WO2018230495A1 - Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device - Google Patents

Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device Download PDF

Info

Publication number
WO2018230495A1
WO2018230495A1 PCT/JP2018/022201 JP2018022201W WO2018230495A1 WO 2018230495 A1 WO2018230495 A1 WO 2018230495A1 JP 2018022201 W JP2018022201 W JP 2018022201W WO 2018230495 A1 WO2018230495 A1 WO 2018230495A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
residue
group
functional layer
laminate
Prior art date
Application number
PCT/JP2018/022201
Other languages
French (fr)
Japanese (ja)
Inventor
勝哉 坂寄
太田 貴之
滉大 岡田
奈保美 金澤
小林 義弘
綾 勝又
綾子 古瀬
前田 高徳
敬輔 脇田
誠 溝尻
征一 磯嶋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019525408A priority Critical patent/JP7107311B2/en
Publication of WO2018230495A1 publication Critical patent/WO2018230495A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present applicant is used as a surface material of a touch panel for the purpose of having excellent hardness, transparency, and durable folding performance, and includes a base film and at least one cured resin layer.
  • an elution layer is formed in the vicinity of the resin cured layer side interface of the base film, and the base film eluted from the elution layer is formed in the resin cured layer.
  • a material component is contained, and the base material film is a polyimide film or an aramid film, and discloses a laminate for a touch panel.
  • Patent Document 2 used for a liquid crystal alignment film or the like, diaminosiloxane is used as a diamine component that is a raw material for the polyimide resin in order to improve the adhesion to an inorganic substrate. Things have been done.
  • the laminated body described in patent document 1 is also calculated
  • visibility is reduced due to interference fringes caused by a difference in refractive index between the polyimide film and the cured resin layer.
  • the present disclosure has been made in view of the above problems, and is a laminate in which bending resistance and adhesion between a functional layer and a polyimide film are improved and interference fringes are suppressed, and the laminate. It aims at providing the surface material for a display.
  • One embodiment of the present disclosure has a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound via a compatible layer on at least one surface of a polyimide film,
  • the compatible layer contains at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer,
  • the polyimide film contains a polyimide having a structure represented by the following general formula (1).
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid.
  • a diamine residue having a group ring. N represents the number of repeating units.
  • the thickness of the compatible layer dyed in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate Provides a laminate having a thickness of 5 nm or more.
  • One embodiment of the present disclosure provides a laminate in which an internal angle measured by the test is 120 ° or more when a static bending test is performed according to the following static bending test method.
  • Static bending test method The laminate test piece cut out to 15 mm ⁇ 40 mm is bent at a half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm ⁇ 30 mm ⁇ 6 mm) having a thickness of 6 mm from the upper and lower surfaces. Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each.
  • the test piece is fixed in a bent state with an inner diameter of 6 mm. At that time, a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel.
  • the test piece thus fixed in a bent state is left to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and fixing tape are removed, and the test piece is attached to the test piece. Release this force. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
  • the total light transmittance measured according to JIS K7361-1 is 85% or more
  • a laminate having a yellowness calculated in accordance with JIS K7373-2006 of 30 or less is provided.
  • the value obtained by dividing the yellowness of the laminate calculated in accordance with JIS K7373-2006 by the film thickness ( ⁇ m) of the laminate is 0.04 or less. And it is preferable from the point which the yellowish coloring of a laminated body is suppressed and a light transmittance improves.
  • the polyimide having the structure represented by the general formula (1) includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic
  • a laminate including at least one selected from the group consisting of a structure in which group rings are connected by a sulfonyl group or an alkylene group which may be substituted with fluorine.
  • R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic Acid dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalate Acid anhydride residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylid
  • the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is 1,4-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis
  • a laminate which is at least one divalent group selected from the group consisting of a (4-aminophenyl) propane residue and a divalent group represented by the following general formula (2).
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • One embodiment of the present disclosure provides a laminate in which the functional layer contains a polymer of a polyfunctional (meth) acrylate monomer.
  • One embodiment of the present disclosure provides a laminate in which the Martens hardness of the surface of the functional layer on the side opposite to the side on which the polyimide film is located is 350 MPa or more and less than 1000 MPa.
  • this indication provides the surface material for flexible displays which is a layered product of one embodiment of the above-mentioned this indication.
  • One embodiment of the present disclosure includes the laminate of the one embodiment of the present disclosure; A transparent electrode having a plurality of conductive portions arranged on one surface side of the laminate; There is provided a touch panel member comprising a plurality of lead wires electrically connected to at least one side of an end portion of the conductive portion.
  • a laminate in which bending resistance and adhesion between a functional layer and a polyimide film are improved, and interference fringes are suppressed, and a display surface material that is the laminate. be able to.
  • FIG. 2 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 1.
  • FIG. 2 is a STEM image before staining with ruthenium tetroxide of the cross section of the laminate obtained in Example 1.
  • FIG. 4 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 2.
  • FIG. 3 is a STEM image before staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 2.
  • FIG. 4 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 3.
  • FIG. 4 is a STEM image after staining with ruthenium tetroxide of a cross section of a laminate obtained in Comparative Example 2.
  • FIG. 4 is a STEM image before staining with ruthenium tetroxide of a cross section of a laminate obtained in Comparative Example 2.
  • FIG. It is a STEM image after dyeing
  • Laminate The laminate of the present disclosure has a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound via a compatible layer on at least one surface of a polyimide film.
  • the compatible layer contains at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer,
  • the said polyimide film is a laminated body containing the polyimide which has a structure represented by following General formula (1).
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid.
  • a diamine residue having a group ring. N represents the number of repeating units.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a laminated body of the present disclosure.
  • a laminated body 10 of the present disclosure shown in FIG. 1 has a functional layer 3 on one surface of a polyimide film 1 with a compatible layer 2 interposed.
  • the laminate of the present disclosure may have a functional layer on one surface of the polyimide film via a compatible layer, and although not shown, on both sides of the polyimide film
  • the functional layer may be provided via a compatible layer.
  • the polyimide contained in the polyimide film included in the laminate has a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a diamine residue having a silicon atom in the main chain as a diamine residue.
  • an interstitial layer containing at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer intervenes, whereby bending resistance, And the adhesiveness of a functional layer and a polyimide film can be improved, and the laminated body by which generation
  • Polyimide is known to have excellent heat resistance due to its chemical structure.
  • Polyimide film is also known to form an ordered structure with a constant arrangement of molecular chains inside, which makes it possible to restore the flatness and the bent state at a constant cycle at room temperature. It is considered that good results are shown in FIG.
  • the film may be folded and may not return flat.
  • a polyimide film having high rigidity is difficult to return to a flat state when the film is bent for a long time.
  • the plastic deformation of the film occurs due to the continuous application of tensile stress to the outer periphery of the bending part, which makes it difficult to restore even if the bending force is removed. It is assumed that Moreover, it can be set as the laminated body which has a desired function by laminating
  • the laminated body in which the functional layers are further laminated has a problem that the static bending resistance is inferior.
  • the present inventors when using a polyimide in which a specific amount of a flexible molecular skeleton having a silicon atom in the main chain is introduced between molecular skeletons containing an aromatic ring or an aliphatic ring, the present inventors have static bending.
  • a laminate in which a polyimide film having excellent resistance is obtained and a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is laminated on the polyimide film the polyimide film and the function A compatible layer containing a mixture of the components of the polyimide film and the functional layer is interposed between the layers, thereby improving the adhesion between the polyimide film and the functional layer and generating interference fringes.
  • the polyimide film used in the present disclosure introduces a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between rigid molecular skeletons containing an aromatic ring or an aliphatic ring, thereby causing stress due to molecular motion. Since relaxation is possible, the stress applied to the film at the time of bending can be reduced, and it is estimated that the resistance to static bending is improved.
  • the polyimide contained in the polyimide film contains a specific amount of a diamine residue having a silicon atom in the main chain, so that the solvent resistance of the polyimide film, and the polyimide film and the functional layer It is considered that the compatibility with the functional layer composition used for formation is appropriate.
  • the functional layer in the step of forming the coating film of the functional layer composition on the polyimide film, a part of the components in the functional layer composition penetrates the polyimide film.
  • a compatible layer is formed by this, and the formed compatible layer is a mixture of a component of the polyimide film and a component of the functional layer appropriately, and optically becomes an intermediate layer of refractive index, It is thought that it will become the aspect excellent in the effect which improves the adhesiveness of a polyimide film and a functional layer, and the effect which suppresses an interference fringe.
  • the formed compatible layer is a mixture of a component of the polyimide film and a component of the functional layer appropriately, and optically becomes an intermediate layer of refractive index
  • Polyimide film used in the present disclosure contains a polyimide having a structure represented by the general formula (1), and further contains other components as long as the effects of the present disclosure are not impaired. May be.
  • a polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to obtain imidization by obtaining a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component. The imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also manufacture by the method which used thermal imidation and chemical imidization together.
  • the polyimide used in the present disclosure contains a polyimide having a structure represented by the following general formula (1).
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid.
  • a diamine residue having a group ring. N represents the number of repeating units.
  • the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing acid dianhydride structure from tetracarboxylic dianhydride.
  • a diamine residue means the residue remove
  • the tetracarboxylic acid residue in R 1 of the general formula (1) is a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or a tetracarboxylic acid having an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from the dianhydride.
  • the tetracarboxylic dianhydride having an aromatic ring include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′.
  • tetracarboxylic dianhydride having an aliphatic ring examples include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride.
  • An anhydride, cyclobutane tetracarboxylic dianhydride, etc. are mentioned. These may be used alone or in combination of two or more.
  • the diamine residue having a silicon atom in the main chain in R 2 of the general formula (1) can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
  • the polyimide film used in the present disclosure introduces a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component. Furthermore, when the bending resistance is improved and the functional layer is laminated, a compatible layer is formed between the functional layer and adhesion with the functional layer and generation of interference fringes can be suppressed.
  • the diamine residue having a silicon atom in the main chain can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
  • the diamine represented by the following general formula (A) is mentioned, for example.
  • each L is independently a direct bond or —O— bond, and each R 10 may independently have a substituent and contains an oxygen atom or a nitrogen atom.
  • R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and each R 11 independently has a substituent and may contain an oxygen atom or a nitrogen atom. Represents a divalent hydrocarbon group having a number of 1 or more and 20 or less, k is a number of 0 to 200.
  • Plural L, R 10 and R 11 may be the same or different.
  • Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and combinations thereof.
  • the alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group, hexyl group and the like.
  • the cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group.
  • the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group, and a phenylpropyl group.
  • Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. And a group bonded with at least one bond (—NH—).
  • the substituent that the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present disclosure are not impaired. For example, a halogen atom such as a fluorine atom or a chlorine atom And a hydroxyl group.
  • the monovalent hydrocarbon group represented by R 10 has from 1 to 3 carbon atoms from the viewpoint of adhesion to the functional layer and interference fringe suppression, as well as improvement in bending resistance and surface hardness. Or an aryl group having 6 to 10 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
  • Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof.
  • the alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms.
  • a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, or a cyclohexylene group.
  • a combination of a linear or branched alkylene group and a cyclic alkylene group are examples of the divalent hydrocarbon group represented by R 11.
  • the arylene group is preferably an arylene group having 6 to 12 carbon atoms, and examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for an aromatic ring described later. You may do it.
  • the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom the divalent hydrocarbon groups may be ether bonds, carbonyl bonds, ester bonds, amide bonds, and imino bonds (—NH—). A group bonded with at least one is exemplified.
  • the substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
  • the divalent hydrocarbon group represented by R 11 has from 1 to 6 carbon atoms from the viewpoint of adhesion to the functional layer and interference fringe suppression, as well as improvement in bending resistance and surface hardness. Or an arylene group having 6 to 10 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and the alkylene group is linear or branched. Preferably there is.
  • K is a number from 0 to 200.
  • the average of k is preferably 0 or more and 6 or less, and preferably 0 or more and 4 or less, from the viewpoint of adhesion to the functional layer and suppression of interference fringes, and the compatibility between improvement in bending resistance and surface hardness. It is preferable. Among these, k is preferably 0 or 1.
  • the diamine residue having a silicon atom in the main chain in R 2 As the diamine residue having a silicon atom in the main chain in R 2 , the bending resistance and the adhesion to the functional layer are further improved, and the occurrence of interference fringes is further suppressed.
  • a diamine residue having one or two silicon atoms in the main chain is preferable from the viewpoint of suppressing the decrease.
  • each L is independently a direct bond or —O— bond
  • each R 10 independently has a substituent.
  • And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may contain an oxygen atom or a nitrogen atom
  • each R 11 may independently have a substituent
  • a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom and a plurality of L, R 10 and R 11 may be the same or different.
  • the molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3000 or less from the viewpoint of adhesion to the functional layer and suppression of interference fringes, and compatibility between improvement in bending resistance and surface hardness. , 2000 or less, preferably 1000 or less, more preferably 800 or less, still more preferably 500 or less, and particularly preferably 300 or less.
  • the diamine residues having a silicon atom in the main chain can be used alone or in admixture of two or more.
  • the diamine residue having no aromatic ring and having no silicon atom is a residue obtained by removing two amino groups from a diamine having no silicon atom and having an aromatic ring; can do.
