the same or different.
 R10で表される1価の炭化水素基としては、炭素数1以上20以下のアルキル基、アリール基、及びこれらの組み合わせが挙げられる。アルキル基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキル基としては、炭素数1以上10以下のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。前記環状のアルキル基としては、炭素数3以上10以下のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アリール基としては、炭素数6以上12以下のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。また、R10で表される1価の炭化水素基としては、アラルキル基であっても良く、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
 酸素原子又は窒素原子を含んでいても良い炭化水素基としては、例えば後述する2価の炭化水素基と前記1価の炭化水素基とをエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R10で表される1価の炭化水素基が有していても良い置換基としては、本発明の効果が損なわれない範囲で特に限定されず、例えば、フッ素原子、塩素原子等のハロゲン原子、水酸基等が挙げられる。
Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and a combination thereof. The alkyl group may be linear, branched, or cyclic, or may be a combination of linear or branched and cyclic.
The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples include a t-butyl group, a pentyl group, and a hexyl group. The cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group. The monovalent hydrocarbon group represented by R 10 may be an aralkyl group, such as a benzyl group, a phenylethyl group, and a phenylpropyl group.
Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described below and the monovalent hydrocarbon group. And a group bonded by at least one of the bonds (—NH—).
The substituent which the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include a halogen atom such as a fluorine atom and a chlorine atom. And a hydroxyl group.
 R10で表される1価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上3以下のアルキル基、又は炭素数6以上10以下のアリール基であることが好ましく、炭素数1以上3以下のアルキル基であることがより好ましい。炭素数1以上3以下のアルキル基としては、メチル基であることがより好ましく、前記炭素数6以上10以下のアリール基としては、フェニル基であることがより好ましい。 As the monovalent hydrocarbon group represented by R 10 , an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms is preferable from the viewpoint of improvement in bending resistance and compatibility of surface hardness. Preferably, it is an alkyl group having 1 to 3 carbon atoms. The alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
 R11で表される2価の炭化水素基としては、炭素数1以上20以下のアルキレン基、アリーレン基、及びこれらの組み合わせの基が挙げられる。アルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキレン基としては、炭素数1以上10以下のアルキレン基であることが好ましく、例えば、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、シクロヘキシレン基等の直鎖状又は分岐状アルキレン基と環状アルキレン基との組合せの基などを挙げることができる。
 前記アリーレン基としては、炭素数6以上12以下のアリーレン基であることが好ましく、アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基等が挙げられ、更に後述する芳香族環に対する置換基を有していてもよい。
 酸素原子又は窒素原子を含んでいても良い2価の炭化水素基としては、前記2価の炭化水素基同士をエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R11で表される2価の炭化水素基が有していても良い置換基としては、前記R10で表される1価の炭化水素基が有していても良い置換基と同様であって良い。
Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof. The alkylene group may be linear, branched, or cyclic, or may be a combination of linear, branched, and cyclic.
The alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms, for example, a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, and a cyclohexylene group. And the like, and a combination of a cyclic or branched alkylene group and a cyclic alkylene group.
The arylene group is preferably an arylene group having 6 to 12 carbon atoms. Examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for an aromatic ring described later. It may be.
As the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom, the divalent hydrocarbon groups may be formed by forming an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond (—NH—). A group bonded by at least one is exemplified.
The substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
 R11で表される2価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上6以下のアルキレン基、又は炭素数6以上10以下のアリーレン基であることが好ましく、更に、炭素数2以上4以下のアルキレン基であることがより好ましく、当該アルキレン基は、直鎖状又は分岐状であることが好ましい。 As the divalent hydrocarbon group represented by R 11 , an alkylene group having 1 to 6 carbon atoms or an arylene group having 6 to 10 carbon atoms is preferred from the viewpoint of improving bending resistance and compatibility of surface hardness. The alkylene group is more preferably an alkylene group having 2 to 4 carbon atoms, and the alkylene group is preferably linear or branched.
 kは0~200の数である。kの平均は、屈曲耐性の向上と表面硬度の両立性の点から、0以上6以下であることが好ましく、0以上4以下であることが好ましい。中でもkは0又は1であることが好ましい。 K is a number from 0 to 200. The average of k is preferably 0 or more and 6 or less, and more preferably 0 or more and 4 or less from the viewpoint of the improvement of the bending resistance and the compatibility of the surface hardness. Among them, k is preferably 0 or 1.
 前記Rにおける、前記主鎖にケイ素原子を有するジアミン残基としては、中でも、屈曲耐性に優れ、表面硬度との両立性にも優れる点から、主鎖にケイ素原子を1個又は2個有するジアミン残基であることが好ましい。 As the diamine residue having a silicon atom in the main chain in R 2 , among others, it has one or two silicon atoms in the main chain from the viewpoint of excellent bending resistance and excellent compatibility with surface hardness. Preferably, it is a diamine residue.
 主鎖にケイ素原子を1個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=0である下記一般式(A-1)で表されるジアミンが挙げられる。また、主鎖にケイ素原子を2個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=1である下記一般式(A-2)で表されるジアミンが挙げられる。 Examples of the diamine having one silicon atom in the main chain include, among diamines represented by the general formula (A), diamines represented by the following general formula (A-1) where k = 0. . As the diamine having two silicon atoms in the main chain, for example, among the diamines represented by the general formula (A), diamines represented by the following general formula (A-2) where k = 1 are given. No.
Figure JPOXMLDOC01-appb-C000008
(一般式(A-1)及び一般式(A-2)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (A-1) and the general formula (A-2), L is each independently a direct bond or —O— bond, and R 10 is each independently a substituent. And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain an oxygen atom or a nitrogen atom, wherein R 11 each independently may have a substituent, and Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom. A plurality of L, R 10 and R 11 may be the same or different.)
 分子の運動性を抑制しつつ屈曲耐性を付与する点、表面硬度の両立性の点から、主鎖にケイ素原子を有するジアミン残基の分子量は、3000以下であることが好ましく、2000以下であることが好ましく、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 更に、主鎖にケイ素原子を1個又は2個有するジアミン残基の分子量は、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 ジアミン残基の分子量は、ジアミンの分子量からアミノ基(-NH)2個の分子量(32)を減じて算出される。
 主鎖にケイ素原子を有するジアミン残基は単独でも、2種以上を混合して用いることもできる。
From the viewpoint of imparting bending resistance while suppressing the mobility of the molecule and the compatibility of surface hardness, the molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3,000 or less, and is 2,000 or less. Is preferably 1,000 or less, more preferably 800 or less, even more preferably 500 or less, and particularly preferably 300 or less.
Furthermore, the molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1,000 or less, more preferably 800 or less, even more preferably 500 or less, and 300 or less. Is particularly preferred.
The molecular weight of the diamine residue is calculated by subtracting the molecular weight (32) of two amino groups (—NH 2 ) from the molecular weight of the diamine.
Diamine residues having a silicon atom in the main chain can be used alone or in combination of two or more.
 また、前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける主鎖にケイ素原子を有するジアミン残基が、ケイ素原子を2個有するジアミン残基であることが、光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、更に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、1,3-ビス(5-アミノペンチル)テトラメチルジシロキサン等が、入手容易性や光透過性と表面硬度の両立の観点から好ましい。 In the polyimide having the structure represented by the general formula (1), the diamine residue having a silicon atom in the main chain of R 2 in the general formula (1) is a diamine residue having two silicon atoms. Is preferable in terms of light transmittance, bending resistance and surface hardness. Further, 1,3-bis (3-aminopropyl) tetramethyldisiloxane residue and 1,3-bis (4- Aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, and the like are preferable from the viewpoint of easy availability and compatibility between light transmittance and surface hardness.
 前記一般式(1)のRにおける、ケイ素原子を有さず芳香族環を有するジアミン残基は、ケイ素原子を有さず芳香族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 ケイ素原子を有さず芳香族環を有するジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(2,2-ビス(トリフルオロメチル)ベンジジン)、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等、及び、前記ジアミンの芳香族環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。
 これらは単独でも、2種以上を混合して用いることもできる。
The diamine residue having an aromatic ring without a silicon atom in R 2 of the general formula (1) is a residue obtained by removing two amino groups from a diamine having an aromatic ring without a silicon atom. can do.
Examples of the diamine having no silicon atom and having an aromatic ring include, for example, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzanilide, 3,3'-diaminodiphenylmethane , 4,4'-diaminodiphenylmethane 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl ) Propane, 2,2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3 , 3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3 -Aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminopheno B) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3 -Aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) Benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis ( 4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α- Ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, N, N′-bis (4-aminophenyl) terephthalamide, 9 , 9-bis (4-aminophenyl) fluorene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (2,2-bis ( Trifluoromethyl) benzidine), 3,3'-dichloro-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dimethyl 4,4'-diaminobiphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] Ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3 -Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) Enyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) ) Phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-amino Phenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3 -amino Phenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4′-bis [4- (4-aminophenoxy) ) Benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) ) Phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4 4,4'-dibiphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 6 6'-bis (3-aminophenoxy) -3,3,3 ', 3'-tetramethyl-1,1'-spirobiindane, 6,6'-bis (4-aminophenoxy) -3,3,3' , 3'-tetramethyl-1,1'-spirobiindane and the like, and a part or all of hydrogen atoms on an aromatic ring of the diamine is a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group. Diamines substituted with a substituent selected from the groups can also be used.
These can be used alone or in combination of two or more.
 前記一般式(1)のRにおける、ケイ素原子を有さず脂肪族環を有するジアミン残基は、脂肪族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 脂肪族環を有するジアミンとしては、例えば、1,4-シクロヘキサンジアミン、trans-1,4-ビスメチレンシクロヘキサンジアミン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
The diamine residue having an aliphatic ring without a silicon atom in R 2 of the general formula (1) may be a residue obtained by removing two amino groups from a diamine having an aliphatic ring.
Examples of the diamine having an aliphatic ring include 1,4-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 5-bis (aminomethyl) bicyclo [2,2,1] heptane and the like.
These can be used alone or in combination of two or more.
 本発明に用いられるポリイミドフィルムは、前記一般式(1)のRにおいて、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることにより、静的屈曲耐性及び動的屈曲耐性が良好になる。
 前記一般式(1)のRは、屈曲耐性の点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の3モル%以上であることが好ましく、更に4モル%以上であることが好ましく、より更に5モル%以上であることが好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を有するジアミン残基が、Rの総量の10モル%以上であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましく、優れた表面硬度と動的屈曲耐性の両立性の点から、10モル%未満であることも好ましい。
 一方で、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、表面硬度と光透過性を向上する点から、Rの総量の55モル%以上であることが好ましく、更に60モル%以上であることが好ましく、優れた表面硬度の点から、90モル%超過であっても良い。また、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、屈曲耐性の点から、Rの総量の97モル%以下であることが好ましく、更に96モル%以下であることが好ましく、より更に95モル%以下であることが好ましい。
 なお、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1)のRに、主鎖にケイ素原子を有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、Rの総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環及び脂肪族環を有しないジアミン残基等が挙げられる。
In the polyimide film used in the present invention, in R 2 of the general formula (1), 2.5 mol% or more and 50 mol% or less of the total amount of R 2 are diamine residues having a silicon atom in a main chain, When 50 mol% or more and 97.5 mol% or less are diamine residues having no aromatic atom or an aromatic ring without a silicon atom, static bending resistance and dynamic bending resistance are improved.
R 2 in the general formula (1) is preferably 3 mol% or more, more preferably 4 mol% or more of the total amount of R 2 , from the viewpoint of bending resistance, the diamine residue having a silicon atom in the main chain. Preferably, it is more preferably 5 mol% or more. From the viewpoint of reducing optical distortion, the diamine residue having a silicon atom in the main chain may be at least 10 mol% or at least 15 mol% of the total amount of R 2 . On the other hand, in R 2 of the general formula (1), the diamine residue having a silicon atom in the main chain is 45 mol% or less of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. It is more preferably at most 40 mol%, and from the viewpoint of compatibility between excellent surface hardness and dynamic bending resistance, it is also preferably less than 10 mol%.
On the other hand, the diamine residue having an aromatic ring or an aliphatic ring having no silicon atom is preferably at least 55 mol% of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. And more preferably 60 mol% or more, and may be more than 90 mol% from the viewpoint of excellent surface hardness. Further, the diamine residue having no aromatic ring or aromatic ring having no silicon atom is preferably 97 mol% or less, more preferably 96 mol% or less of the total amount of R 2 from the viewpoint of bending resistance. It is more preferable that the content is even more preferably 95 mol% or less.
Incidentally, 50 mol% 2.5 mol% or more of the total amount of R 2 or less, a diamine residue having a silicon atom in the main chain, 97.5 mol% to 50 mol% or less, having no silicon atom if satisfied that a diamine residue having an aromatic ring or an aliphatic ring, the R 2 in the general formula (1), aromatic no diamine residue or a silicon atom having a silicon atom in the main chain It does not prevent including other diamine residues different from the diamine residue having a ring or an aliphatic ring. The other diamines residues is preferably from 10 mol% of the total amount of R 2, still preferably 5 or less mol%, is preferably more or less further 3 mol%, particularly 1 mol% The following is preferred. Examples of the other diamine residue include a diamine residue having no silicon atom and not having an aromatic ring and an aliphatic ring.
 中でも、屈曲耐性及び表面硬度を両立させて向上する点から、前記一般式(1)におけるRは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
 前記一般式(1)のRは、屈曲耐性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の3モル%以上であることが好ましく、更に4モル%以上であることが好ましく、より更に5モル%以上であることが好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の10モル%以上であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましく、優れた表面硬度と動的屈曲耐性の両立性の点から、10モル%未満であることも好ましい。
 中でも、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残り(100%-x%)である50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
 また、優れた表面硬度と動的屈曲耐性の両立性の点からは、Rの総量の2.5モル%以上10モル%未満が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残り(100%-x%)である90モル%超過97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることも好ましい。
Among them, R 2 in the general formula (1) is a diamine residue having no silicon atom, and has one or two silicon atoms in the main chain, from the viewpoint of improving both bending resistance and surface hardness. Represents a divalent group of at least one kind selected from diamine residues, wherein 2.5 to 50 mol% of the total amount of R 2 is a diamine residue having one or two silicon atoms in the main chain. It is preferable that 50 mol% or more and 97.5 mol% or less are diamine residues having no silicon atom and having an aromatic ring or an aliphatic ring.
R 2 in the general formula (1) is preferably a diamine residue having one or two silicon atoms in the main chain at 3 mol% or more of the total amount of R 2 from the viewpoint of improving the bending resistance. And more preferably 4 mol% or more, and further preferably 5 mol% or more. From the viewpoint of reducing optical distortion, the diamine residue having one or two silicon atoms in the main chain may be at least 10 mol% or at least 15 mol% of the total amount of R 2. Is also good. On the other hand, R 2 in the general formula (1) is a diamine residue having one or two silicon atoms in the main chain in an amount of 45 mol% of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. It is preferably at most 40 mol%, more preferably at most 40 mol%, and in view of compatibility between excellent surface hardness and dynamic bending resistance, it is also preferably at most 10 mol%.
Above all, 2.5 mol% or more and 50 mol% or less of the total amount of R 2 are diamine residues having one or two silicon atoms in the main chain, and among the total amount of R 2 (100 mol%), The remainder (100% -x%) of the mole% (x mole%) of the diamine residue having one or two silicon atoms in the main chain is not less than 50 mole% and not more than 97.5 mole%. Instead, it is preferably a diamine residue having an aromatic ring or an aliphatic ring.
In addition, from the viewpoint of compatibility between excellent surface hardness and dynamic bending resistance, the diamine residue having one or two silicon atoms in the main chain accounts for 2.5 mol% or more and less than 10 mol% of the total amount of R 2. And the remainder (100% -x%) of the mole% (x mole%) of the diamine residue having one or two silicon atoms in the main chain of the total amount of R 2 (100 mole%). It is also preferable that a certain excess of 90 mol% to 97.5 mol% or less is a diamine residue having no aromatic atom or an aromatic ring or an aliphatic ring.
 また、本発明で用いられるポリイミドは、屈曲耐性及び表面硬度の点から、ポリイミド中のケイ素原子の含有割合(質量%)が0.7質量%以上6.5質量%以下であることが好ましく、0.7質量%以上5.5質量%以下であることがより好ましく、0.7質量%以上4.2質量%以下であることがより更に好ましい。
 ここで、ポリイミド中のケイ素原子の含有割合(質量%)は、ポリイミドが2種以上の場合は2種以上の全ポリイミド中のケイ素原子の含有割合(質量%)をいい、以下のように、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中のケイ素原子の含有割合(質量%)は、下記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
(ポリイミドのケイ素原子含有割合(質量%))
 例えば、酸二無水物成分として4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)1モルに対して、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)0.9モルと1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)0.1モルを用いた場合、以下のように算出することができる。
 ポリイミド繰り返し単位1モル分の分子量は、
6FDA由来:(C)12.01×19+(F)19.00×6+(O)16.00×4+(H)1.01×6=412.25
TFMB由来:{(C)12.01×14+(F)19.00×6+(N)14.01×2+(H)1.01×6}×0.9=284.60
AprTMOS由来:{(C)12.01×10+(O)16.00×1+(N)14.01×2+(Si)28.09×2+(H)1.01×24}×0.1=24.45
から、412.25+284.60+24.45=721.30と算出される。
 ポリイミド繰り返し単位1モル中のケイ素原子含有割合(質量%)は、
(28.09×2×0.1)/721.30×100=0.8(質量%)と求められる。
In addition, the polyimide used in the present invention preferably has a silicon atom content ratio (% by mass) of 0.7% by mass or more and 6.5% by mass or less from the viewpoint of bending resistance and surface hardness. It is more preferably from 0.7% by mass to 5.5% by mass, and still more preferably from 0.7% by mass to 4.2% by mass.
Here, the content ratio (% by mass) of silicon atoms in the polyimide refers to the content ratio (% by mass) of silicon atoms in the total of two or more types of polyimide when two or more types of polyimides are used. At the time of polyimide production, it can be determined from the molecular weight of the charge. The content (% by mass) of the silicon atom in the polyimide was determined by decomposing the polyimide in the same manner as described below, using a high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA and TOF. -Can be determined using SIMS.
(Silicon atom content of polyimide (% by mass))
For example, 2,2'-bis (trifluoromethyl) benzidine (TFMB) is used as a diamine component per 1 mol of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as an acid dianhydride component. When 0.9 mol and 0.1 mol of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) are used, it can be calculated as follows.
The molecular weight of one mole of the polyimide repeating unit is
From 6FDA: (C) 12.01 × 19 + (F) 19.00 × 6 + (O) 16.00 × 4 + (H) 1.01 × 6 = 412.25
From TFMB: {(C) 12.01 × 14 + (F) 19.00 × 6 + (N) 14.01 × 2 + (H) 1.01 × 6} × 0.9 = 284.60
From AprTMOS: {(C) 12.01 × 10 + (O) 16.00 × 1 + (N) 14.01 × 2 + (Si) 28.09 × 2 + (H) 1.01 × 24} × 0.1 = 24.45
Is calculated as 412.25 + 284.60 + 24.45 = 721.30.
The silicon atom content ratio (% by mass) in 1 mol of the polyimide repeating unit is
(28.09 × 2 × 0.1) /721.30×100=0.8 (% by mass).
 前記一般式(1)で表される構造を有するポリイミドとしては、光透過性を向上し、且つ、表面硬度を向上する点から、中でも、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むポリイミドであることが好ましい。前記一般式(1)で表される構造を有するポリイミドは、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。
 ポリイミドに(i)フッ素原子を含むとポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。
 ポリイミドに(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
 ポリイミドに(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
As the polyimide having the structure represented by the general formula (1), from the viewpoint of improving light transmittance and improving surface hardness, among others, an aromatic ring is contained, and (i) a fluorine atom; A polyimide containing at least one selected from the group consisting of (ii) an aliphatic ring and (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted by fluorine. Is preferred. The polyimide having the structure represented by the general formula (1) has a rigid molecular skeleton by containing at least one selected from tetracarboxylic acid residues having an aromatic ring and diamine residues having an aromatic ring. Although the orientation property is enhanced and the surface hardness is improved, the rigid aromatic ring skeleton tends to increase the absorption wavelength to a longer wavelength, and the transmittance in the visible light region tends to decrease.
When the polyimide contains (i) a fluorine atom, light transmission is improved because charge transfer of the electronic state in the polyimide skeleton can be made difficult.
When the polyimide contains (ii) an aliphatic ring, light transmission is improved because the transfer of charges in the skeleton can be inhibited by cutting off the conjugation of π electrons in the polyimide skeleton.
When the polyimide contains (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted with fluorine, the transfer of electric charge in the skeleton is prevented by cutting off the conjugation of π electrons in the polyimide skeleton. The light transmittance is improved because it can be inhibited.
 前記一般式(1)で表される構造を有するポリイミドとしては、中でも、フッ素原子を含むポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。
 フッ素原子の含有割合は、ポリイミド表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1以下であることが好ましく、更に0.8以下であることが好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
Among the polyimides having the structure represented by the general formula (1), among them, polyimide containing a fluorine atom is preferably used in terms of improving light transmittance and improving surface hardness.
As for the content ratio of fluorine atoms, the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is preferably 0.01 or more, Further, it is preferably 0.05 or more. On the other hand, if the content ratio of fluorine atoms is too high, the inherent heat resistance of the polyimide may be reduced. Therefore, the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less. And more preferably 0.8 or less.
Here, the above ratio determined by X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectroscopy apparatus (for example, Thermo Probe, Theta Probe). .
 また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。 In addition, polyimide having a structure represented by the general formula (1) has a higher aromaticity when the total of R 1 and R 2 in the general formula (1) is 100 mol% from the viewpoint of improving the surface hardness. The total of the tetracarboxylic acid residue having an aromatic ring and the diamine residue having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and preferably 75 mol% or more. Even more preferred.
 また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の少なくとも1つが、芳香族環とフッ素原子とを含むことが好ましく、更に、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の両方が、芳香族環とフッ素原子とを含むことが好ましい。
 前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環及びフッ素原子を有するテトラカルボン酸残基及び芳香族環及びフッ素原子を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
Further, the polyimide having the structure represented by the general formula (1) has a tetracarboxylic acid residue of R 1 and an aromatic compound having no silicon atom of R 2 because the surface hardness and light transmittance are improved. At least one of the diamine residues having an aromatic ring or an aliphatic ring preferably contains an aromatic ring and a fluorine atom, and further has no tetracarboxylic acid residue of R 1 and no silicon atom of R 2 It is preferable that both of the diamine residue having an aromatic ring or an aliphatic ring include an aromatic ring and a fluorine atom.
The polyimide having the structure represented by the general formula (1) has a surface hardness and a light transmittance that are improved, and when the total of R 1 and R 2 in the general formula (1) is 100 mol%. The total of tetracarboxylic acid residues having an aromatic ring and a fluorine atom and diamine residues having an aromatic ring and a fluorine atom is preferably at least 50 mol%, more preferably at least 60 mol%, Even more preferably, it is at least 75 mol%.
 また、前記一般式(1)で表される構造を有するポリイミドは、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、60%以上であることが好ましく、より更に70%以上であることが好ましい。
 ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率や黄色度YI値の変化が少ない点から好ましい。ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、酸素との反応性が低いため、ポリイミドの化学構造が変化し難いことが推定される。ポリイミドフィルムはその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。
 ここで、ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、又は、超臨界メタノールにより分解し、得られたポリイミドの分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計及びNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
The polyimide having a structure represented by the general formula (1) is a polyimide in which 50% or more of the hydrogen atoms bonded to carbon atoms contained in the polyimide are hydrogen atoms directly bonded to an aromatic ring. Is preferably used in terms of improving light transmittance and improving surface hardness. The proportion of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is preferably 60% or more, more preferably 70% or more. It is preferable that
When 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide is a polyimide which is a hydrogen atom directly bonded to an aromatic ring, the polyimide is stretched at, for example, 200 ° C. or more even after a heating step in the air. Is preferable from the viewpoint that there is little change in the optical characteristics, particularly the total light transmittance and the yellowness YI value. When at least 50% of the hydrogen atoms bonded to carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the polyimide has a low chemical reactivity due to low reactivity with oxygen. It is presumed that it is difficult to do so. Polyimide films use their high heat resistance and are often used for devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to carbon atoms contained in the polyimide are converted to aromatic rings. In the case of polyimide, which is a hydrogen atom directly bonded, there is no need to perform these post-processes in an inert atmosphere to maintain transparency, so that there is an advantage in that equipment costs and costs for atmosphere control can be suppressed. There is.
Here, the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by decomposing the polyimide by high-performance liquid chromatography or gas chromatography. It can be determined using an analyzer and NMR. For example, the sample is decomposed with an aqueous alkaline solution, or supercritical methanol, and the decomposed product of the obtained polyimide is separated by high-performance liquid chromatography. The ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all the hydrogen atoms (number) contained in the polyimide can be determined by quantification using high performance liquid chromatography.
 前記一般式(1)で表される構造を有するポリイミドは、中でも、光透過性の点、及び屈曲耐性及び表面硬度の点から、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが好ましい。
 前記Rにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
 特に光透過性と表面硬度のバランスが良い点から、前記一般式(1)中のRは、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることがより好ましい。
Among the polyimides having the structure represented by the general formula (1), R 1 in the general formula (1) is preferably cyclohexanetetracarboxylic acid from the viewpoints of light transmittance, bending resistance, and surface hardness. Dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyro Melitic acid dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4, 4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue Base It is preferably at least one tetravalent group selected from the group consisting of 1,4,4'-oxydiphthalic anhydride residue and 3,4'-oxydiphthalic anhydride residue.
In the R 1, these preferred residues in total, preferably contains more than 50 mol%, preferably contains more than 70 mol%, it is preferable to include even more than 90 mol%.
In particular, R 1 in the general formula (1) is a 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-( Hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalic acid residue More preferably, it is at least one tetravalent group selected from the group consisting of acid anhydride residues.
 前記一般式(1)のRとしては、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基からなる群から選択される少なくとも一種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選択される少なくとも一種のような光透過性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。この場合、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
 中でも、前記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の少なくとも一種を用いることが、表面硬度と光透過性の向上の点から好ましい。
As R 1 in the general formula (1), pyromellitic dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, and 2,2 ′, 3 A group of tetracarboxylic acid residues (Group A) suitable for improving rigidity, such as at least one selected from the group consisting of 3'-biphenyltetracarboxylic dianhydride residues; Anhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, 4, 4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic acid residue Improving the light transmittance of at least one selected from the group consisting of acid anhydride residues, 4,4'-oxydiphthalic anhydride residues, and 3,4'-oxydiphthalic anhydride residues. It is also preferable to use a mixture with a tetracarboxylic acid residue group (group B) suitable for the above. In this case, the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving the light transmittance is as follows. The amount of the tetracarboxylic acid residue group (Group A) suitable for improving the rigidity is 0.1 mol per 1 mol of the tetracarboxylic acid residue group (Group B) suitable for improving the light transmittance. It is preferably from 05 mol to 9 mol, more preferably from 0.1 mol to 5 mol, even more preferably from 0.3 mol to 4 mol.
Among them, the group B includes a fluorine atom-containing residue of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride and a residue of 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
 前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、特に光透過性と表面硬度の両立の点から、更に、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び、下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、下記一般式(2)で表される2価の基であることがより好ましい。下記一般式(2)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましく、中でも、炭素数1以上3以下のパーフルオロアルキル基が好ましく、トリフルオロメチル基又はパーフルオロエチル基であることがより好ましい。また、下記一般式(2)中のR及びRにおけるアルキル基としては、炭素数1以上3以下のアルキル基が好ましく、メチル基又はエチル基であることがより好ましい。 In the polyimide having the structure represented by the general formula (1), the diamine residue not having the silicon atom in R 2 in the general formula (1) and having an aromatic ring or an aliphatic ring is trans. -Cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4-amino Phenyl) propane residue, 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4 , 1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, 2,2- Screw[ -(4-aminophenoxy) phenyl] at least one selected from the group consisting of a 1,1,1,3,3,3-hexafluoropropane residue and a divalent group represented by the following general formula (2) One kind of divalent group is preferable from the viewpoint of light transmittance and bending resistance and surface hardness. In particular, from the viewpoint of compatibility between light transmittance and surface hardness, 4,4′-diamino is further preferred. A group consisting of a diphenylsulfone residue, a 3,4′-diaminodiphenylsulfone residue, a 2,2-bis (4-aminophenyl) propane residue, and a divalent group represented by the following general formula (2) It is preferably at least one kind of divalent group selected from the following, and more preferably a divalent group represented by the following general formula (2). As the divalent group represented by the following general formula (2), R 3 and R 4 are more preferably perfluoroalkyl groups, and among them, a perfluoroalkyl group having 1 to 3 carbon atoms is preferable, More preferably, it is a trifluoromethyl group or a perfluoroethyl group. Further, as the alkyl group for R 3 and R 4 in the following general formula (2), an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
Figure JPOXMLDOC01-appb-C000009
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 ポリイミド中の各繰り返し単位の含有割合、各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中の各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、上記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。 含有 The content ratio of each repeating unit in the polyimide and the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue can be determined from the molecular weight charged during the production of the polyimide. In addition, the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide was determined by using a high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR , Elemental analysis, XPS / ESCA and TOF-SIMS.
 前記一般式(1)で表される構造において、nは繰り返し単位数を表し、1以上である。
 ポリイミドにおける繰り返し単位数nは、後述する好ましいガラス転移温度を示すように、構造に応じて適宜選択することが好ましいが、特に限定されない。
 平均繰り返し単位数は、通常10~2000であり、更に15~1000であることが好ましい。
 なお、各繰り返し単位におけるRは各々同一であっても異なっていても良く、各繰り返し単位におけるRは各々同一でも異なっていても良い。
In the structure represented by the general formula (1), n represents the number of repeating units, and is 1 or more.
The number n of repeating units in the polyimide is preferably appropriately selected according to the structure so as to exhibit a preferable glass transition temperature described later, but is not particularly limited.
The average number of repeating units is usually from 10 to 2,000, and preferably from 15 to 1,000.
Note that R 1 in each repeating unit may be the same or different, and R 2 in each repeating unit may be the same or different.
 また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、数平均分子量が10000以上であることが好ましく、20000以上であることがより好ましく、30000以上であることがより更に好ましく、50000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 なお、ポリイミドの数平均分子量は、後述するポリイミド前駆体の数平均分子量と同様にして測定することができる。
Further, the polyimide having the structure represented by the general formula (1) preferably has a number average molecular weight of 10,000 or more, more preferably 20,000 or more, from the viewpoint of strength and bending resistance when formed into a film. Preferably, it is still more preferably 30,000 or more, and particularly preferably 50,000 or more. The upper limit is not particularly limited, but is preferably 1000000 or less, more preferably 500,000 or less, from the viewpoint of easy synthesis and availability.
In addition, the number average molecular weight of the polyimide can be measured in the same manner as the number average molecular weight of the polyimide precursor described later.
 また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、重量平均分子量が、20000以上であることが好ましく、30000以上であることがより好ましく、40000以上であることがより更に好ましく、80000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミドの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミドを0.1重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、37℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
Further, the polyimide having the structure represented by the general formula (1) preferably has a weight average molecular weight of 20,000 or more, and more preferably 30,000 or more, from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is still more preferably 40,000 or more, and particularly preferably 80,000 or more. The upper limit is not particularly limited, but is preferably 1000000 or less, more preferably 500,000 or less, from the viewpoint of easy synthesis and availability.
The weight average molecular weight of the polyimide can be measured by gel permeation chromatography (GPC). Specifically, a polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by weight, and a developing solvent is a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less, and a GPC apparatus (HLC- 8120, column used: GPC LF-804 manufactured by SHODEX), and measurement is performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.4 mL / min, and 37 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
 また、本発明に用いられるポリイミドは、本発明の効果が損なわれない限り、その一部に前記一般式(1)で表される構造とは異なる構造を有していても良い。本発明に用いられるポリイミドは、前記一般式(1)で表される構造が、ポリイミドの全繰り返し単位数の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
 前記一般式(1)で表される構造とは異なる構造としては、例えば、芳香族環又は脂肪族環を有しないテトラカルボン酸残基等が含まれる場合や、ポリアミド構造が挙げられる。
 含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
The polyimide used in the present invention may partially have a structure different from the structure represented by the general formula (1) as long as the effects of the present invention are not impaired. In the polyimide used in the present invention, the structure represented by the general formula (1) is preferably 95% or more, more preferably 98% or more, and more preferably 100% or more of the total number of repeating units of the polyimide. It is even more preferred.
Examples of the structure different from the structure represented by the general formula (1) include a case where a tetracarboxylic acid residue having no aromatic ring or aliphatic ring is included, and a polyamide structure.
Examples of the polyamide structure that may be included include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
 本発明に用いられるポリイミドは、損失弾性率を貯蔵弾性率で除した値であるtanδ曲線において、ピークの頂点を150℃以上の温度領域にのみ有するものであることが、屈曲耐性を向上する点から好ましい。本発明に用いられるポリイミドは、屈曲耐性や表面硬度を向上する点から、前記tanδ曲線で、ピークの頂点を200℃以上の温度領域にのみ有するものであることがより好ましく、220℃以上の温度領域にのみ有するものであることがより更に好ましい。一方、ベーク温度を低減することができる点から、前記tanδ曲線で、ピークの頂点は380℃以下の温度領域に有することが好ましい。また、本発明に用いられるポリイミドは、150℃以上400℃以下の温度領域に1つのtanδ曲線のピークを有することが好ましい。
 また、本発明に用いられるポリイミドは、-150℃以上150℃未満の温度領域に、更に、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましく、これにより、ポリイミドフィルムの室温での表面硬度を向上することができる。
 本発明に用いられるポリイミドのtanδ曲線は、後述するポリイミドフィルムのtanδ曲線と同様にして測定することができる。
The polyimide used in the present invention, in the tan δ curve which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, that having a peak apex only in a temperature region of 150 ° C. or more, improves flex resistance. Is preferred. The polyimide used in the present invention preferably has a peak apex only in a temperature region of 200 ° C. or higher in the tan δ curve from the viewpoint of improving bending resistance and surface hardness, and has a temperature of 220 ° C. or higher. It is even more preferred that it has only in the region. On the other hand, from the viewpoint that the baking temperature can be reduced, the peak of the peak in the tan δ curve is preferably in a temperature range of 380 ° C. or less. Further, the polyimide used in the present invention preferably has one peak of a tan δ curve in a temperature range of 150 ° C. or more and 400 ° C. or less.
Further, the polyimide used in the present invention preferably has no tan δ curve peak in a temperature range of −150 ° C. or more and less than 0 ° C. in a temperature region of −150 ° C. or more and less than 150 ° C., whereby the polyimide The surface hardness of the film at room temperature can be improved.
The tan δ curve of the polyimide used in the present invention can be measured in the same manner as the tan δ curve of a polyimide film described later.
2.添加剤
 本発明のポリイミドフィルムは、前記ポリイミドの他に、必要に応じて更に添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられる。
2. Additive In addition to the polyimide, the polyimide film of the present invention may further contain an additive, if necessary. Examples of the additive include inorganic particles, a silica filler for facilitating winding, and a surfactant for improving film forming property and defoaming property.
3.ポリイミドフィルムの特性
 本発明のポリイミドフィルムは、前記特定の残留溶剤量、及び前記特定の全光線透過率を有する。本発明のポリイミドフィルムは、更に後述する特性を有することが好ましい。
3. Characteristics of Polyimide Film The polyimide film of the present invention has the specific residual solvent amount and the specific total light transmittance. It is preferable that the polyimide film of the present invention further has the following characteristics.
(1)残留溶剤量
 本発明のポリイミドフィルムは、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である。
 沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。中でも、沸点が60℃以下の有機溶剤の含有量は2000ppm以下であってよく、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、少なければ少ないほど良く、0ppmであってもよい。
 一方、沸点が100℃以上の有機溶剤の含有量は、動的屈曲耐性を向上する点から、80ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がより更に好ましく、20ppm以下がより更に好ましい。沸点が100℃以上の有機溶剤の含有量も、動的屈曲耐性を向上する点から、少なければ少ないほど良く、0ppmであってもよい。
 1気圧下での沸点が70℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が70℃超過の有機溶剤の含有量が100ppm以下であってもよく、更に、1気圧下での沸点が60℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が60℃超過の有機溶剤の含有量が100ppm以下であってもよく、より更に、1気圧下での沸点が50℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が50℃超過の有機溶剤の含有量が100ppm以下であってもよい。
(1) Residual Solvent Amount The polyimide film of the present invention has, as a residual solvent in the film, a content of an organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and a boiling point under 1 atm. The content of the organic solvent at 100 ° C. or higher is 100 ppm or lower.
The content of the organic solvent having a boiling point of less than 100 ° C. is preferably 1000 ppm or less, more preferably 400 ppm or less, and even more preferably 100 ppm or less, from the viewpoint of improving static flex resistance and dynamic flex resistance. Among them, the content of the organic solvent having a boiling point of 60 ° C. or less may be 2000 ppm or less, preferably 1000 ppm or less, more preferably 400 ppm or less, and even more preferably 100 ppm or less. The content of the organic solvent having a boiling point of less than 100 ° C. is preferably as small as possible and may be 0 ppm from the viewpoint of improving the static bending resistance and the dynamic bending resistance.
On the other hand, the content of the organic solvent having a boiling point of 100 ° C. or more is preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and even more preferably 20 ppm or less, from the viewpoint of improving the dynamic bending resistance. The content of the organic solvent having a boiling point of 100 ° C. or higher is preferably as small as possible from the viewpoint of improving the dynamic bending resistance, and may be 0 ppm.
The content of the organic solvent having a boiling point under 1 atm of 70 ° C. or less may be 2000 ppm or less, and the content of the organic solvent having a boiling point under 1 atm of more than 70 ° C. may be 100 ppm or less. The content of the organic solvent having a boiling point at 1 atm of 60 ° C. or less may be 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of more than 60 ° C. may be 100 ppm or less, and furthermore The content of the organic solvent having a boiling point of 50 ° C. or less at 1 atm may be 2000 ppm or less, and the content of the organic solvent having a boiling point of more than 50 ° C. at 1 atm may be 100 ppm or less.
 残留溶剤として含まれる1気圧下での沸点が100℃未満の有機溶剤としては、ポリイミドフィルムの製造工程で用いられる有機溶剤が挙げられ、例えば、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,2-ジクロロエチレン、トリクロルエチレン、アセトン、イソプロピルアルコール、ジエチルエーテル、酢酸イソプロピル、酢酸エチル、酢酸メチル、ジクロロメタン、テトラヒドロフラン、1,1,1-トリクロロエタン、ノルマルヘキサン、2-ブタノール、メタノール、メチルエチルケトン等が挙げられ、中でも1気圧下での沸点が70℃以下の有機溶剤としては、クロロホルム、1,2-ジクロロエチレン、アセトン、ジエチルエーテル、酢酸メチル、ジクロロメタン、テトラヒドロフラン、ノルマルヘキサン、メタノール等が挙げられる。
 残留溶剤として含まれる1気圧下での沸点が100℃以上の有機溶剤としても、ポリイミドフィルムの製造工程で用いられる有機溶剤が挙げられ、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、オルト-ジクロロベンゼン、キシレン、オルト-クレゾール、クロロベンゼン、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、酢酸ノルマル-ブチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、テトラクロロエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン等が挙げられる。
Examples of the organic solvent having a boiling point of less than 100 ° C. at 1 atm included as a residual solvent include organic solvents used in a process for producing a polyimide film. Examples thereof include chloroform, carbon tetrachloride, 1,2-dichloroethane, and 1,2-dichloroethane. , 2-dichloroethylene, trichloroethylene, acetone, isopropyl alcohol, diethyl ether, isopropyl acetate, ethyl acetate, methyl acetate, dichloromethane, tetrahydrofuran, 1,1,1-trichloroethane, normal hexane, 2-butanol, methanol, methyl ethyl ketone and the like. Among them, organic solvents having a boiling point of 70 ° C. or less at 1 atmosphere include chloroform, 1,2-dichloroethylene, acetone, diethyl ether, methyl acetate, dichloromethane, tetrahydrofuran, normal hexane, Lumpur, and the like.
Examples of the organic solvent having a boiling point of not less than 100 ° C. at 1 atm included in the residual solvent include the organic solvents used in the production process of the polyimide film. Formamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone, γ-butyrolactone, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl Ether acetate, ethylene glycol mono-normal-butyl ether, ethylene glycol monomethyl ether, ortho-dichlorobenzene, xylene, ortho-cresol, chlorobenzene, isobutyl acetate, isopentyl acetate Normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, normal-butyl acetate, cyclohexanol, cyclohexanone, 1,4-dioxane, tetrachloroethylene, toluene, methyl isobutyl ketone, methylcyclohexanol, methylcyclohexanone, methyl-normal- Butyl ketone and the like.
 ポリイミドフィルムの残留溶剤量は、以下のように測定することができる。
[残留溶剤の種類の特定]
 まず、残留溶剤の種類の特定を、パージ&トラップ装置(加熱脱着装置)が連結したGC-MSを用いて行う。
 パージ&トラップ装置(製品名JTD505-III、日本分析工業株式会社)に、ポリイミドフィルム10mgを入れた試料管をセットし、200℃で30分保持して加熱して発生したガスを、-60℃のトラップ管で捕集し、捕集したものを315℃で加熱して飛ばしてGC-MSへ送り込み、発生した有機ガスの成分の定性分析を行なう。
(パージ&トラップ装置条件)
 総スプリット比(導入量/排気量)1:10、
 キャリアガス ヘリウム1.0ml/min定量
 (GC-MS条件)
 装置名:GC-MS装置(Agilent社、6890/5973 GC/MS)
 カラム:UA-5 内径250μm×長さ30m×膜厚0.25μm(フロンティア・ラボ製)、昇温条件 50℃(5分保持) → 10℃/分(昇温) → 320℃(3分保持)
The residual solvent amount of the polyimide film can be measured as follows.
[Specification of residual solvent type]
First, the type of the residual solvent is specified using a GC-MS connected to a purge & trap device (heat desorption device).
A sample tube containing 10 mg of a polyimide film was set in a purge & trap device (product name: JTD505-III, Nippon Kagaku Kogyo Co., Ltd.), and the gas generated by heating at 200 ° C. for 30 minutes and heating at −60 ° C. Is collected at a temperature of 315 ° C. and sent to a GC-MS for qualitative analysis of the components of the generated organic gas.
(Purge & trap condition)
1:10 total split ratio (introduction / displacement)
Carrier gas helium 1.0ml / min quantitative (GC-MS condition)
Apparatus name: GC-MS apparatus (Agilent, 6890/5973 GC / MS)
Column: UA-5 Inner diameter 250 μm × length 30 m × film thickness 0.25 μm (Frontier Lab) )
[残留溶剤の定量]
 ポリイミドフィルムの濃度が5質量%濃度となるように、N,N-ジメチルホルムアミド(DMF)にポリイミドフィルムを添加して、ポリイミドフィルム/N,N-ジメチルホルムアミド(DMF)溶液を調製し、この溶液に、内部標準液(0.2質量%濃度アニソール/DMF溶液)を添加してサンプル溶液を調製する。当該サンプル溶液について、GC-MS装置(例えば、Agilent社、6890/5973 GC/MS)を用いて、下記条件で、GC-MS測定を行う。当該GC-MS測定は3回行い、測定結果は3回の平均値とする。
 (GC条件)
 カラム:InertCapWax 内径250μm×長さ30m×膜厚0.25μm(ジーエルサイエンス製)、
 サンプル打ち込み量0.2uL、スプリット比(導入量/排気量)1:50、キャリアガス ヘリウム94.3kPa定圧、注入口温度250℃、昇温条件 40℃(5分保持) → 5℃/分 → 120℃ → 20℃/分 → 240℃(6分保持)、トランスファーライン温度 250℃ 
 (MS条件)
 イオン化法 EI、測定モード SIM、イオン源温度 250℃、四重極温度 150℃、イオン化電圧 70eV
[Quantification of residual solvent]
A polyimide film is added to N, N-dimethylformamide (DMF) so that the concentration of the polyimide film becomes 5% by mass, to prepare a polyimide film / N, N-dimethylformamide (DMF) solution. , An internal standard solution (0.2% by mass anisole / DMF solution) is added to prepare a sample solution. The sample solution is subjected to GC-MS measurement under the following conditions using a GC-MS device (eg, Agilent, 6890/5973 GC / MS). The GC-MS measurement is performed three times, and the measurement result is an average value of the three measurements.
(GC conditions)
Column: InertCapWax inner diameter 250 μm × length 30 m × film thickness 0.25 μm (manufactured by GL Sciences)
Sample injection amount 0.2uL, split ratio (introduction amount / evacuation amount) 1:50, carrier gas helium 94.3kPa constant pressure, injection port temperature 250 ° C, heating condition 40 ° C (5 minutes holding) → 5 ° C / min → 120 ° C → 20 ° C / min → 240 ° C (hold for 6 minutes), transfer line temperature 250 ° C
(MS condition)
Ionization method EI, measurement mode SIM, ion source temperature 250 ° C, quadrupole temperature 150 ° C, ionization voltage 70eV
 前記のように特定された各残留溶剤について、検量線を作成し、当該検量線を基準として、各残留溶剤量を定量する。
 例えば、含まれている残留溶剤がN,N-ジメチルアセトアミド(DMAc)の場合、DMAc含有量が例えば0.01質量%、0.05質量%、0.1質量%となるようにそれぞれ調製した各DMAc(測定対象化合物)/DMF溶液に、上記したサンプル溶液と同様に内部標準液を添加して調製した各検量線液について、GC-MS測定を行い、検量線を作成する。なお、GC-MS測定は3回行い、測定結果は3回の平均値とする。
 そして、当該検量線を基準として、ポリイミドフィルムに対する質量比としてDMAcの含有量を算出する。なお、検出量によって検量線を適宜作成し直す。
 含まれている残留溶剤が2種以上ある場合、各残留溶剤に対して上記DMAcのように検量線液を調製し、当該各検量線液についてのGC-MS測定による測定結果から作成された検量線を基準とする。
 なお、N,N-ジメチルホルムアミド(DMF)が残留溶剤として含まれている場合、例えばN-メチル-2-ピロリドンなど、残留溶剤として含まれていないポリイミドの良溶媒を用いてサンプル溶液を調製する。
A calibration curve is created for each of the residual solvents specified as described above, and the amount of each residual solvent is quantified based on the calibration curve.
For example, when the residual solvent contained is N, N-dimethylacetamide (DMAc), the contents were adjusted so that the DMAc content was, for example, 0.01% by mass, 0.05% by mass, and 0.1% by mass, respectively. GC-MS measurement is performed on each calibration curve solution prepared by adding an internal standard solution to each DMAc (measurement target compound) / DMF solution in the same manner as the above-mentioned sample solution, and a calibration curve is created. Note that the GC-MS measurement is performed three times, and the measurement result is an average value of the three measurements.
Then, based on the calibration curve, the content of DMAc is calculated as a mass ratio to the polyimide film. Note that a calibration curve is appropriately re-created based on the detected amount.
When two or more kinds of residual solvents are contained, a calibration curve solution is prepared for each of the residual solvents as in the case of DMAc, and a calibration curve is created based on the measurement result of each calibration curve solution by GC-MS measurement. Based on line.
When N, N-dimethylformamide (DMF) is contained as a residual solvent, a sample solution is prepared using a good polyimide solvent not contained as a residual solvent, such as N-methyl-2-pyrrolidone. .
(2)全光線透過率 
 また、本発明のポリイミドフィルムは、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。本発明のポリイミドフィルムの前記JIS K7361-1に準拠して測定する全光線透過率は、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
(2) Total light transmittance
The polyimide film of the present invention has a total light transmittance of 85% or more as measured according to JIS K7361-1. Since the transmittance is high as described above, the transparency is improved and the glass can be used as a substitute material for glass. The total light transmittance of the polyimide film of the present invention measured in accordance with JIS K7361-1 is preferably 88% or more, more preferably 89% or more, and particularly preferably 90% or more. Is preferred.
 JIS K7361-1に準拠して測定する全光線透過率は、例えば、ヘイズメーター(例えば村上色彩技術研究所製 HM150)により測定することができる。なお、ある厚みの全光線透過率の測定値から、異なる厚みの全光線透過率は、ランベルトベールの法則により換算値を求めることができ、それを利用することができる。
 具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
 フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
The total light transmittance measured according to JIS K7361-1 can be measured, for example, with a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory). In addition, from the measured value of the total light transmittance of a certain thickness, the converted value of the total light transmittance of a different thickness can be obtained by Lambert-Beer's law and can be used.
Specifically, according to Lambert-Beer's law, the transmittance T is
Log 10 (1 / T) = kcb
(K = constant peculiar to the substance, c = concentration, b = optical path length).
In the case of the transmittance of the film, assuming that the density is constant even if the film thickness changes, c is also a constant. Therefore, the above equation is expressed by using the constant f as Log 10 (1 / T) = fb
(F = kc). Here, if the transmittance at a certain film thickness is known, a unique constant f of each substance can be obtained. Therefore, the transmittance at a desired film thickness can be obtained by substituting a constant specific to f and a target film thickness into b using the equation of T = 1/10 f · b .
(3)黄色度
 また、本発明のポリイミドフィルムは、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、12以下であることが好ましい。このように黄色度が低いと、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料となり得る。前記JIS K7373-2006に準拠して算出される黄色度(YI値)は、10以下であることが好ましく、7以下であることが更に好ましく、5以下であることがより更に好ましい。
 なお、黄色度(YI値)は、前記JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出することができる。
  YI=100(1.2769X-1.0592Z)/Y
 なお、ある厚みの黄色度の測定値から、異なる厚みの黄色度は、ある特定の膜厚のサンプルの250nm以上800nm以下の間の1nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
(3) Yellowness The polyimide film of the present invention preferably has a yellowness (YI value) of 12 or less, calculated according to JIS K7373-2006. When the degree of yellowness is low as described above, coloring of yellowish color is suppressed, light transmittance is improved, and the glass can be used as a glass substitute material. The yellowness (YI value) calculated according to JIS K7373-2006 is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
In addition, the yellowness (YI value) is determined by a spectral colorimetric method using an ultraviolet-visible-near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006. Using the illuminant C and a two-degree visual field, tristimulus values X, Y, and Z in the XYZ color system are obtained based on the transmittance measured in the range of 250 nm or more and 800 nm or less at 1 nm intervals. , Z can be calculated from the following equation.
YI = 100 (1.2769X-1.0592Z) / Y
In addition, from the measured value of the yellowness of a certain thickness, the yellowness of a different thickness is obtained by measuring the total transmittance at each wavelength measured at 1 nm intervals between 250 nm and 800 nm of a sample having a specific thickness. As in the case of the light transmittance, a converted value of each transmittance at each wavelength having a different thickness is obtained by Lambert-Beer's law, and can be calculated and used based on the converted value.
 また、本発明のポリイミドフィルムは、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがより更に好ましい。
 なお、本発明において、前記黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))は、JIS Z8401:1999の規則Bに従い、小数点以下第2位に丸めた値とする。
Further, the polyimide film of the present invention has a yellow color calculated in accordance with JIS K7373-2006 from the viewpoint that coloring of yellow tint is suppressed, light transmittance is improved, and the polyimide film can be suitably used as a glass substitute material. The value obtained by dividing the degree (YI value) by the film thickness (μm) (YI value / film thickness (μm)) is preferably 0.10 or less, more preferably 0.04 or less, and 0.03 or less. It is even more preferred that:
In the present invention, the value obtained by dividing the yellowness (YI value) by the film thickness (μm) (YI value / film thickness (μm)) is in the second decimal place according to JIS Z8401: 1999 Rule B. Use the rounded value.
(4)引張弾性率 
 本発明のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が、1.8GPa以上であることが好ましい。このように、25℃(室温)での引張弾性率が高いと、保護フィルムとして十分な表面硬度を室温でも維持することができ、表面材乃至基材として用いることができる。前記引張弾性率は、2.0GPa以上であることが好ましく、2.1GPa以上であることがより好ましく、2.3GPa以上であることが更に好ましい。一方で、前記引張弾性率は、屈曲耐性を向上させる点から、5.2GPa以下であることが好ましい。屈曲耐性を向上させる点から、前記引張弾性率は4.0GPa以下であっても良く、3.5GPa以下であっても良く、2.9GPa以下であっても良い。
 前記引張弾性率は、引張り試験機(例えば島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用い、幅15mm×長さ40mmの試験片をポリイミドフィルムから切り出して、25℃で、引張り速度8mm/分、チャック間距離は20mmとして測定することができる。前記引張弾性率を求める際のポリイミドフィルムは厚みが55μm±5μmであることが好ましい。
(4) Tensile modulus
The polyimide film of the present invention has a tensile modulus at 25 ° C. of 1.8 GPa or more when a 15 mm × 40 mm test piece is measured according to JIS K7127 at a tensile speed of 10 mm / min and a distance between chucks of 20 mm. Is preferred. When the tensile modulus at 25 ° C. (room temperature) is high, sufficient surface hardness as a protective film can be maintained even at room temperature, and the protective film can be used as a surface material or a substrate. The tensile modulus is preferably 2.0 GPa or more, more preferably 2.1 GPa or more, and even more preferably 2.3 GPa or more. On the other hand, the tensile modulus is preferably 5.2 GPa or less from the viewpoint of improving the bending resistance. From the viewpoint of improving the bending resistance, the tensile modulus may be 4.0 GPa or less, 3.5 GPa or less, or 2.9 GPa or less.
The tensile elastic modulus was measured at 25 ° C. by cutting a 15 mm wide × 40 mm long test piece from a polyimide film using a tensile tester (for example, Autograph AG-X 1N, load cell: SBL-1KN, manufactured by Shimadzu Corporation). It can be measured with a pulling speed of 8 mm / min and a distance between chucks of 20 mm. It is preferable that the polyimide film for determining the tensile modulus has a thickness of 55 μm ± 5 μm.
(5)tanδ曲線
 本発明のポリイミドフィルムは、損失弾性率を貯蔵弾性率で除した値であるtanδ曲線において、ピークの頂点を150℃以上の温度領域にのみ有するものであることが好ましい。前記tanδ曲線で、ピークの頂点が150℃未満に存在すると、ポリイミドの分子鎖が動きやすく、塑性変形しやすくなって、屈曲耐性が悪くなる恐れがあるのに対し、ピークの頂点が150℃未満に存在しないと、分子鎖の運動性が抑制され、塑性変形し難くなり、屈曲耐性を向上することが出来るからである。
 また、前記tanδ曲線で、ピークの頂点を150℃以上の温度領域にのみ有すると、高温環境下、例えば夏の車内などにおいても、熱変形によって屈曲耐性が損なわれることが抑制されるため、高温環境下でも屈曲耐性が向上したものとなる。
 また、前記tanδ曲線で、ピークの頂点を150℃以上の温度領域にのみ有すると、引張弾性率が高くなる傾向があり、表面硬度が高くなる傾向がある。
 本発明のポリイミドフィルムは、屈曲耐性や表面硬度を向上する点から、前記tanδ曲線で、ピークの頂点を200℃以上の温度領域にのみ有するものであることがより好ましく、220℃以上の温度領域にのみ有するものであることがより更に好ましい。一方、ベーク温度を低減することができる点から、前記tanδ曲線で、ピークの頂点は380℃以下の温度領域に有することが好ましい。
 また、本発明のポリイミドフィルムは、中でも、-150℃以上150℃未満の温度領域に、更に、-70℃以上150℃未満の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことが好ましく、更に、100℃以下の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことが好ましく、0℃以下の温度領域に、前記tanδ曲線におけるピークの頂点を有しないことがより好ましい。主鎖に長いシロキサン結合を有するジアミン残基を有する場合や主鎖にケイ素原子を有するジアミン残基を多量に含有する場合にはこのように低い温度領域に前記tanδ曲線におけるピークの頂点を有する場合がある。
 前記tanδ曲線は、動的粘弾性測定によって、温度とtanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))の関係から求められるものであり、ピークの極大値が最大であるピークの頂点の温度をガラス転移温度の指標とすることができるものである。動的粘弾性測定は、例えば、動的粘弾性測定装置 RSA-G2(ティー・エイ・インスツルメント・ジャパン(株))によって、測定範囲を-150℃以上490℃以下として、周波数1Hz、昇温速度5℃/minにより行うことができる。また、サンプル幅を5mm、チャック間距離を20mmとして測定することができる。ピーク及び変曲点の解析時は、目視評価せず、データを数値化して、数値から解析する。
 なお、温度(横軸)とtanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))(縦軸)の曲線において、ピークとは、tanδの値が0.2以上、好ましくは0.3以上であって極大値を有し、且つ、ピークの谷と谷の間であるピーク幅が3℃以上であるものをいい、ノイズ等測定由来の曲線における細かい上下変動については、前記ピークの頂点のピークとして観測しない。
 tanδ曲線を測定するサンプルとしては、23℃±2℃ RH30~50%の環境下に24時間静置したポリイミドフィルムを10cm角以上にサンプリングしたフィルムのさらに中央部を、剃刀またはメスにて5mm幅にスリットの入った切り出し治具を用いて、幅5mm×長さ50mmに(チャック時にサンプル長が20mmとなるように)切り出した物を用いる。幅の測定はノギスを用いて、位置を変えて3回計測した平均値を記録する。この際、幅測定の一部に平均値の3%以上の変動幅のある場合、そのサンプルは使用しない。
(5) Tan δ Curve The polyimide film of the present invention preferably has a peak apex only in a temperature region of 150 ° C. or higher in a tan δ curve obtained by dividing a loss elastic modulus by a storage elastic modulus. In the tan δ curve, when the peak apex is present at less than 150 ° C., the molecular chain of the polyimide is easily moved, plastic deformation is likely to occur, and the bending resistance may be deteriorated, whereas the peak apex is less than 150 ° C. This is because, if it does not exist, the mobility of the molecular chain is suppressed, plastic deformation becomes difficult, and bending resistance can be improved.
Further, in the tan δ curve, when the peak apex is located only in a temperature region of 150 ° C. or higher, even under a high temperature environment, for example, in a summer car, the bending resistance is suppressed from being impaired by thermal deformation. Bending resistance is improved even in an environment.
When the peak of the tan δ curve has a peak only in a temperature range of 150 ° C. or higher, the tensile modulus tends to increase, and the surface hardness tends to increase.