  • the diamine having no silicon atom and having an aromatic ring include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diaminodiphenyl sulfone 4,
  • the diamine residue which does not have a silicon atom and has an aliphatic ring in R 2 of the general formula (1) can be a residue obtained by removing two amino groups from a diamine having an aliphatic ring.
  • the diamine having an aliphatic ring include 1,4-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 2, And 5-bis (aminomethyl) bicyclo [2,2,1] heptane. These may be used alone or in combination of two or more.
  • R 2 of the general formula (1) 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and R 2 10 mol% or more and 90 mol% or less of the total amount of bismuth is a diamine residue that does not have a silicon atom and has an aromatic ring or an aliphatic ring. Therefore, the laminate according to the present disclosure improves the adhesion between the polyimide film and the functional layer, has excellent static bending resistance, and suppresses the generation of interference fringes. .
  • R 2 in the general formula (1) is a diamine residue having a silicon atom in the main chain from the viewpoint of further improving adhesion and static bending resistance with a functional layer described later and further suppressing the generation of interference fringes. but is preferably at least 12 mol% of the total amount of R 2, still preferably at 14 mol% or more, especially from the viewpoint of adhesion to the functional layer is preferably 15 mol% or more.
  • the R 2 of the general formula (1) the main chain of silicon atoms is 1 or 2 with a diamine residue, is preferably at least 12 mol% of the total amount of R 2, further 14 mol% or more It is preferable that it is more preferably 15 mol% or more.
  • a diamine residue having an aromatic ring or an aliphatic ring is preferably It is preferably not more than 88 mole% of the total amount of R 2, or less more 86 mol%, Furthermore, it is preferable that it is 85 mol% or less.
  • the R 2 of the general formula (1) may be from the viewpoint of improving the surface hardness and optical transparency, diamine residue having a silicon atom in the main chain, more than 50 mole% of the total amount of R 2 Preferably, it is further preferably 45 mol% or less, and further preferably 40 mol% or less from the viewpoint of optical properties.
  • a diamine residue having an aromatic ring or an aliphatic ring is preferably at least 50 mol% of the total amount of R 2, is preferably further 55 mol% or more.
  • more than 10 mole% of the total amount of R 2 90 mol% or less, a diamine residue having a silicon atom in the main chain, 90 mol% 10 mol% or more of the total amount of R 2 or less, free of silicon atoms If the diamine residue having an aromatic ring or an aliphatic ring is satisfied, R 2 in the general formula (1) does not have a diamine residue having a silicon atom in the main chain and a silicon atom.
  • the other diamine residue is preferably 10 mol% or less of the total amount of R 2 , more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol%.
  • the following is preferable.
  • Examples of the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring.
  • the residue (100% -x%) of the diamine residue mol% (x mol%) which is 10 mol% or more and 90 mol% or less, has no silicon atom and has an aromatic ring or an aliphatic ring. It is preferably a group.
  • R 2 of the total amount (100 mol%) is 10 mol which is the remainder (100% -x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in the main chain %
  • To 90 mol% preferably 10 mol% to 88 mol%, 10 mol% to 86 mol%, 10 mol% to 85 mol%, 50 mol% to 90 mol%, 50 mol% to 88 mol% Less than mol%, 50% % Or more 86 mol% or less, or 50 mole% or more 85 mol% or less, having no silicon atom, and is preferably a diamine residue having an aromatic ring or an aliphatic ring.
  • the polyimide having the structure represented by the general formula (1) includes an aromatic ring, and (i) a fluorine atom, in terms of improving light transmittance and improving surface hardness. It is a polyimide containing at least one selected from the group consisting of (ii) an aliphatic ring and (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted with fluorine. Is preferred.
  • the polyimide having the structure represented by the general formula (1) includes at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring, so that the molecular skeleton becomes rigid.
  • the rigid aromatic ring skeleton tends to increase the absorption wavelength to a long wavelength, and tends to decrease the transmittance in the visible light region.
  • a fluorine atom is contained in the polyimide
  • the light transmission is improved because the electronic state in the polyimide skeleton can be hardly transferred.
  • an aliphatic ring is included in the polyimide, light transmittance is improved because the transfer of charges in the skeleton can be inhibited by breaking the ⁇ -electron conjugation in the polyimide skeleton.
  • a polyimide containing a fluorine atom is preferably used from the viewpoint of improving light transmittance and improving surface hardness.
  • the fluorine atom content ratio is preferably such that the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is 0.01 or more, Further, it is preferably 0.05 or more.
  • the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less. Preferably, it is preferably 0.8 or less.
  • the said ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be calculated
  • the polyimide having the structure represented by the general formula (1) from the viewpoint of improving the surface hardness, the sum of R 1 and R 2 is 100 mole% in the general formula (1), an aromatic
  • the total of the tetracarboxylic acid residue having an aromatic ring and the diamine residue having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and 75 mol% or more. Even more preferred.
  • the polyimide having the structure represented by the general formula (1) from the viewpoint of improving the surface hardness and optical transparency, no tetracarboxylic acid residue of R 1, and a silicon atom of R 2 aromatic It is preferable that at least one of the diamine residues having an aromatic ring or an aliphatic ring includes an aromatic ring and a fluorine atom, and further does not have a tetracarboxylic acid residue of R 1 and a silicon atom of R 2. Both of the diamine residues having an aromatic ring or an aliphatic ring preferably contain an aromatic ring and a fluorine atom.
  • the total of R 1 and R 2 in the general formula (1) is 100 mol%.
  • the total of the tetracarboxylic acid residue having an aromatic ring and a fluorine atom and the diamine residue having an aromatic ring and a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, More preferably, it is 75 mol% or more.
  • the polyimide having the structure represented by the general formula (1) is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring. However, it is preferably used from the viewpoints of improving light transmittance and improving surface hardness.
  • the proportion of hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to carbon atoms contained in the polyimide is preferably 60% or more, and more preferably 70% or more.
  • the film is stretched at, for example, 200 ° C. or higher even after a heating step in the atmosphere. Is preferable from the viewpoint of little change in optical characteristics, particularly total light transmittance and yellowness YI value.
  • polyimide is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the chemical structure of the polyimide changes due to low reactivity with oxygen. It is estimated that it is difficult.
  • Polyimide film uses its high heat resistance and is often used in devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are in the aromatic ring.
  • polyimide which is a hydrogen atom that is directly bonded
  • the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by high-performance liquid chromatography or gas chromatography mass of the polyimide decomposition product.
  • the sample is decomposed with an alkaline aqueous solution or supercritical methanol, and the resulting polyimide decomposition product is separated by high performance liquid chromatography, and the qualitative analysis of each separated peak is performed by a gas chromatograph mass spectrometer and NMR.
  • the ratio of the hydrogen atom (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) contained in the polyimide can be determined by quantification using high performance liquid chromatography.
  • R 1 in the general formula (1) is a cyclohexanetetracarboxylic acid dibenzoate from the viewpoint of light transmittance, bending resistance and surface hardness.
  • R 1 these suitable residues are preferably contained in a total amount of 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more.
  • R 1 in the general formula (1) is 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-() because of a good balance between light transmittance and surface hardness.
  • Hexafluoroisopropylidene) diphthalic anhydride residue 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalate More preferably, it is at least one tetravalent group selected from the group consisting of acid anhydride residues.
  • R 1 in the general formula (1) includes pyromellitic dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, and 2,2 ′, 3, A tetracarboxylic acid residue group (group A) suitable for improving rigidity such as at least one selected from the group consisting of 3′-biphenyltetracarboxylic dianhydride residues, Anhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, 4, 4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 '-(hexafluoroisopropylidene) diphthal
  • the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving light transmittance is , 1 mol of tetracarboxylic acid residue group (group B) suitable for improving light transmittance is 0.4% of tetracarboxylic acid residue group (group A) suitable for improving rigidity. It is preferably from 05 mol to 9 mol, more preferably from 0.1 mol to 5 mol, and still more preferably from 0.3 mol to 4 mol.
  • the group B includes 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues and 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues containing fluorine atoms. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
  • the diamine residue having an aromatic ring or an aliphatic ring in R 2 in the general formula (1) is a 1,4-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue,
  • at least one divalent group selected from the group consisting of divalent groups represented by the following general formula (2) is preferable from the viewpoints of light transmittance, bending resistance and surface hardness.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • the polyimide which has a structure represented by the said General formula (1) is a diamine residue in which the diamine residue which has a silicon atom in the principal chain in R ⁇ 2 > in the said General formula (1) has two silicon atoms.
  • 1,3-bis (3-aminopropyl) tetramethyldiethyl is further preferred.
  • Siloxane residues, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, etc. are compatible with easy availability, light transmission and surface hardness From the viewpoint of
  • the content ratio of each repeating unit in the polyimide, and the content ratio (mol%) of each tetracarboxylic acid residue or each diamine residue can be determined from the molecular weight of the charge at the time of polyimide production.
  • the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide is about high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR for the polyimide degradation product obtained in the same manner as described above. , Elemental analysis, XPS / ESCA and TOF-SIMS.
  • n represents the number of repeating units and is 1 or more.
  • the number of repeating units n in the polyimide is preferably selected as appropriate according to the structure so as to exhibit a preferable glass transition temperature described later, but is not particularly limited.
  • the average number of repeating units is usually 10 to 2000, and more preferably 15 to 1000.
  • R 1 in each repeating unit may be the same or different, and R 2 in each repeating unit may be the same or different.
  • the polyimide having the structure represented by the general formula (1) preferably has a weight average molecular weight of 20000 or more and 30000 or more from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is more preferably 40000 or more, and particularly preferably 80000 or more.
  • the upper limit is not particularly limited, but is preferably 10000000 or less, more preferably 500000 or less, from the viewpoint of easy synthesis and availability.
  • the weight average molecular weight of polyimide can be measured by gel permeation chromatography (GPC).
  • polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by weight, and as a developing solvent, a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used.
  • NMP N-methylpyrrolidone
  • a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used.
  • the weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • the polyimide used for this indication may have a structure different from the structure represented by the said General formula (1) in the one part.
  • the structure represented by the general formula (1) is preferably 95% or more of the total number of repeating units of the polyimide, more preferably 98% or more, and 100%. Even more preferably.
  • Examples of the structure different from the structure represented by the general formula (1) include a case where a tetracarboxylic acid residue having no aromatic ring or aliphatic ring is included, and a polyamide structure.
  • the polyimide used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower.
  • the glass transition temperature is 150 ° C. or higher, heat resistance is excellent, and it is preferably 200 ° C. or higher, and more preferably 250 ° C. or higher.
  • the baking temperature can be reduced, and is preferably 380 ° C. or lower.
  • the polyimide used in the present disclosure preferably has one tan ⁇ curve peak in a temperature range of 150 ° C. or higher and 400 ° C. or lower.
  • the polyimide used in the present disclosure preferably does not have a tan ⁇ curve peak in a temperature range of ⁇ 150 ° C. or more and 0 ° C. or less, which can improve the surface hardness of the polyimide film at room temperature.
  • the polyimide used in the present disclosure may further have a tan ⁇ curve peak in a temperature range of more than 0 ° C. and less than 150 ° C.
  • the glass transition temperature of polyimide refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of tan ⁇ curve peaks.
  • the glass transition temperature of the polyimide used in the present disclosure can be measured in the same manner as the glass transition temperature of the polyimide film described later.
  • the polyimide film used for this indication may contain the additive further as needed other than the said polyimide.
  • the additive include inorganic particles, a silica filler for facilitating winding, and a surfactant that improves film-forming properties and defoaming properties.
  • the content of the additive in the polyimide film is appropriately adjusted depending on the type of the additive and is not particularly limited, but is 30% by mass. Preferably, it is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the polyimide film used in the present disclosure has an internal angle measured in the test when a static bending test is performed according to the following static bending test method from the viewpoint of improving the bending resistance of the laminate according to the present disclosure. It is preferably 120 ° or more, and more preferably 125 ° or more.
  • Static bending test method A polyimide film test piece cut out to 15 mm ⁇ 40 mm is bent at a position of half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm ⁇ 30 mm ⁇ 6 mm) having a thickness of 6 mm from the upper and lower surfaces.
  • test piece Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each.
  • the test piece is fixed in a bent state with an inner diameter of 6 mm.
  • a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel.
  • the test piece thus fixed in a bent state is left to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and fixing tape are removed, and the test piece is attached to the test piece. Release this force. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
  • the polyimide film used in the present disclosure preferably has a total light transmittance of 85% or more measured in accordance with JIS K7361-1, from the viewpoint of improving the transparency of the laminate according to the present disclosure. It is preferably 88% or more, more preferably 89% or more, and particularly preferably 90% or more.
  • the polyimide film used in the present disclosure has a thickness of 5 ⁇ m or more and 100 ⁇ m or less, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more. More preferably, it is more preferably 89% or more, and particularly preferably 90% or more.
  • the polyimide film used in the present disclosure preferably has a total light transmittance of 85% or more, more preferably 88% or more when measured in accordance with JIS K7361-1 at a thickness of 50 ⁇ m ⁇ 5 ⁇ m. Is preferable, more preferably 89% or more, and particularly preferably 90% or more.
  • the total light transmittance measured according to JIS K7361-1 can be measured by, for example, a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory).
  • the converted value of the total light transmittance of different thickness can be obtained by Lambert Beer's law and can be used.