From the viewpoint of improving the bending resistance and surface hardness, the polyimide film of the present invention more preferably has the peak apex only in the temperature region of 200 ° C. or higher in the tan δ curve, and has a temperature region of 220 ° C. or higher. It is even more preferred that the compound has only On the other hand, from the viewpoint that the baking temperature can be reduced, the peak of the peak in the tan δ curve is preferably in a temperature range of 380 ° C. or less.
Further, it is preferable that the polyimide film of the present invention has no peak apex in the tan δ curve, particularly, in a temperature region of −150 ° C. or higher and lower than 150 ° C. in a temperature region of −150 ° C. or higher and lower than 150 ° C. Further, it is preferable that the tan δ curve has no peak apex in a temperature range of 100 ° C. or less, and it is more preferable that the tan δ curve has no peak apex in a temperature range of 0 ° C. or less. When the main chain has a diamine residue having a long siloxane bond or when the main chain contains a large amount of a diamine residue having a silicon atom, when the peak of the peak in the tan δ curve is in such a low temperature region There is.
The tan δ curve is obtained from the relationship between temperature and tan δ (tan δ = loss modulus (E ″) / storage modulus (E ′)) by dynamic viscoelasticity measurement, and the maximum value of the peak is the maximum. Can be used as an index of the glass transition temperature. The dynamic viscoelasticity measurement is performed by, for example, using a dynamic viscoelasticity measuring device RSA-G2 (TA Instruments Japan Co., Ltd.) with a measurement range of −150 ° C. to 490 ° C., a frequency of 1 Hz, and an increase of 1 Hz. It can be performed at a temperature rate of 5 ° C./min. The measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm. When analyzing peaks and inflection points, data is digitized and analyzed from numerical values without visual evaluation.
In the curve of the temperature (horizontal axis) and tan δ (tan δ = loss modulus (E ″) / storage modulus (E ′)) (vertical axis), the peak means that the value of tan δ is 0.2 or more, It is preferably 0.3 or more and has a maximum value, and the peak width between the valleys of the peaks is 3 ° C or more. , Is not observed as the peak at the top of the peak.
As a sample for measuring a tan δ curve, a polyimide film which was left standing for 24 hours in an environment of 23 ° C. ± 2 ° C. RH 30 to 50% was sampled into a square of 10 cm or more. Using a cutting jig with a slit, a cutout having a width of 5 mm and a length of 50 mm (so that the sample length becomes 20 mm at the time of chucking) is used. The width is measured using a caliper, and the average value measured three times at different positions is recorded. At this time, if a part of the width measurement has a fluctuation width of 3% or more of the average value, the sample is not used.
(6)鉛筆硬度
 本発明のポリイミドフィルムにおいて、鉛筆硬度は2B以上であることが好ましく、B以上であることがより好ましく、HB以上であることがより更に好ましい。
 前記ポリイミドフィルムの鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行うことができる。例えば東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
(6) Pencil hardness In the polyimide film of the present invention, the pencil hardness is preferably 2B or more, more preferably B or more, and even more preferably HB or more.
The pencil hardness of the polyimide film is determined by adjusting the humidity of a measurement sample at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours and then using a test pencil specified in JIS-S-6006 according to JIS K5600-5-4. This can be performed by performing a pencil hardness test (load of 0.98 N) specified in (1999) on the film surface and evaluating the highest pencil hardness that does not damage the film. For example, a pencil scratching film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
(7)フィルムの密着性
 また、本発明のポリイミドフィルムにおいては、下記密着性試験方法に従って、密着性試験を行った場合に、塗膜の剥がれが生じないことが、ポリイミドフィルムとハードコート層との密着性の点及びポリイミドフィルムに隣接してハードコート層を積層した積層体の表面硬度の点から好ましい。
[密着性試験方法]
 ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを添加して調製した密着性評価用樹脂組成物を、10cm×10cmに切り出したポリイミドフィルムの試験片上に塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させることにより、10μm膜厚の硬化膜を形成する。当該硬化膜について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、塗膜の剥がれの有無を観察する。
(7) Adhesion of Film Also, in the polyimide film of the present invention, when the adhesion test is carried out according to the following adhesion test method, the peeling of the coating film does not occur. From the viewpoint of adhesion and the surface hardness of a laminate in which a hard coat layer is laminated adjacent to a polyimide film.
[Adhesion test method]
Adhesion evaluation resin composition prepared by adding 10 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone to 100 parts by weight of pentaerythritol triacrylate to a 40% by weight solution of pentaerythritol triacrylate in methyl isobutyl ketone Is applied on a test piece of a polyimide film cut into a size of 10 cm × 10 cm, and is cured by irradiating ultraviolet rays at a light exposure of 200 mJ / cm 2 under a nitrogen stream to form a cured film having a thickness of 10 μm. The cured film is subjected to a cross-cut test according to JIS K 5600-5-6, and the peeling operation using a tape is repeated five times, and then the presence or absence of peeling of the coating film is observed.
4.ポリイミドフィルムの構成
 本発明のポリイミドフィルムの厚さは、用途により適宜選択されれば良いが、1μm以上であることが好ましく、更に5μm以上であることが好ましく、より更に10μm以上であることが好ましい。一方、200μm以下であることが好ましく、更に150μm以下であることが好ましく、より更に100μm以下であることが好ましく、より更に90μm以下であることが好ましい。
 厚みが薄いと強度が低下し、厚みが厚いと屈曲時の内径と外径の差が大きくなり、フィルムへの負荷が大きくなることから屈曲耐性が低下する恐れがある。
4. Structure of the polyimide film The thickness of the polyimide film of the present invention may be appropriately selected depending on the application, but is preferably 1 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more. . On the other hand, it is preferably 200 μm or less, more preferably 150 μm or less, further more preferably 100 μm or less, and still more preferably 90 μm or less.
If the thickness is small, the strength is reduced. If the thickness is large, the difference between the inner diameter and the outer diameter at the time of bending is increased, and the load on the film is increased, so that the bending resistance may be reduced.
 また、本発明のポリイミドフィルムには、例えば、けん化処理、グロー放電処理、コロナ放電処理、紫外線処理、火炎処理等の表面処理が施されていてもよい。 ポ リ イ ミ ド The polyimide film of the present invention may have been subjected to a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, and a flame treatment.
5.ポリイミドフィルムの製造方法
 本発明のポリイミドフィルムの製造方法としては、前記本発明のポリイミドフィルムを製造できる方法であれば特に制限はない。
<第1の製造方法>
 本発明のポリイミドフィルムの製造方法としては、例えば、第1の製造方法として、
 ポリイミド前駆体であるポリアミド酸と、有機溶剤とを含むポリイミド前駆体樹脂組成物を調製する工程(以下、ポリイミド前駆体樹脂組成物調製工程という)と、
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程(以下、ポリイミド前駆体樹脂塗膜形成工程という)と、
 加熱をすることにより、前記ポリイミド前駆体をイミド化する工程(以下、イミド化工程という)と、
 を含むポリイミドフィルムの製造方法が挙げられる。
 本発明のポリイミドフィルムの製造方法には、更に、得られたポリイミドフィルムの残留溶剤量を測定し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。得られたポリイミドフィルムの残留溶剤量が、本発明で特定した値を超えていた場合には、更にポリイミドフィルムを加熱する工程を行うことにより、ポリイミドフィルムの残留溶剤量を、本発明で特定した値以下とすることが好ましい。
5. Method for Producing Polyimide Film The method for producing the polyimide film of the present invention is not particularly limited as long as it can produce the polyimide film of the present invention.
<First manufacturing method>
As a method for producing the polyimide film of the present invention, for example, as a first production method,
A step of preparing a polyimide precursor resin composition containing a polyamic acid that is a polyimide precursor and an organic solvent (hereinafter, referred to as a polyimide precursor resin composition preparation step),
A step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter, referred to as a polyimide precursor resin coating film forming step);
A step of imidizing the polyimide precursor by heating (hereinafter, referred to as an imidation step);
And a method for producing a polyimide film containing the same.
In the method for producing a polyimide film of the present invention, further, the residual solvent amount of the obtained polyimide film is measured, and as a residual solvent in the film, the content of an organic solvent having a boiling point under 1 atmosphere of less than 100 ° C. It is preferable to include a step of determining whether or not the content of the organic solvent having a boiling point of 100 ppm or more at 2000 ppm or less and 1 atm is 100 ppm or less. If the residual solvent amount of the obtained polyimide film exceeds the value specified in the present invention, by further performing a step of heating the polyimide film, the residual solvent amount of the polyimide film was specified in the present invention. It is preferable to set the value equal to or less than the value.
 前記第1の製造方法においては、更に、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する工程(以下、延伸工程という)を有していてもよい。
 以下、各工程について詳細に説明する。
In the first manufacturing method, further, a step of stretching at least one of the polyimide precursor resin coating film and an imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as a stretching step) ) May be included.
Hereinafter, each step will be described in detail.
(1)ポリイミド前駆体樹脂組成物調製工程
 前記第1の製造方法において調製するポリイミド前駆体樹脂組成物は、ポリイミド前駆体と、有機溶剤とを含有し、必要に応じて添加剤等を含有していてもよい。前記ポリイミド前駆体としては、例えば、下記一般式(1’)で表されるポリイミド前駆体が挙げられる。前記一般式(1’)で表されるポリイミド前駆体は、前記一般式(1’)のRにおけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1’)のRにおけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
(1) Polyimide precursor resin composition preparation step The polyimide precursor resin composition prepared in the first manufacturing method contains a polyimide precursor and an organic solvent, and optionally contains additives and the like. It may be. Examples of the polyimide precursor include a polyimide precursor represented by the following general formula (1 ′). The polyimide precursor represented by the general formula (1 ′) includes a tetracarboxylic acid component serving as a tetracarboxylic acid residue in R 1 of the general formula (1 ′) and R 2 of the general formula (1 ′). Is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue in the above.
Figure JPOXMLDOC01-appb-C000010
(一般式(1’)において、R、R及びnは、前記一般式(1)と同様である。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (1 ′), R 1 , R 2 and n are the same as those in the general formula (1).)
 ここで、前記一般式(1’)のR、R及びnは、前記ポリイミドにおいて説明した前記一般式(1)のR、R及びnと同様のものを用いることができる。 Here, as R 1 , R 2 and n in the general formula (1 ′), those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
 前記一般式(1’)で表されるポリイミド前駆体は、数平均分子量、または重量平均分子量の少なくともいずれかが、フィルムとした際の強度の点から、10000以上であることが好ましく、更に20000以上であることが好ましい。また、前記一般式(1’)で表されるポリイミド前駆体は、屈曲耐性を向上する点から、重量平均分子量が、70000以上であることが好ましく、更に80000以上であることが好ましく、より更に85000以上であることが好ましい。
一方、平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミド前駆体の数平均分子量は、NMR(例えば、BRUKER製、AVANCEIII)により求めることができる。例えば、ポリイミド前駆体溶液をガラス板に塗布して100℃で5分乾燥後、固形分10mgをジメチルスルホキシド-d6溶媒7.5mlに溶解し、NMR測定を行い、芳香族環に結合している水素原子のピーク強度比から数平均分子量を算出することができる。
 ポリイミド前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。
 ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
The polyimide precursor represented by the general formula (1 ′) preferably has at least one of a number average molecular weight and a weight average molecular weight of 10,000 or more from the viewpoint of strength when formed into a film, and more preferably 20,000. It is preferable that this is the case. In addition, the polyimide precursor represented by the general formula (1 ′) preferably has a weight average molecular weight of 70,000 or more, more preferably 80,000 or more, from the viewpoint of improving bending resistance. It is preferably 85,000 or more.
On the other hand, if the average molecular weight is too large, the viscosity is high, and the workability such as filtration may be reduced. Therefore, the average molecular weight is preferably 1000000 or less, more preferably 500,000 or less.
The number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by Bruker). For example, a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes. Then, 10 mg of the solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and subjected to NMR measurement to bind to the aromatic ring. The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
The weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
The polyimide precursor was a 0.5% by weight N-methylpyrrolidone (NMP) solution, and the developing solvent used was a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less. Column: GPC LF-804 manufactured by SHOdex), and the measurement is performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.5 mL / min, and 40 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
 前記ポリイミド前駆体溶液は、上述のテトラカルボン酸二無水物と、上述のジアミンとを、溶剤中で反応させて得られる。ポリイミド前駆体(ポリアミド酸)の合成に用いる溶剤としては、上述のテトラカルボン酸二無水物及びジアミンを溶解可能であれば特に制限はなく、例えば非プロトン性極性溶剤または水溶性アルコール系溶剤等を用い得る。本発明においては、中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。中でも、前記ポリイミド前駆体溶液(ポリアミド酸溶液)をそのままポリイミド前駆体樹脂組成物の調製に用いる場合は、窒素原子を含む有機溶剤を用いることが好ましく、中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンもしくはこれらの組み合わせを用いることが好ましい。なお、有機溶剤とは、炭素原子を含む溶剤である。 The polyimide precursor solution is obtained by reacting the above-described tetracarboxylic dianhydride with the above-described diamine in a solvent. The solvent used for the synthesis of the polyimide precursor (polyamic acid) is not particularly limited as long as it can dissolve the above-mentioned tetracarboxylic dianhydride and diamine. For example, an aprotic polar solvent or a water-soluble alcohol solvent can be used. Can be used. In the present invention, among others, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like It is preferable to use an organic solvent containing a nitrogen atom of γ-butyrolactone. Above all, when the polyimide precursor solution (polyamic acid solution) is used as it is for the preparation of the polyimide precursor resin composition, it is preferable to use an organic solvent containing a nitrogen atom, among which N, N-dimethylacetamide, N- It is preferred to use methyl-2-pyrrolidone or a combination thereof. Note that the organic solvent is a solvent containing a carbon atom.
 また、前記ポリイミド前駆体溶液が、少なくとも2種のジアミンを組み合わせて調製される場合、少なくとも2種のジアミンの混合溶液に酸二無水物を添加し、ポリアミド酸を合成してもよいし、少なくとも2種のジアミン成分を適切なモル比で段階を踏んで反応液に添加し、ある程度、各原料が高分子鎖へ組み込まれるシーケンスをコントロールしてもよい。
 たとえば、主鎖にケイ素原子を有するジアミンが溶解された反応液に、主鎖にケイ素原子を有するジアミンの0.5等量のモル比の酸二無水物を投入し反応させることで、酸二無水物の両端に主鎖にケイ素原子を有するジアミンが反応したアミド酸を合成し、そこへ、残りのジアミンを全部、又は一部投入し、酸二無水物を加えてポリアミド酸を重合しても良い。この方法で重合すると、主鎖にケイ素原子を有するジアミンが1つの酸二無水物を介して、連結した形でポリアミド酸の中に導入される。
 このような方法でポリアミド酸を重合することは、主鎖にケイ素原子を有するアミド酸の位置関係がある程度特定され、表面硬度を維持しつつ屈曲耐性の優れた膜を得易い点から好ましい。
When the polyimide precursor solution is prepared by combining at least two diamines, an acid dianhydride may be added to a mixed solution of at least two diamines to synthesize a polyamic acid, The two diamine components may be added to the reaction solution stepwise at an appropriate molar ratio to control the sequence in which each raw material is incorporated into the polymer chain to some extent.
For example, an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is added to a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and the reaction is performed. Synthesize an amic acid in which a diamine having a silicon atom in the main chain at both ends of the anhydride is reacted, and then, all or a part of the remaining diamine is added thereto, and an acid dianhydride is added to polymerize the polyamic acid. Is also good. When polymerized by this method, a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride.
Polymerizing the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
 前記ポリイミド前駆体溶液(ポリアミド酸溶液)中のジアミンのモル数をa、テトラカルボン酸二無水物のモル数をbとしたとき、b/aを0.9以上1.1以下とすることが好ましく、0.95以上1.05以下とすることがより好ましく、0.97以上1.03以下とすることがさらに好ましく、0.99以上1.01以下とすることが特に好ましい。このような範囲とすることにより得られるポリアミド酸の分子量(重合度)を適度に調整することができる。
 重合反応の手順は、公知の方法を適宜選択して用いることができ、特に限定されない。
 また、合成反応により得られたポリイミド前駆体溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良いし、ポリイミド前駆体溶液の溶剤を乾燥させ、別の溶剤に溶解して用いても良い。
When the number of moles of diamine in the polyimide precursor solution (polyamic acid solution) is a and the number of moles of tetracarboxylic dianhydride is b, b / a may be 0.9 or more and 1.1 or less. It is more preferably 0.95 or more and 1.05 or less, further preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. The molecular weight (degree of polymerization) of the obtained polyamic acid can be appropriately adjusted by setting the content in such a range.
The procedure of the polymerization reaction can be appropriately selected from known methods, and is not particularly limited.
Alternatively, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed as necessary, or the solvent of the polyimide precursor solution may be dried and dissolved in another solvent. May be used.
 前記ポリイミド前駆体溶液の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で測定することができる。
The viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps to 200,000 cps from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
 前記ポリイミド前駆体樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、例えば、ポリイミドフィルムの光学的歪みを低減するための無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられ、前述のポリイミドフィルムにおいて説明したものと同様のものを用いることができる。 The polyimide precursor resin composition may contain an additive as needed. Examples of the additive include, for example, inorganic particles for reducing optical distortion of the polyimide film, silica filler for smooth winding, and a surfactant for improving film forming property and defoaming property. Thus, the same one as described in the above-mentioned polyimide film can be used.
 前記ポリイミド前駆体樹脂組成物に用いられる有機溶剤は、前記ポリイミド前駆体が溶解可能であれば特に制限はない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることができるが、中でも、前述した理由により窒素原子を含む有機溶剤を用いることが好ましい。 有機 The organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved. For example, containing a nitrogen atom such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like. Organic solvent; γ-butyrolactone and the like can be used, and among them, it is preferable to use an organic solvent containing a nitrogen atom for the reasons described above.
 前記ポリイミド前駆体樹脂組成物中の前記ポリイミド前駆体の含有量は、均一な塗膜及びハンドリング可能な強度を有するポリイミドフィルムを形成する点から、樹脂組成物の固形分中に50質量%以上であることが好ましく、更に60質量%以上であることが好ましく、上限は含有成分により適宜調整されればよい。
 前記ポリイミド前駆体樹脂組成物中の有機溶剤は、均一な塗膜及びポリイミドフィルムを形成する点から、樹脂組成物中に40質量%以上であることが好ましく、更に50質量%以上であることが好ましく、また99質量%以下であることが好ましい。
The content of the polyimide precursor in the polyimide precursor resin composition is 50% by mass or more in the solid content of the resin composition from the viewpoint of forming a uniform coating film and a polyimide film having handleable strength. It is preferable that the content is not less than 60% by mass, and the upper limit may be appropriately adjusted depending on the contained components.
From the viewpoint of forming a uniform coating film and a polyimide film, the organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more, more preferably 50% by mass or more in the resin composition. It is preferably at most 99% by mass.
 また、前記ポリイミド前駆体樹脂組成物は、含有水分量が1000ppm以下であることが、ポリイミド前駆体樹脂組成物の保存安定性が良好になり、生産性を向上することができる点から好ましい。ポリイミド前駆体樹脂組成物中に水分を多く含むと、ポリイミド前駆体が分解しやすくなる恐れがある。
 なお、ポリイミド前駆体樹脂組成物の含有水分量は、カールフィッシャー水分計(例えば、三菱化学株式会社製、微量水分測定装置CA-200型)を用いて求めることができる。
Further, it is preferable that the polyimide precursor resin composition has a water content of 1,000 ppm or less from the viewpoint that the storage stability of the polyimide precursor resin composition becomes good and the productivity can be improved. If the polyimide precursor resin composition contains a large amount of water, the polyimide precursor may be easily decomposed.
The water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture meter CA-200, manufactured by Mitsubishi Chemical Corporation).
 前記ポリイミド前駆体樹脂組成物の固形分15重量%濃度の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上100000cps以下であることが好ましい。
 ポリイミド前駆体樹脂組成物の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定することができる。
The viscosity of the polyimide precursor resin composition at a solid content of 15% by weight at 25 ° C. is preferably 500 cps to 100,000 cps from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. with a sample volume of 0.8 ml.
(2)ポリイミド前駆体樹脂塗膜形成工程
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程において、用いられる支持体としては、表面が平滑で耐熱性および耐溶剤性のある材料であれば特に制限はない。例えばガラス板などの無機材料、表面を鏡面処理した金属板等が挙げられる。また支持体の形状は塗布方式によって選択され、例えば板状であってもよく、またドラム状やベルト状、ロールに巻き取り可能なシート状等であってもよい。
(2) Polyimide precursor resin coating film forming step In the step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film, the support used has a smooth surface and heat resistance. There is no particular limitation as long as the material has water resistance and solvent resistance. For example, an inorganic material such as a glass plate, a metal plate whose surface is mirror-finished, and the like can be given. The shape of the support is selected according to the coating method, and may be, for example, a plate, a drum, a belt, a sheet that can be wound up on a roll, or the like.
 前記塗布手段は目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えばダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータ等の公知のものを用いることができる。
 塗布は、枚葉式の塗布装置により行ってもよく、ロールtoロール方式の塗布装置により行ってもよい。
The coating means is not particularly limited as long as it is a method capable of coating with a desired film thickness. For example, a known means such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, a spray coater, and a lip coater can be used. .
The coating may be performed by a single-wafer coating device or a roll-to-roll coating device.
 ポリイミド前駆体樹脂組成物を支持体に塗布した後は、塗膜がタックフリーとなるまで、150℃以下の温度、好ましくは30℃以上120℃以下で前記塗膜中の溶剤を乾燥する。溶剤の乾燥温度を150℃以下とすることにより、ポリアミド酸のイミド化を抑制することができる。 (4) After applying the polyimide precursor resin composition to the support, the solvent in the coating is dried at a temperature of 150 ° C. or lower, preferably 30 ° C. or higher and 120 ° C. or lower until the coating becomes tack-free. By setting the drying temperature of the solvent to 150 ° C. or lower, imidization of the polyamic acid can be suppressed.
 乾燥時間は、ポリイミド前駆体樹脂塗膜の膜厚や、溶剤の種類、乾燥温度等に応じて適宜調整されれば良いが、通常1分~60分、好ましくは2分~30分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。 The drying time may be appropriately adjusted depending on the thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, and the like, and is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. Is preferred. Exceeding the upper limit is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, when the value is below the lower limit, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
 溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
 光学特性の高度な管理が必要な場合、溶剤の乾燥時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
The method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature. For example, an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
When a high degree of control of the optical properties is required, the atmosphere at the time of drying the solvent is preferably an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, and the oxygen concentration is preferably 100 ppm or less, more preferably 50 ppm or less. When heat treatment is performed in the air, the film may be oxidized, colored, or deteriorate in performance.
(3)イミド化工程
 前記第1の製造方法においては、加熱をすることにより、前記ポリイミド前駆体をイミド化する。
 本発明においては、ポリイミドフィルムの残留溶剤量を本発明で特定した値以下とするために、ポリイミド前駆体樹脂塗膜を、塗布する際に用いた支持体から剥離後、加熱をすることにより、前記ポリイミド前駆体をイミド化する工程を行うことが好ましい。塗布する際に用いた支持体から剥離して、フィルムの両表面が支持体等に接していない状態で加熱することにより、フィルムの両表面から溶剤を揮発させることができ、残留溶剤を本発明で特定した値以下に、十分に低減することができる。
 また、支持体から剥離後のポリイミド前駆体樹脂塗膜は、加熱時の収縮を防止する点から、端部を固定後に加熱することが好ましい。
 ポリイミド前駆体樹脂塗膜の端部を固定する方法としては、例えば、ポリイミド前駆体樹脂塗膜が枚様の場合、ポリイミド前駆体樹脂塗膜と概略同様の外寸と適切な内寸を有する金属枠を2枚使用して、ポリイミド前駆体樹脂塗膜を挟持し、固定治具で2枚の金属枠とポリイミド前駆体樹脂塗膜とを固定する方法が挙げられる。
 また、例えば、ポリイミド前駆体樹脂塗膜がロール状の場合、例えば、連続する樹脂フィルムの左右両端をクリップ等の固定治具で把持して樹脂フィルムを搬送可能な装置を用いて、ポリイミド前駆体樹脂塗膜の端部を固定する方法が挙げられる。
(3) Imidation step In the first production method, the polyimide precursor is imidized by heating.
In the present invention, to reduce the residual solvent amount of the polyimide film to the value specified in the present invention or less, by peeling the polyimide precursor resin coating from the support used when applying, by heating, It is preferable to perform a step of imidizing the polyimide precursor. By peeling off from the support used at the time of coating and heating the film in a state where both surfaces of the film are not in contact with the support or the like, the solvent can be volatilized from both surfaces of the film, and the residual solvent is removed according to the present invention. Can be sufficiently reduced below the value specified in.
Further, the polyimide precursor resin coating film after peeling from the support is preferably heated after fixing the end portion in order to prevent shrinkage during heating.
As a method of fixing the end portion of the polyimide precursor resin coating, for example, when the polyimide precursor resin coating is sheet-like, metal having approximately the same outer dimensions and appropriate inner dimensions as the polyimide precursor resin coating There is a method in which two frames are used to sandwich the polyimide precursor resin coating film, and the fixing jig is used to fix the two metal frames and the polyimide precursor resin coating film.
Also, for example, when the polyimide precursor resin coating film is in a roll form, for example, using a device capable of transporting the resin film by holding the left and right ends of a continuous resin film with a fixing jig such as a clip, the polyimide precursor There is a method of fixing the end of the resin coating film.
 当該製造方法において、延伸工程を有する場合、イミド化工程は、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程後の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体及び延伸工程後の膜中に存在するポリイミド前駆体の両方に対して行っても良い。 In the manufacturing method, when a stretching step is included, the imidization step may be performed on the polyimide precursor in the polyimide precursor resin coating film before the stretching step, or the polyimide precursor resin after the stretching step It may be performed on the polyimide precursor in the coating film, and both the polyimide precursor in the polyimide precursor resin coating film before the stretching step and the polyimide precursor present in the film after the stretching step You may go.
 イミド化の温度は、ポリイミド前駆体の構造に合わせて適宜選択されれば良い。
 通常、昇温開始温度を30℃以上とすることが好ましく、100℃以上とすることがより好ましい。一方、昇温終了温度は250℃以上とすることが好ましく、270℃以上とすることがより好ましい。一方で、フィルムの外観不良や強度低下を抑制し、光透過性が向上する点から、昇温終了温度は、400℃以下とすることが好ましく、350℃以下とすることがより好ましい。
The imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
Usually, the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher. On the other hand, the temperature rise end temperature is preferably set to 250 ° C. or higher, more preferably 270 ° C. or higher. On the other hand, from the viewpoint of suppressing the appearance failure and the decrease in strength of the film and improving the light transmittance, the temperature raising end temperature is preferably 400 ° C. or lower, more preferably 350 ° C. or lower.
 昇温速度は、得られるポリイミドフィルムの膜厚によって適宜選択することが好ましく、ポリイミドフィルムの膜厚が厚い場合には、昇温速度を遅くすることが好ましい。
 ポリイミドフィルムの製造効率の点から、5℃/分以上とすることが好ましく、10℃/分以上とすることが更に好ましい。一方、昇温速度の上限は、通常50℃/分とされ、好ましくは40℃/分以下、さらに好ましくは30℃/分以下である。上記昇温速度とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化をコントロールでき、光透過性が向上する点から好ましい。
The rate of temperature rise is preferably selected as appropriate depending on the thickness of the polyimide film to be obtained. When the thickness of the polyimide film is large, the rate of temperature rise is preferably reduced.
From the viewpoint of the production efficiency of the polyimide film, the temperature is preferably 5 ° C / min or more, more preferably 10 ° C / min or more. On the other hand, the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less. The above-mentioned rate of temperature increase is preferable from the viewpoint that the appearance of the film and the reduction in the strength of the film can be suppressed, the whitening accompanying the imidization reaction can be controlled, and the light transmittance is improved.
 昇温は、連続的でも段階的でもよいが、連続的とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化のコントロールの面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、また途中で変化させてもよい。 The temperature may be raised continuously or stepwise, but it is preferable that the temperature be raised continuously from the viewpoint of suppressing the poor appearance and the decrease in the strength of the film and controlling the whitening accompanying the imidization reaction. Further, in the above-mentioned entire temperature range, the heating rate may be constant or may be changed in the middle.
 イミド化の昇温時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
 ただし、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合は、光学特性に対する酸素の影響が少なく、不活性ガス雰囲気を用いなくても光透過性の高いポリイミドが得られる。
It is preferable that the atmosphere at the time of the temperature rise of the imidization is an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, and the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less. When heat treatment is performed in the air, the film may be oxidized, colored, or deteriorate in performance.
However, when 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the influence of oxygen on optical characteristics is small, and an inert gas atmosphere can be used. Also, a polyimide having high light transmittance can be obtained.
 イミド化のための加熱方法は、上記温度で昇温が可能であれば特に制限はなく、例えばオーブンや、加熱炉、赤外線加熱、電磁誘導加熱等を用いることが可能である。 加熱 The heating method for imidization is not particularly limited as long as the temperature can be raised at the above temperature, and for example, an oven, a heating furnace, infrared heating, electromagnetic induction heating, or the like can be used.