  • K constant specific to substance
  • c concentration
  • b optical path length
  • the polyimide film used in the present disclosure has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less from the viewpoint of improving the light transmittance of the laminate according to the present disclosure. Preferably, it is 20 or less, more preferably 15 or less, still more preferably 10 or less.
  • the polyimide film used in the present disclosure preferably has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less and more preferably 20 or less when the thickness is 5 ⁇ m or more and 100 ⁇ m or less. It is preferably 15 or less, more preferably 10 or less.
  • the polyimide film used in the present disclosure has a thickness of 50 ⁇ m ⁇ 5 ⁇ m, and the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 10 or less, preferably 7 or less. Is more preferable, and it is still more preferable that it is 5 or less.
  • the yellowness (YI value) is determined according to JIS K7373-2006 by using an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100) and by a spectrocolorimetric method. C.
  • tristimulus values X, Y, and Z in the XYZ color system are obtained based on transmittance measured at 1 nm intervals in a range of 250 nm to 800 nm, and the X, Y, It can be calculated from the value of Z by the following formula.
  • YI 100 (1.2769X ⁇ 1.0592Z) / Y
  • a converted value of each transmittance at each wavelength of different thickness can be obtained according to Lambert Beer's law, and can be calculated and used based on it.
  • the polyimide film used in the present disclosure is calculated in accordance with JIS K7373-2006 because yellowish coloring is suppressed, light transmittance is improved, and it can be suitably used as a glass substitute material.
  • the value (YI value / film thickness ( ⁇ m)) obtained by dividing the yellowness (YI value) by the film thickness ( ⁇ m) is preferably 0.2 or less, more preferably 0.05 or less, and 0 More preferably, it is 0.04 or less.
  • the value obtained by dividing the yellowness (YI value) by the film thickness ( ⁇ m) is the second decimal place according to the rule B of JIS Z8401: 1999. Rounded value.
  • the polyimide film used in the present disclosure preferably has a haze value of 10 or less, more preferably 8 or less, and more preferably 5 or less from the viewpoint of improving the light transmittance of the laminate according to the present disclosure. Is even more preferable. It is preferable that the haze value can be achieved when the thickness of the polyimide film is 5 ⁇ m or more and 100 ⁇ m or less.
  • the haze value can be measured by a method according to JIS K-7105, for example, a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the polyimide film used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower.
  • the glass transition temperature is 150 ° C. or higher, heat resistance is excellent, and it is preferably 200 ° C. or higher, and more preferably 250 ° C. or higher.
  • the baking temperature can be reduced, and is preferably 380 ° C. or lower.
  • the polyimide film used for this indication has the peak of one tan-delta curve in the temperature range of 150 to 400 degreeC.
  • the polyimide film used in the present disclosure preferably has no tan ⁇ curve peak in a temperature range of ⁇ 150 ° C. or more and 0 ° C. or less from the viewpoint of excellent surface hardness at room temperature.
  • the glass transition temperature of polyimide refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of tan ⁇ curve peaks.
  • the dynamic viscoelasticity measurement for example, with a dynamic viscoelasticity measuring device RSA III (TA Instruments Japan Co., Ltd.), the measurement range is set to ⁇ 150 ° C. to 400 ° C., the frequency is 1 Hz, and the temperature is increased. This can be done at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
  • the peak of the tan ⁇ curve refers to a peak having an inflection point that is a maximum value and a peak width that is between 3 ° C. or more between peaks and valleys, and is derived from measurement such as noise. The fine vertical fluctuation is not interpreted as the peak.
  • the polyimide film used in the present disclosure has a tensile elastic modulus at 25 ° C. of 1.8 GPa measured with a test piece of 15 mm ⁇ 40 mm in accordance with JIS K7127, a tensile speed of 10 mm / min, and a distance between chucks of 20 mm.
  • the above is preferable.
  • the tensile elastic modulus in the polyimide film used in the present disclosure is more preferably 2.0 GPa or more, and further preferably 2.4 GPa or more.
  • the tensile elastic modulus was determined by cutting a test piece having a width of 15 mm ⁇ a length of 40 mm from a polyimide film using a tensile tester (for example, Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) at 25 ° C.
  • the tensile speed can be 10 mm / min, and the distance between chucks can be 20 mm.
  • the polyimide film for obtaining the tensile modulus of elasticity preferably has a thickness of 50 ⁇ m ⁇ 5 ⁇ m.
  • the polyimide film used in the present disclosure preferably has a birefringence in the thickness direction at a wavelength of 590 nm of 0.040 or less. Since the optical distortion of the polyimide film is reduced by having such a birefringence, when the laminate according to the present disclosure is used as a display surface material, it suppresses a decrease in display quality of the display. be able to.
  • the birefringence in the thickness direction at a wavelength of 590 nm in the polyimide film used in the present disclosure is preferably smaller, more preferably 0.020 or less, more preferably 0.015 or less, and further preferably It is preferably 010 or less, and more preferably less than 0.008.
  • the birefringence of the thickness direction in the said wavelength 590nm of the polyimide film used for this indication can be calculated
  • the thickness direction retardation value (Rth) of the polyimide film is measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (for example, product name “KOBRA-WR” manufactured by Oji Scientific Instruments). To do.
  • a phase difference value at 0 degree incidence and a phase difference value at an incidence angle of 40 degrees are measured, and the thickness direction retardation value Rth is calculated from these phase difference values.
  • the phase difference value at an oblique incidence of 40 degrees is measured by making light having a wavelength of 590 nm incident on the polyimide film from a direction inclined by 40 degrees from the normal line of the polyimide film.
  • the birefringence in the thickness direction of the polyimide film can be determined by substituting it into the formula: Rth / d.
  • Said d represents the film thickness (nm) of a polyimide film.
  • the thickness direction retardation value is nx the refractive index in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction in the film plane (film surface).
  • Rth [nm] ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d, where ny is the refractive index in the direction in which the refractive index in the inner direction is the minimum) and nz is the refractive index in the thickness direction of the film.
  • the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) on the film surface, measured by X-ray photoelectron spectroscopy of a polyimide film is 0.01 or more and 1 or less. It is preferable that it is 0.05 or more and 0.8 or less.
  • the ratio (F / N) of the number of fluorine atoms (F) and the number of nitrogen atoms (N) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 20 or less. Further, it is preferably 0.5 or more and 15 or less.
  • the ratio (F / Si) of the number of fluorine atoms (F) and the number of silicon atoms (Si) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
  • the thickness of the polyimide film used in the present disclosure may be appropriately selected depending on the use of the laminate, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further more preferably 10 ⁇ m or more. It is preferable. On the other hand, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. If the thickness of the polyimide film is too thin, the strength is reduced and the film tends to break. If the thickness of the polyimide film is too thick, the bending resistance may be reduced.
  • a step of preparing a polyimide precursor resin composition containing a polyimide precursor having a structure represented by the following general formula (1 ′) and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step); Applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming process); The process of imidating the said polyimide precursor by heating (henceforth an imidation process) and the manufacturing method of the polyimide film containing are mentioned.
  • the step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as stretching process).
  • stretching process the step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film.
  • the polyimide precursor resin composition prepared in the first production method includes a polyimide precursor having a structure represented by the general formula (1 ′), an organic solvent, And may contain additives as required.
  • or polyimide used for this indication is a polyimide precursor which has a structure represented by the said General formula (1 ').
  • the polyimide precursor having the structure represented by the general formula (1 ′) includes a tetracarboxylic acid component that becomes a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and the general formula (1 ′).
  • a polyamic acid obtained in the R 2 by polymerization of a diamine residues become diamine component.
  • R 1 , R 2 and n in the general formula (1 ′) those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
  • the polyimide precursor having the structure represented by the general formula (1 ′) preferably has a number average molecular weight of 10,000 or more, and 20,000 or more from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is more preferably 30000 or more, and particularly preferably 50000 or more. On the other hand, if the number average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
  • the number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER).
  • a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes, and then 10 mg of solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and NMR measurement is performed to bond to an aromatic ring.
  • the number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
  • the polyimide precursor having the structure represented by the general formula (1 ′) preferably has a weight average molecular weight of 20000 or more and 30000 or more from the viewpoint of strength and bending resistance when used as a film. More preferably, it is more preferably 40000 or more, and particularly preferably 80000 or more. On the other hand, when the weight average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
  • the weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
  • the polyimide precursor was made into an N-methylpyrrolidone (NMP) solution having a concentration of 0.5% by weight, and the developing solvent was a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less.
  • NMP N-methylpyrrolidone
  • the developing solvent was a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less.
  • HLC-8120 column used: GPC LF-804 manufactured by SHODEX, measurement is performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.5 mL / min, and 40 ° C.
  • the weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • the polyimide precursor solution is obtained by reacting the above tetracarboxylic dianhydride and the above diamine in a solvent.
  • the solvent used for the synthesis of the polyimide precursor is not particularly limited as long as it can dissolve the above-described tetracarboxylic dianhydride and diamine.
  • an aprotic polar solvent or a water-soluble alcohol solvent is used.
  • an organic solvent containing a nitrogen atom of ⁇ -butyrolactone or the like it is preferable to use an organic solvent containing a nitrogen atom of ⁇ -butyrolactone or the like.
  • an organic solvent containing a nitrogen atom among which N, N-dimethylacetamide, N— It is preferable to use methyl-2-pyrrolidone or a combination thereof.
  • the organic solvent is a solvent containing carbon atoms.
  • the polyimide precursor solution is prepared by combining at least two kinds of diamines.
  • An acid dianhydride may be added to a mixed solution of at least two kinds of diamines to synthesize polyamic acid, or at least Two kinds of diamine components may be added to the reaction solution step by step at an appropriate molar ratio, and the sequence in which each raw material is incorporated into the polymer chain may be controlled to some extent.
  • an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged into a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and reacted.
  • Amidic acid in which a diamine having a silicon atom in the main chain was reacted at both ends of the anhydride was synthesized, and all or part of the remaining diamine was added thereto, and acid dianhydride was added to polymerize the polyamic acid. Also good.
  • a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride. Polymerization of the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
  • Y / X may be 0.9 or more and 1.1 or less. Preferably, it is 0.95 or more and 1.05 or less, more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. By setting it as such a range, the molecular weight (polymerization degree) of the polyamic acid obtained can be adjusted moderately.
  • the procedure of the polymerization reaction can be appropriately selected from known methods and is not particularly limited.
  • the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed there if necessary.
  • the solvent of the polyimide precursor solution is dried and dissolved in another solvent. It may be used.
  • the viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the said polyimide precursor solution may be used and the additive may be contained as needed.
  • the additive include inorganic particles, silica filler for facilitating winding, a surfactant for improving film forming property and defoaming property, and the like described in the above polyimide film. Similar ones can be used.
  • the organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved.
  • nitrogen atoms such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone
  • Organic solvent: ⁇ -butyrolactone or the like can be used, and among them, an organic solvent containing a nitrogen atom is preferably used.
  • Content of the said polyimide precursor in the said polyimide precursor resin composition is 50 mass% or more in solid content of a resin composition from the point which forms the polyimide film which has a uniform coating film and the intensity
  • it is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more, and the upper limit may be appropriately adjusted depending on the components contained.
  • solid content means components other than a solvent.
  • the organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more and more preferably 50% by mass or more in the resin composition from the viewpoint of forming a uniform coating film and a polyimide film.
  • it is 99% by mass or less.
  • the polyimide precursor resin composition preferably has a moisture content of 1000 ppm or less from the viewpoint of improving the storage stability of the polyimide precursor resin composition and improving the productivity. If the polyimide precursor resin composition contains a large amount of moisture, the polyimide precursor may be easily decomposed.
  • the water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture measuring device CA-200, manufactured by Mitsubishi Chemical Corporation). As described above, in order to control the water content to 1000 ppm or less, it is preferable to dehydrate the organic solvent to be used or use a water whose amount is controlled and handle it in an environment with a humidity of 5% or less.
  • the viscosity of the polyimide precursor resin composition at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
  • the support used has a smooth surface and heat resistance.
  • the material is not particularly limited as long as the material is resistant and solvent resistant.
  • an inorganic material such as a glass plate, a metal plate having a mirror-finished surface, and the like can be given.
  • the shape of the support is selected depending on the coating method, and may be, for example, a plate shape, a drum shape, a belt shape, a sheet shape that can be wound around a roll, or the like.
  • the application means is not particularly limited as long as it can be applied at a desired film thickness, and for example, a known one such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater or the like can be used. . Application may be performed by a single-wafer coating apparatus or a roll-to-roll coating apparatus.
  • the solvent in the coating film is dried at a temperature of 150 ° C. or lower, preferably 30 ° C. or higher and 120 ° C. or lower until the coating film is tack-free.
  • the drying time may be appropriately adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, etc., but is usually 30 seconds to 240 minutes, preferably 1 minute to 180 minutes, more preferably. Is preferably 90 seconds to 120 minutes.
  • an upper limit it is unpreferable from the surface of the production efficiency of a polyimide film.
  • the value is below the lower limit, the appearance of the resulting polyimide film may be affected by rapid solvent drying.
  • the method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature.
  • an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
  • the atmosphere during drying of the solvent is preferably an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less.
  • heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
  • the said polyimide precursor is imidized by heating.
  • an imidation process may be performed with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process, and the said polyimide precursor resin after an extending process
  • the imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
  • the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher.
  • the temperature rise end temperature is preferably 250 ° C. or higher.
  • the rate of temperature increase is preferably selected as appropriate depending on the film thickness of the polyimide film to be obtained.
  • the film thickness of the polyimide film is thick, it is preferable to decrease the temperature increase rate. From the viewpoint of the production efficiency of the polyimide film, it is preferably 5 ° C./min or more, more preferably 10 ° C./min or more.
  • the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less. It is preferable to set the temperature increase rate from the viewpoint that the appearance defect and strength reduction of the film can be suppressed, and the whitening associated with the imidization reaction can be controlled, and the light transmittance is improved.
  • the atmosphere at the time of temperature increase in imidation is preferably an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the film may be oxidized and colored, or the performance may deteriorate.
  • 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, there is little influence of oxygen on the optical properties, and an inert gas atmosphere is not used.
  • a polyimide having a high light transmittance can be obtained.
  • reaction In order to obtain a final polyimide film, it is preferable to proceed the reaction to 90% or more, further 95% or more, and further 100%. In order to allow the reaction to proceed to 90% or more, more preferably 100%, it is preferable to hold at a temperature rising end temperature for a certain period of time. Minutes are preferred.
  • the first production method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and a post-imidation coating film obtained by imidizing the polyimide precursor resin coating film. It may be. When it has the said extending
  • the heating temperature during stretching is preferably in the range of glass transition temperature ⁇ 50 ° C. of the polyimide or polyimide precursor, and preferably in the range of glass transition temperature ⁇ 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching is relaxed by the temperature, and there is a possibility that sufficient orientation cannot be obtained.
  • the stretching step may be performed simultaneously with the imidization step. Stretching the film after imidization after imidation rate of 80% or more, further 90% or more, even more 95% or more, and particularly substantially 100% imidation improves the surface hardness of the polyimide film. It is preferable from the point.
  • the method for fixing the polyimide film during stretching is not particularly limited, and is selected according to the type of stretching apparatus. Moreover, there is no restriction
  • the polyimide film may be stretched only in one direction (longitudinal stretching or lateral stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
  • the first production method is preferable from the viewpoint of easily reducing the birefringence of the polyimide film.
  • a polyimide film having a birefringence in the thickness direction at a wavelength of 590 nm of 0.020 or less, further 0.010 or less can be suitably formed.
  • the polyimide having the structure represented by the general formula (1) dissolves well in an organic solvent, the polyimide is not dissolved in the polyimide precursor resin composition, and the additive is added as necessary.
  • a polyimide resin composition containing bismuth can also be suitably used.
  • the production method can be suitably used.
  • the reaction liquid reacted from the precursor to the polyimide is not cast as it is, It is preferable to form the film after purification by reprecipitation or the like, and removing components other than polyimide to 100 ppm or less of the total weight of the polyimide.
  • the organic solvent used in the reaction solution for chemical imidization of the polyimide precursor for example, those described in the polyimide precursor resin composition preparation step in the first production method Similar ones can be used.
  • the organic solvent used when redissolving the polyimide purified from the reaction solution in the polyimide resin composition preparation step include ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, Ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone, 1.4-Dioxane, tetrach
  • the polyimide resin composition may contain an additive as necessary.
  • an additive the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in said 1st manufacturing method can be used.
  • the method of setting the moisture content of the polyimide resin composition to 1000 ppm or less is the same method as the method described in the polyimide precursor resin composition preparation step in the first production method. Can be used.
  • the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first manufacturing method. be able to.
  • the drying temperature is preferably 80 ° C. or higher and 150 ° C. or lower under normal pressure. It is preferable that the pressure be in the range of 10 ° C. to 100 ° C. under reduced pressure.
  • the second production method may have a stretching step of stretching the polyimide resin coating film after the polyimide resin coating film forming step.
  • the said extending process can be made to be the same as the extending process in said 1st manufacturing method.
  • the polyimide film used in the present disclosure may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet treatment, flame treatment, and the like.
  • the second production method is preferable from the viewpoint of easily reducing the yellowness (YI value) of the polyimide film.
  • the second manufacturing method it is possible to suitably form a polyimide film having a value obtained by dividing the yellowness calculated in accordance with JIS K7373-2006 by the film thickness ( ⁇ m) of 0.04 or less. is there.
  • the second production method is preferable from the viewpoint of easily increasing the thickness of the compatible layer and improving the adhesion with the functional layer.
  • the polyimide film having a thickness of 5 nm or more and having a portion exceeding 10 nm can be suitably formed.
  • the functional layer used in the present disclosure contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound as a binder component, and as long as the effects of the present disclosure are not impaired, An optional additive component may be contained.
  • the polymer contained in the functional layer at least one of a radical polymerizable compound and a cationic polymerizable compound in the functional layer composition described later is polymerized in a curing step when the functional layer is formed.
  • a polymer obtained by polymerizing at least one of a radically polymerizable compound and a cationically polymerizable compound in advance before forming the functional layer are included in the functional layer composition.
  • At least one of the radically polymerizable compound and the cationically polymerizable compound is a polymer obtained by polymerization in a curing step when forming the functional layer.
  • the functional layer used for this indication may contain the unreacted monomer, oligomer, etc. other than the said polymer as a binder component in the range by which an effect is not impaired.
  • At least one polymer of a radical polymerizable compound and a cationic polymerizable compound At least one polymer of a radical polymerizable compound and a cationic polymerizable compound is polymerized by a known method using at least one of a radical polymerizable compound and a cationic polymerizable compound, if necessary, using a polymerization initiator. Can be obtained.
  • the radical polymerizable compound is a compound having a radical polymerizable group.
  • the radical polymerizable group possessed by the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group.
  • these radical polymerizable groups may be the same or different from each other.
  • the number of radical polymerizable groups contained in one molecule of the radical polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the functional layer.
  • a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity.
  • urethane (meth) acrylate polyester (meth) acrylate, epoxy (meth) acrylate, melamine
  • Monomers and oligomers can be preferably used, and polyfunctional (meth) acrylate polymers having two or more (meth) acryloyl groups in the side chain of the acrylate polymer can also be preferably used.
  • the polyfunctional (meth) acrylate monomer which has a 2 or more (meth) acryloyl group in 1 molecule can be used preferably.
  • the functional layer contains a polymer of the polyfunctional (meth) acrylate monomer, it is possible to improve the hardness of the functional layer, further improve the adhesion, and suppress the occurrence of interference fringes.
  • the polyfunctional (meth) acrylate oligomer or polymer which has a 2 or more (meth) acryloyl group in 1 molecule can also be used preferably.
  • the functional layer contains the polyfunctional (meth) acrylate oligomer or polymer, thereby improving the hardness and bending resistance of the functional layer, further improving the adhesion and suppressing the occurrence of interference fringes.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acrylate represents each of acrylate and methacrylate.
  • polyfunctional (meth) acrylate monomer examples include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and pentaerythritol tris.
  • Pentaerythritol triacrylate PETA
  • dipentaerythritol hexaacrylate DPHA
  • pentaerythritol tetraacrylate PETTA
  • dipentaerythritol pentaacrylate DPPA
  • trimethylolpropane tri (meth) acrylate tripentaerythritol octa (meta) )
  • Acrylate tetrapentaerythritol deca (meth) acrylate, etc.
  • pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate At least one is preferable.
  • the radical polymerizable compound may include a monofunctional (meth) acrylate monomer for adjusting the hardness and viscosity of the functional layer composition, improving adhesion, suppressing interference fringes, and the like.
  • the monofunctional (meth) acrylate monomer include hydroxyethyl acrylate (HEA), glycidyl methacrylate, methoxypolyethylene glycol (meth) acrylate, isostearyl (meth) acrylate, 2-acryloyloxyethyl succinate, acryloylmorpholine, N -Acryloyloxyethyl hexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, adamantyl acrylate and the like.
  • HOA hydroxyethyl acrylate
  • glycidyl methacrylate methoxypoly
  • the cationic polymerizable compound is a compound having a cationic polymerizable group.
  • the cationic polymerizable group possessed by the cationic polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationic polymerizable groups may be the same or different from each other.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the functional layer.
  • a compound having at least one of an epoxy group and an oxetanyl group as a cationic polymerizable group is preferable, and has at least one of an epoxy group and an oxetanyl group in one molecule.
  • Compounds are more preferred.
  • Cyclic ether groups such as epoxy groups and oxetanyl groups are preferred from the viewpoint of small shrinkage accompanying the polymerization reaction.
  • compounds having an epoxy group among the cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained functional layer, and can easily control the compatibility with the radical polymerizable compound.
  • the oxetanyl group has a high degree of polymerization and low toxicity as compared with the epoxy group.
  • a cationically polymerizable compound having an epoxy group for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, a cyclohexene ring or a cyclopentene ring-containing compound may be used with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • Alicyclic epoxy resin obtained by epoxidation polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; glycidyl produced by reaction of bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts, and epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
  • alicyclic epoxy resin examples include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (The product names in parentheses are manufactured by Dow Chemical.)
  • Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), Polyglycerol polyglycidyl ether (Denacol EX).
  • epoxy resins include trade names such as Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801, Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000, Etc. (above product name, Turbocharger bread epoxy resin) and the like.
  • Examples of the cationically polymerizable compound having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121).
  • the radically polymerizable compound and the cationically polymerizable compound preferably have a weight average molecular weight of 1,000 or more and 20,000 or less from the viewpoint of easily forming a compatible layer and improving the hardness of the resin cured layer. , More preferably 1000 or more and 10,000 or less, and still more preferably 2000 or more and 7000 or less.
  • a weight average molecular weight is calculated
  • the functional layer preferably contains a polymer of the radical polymerizable compound from the viewpoint of hardness, adhesion, and interference fringe suppression, and contains a polymer of the polyfunctional (meth) acrylate monomer. More preferably. Moreover, the content ratio of the polymer of the polyfunctional (meth) acrylate monomer is 45% by mass in a total amount of 100% by mass of at least one polymer of the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer. It is preferable that it is the above, and it is more preferable that it is 50 mass% or more.
  • binder component different from the polymer of the polyfunctional (meth) acrylate monomer in terms of surface hardness and bending resistance, a polymer of polyfunctional urethane (meth) acrylate, and A polymer of polyfunctional (meth) acrylate and polyfunctional urethane (meth) acrylate is preferred.
  • the polyfunctional urethane (meth) acrylate those having 5 or more functionalities and having a weight average molecular weight of 1000 or more and 10,000 or less are preferable from the viewpoint of surface hardness and bending resistance.
  • polyfunctional urethane (meth) acrylate you may use a commercial item, for example, Nippon Synthetic Chemical Industry Co., Ltd.
  • UV1700B molecular weight 2000, 10 functional
  • UV6300B molecular weight 3700, 7 functional
  • UV7640B molecular weight
  • 1500, 7 functional manufactured by Nippon Kayaku Co., Ltd .: DPHA40H (molecular weight 7000, 8 functional), UX5000 (molecular weight 1000, 5 functional) and UX5001T (molecular weight 6200, 8 functional), manufactured by Negami Kogyo Co., Ltd .: UN3320HS ( Molecular weight 5000, 15 functional), UN904 (molecular weight 4900, 10 functional), UN3320HC (molecular weight 1500, 6 functional) and UN3320HA (molecular weight 1500, 6 functional), Arakawa Chemical Industries, Ltd .: BS577 (molecular weight 1000, 6 functional) And Shin-Nakamura Chemical Co., Ltd .: U15H 15 functional) and U6H (6 functional), and the like.
  • the total content of the radically polymerizable compound and the cationically polymerizable compound in the functional layer is selected from the viewpoints of the surface hardness and adhesion of the functional layer, and the occurrence of interference fringes.
  • the layer does not contain inorganic or organic fine particles described later, it is preferably 45% by mass or more, more preferably 50% by mass or more, and when the functional layer contains inorganic or organic fine particles described later. 30% by mass or more, and more preferably 40% by mass or more.
  • the upper limit of the total content of at least one polymer of the radical polymerizable compound and the cationic polymerizable compound in the functional layer is not particularly limited, but when the functional layer contains inorganic or organic fine particles described later, the fine particles Is preferably 60% by mass or less, and more preferably 50% by mass or less, from the viewpoint of fully containing the above-described effect.
  • the optional additive component is appropriately selected according to the function to be imparted to the functional layer, and is not particularly limited.
  • inorganic or organic fine particles for adjusting the hardness and refractive index an ultraviolet absorber, an infrared absorber, a protective agent
  • examples include glazes, antifouling agents, antistatic agents, and leveling agents, surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, and surface modifiers.
  • An agent or the like may be included.
  • the functional layer composition preferably contains inorganic or organic fine particles, and more preferably contains inorganic fine particles, from the viewpoint of improving the hardness.
  • organic fine particles can be preferably used from the viewpoint of imparting antiglare property.
  • the inorganic fine particles include metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal fluoride fine particles such as magnesium fluoride and sodium fluoride
  • metal oxide fine particles are preferable, and are selected from silica fine particles and aluminum oxide fine particles. At least one type is more preferable, and silica fine particles are still more preferable.