 中でも、延伸工程前に、ポリイミド前駆体のイミド化率を50%以上とすることがより好ましい。延伸工程前にイミド化率を50%以上とすることにより、当該工程後に延伸を行い、その後さらに高い温度で一定時間加熱を行い、イミド化を行った場合であっても、フィルムの外観不良や白化が抑制される。中でもポリイミドフィルムの表面硬度が向上する点から、延伸工程前に、当該イミド化工程において、イミド化率を80%以上とすることが好ましく、90%以上、さらには100%まで反応を進行させることが好ましい。イミド化後に延伸することにより、剛直な高分子鎖が配向しやすいことから表面硬度が向上すると推定される。
 なお、イミド化率の測定は、赤外測定(IR)によるスペクトルの分析等により行うことができる。
Above all, it is more preferable that the imidation ratio of the polyimide precursor be 50% or more before the stretching step. By setting the imidation ratio to 50% or more before the stretching step, stretching is performed after the step, and then heating is performed at a higher temperature for a certain period of time. Whitening is suppressed. Above all, from the viewpoint that the surface hardness of the polyimide film is improved, it is preferable that the imidization ratio is set to 80% or more in the imidization step before the stretching step, and the reaction proceeds to 90% or more, and further to 100%. Is preferred. It is presumed that the surface hardness is improved by stretching after imidization because the rigid polymer chains are easily oriented.
The imidation ratio can be measured by analyzing the spectrum by infrared measurement (IR) or the like.
 最終的なポリイミドフィルムを得るには、イミド化を90%以上、さらには95%以上、さらには100%まで反応を進行させることが好ましい。
 イミド化を90%以上、さらには100%まで反応を進行させるには、昇温終了温度で一定時間保持することが好ましく、当該保持時間は、通常1分~180分、更に、5分~150分とすることが好ましい。
In order to obtain a final polyimide film, it is preferable that the reaction is allowed to proceed to 90% or more, more preferably 95% or more, and even 100% of imidization.
In order to allow the imidization to proceed to 90% or more, and more preferably to 100%, it is preferable to maintain the temperature at the end of the heating for a certain period of time. The holding time is usually 1 minute to 180 minutes, and more preferably 5 minutes to 150 minutes. Minutes.
(4)延伸工程
 前記第1の製造方法は、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する延伸工程を有していてもよい。当該延伸工程を有する場合は、中でも、イミド化後塗膜を延伸する工程を含むことが、ポリイミドフィルムの表面硬度が向上する点から好ましい。
(4) Stretching Step The first manufacturing method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film. May be. In the case where the stretching step is provided, it is particularly preferable to include a step of stretching the coating film after imidization from the viewpoint of improving the surface hardness of the polyimide film.
 前記第1の製造方法では、延伸を実施する前の初期の寸法を100%とした時に101%以上10000%以下延伸する工程を、80℃以上で加熱しながら行うことが好ましい。
 延伸時の加熱温度は、ポリイミド乃至ポリイミド前駆体のガラス転移温度±50℃の範囲内であることが好ましく、ガラス転移温度±40℃の範囲内であることが好ましい。延伸温度が低すぎるとフィルムが変形せず充分に配向を誘起できない恐れがある。一方で、延伸温度が高すぎると延伸によって得られた配向が温度で緩和し、充分な配向が得られない恐れがある。
 延伸工程は、イミド化工程と同時に行っても良い。イミド化率80%以上、更に90%以上、より更に95%以上、特に実質的に100%イミド化を行った後のイミド化後塗膜を延伸することが、ポリイミドフィルムの表面硬度を向上する点から好ましい。
In the first manufacturing method, it is preferable to perform the step of stretching from 101% to 10,000% when the initial dimension before stretching is set to 100% while heating at 80 ° C. or more.
The heating temperature at the time of stretching is preferably in the range of the glass transition temperature of the polyimide or polyimide precursor ± 50 ° C., and more preferably in the range of the glass transition temperature ± 40 ° C. If the stretching temperature is too low, the film may not be deformed and orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching may be relaxed at the temperature, and sufficient orientation may not be obtained.
The stretching step may be performed simultaneously with the imidization step. Stretching the imidized film after imidization ratio of 80% or more, further 90% or more, even more 95% or more, particularly substantially 100% imidization improves the surface hardness of the polyimide film. Preferred from the point.
 ポリイミドフィルムの延伸倍率は、好ましくは101%以上10000%以下であり、さらに好ましくは101%以上500%以下である。上記範囲で延伸を行うことにより、得られるポリイミドフィルムの表面硬度をより向上することができる。 The stretch ratio of the polyimide film is preferably from 101% to 10,000%, more preferably from 101% to 500%. By performing stretching within the above range, the surface hardness of the obtained polyimide film can be further improved.
 延伸時におけるポリイミドフィルムの固定方法は、特に制限はなく、延伸装置の種類等に合わせて選択される。また、延伸方法は特に制限はなく、例えばテンター等の搬送装置を有する延伸装置を用い、加熱炉を通しながら延伸することが可能である。ポリイミドフィルムは、一方向のみに延伸(縦延伸または横延伸)してもよく、また同時2軸延伸、もしくは逐次2軸延伸、斜め延伸等によって、二方向に延伸処理を行ってもよい。 方法 The method of fixing the polyimide film at the time of stretching is not particularly limited, and is selected according to the type of stretching apparatus and the like. The stretching method is not particularly limited. For example, it is possible to perform stretching while passing through a heating furnace using a stretching apparatus having a transport device such as a tenter. The polyimide film may be stretched in only one direction (longitudinal stretching or transverse stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
<第2の製造方法>
 また、本発明のポリイミドフィルムの製造方法としては、第2の製造方法として、
 ポリイミドと、有機溶剤とを含むポリイミド樹脂組成物を調製する工程(以下、ポリイミド樹脂組成物調製工程という)と、
 前記ポリイミド樹脂組成物を支持体に塗布して、溶剤を乾燥させてポリイミド樹脂塗膜を形成する工程(以下、ポリイミド樹脂塗膜形成工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
<Second manufacturing method>
Further, as a method for producing a polyimide film of the present invention, as a second production method,
A step of preparing a polyimide resin composition containing polyimide and an organic solvent (hereinafter, referred to as a polyimide resin composition preparation step);
A method of applying a polyimide resin composition to a support and drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming step).
 前記ポリイミドが有機溶剤に良好に溶解する場合には、ポリイミド前駆体樹脂組成物ではなく、前記ポリイミドを有機溶剤に溶解させ、必要に応じて添加剤を含有させたポリイミド樹脂組成物も好適に用いることができる。
 前記ポリイミドが25℃で有機溶剤に5質量%以上溶解するような溶剤溶解性を有する場合には、当該製造方法を好適に用いることができる。
 なお、本発明において、ポリイミドフィルムの製造に用いられるポリイミドをポリイミド材料という場合がある。当該ポリイミド材料は、残留溶剤が所定量以下含まれていても良いポリイミドである。
When the polyimide is well dissolved in an organic solvent, not the polyimide precursor resin composition, the polyimide is dissolved in an organic solvent, and a polyimide resin composition containing an additive as needed is also preferably used. be able to.
When the polyimide has a solvent solubility of 5% by mass or more in an organic solvent at 25 ° C., the production method can be suitably used.
In the present invention, a polyimide used for producing a polyimide film may be referred to as a polyimide material. The polyimide material is a polyimide that may contain a predetermined amount or less of the residual solvent.
 本発明の第2のポリイミドフィルムの製造方法には、更に、前記ポリイミド樹脂組成物を調製する工程の前に、用いられるポリイミド(ポリイミド材料)の残留溶剤量を測定し、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。用いられるポリイミド(ポリイミド材料)の残留溶剤量が、本発明で特定した値を超えていた場合には、更に後述する洗浄工程を用いて、用いられるポリイミド(ポリイミド材料)の残留溶剤量を本発明で特定した値以下に低減する工程を含むことが好ましい。
 そして、前記ポリイミド樹脂組成物を調製する工程で用いられるポリイミドは、前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料であることが好ましい。
 ポリイミド材料においても、沸点が100℃未満の有機溶剤の含有量は、静的屈曲耐性及び動的屈曲耐性を向上する点から、1000ppm以下が好ましく、400ppm以下がより好ましく、100ppm以下がより更に好ましい。一方、沸点が100℃以上の有機溶剤の含有量は、動的屈曲耐性を向上する点から、80ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がより更に好ましく、20ppm以下がより更に好ましい。
 ポリイミド材料においても、1気圧下での沸点が70℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が70℃超過の有機溶剤の含有量が100ppm以下であってもよく、更に、1気圧下での沸点が60℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が60℃超過の有機溶剤の含有量が100ppm以下であってもよく、より更に、1気圧下での沸点が50℃以下の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が50℃超過の有機溶剤の含有量が100ppm以下であってもよい。
 また、本発明の第2のポリイミドフィルムの製造方法にも、更に、得られたポリイミドフィルムの残留溶剤量を測定し、フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であるか判定する工程を有することが好ましい。得られたポリイミドフィルムの残留溶剤量が、本発明で特定した値を超えていた場合には、更にポリイミドフィルムを加熱する工程を行うことにより、ポリイミドフィルムの残留溶剤量を、本発明で特定した値以下とすることが好ましい。
In the second method for producing a polyimide film according to the present invention, before the step of preparing the polyimide resin composition, the residual solvent amount of the polyimide (polyimide material) used is measured, and the boiling point at 1 atm. It is preferable to have a step of determining whether the content of the organic solvent having a boiling point of less than 100 ° C. is 2000 ppm or less and the content of the organic solvent having a boiling point at 100 ° C. or more at 1 atm is 100 ppm or less. If the residual solvent amount of the polyimide (polyimide material) used exceeds the value specified in the present invention, the residual solvent amount of the polyimide (polyimide material) used is further reduced by using the washing step described later. It is preferable to include a step of reducing the value to the value specified in or below.
The polyimide used in the step of preparing the polyimide resin composition has a structure represented by the general formula (1), and as a residual solvent, an organic solvent having a boiling point of less than 100 ° C. at 1 atm. It is preferable to use a polyimide material having a content of 2000 ppm or less and an organic solvent having a boiling point of 100 ° C. or more at 1 atm or less of 100 ppm or less.
In the polyimide material, the content of the organic solvent having a boiling point of less than 100 ° C. is preferably 1000 ppm or less, more preferably 400 ppm or less, and still more preferably 100 ppm or less, from the viewpoint of improving static flex resistance and dynamic flex resistance. . On the other hand, the content of the organic solvent having a boiling point of 100 ° C. or more is preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and even more preferably 20 ppm or less, from the viewpoint of improving the dynamic bending resistance.
Even in the polyimide material, the content of the organic solvent having a boiling point under 1 atm of 70 ° C. or less is 2000 ppm or less, and the content of the organic solvent having a boiling point under 1 atm of more than 70 ° C. is 100 ppm or less. Further, the content of the organic solvent having a boiling point at 1 atm of 60 ° C. or less is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of more than 60 ° C. is 100 ppm or less. Furthermore, the content of the organic solvent having a boiling point of 50 ° C. or less at 1 atm is not more than 2000 ppm, and the content of the organic solvent having a boiling point of more than 50 ° C. at 1 atm is not more than 100 ppm. May be.
Further, in the second method for producing a polyimide film of the present invention, the amount of the residual solvent in the obtained polyimide film is further measured, and the residual solvent in the film is an organic solvent having a boiling point under 1 atm. It is preferable to include a step of determining whether the content of the solvent is 2000 ppm or less and the content of the organic solvent having a boiling point at 100 ° C. or more at 1 atm is 100 ppm or less. If the residual solvent amount of the obtained polyimide film exceeds the value specified in the present invention, by further performing a step of heating the polyimide film, the residual solvent amount of the polyimide film was specified in the present invention. It is preferable to set the value equal to or less than the value.
 ポリイミド樹脂組成物調製工程において、前記ポリイミドは、前記ポリイミドフィルムにおいて説明したものと同様のポリイミドの中から、前述した溶剤溶解性を有するポリイミドを選択して用いることができる。
 イミド化する方法としては、ポリイミド前駆体の脱水閉環反応について、加熱脱水の代わりに、化学イミド化剤を用いて行う化学イミド化を用いることが好ましい。化学イミド化を行う場合は、脱水触媒としてピリジンやβ-ピコリン酸等のアミン、ジシクロヘキシルカルボジイミドなどのカルボジイミド、無水酢酸等の酸無水物等、公知の化合物を用いても良い。酸無水物としては無水酢酸に限らず、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられるが特に限定されない。また、その際にピリジンやβ―ピコリン酸等の3級アミンを併用してもよい。ただし、これらアミン類は、フィルム中に残存すると光学特性、特に黄色度(YI値)を低下させるため、ポリイミド前駆体からポリイミドへと反応させた反応液をそのままキャストして製膜するのではなく、再沈殿などにより精製し、ポリイミド以外の成分をそれぞれ、ポリイミド全重量の100ppm以下まで除去してから製膜することが好ましい。
In the polyimide resin composition preparation step, the polyimide having the above-mentioned solvent solubility can be selected from the same polyimides as those described for the polyimide film.
As a method of imidization, it is preferable to use chemical imidization using a chemical imidizing agent instead of heat dehydration for the dehydration ring closure reaction of the polyimide precursor. In the case of performing chemical imidization, known compounds such as amines such as pyridine and β-picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as dehydration catalysts. The acid anhydride is not limited to acetic anhydride, but includes, but is not limited to, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride and the like. In this case, a tertiary amine such as pyridine or β-picolinic acid may be used in combination. However, these amines reduce optical properties, particularly yellowness (YI value) when remaining in the film. It is preferable to purify by reprecipitation or the like, and to remove the components other than the polyimide to 100 ppm or less of the total weight of the polyimide before forming the film.
 ポリイミド樹脂組成物調製工程において、ポリイミド前駆体の化学イミド化を行う反応液に用いられる有機溶剤としては、例えば、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。 In the polyimide resin composition preparing step, as the organic solvent used in the reaction solution for chemically imidizing the polyimide precursor, for example, those described in the polyimide precursor resin composition preparing step in the first production method Similar ones can be used.
 また、ポリイミドへと反応させた反応液を再沈殿などにより精製する際に用いられる有機溶剤としては、ポリイミドへと反応させた反応液からポリイミドを析出させるためのポリイミドの貧溶媒と、必要に応じて反応液を希釈するためのポリイミドの良溶媒と、を適宜選択して用いればよい。
 ポリイミドを析出させるために前記貧溶媒を滴下するときの、前記反応液(ポリイミド溶液)の固形分濃度は、収率の点及び不純物を効率良く除去する点から、0.1質量%以上30質量%以下であることが好ましく、1質量%以上10質量%以下であることがより好ましい。
 ポリイミドの析出に適した、前記ポリイミド溶液の固形分濃度とするために、適宜ポリイミドの良溶媒を用いて希釈してもよい。
 なお、ポリイミドの良溶媒は、目安として、ポリイミドの溶解度が25℃で20g/100g以上である溶媒の中から適宜選択して用いることができる。
 また、ポリイミドの貧溶媒は、目安として、ポリイミドの溶解度が25℃で20g/100g未満の溶媒の中から適宜選択して用いることができる。
Further, as the organic solvent used when purifying the reaction solution reacted with the polyimide by reprecipitation or the like, a poor solvent for the polyimide for depositing the polyimide from the reaction solution reacted with the polyimide, if necessary, And a good solvent for polyimide for diluting the reaction solution by using a suitable solvent.
The solid concentration of the reaction solution (polyimide solution) when the poor solvent is added dropwise to precipitate polyimide is 0.1% by mass or more and 30% by mass from the viewpoint of yield and efficient removal of impurities. %, More preferably 1% by mass or more and 10% by mass or less.
In order to make the solid content concentration of the polyimide solution suitable for polyimide deposition, the polyimide solution may be appropriately diluted with a good polyimide solvent.
In addition, as a guide, a good solvent for polyimide can be appropriately selected from solvents having a polyimide solubility of 20 g / 100 g or more at 25 ° C. and used.
As a guide, the poor solvent for polyimide can be appropriately selected from solvents having a polyimide solubility of less than 20 g / 100 g at 25 ° C.
 例えば、ポリイミドへと反応させた反応液に、例えば、酢酸ノルマル-ブチル等のポリイミドの良溶媒である有機溶剤を加え均一になるまで撹拌して反応液を希釈し、次にt-ブタノール、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、シクロヘキサノール、t-アミルアルコール等のアルコール系有機溶剤を徐々に加えてポリイミドを析出させ、白色スラリーを得て、当該スラリーをろ過してポリイミドを得る。前記アルコール系有機溶剤としては、中でも、ポリイミドの安定性に優れる点から、2級又は3級アルコールを用いることが好ましく、3級アルコールを用いることがより好ましい。
 上記のように再沈殿させて得られたポリイミドは、残留溶剤量を測定することが好ましい。ポリイミドの残留溶剤量は、前記ポリイミドフィルムの残留溶剤量の測定法において、ポリイミドフィルムの代わりにポリイミドを用いる以外は同様にして行うことができる。なお、ポリイミド(ポリイミド材料)の残留溶剤量を測定する際には、真空乾燥機を用いて100℃~120℃でポリイミド(ポリイミド材料)の乾燥を行う。乾燥時間は、ポリイミド(ポリイミド材料)の量により適宜調整されれば良い。例えば、固形分100gのポリイミド(ポリイミド材料)の場合、3時間程度乾燥を行い、乾燥が不十分な場合には適宜1時間ずつ乾燥時間を追加していくことが挙げられる。真空乾燥機を用いたポリイミド(ポリイミド材料)の乾燥は、当該乾燥前後でポリイミド(ポリイミド材料)の質量変化が0.1質量%以下となるまで行うことを目安とすることができる。
For example, an organic solvent such as n-butyl acetate, which is a good solvent for polyimide, is added to the reaction solution that has been reacted with the polyimide, and the mixture is stirred until it becomes uniform to dilute the reaction solution. Then, t-butanol, methanol Then, an alcohol-based organic solvent such as ethanol, isopropyl alcohol, 2-butanol, cyclohexanol, and t-amyl alcohol is gradually added to precipitate polyimide, a white slurry is obtained, and the slurry is filtered to obtain a polyimide. As the alcohol-based organic solvent, a secondary or tertiary alcohol is preferably used, and more preferably a tertiary alcohol is used, from the viewpoint of excellent polyimide stability.
It is preferable to measure the amount of residual solvent in the polyimide obtained by reprecipitation as described above. The residual solvent amount of the polyimide can be measured in the same manner as in the above-mentioned method for measuring the residual solvent amount of the polyimide film except that polyimide is used instead of the polyimide film. When measuring the residual solvent amount of the polyimide (polyimide material), the polyimide (polyimide material) is dried at 100 ° C. to 120 ° C. using a vacuum dryer. The drying time may be appropriately adjusted according to the amount of the polyimide (polyimide material). For example, in the case of polyimide (polyimide material) having a solid content of 100 g, drying may be performed for about 3 hours, and if drying is insufficient, an additional drying time may be appropriately added for one hour. The drying of the polyimide (polyimide material) using a vacuum dryer can be performed as a guide until the mass change of the polyimide (polyimide material) before and after the drying becomes 0.1% by mass or less.
 上記のように再沈殿させて得られたポリイミドは、更に残留溶剤を除くために有機溶剤を用いた洗浄工程を繰り返すことが好ましい。
 例えば、再沈殿させて得られたポリイミドを洗浄用有機溶剤が入ったビーカーで洗浄し、その後ろ過する、という洗浄工程を繰り返し、真空乾燥機を用いて100℃~120℃で乾燥し、ポリイミド(ポリイミド材料)を得る。
 洗浄用有機溶剤としては、再沈殿させて得られたポリイミドに含まれる残留溶剤と相溶性が高く、ポリイミドの貧溶媒であって、且つ、真空乾燥機を用いて100℃~120℃で乾燥すれば全て揮発することが可能なように沸点が真空乾燥機の乾燥温度未満の有機溶剤から選択する。
 例えば、残留溶剤が、ポリイミド前駆体を調製する際に用いられるN,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の場合、イソプロピルアルコール、メタノール等が洗浄用有機溶剤として好適に用いられる。洗浄用有機溶剤としては、1種又は2種以上用いることができる。
 上記のように洗浄工程後に得られたポリイミドは、残留溶剤量を測定して、本発明で特定した値以下であるか判定し、本発明で特定した値を超えていた場合には、更に洗浄工程を用いて、用いられるポリイミド(ポリイミド材料)の残留溶剤量を本発明で特定した値以下に低減する工程を含むことが好ましい。
 このようにして、前記ポリイミド樹脂組成物を調製するために用いられる、沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、沸点が100℃以上の有機溶剤の含有量が100ppm以下のポリイミド(ポリイミド材料)を得ることができる。
It is preferable that the polyimide obtained by reprecipitation as described above repeats a washing step using an organic solvent in order to further remove the residual solvent.
For example, a washing step of washing a polyimide obtained by reprecipitation and washing with a beaker containing an organic solvent for washing, followed by filtration is repeated, and dried at 100 ° C. to 120 ° C. using a vacuum drier to obtain a polyimide ( Polyimide material).
As an organic solvent for washing, it is highly compatible with the residual solvent contained in the polyimide obtained by reprecipitation, is a poor solvent for polyimide, and is dried at 100 ° C. to 120 ° C. using a vacuum dryer. The organic solvent is selected from organic solvents having a boiling point lower than the drying temperature of the vacuum dryer so that all can be volatilized.
For example, when the residual solvent is N, N-dimethylacetamide, N-methyl-2-pyrrolidone, or the like used when preparing a polyimide precursor, isopropyl alcohol, methanol, or the like is suitably used as the organic solvent for washing. As the organic solvent for washing, one or more kinds can be used.
The polyimide obtained after the washing step as described above, the residual solvent amount is measured, it is determined whether the value is equal to or less than the value specified in the present invention, if it exceeds the value specified in the present invention, further washing It is preferable to include a step of reducing the residual solvent amount of the used polyimide (polyimide material) to a value equal to or less than the value specified in the present invention by using the step.
In this way, the content of the organic solvent having a boiling point of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point of 100 ° C. or more is 100 ppm or less, which is used for preparing the polyimide resin composition. (Polyimide material) can be obtained.
 前記ポリイミド樹脂組成物を調製するために用いられるポリイミド材料は、ポリイミド粉体であることが好ましく、ポリイミド粉体の平均粒径は、粉体としての取り扱い易さの点から、50μm~1000μmであることが好ましく、100μm~500μmであることがより好ましい。
 なお、本発明におけるポリイミド材料(ポリイミド粉体)の平均粒径は、ポリイミド材料(ポリイミド粉体)を光学顕微鏡(キーエンス製デジタルマイクロスコープVHX-5000)により倍率100倍で観察し、その観察画像から無作為に、150個のポリイミド材料の粒子を任意に抽出し、抽出した粒子のそれぞれの粒子径を測定し、その平均値を算出する。また、ポリイミド材料の粒子形状が球形でない場合には、その長径を測定する。
The polyimide material used for preparing the polyimide resin composition is preferably a polyimide powder, and the average particle size of the polyimide powder is 50 μm to 1000 μm from the viewpoint of easy handling as a powder. It is more preferable that the thickness be 100 μm to 500 μm.
The average particle size of the polyimide material (polyimide powder) in the present invention can be determined by observing the polyimide material (polyimide powder) with an optical microscope (Digital Microscope VHX-5000 manufactured by KEYENCE) at a magnification of 100 times. Randomly extract 150 particles of polyimide material, measure the particle diameter of each of the extracted particles, and calculate the average value. When the particle shape of the polyimide material is not spherical, the major axis is measured.
 ポリイミド樹脂組成物調製工程において、反応液から精製したポリイミド(ポリイミド材料)を再溶解させる際に用いられる有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、オルト-ジクロルベンゼン、キシレン、クレゾール、クロルベンゼン、酢酸エチル、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、シクロヘキサノール、シクロヘキサノン、1.4-ジオキサン、テトラクロルエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン、ジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、及びこれらの混合溶剤等が挙げられる。
 後述するポリイミド樹脂塗膜形成工程において、開放系の環境下で塗布を行う場合、ポリイミドを再溶解させる有機溶剤は、残留溶剤量も低減しやすい点から、酢酸ノルマル-ブチル、酢酸エチル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種であることが好ましい。
 後述するポリイミド樹脂塗膜形成工程において、ポリイミドを再溶解させる有機溶剤は、中でも特にフィルム製造時の残留溶剤量を低減しやすい点から、沸点が100℃未満の有機溶剤、中でも沸点が70℃以下の有機溶剤を用いることが好ましい。沸点が100℃未満の有機溶剤、中でも沸点が70℃以下の有機溶剤を用いる場合、密閉系の環境下で塗布を行う場合であっても、残留溶剤量を低減しやすい。
 中でも、残留溶剤量を低減しやすく、乾燥工程などの製膜工程に有利な点から、ジクロロメタン、酢酸エチル、クロロホルム、テトラヒドロフラン、酢酸ノルマル-ブチル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種を好ましく用いることができ、中でも、残留溶剤量を低減しやすく、乾燥工程などの製膜工程に有利な点から、ジクロロメタン、クロロホルム、テトラヒドロフラン、及び酢酸エチルからなる群から選ばれる少なくとも1種を好ましく用いることができる。
In the step of preparing the polyimide resin composition, the organic solvent used for re-dissolving the polyimide (polyimide material) purified from the reaction solution includes, for example, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono- Normal-butyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, ethyl acetate, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-propyl acetate, normal acetate Pentyl, cyclohexanol, cyclohexanone, 1.4-dioxane, tetrachloroethylene, toluene, methyl isobutyl ketone, methyl cycle Hexanol, methyl cyclohexanone, methyl - n - butyl ketone, dichloromethane, dichloroethane, chloroform, tetrahydrofuran, and a mixed solvent thereof and the like.
In the polyimide resin coating film forming step described later, when coating is performed in an open environment, the organic solvent for re-dissolving the polyimide is normally-butyl acetate, ethyl acetate, and propylene, because the amount of the residual solvent is easily reduced. It is preferably at least one selected from the group consisting of glycol monomethyl ether acetate.
In the polyimide resin coating film forming step described below, the organic solvent for re-dissolving the polyimide, especially from the point that it is easy to reduce the residual solvent amount at the time of film production, the organic solvent having a boiling point of less than 100 ° C, especially the boiling point is 70 ° C or less It is preferable to use the organic solvent of the above. When an organic solvent having a boiling point of less than 100 ° C., particularly an organic solvent having a boiling point of 70 ° C. or less, is used, the amount of the residual solvent is easily reduced even when the coating is performed in a closed system environment.
Above all, at least one selected from the group consisting of dichloromethane, ethyl acetate, chloroform, tetrahydrofuran, normal-butyl acetate, and propylene glycol monomethyl ether acetate, from the viewpoint that the amount of residual solvent is easily reduced and the film forming step such as a drying step is advantageous. One type can be preferably used. Among them, at least one selected from the group consisting of dichloromethane, chloroform, tetrahydrofuran, and ethyl acetate is preferable in that the amount of the residual solvent is easily reduced and the film formation step such as a drying step is advantageous. Can be preferably used.
 前記ポリイミド樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
 また、前記第2の製造方法において、前記ポリイミド樹脂組成物の含有水分量1000ppm以下とする方法、前記無機粒子を有機溶剤中に分散させる方法としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明した方法と同様の方法を用いることができる。
The polyimide resin composition may optionally contain an additive. As the additive, the same additives as those described in the step of preparing the polyimide precursor resin composition in the first manufacturing method can be used.
In addition, in the second production method, the method of reducing the water content of the polyimide resin composition to 1000 ppm or less, and the method of dispersing the inorganic particles in an organic solvent include the polyimide precursor in the first production method. The same method as the method described in the resin composition preparation step can be used.
 また、前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、支持体や、塗布方法は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明したものと同様のものを用いることができる。 Further, in the polyimide resin coating film forming step in the second manufacturing method, the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first manufacturing method. be able to.
 前記第2の製造方法のポリイミド樹脂塗膜形成工程における乾燥工程は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明した、乾燥工程、及び、イミド化工程を行う際の加熱工程と同様に行うことができる。
 すなわち、まず、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程の乾燥工程と同様に、支持体上でポリイミド樹脂組成物中の溶剤を乾燥させ、次いで、ポリイミド樹脂塗膜を、支持体から剥離後、更に乾燥する工程を有することが、ポリイミドフィルムの残留溶剤量を本発明で特定した値以下として屈曲耐性を向上する点から、好ましい。
 支持体から剥離後にポリイミド樹脂塗膜を更に乾燥する温度としては、第1の製造方法のイミド化の加熱温度ほど高くする必要はなく、塗膜形成時に用いられた有機溶剤や残留溶剤の種類や量で適宜調整すればよい。常圧下では80℃以上250℃以下の範囲とすることが好ましく、更に100℃以上220℃以下の範囲とすることが好ましい。減圧下では10℃以上200℃以下の範囲とすることが好ましく、更に30℃以上160℃以下の範囲とすることが好ましい。乾燥時間も塗膜形成時に用いられた有機溶剤や残留溶剤量で適宜調整すればよいが、通常2分~60分、好ましくは5分~40分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、残留溶剤を十分に低減できない恐れがあり、更に、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。
 また、支持体から剥離後、更に乾燥する工程においては、加熱時の収縮を防止する点から、支持体から剥離後にポリイミド樹脂塗膜の端部を固定して乾燥することが好ましい。支持体から剥離後のポリイミド樹脂塗膜の端部を固定する方法としては、前述のポリイミド前駆体樹脂塗膜と同様に行うことができる。
The drying step in the polyimide resin coating film forming step of the second manufacturing method is the drying step and the heating for performing the imidization step described in the polyimide precursor resin coating film forming step of the first manufacturing method. It can be performed in the same manner as the process.