  • the inorganic fine particles have a photoreactive property capable of forming a covalent bond by crosslinking reaction between the inorganic fine particles or at least one of the radical polymerizable compound and the cationic polymerizable compound on the surface of the inorganic fine particles.
  • Reactive inorganic fine particles having a reactive functional group having at least a part of the particle surface are preferable.
  • the hardness of the hard coat film can be further improved by a cross-linking reaction between the reactive inorganic fine particles or the reactive inorganic fine particles and at least one of the radical polymerizable compound and the cationic polymerizable compound.
  • Examples include an aspect in which an organic component is attached to a hydroxyl group present on the surface of the inorganic fine particle by an interaction such as hydrogen bonding, and an aspect in which one or two or more inorganic fine particles are contained in the polymer particle.
  • said reactive functional group ethylenically unsaturated bonds, such as a (meth) acryloyl group, a vinyl group, an allyl group, an epoxy group, etc. are mentioned, for example.
  • the inorganic or organic fine particles use solid particles that do not have pores or a porous structure inside the particles, such as hollow particles, to improve the hardness. From the point of view, it is preferable.
  • the average particle diameter of the inorganic or organic fine particles is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of improving the hardness, and more preferably 100 nm or less from the viewpoint of transparency. More preferably, it is 50 nm or less.
  • the average particle diameter of the inorganic or organic fine particles can be measured by observing a cross section of the functional layer with an electron microscope.
  • the average particle diameter of 10 arbitrarily selected fine particles is defined as the average particle diameter.
  • the inorganic or organic fine particles those having a single material and a single average particle diameter may be used, or two or more kinds having different materials or average particle diameters may be used in combination.
  • the average particle diameter of the various fine particles is preferably within the above range.
  • the total content of the inorganic or organic fine particles in the functional layer is preferably 25% by mass or more and 30% by mass or more from the viewpoint of imparting hardness. More preferably, it is preferably 60% by mass or less, and more preferably 50% by mass or less. When the content of the inorganic or organic fine particles is too large, the filling rate is excessively increased, which may reduce the hardness of the functional layer.
  • each functional layer included in the multilayer body according to the present disclosure may be appropriately selected depending on the function of the functional layer and the use of the multilayer body.
  • each functional layer has a thickness of 2 ⁇ m.
  • it is preferably 3 ⁇ m or more.
  • it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, from the viewpoint of bending resistance and thinning of the laminate.
  • it is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the functional layer included in the laminate of the present disclosure may have not only a single layer but also a multilayer configuration of two or more layers.
  • the total thickness of the functional layers is not particularly limited, but is 50 ⁇ m or less from the viewpoint of bending resistance and thinning of the laminate. Is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the lower limit of the total thickness of the functional layer is not particularly limited, but is preferably 2 ⁇ m or more and more preferably 3 ⁇ m or more from the viewpoint of exerting the function of the functional layer.
  • the functional layer adjacent to the compatible layer is a functional layer containing the inorganic or organic fine particles, and is on the side opposite to the compatible layer.
  • the functional layer located on the outermost surface is preferably a functional layer containing an antifouling agent from the viewpoint of improving the hard coat property and antifouling property of the laminate of the present disclosure.
  • the functional layer included in the laminate according to the present disclosure has a Martens hardness of 350 MPa or more and less than 1000 MPa on the surface of the functional layer on the side opposite to the side where the polyimide film is located from the viewpoint of surface hardness and bending resistance.
  • it is 350 MPa or more and 600 MPa or less, more preferably 375 MPa or more and 575 MPa or less.
  • the Martens hardness can be adjusted by the composition of the functional layer.
  • the Martens hardness can be increased by increasing the content of inorganic or organic fine particles.
  • the Martens hardness is a hardness when an indenter is pressed by a hardness measurement by a nanoindentation method, and can be performed by using, for example, “TI950 TriboIndenter” manufactured by HYSITRON. Specifically, a triangular pyramid-shaped indenter is pushed into the surface of the laminated body on the functional layer side, and after holding and relaxing the residual stress, unloading, measuring the maximum load after relaxation, The Martens hardness can be calculated from P max / A using the maximum load (P max ( ⁇ N)) and the indentation depth (A (nm 2 )).
  • composition for functional layers used for formation of the said functional layer contains at least 1 sort (s) of a radically polymerizable compound and a cationically polymerizable compound, and is further needed. Accordingly, it contains a polymerization initiator, a solvent, and other optional components.
  • At least one of the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer composition is as described above.
  • the total content of at least one of the radically polymerizable compound and the cationically polymerizable compound in the functional layer composition improves the surface hardness of the functional layer and improves the adhesion of the functional layer by easily forming a compatible layer.
  • the functional layer composition does not contain inorganic or organic fine particles, it is preferably 45% by mass or more in the total solid content of the functional layer composition. 50% by mass or more, and when the functional layer contains inorganic or organic fine particles, the total solid content of the functional layer composition is preferably 30% by mass or more, and 40% by mass.
  • the upper limit of the total content of the radical polymerizable compound and the cationic polymerizable compound is not particularly limited, but when the functional layer composition contains inorganic or organic fine particles, the total solid content of the functional layer composition
  • the content is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the functional layer composition may contain a polymerization initiator as necessary.
  • a polymerization initiator radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators can be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • the radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating.
  • photo radical polymerization initiators include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives, and the like.
  • Irgacure 907 Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870 manufactured by Ciba Japan Co., Ltd. , Irgacure OXE01, DAROCUR TPO, DAROCUR1173, Japan Siber Hegner Co., Ltd.
  • the cationic polymerization initiator should just be able to discharge
  • the cationic polymerization initiator include sulfonic acid ester, imide sulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, ( ⁇ 6 -benzene) ( ⁇ 5 -cyclopentadidiene).
  • Enyl) iron (II) and the like and more specific examples include, but are not limited to, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide and the like.
  • radical polymerization initiators that can be used as cationic polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like.
  • iodonium chloride such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, bromide, borofluoride, hexafluorophosphate salt, hexafluoro Iodonium salts such as antimonate salts, chlorides of sulfonium such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, bromide, borofluoride, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, 2,4,6-sub
  • the content of the polymerization initiator is not particularly limited, but a total of 100 of the radical polymerizable compound and the cationic polymerizable compound from the viewpoint of sufficiently causing a polymerization reaction and sufficient hardness of the functional layer. It is preferable that they are 0.5 mass part or more and 10.0 mass parts or less with respect to a mass part.
  • a solvent capable of dispersing or dissolving each component contained in the functional layer composition can be appropriately selected and used, and is not particularly limited.
  • Alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, benzyl alcohol, PGME, ethylene glycol; acetone, methyl ethyl ketone (MEK), cyclohexanone, methyl isobutyl ketone, diacetone alcohol, cyclohepta
  • ketones such as diethyl ketone
  • ethers such as 1,4-dioxane, dioxolane, diisopropyl ether dioxane, tetrahydrofuran; methyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl lactate, etc
  • Stealtes Aliphatic hydrocarbons such as hexane; Cycloaliphatic hydrocarbons such as cyclohexane; Aromatic hydrocarbons such as toluene and xylene; Halogenated carbons such as dichloromethane and dichloroethane; Methyl formate, Methyl acetate, Acetic acid Esters such as ethyl, propyl acetate, butyl acetate and ethyl lactate; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide; Phenols such as orthochlorophenol can be exemplified, and a mixture thereof may be used.
  • Aliphatic hydrocarbons such as hexane
  • Cycloaliphatic hydrocarbons such as cyclohe
  • methyl isobutyl ketone is particularly preferable because a compatible layer is easily formed, adhesion between the functional layer and the polyimide film is improved, and generation of interference fringes is easily suppressed.
  • a solvent containing at least one selected from methyl ethyl ketone is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more based on the entire solvent. It is even more preferable.
  • the content of the solvent in the functional layer composition is such that a compatible layer is easily formed, the adhesion between the functional layer and the polyimide film is improved, and the occurrence of interference fringes is easily suppressed. It is preferable that it is 30 to 70 mass% with respect to the whole thing, and it is more preferable that it is 35 to 60 mass%.
  • the inorganic or organic fine particles contained as an optional additive component are 50% when the fine particles in the composition are measured by a dynamic light scattering method and the particle size distribution is expressed as a cumulative distribution.
  • the particle diameter (d50 median diameter) is preferably 5 nm or more from the viewpoint of improving hardness, and is preferably 10 nm or more. On the other hand, from the viewpoint of transparency, it is preferably 100 nm or less, and 50 nm or less. More preferably.
  • the median diameter can be measured using a Microtrac particle size analyzer or a Nanotrac particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the inorganic or organic fine particles preferably have a narrow particle size distribution and are monodispersed from the viewpoint of transparency and hardness.
  • the functional layer composition is applied to at least one surface of the polyimide film by a known coating means.
  • the application means is not particularly limited as long as it is a method that can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
  • the coating film In the step of curing the coating layer of the functional layer composition, the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer composition Depending on the polymerizable group, the coating film can be cured by at least one of light irradiation and heating. By curing the coating film, at least one of the radical polymerizable compound and the cation polymerizable compound in the functional layer composition is polymerized to form a polymer, and the radical polymerizable compound and the cation are generated. A functional layer containing at least one polymer of a polymerizable compound can be formed.
  • ultraviolet rays For light irradiation, ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are mainly used.
  • ultraviolet curing ultraviolet rays emitted from light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used.
  • the treatment When heating, the treatment is usually performed at a temperature of 40 ° C. or higher and 120 ° C. or lower. Moreover, you may react by leaving it to stand for 24 hours or more at room temperature (25 degreeC).
  • a method of forming a functional layer having a multilayer structure of three or more layers for example, in the method described above, after the step of forming a coating film of the second functional layer composition, further on the coating film, the method which has the process of laminating
  • a functional layer having a multilayer structure after the step of forming a coating film of each functional layer composition, before forming a coating film of another functional layer composition on the coating film It may have a step of semi-curing or curing the coating film, and it is preferable from the viewpoint of adhesion to have a step of semi-curing.
  • the first functional layer including at least one of a radical polymerizable compound and a cationic polymerizable compound on at least one surface of the polyimide film.
  • At least 1 sort (s) of the component of the said polyimide film which the said compatible layer contains contains a polyimide. It is preferred that at least one component of the functional layer contained in the compatible layer contains at least one polymer of a radical polymerizable compound and a cationic polymerizable compound.
  • the compatible layer forms the functional layer, in the step of forming a coating film of the functional layer composition on at least one surface of the polyimide film, 1 part of the component in the functional layer composition Is formed by penetrating into the polyimide film.
  • the laminate according to the present disclosure has a compatible layer between the polyimide film and the functional layer, thereby improving the adhesion between the functional layer and the polyimide film, suppressing the occurrence of interference fringes, and bending resistance. Is an improvement.
  • the compatible layer preferably has no discontinuity between the polyimide film and the functional layer in terms of adhesion between the functional layer and the polyimide film, interference fringe suppression, and bending resistance.
  • the thickness of the compatible layer is preferably 1 nm or more, more preferably 3 nm or more, and even more preferably 5 nm or more.
  • the compatible layer is a layer observed as a dyed layer in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate. It is preferable.
  • the dyed layer refers to a layer colored by dyeing. At least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide, and tungsten phosphate has a large molecular mobility such as an amorphous part and easily enters and reacts with a low density part.
  • the compatible layer is formed when the functional layer composition permeates the polyimide film surface when the functional layer is formed on the polyimide film containing the polyimide represented by the general formula (1). Therefore, it is considered that the area to be the compatible layer is a low density area due to a moderate decrease in the density of polyimide due to the penetration of the functional layer composition. It is considered that at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate can selectively dye the compatible layer by adhering to the low density region. In the present disclosure, it is preferable to use at least one selected from ruthenium tetroxide and osmium tetroxide, and more preferably ruthenium tetroxide.
  • the lamination according to the present disclosure After the sample cut into a 2 mm x 10 mm strip is solidified and fixed with resin, it is cut in the thickness direction of the fixed sample with a width of about 50 nm to 150 nm using a microtome.
  • a method of staining the prepared ultrathin sections by placing them in a container together with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate, and allowing them to stand at room temperature (25 ° C.) for a certain period of time.
  • the standing time can be adjusted as appropriate, and is not particularly limited, but may be, for example, 10 minutes or more and 60 minutes or less.
  • the thickness of the dyed compatible layer is the functional layer and polyimide From the viewpoint of adhesion to the film, suppression of interference fringes, and bending resistance, the thickness is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more.
  • the thickness of the compatible layer dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate is preferably 3 ⁇ m or less, preferably 1 ⁇ m or less. More preferably, it is more preferably 500 nm or less, and may be 300 nm or less or 100 nm or less.
  • the thickness of the dyed compatible layer having a portion exceeding 10 nm, more preferably having a portion exceeding 15 nm is preferable from the viewpoint of improving adhesion.
  • the overall thickness of the laminate according to the present disclosure may be appropriately selected depending on the application, but is preferably 10 ⁇ m or more, and more preferably 40 ⁇ m or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, it is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the ratio of the total thickness of the functional layer and the compatible layer with respect to the total thickness of the laminate is in terms of surface hardness, and adhesion and interference fringe suppression. It is preferably 10% or more, more preferably 15% or more. On the other hand, from the viewpoint of bending resistance, it is preferably 30% or less, and more preferably 20% or less.
  • the laminated body which concerns on this indication should just have the said functional layer in the at least one surface of the said polyimide film through the said compatible layer, ie, on the at least one surface of the said polyimide film.
  • the compatible layer and the functional layer are adjacent to each other in this order, other layers may be included as long as the effects of the present disclosure are not impaired.
  • the laminated body according to the present disclosure preferably has an internal angle measured by the test of 120 ° or more when a static bending test is performed from the viewpoint of excellent bending resistance.
  • the method of a static bending test can be made the same method as the static bending test of the polyimide film mentioned above. In the static bending test of the laminate, the laminate is bent so that the functional layer side surface is on the inside.
  • the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, more preferably 88% or more, from the viewpoint of light transmittance. Further, it is preferably 90% or more.
  • the total light transmittance of the laminate of the present disclosure can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
  • the pencil hardness of the functional layer side surface is preferably H or higher, more preferably 2H or higher, and still more preferably 3H or higher.
  • the pencil hardness of the laminate of the present disclosure can be measured in the same manner except that the load is 9.8 N in the method for measuring the pencil hardness of the polyimide film.
  • the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, from the viewpoint of light transmittance. More preferably, it is 15 or less, More preferably, it is 13 or less, It is especially preferable that it is 10 or less. Moreover, although not specifically limited, it is desirable that the yellowness (YI value) of the laminate of the present disclosure is 2.5 or less.
  • the laminated body of the present disclosure has a yellow color calculated in accordance with JIS K7373-2006 because yellowish coloring is suppressed, light transmittance is improved, and it can be suitably used as a glass substitute material.
  • a value (YI value / film thickness ( ⁇ m)) obtained by dividing the degree (YI value) by the film thickness ( ⁇ m) is preferably 0.04 or less, and more preferably 0.03 or less.
  • the yellowness (YI value) of the laminate of the present disclosure can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
  • the laminate of the present disclosure preferably has a haze value of 10 or less, more preferably 8 or less, and even more preferably 5 or less, from the viewpoint of light transmittance. Moreover, although it does not specifically limit, it is desirable that the haze value of the laminated body of this indication is 1.0 or less.
  • the haze value of the laminate of the present disclosure can be measured in the same manner as the haze value of the polyimide film.
  • the birefringence in the thickness direction of the laminate of the present disclosure at a wavelength of 590 nm is preferably 0.040 or less, more preferably 0.020 or less, from the viewpoint of reducing optical distortion, Or less, more preferably 0.010 or less, and even more preferably less than 0.008.
  • the birefringence of the laminate of the present disclosure can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
  • the laminated body of the present disclosure does not cause peeling of the functional layer, which causes adhesion between the polyimide film and the functional layer and generation of interference fringes. It is preferable from the point of suppression, and the point of the bending tolerance and surface hardness of a laminated body.
  • Adhesion test method The functional layer of the test piece of the laminate cut out to 10 cm ⁇ 10 cm was subjected to a cross-cut test in accordance with JIS K 5600-5-6, and after repeating the tape peeling operation 5 times, whether or not the functional layer was peeled off Observe.
  • Production method of laminate The production method of the laminate according to the present disclosure is not particularly limited as long as it is a method by which the laminate according to the present disclosure described above is obtained.
  • the manufacturing method of the laminated body containing the at least 1 sort (s) of component of the said polyimide film and the at least 1 sort (s) of the component of the said functional layer can be mentioned.
  • the said polyimide film can be prepared by the method similar to the manufacturing method of the polyimide film mentioned above.
  • the process of forming the coating film of the composition for functional layers, and the process of hardening the coating film of the composition for functional layers can be made into the method similar to the formation method of the functional layer mentioned above.
  • the use of the laminated body of this indication is not specifically limited, For example, it can be used as members, such as a base material and surface material which glass products, such as thin plate glass, were conventionally used.
  • the laminate of the present disclosure has improved bending resistance, excellent adhesion between the polyimide film and the functional layer, and has a good quality in which the generation of interference fringes is suppressed. Since it has hardness and light transmittance, it can be suitably used as a surface material for a display, in particular, it can be suitably used as a surface material for a flexible display, and can be used as a surface material for a foldable display. Can also be suitably used.
  • the laminated body of the present disclosure is specifically a flexible panel used for, for example, a thin and bent flexible organic EL display, a portable terminal such as a smartphone or a wristwatch type terminal, a display device inside a car, a wristwatch, or the like. It can use suitably for etc.
  • the laminate of the present disclosure includes a member for an image display device such as a liquid crystal display device and an organic EL display device, a member for a touch panel, a flexible printed circuit board, a surface protection film, a member for solar cell panel such as a substrate material, and an optical waveguide.
  • the present invention can also be applied to other members, other semiconductor-related members, and the like.
  • the surface material for display of this indication is a layered product of this indication mentioned above.
  • the display surface material of the present disclosure is used so as to be positioned on the surface of various displays.
  • the display surface material of the present disclosure like the laminate of the present disclosure described above, has improved bending resistance, excellent adhesion between the polyimide film and the functional layer, and good quality with suppressed generation of interference fringes. Since it has excellent surface hardness and light transmittance in a more preferred embodiment, it can be particularly suitably used for a flexible display.
  • the display surface material of the present disclosure can be used for various known displays and is not particularly limited.
  • the display surface material can be used for the display described in the application of the laminate of the present disclosure.
  • the outermost surface after being arranged on the display surface may be a polyimide film side surface or a functional layer side surface. Especially, it is preferable to arrange
  • the method for disposing the display surface material of the present disclosure on the surface of the display is not particularly limited, and examples thereof include a method through an adhesive layer.
  • the adhesive layer a conventionally known adhesive layer that can be used for adhesion of a display surface material can be used.
  • the touch panel member of the present disclosure includes the above-described laminate of the present disclosure, the touch panel member has excellent adhesion between the functional layer and the polyimide film, excellent bending resistance, and interference fringes are suppressed. Therefore, it can be particularly suitably used for a flexible display and has excellent optical characteristics.
  • the laminated body of this indication used for the touchscreen member of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer.
  • the touch panel member of the present disclosure is not particularly limited, but it is preferable that the transparent electrode is laminated in contact with one surface side of the laminate.
  • the touch panel member of this indication can be arranged and used so that it may be located on the surface of various displays, for example.
  • the touch panel member of this indication and the laminated body of this indication as a surface material can also be arrange
  • FIG. 12 is a schematic plan view of one surface of an example of the touch panel member of the present disclosure
  • FIG. 13 is a schematic plan view of the other surface of the touch panel member shown in FIG. 12
  • FIG. FIG. 14 is a cross-sectional view taken along the line AA ′ of the touch panel member shown in FIG. 13.
  • the touch panel member 20 shown in FIGS. 12, 13, and 14 includes the laminate 10 according to the present disclosure, the first transparent electrode 4 disposed in contact with one surface of the laminate 10, and the other of the laminate 10. And a second transparent electrode 5 disposed in contact with the surface.
  • a plurality of first conductive portions 41 which are strip-like electrode pieces extending so as to extend in the x-axis direction, are arranged at a predetermined interval.
  • a first lead wire 7 that is electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at either one of its longitudinal ends.
  • a first terminal 71 for electrical connection with an external circuit may be provided at the end of the first lead-out line 7 extending to the end edge 21 of the laminate 10.
  • the first conductive portion 41 and the first lead-out line 7 are generally connected in an inactive area 23 located outside the active area 22 that can be visually recognized by a touch panel user.
  • a connection structure in which a connection portion 24 is interposed can be adopted for example, as shown in FIG. 12, a connection structure in which a connection portion 24 is interposed can be adopted.
  • connection portion 24 can be formed by extending a layer of a conductive material from a longitudinal end portion of the first conductive portion 41 to a predetermined position in the inactive area 23. Furthermore, a connection structure between the first conductive portion 41 and the first extraction line 7 can be formed by overlapping at least a part of the first extraction line 7 on the connection portion 24.
  • the connection between the first conductive portion 41 and the first lead-out line 7 is not limited to the structure forming the connection portion 24 as shown in FIG.
  • the first conductive portion 41 is extended to the inactive area 23 in the longitudinal direction of the first conductive portion 41 and extended to the inactive area 23 in the inactive area 23.
  • Both of them may be electrically connected by riding the first lead-out wire 7 on the end of the first lead wire 7.
  • FIG. 12 although the form which connects either one of the longitudinal direction ends of the 1st electroconductive part 41 and the 1st extraction line 7 was shown, in this indication, one 1st electroconductivity is shown. It is good also as a form which electrically connects the 1st extraction line 7 to the both ends of the longitudinal direction of the part 41, respectively.
  • the touch panel member 20 includes a second transparent electrode 5 disposed in contact with the other surface of the laminate 10.
  • the second conductive portions 51 which are a plurality of strip-shaped electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction.
  • a second lead wire 8 that is electrically connected to the second conductive portion 51 is connected to the second conductive portion 51 at one of its longitudinal ends.
  • the second lead-out line 8 is extended to a position that does not overlap the first terminal 71 in the end edge 21 where the first lead-out line 7 described above is extended among the end edges of the laminated body 10. .
  • a second terminal 81 for electrical connection with an external circuit is preferably provided at the end of the second lead-out line 8 extending to the end edge 21 of the laminate 10.
  • the same form as the electrical connection between the first lead-out wire 7 and the first conductive portion 41 can be applied. .
  • the pattern in which the first extraction line 7 is a long wiring and the second extraction line 8 is a short wiring is only one embodiment of the touch panel member of the present disclosure. It is also possible to use a pattern in which the first extraction line 7 is a short wiring and the second extraction line 8 is a long wiring. Further, the extending direction of the first extraction line 7 and the extending direction of the second extraction line 8 are not limited to the directions shown in FIGS. 12 and 13 and can be arbitrarily designed.
  • the conductive part included in the touch panel member of the present disclosure can be appropriately selected and applied to those constituting the transparent electrode in the touch panel member, and the pattern of the conductive part is not limited to those shown in FIGS. 12 and 13.
  • a transparent electrode pattern capable of detecting a change in capacitance due to contact with a finger or the like or a state close to contact can be appropriately selected and applied by a capacitance method.
  • the material of the conductive portion is preferably a light transmissive material, for example, an indium oxide based transparent electrode material mainly composed of indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), or the like.
  • the first conductive portion 41 and the second conductive portion 51 may be formed using the same kind of conductive material, or may be formed using different materials. In particular, it is preferable to form the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material from the viewpoint of more effectively suppressing the occurrence of warpage and distortion of the touch panel member.
  • the thickness of the conductive portion is not particularly limited, but when the conductive portion is formed by, for example, a photolithography technique, it can be generally formed to about 10 nm to 500 nm.
  • the conductive material constituting the lead-out line included in the touch panel member of the present disclosure may or may not be light transmissive.
  • the lead-out line can be formed using a metal material such as silver or copper having high conductivity.
  • a metal material such as silver or copper having high conductivity.
  • Specific examples include a metal simple substance, a metal composite, a metal / metal compound composite, and a metal alloy.
  • the simple metal include silver, copper, gold, chromium, platinum, and aluminum.
  • the metal composite include MAM (a three-layer structure of molybdenum, aluminum, and molybdenum).
  • MAM a three-layer structure of molybdenum, aluminum, and molybdenum
  • As a composite of a metal and a metal compound a laminate of chromium oxide and chromium can be exemplified.
  • the metal alloy a silver alloy or a copper alloy is generally used.
  • FIG.15 and FIG.16 is a schematic plan view which shows an example of an electroconductive member provided with the laminated body of this indication, respectively.
  • a first conductive member 201 illustrated in FIG. 15 includes the stacked body 10 of the present disclosure and the first transparent electrode 4 disposed in contact with one surface of the stacked body 10.
  • the transparent electrode 4 has a plurality of first conductive portions 41.
  • the 16 includes the multilayer body 10 ′ of the present disclosure and the second transparent electrode 5 disposed in contact with one surface of the multilayer body 10 ′.
  • the second transparent electrode 5 has a plurality of second conductive portions 51.
  • 17 is a schematic cross-sectional view illustrating another example of the touch panel member of the present disclosure.
  • the touch panel member 20 ′ illustrated in FIG. 17 includes the first conductive member 201 illustrated in FIG. 15 and the second conductive member illustrated in FIG.
  • the conductive member 202 is provided. In the touch panel member 20 ′, the surface of the first conductive member 201 that does not have the first transparent electrode 4 and the surface of the second conductive member 202 that has the transparent electrode 5 are interposed via the adhesive layer 6. It is pasted together.
  • an adhesive layer for bonding the laminate of the present disclosure and the touch panel member of the present disclosure an adhesive layer for bonding the touch panel members of the present disclosure, the touch panel member and the display device of the present disclosure.
  • a conventionally known adhesive layer used for optical members can be appropriately selected and used.
  • the configuration and materials of the transparent electrode, the lead-out line, and the terminal may be the same as the transparent electrode, the lead-out line, and the terminal used in the touch panel member of the present disclosure described above, respectively. it can.
  • liquid crystal display device of the present disclosure includes the above-described stacked body of the present disclosure and a liquid crystal display unit that is disposed on one surface side of the stacked body and includes a liquid crystal layer between opposing substrates. .