That is, first, the solvent in the polyimide resin composition is dried on the support in the same manner as in the drying step of the polyimide precursor resin coating film forming step of the first manufacturing method, and then the polyimide resin coating film is supported. It is preferable to have a step of further drying after peeling from the body, from the viewpoint that the amount of the residual solvent in the polyimide film is made equal to or less than the value specified in the present invention and the bending resistance is improved.
The temperature at which the polyimide resin coating is further dried after peeling from the support does not need to be as high as the heating temperature of the imidization of the first production method, and the type of the organic solvent and the residual solvent used in forming the coating and The amount may be appropriately adjusted. Under normal pressure, the temperature is preferably in the range of 80 ° C to 250 ° C, more preferably in the range of 100 ° C to 220 ° C. Under reduced pressure, the temperature is preferably in the range of 10 ° C to 200 ° C, and more preferably in the range of 30 ° C to 160 ° C. The drying time may be appropriately adjusted depending on the amount of the organic solvent and the amount of the residual solvent used at the time of forming the coating film. The drying time is usually 2 minutes to 60 minutes, preferably 5 minutes to 40 minutes. Exceeding the upper limit is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, when the value is below the lower limit, the residual solvent may not be sufficiently reduced, and further, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
In the step of further drying after peeling from the support, it is preferable to fix and dry the end portion of the polyimide resin coating film after peeling from the support from the viewpoint of preventing shrinkage during heating. The method of fixing the end portion of the polyimide resin coating film after peeling from the support can be performed in the same manner as the above-mentioned polyimide precursor resin coating film.
 また、前記第2の製造方法は、前記ポリイミド樹脂塗膜形成工程の後、ポリイミド樹脂塗膜を延伸する延伸工程を有していてもよい。当該延伸工程は、前記第1の製造方法における延伸工程と同様にすることができる。 The second manufacturing method may include a stretching step of stretching the polyimide resin coating film after the polyimide resin coating film forming step. The stretching step can be the same as the stretching step in the first manufacturing method.
 前記第2の製造方法は、ポリイミドフィルムの黄色度(YI値)を低減しやすい点から好ましい。前記第2の製造方法によれば、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.04以下であるポリイミドフィルムを好適に形成可能である。 The second manufacturing method is preferable because the yellowness (YI value) of the polyimide film is easily reduced. According to the second manufacturing method, it is possible to preferably form a polyimide film in which the value obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness (μm) is 0.04 or less. is there.
10.ポリイミドフィルムの用途
 本発明のポリイミドフィルムの用途は特に限定されるものではなく、従来薄い板ガラス等ガラス製品が用いられていた基材や表面材等の部材として用いることができる。本発明のポリイミドフィルムは、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有し、光学的歪みが低減したものであるため、中でも、曲面に対応できるディスプレイ用部材として好適に用いることができる。
 本発明のポリイミドフィルムは、具体的には例えば、薄くて曲げられるフレキシブルタイプの有機ELディスプレイや、スマートフォンや腕時計型端末などの携帯端末、自動車内部の表示装置、腕時計などに使用するフレキシブルパネル等、フレキシブルディスプレイ用の基材や表面材に好適に用いることができる。また、本発明のポリイミドフィルムは、液晶表示装置、有機EL表示装置等の画像表示装置用部材や、タッチパネル用部材、フレキシブルプリント基板、表面保護膜や基板材料等の太陽電池パネル用部材、光導波路用部材、その他半導体関連部材等に適用することもできる。
10. Use of Polyimide Film The use of the polyimide film of the present invention is not particularly limited, and the polyimide film can be used as a base material, a surface material, or the like, in which a glass product such as a thin plate glass is conventionally used. The polyimide film of the present invention has improved bending resistance, has a sufficient surface hardness as a protective film, and has a reduced optical distortion, and among others, it is preferably used as a display member capable of dealing with a curved surface. it can.
The polyimide film of the present invention, specifically, for example, a thin and flexible organic EL display of a flexible type, a mobile terminal such as a smartphone or a wristwatch-type terminal, a display device inside an automobile, a flexible panel used for a wristwatch or the like, It can be suitably used as a substrate or a surface material for a flexible display. In addition, the polyimide film of the present invention may be used for a member for an image display device such as a liquid crystal display device or an organic EL display device, a member for a touch panel, a flexible printed circuit board, a member for a solar cell panel such as a surface protective film or a substrate material, and an optical waveguide. And other semiconductor-related members.
III.積層体
 本発明の積層体は、前述した本発明のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体である。
 本発明の積層体は、前述した本発明のポリイミドフィルムを用いたものであるため、透明性に優れ、屈曲耐性が向上したものであり、更にハードコート層を有するため、表面硬度がより向上したフィルム乃至樹脂フィルムである。
III. Laminate The laminate of the present invention is a laminate having the above-described polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
Since the laminate of the present invention uses the polyimide film of the present invention described above, it is excellent in transparency and has improved bending resistance, and further has a hard coat layer, so that the surface hardness is further improved. Film or resin film.
 また、本発明の積層体は、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有するため、ポリイミドフィルムとハードコート層との密着性が優れる点から好ましいものである。これは、前記特定のポリイミドフィルムとハードコート層とのミキシングに優れるためと推定される。
 また、本発明の積層体において、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有するため、光学的歪みが低減する点から好ましいものである。この場合、本発明の積層体をディスプレイ用表面材乃至基材等のディスプレイ用部材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。
In addition, the laminate of the present invention is preferable because the polyimide contained in the polyimide film contains a diamine residue having a silicon atom in the main chain, so that the adhesion between the polyimide film and the hard coat layer is excellent. . This is presumed to be due to excellent mixing between the specific polyimide film and the hard coat layer.
Further, in the laminate of the present invention, the polyimide contained in the polyimide film is preferable in that optical distortion is reduced because the polyimide contains a diamine residue having a silicon atom in the main chain. In this case, when the laminate of the present invention is used as a display member such as a display surface material or a base material, a decrease in display quality of the display can be suppressed.
1.ポリイミドフィルム
 本発明の積層体に用いられるポリイミドフィルムとしては、前述した本発明のポリイミドフィルムを用いることができるので、ここでの説明を省略する。
1. Polyimide Film As the polyimide film used in the laminate of the present invention, the above-described polyimide film of the present invention can be used, and a description thereof will be omitted.
2.ハードコート層
 本発明の積層体に用いられるハードコート層は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
2. Hard coat layer The hard coat layer used in the laminate of the present invention contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
(1)ラジカル重合性化合物
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(1) Radical polymerizable compound A radical polymerizable compound is a compound having a radical polymerizable group. The radical polymerizable group of the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group including a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
 前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 前記ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーを好ましく使用できる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
The number of radically polymerizable groups in one molecule of the radically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
As the radical polymerizable compound, a compound having a (meth) acryloyl group is preferable, and a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule is preferable. Oligomers having several (meth) acryloyl groups in a molecule called a compound or urethane (meth) acrylate, polyester (meth) acrylate or epoxy (meth) acrylate having a molecular weight of several hundred to several thousand are preferable. Can be used.
In addition, in this specification, (meth) acryloyl represents each of acryloyl and methacryloyl, and (meth) acrylate represents each of acrylate and methacrylate.
 前記ラジカル重合性化合物としては、具体的には、例えば、ジビニルベンゼンなどのビニル化合物;エチレングリコールジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、アルキレンオキサイド変性ビスフェノールAジ(メタ)アクリレート(例えば、エトキシ化(エチレンオキサイド変性)ビスフェノールAジ(メタ)アクリレートなど)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート類、ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類、ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を挙げることができる。 Specific examples of the radical polymerizable compound include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, and 9,9-bis [4- (2- ( (Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide-modified bisphenol A di (meth) acrylate (eg, ethoxylated (ethylene oxide-modified) bisphenol A di (meth) acrylate, etc.), trimethylolpropane tri (meth) acrylate, trimethyl Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaery Polyol polyacrylates such as litol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy such as diacrylate of bisphenol A diglycidyl ether and diacrylate of hexanediol diglycidyl ether Examples include acrylates, urethane acrylates obtained by reacting polyisocyanates with hydroxyl-containing acrylates such as hydroxyethyl acrylate, and the like.
(2)カチオン重合性化合物
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。前記カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、前記カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(2) Cationic polymerizable compound The cationic polymerizable compound is a compound having a cationic polymerizable group. The cationically polymerizable group contained in the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group. When the cationically polymerizable compound has two or more cationically polymerizable groups, these cationically polymerizable groups may be the same or different.
 前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、密着性の点及び光透過性と表面硬度の点から、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層をエポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
The number of the cationically polymerizable groups in one molecule of the cationically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
As the cationic polymerizable compound, among others, a compound having at least one of an epoxy group and an oxetanyl group as a cationic polymerizable group is preferable. Compounds having two or more oxetanyl groups in one molecule are more preferred. Cyclic ether groups such as an epoxy group and an oxetanyl group are preferable in that shrinkage due to the polymerization reaction is small. Among the cyclic ether groups, compounds having an epoxy group among compounds having various structures are easily available, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radical polymerizable compound. There is an advantage that. The oxetanyl group among the cyclic ether groups has a higher degree of polymerization than the epoxy group, has low toxicity, and has a cation in the coating film when the obtained hard coat layer is combined with a compound having an epoxy group. There are advantages such as increasing the rate of network formation obtained from the polymerizable compound, and forming an independent network without leaving unreacted monomer in the film even in a region where the radical polymerizable compound is mixed.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 Examples of the cationically polymerizable compound having an epoxy group include, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or a cyclopentene ring-containing compound, with an appropriate oxidizing agent such as hydrogen peroxide or peracid. Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Glycidyl produced by reacting aliphatic epoxy resins such as copolymers; bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts with epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
 上記脂環族エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(UVR-6105、UVR-6107、UVR-6110)、ビス-3,4-エポキシシクロヘキシルメチルアディペート(UVR-6128)(以上、カッコ内は商品名で、ダウ・ケミカル製である。)が挙げられる。 Examples of the alicyclic epoxy resin include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (both in parentheses are trade names and manufactured by Dow Chemical).
 また、上記グリシジルエーテル型エポキシ樹脂としては、ソルビトールポリグリシジルエーテル(デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-614B、デナコールEX-622)、ポリグリセロールポリグリシジルエーテル(デナコールEX-512、デナコールEX-521)、ペンタエリスリトルポリグリシジルエーテル(デナコールEX-411)、ジグリセロールポリグリシジルエーテル(デナコールEX-421)、グリセロールポリグリシジルエーテル(デナコールEX-313、デナコールEX-314)、トリメチロールプロパンポリグリシジルエーテル(デナコールEX-321)、レソルチノールジグリシジルエーテル(デナコールEX-201)、ネオペンチルグリコールジグリシジルエーテル(デナコールEX-211)、1,6ヘキサンジオールジグリシジルエーテル(デナコールEX-212)、ヒドロジビスフェノールAジグリシジルエーテル(デナコールEX-252)、エチレングリコールジグリシジルエーテル(デナコールEX-810、デナコールEX-811)、ポリエチレングリコールジグリシジルエーテル(デナコールEX―850、デナコールEX―851、デナコールEX―821)、プロピレングリコールグリシジルエーテル(デナコールEX-911)、ポリプロピレングリコールグリシジルエーテル(デナコールEX―941、デナコールEX-920)、アリルグリシジルエーテル(デナコールEX-111)、2-エチルヘキシルグリシジルエーテル(デナコールEX-121)、フェニルグリシジルエーテル(デナコールEX-141)、フェノールグリシジルエーテル(デナコールEX-145)、ブチルフェニルグリシジルエーテル(デナコールEX-146)、ジグリシジルフタレート(デナコールEX-721)、ヒドロキノンジグリシジルエーテル(デナコールEX-203)、ジグリシジルテレフタレート(デナコールEX-711)、グリシジルフタルイミド(デナコールEX-731)、ジブロモフェニルグリシジルエーテル(デナコールEX-147)、ジブロモネオペンチルグリコールジグリシジルエーテル(デナコールEX-221) (以上、カッコ内は商品名で、ナガセケムテックス製である。)が挙げられる。 Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), polyglycerol polyglycidyl ether (Denacol EX) -512, denacol EX-521), pentaerythritol polyglycidyl ether (denacol EX-411), diglycerol polyglycidyl ether (denacol EX-421), glycerol polyglycidyl ether (denacol EX-313, denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), Neopenti Glycol diglycidyl ether (Denacol EX- 211), 1,6 hexanediol diglycidyl ether (Denacol EX-212), hydrodibisphenol A diglycidyl ether (Denacol EX-252), ethylene glycol diglycidyl ether (Denacol EX-810) , Denacol EX-811), polyethylene glycol diglycidyl ether (denacol EX-850, denacol EX-851, denacol EX-821), propylene glycol glycidyl ether (denacol EX-911), polypropylene glycol glycidyl ether (denacol EX-941, Denacol EX-920), allyl glycidyl ether (Denacol EX-111), 2-ethylhexyl glycidyl ether (Denaco EX-121), phenylglycidyl ether (Denacol EX-141), phenol glycidyl ether (Denacol EX-145), butylphenylglycidyl ether (Denacol EX-146), diglycidyl phthalate (Denacol EX-721), hydroquinone diglycidyl Ether (denacol EX-203), diglycidyl terephthalate (denacol EX-711), glycidyl phthalimide (denacol EX-731), dibromophenyl glycidyl ether (denacol EX-147), dibromoneopentyl glycol diglycidyl ether (denacol EX-221) (The above is the trade name in parentheses, manufactured by Nagase ChemteX.)
 また、その他の市販品のエポキシ樹脂としては、商品名エピコート825、エピコート827、エピコート828、エピコート828EL、エピコート828XA、エピコート834、エピコート801、エピコート801P、エピコート802、エピコート815、エピコート815XA、エピコート816A、エピコート819、エピコート834X90、エピコート1001B80、エピコート1001X70、エピコート1001X75、エピコート1001T75、エピコート806、エピコート806P、エピコート807、エピコート152、エピコート154、エピコート871、エピコート191P、エピコートYX310、エピコートDX255、エピコートYX8000、エピコートYX8034等(以上商品名、ジャパンエポキシレジン製)が挙げられる。 Other commercially available epoxy resins include trade names Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801 and Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000 Etc. (the above product name, Turbocharger bread epoxy resin) and the like.
 オキセタニル基を有するカチオン重合性化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101)、1,4-ビス-3-エチルオキセタン-3-イルメトキシメチルベンゼン(OXT-121)、ビス-1-エチル-3-オキセタニルメチルエーテル(OXT-221)、3-エチル-3-2-エチルへキシロキシメチルオキセタン(OXT-212)、3-エチル-3-フェノキシメチルオキセタン(OXT-211)(以上、カッコ内は商品名で東亜合成製である。)や、商品名エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上商品名、宇部興産製)が挙げられる。 Examples of cationic polymerizable compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121) , Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3--2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT-221) 211) (both in parentheses are trade names of Toagosei Co., Ltd.) and trade names of etanacol EHO, etanacol OXBP, etanacol OXTP, and etanacol OXMA (trade names, manufactured by Ube Industries).
(3)重合開始剤
 本発明に用いられるハードコート層が含有する前記ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物は、例えば、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種に、必要に応じて重合開始剤を添加して、公知の方法で重合反応させることにより得ることができる。
(3) Polymerization initiator At least one polymer of the radically polymerizable compound and the cationically polymerizable compound contained in the hard coat layer used in the present invention is, for example, one of the radically polymerizable compound and the cationically polymerizable compound. It can be obtained by adding a polymerization initiator to at least one kind as necessary and conducting a polymerization reaction by a known method.
 前記重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。 ラ ジ カ ル As the polymerization initiator, a radical polymerization initiator, a cationic polymerization initiator, a radical and cationic polymerization initiator, and the like can be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating, and generate radicals or cations to promote radical polymerization and cationic polymerization.
 ラジカル重合開始剤は、光照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であれば良い。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられ、更に具体的には、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・ジャパン(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・ジャパン(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア369、チバ・ジャパン(株)製)、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア784、チバ・ジャパン(株)製)等が挙げられるが、これらに限定されるものではない。 The radical polymerization initiator only needs to be capable of releasing a substance that initiates radical polymerization by at least one of light irradiation and heating. For example, examples of the photoradical polymerization initiator include imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, and thioxanthone derivatives. More specifically, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name Irgacure 651, Ciba Japan Co., Ltd.) 1-hydroxy-cyclohexyl-phenyl) Ketone (trade name Irgacure 184, manufactured by Ciba Japan KK), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (trade name Irgacure 369, Ciba Japan ( Co., Ltd.), bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium) (trade name Irgacure 784) And Ciba Japan K.K.) and the like, but are not limited thereto.
 上記以外にも、市販品が使用でき、具体的には、チバ・ジャパン(株)製のイルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR  TPO、DAROCUR1173、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure  ONE、Esacure  KIP150、Esacure  KTO46、日本化薬(株)製のKAYACURE  DETX-S、KAYACURE  CTX、KAYACURE  BMS、KAYACURE  DMBI等が挙げられる。 In addition to the above, commercially available products can be used. Specifically, Irgacure 907, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, and Irgacure 1870 manufactured by Ciba Japan KK , Irgacure OXE01, DAROCUR TPO, DAROCUR1173, Japan Siber Hegner Co., Ltd. of SpeedcureMBB, SpeedcurePBZ, SpeedcureITX, SpeedcureCTX, SpeedcureEDB, Esacure ONE, Esacure KIP150, Esacure KTO46, manufactured by Nippon Kayaku Co., of (stock) KAYACURE DETX-S, KAYACURE CTX , KAYACURE BMS, KAYACURE @ DMBI, and the like.
 また、カチオン重合開始剤は、光照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であれば良い。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η-ベンゼン)(η-シクロペンタジエニル)鉄(II)等が例示され、さらに具体的には、ベンゾイントシレート、2,5-ジニトロベンジルトシレート、N-トシフタル酸イミド等が挙げられるが、これらに限定されるものではない。 The cationic polymerization initiator only needs to be capable of releasing a substance that initiates cationic polymerization by at least one of light irradiation and heating. Examples of the cationic polymerization initiator include sulfonic acid esters, imidosulfonates, dialkyl-4-hydroxysulfonium salts, arylsulfonic acid-p-nitrobenzyl esters, silanol-aluminum complexes, (η 6 -benzene) (η 5 -cyclopentadiene) Enyl) iron (II) and the like, and more specifically, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide, and the like, but are not limited thereto.
  ラジカル重合開始剤としても、カチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示され、更に具体的には、ジフェニルヨードニウム、ジトリルヨードニウム、ビス(p-tert-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウム等のヨードニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のヨードニウム塩、トリフェニルスルホニウム、4-tert-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム等のスルホニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のスルホニウム塩、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等の2,4,6-置換-1,3,5トリアジン化合物等が挙げられるが、これらに限定されるものではない。 As the radical polymerization initiator, those used as the cationic polymerization initiator include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like. More specifically, chlorides, bromides, fluorinated salts, hexafluorophosphate salts, hexafluorophosphates of iodonium such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, etc. Iodonium salts such as antimonate salts; sulfonium chlorides such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, and tris (4-methylphenyl) sulfonium; bromides; Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts; 2,4,6-tris (trichloromethyl) -1,3,5-triazine; 2-phenyl-4,6-bis (trichloromethyl) -1, Examples include 2,4,6-substituted-1,3,5-triazine compounds such as 3,5-triazine and 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine. It is not limited to these.
(4)添加剤
 本発明に用いられるハードコート層は、前記重合物の他に、必要に応じて、帯電防止剤、防眩剤、防汚剤、硬度を向上させるための無機又は有機微粒子、レべリング剤、各種増感剤等の添加剤を含有していてもよい。
(4) Additives In addition to the polymer, the hard coat layer used in the present invention may optionally contain an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, Additives such as a leveling agent and various sensitizers may be contained.
 なお、本発明に用いられるハードコート層に含まれるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物等は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。 In addition, at least one kind of a polymerizable compound of a radical polymerizable compound and a cationic polymerizable compound contained in the hard coat layer used in the present invention is obtained by a Fourier transform infrared spectrophotometer (FTIR), a pyrolysis gas chromatograph (GC) -MS) or a decomposition product of a polymer can be analyzed using a combination of high-performance liquid chromatography, gas chromatography / mass spectrometry, NMR, elemental analysis, XPS / ESCA, TOF-SIMS, and the like.
3.積層体の構成
 本発明の積層体は、前記ポリイミドフィルムと、前記ハードコート層とを有するものであれば特に限定はされず、前記ポリイミドフィルムの一方の面側に前記ハードコート層が積層されたものであってもよいし、前記ポリイミドフィルムの両面に前記ハードコート層が積層されたものであってもよい。また、本発明の積層体は、本発明の効果を損なわない範囲で、前記ポリイミドフィルム及び前記ハードコート層の他に、例えば、前記ポリイミドフィルムと前記ハードコート層との密着性を向上させるためのプライマー層等の他の層を有するものであってもよく、前記ポリイミドフィルムと前記ハードコート層とがプライマー層等の他の層を介して積層されたものであっても良い。また、本発明の積層体は、前記ポリイミドフィルムと、前記ハードコート層とが隣接して位置するものであってもよい。また、本発明の積層体はさらに、耐衝撃層、指紋付着防止層、接着乃至粘着層等を有していても良い。
3. The laminate of the present invention is not particularly limited as long as it has the polyimide film and the hard coat layer, and the hard coat layer is laminated on one surface side of the polyimide film. And the hard coat layer may be laminated on both sides of the polyimide film. In addition, the laminate of the present invention, in a range that does not impair the effects of the present invention, in addition to the polyimide film and the hard coat layer, for example, to improve the adhesion between the polyimide film and the hard coat layer It may have another layer such as a primer layer, or may have the polyimide film and the hard coat layer laminated via another layer such as a primer layer. Further, the laminate of the present invention may be one in which the polyimide film and the hard coat layer are located adjacent to each other. Further, the laminate of the present invention may further have an impact resistant layer, a fingerprint adhesion preventing layer, an adhesive or adhesive layer, and the like.
 本発明の積層体の全体厚さは、用途により適宜選択されれば良いが、強度の点から、10μm以上であることが好ましく、更に40μm以上であることが好ましい。一方、屈曲耐性の点から、300μm以下であることが好ましく、更に250μm以下であることが好ましい。
 また、本発明の積層体において、各ハードコート層の厚さは、用途により適宜選択されれば良いが、2μm以上80μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。また、カール防止の観点からポリイミドフィルムの両面にハードコート層を形成しても良い。
The total thickness of the laminate of the present invention may be appropriately selected depending on the application, but is preferably 10 μm or more, and more preferably 40 μm or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, the thickness is preferably 300 μm or less, and more preferably 250 μm or less.
In the laminate of the present invention, the thickness of each hard coat layer may be appropriately selected depending on the application, but is preferably 2 μm or more and 80 μm or less, more preferably 3 μm or more and 50 μm or less. Further, from the viewpoint of curling prevention, a hard coat layer may be formed on both sides of the polyimide film.
4.積層体の特性
 本発明の積層体は、ハードコート層側表面の鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがより更に好ましい。
 本発明の積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度の測定方法において、荷重を9.8Nとする以外は同様にして測定することができる。
4. Characteristics of Laminate In the laminate of the present invention, the pencil hardness of the surface on the hard coat layer side is preferably H or more, more preferably 2H or more, even more preferably 3H or more.
The pencil hardness of the laminate of the present invention can be measured in the same manner as in the method for measuring the pencil hardness of the polyimide film, except that the load is set to 9.8 N.
 本発明の積層体は、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に90%以上であることが好ましい。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。
 本発明の積層体の前記全光線透過率は、前記ポリイミドフィルムのJIS K7361-1に準拠して測定する全光線透過率と同様にして測定することができる。
The laminate of the present invention preferably has a total light transmittance of at least 85%, more preferably at least 88%, even more preferably at least 90%, measured in accordance with JIS K7361-1. Is preferred. Since the transmittance is high as described above, the transparency is improved and the glass can be used as a substitute material for glass.
The total light transmittance of the laminate of the present invention can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
 本発明の積層体は、JIS K7373-2006に準拠して算出される黄色度(YI値)が、20以下であることが好ましく、15以下であることがより好ましく、10以下であることがより更に好ましく、5以下であることが特に好ましい。
 また、本発明の積層体は、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがより更に好ましい。
 本発明の積層体の前記黄色度(YI値)は、前記ポリイミドフィルムのJIS K7373-2006に準拠して算出される黄色度(YI値)と同様にして測定することができる。
In the laminate of the present invention, the yellowness (YI value) calculated according to JIS K7373-2006 is preferably 20 or less, more preferably 15 or less, and more preferably 10 or less. More preferably, it is particularly preferably 5 or less.
In addition, the laminate of the present invention has a yellow color calculated based on JIS K7373-2006 from the viewpoint that coloring of yellow tint is suppressed, light transmittance is improved, and the laminate can be suitably used as a glass substitute material. The value obtained by dividing the degree (YI value) by the film thickness (μm) (YI value / film thickness (μm)) is preferably 0.10 or less, more preferably 0.04 or less, and 0.03 or less. It is even more preferred that:
The yellowness (YI value) of the laminate of the present invention can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
5.積層体の用途
 本発明の積層体の用途は特に限定されるものではなく、例えば、前述した本発明のポリイミドフィルムの用途と同様の用途に用いることができる。
5. Use of Laminate The use of the laminate of the present invention is not particularly limited, and for example, can be used for the same uses as the above-mentioned use of the polyimide film of the present invention.
6.積層体の製造方法
 本発明の積層体の製造方法としては、例えば、
 前記本発明のポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有するハードコート層形成用組成物の塗膜を形成する工程と、
 前記塗膜を硬化する工程と、を含む製造方法が挙げられる。
6. Production method of laminate The production method of the laminate of the present invention, for example,
A step of forming a coating film of a composition for forming a hard coat layer containing at least one of a radically polymerizable compound and a cationically polymerizable compound on at least one surface of the polyimide film of the present invention,
And a step of curing the coating film.
 前記ハードコート層形成用組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有し、必要に応じて更に重合開始剤、溶剤及び添加剤等を含有していてもよい。
 ここで、前記ハードコート層形成用組成物が含有するラジカル重合性化合物、カチオン重合性化合物、重合開始剤及び添加剤については、前記ハードコート層において説明したものと同様のものを用いることができ、溶剤は、公知の溶剤から適宜選択して用いることができる。
The composition for forming a hard coat layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like, if necessary.
Here, the radical polymerizable compound, the cationic polymerizable compound, the polymerization initiator and the additive contained in the hard coat layer forming composition may be the same as those described in the hard coat layer. The solvent can be appropriately selected from known solvents and used.
 ポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物の塗膜を形成する方法としては、例えば、ポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物を、公知の塗布手段により塗布する方法が挙げられる。
 前記塗布手段は、目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えば、前記ポリイミド前駆体樹脂組成物を支持体に塗布する手段と同様のものが挙げられる。
As a method of forming a coating film of the composition for forming a hard coat layer on at least one surface of a polyimide film, for example, the composition for forming a hard coat layer on at least one surface of the polyimide film may be a known method. A method of applying by a coating means is exemplified.
The application unit is not particularly limited as long as it is a method capable of applying a desired film thickness, and examples thereof include the same units as those for applying the polyimide precursor resin composition to a support.
 前記ハードコート層用硬化性樹脂組成物の塗膜は必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、更にはこれらの乾燥を組み合わせる方法等が挙げられる。また、常圧で乾燥させる場合は、30℃以上110℃以下で乾燥させることが好ましい。 塗膜 The coating film of the curable resin composition for a hard coat layer is dried as necessary to remove the solvent. Examples of the drying method include a method of drying under reduced pressure or drying by heating, a method of combining these drying methods, and the like. When drying at normal pressure, it is preferable to dry at 30 ° C. or higher and 110 ° C. or lower.
 前記ハードコート層用硬化性樹脂組成物を塗布、必要に応じて乾燥させた塗膜に対し、当該硬化性樹脂組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物の重合性基に応じて、光照射及び加熱の少なくともいずれかにより塗膜を硬化させることにより、ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を形成することができる。 The curable resin composition for the hard coat layer is applied and, if necessary, for the dried coating film, depending on the polymerizable groups of the radically polymerizable compound and the cationically polymerizable compound contained in the curable resin composition. By curing the coating by at least one of light irradiation and heating, a hard coat layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is formed on at least one surface of the polyimide film. Can be formed.
 光照射には、主に、紫外線、可視光、電子線、電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cm程度である。
 加熱をする場合は、通常40℃以上120℃以下の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
Ultraviolet rays, visible light, electron beams, ionizing radiation, and the like are mainly used for light irradiation. In the case of ultraviolet curing, ultraviolet rays emitted from light rays such as an ultrahigh-pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used. The irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
When heating, the treatment is usually performed at a temperature of 40 ° C. or more and 120 ° C. or less. Alternatively, the reaction may be carried out by leaving at room temperature (25 ° C.) for 24 hours or more.
IV.ディスプレイ用部材
 本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム、或いは、本発明の積層体を含む。
 本発明のディスプレイ用部材としては、例えば、ディスプレイ用表面材やディスプレイ用基材等が挙げられる。
 本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム、或いは、本発明の積層体であってよい。
IV. Display member The display member of the present invention includes the above-described polyimide film of the present invention or the laminate of the present invention.
Examples of the display member of the present invention include a display surface material and a display substrate.
The display member of the present invention may be the above-described polyimide film of the present invention or the laminate of the present invention.
 本発明のディスプレイ用部材は、例えばディスプレイ用表面材として、各種ディスプレイの表面に位置するように配置して用いられる。本発明のディスプレイ用部材は、前述した本発明のポリイミドフィルム及び本発明の積層体と同様に、透明性に優れ、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有するため、フレキシブルディスプレイ用として特に好適に用いることができる。 The display member of the present invention is used, for example, as a display surface material so as to be located on the surface of various displays. The display member of the present invention is excellent in transparency, improved in bending resistance, and has a sufficient surface hardness as a protective film, like the above-described polyimide film of the present invention and the laminate of the present invention. Can be particularly preferably used.
 本発明のディスプレイ用部材は、公知の各種ディスプレイに用いることができ、特に限定はされないが、例えば、前記本発明のポリイミドフィルムの用途で説明したディスプレイ等に用いることができる。 デ ィ ス プ レ イ The display member of the present invention can be used for various known displays, and is not particularly limited. For example, it can be used for the display described in the application of the polyimide film of the present invention.
 なお、本発明のディスプレイ用部材が前記本発明の積層体である場合、当該積層体をディスプレイの表面に配置した後に最表面となる面は、ポリイミドフィルム側の表面であってもよいし、ハードコート層側の表面であってもよい。中でも、ハードコート層側の表面が、より表側の面となるように本発明のディスプレイ用部材を配置することが好ましい。また、本発明のディスプレイ用部材は、最表面に指紋付着防止層を有するものであっても良い。 When the display member of the present invention is the laminate of the present invention, the surface that becomes the outermost surface after disposing the laminate on the surface of the display may be the surface on the polyimide film side, or may be hard. It may be the surface on the coat layer side. Above all, it is preferable to arrange the display member of the present invention such that the surface on the hard coat layer side is a more front side surface. Further, the display member of the present invention may have a fingerprint adhesion preventing layer on the outermost surface.
 また、本発明のディスプレイ用部材をディスプレイの表面に配置する方法としては、特に限定はされないが、例えば、接着層を介する方法等が挙げられる。前記接着層としては、ディスプレイ用部材の接着に用いることができる従来公知の接着層を用いることができる。 The method for arranging the display member of the present invention on the surface of the display is not particularly limited, and examples thereof include a method using an adhesive layer. As the adhesive layer, a conventionally known adhesive layer that can be used for bonding a display member can be used.
V.タッチパネル部材
 本発明のタッチパネル部材は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、
 前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有する。
V. Touch panel member The touch panel member of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above,
A transparent electrode composed of a plurality of conductive portions, disposed on one surface side of the polyimide film or the laminate,
And a plurality of extraction lines electrically connected to at least one of the ends of the conductive portion.
 本発明のタッチパネル部材は、前述した本発明のポリイミドフィルム又は積層体を備えるものであることから、屈曲耐性に優れたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、また光学特性に優れる。
 本発明のタッチパネル部材に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明のタッチパネル部材は、特に限定はされないが、前記透明電極が、前記積層体の一方の面側に接して積層されてなるものであることが好ましい。
 本発明のタッチパネル部材は、例えば、各種ディスプレイの表面に位置するように配置して用いることができる。また、各種ディスプレイの表面に、本発明のタッチパネル部材と、表面材としての本発明のポリイミドフィルム又は積層体とを、この順に配置して用いることもできる。
Since the touch panel member of the present invention is provided with the above-described polyimide film or laminate of the present invention and has excellent bending resistance, it can be particularly suitably used for a flexible display and has optical characteristics. Excellent.
The laminate of the present invention used for the touch panel member of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both surfaces of a polyimide film. Preferably, there is.
Further, the touch panel member of the present invention is not particularly limited, but it is preferable that the transparent electrode is laminated in contact with one surface side of the laminate.
The touch panel member of the present invention can be arranged and used, for example, so as to be located on the surface of various displays. In addition, the touch panel member of the present invention and the polyimide film or laminate of the present invention as a surface material may be arranged and used in this order on the surface of various displays.
 以下、本発明のタッチパネル部材について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のポリイミドフィルムも同様に用いることができる。
 図2は、本発明のタッチパネル部材の一例の一方の面の概略平面図であり、図3は、図2に示すタッチパネル部材のもう一方の面の概略平面図であり、図4は、図2及び図3に示すタッチパネル部材のA-A’断面図である。図2、図3及び図4に示すタッチパネル部材20は、本発明の積層体10と、積層体10の一方の面に接して配置された第一の透明電極4と、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第一の透明電極4においては、x軸方向に伸長するように延在する短冊状の電極片である複数の第一の導電部41が、所定の間隔を空けて配置されている。第一の導電部41には、その長手方向の端部のいずれか一方において、当該第一の導電部41と電気的に接続される第一の取出し線7が接続されている。積層体10の端縁21まで延設された第一の取出し線7の端部には、外部回路と電気的に接続するための第一の端子71を設けることがよい。第一の導電部41と第一の取出し線7とは、一般には、タッチパネルの使用者が視認可能なアクティブエリア22の外側に位置する、非アクティブエリア23内において接続される。
 第一の導電部41と第一の取出し線7との接続は、例えば図2に示すように、接続部24を介在させた接続構造を採用することができる。接続部24は、具体的には、第一の導電部41の長手方向端部から、非アクティブエリア23内の所定の位置まで導電性材料の層を延設することにより形成することができる。さらに、当該接続部24上に、第一の取出し線7の少なくとも一部を重ねることにより、第一の導電部41と第一の取出し線7との接続構造を形成することができる。
 第一の導電部41と第一の取出し線7との接続は、図2に示すような、接続部24を形成する構造には限定されない。例えば、図示は省略するが、第一の導電部41の長手方向端部を非アクティブエリア23まで伸長させ、非アクティブエリア23内において、当該非アクティブエリア23まで伸長させた第一の導電部41の端部に、第一の取出し線7を乗り上げさせることによって、両者を電気的に接続させてもよい。
 なお、図2では、第一の導電部41の長手方向端部のいずれか一方と、第一の取出し線7とを接続する形態を示したが、本発明においては、1つの第一の導電部41の長手方向の両端に、それぞれ、第一の取出し線7を電気的に接続する形態としてもよい。
Hereinafter, the touch panel member of the present invention will be described using an example using the above-described laminate of the present invention. Instead of the above-described laminate of the present invention, the above-described polyimide film of the present invention can be used in the same manner. .
FIG. 2 is a schematic plan view of one surface of an example of the touch panel member of the present invention, FIG. 3 is a schematic plan view of the other surface of the touch panel member shown in FIG. 2, and FIG. FIG. 4 is a cross-sectional view taken along the line AA ′ of the touch panel member shown in FIG. The touch panel member 20 shown in FIGS. 2, 3 and 4 includes a laminate 10 of the present invention, the first transparent electrode 4 arranged in contact with one surface of the laminate 10, and the other of the laminate 10. And a second transparent electrode 5 arranged in contact with the surface of the second transparent electrode 5. In the first transparent electrode 4, a plurality of first conductive portions 41, which are strip-shaped electrode pieces extending so as to extend in the x-axis direction, are arranged at predetermined intervals. The first lead wire 7 electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at one of the ends in the longitudinal direction. A first terminal 71 for electrically connecting to an external circuit is preferably provided at an end of the first extraction line 7 extending to the edge 21 of the laminate 10. In general, the first conductive portion 41 and the first extraction line 7 are connected in an inactive area 23 located outside the active area 22 that can be visually recognized by a user of the touch panel.
The connection between the first conductive portion 41 and the first extraction line 7 can adopt a connection structure with the connection portion 24 interposed therebetween, for example, as shown in FIG. Specifically, the connection portion 24 can be formed by extending a layer of a conductive material from a longitudinal end of the first conductive portion 41 to a predetermined position in the inactive area 23. Furthermore, a connection structure between the first conductive portion 41 and the first extraction line 7 can be formed by overlapping at least a part of the first extraction line 7 on the connection portion 24.
The connection between the first conductive portion 41 and the first extraction line 7 is not limited to the structure forming the connection portion 24 as shown in FIG. For example, although not shown, the longitudinal end of the first conductive portion 41 is extended to the inactive area 23, and the first conductive portion 41 extended to the inactive area 23 in the inactive area 23. May be electrically connected to each other by riding the first wire 7 on the end of the wire.
Note that FIG. 2 shows an embodiment in which one of the longitudinal ends of the first conductive portion 41 is connected to the first extraction line 7. However, in the present invention, one first conductive portion 41 is connected to the first conductive portion 41. The first extraction line 7 may be electrically connected to both ends of the portion 41 in the longitudinal direction.
 図3に示すように、タッチパネル部材20は、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第二の透明電極5においては、y軸方向に伸長するように延在する複数の短冊状の電極片である第二の導電部51が、x軸方向に所定の間隔を空けて配置されている。
 第二の導電部51には、その長手方向端部の一方において、当該第二の導電部51と電気的に接続される第二の取出し線8が接続されている。
 第二の取出し線8は、積層体10の端縁のうち、前述した第一の取出し線7が延設された端縁21における、第一の端子71と重ならない位置まで延設されている。
 積層体10の端縁21まで延設された第二の取出し線8の端部には、外部回路と電気的に接続するための第二の端子81を設けることがよい。
 第二の導電部51と第二の取出し線8との電気的な接続は、第一の取出し線7と第一の導電部41との電気的な接続と同様の形態を適用することができる。
As shown in FIG. 3, the touch panel member 20 includes the second transparent electrode 5 disposed in contact with the other surface of the multilayer body 10. In the second transparent electrode 5, the second conductive portions 51, which are a plurality of strip-shaped electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction. I have.
At one end of the second conductive portion 51 in the longitudinal direction, a second extraction line 8 that is electrically connected to the second conductive portion 51 is connected.
The second extraction line 8 extends from the edge of the stacked body 10 to a position on the edge 21 where the above-described first extraction line 7 extends so as not to overlap the first terminal 71. .
A second terminal 81 for electrically connecting to an external circuit is preferably provided at an end of the second extraction line 8 extending to the edge 21 of the laminate 10.
The same configuration as the electrical connection between the first extraction line 7 and the first conductive portion 41 can be applied to the electrical connection between the second conductive portion 51 and the second extraction line 8. .
 なお、図2及び図3に示すような、第1取出し線7を長尺配線とし、第2取出し線8を短尺配線とするパターンは、本発明のタッチパネル部材の一実施形態に過ぎず、例えば、第一の取出し線7を短尺配線とし、第二の取出し線8を長尺配線とするパターンとすることも可能である。また、第一の取出し線7の伸長方向及び第二の取出し線8の伸長方向も、図2及び図3に示す方向に限られず、任意に設計することが可能である。 The pattern in which the first extraction line 7 is a long wiring and the second extraction line 8 is a short wiring as shown in FIGS. 2 and 3 is only an embodiment of the touch panel member of the present invention, It is also possible to use a pattern in which the first extraction line 7 is a short wiring and the second extraction line 8 is a long wiring. Further, the extension direction of the first extraction line 7 and the extension direction of the second extraction line 8 are not limited to the directions shown in FIGS. 2 and 3 and can be arbitrarily designed.
 本発明のタッチパネル部材が備える導電部は、タッチパネル部材において透明電極を構成するものを適宜選択して適用することができ、導電部のパターンは、図2及び図3に示すものに限定されない。例えば、静電容量方式によって、指などの接触または接触に近い状態による電気容量の変化を検知可能な透明電極のパターンを適宜選択して適用することができる。
 前記導電部の材料としては、光透過性の材料であることが好ましく、例えば、インジウム錫オキサイド(ITO)、酸化インジウム、インジウム亜鉛オキサイド(IZO)等を主たる構成成分とする酸化インジウム系透明電極材料、酸化錫(SnO)、酸化亜鉛(ZnO)等を主たる構成成分とする透明導電膜、ポリアニリン、ポリアセチレン等の導電性高分子化合物等が挙げられるが、これらに限定されるものではない。また、第一の導電部41及び第二の導電部51は、互いに同種の導電性材料を用いて形成してもよいし、異種の材料を用いて形成してもよい。特に同種の導電性材料を用いて第一の導電部41及び第2導電部51を形成すると、タッチパネル部材の反りや歪みの発生をより効果的に抑制できる観点で好ましい。
 前記導電部の厚みは、特に限定されないが、例えばフォトリソグラフィ手法により導電部を形成する場合には、一般的には、10nm~500nm程度に形成することができる。
The conductive portion included in the touch panel member of the present invention can be appropriately selected from those that constitute the transparent electrode in the touch panel member, and the pattern of the conductive portion is not limited to those shown in FIGS. 2 and 3. For example, a pattern of a transparent electrode capable of detecting a change in electric capacitance due to contact or close contact with a finger or the like can be appropriately selected and applied by a capacitance method.
The material of the conductive portion is preferably a light transmissive material, for example, an indium oxide-based transparent electrode material containing indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), or the like as a main component. , Tin oxide (SnO 2 ), zinc oxide (ZnO), etc., and a transparent conductive film, and a conductive polymer compound such as polyaniline and polyacetylene, etc., but are not limited thereto. Further, the first conductive portion 41 and the second conductive portion 51 may be formed using the same kind of conductive material, or may be formed using different kinds of materials. In particular, it is preferable to form the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material from the viewpoint that the occurrence of warpage and distortion of the touch panel member can be more effectively suppressed.
Although the thickness of the conductive portion is not particularly limited, for example, when the conductive portion is formed by a photolithography technique, it can be generally formed to about 10 nm to 500 nm.
 本発明のタッチパネル部材が備える取出し線を構成する導電材料は、光透過性の有無を問わない。一般的には、取出し線は、高い導電性を有する銀や銅などの金属材料を用いて形成することができる。具体的には、金属単体、金属の複合体、金属と金属化合物の複合体、金属合金を挙げることができる。金属単体としては、銀、銅、金、クロム、プラチナ、アルミニウムの単体などを例示することができる。金属の複合体としては、MAM(モリブデン、アルミニウム、モリブデンの3層構造体)等を例示することができる。金属と金属化合物の複合体としては、酸化クロムとクロムの積層体等を例示することができる。金属合金としては、銀合金や銅合金が汎用される。また、金属合金としては、APC(銀、パラジウム及び銅の合金)等を例示することができる。また、前記取出し線には、前述した金属材料に、適宜樹脂成分が混在していてもよい。
 本発明のタッチパネル部材において、取出し線の端部に設けられる端子は、例えば、前記取出し線と同じ材料を用いて形成することができる。
 前記取出し線の厚み、及び幅寸法は、特に限定されないが、例えばフォトリソグラフィ手法により取出し線を形成する場合には、一般的には、厚みは10nm~1000nm程度に形成され、幅寸法は5μm~200μm程度に形成される。一方、スクリーン印刷などの印刷により取出し線を形成する場合には、一般的には、厚みは5μm~20μm程度に形成され、幅寸法は20μm~300μm程度に形成される。
The conductive material constituting the lead wire included in the touch panel member of the present invention may or may not have light transmittance. In general, the lead wire can be formed using a metal material having high conductivity, such as silver or copper. Specific examples include a metal simple substance, a composite of a metal, a composite of a metal and a metal compound, and a metal alloy. Examples of the simple metal include simple silver, copper, gold, chromium, platinum, and aluminum. Examples of the metal composite include MAM (three-layer structure of molybdenum, aluminum, and molybdenum). Examples of the composite of a metal and a metal compound include a laminate of chromium oxide and chromium. Silver alloys and copper alloys are commonly used as metal alloys. Further, examples of the metal alloy include APC (alloy of silver, palladium, and copper) and the like. Further, in the lead-out line, a resin component may be appropriately mixed with the above-described metal material.
In the touch panel member of the present invention, the terminal provided at the end of the wire may be formed using, for example, the same material as the wire.
The thickness and width of the lead-out line are not particularly limited. For example, when the lead-out line is formed by photolithography, the thickness is generally about 10 nm to 1000 nm and the width is 5 μm to 5 μm. It is formed to about 200 μm. On the other hand, when forming the extraction line by printing such as screen printing, generally, the thickness is formed to be about 5 μm to 20 μm, and the width is formed to be about 20 μm to 300 μm.
 本発明のタッチパネル部材は、図2~図4に示す形態には限られず、例えば、第一の透明電極と、第二の透明電極とが、それぞれ別個の積層体の上に積層されて構成されるものであってもよい。
 図5及び図6は、各々本発明の積層体を備える導電性部材の一例を示す概略平面図である。図5に示す第一の導電性部材201は、本発明の積層体10と、当該積層体10の一方の面に接して配置された第一の透明電極4とを有し、当該第一の透明電極4は、複数の第一の導電部41を有する。図6に示す第二の導電性部材202は、本発明の積層体10’と、当該積層体10’の一方の面に接して配置された第二の透明電極5とを有し、当該第二の透明電極5は、複数の第二の導電部51を有する。
 図7は、本発明のタッチパネル部材の別の一例を示す概略断面図であり、図7に示すタッチパネル部材20’は、図5に示す第一の導電性部材201と、図6に示す第二の導電性部材202とを備える。タッチパネル部材20’においては、第一の導電性部材201の第一の透明電極4を有しない面と、第二の導電性部材202の透明電極5を有する面とが、接着層6を介して貼り合わせられている。なお、本発明において、例えば、本発明の積層体と本発明のタッチパネル部材とを接着するための接着層、本発明のタッチパネル部材同士を接着するための接着層、本発明のタッチパネル部材と表示装置等とを接着するための接着層としては、光学部材に用いられている従来公知の接着層を適宜選択して用いることができる。本発明のタッチパネル部材に用いられる導電性部材において、透明電極、取出し線及び端子の構成及び材料は、前述した本発明のタッチパネル部材に用いられる透明電極、取出し線及び端子と各々同様とすることができる。
The touch panel member of the present invention is not limited to the forms shown in FIGS. 2 to 4, and is configured by, for example, laminating a first transparent electrode and a second transparent electrode on separate laminates. May be used.
5 and 6 are schematic plan views each showing an example of a conductive member provided with the laminate of the present invention. The first conductive member 201 shown in FIG. 5 includes the laminate 10 of the present invention, and the first transparent electrode 4 arranged in contact with one surface of the laminate 10, The transparent electrode 4 has a plurality of first conductive portions 41. The second conductive member 202 shown in FIG. 6 includes the laminate 10 ′ of the present invention and the second transparent electrode 5 arranged in contact with one surface of the laminate 10 ′. The two transparent electrodes 5 have a plurality of second conductive portions 51.
FIG. 7 is a schematic cross-sectional view illustrating another example of the touch panel member of the present invention. The touch panel member 20 ′ illustrated in FIG. 7 includes a first conductive member 201 illustrated in FIG. And a conductive member 202. In the touch panel member 20 ′, the surface of the first conductive member 201 that does not have the first transparent electrode 4 and the surface of the second conductive member 202 that has the transparent electrode 5 are disposed via the adhesive layer 6. Laminated. In the present invention, for example, an adhesive layer for bonding the laminate of the present invention to the touch panel member of the present invention, an adhesive layer for bonding the touch panel members of the present invention to each other, the touch panel member of the present invention and a display device As an adhesive layer for adhering to the like, a conventionally known adhesive layer used for an optical member can be appropriately selected and used. In the conductive member used in the touch panel member of the present invention, the configuration and material of the transparent electrode, the lead wire and the terminal may be the same as those of the transparent electrode, the lead wire and the terminal used in the touch panel member of the present invention described above. it can.
VI.液晶表示装置
 本発明の液晶表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部とを有する。
VI. Liquid crystal display device The liquid crystal display device of the present invention includes the above-described polyimide film of the present invention or the above-described laminate of the present invention, and a liquid crystal between a counter substrate disposed on one surface side of the polyimide film or the laminate. And a liquid crystal display portion having a layer.
 本発明の液晶表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、屈曲耐性に優れ、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本発明の液晶表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明の液晶表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
 また、本発明の液晶表示装置が有する対向基板は、本発明のポリイミドフィルム又は積層体を備えるものであっても良い。
Since the liquid crystal display device of the present invention includes the above-described polyimide film of the present invention or the above-described laminate of the present invention, the liquid crystal display device has excellent bending resistance, and can be particularly suitably used for a flexible display, and has an optical characteristic. Excellent.
The laminate of the present invention used in the liquid crystal display device of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. It is preferable that
Further, the liquid crystal display device of the present invention may include the touch panel member of the present invention described above.
The counter substrate of the liquid crystal display device of the present invention may include the polyimide film or the laminate of the present invention.
 以下、本発明の液晶表示装置について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のポリイミドフィルムも同様に用いることができる。
 図8は、本発明の液晶表示装置の一例を示す概略断面図である。図8に示す液晶表示装置100は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、液晶表示部30とを有する。液晶表示装置100において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。
Hereinafter, the liquid crystal display device of the present invention will be described using an example using the above-described laminate of the present invention. Instead of the above-described laminate of the present invention, the above-described polyimide film of the present invention may be similarly used. it can.
FIG. 8 is a schematic sectional view showing an example of the liquid crystal display device of the present invention. The liquid crystal display device 100 shown in FIG. 8 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 5 on the other surface. , And a liquid crystal display unit 30. In the liquid crystal display device 100, the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other via the adhesive layer 6.
 本発明の液晶表示装置に用いられる液晶表示部は、対向配置された基板の間に形成された液晶層を有するものであり、従来公知の液晶表示装置に用いられている構成を採用することができる。
 本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができ、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。
 本発明の液晶表示装置に用いられる対向基板としては、液晶表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明のポリイミドフィルム又は積層体を備えるものを用いても良い。
 液晶層を構成する液晶としては、本発明の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。前記方法によって液晶層を形成後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
 本発明の液晶表示装置において、対向配置された基板の間には、さらに複数色の着色層や、画素を画定する遮光部を有していてもよい。また、液晶表示部は、対向配置された基板の外側において、タッチパネル部材が位置する側とは反対側の位置に、発光素子や蛍光体を有するバックライト部を有していてもよい。また、対向配置された基板の外表面には、それぞれ偏光板を有していてもよい。
The liquid crystal display portion used in the liquid crystal display device of the present invention has a liquid crystal layer formed between substrates disposed opposite to each other, and may employ a configuration used in a conventionally known liquid crystal display device. it can.
The driving method of the liquid crystal display device of the present invention is not particularly limited, and a driving method generally used for a liquid crystal display device can be employed. For example, a TN method, an IPS method, an OCB method, and an MVA method And the like.
The counter substrate used in the liquid crystal display device of the present invention can be appropriately selected and used depending on the driving method of the liquid crystal display device and the like, and a substrate provided with the polyimide film or the laminate of the present invention may be used.
As the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy and a mixture thereof can be used according to the driving method of the liquid crystal display device of the present invention and the like.
As a method for forming the liquid crystal layer, a method generally used as a method for manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method. After forming the liquid crystal layer by the above method, the sealed liquid crystal can be oriented by gradually cooling the liquid crystal cell to room temperature.
In the liquid crystal display device of the present invention, a plurality of colored layers and a light-shielding portion for defining pixels may be further provided between the opposed substrates. Further, the liquid crystal display section may have a backlight section having a light emitting element and a phosphor at a position on the opposite side to the side where the touch panel member is located outside the substrate disposed opposite to the liquid crystal display section. Further, a polarizing plate may be provided on each of the outer surfaces of the substrates arranged to face each other.
 図9は、本発明の液晶表示装置の別の一例を示す概略断面図である。図9に示す液晶表示装置200は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、液晶表示部30とを有する。液晶表示装置200において、積層体10と第一の導電性部材201、及び第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図7に示すタッチパネル部材20’の構成と同様にすることができる。本発明の液晶表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 9 is a schematic sectional view showing another example of the liquid crystal display device of the present invention. The liquid crystal display device 200 shown in FIG. 9 includes a laminate 10 of the present invention, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, The liquid crystal display unit 30 includes a touch panel member 20 ′ having a second conductive member 202 having the second transparent electrode 5 on one surface of the laminate 10 ″, and a liquid crystal display unit 30. And the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are respectively bonded via the adhesive layer 6. The configuration of the touch panel member 20 'is, for example, The configuration can be the same as the configuration of the touch panel member 20 'shown in Fig. 7. As the conductive member used for the liquid crystal display device of the present invention, the same conductive member used for the touch panel member of the present invention can be used. Can be used Kill.
VII.有機エレクトロルミネッセンス表示装置
 本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部とを有する。
VII. Organic electroluminescent display device The organic electroluminescent display device of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above, and the polyimide film or the laminate of the present invention is disposed on one surface side of the polyimide film or the laminate. And an organic electroluminescence display section having an organic electroluminescence layer between the substrates.
 本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、屈曲耐性に優れたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本発明の有機エレクトロルミネッセンス表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
 また、本発明の有機エレクトロルミネッセンス表示装置が有する対向基板は、本発明のポリイミドフィルム又は積層体を備えるものであっても良い。
Since the organic electroluminescent display device of the present invention includes the polyimide film of the present invention described above or the laminate of the present invention described above, it is excellent in bending resistance, so that it is particularly suitably used for a flexible display. It can be used and has excellent optical properties.
The laminate of the present invention used in the organic electroluminescent display device of the present invention includes a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both surfaces of a polyimide film. It is preferable to have one.
Further, the organic electroluminescent display device of the present invention may include the above-mentioned touch panel member of the present invention.
Further, the opposing substrate of the organic electroluminescent display device of the present invention may include the polyimide film or the laminate of the present invention.
 図10は、本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。図10に示す有機エレクトロルミネッセンス表示装置300は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置300において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。 FIG. 10 is a schematic sectional view showing one example of the organic electroluminescence display device of the present invention. The organic electroluminescence display device 300 shown in FIG. 10 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 4 on the other surface. It has a touch panel member 20 having the electrode 5 and an organic electroluminescence display section 40. In the organic electroluminescence display device 300, the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded together via the adhesive layer 6.
 本発明の有機エレクトロルミネッセンス表示装置(有機EL表示装置)に用いられる有機エレクトロルミネッセンス表示部(有機EL表示部)は、対向配置された基板の間に形成された有機エレクトロルミネッセンス層(有機EL層)を有するものであり、従来公知の有機EL表示装置に用いられている構成を採用することができる。
 有機EL表示部は、さらに、支持基板と、有機EL層並びに有機EL層を挟持する陽極層及び陰極層を含む有機EL素子と、有機EL素子を封止する封止基材と、を有していてもよい。前記有機EL層としては、少なくとも有機EL発光層を有するものであれば良いが、例えば、上記陽極層側から、正孔注入層、正孔輸送層、有機EL発光層、電子輸送層および電子注入層がこの順で積層した構造を有するものを有するものを用いることができる。
 本発明の有機EL表示装置は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。本発明の有機EL表示装置に用いられる対向基板としては、有機EL表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明の積層体を備えるものを用いても良い。
The organic electroluminescence display unit (organic EL display unit) used in the organic electroluminescence display device (organic EL display device) of the present invention is an organic electroluminescence layer (organic EL layer) formed between opposed substrates. And a configuration used in a conventionally known organic EL display device can be adopted.
The organic EL display unit further includes a support substrate, an organic EL element including an organic EL layer, an anode layer and a cathode layer sandwiching the organic EL layer, and a sealing base material for sealing the organic EL element. May be. The organic EL layer may have at least an organic EL light emitting layer. For example, from the anode layer side, a hole injection layer, a hole transport layer, an organic EL light emitting layer, an electron transport layer, and an electron injection A layer having a structure in which layers are stacked in this order can be used.
The organic EL display device of the present invention can be applied to, for example, a passive drive type organic EL display and an active drive type organic EL display. The opposing substrate used in the organic EL display device of the present invention can be appropriately selected and used according to the driving method of the organic EL display device, and a substrate provided with the laminate of the present invention may be used.
 図11は、本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。図11に示す有機エレクトロルミネッセンス表示装置400は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置400において、積層体10と第一の導電性部材201、第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図7に示すタッチパネル部材20’の構成と同様にすることができる。本発明の有機エレクトロルミネッセンス表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 11 is a schematic sectional view showing another example of the organic electroluminescence display device of the present invention. An organic electroluminescence display device 400 shown in FIG. 11 includes a laminate 10 of the present invention, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, It has a touch panel member 20 ′ having a second conductive member 202 provided with the second transparent electrode 5 on one surface of the laminate 10 ″ of the present invention, and an organic electroluminescence display section 40. An organic electroluminescence display device In 400, the laminate 10 and the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6. The touch panel member 20 ' Can be the same as, for example, the configuration of the touch panel member 20 'shown in Fig. 7. It is used for the organic electroluminescence display device of the present invention. As the conductive member, it can be the same as the conductive member for use in a touch panel member of the present invention.