  • the liquid crystal display device of the present disclosure includes the above-described laminate of the present disclosure, the liquid crystal display device has excellent adhesion between the functional layer and the polyimide film, excellent bending resistance, and interference fringes are suppressed. Therefore, it can be particularly suitably used for a flexible display and has excellent optical characteristics. It is preferable that the laminated body of this indication used for the liquid crystal display device of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer. Further, the liquid crystal display device of the present disclosure may include the touch panel member of the present disclosure described above. Further, the counter substrate included in the liquid crystal display device of the present disclosure may be provided with the stacked body of the present disclosure.
  • the liquid crystal display unit used in the liquid crystal display device of the present disclosure has a liquid crystal layer formed between substrates disposed to face each other, and may adopt a configuration used in a conventionally known liquid crystal display device. it can.
  • a driving method of the liquid crystal display device of the present disclosure is not particularly limited, and a driving method generally used for a liquid crystal display device can be adopted, for example, a TN method, an IPS method, an OCB method, and an MVA method. Etc.
  • the counter substrate used in the liquid crystal display device of the present disclosure can be appropriately selected and used depending on the driving method of the liquid crystal display device, and a substrate provided with the stacked body of the present disclosure may be used.
  • liquid crystal constituting the liquid crystal layer various liquid crystals having different dielectric anisotropy and mixtures thereof can be used according to the driving method of the liquid crystal display device of the present disclosure.
  • a method for forming the liquid crystal layer a method generally used as a method for manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method. After forming the liquid crystal layer by the above-described method, the sealed liquid crystal can be aligned by slowly cooling the liquid crystal cell to room temperature.
  • a plurality of colored layers and a light-shielding portion for defining pixels may be further provided between the substrates arranged opposite to each other.
  • the liquid crystal display unit may include a backlight unit including a light emitting element and a phosphor at a position opposite to the side where the touch panel member is positioned outside the substrate disposed oppositely.
  • you may have a polarizing plate in the outer surface of the board
  • FIG. 19 is a schematic cross-sectional view showing another example of the liquid crystal display device of the present disclosure.
  • a liquid crystal display device 200 illustrated in FIG. 19 includes a laminate 10 according to the present disclosure, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ according to the present disclosure, The touch panel member 20 ′ having the second conductive member 202 including the second transparent electrode 5 on one surface of the stacked body 10 ′′ and the liquid crystal display unit 30.
  • the stacked body 10 In the liquid crystal display device 200, the stacked body 10. And the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6.
  • the configuration of the touch panel member 20 ′ is, for example, 17 can be the same as the configuration of the touch panel member 20 'shown in Fig. 17.
  • the conductive member used for the liquid crystal display device of the present disclosure is the same as the conductive member used for the touch panel member of the present disclosure. To use Can.
  • the organic electroluminescence display device of the present disclosure is provided with the laminate of the present disclosure described above, the adhesion between the functional layer and the polyimide film is excellent, the bending resistance is excellent, and the generation of interference fringes is suppressed. Therefore, it can be used particularly suitably for flexible displays and has excellent optical properties. It is preferable that the laminated body of this indication used for the organic electroluminescent display apparatus of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer.
  • the organic electroluminescence display device of the present disclosure may include the touch panel member of the present disclosure described above.
  • the counter substrate included in the organic electroluminescence display device of the present disclosure may include the stacked body of the present disclosure.
  • FIG. 20 is a schematic cross-sectional view illustrating an example of the organic electroluminescence display device of the present disclosure.
  • An organic electroluminescence display device 300 shown in FIG. 20 includes the laminate 10 of the present disclosure and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present disclosure, and the second transparent on the other surface.
  • a touch panel member 20 including the electrodes 5 and an organic electroluminescence display unit 40 are included.
  • the stacked body 10 is used as a surface material, and the stacked body 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
  • An organic electroluminescence display unit (organic EL display unit) used in the organic electroluminescence display device (organic EL display device) of the present disclosure is an organic electroluminescence layer (organic EL layer) formed between substrates disposed to face each other.
  • the structure used for a conventionally known organic EL display device can be employed.
  • the organic EL display unit further includes a support substrate, an organic EL element including an organic EL layer and an anode layer and a cathode layer that sandwich the organic EL layer, and a sealing substrate that seals the organic EL element. It may be.
  • the organic EL layer only needs to have at least an organic EL light-emitting layer.
  • the organic EL display device of the present disclosure is applicable to, for example, a passive drive type organic EL display and an active drive type organic EL display.
  • the counter substrate used in the organic EL display device of the present disclosure can be appropriately selected and used according to the driving method of the organic EL display device, and a substrate provided with the stacked body of the present disclosure may be used.
  • FIG. 21 is a schematic cross-sectional view showing another example of the organic electroluminescence display device of the present disclosure.
  • An organic electroluminescence display device 400 shown in FIG. 21 includes a laminate 10 of the present disclosure, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present disclosure, It has the touch panel member 20 'which has the 2nd electroconductive member 202 provided with the 2nd transparent electrode 5 in one surface of the laminated body 10 "of an indication, and the organic electroluminescent display part 40.
  • Organic electroluminescent display apparatus In 400 the laminated body 10 and the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded together via the adhesive layer 6.
  • the touch panel member 20 ′ is a schematic cross-sectional view showing another example of the organic electroluminescence display device of the present disclosure.
  • An organic electroluminescence display device 400 shown in FIG. 21 includes a laminate 10 of the present disclosure, a first conductive member 201
  • the configuration of can be the same as the configuration of the touch panel member 20 'shown in Fig. 17.
  • the configuration of the organic electroluminescence display device of the present disclosure can be used.
  • the that the conductive member may be the same as the conductive member for use in a touch panel member of the present disclosure.
  • the weight average molecular weight of the polyimide precursor was developed by making the polyimide precursor a 0.5% by weight N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore diameter: 0.45 ⁇ m), and developing the polyimide precursor.
  • NMP N-methylpyrrolidone
  • a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, a GPC apparatus (manufactured by Tosoh Corporation, HLC-8120, column used: GPC LF-804 made by SHODEX), a sample injection amount of 50 ⁇ L, and a solvent flow rate of 0.5 mL. The measurement was performed under the conditions of 40 ° C./min.
  • the weight average molecular weight of the polyimide precursor is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300, 3,070) was used as a conversion value with respect to standard polystyrene measured. The elution time was compared with a calibration curve to determine the weight average molecular weight.
  • ⁇ Viscosity of polyimide precursor solution The viscosity of the polyimide precursor solution was measured using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
  • NMP N-methylpyrrolidone
  • the solution was filtered through a syringe filter (pore size: 0.45 ⁇ m), a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used as a developing solvent, and a GPC apparatus (manufactured by Tosoh Corporation, HLC-8120, detector: differential) Refractive index (RID) detector, column used: two SHODEX GPC LF-804s connected in series), sample injection amount 50 ⁇ L, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions.
  • the weight average molecular weight of the polyimide is the same as the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300, 3, 070) was used as a conversion value with respect to standard polystyrene measured.
  • the elution time was compared with a calibration curve to determine the weight average molecular weight.
  • ⁇ Viscosity of polyimide solution The viscosity of the polyimide solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
  • a viscometer eg, TVE-22HT, Toki Sangyo Co., Ltd.
  • ⁇ Dyeing of compatible layer> A sample of a laminate cut into 2 mm ⁇ 10 mm strips was fixed by embedding and fixing with an epoxy resin, and then 50 nm using a microtome (Leica, LEICA EM UC7) in the thickness direction of the fixed sample.
  • the ultra-thin sections prepared by cutting with a width of about 150 nm were sealed in a 30 mL capacity weighing bottle together with ruthenium tetroxide (manufactured by Rare Metallic), and left at room temperature (25 ° C.) for 30 minutes. Thereafter, the lid of the weighing bottle was opened and left for 15 minutes, and then the cross section in the thickness direction of the sample contained in the ultrathin slice was observed with STEM.
  • FIGS. 10 and 11 show STEM images after the cross section in the thickness direction of the laminate obtained in Comparative Example 3 is dyed with ruthenium tetroxide.
  • the STEM image shown in FIG. 10 and the STEM image shown in FIG. 11 have different magnifications at the time of photographing. From the STEM image after dyeing of the laminate of Comparative Example 3 shown in FIGS. 10 and 11, the interface between the polyimide film and the functional layer is unclear, and the compatible layer dyed with ruthenium tetroxide is observed. I could not.
  • Total light transmittance> The total light transmittance was measured with a haze meter (HM150, manufactured by Murakami Color Research Laboratory) in accordance with JIS K7361-1.
  • YI value (yellowness)>
  • the YI value is determined according to JIS K7373-2006 using an ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation V-7100), by spectrocolorimetric method, using auxiliary illuminant C, and 2 degree field of view.
  • the tristimulus values X, Y, Z in the XYZ color system are obtained based on the transmittance measured in the range of 250 nm to 800 nm at 1 nm intervals, and the following formula is obtained from the X, Y, Z values. Calculated.
  • YI 100 (1.2769X ⁇ 1.0592Z) / Y
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • Examples 1 to 5 Comparative Examples 1 to 3
  • steps (1) to (3) were performed to prepare polyimide films having a thickness of about 50 ⁇ m.
  • Each polyimide precursor solution was apply
  • the temperature was raised to 350 ° C. at a rate of temperature rise of 10 ° C./min, held for 1 hour, and then cooled to room temperature.
  • the Martens hardness of the surface of the functional layer side of the obtained laminate was measured by a nanoindentation method. Specifically, using “TI950 TriboIndenter” manufactured by HYSITRON, Berkovich indenter (triangular pyramid) is pushed into the surface of the functional layer 2 of the laminated body by 500 nm, and the residual stress is alleviated by holding it constant. Then, unloading is performed, and the maximum load after relaxation is measured. Using the maximum load (P max ( ⁇ N)) and the indentation area (A (nm 2 ) having a depth of 500 nm, P max / From A, Martens hardness was calculated. The Martens hardness of the surface on the functional layer side of the obtained laminate was 500 MPa.
  • the laminated bodies of Examples 1 to 5 corresponding to the laminated body of the present disclosure have improved static bending resistance and functional layer adhesion, suppressed generation of interference fringes, and further improved surface hardness. It was shown that. Further, from Table 2, it was shown that the laminates of Examples 1 to 5 corresponding to the laminate of the present disclosure are excellent in optical properties with high transparency. On the other hand, the laminates of Comparative Examples 1 and 2 were inferior in adhesion of the functional layer, interference fringes were observed, and static bending resistance was also inferior. The laminate of Comparative Example 3 was greatly inferior in static bending resistance and inferior in surface hardness.
  • Example 7 to 10 Preparation of polyimide film
  • polyimide precursor solutions 2 to 5 obtained in the same manner as Synthesis Examples 2 to 5 were used in place of the polyimide precursor solution 1 obtained in Synthesis Example 1, respectively. Except that, polyimides 7 to 10 were obtained by the same reaction.
  • polyimides 7 to 10 were obtained by the same reaction.
  • polyimide films of Examples 7 to 10 were obtained in the same manner as Example 6 except that polyimide solutions 7 to 10 were used instead of polyimide solution 6.
  • the laminated bodies of Examples 6 to 10 corresponding to the laminated body of the present disclosure have improved static bending resistance and functional layer adhesion, suppressed generation of interference fringes, and further improved surface hardness. It was shown that. Further, from Table 4, it was shown that the laminates of Examples 6 to 10 corresponding to the laminate of the present disclosure were particularly excellent in optical properties with high yellowness, in which yellowing was suppressed. . Further, each of the laminates of Examples 6 to 10 showed a tendency that the compatible layer was thicker and the adhesion was improved as compared with the laminates of Examples 1 to 5 having the same Si-containing diamine ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a layered body comprising a functional layer disposed on at least one surface of a polyimide film via a compatible layer, the functional layer including at least one polymer of a radically polymerizable compound and cationically polymerizable compound. The compatible layer includes at least one component of the constituting components of polyimide film and at least one component of the constituting components of the functional layer. The polyimide film includes a polyimide having a structure represented by general formula (1). (In general formula (1), all references are as defined in the specification.)

Description

積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置Laminated body, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
 本開示の実施形態は、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置に関するものである。 Embodiments of the present disclosure relate to a laminate, a display surface material, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device.
 薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすく、加工性に問題があり、また、プラスチック製品と比較して重いといった欠点があった。このため、近年、樹脂基材や樹脂フィルム等の樹脂製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあり、ガラス代替製品となる樹脂製品の研究が行われてきている。 Although thin plate glass is excellent in hardness, heat resistance, etc., it is difficult to bend, it is easy to break when dropped, there is a problem in workability, and it is heavy compared to plastic products. Therefore, in recent years, resin products such as resin base materials and resin films are being replaced with glass products from the viewpoint of processability and weight reduction, and research on resin products that are glass substitute products has been conducted.
 例えば、液晶や有機EL等のディスプレイや、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスには従来、薄い板ガラス上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、この薄い板ガラスを樹脂フィルムに変えることにより、パネル自体の耐衝撃性の強化、フレキシブル化、薄型化や軽量化が図れる。 For example, with the rapid progress of electronics such as liquid crystal and organic EL displays and touch panels, it has become necessary to make devices thinner and lighter and more flexible. Conventionally, these devices have various electronic elements such as thin transistors and transparent electrodes formed on a thin glass plate. By changing this thin glass plate to a resin film, the impact resistance of the panel itself is enhanced. , Flexible, thin and light.