[評価方法]
 以下、特に断りがない場合は、25℃で測定又は評価を行った。
 フィルムの試験片は、フィルムの中央部付近から切り出した。切り出したフィルムの四隅と中央の計5点の膜厚を、前記膜厚の測定方法で測定し、5点の平均膜厚と各点の膜厚の差が、平均膜厚の6%以内である試験片を用いた。
[Evaluation method]
Hereinafter, unless otherwise specified, measurement or evaluation was performed at 25 ° C.
A test piece of the film was cut out from near the center of the film. A total of five film thicknesses at the four corners and the center of the cut film were measured by the above-described film thickness measurement method, and the difference between the average film thickness at the five points and the film thickness at each point was within 6% of the average film thickness. A test piece was used.
<ポリイミド前駆体の重量平均分子量>
 ポリイミド前駆体の重量平均分子量は、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行った。ポリイミド前駆体の重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360、27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド前駆体溶液の粘度>
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Weight average molecular weight of polyimide precursor>
The weight average molecular weight of the polyimide precursor is determined by developing the polyimide precursor into a 0.5% by weight N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore size: 0.45 μm), and developing the solution. As a solvent, a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, a GPC device (manufactured by Tosoh, HLC-8120, column used: GPC LF-804 manufactured by SHOdex) was used, a sample injection amount was 50 μL, and a solvent flow rate was 0.5 mL. / Min at 40 ° C. The weight average molecular weight of the polyimide precursor was the same as that of the sample, and the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360, 27,500, 13,030, 6,300, 3,070) as the standard polystyrene conversion value. The elution time was compared with a calibration curve to determine a weight average molecular weight.
<Viscosity of polyimide precursor solution>
The viscosity of the polyimide precursor solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. with a sample volume of 0.8 ml.
<ポリイミドの重量平均分子量>
 ポリイミド粉体15mgを、15000mgのN-メチルピロリドン(NMP)に浸漬し、ウォーターバスで60℃に加熱しながら、スターラーを用いて回転速度200rpmで、目視で溶解を確認するまで3~60時間撹拌することにより、0.1重量%の濃度のNMP溶液を得た。その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、検出器:示差屈折率(RID)検出器、使用カラム:SHODEX製GPC LF-804を2本直列に接続)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、カラム温度37℃、検出器温度37℃の条件で測定を行った。ポリイミドの重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド溶液の粘度>
 ポリイミド溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Weight average molecular weight of polyimide>
15 mg of the polyimide powder is immersed in 15000 mg of N-methylpyrrolidone (NMP), and heated to 60 ° C. in a water bath with a stirrer at a rotation speed of 200 rpm and stirred for 3 to 60 hours until visual confirmation of dissolution. As a result, an NMP solution having a concentration of 0.1% by weight was obtained. The solution was filtered through a syringe filter (pore size: 0.45 μm). As a developing solvent, a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, and a GPC device (manufactured by Tosoh, HLC-8120, detector: differential) Refractive index (RID) detector, column used: two GPC LF-804 manufactured by SHODEX connected in series), sample injection amount 50 μL, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions. The weight average molecular weight of the polyimide was the same as that of the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300,3, 070) as a standard polystyrene conversion value. The elution time was compared with a calibration curve to determine a weight average molecular weight.
<Viscosity of polyimide solution>
The viscosity of the polyimide solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. with a sample volume of 0.8 ml.
<ポリイミド材料(ポリイミド粉体)の平均粒径>
 ポリイミド材料(ポリイミド粉体)を光学顕微鏡(キーエンス製、デジタルマイクロスコープVHX-5000)により倍率100倍で観察し、その観察画像から無作為に、150個のポリイミド材料の粒子を任意に抽出し、抽出した粒子のそれぞれの粒子径を測定し、その平均値を算出して、ポリイミド材料の平均粒径とした。
 なお、ポリイミド材料の粒子形状が球形でない場合には、その長径を測定した。
<Average particle size of polyimide material (polyimide powder)>
The polyimide material (polyimide powder) was observed with an optical microscope (manufactured by Keyence, Digital Microscope VHX-5000) at a magnification of 100 times, and randomly extracted 150 polyimide material particles from the observed image, The particle diameter of each of the extracted particles was measured, and the average value was calculated to be the average particle diameter of the polyimide material.
In addition, when the particle shape of the polyimide material was not spherical, the major axis was measured.
<ポリイミドフィルムの残留溶剤量>
 ポリイミドフィルム中の残留溶剤の種類を特定した後、特定された残留溶剤の含有量を定量した。
[残留溶剤の種類の特定]
 残留溶剤の種類の特定を、パージ&トラップ装置(加熱脱着装置)が連結したGC-MSを用いて行った。
 パージ&トラップ装置(製品名JTD505-III、日本分析工業株式会社)に、ポリイミドフィルム10mgを入れた試料管をセットし、200℃で30分保持して加熱して発生したガスを、-60℃のトラップ管で捕集し、捕集したものを315℃で加熱して飛ばしてGC-MSへ送り込み、発生した有機ガスの成分の定性分析を行なった。
(パージ&トラップ装置条件)
 総スプリット比(導入量/排気量)1:10、
 キャリアガス ヘリウム1.0ml/min定量
(GC-MS条件)
 装置名:GC-MS装置(Agilent社、6890/5973 GC/MS)
 カラム:UA-5 内径250μm×長さ30m×膜厚0.25μm(フロンティア・ラボ製)、昇温条件 50℃(5分保持) → 10℃/分(昇温) → 320℃(3分保持)
[残留溶剤の定量]
 ポリイミドフィルムの濃度が5質量%濃度となるように、N,N-ジメチルホルムアミド(DMF)にポリイミドフィルムを添加して、ポリイミドフィルム/N,N-ジメチルホルムアミド(DMF)溶液を調製し、この溶液に、内部標準液(0.2質量%濃度アニソール/DMF溶液)を添加してサンプル溶液を調製した。当該サンプル溶液について、GC-MS装置(例えば、Agilent社、6890/5973 GC/MS)を用いて、下記条件で、GC-MS測定を行った。当該GC-MS測定は3回行い、測定結果は3回の平均値とした。
 (GC条件)
 カラム:InertCapWax 内径250μm×長さ30m×膜厚0.25μm(ジーエルサイエンス製)、
 サンプル打ち込み量0.2uL、スプリット比50:1、キャリアガス ヘリウム94.3kPa定圧、注入口温度250℃、昇温条件 40℃(5分保持) → 5℃/分 → 120℃ → 20℃/分 → 240℃(6分保持)、トランスファーライン温度 250℃ 
 (MS条件)
 イオン化法 EI、測定モード SIM、イオン源温度 250℃、四重極温度 150℃、イオン化電圧 70eV
 (定量イオン)
 DMAc m/z = 72,87
 ジクロロメタン m/z = 49,84
 酢酸エチル m/z = 43,88
 酢酸ブチル m/z = 43,56,73
 PGMEA m/z = 45,90
 アニソール m/z = 93,108
<Amount of residual solvent in polyimide film>
After specifying the type of residual solvent in the polyimide film, the content of the specified residual solvent was quantified.
[Specification of residual solvent type]
The type of the residual solvent was specified using a GC-MS connected to a purge & trap device (heat desorption device).
A sample tube containing 10 mg of a polyimide film was set in a purge & trap device (product name: JTD505-III, Nippon Kagaku Kogyo Co., Ltd.), and the gas generated by heating at 200 ° C. for 30 minutes and heating at −60 ° C. Was collected at a temperature of 315 ° C. and sent to a GC-MS for qualitative analysis of the components of the generated organic gas.
(Purge & trap condition)
1:10 total split ratio (introduction / displacement)
Carrier gas Helium 1.0ml / min quantitative (GC-MS condition)
Apparatus name: GC-MS apparatus (Agilent, 6890/5973 GC / MS)
Column: UA-5 Inner diameter 250 μm × length 30 m × film thickness 0.25 μm (Frontier Lab) )
[Quantification of residual solvent]
A polyimide film is added to N, N-dimethylformamide (DMF) so that the concentration of the polyimide film becomes 5% by mass, to prepare a polyimide film / N, N-dimethylformamide (DMF) solution. , An internal standard solution (0.2% by mass anisole / DMF solution) was added to prepare a sample solution. The sample solution was subjected to GC-MS measurement under the following conditions using a GC-MS device (eg, Agilent, 6890/5973 GC / MS). The GC-MS measurement was performed three times, and the measurement result was an average value of the three measurements.
(GC conditions)
Column: InertCapWax inner diameter 250 μm × length 30 m × film thickness 0.25 μm (manufactured by GL Sciences)
Sample injection amount 0.2uL, split ratio 50: 1, carrier gas helium 94.3kPa constant pressure, injection port temperature 250 ° C, heating condition 40 ° C (holding 5 minutes) → 5 ° C / min → 120 ° C → 20 ° C / min → 240 ° C (hold for 6 minutes), transfer line temperature 250 ° C
(MS condition)
Ionization method EI, measurement mode SIM, ion source temperature 250 ° C, quadrupole temperature 150 ° C, ionization voltage 70eV
(Quantitative ion)
DMAc m / z = 72,87
Dichloromethane m / z = 49,84
Ethyl acetate m / z = 43,88
Butyl acetate m / z = 43,56,73
PGMEA m / z = 45,90
Anisole m / z = 93,108
 例えば、残留溶剤がDMAcである場合、DMAc含有量が、0.01質量%、0.05質量%、0.1質量%となるようにそれぞれ調製した各DMAc(測定対象化合物)/DMF溶液に、上記したサンプル溶液と同様に内部標準液を添加して調製した各検量線液について、GC-MS測定を行い、検量線を作成した。なお、GC-MS測定は3回行い、測定結果は3回の平均値とした。
 そして、当該検量線を基準として、ポリイミドフィルムに対する質量比としてDMAcの含有量を算出した。
 含まれている残留溶剤が2種以上の場合、各残留溶剤に対して上記DMAcのように検量線液を調製し、当該各検量線液についてのGC-MS測定による測定結果から作成された検量線を基準とした。
For example, when the residual solvent is DMAc, each DMAc (measurement target compound) / DMF solution prepared so that the DMAc content is 0.01% by mass, 0.05% by mass, and 0.1% by mass, respectively. GC-MS measurement was performed on each calibration curve solution prepared by adding an internal standard solution in the same manner as the sample solution described above, and a calibration curve was created. The GC-MS measurement was performed three times, and the measurement result was an average value of the three measurements.
Then, based on the calibration curve, the content of DMAc was calculated as a mass ratio to the polyimide film.
When two or more kinds of residual solvents are contained, a calibration curve solution is prepared for each of the residual solvents as in the case of DMAc, and a calibration curve created from the measurement results of each calibration curve solution by GC-MS measurement. The line was referenced.
<ポリイミド材料の残留溶剤量>
 ポリイミド材料の残留溶剤量は、前記ポリイミドフィルムの残留溶剤量の測定法において、ポリイミドフィルムの代わりにポリイミド材料を用いた以外は同様にして行った。
<Residual solvent amount of polyimide material>
The amount of the residual solvent in the polyimide material was measured in the same manner as in the above-mentioned method for measuring the amount of the residual solvent in the polyimide film except that the polyimide material was used instead of the polyimide film.
<ポリイミドフィルムの全光線透過率>
 JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
<Total light transmittance of polyimide film>
It was measured by a haze meter (HM150, manufactured by Murakami Color Research Laboratory) according to JIS K7361-1.
<静的屈曲試験(φ2mm、24時間静置)>
 以下、静的屈曲試験の方法について、図1を参照して説明する。
 15mm×40mmに切り出したポリイミドフィルムの試験片1を長辺の半分の位置で折り曲げ、試験片1の長辺の両端部が厚み2mmの金属片2(100mm×30mm×2mm)を上下面から挟むようにして配置し、試験片1の両端部と金属片2との上下面での重なりしろが各々10mmずつになるようにテープで固定した。試験片1が固定された金属片2を、上下からガラス板(100mm×100mm×0.7mm)3a、3bで挟み、試験片1を内径2mmで屈曲した状態で固定した。その際に、金属片2上で試験片1がない部分にダミーの試験片4a、4bを挟み込み、ガラス板3a、3bが平行になるようにテープで固定した。
 このようにして屈曲した状態で固定した試験片を、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置した後、ガラス板と試験片固定用のテープを外し、試験片にかかる力を解放した。その後、試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後に試験片の内角を測定した。
 なお、当該静的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
 (評価基準)
 内径2mmで屈曲した状態で固定し、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置、という従来技術よりも厳しい条件下で静的屈曲試験を行ったため、試験片の内角は以下のように評価された。A,Bであれば静的屈曲耐性が良好であるが、Aであるとより優れている。
A:110°以上
B:90°以上110°未満
C:90°未満
<Static bending test (2mm, 24 hours standing)>
Hereinafter, the method of the static bending test will be described with reference to FIG.
A test piece 1 of a polyimide film cut into a size of 15 mm × 40 mm was bent at a position corresponding to half of the long side, and both ends of the long side of the test piece 1 were sandwiched between metal pieces 2 (100 mm × 30 mm × 2 mm) having a thickness of 2 mm from above and below. The test piece 1 and the metal piece 2 were fixed with tape so that the overlap between the upper and lower surfaces of the metal piece 2 was 10 mm each. The metal piece 2 to which the test piece 1 was fixed was sandwiched between glass plates (100 mm × 100 mm × 0.7 mm) 3 a and 3 b from above and below, and the test piece 1 was fixed in a state of being bent at an inner diameter of 2 mm. At that time, dummy test pieces 4a and 4b were sandwiched between portions of the metal piece 2 where the test piece 1 was not provided, and fixed with tape so that the glass plates 3a and 3b were parallel.
The test piece fixed in the bent state in this manner was allowed to stand for 24 hours in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH), and then the glass plate and the tape for fixing the test piece were removed. The force on the specimen was released. Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after the force applied to the test piece was released.
In addition, when the film completely returns to the original state without being affected by the static bending test, the internal angle is 180 °.
(Evaluation criteria)
It was fixed in a state of bending at an inner diameter of 2 mm, and was subjected to a static bending test under a more severe condition than the conventional technology of standing for 24 hours in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH). The interior angles of the test pieces were evaluated as follows. A and B have good static bending resistance, but A is more excellent.
A: 110 ° or more B: 90 ° or more and less than 110 ° C: less than 90 °
<動的屈曲試験(MIT法 往復折曲げ試験)>
 幅15.0mm×長さ110mmの大きさに切り出したポリイミドフィルムの試験片を、JIS 8115-2001に準拠して、MIT試験機(東洋精機製作所製、耐折疲労試験機MIT D-2)を用いて、屈曲半径1mm、荷重500gの条件で、試験片が破断するまでの往復折曲げ回数を測定した。前記往復折曲げ試験を3回行い、3回の試験結果の往復折曲げ回数の平均値を求めた。
 (評価基準)
AA,A,Bであれば動的屈曲耐性が良好であるが、AA,Aであるとより優れている。
AA:50000回以上
A:45000回以上50000回未満
B:35000回以上45000回未満
C:35000回未満
<Dynamic bending test (MIT reciprocating bending test)>
A MIT tester (Toyo Seiki Seisakusho's folding fatigue tester MIT D-2) was used to cut a polyimide film test piece cut into a size of 15.0 mm wide × 110 mm long in accordance with JIS 8115-2001. Under the conditions of a bending radius of 1 mm and a load of 500 g, the number of reciprocating bendings until the test piece was broken was measured. The reciprocating bending test was performed three times, and an average value of the number of reciprocating bendings of the three test results was obtained.
(Evaluation criteria)
AA, A and B have good dynamic bending resistance, but AA and A are more excellent.
AA: 50,000 or more times A: 45,000 to less than 50,000 times B: 35,000 to less than 45,000 times C: less than 35,000 times
<ポリイミドフィルムのYI値(黄色度)>
 YI値は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出した。
  YI=100(1.2769X-1.0592Z)/Y
<YI value (yellowness) of polyimide film>
The YI value was measured using an ultraviolet-visible-near-infrared spectrophotometer (JASCO Corporation V-7100) according to JIS K7373-2006, and using an auxiliary illuminant C and a 2-degree visual field according to a spectrophotometric colorimetric method. , Tristimulus values X, Y, and Z in the XYZ color system are determined based on the transmittance measured in the range of 250 nm or more and 800 nm or less at 1 nm intervals, and the values of X, Y, and Z are calculated from the following equations. Calculated.
YI = 100 (1.2769X-1.0592Z) / Y
<膜厚測定法>
 10cm×10cmの大きさに切り出したポリイミドフィルムの試験片の四隅と中央の計5点の膜厚を、デジタルリニアゲージ(株式会社尾崎製作所製、型式PDN12 デジタルゲージ)を用いて測定し、測定値の平均をポリイミドフィルムの膜厚とした。
<Thickness measurement method>
A total of 5 film thicknesses at the four corners and the center of a polyimide film test piece cut into a size of 10 cm × 10 cm were measured using a digital linear gauge (model PDN12 digital gauge manufactured by Ozaki Corporation), and the measured values were measured. Was taken as the thickness of the polyimide film.
<ポリイミドフィルムの引張弾性率>
 15mm×40mmに切り出したポリイミドフィルムの試験片を、温度25℃、相対湿度60%の条件で2時間調湿した後、JIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして、25℃における引張弾性率を測定した。引張り試験機は(島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用いた。
<Tensile modulus of polyimide film>
A test piece of a polyimide film cut into a size of 15 mm × 40 mm was conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and the tensile speed was set to 10 mm / min and the distance between chucks was set to 20 mm in accordance with JIS K7127. And the tensile modulus at 25 ° C. were measured. A tensile tester (manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) was used.
<鉛筆硬度>
 鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用い、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行った。
<Pencil hardness>
The pencil hardness was determined by conditioning a measurement sample at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and then using a pencil for test prescribed by JIS-S-6006, using a pencil scratching film made by Toyo Seiki Co., Ltd. A pencil hardness test (load of 0.98 N) specified in JIS K5600-5-4 (1999) was performed on the film surface using a tester, and the highest pencil hardness without scratching was evaluated.
(合成例1)
 5Lのセパラブルフラスコに、脱水されたN,N-ジメチルアセトアミド(DMAc)(2903g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(15.9g)を溶解させた溶液を入れ、液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(14.6g)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(387g)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(548g)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体Aが溶解したポリイミド前駆体A溶液(固形分25質量%)を合成した。ポリイミド前駆体Aに用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
(Synthesis example 1)
Dissolved N, N-dimethylacetamide (DMAc) (2903 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (15.9 g) in a 5 L separable flask The solution was put into the solution, and the temperature of the solution was controlled to 30 ° C., and 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (14.6 g) was added. And gradually stirred for 30 minutes with a mechanical stirrer. Thereto, 2,2′-bis (trifluoromethyl) benzidine (TFMB) (387 g) was added, and after confirming complete dissolution, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride ( 6FDA) (548 g) was gradually added in several portions so that the temperature rise was 2 ° C. or less, to synthesize a polyimide precursor A solution (solid content: 25% by mass) in which the polyimide precursor A was dissolved. The molar ratio of TFMB and AprTMOS (TFMB: AprTMOS) used for the polyimide precursor A was 95: 5.
(合成例2)
 前記合成例1と同様にして、ポリイミド前駆体A溶液を得た。
 窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体A溶液(400g)を加えた。そこへ、脱水されたN,N-ジメチルアセトアミド(109g)を加え均一になるまで撹拌した。次に触媒であるピリジン(41.4g)と無水酢酸(53.4g)を加え24時間室温で撹拌し、ポリイミドA溶液を合成した。
 得られたポリイミドA溶液に酢酸ブチル(406g)を加え均一になるまで撹拌し、次にt-ブタノール(3000g)を徐々に加え白色スラリーを得た。上記スラリーをろ過し、スラリーをイソプロピルアルコール(130g)が入ったビーカーで洗浄し、その後ろ過するという工程を18回繰り返し、真空乾燥機を用いて110℃で乾燥し、ポリイミドA1(ポリイミド材料、ポリイミド粉体)を得た。
 なお、t-ブタノール(3000g)を徐々に加えて得られた白色スラリーをろ過後のポリイミド粉体(0回目)、並びに、イソプロピルアルコール洗浄を5回後、10回後、13回後、及び15回後で得られたポリイミド粉体それぞれについて、残留溶剤量を確認したところ、それぞれ、0回:16754ppm、5回後:2500ppm、10回後:220ppm、13回後:95ppm、15回後、50ppmであった。
 GPCによって測定したポリイミドA1の重量平均分子量は175000であった。ポリイミドA1の平均粒径は250μmであった。
 ポリイミドA1の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが17ppmであった。
(Synthesis example 2)
A polyimide precursor A solution was obtained in the same manner as in Synthesis Example 1.
Under a nitrogen atmosphere, the above polyimide precursor A solution (400 g) cooled to room temperature was added to a 5 L separable flask. Thereto, dehydrated N, N-dimethylacetamide (109 g) was added, and the mixture was stirred until it became uniform. Next, pyridine (41.4 g) as a catalyst and acetic anhydride (53.4 g) were added, and the mixture was stirred at room temperature for 24 hours to synthesize a polyimide A solution.
Butyl acetate (406 g) was added to the obtained polyimide A solution, and the mixture was stirred until it became uniform. Then, t-butanol (3000 g) was gradually added to obtain a white slurry. The process of filtering the slurry, washing the slurry in a beaker containing isopropyl alcohol (130 g), and then filtering is repeated 18 times, and dried at 110 ° C. using a vacuum dryer to obtain polyimide A1 (polyimide material, polyimide material). Powder).
The white slurry obtained by gradually adding t-butanol (3000 g) was filtered to obtain a polyimide powder (0 th time) after filtration, and 5 times, 10 times, 13 times, and 15 times of isopropyl alcohol washing. When the amount of residual solvent was confirmed for each of the polyimide powders obtained after the repetition, 0 times: 16754 ppm, after 5 times: 2500 ppm, after 10 times: 220 ppm, after 13 times: 95 ppm, after 15 times, 50 ppm Met.
The weight average molecular weight of the polyimide A1 measured by GPC was 175,000. The average particle size of the polyimide A1 was 250 μm.
When the residual solvent amount of the polyimide A1 was confirmed, the type of the residual solvent was only DMAc, and the residual solvent amount was 17 ppm for DMAc.
(比較合成例1)
 合成例2と同様にして、ポリイミドA溶液を得た。
 得られたポリイミドA溶液(346.4g)を5Lのセパラブルフラスコに移し、酢酸ノルマル-ブチル(以下、酢酸ブチルという)(235.3g)を加え均一になるまで撹拌した。次にメタノール(523.5g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(1.221kg)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミドCA1(65.8g)を得た。
 ポリイミドCA1の平均粒径は230μmであった。
 ポリイミドCA1の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが2500ppmであった。
(Comparative Synthesis Example 1)
A polyimide A solution was obtained in the same manner as in Synthesis Example 2.
The obtained polyimide A solution (346.4 g) was transferred to a 5 L separable flask, and normal-butyl acetate (hereinafter, referred to as butyl acetate) (235.3 g) was added and stirred until uniform. Next, methanol (523.5 g) was gradually added to obtain a slightly turbid solution. Methanol (1.221 kg) was added all at once to the turbid solution to obtain a white slurry. The slurry was filtered and washed five times with methanol to obtain polyimide CA1 (65.8 g).
The average particle size of the polyimide CA1 was 230 μm.
When the residual solvent amount of the polyimide CA1 was confirmed, the type of the residual solvent was only DMAc, and the residual solvent amount was 2500 ppm for DMAc.
(合成例3~4、比較合成例2~3)
 合成例2と同様にして、ポリイミドA溶液を得た。
 得られたポリイミドA溶液に酢酸ブチル(406g)を加え均一になるまで撹拌し、次にt-ブタノール(3000g)を徐々に加え白色スラリーを得た。上記スラリーをろ過し、スラリーをIPA(130g)が入ったビーカーで洗浄し、その後ろ過するという工程を表3に示す回数だけ繰り返した以外は、合成例1と同様にして、ポリイミドA2及びA3、並びに、ポリイミドCA2及びCA3を得た。
 ポリイミドA2は、平均粒径が240μm、残留溶剤量としてDMAcが50ppmであった。
 ポリイミドA3は、平均粒径が230μm、残留溶剤量としてDMAcが95ppmであった。
 ポリイミドCA2は、平均粒径が250μm、残留溶剤量としてDMAcが220ppmであった。
 ポリイミドCA3は、平均粒径が240μm、残留溶剤量としてDMAcが2500ppmであった。
(Synthesis Examples 3 and 4, Comparative Synthesis Examples 2 and 3)
A polyimide A solution was obtained in the same manner as in Synthesis Example 2.
Butyl acetate (406 g) was added to the obtained polyimide A solution, and the mixture was stirred until it became uniform. Then, t-butanol (3000 g) was gradually added to obtain a white slurry. Filtering the slurry, washing the slurry in a beaker containing IPA (130 g), and then filtering, was repeated in the same manner as in Synthesis Example 1 except that the steps of polyimide A2 and A3, In addition, polyimides CA2 and CA3 were obtained.
Polyimide A2 had an average particle size of 240 μm and a residual solvent amount of DMAc of 50 ppm.
The polyimide A3 had an average particle size of 230 μm and a residual solvent content of 95 ppm DMAc.
The polyimide CA2 had an average particle size of 250 μm and a residual solvent amount of DMAc of 220 ppm.
The polyimide CA3 had an average particle size of 240 μm and a residual solvent amount of DMAc of 2500 ppm.
(実施例1~4、比較例1~2)
 合成例2のポリイミドA1を用い、下記(C1)~(C3)の手順を行うことで、表1に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1にジクロロメタンを添加して、固形分17質量%のポリイミドA1ジクロロメタン溶液を作製した。ポリイミドA1ジクロロメタン溶液(固形分17質量%)の25℃における粘度は4600cpsであった。
(C2)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1ジクロロメタン溶液(固形分濃度17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表1に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表1に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
 得られたポリイミドフィルムの評価結果を表1に示す。
(Examples 1-4, Comparative Examples 1-2)
By using the polyimide A1 of Synthesis Example 2 and performing the following procedures (C1) to (C3), polyimide films having the thicknesses shown in Table 1 were produced.
(C1) Dichloromethane was added to the polyimide A1 so that the solid concentration of the polyimide A1 was 17% by mass to prepare a polyimide A1 dichloromethane solution having a solid content of 17% by mass. The viscosity at 25 ° C. of the polyimide A1 dichloromethane solution (solid content: 17% by mass) was 4,600 cps.
(C2) A polyimide oven A1 dichloromethane solution (solid content concentration: 17% by mass) was placed on a sheet-like support (thickness: 100 μm, SUS304, SUS304 CSP-H-TA, manufactured by Nissin Steel Co., Ltd.), and then circulated in an oven described below. The film was dried so as to have a film thickness as shown in Table 1 after drying in the air, and after natural drying, the polyimide resin coating film was peeled off.
(C3) The peeled polyimide resin coating film was cut into a size of 150 mm × 200 mm. Using two metal frames (external dimensions 150 mm × 200 mm, internal dimensions 130 mm × 180 mm), the cut polyimide resin coating was sandwiched, and the metal frame and the polyimide resin coating were fixed with a fixing jig. The fixed polyimide resin coating film was dried in a circulating oven at a heating temperature (° C.) and a time (minute) shown in Table 1 to produce a polyimide film.
Table 1 shows the evaluation results of the obtained polyimide films.
(実施例5~6、比較例3~5)
 合成例1のポリイミド前駆体A溶液を用い、下記(H1)~(H2)の手順を行うことで、表1に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(H1)合成例1のポリイミド前駆体A溶液(固形分濃度25質量%)を、シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、後述する窒素気流下での加熱後のフィルム膜厚が表1に示した膜厚になるように塗布し、支持体と塗布されたポリイミド前駆体A溶液を循環オーブンで、40℃で60分間乾燥し、その後、120℃で15分間乾燥し、ポリイミド前駆体樹脂塗膜を形成後、ポリイミド前駆体樹脂塗膜を剥離した。
(H2)剥離したポリイミド前駆体樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して切り出したポリイミド前駆体樹脂塗膜を挟持し固定治具で金属枠とポリイミド前駆体樹脂塗膜とを固定した。固定したポリイミド前駆体樹脂塗膜を、オーブン中で、窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、表1に示す加熱温度(℃)まで昇温し、その温度で表1に示す時間(分)加熱し、ポリイミドフィルムを形成した。
(Examples 5 to 6, Comparative Examples 3 to 5)
By using the polyimide precursor A solution of Synthesis Example 1 and performing the following procedures (H1) to (H2), polyimide films having the thicknesses shown in Table 1 were produced.
(H1) The polyimide precursor A solution of Synthesis Example 1 (solid content concentration 25% by mass) was applied to a sheet-like support (SUS304 CSP-H-TA, thickness: 100 μm, SUS304, manufactured by Nissin Steel Co., Ltd.). The film was heated so that the film thickness after heating under a nitrogen stream described below was applied to the film thickness shown in Table 1, and the support and the applied polyimide precursor A solution were heated at 40 ° C. for 60 minutes in a circulation oven. After drying, the coating was dried at 120 ° C. for 15 minutes to form a polyimide precursor resin coating, and the polyimide precursor resin coating was peeled off.
(H2) The peeled polyimide precursor resin coating film was cut into a size of 150 mm × 200 mm. Using two metal frames (external dimensions 150 mm x 200 mm, internal dimensions 130 mm x 180 mm), the cut polyimide precursor resin coating was sandwiched, and the metal frame and the polyimide precursor resin coating were fixed with a fixing jig. . The fixed polyimide precursor resin coating film was heated in an oven under a nitrogen stream (oxygen concentration: 100 ppm or less) at a heating rate of 10 ° C./min to a heating temperature (° C.) shown in Table 1, and at that temperature. Heating was performed for the time (minute) shown in Table 1 to form a polyimide film.
Figure JPOXMLDOC01-appb-T000011
*1:沸点が100℃未満
*2:沸点が100℃以上
ジクロロメタン:沸点40℃
DMAc(ジメチルアセトアミド):沸点165.5℃
Figure JPOXMLDOC01-appb-T000011
* 1: Boiling point of less than 100 ° C * 2: Boiling point of 100 ° C or more dichloromethane: Boiling point of 40 ° C
DMAc (dimethylacetamide): Boiling point 165.5 ° C
(比較例6)
 比較合成例1のポリイミドCA1を酢酸ブチルとPGMEAの混合溶媒(8:2、体積比)に溶かし、固形分25質量%のポリイミドCA1溶液を作製した。ポリイミドCA1溶液(固形分25重量%)の25℃における粘度は40000cpsであった。
 上述のように得られたポリイミドCA1溶液を用いて、下記(iv)~(vi)の手順を行うことで、50μmの厚みのポリイミドフィルムを作製した。
 (iv)ポリイミドCA1溶液をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
 (v)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、250℃まで昇温し、250℃で1時間保持後、室温まで冷却した。
 (vi)ガラスより剥離し、ポリイミドフィルムを得た。
(Comparative Example 6)
Polyimide CA1 of Comparative Synthesis Example 1 was dissolved in a mixed solvent of butyl acetate and PGMEA (8: 2, volume ratio) to prepare a polyimide CA1 solution having a solid content of 25% by mass. The viscosity at 25 ° C. of the polyimide CA1 solution (solid content: 25% by weight) was 40,000 cps.
Using the polyimide CA1 solution obtained as described above, the following procedures (iv) to (vi) were performed to prepare a polyimide film having a thickness of 50 μm.
(Iv) The polyimide CA1 solution was applied on glass and dried in a circulating oven at 120 ° C. for 10 minutes.
(V) Under a nitrogen stream (oxygen concentration: 100 ppm or less), the temperature was raised to 250 ° C. at a rate of 10 ° C./min, kept at 250 ° C. for 1 hour, and cooled to room temperature.
(Vi) The polyimide film was peeled off from the glass to obtain a polyimide film.
(比較例7)
 合成例1のポリイミド前駆体A溶液を用い、下記(i)~(iii)の手順を行うことで、表2に記載の厚みのポリイミドフィルムをそれぞれ作製した。 
(i)ポリイミド前駆体A溶液をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
(ii)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、300℃まで昇温し、300℃で60分間保持後、室温まで冷却した。
(iii)ガラスより剥離し、各ポリイミドフィルムを得た。
(Comparative Example 7)
By using the polyimide precursor A solution of Synthesis Example 1 and performing the following procedures (i) to (iii), polyimide films having the thicknesses shown in Table 2 were produced.
(I) The polyimide precursor A solution was applied on glass and dried in a circulating oven at 120 ° C. for 10 minutes.
(Ii) Under a nitrogen stream (oxygen concentration: 100 ppm or less), the temperature was raised to 300 ° C. at a rate of 10 ° C./min, kept at 300 ° C. for 60 minutes, and then cooled to room temperature.
(Iii) It was peeled off from the glass to obtain each polyimide film.
Figure JPOXMLDOC01-appb-T000012
 *2:沸点が100℃以上
DMAc(ジメチルアセトアミド):沸点165.5℃
酢酸ブチル:沸点126℃
PGMEA(プロピレングリコールモノメチルエーテルアセテート):沸点145℃
Figure JPOXMLDOC01-appb-T000012
* 2: DMAc (dimethylacetamide) having a boiling point of 100 ° C. or higher: 165.5 ° C. boiling point
Butyl acetate: Boiling point 126 ° C
PGMEA (propylene glycol monomethyl ether acetate): Boiling point 145 ° C
(実施例7~8、比較例8~9)
 実施例1において、合成例2のポリイミドA1を用いる代わりに、合成例3~4のポリイミドA2、A3、比較合成例2~3のポリイミドCA2、CA3をそれぞれ用いた以外は、実施例1と同様にして、表3に記載の厚みのポリイミドフィルムをそれぞれ作製した。
 得られたポリイミドフィルムの評価結果を表3に示す。
(Examples 7 and 8, Comparative Examples 8 and 9)
In the same manner as in Example 1, except that the polyimides A2 and A3 of Synthesis Examples 3 to 4 and the polyimides CA2 and CA3 of Comparative Synthesis Examples 2 to 3 were used instead of using the polyimide A1 of Synthesis Example 2, respectively. Then, polyimide films having the thicknesses shown in Table 3 were produced.
Table 3 shows the evaluation results of the obtained polyimide films.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(実施例9~11)
 合成例2のポリイミドA1を用い、下記(C1’)~(C3’)の手順を行うことで、表4に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1’)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1に酢酸エチル(沸点77℃)を添加して、固形分17質量%のポリイミドA1酢酸エチル溶液を作製した。ポリイミドA1酢酸エチル溶液(固形分17質量%)の25℃における粘度は4800cpsであった。
(C2’)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1酢酸エチル溶液(固形分17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表4に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3’)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表4に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
 得られたポリイミドフィルムの評価結果を表4に示す。
(Examples 9 to 11)
By using the polyimide A1 of Synthesis Example 2 and performing the following procedures (C1 ′) to (C3 ′), polyimide films having the thicknesses shown in Table 4 were produced.
(C1 ′) Ethyl acetate (boiling point: 77 ° C.) was added to the polyimide A1 so that the solid concentration of the polyimide A1 was 17% by mass to prepare a polyimide A1 ethyl acetate solution having a solid content of 17% by mass. The viscosity at 25 ° C. of the polyimide A1 ethyl acetate solution (solid content: 17% by mass) was 4,800 cps.
(C2 ') A polyimide A1 ethyl acetate solution (solid content 17% by mass) is circulated on a sheet-like support (SUS304 CSP-H-TA, thickness: 100 µm, SUS304, manufactured by Nisshin Steel Co., Ltd.) as described below. The coating was performed so that the film thickness after drying in the oven was as shown in Table 4, and after natural drying, the polyimide resin coating film was peeled off.
(C3 ′) The peeled polyimide resin coating film was cut into a size of 150 mm × 200 mm. Using two metal frames (external dimensions 150 mm × 200 mm, internal dimensions 130 mm × 180 mm), the cut polyimide resin coating was sandwiched, and the metal frame and the polyimide resin coating were fixed with a fixing jig. The fixed polyimide resin coating film was dried in a circulation oven at a heating temperature (° C.) and a time (minute) shown in Table 4 to produce a polyimide film.
Table 4 shows the evaluation results of the obtained polyimide films.
(実施例12~14、比較例10)
 合成例2のポリイミドA1を用い、下記(C1”)~(C3”)の手順を行うことで、表4に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(C1”)ポリイミドA1の固形分濃度が17質量%となるように、ポリイミドA1に酢酸ブチル(沸点126℃)を添加して、固形分17質量%のポリイミドA1酢酸ブチル溶液を作製した。ポリイミドA1酢酸ブチル溶液(固形分17質量%)の25℃における粘度は5000cpsであった。
(C2”)シート状の支持体(厚さ100μm、SUS304、日新製鋼(株)製、SUS304 CSP-H-TA)に、ポリイミドA1酢酸ブチル溶液(固形分17質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表4に示した膜厚になるように塗布し、自然乾燥後、ポリイミド樹脂塗膜を剥離した。
(C3”)剥離したポリイミド樹脂塗膜を150mm×200mmの大きさに切り出した。金属の枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド樹脂塗膜を挟持し固定治具で金属枠とポリイミド樹脂塗膜とを固定した。固定したポリイミド樹脂塗膜を循環オーブン中で、表4に示す加熱温度(℃)及び時間(分)で乾燥し、ポリイミドフィルムを作製した。
 得られたポリイミドフィルムの評価結果を表4に示す。
(Examples 12 to 14, Comparative Example 10)
By using the polyimide A1 of Synthesis Example 2 and performing the following procedures (C1 ″) to (C3 ″), polyimide films having the thicknesses shown in Table 4 were produced.
(C1 ″) Butyl acetate (boiling point: 126 ° C.) was added to the polyimide A1 so that the solid concentration of the polyimide A1 was 17% by mass to prepare a polyimide A1 butyl acetate solution having a solid content of 17% by mass. The viscosity at 25 ° C. of the A1 butyl acetate solution (solid content: 17% by mass) was 5000 cps.
(C2 ″) A polyimide butyl acetate solution (solid content 17% by mass) is circulated on a sheet-like support (thickness: 100 μm, SUS304, SUS304 CSP-H-TA, manufactured by Nissin Steel Co., Ltd.) as described below. The coating was performed so that the film thickness after drying in the oven was as shown in Table 4, and after natural drying, the polyimide resin coating film was peeled off.
(C3 ″) The peeled polyimide resin coating film was cut out to a size of 150 mm × 200 mm. The polyimide resin coating film cut out using two metal frames (outer size 150 mm × 200 mm, inner size 130 mm × 180 mm). The metal frame and the polyimide resin coating were fixed with a fixing jig, and the fixed polyimide resin coating was dried in a circulating oven at a heating temperature (° C.) and a time (minute) shown in Table 4 to obtain a polyimide. A film was prepared.
Table 4 shows the evaluation results of the obtained polyimide films.
Figure JPOXMLDOC01-appb-T000014
*1:沸点が100℃未満
*2:沸点が100℃以上
酢酸エチル:沸点77℃
酢酸ブチル:沸点126℃
DMAc(ジメチルアセトアミド):沸点165.5℃
Figure JPOXMLDOC01-appb-T000014
* 1: Boiling point of less than 100 ° C * 2: Boiling point of 100 ° C or more ethyl acetate: Boiling point of 77 ° C
Butyl acetate: Boiling point 126 ° C
DMAc (dimethylacetamide): Boiling point 165.5 ° C
(合成例5~10)
 合成例1のポリイミド前駆体Aの合成に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)を、95:5から、表5に示すように変更した以外は、合成例1と同様にして、ポリイミド前駆体A4~A9溶液をそれぞれ得た。
 合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A4~A9溶液をそれぞれ用いた以外は、合成例2と同様にして、ポリイミドA4~A9(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
 ポリイミドA4~A9のそれぞれについて、GPCによって測定した重量平均分子量、残留溶剤(DMAc)量を表5に示す。
(Synthesis Examples 5 to 10)
The same procedure as in Synthesis Example 1 was carried out except that the molar ratio of TFMB and AprTMOS (TFMB: AprTMOS) used for synthesis of the polyimide precursor A of Synthesis Example 1 was changed from 95: 5 as shown in Table 5. Thus, polyimide precursor A4 to A9 solutions were obtained, respectively.
In the synthesis of the polyimide of Synthesis Example 2, polyimide A4 to A9 (polyimide material, polyimide powder) were prepared in the same manner as in Synthesis Example 2 except that the polyimide precursor A solution was used instead of the polyimide precursor A solution. Body).
Table 5 shows the weight average molecular weight and residual solvent (DMAc) amount of each of the polyimides A4 to A9 measured by GPC.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(実施例15~20)
 実施例1においてポリイミドA1を用いる代わりに、合成例5~10で得られたポリイミドA4~A9をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表6に記載の厚みのポリイミドフィルムをそれぞれ作製した。
 得られたポリイミドフィルムの評価結果を表6に示す。
(Examples 15 to 20)
In the same manner as in Example 1 except that the polyimides A4 to A9 obtained in Synthesis Examples 5 to 10 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 6 were obtained. Polyimide films were prepared respectively.
Table 6 shows the evaluation results of the obtained polyimide films.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(合成例11~17)
 合成例1のポリイミド前駆体Aの合成において、Siを含有しないジアミンとして用いられたTFMBの代わりに、TFMBと等モル量の表7に示すジアミン1を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A10~A16溶液をそれぞれ得た。
 合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A10~A16溶液をそれぞれ用いた以外は、合成例2と同様にして、ポリイミドA10~A16(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
 ポリイミドA10~A16のそれぞれについて、GPCによって測定した重量平均分子量、残留溶剤(DMAc)量を表7に示す。
(Synthesis Examples 11 to 17)
Synthesis Example 1 except that in the synthesis of the polyimide precursor A of Synthesis Example 1, TFMB used as a diamine containing no Si was changed to use an equimolar amount of diamine 1 shown in Table 7 with TFMB. In the same manner as in the above, polyimide precursor A10 to A16 solutions were obtained.
In the synthesis of the polyimide of Synthesis Example 2, polyimide A10 to A16 (polyimide material, polyimide powder) were prepared in the same manner as in Synthesis Example 2 except that the polyimide precursor A solution was used instead of the polyimide precursor A solution. Body).
Table 7 shows the weight average molecular weight and residual solvent (DMAc) amount of each of the polyimides A10 to A16 measured by GPC.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(実施例21~27)
 実施例1においてポリイミドA1を用いる代わりに、合成例11~17で得られたポリイミドA10~A16をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表8に記載の厚みのポリイミドフィルムをそれぞれ作製した。
 得られたポリイミドフィルムの評価結果を表8に示す。
(Examples 21 to 27)
In the same manner as in Example 1 except that the polyimides A10 to A16 obtained in Synthesis Examples 11 to 17 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 8 were obtained. Polyimide films were prepared respectively.
Table 8 shows the evaluation results of the obtained polyimide films.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(合成例18)
 合成例1のポリイミド前駆体Aの合成において、酸二無水物として用いられた6FDAの半分を、6FDAと等モル量のピロメリット酸二無水物を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A17溶液(固形分25質量%)を合成した。
 ポリイミド前駆体A17に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
 合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A17溶液を用いた以外は、合成例2と同様にして、ポリイミドA17(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
 GPCによって測定したポリイミドA17の重量平均分子量は176000であった。
 ポリイミドA17の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが22ppmであった。
(Synthesis Example 18)
In the synthesis of the polyimide precursor A of Synthesis Example 1, except that half of 6FDA used as the acid dianhydride was changed to use pyromellitic dianhydride in an equimolar amount to 6FDA. Similarly, a polyimide precursor A17 solution (solid content: 25% by mass) was synthesized.
The molar ratio of TFMB and AprTMOS (TFMB: AprTMOS) used for the polyimide precursor A17 was 95: 5.
In the synthesis of polyimide of Synthesis Example 2, polyimide A17 (polyimide material, polyimide powder) was obtained in the same manner as in Synthesis Example 2 except that a polyimide precursor A17 solution was used instead of the polyimide precursor A solution. Was.
The weight average molecular weight of the polyimide A17 measured by GPC was 176,000.
When the residual solvent amount of the polyimide A17 was confirmed, the type of the residual solvent was only DMAc, and the residual solvent amount was 22 ppm for DMAc.
(合成例19)
 合成例1のポリイミド前駆体Aの合成において、酸二無水物として用いられた6FDAの代わりに、6FDAと等モル量の4,4’-オキシジフタル酸無水物を用いるように変更した以外は、合成例1と同様にして、ポリイミド前駆体A18溶液を得た。ポリイミド前駆体A18に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。
 合成例2のポリイミドの合成において、ポリイミド前駆体A溶液の代わりに、ポリイミド前駆体A18溶液を用いた以外は、合成例2と同様にして、ポリイミドA18(ポリイミド材料、ポリイミド粉体)をそれぞれ得た。
 GPCによって測定したポリイミドA18の重量平均分子量は178000であった。
 ポリイミドA18の残留溶剤量を確認したところ、残留溶剤の種類はDMAcのみであり、残留溶剤量は、DMAcが20ppmであった。
(Synthesis Example 19)
In the synthesis of polyimide precursor A of Synthesis Example 1, except that 6FDA used as an acid dianhydride was changed to use an equimolar amount of 4,4′-oxydiphthalic anhydride with 6FDA. In the same manner as in Example 1, a polyimide precursor A18 solution was obtained. The molar ratio of TFMB and AprTMOS (TFMB: AprTMOS) used for the polyimide precursor A18 was 95: 5.
In the synthesis of the polyimide of Synthesis Example 2, polyimide A18 (polyimide material, polyimide powder) was obtained in the same manner as in Synthesis Example 2 except that the polyimide precursor A18 solution was used instead of the polyimide precursor A solution. Was.
The weight average molecular weight of the polyimide A18 measured by GPC was 178,000.
When the residual solvent amount of the polyimide A18 was confirmed, the type of the residual solvent was only DMAc, and the residual solvent amount was 20 ppm of DMAc.
(実施例28~29)
 実施例1においてポリイミドA1を用いる代わりに、合成例18~19で得られたポリイミドA17~A18をそれぞれ用いた以外は、実施例1と同様の手順を行うことで、表8に記載の厚みのポリイミドフィルムをそれぞれ作製した。
 得られたポリイミドフィルムの評価結果を表9に示す。
(Examples 28 to 29)
In the same manner as in Example 1 except that the polyimides A17 to A18 obtained in Synthesis Examples 18 to 19 were used instead of using the polyimide A1 in Example 1, the thicknesses shown in Table 8 were obtained. Polyimide films were prepared respectively.
Table 9 shows the evaluation results of the obtained polyimide films.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(実施例30~58:積層体の製造)
 ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF製、イルガキュア184)を添加して、ハードコート層用樹脂組成物を調製した。
 実施例1~29の各ポリイミドフィルム上に前記ハードコート層用樹脂組成物を塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させ、10μm膜厚の硬化膜を形成し、積層体を製造した。
 ポリイミドフィルム中にケイ素原子を含むため、ハードコート層との密着性も良好であった。
(Examples 30 to 58: Production of laminated body)
To a 40% by mass solution of pentaerythritol triacrylate in methyl isobutyl ketone, 10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184, manufactured by BASF) was added based on 100 parts by mass of pentaerythritol triacrylate. A resin composition for a coat layer was prepared.
The resin composition for a hard coat layer was coated on each of the polyimide films of Examples 1 to 29, and was irradiated with ultraviolet rays at a light exposure of 200 mJ / cm 2 under a nitrogen gas flow to be cured to form a cured film having a thickness of 10 μm. The laminated body was manufactured.
Since the polyimide film contains silicon atoms, the adhesion to the hard coat layer was also good.

Claims (13)

  1.  下記一般式(1)で表される構造を有するポリイミドを含有し、
     フィルム内の残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下であり、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上である、ポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rはジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
    Containing a polyimide having a structure represented by the following general formula (1),
    As the residual solvent in the film, the content of the organic solvent having a boiling point under 1 atm of less than 100 ° C. is 2000 ppm or less, and the content of the organic solvent having a boiling point at 1 atm of 100 ° C. or more is 100 ppm or less. Yes,
    A polyimide film having a total light transmittance of 85% or more as measured according to JIS K7361-1.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring; R 2 represents a divalent group that is a diamine residue; 2.5 to 50 mol% of the total amount of 2 are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% do not have a silicon atom and are aromatic. A diamine residue having a ring or an aliphatic ring, and n represents the number of repeating units.)
  2.  15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上である、請求項1に記載のポリイミドフィルム。 2. The polyimide film according to claim 1, wherein a tensile modulus at 25 ° C. of a 15 mm × 40 mm test piece measured at 25 ° C. based on JIS K7127 at a tensile speed of 10 mm / min and a distance between chucks of 20 mm is 1.8 GPa or more. .
  3.  JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.10以下である、請求項1又は2に記載のポリイミドフィルム。 3. The polyimide film according to claim 1, wherein a value obtained by dividing a yellowness calculated according to JIS K7373-2006 by a film thickness (μm) is 0.10 or less.
  4.  前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項1乃至3のいずれか一項に記載のポリイミドフィルム。 R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, a cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue. Anhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalic anhydride residue Polyimide film is also one tetravalent group, according to any one of claims 1 to 3.
  5.  前記一般式(1)中のRにおける、前記ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項1乃至4のいずれか一項に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
    In R 2 in the general formula (1), the diamine residue having no aromatic atom or an aromatic ring without a silicon atom is a trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexane Diamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, 3,3'-bis (trifluoro Methyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2- Bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, 2,2-bis [4- (4-aminophenoxy) phenyl] -1, 1,1 5. The compound according to claim 1, which is at least one divalent group selected from the group consisting of a 3,3,3-hexafluoropropane residue and a divalent group represented by the following general formula (2). The polyimide film according to any one of the preceding claims.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
  6.  前記一般式(1)中、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である、請求項1乃至5のいずれか一項に記載のポリイミドフィルム。 In the general formula (1), R 2 is a divalent group that is at least one selected from a diamine residue having no silicon atom and a diamine residue having one or two silicon atoms in the main chain. Wherein 2.5 mol% or more and 50 mol% or less of the total amount of R 2 are diamine residues having one or two silicon atoms in the main chain, and 50 mol% or more and 97.5 mol% or less The polyimide film according to any one of claims 1 to 5, wherein the polyimide film does not have a silicon atom and is a diamine residue having an aromatic ring or an aliphatic ring.
  7.  請求項1乃至6のいずれか一項に記載のポリイミドフィルム製造用ポリイミド材料であり、
     前記一般式(1)で表される構造を有し、残留溶剤として、1気圧下での沸点が100℃未満の有機溶剤の含有量が2000ppm以下で、且つ、1気圧下での沸点が100℃以上の有機溶剤の含有量が100ppm以下である、ポリイミド材料。
    It is a polyimide material for producing a polyimide film according to any one of claims 1 to 6,
    It has a structure represented by the general formula (1), and has a content of an organic solvent having a boiling point of less than 100 ° C. under 1 atm at 2000 ppm or less as a residual solvent and a boiling point at 1 atm of 100. A polyimide material having an organic solvent content of 100 ° C or higher at 100 ° C or lower.
  8.  請求項1乃至6のいずれか一項に記載のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体。 A laminate comprising the polyimide film according to any one of claims 1 to 6, and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  9.  請求項1乃至6のいずれか一項に記載のポリイミドフィルム、又は、請求項8に記載の積層体である、ディスプレイ用部材。 A member for a display, which is the polyimide film according to any one of claims 1 to 6, or the laminate according to claim 8.
  10.  フレキシブルディスプレイ用である、請求項9に記載のディスプレイ用部材。 The display member according to claim 9, which is for a flexible display.
  11.  請求項1乃至6のいずれか一項に記載のポリイミドフィルム又は請求項8に記載の積層体と、
     前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
     前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材。
    The polyimide film according to any one of claims 1 to 6 or the laminate according to claim 8,
    A transparent electrode composed of a plurality of conductive portions, disposed on one surface side of the polyimide film or the laminate,
    A touch panel member comprising: a plurality of extraction lines electrically connected to at least one side of an end of the conductive portion.
  12.  請求項1乃至6のいずれか一項に記載のポリイミドフィルム又は請求項8に記載の積層体と、
     前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置。
    The polyimide film according to any one of claims 1 to 6 or the laminate according to claim 8,
    A liquid crystal display device comprising: a liquid crystal display portion having a liquid crystal layer between opposing substrates, which is disposed on one surface side of the polyimide film or the laminate.
  13.  請求項1乃至6のいずれか一項に記載のポリイミドフィルム又は請求項8に記載の積層体と、
     前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置。
    The polyimide film according to any one of claims 1 to 6 or the laminate according to claim 8,
    An organic electroluminescent display device, comprising: an organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates, the organic electroluminescent display portion being arranged on one surface side of the polyimide film or the laminate.
PCT/JP2019/024862 2018-06-25 2019-06-24 Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device WO2020004293A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018120020 2018-06-25
JP2018-120020 2018-06-25
JP2019-115395 2019-06-21
JP2019115395A JP7388011B2 (en) 2018-06-25 2019-06-21 Polyimide films, polyimide materials, laminates, display members, touch panel members, liquid crystal display devices, and organic electroluminescent display devices

Publications (1)

Publication Number Publication Date
WO2020004293A1 true WO2020004293A1 (en) 2020-01-02

Family

ID=68986947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024862 WO2020004293A1 (en) 2018-06-25 2019-06-24 Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device

Country Status (2)

Country Link
TW (1) TW202342611A (en)
WO (1) WO2020004293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704719A (en) * 2020-06-24 2020-09-25 中国科学院化学研究所 Thermosetting polyimide resin, prepolymer, preparation method and application
CN113640910A (en) * 2021-07-12 2021-11-12 安徽菲尔慕材料有限公司 Polyimide hardened film with polarization function and manufacturing process thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192773A (en) * 1997-01-13 1998-07-28 Sumitomo Bakelite Co Ltd Method for drying polyimide film
JP2008292616A (en) * 2007-05-23 2008-12-04 Ricoh Co Ltd Electrophotographic seamless belt, method for manufacturing the same and electrophotographic apparatus
JP2014034590A (en) * 2012-08-07 2014-02-24 Mitsui Chemicals Inc Polyimide film and method for producing the same
JP2014118463A (en) * 2012-12-14 2014-06-30 Mitsubishi Chemicals Corp Polyimide resin molded body and film
JP2017025204A (en) * 2015-07-22 2017-02-02 住友化学株式会社 Polyimide film, and method for producing polyimide film
JP2017186467A (en) * 2016-04-07 2017-10-12 コニカミノルタ株式会社 Polyimide film, manufacturing method therefor, transparent conductive film and touch panel
WO2018030410A1 (en) * 2016-08-10 2018-02-15 大日本印刷株式会社 Polyimide film, laminate, and surface material for display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192773A (en) * 1997-01-13 1998-07-28 Sumitomo Bakelite Co Ltd Method for drying polyimide film
JP2008292616A (en) * 2007-05-23 2008-12-04 Ricoh Co Ltd Electrophotographic seamless belt, method for manufacturing the same and electrophotographic apparatus
JP2014034590A (en) * 2012-08-07 2014-02-24 Mitsui Chemicals Inc Polyimide film and method for producing the same
JP2014118463A (en) * 2012-12-14 2014-06-30 Mitsubishi Chemicals Corp Polyimide resin molded body and film
JP2017025204A (en) * 2015-07-22 2017-02-02 住友化学株式会社 Polyimide film, and method for producing polyimide film
JP2017186467A (en) * 2016-04-07 2017-10-12 コニカミノルタ株式会社 Polyimide film, manufacturing method therefor, transparent conductive film and touch panel
WO2018030410A1 (en) * 2016-08-10 2018-02-15 大日本印刷株式会社 Polyimide film, laminate, and surface material for display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704719A (en) * 2020-06-24 2020-09-25 中国科学院化学研究所 Thermosetting polyimide resin, prepolymer, preparation method and application
CN111704719B (en) * 2020-06-24 2021-07-20 中国科学院化学研究所 Thermosetting polyimide resin, prepolymer, preparation method and application
CN113640910A (en) * 2021-07-12 2021-11-12 安徽菲尔慕材料有限公司 Polyimide hardened film with polarization function and manufacturing process thereof
CN113640910B (en) * 2021-07-12 2024-02-02 安徽菲尔慕材料有限公司 Polyimide hardening film with polarizing function and manufacturing process thereof

Also Published As

Publication number Publication date
TW202342611A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6973476B2 (en) Polyimide film, laminates, and surface materials for displays
KR102434812B1 (en) Surface materials for polyimide films, laminates and displays
JP7363019B2 (en) Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
JP2020204022A (en) Polyimide film, polyimide varnish, production method of polyimide film, laminate, display member, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018230495A1 (en) Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2018059075A (en) Polyimide film, laminate and display surface material
WO2019065624A1 (en) Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP7547792B2 (en) Laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2019137864A (en) Polyimide film, laminate, display member, touch panel member, liquid crystal display device and organic electroluminescence display device
JP7139715B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2018065993A (en) Method for producing polyimide film, method for producing polyimide precursor, method for manufacturing laminate, and method for manufacturing surface material for display
JP7155533B2 (en) Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
JP7027867B2 (en) Surface material for flexible displays
WO2018062190A1 (en) Polyimide film, laminate, and display surface material
WO2018030410A1 (en) Polyimide film, laminate, and surface material for display
WO2020004293A1 (en) Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device
JP2023154059A (en) Polyimide film, laminate, member for display, touch panel member, liquid crystal display device, and organic electronic luminescent display device
WO2018117145A1 (en) Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP7226312B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP7351084B2 (en) Polyimide compositions, methods for producing polyimide compositions, methods for producing polyimide films, methods for producing laminates, methods for producing optical members for displays, methods for producing touch panel members, methods for producing liquid crystal display devices, and organic electroluminescent display devices manufacturing method
JP7388011B2 (en) Polyimide films, polyimide materials, laminates, display members, touch panel members, liquid crystal display devices, and organic electroluminescent display devices
WO2019078051A1 (en) Polyimide film, polyimide film production method, laminate, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018190179A1 (en) Polyimide film, layered product, surface material for display
WO2020255864A1 (en) Polyimide film, polyimide varnish, method for producing polyimide film, multilayer body, member for displays, touch panel member, liquid crystal display device and organic electroluminescent display device
JP7247510B2 (en) Polyimide film, method for producing polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825959

Country of ref document: EP

Kind code of ref document: A1