 本出願人は、特許文献1において、優れた硬度、透明性及び耐久折り畳み性能を有することを目的として、タッチパネルの表面材として用いられ、基材フィルムと少なくとも1層の樹脂硬化層とを有するタッチパネル用積層体であって、前記基材フィルムの前記樹脂硬化層側界面付近に溶出性層が形成されており、前記樹脂硬化層中に、前記溶出性層から溶出した前記基材フィルムを構成する材料成分が含有されており、前記基材フィルムは、ポリイミドフィルム、又は、アラミドフィルムであることを特徴とするタッチパネル用積層体を開示している。 In the patent document 1, the present applicant is used as a surface material of a touch panel for the purpose of having excellent hardness, transparency, and durable folding performance, and includes a base film and at least one cured resin layer. In the laminate for use, an elution layer is formed in the vicinity of the resin cured layer side interface of the base film, and the base film eluted from the elution layer is formed in the resin cured layer. A material component is contained, and the base material film is a polyimide film or an aramid film, and discloses a laminate for a touch panel.
 一方で、液晶配向膜等に用いられるポリイミド成形体(特許文献2)においては、無機系の基板との接着力を向上するために、ポリイミド樹脂の原料となるジアミン成分として、ジアミノシロキサンを使用することが行われている。 On the other hand, in a polyimide molded body (Patent Document 2) used for a liquid crystal alignment film or the like, diaminosiloxane is used as a diamine component that is a raw material for the polyimide resin in order to improve the adhesion to an inorganic substrate. Things have been done.
特開2017-33035号公報JP 2017-33035 A 特開昭63-170420号公報JP 63-170420 A
 画面が折り畳めるモバイル機器は、折り畳んだ状態で持ち運ばれることが多いため、モバイル機器に搭載されるフレキシブルディスプレイには、長時間折り曲げられた状態が続いても、平坦に戻した時に元通りになることが求められ、フレキシブルディスプレイ用の基材や表面材にも、長時間折り曲げられた状態が続いた後の復元性(以下、静的屈曲耐性という場合がある)が求められる。
 しかし、特許文献1に記載された積層体は、平坦状態、折り曲げ状態を一定の周期で繰り返す試験においては良好な結果を示すものの、長時間折り曲げられた状態が続くと、平坦に戻り難いという問題があり、静的屈曲耐性の向上が求められている。また、特許文献1に記載された積層体は、ポリイミドフィルムと樹脂硬化層との密着性の更なる向上も求められている。また、ポリイミドフィルムと樹脂硬化層との屈折率差により干渉縞が生じ、視認性が低下するという問題もある。
Mobile devices that can fold screens are often carried in a folded state, so the flexible display mounted on a mobile device will be restored to its original state when it is flattened even if it is folded for a long time. Therefore, the base material and the surface material for flexible displays are also required to have resilience after being bent for a long time (hereinafter, sometimes referred to as static bending resistance).
However, the laminate described in Patent Document 1 shows a good result in a test in which a flat state and a bent state are repeated at a constant period, but it is difficult to return to a flat state after being bent for a long time. There is a need to improve static bending resistance. Moreover, the laminated body described in patent document 1 is also calculated | required for the further improvement of the adhesiveness of a polyimide film and a resin cured layer. In addition, there is a problem that visibility is reduced due to interference fringes caused by a difference in refractive index between the polyimide film and the cured resin layer.
 本開示は、上記問題点に鑑みてなされたものであり、屈曲耐性、及び機能層とポリイミドフィルムとの密着性を向上し、干渉縞の発生が抑制された積層体、及び前記積層体であるディスプレイ用表面材を提供することを目的とする。 The present disclosure has been made in view of the above problems, and is a laminate in which bending resistance and adhesion between a functional layer and a polyimide film are improved and interference fringes are suppressed, and the laminate. It aims at providing the surface material for a display.
 本開示の1実施形態は、ポリイミドフィルムの少なくとも一方の面に、相溶層を介して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する機能層を有し、
 前記相溶層が、前記ポリイミドフィルムの構成成分の少なくとも1種の成分と、前記機能層の構成成分の少なくとも1種の成分とを含有し、
 前記ポリイミドフィルムが、下記一般式(1)で表される構造を有するポリイミドを含有する、積層体を提供する。
One embodiment of the present disclosure has a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound via a compatible layer on at least one surface of a polyimide film,
The compatible layer contains at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer,
Provided is a laminate in which the polyimide film contains a polyimide having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid. (A diamine residue having a group ring. N represents the number of repeating units.)
 本開示の1実施形態は、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記主鎖にケイ素原子を有するジアミン残基が、主鎖にケイ素原子を1個又は2個有するジアミン残基である、積層体を提供する。 In one embodiment of the present disclosure, in the polyimide having the structure represented by the general formula (1), a diamine residue having a silicon atom in the main chain in R 2 in the general formula (1) is mainly A laminate is provided which is a diamine residue having one or two silicon atoms in the chain.
 本開示の1実施形態は、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色した積層体の厚さ方向の断面において、染色された前記相溶層の厚みが5nm以上である、積層体を提供する。 In one embodiment of the present disclosure, the thickness of the compatible layer dyed in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate Provides a laminate having a thickness of 5 nm or more.
 本開示の1実施形態は、下記静的屈曲試験方法に従って、静的屈曲試験を行った場合に、当該試験で測定される内角が120°以上である、積層体を提供する。
[静的屈曲試験方法]
 15mm×40mmに切り出した積層体の試験片を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片の両端部と金属片との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板(100mm×100mm×0.7mm)で挟み、当該試験片を内径6mmで屈曲した状態で固定する。その際に、金属片とガラス板の間で当該試験片がない部分には、ダミーの試験片を挟み込み、ガラス板が平行になるようにテープで固定する。このようにして屈曲した状態で固定した当該試験片を、60℃、90%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放する。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定する。
One embodiment of the present disclosure provides a laminate in which an internal angle measured by the test is 120 ° or more when a static bending test is performed according to the following static bending test method.
[Static bending test method]
The laminate test piece cut out to 15 mm × 40 mm is bent at a half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm × 30 mm × 6 mm) having a thickness of 6 mm from the upper and lower surfaces. Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each. The test piece is fixed in a bent state with an inner diameter of 6 mm. At that time, a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel. The test piece thus fixed in a bent state is left to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and fixing tape are removed, and the test piece is attached to the test piece. Release this force. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
 本開示の1実施形態は、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下である、積層体を提供する。
 本開示の1実施形態においては、中でも、前記JIS K7373-2006に準拠して算出される積層体の黄色度を、積層体の膜厚(μm)で割った値が、0.04以下であると、積層体の黄色味の着色が抑制され、光透過性が向上する点から好ましい。
In one embodiment of the present disclosure, the total light transmittance measured according to JIS K7361-1 is 85% or more,
Provided is a laminate having a yellowness calculated in accordance with JIS K7373-2006 of 30 or less.
In one embodiment of the present disclosure, among them, the value obtained by dividing the yellowness of the laminate calculated in accordance with JIS K7373-2006 by the film thickness (μm) of the laminate is 0.04 or less. And it is preferable from the point which the yellowish coloring of a laminated body is suppressed and a light transmittance improves.
 本開示の1実施形態は、前記一般式(1)で表される構造を有するポリイミドが、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含む、積層体を提供する。 In one embodiment of the present disclosure, the polyimide having the structure represented by the general formula (1) includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic Provided is a laminate including at least one selected from the group consisting of a structure in which group rings are connected by a sulfonyl group or an alkylene group which may be substituted with fluorine.
 本開示の1実施形態は、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、積層体を提供する。 In one embodiment of the present disclosure, in the polyimide having the structure represented by the general formula (1), R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic Acid dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalate Acid anhydride residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic acid Anhydride residues and, at least one tetravalent group selected from the group consisting of 3,4'-oxydiphthalic anhydride residue, to provide a laminated body.
 本開示の1実施形態は、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記芳香族環又は脂肪族環を有するジアミン残基が、1,4-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、積層体を提供する。 In one embodiment of the present disclosure, in the polyimide having the structure represented by the general formula (1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is 1,4-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis Provided is a laminate, which is at least one divalent group selected from the group consisting of a (4-aminophenyl) propane residue and a divalent group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 本開示の1実施形態は、前記機能層が、多官能(メタ)アクリレートモノマーの重合物を含有する、積層体を提供する。 One embodiment of the present disclosure provides a laminate in which the functional layer contains a polymer of a polyfunctional (meth) acrylate monomer.
 本開示の1実施形態は、前記ポリイミドフィルムが位置する側とは反対側の前記機能層の表面のマルテンス硬さが、350MPa以上1000MPa未満である、積層体を提供する。 One embodiment of the present disclosure provides a laminate in which the Martens hardness of the surface of the functional layer on the side opposite to the side on which the polyimide film is located is 350 MPa or more and less than 1000 MPa.
 本開示の1実施形態は、前記本開示の1実施形態の積層体である、ディスプレイ用表面材を提供する。 1 embodiment of this indication provides the surface material for displays which is a layered product of one embodiment of the above-mentioned this indication.
 本開示の1実施形態は、前記本開示の1実施形態の積層体である、フレキシブルディスプレイ用表面材を提供する。 1 embodiment of this indication provides the surface material for flexible displays which is a layered product of one embodiment of the above-mentioned this indication.
 本開示の1実施形態は、前記本開示の1実施形態の積層体と、
 前記積層体の一方の面側に配置された、複数の導電部を有する透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を備えるタッチパネル部材を提供する。
One embodiment of the present disclosure includes the laminate of the one embodiment of the present disclosure;
A transparent electrode having a plurality of conductive portions arranged on one surface side of the laminate;
There is provided a touch panel member comprising a plurality of lead wires electrically connected to at least one side of an end portion of the conductive portion.
 本開示の1実施形態は、前記本開示の1実施形態の積層体と、
 前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、
を有する液晶表示装置を提供する。
One embodiment of the present disclosure includes the laminate of the one embodiment of the present disclosure;
A liquid crystal display unit having a liquid crystal layer disposed between opposing substrates, disposed on one surface side of the laminate;
A liquid crystal display device is provided.
 本開示の1実施形態は、前記本開示の1実施形態の積層体と、
 前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、
を有する有機エレクトロルミネッセンス表示装置を提供する。
One embodiment of the present disclosure includes the laminate of the one embodiment of the present disclosure;
An organic electroluminescence display unit having an organic electroluminescence layer disposed between opposing substrates, disposed on one surface side of the laminate,
An organic electroluminescence display device is provided.
 本開示の実施形態によれば、屈曲耐性、及び機能層とポリイミドフィルムとの密着性を向上し、干渉縞の発生が抑制された積層体、及び前記積層体であるディスプレイ用表面材を提供することができる。 According to an embodiment of the present disclosure, there are provided a laminate in which bending resistance and adhesion between a functional layer and a polyimide film are improved, and interference fringes are suppressed, and a display surface material that is the laminate. be able to.
本開示の積層体の一例を示す概略断面図である。It is a schematic sectional view showing an example of a layered product of this indication. 静的屈曲試験の方法を説明するための図である。It is a figure for demonstrating the method of a static bending test. 実施例1で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。2 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 1. FIG. 実施例1で得られた積層体の断面の四酸化ルテニウムによる染色前のSTEM画像である。2 is a STEM image before staining with ruthenium tetroxide of the cross section of the laminate obtained in Example 1. FIG. 実施例2で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。4 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 2. FIG. 実施例2で得られた積層体の断面の四酸化ルテニウムによる染色前のSTEM画像である。3 is a STEM image before staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 2. FIG. 実施例3で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。4 is a STEM image after staining with ruthenium tetroxide of a cross section of the laminate obtained in Example 3. FIG. 比較例2で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。4 is a STEM image after staining with ruthenium tetroxide of a cross section of a laminate obtained in Comparative Example 2. FIG. 比較例2で得られた積層体の断面の四酸化ルテニウムによる染色前のSTEM画像である。4 is a STEM image before staining with ruthenium tetroxide of a cross section of a laminate obtained in Comparative Example 2. FIG. 比較例3で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。It is a STEM image after dyeing | staining with the ruthenium tetroxide of the cross section of the laminated body obtained in the comparative example 3. FIG. 図10とは異なる倍率で撮影した、比較例3で得られた積層体の断面の四酸化ルテニウムによる染色後のSTEM画像である。It is a STEM image after dyeing | staining with the ruthenium tetroxide of the cross section of the laminated body obtained by the comparative example 3 image | photographed with the magnification different from FIG. 本開示のタッチパネル部材の一例の一方の面の概略平面図である。It is a schematic plan view of one side of an example of the touch panel member of this indication. 図12に示すタッチパネル部材のもう一方の面の概略平面図である。It is a schematic plan view of the other surface of the touch panel member shown in FIG. 図12及び図13に示すタッチパネル部材のA-A’断面図である。FIG. 14 is a cross-sectional view taken along the line A-A ′ of the touch panel member shown in FIGS. 12 and 13. 本開示の積層体を備える導電性部材の一例を示す概略平面図である。It is a schematic plan view which shows an example of an electroconductive member provided with the laminated body of this indication. 本開示の積層体を備える導電性部材の別の一例を示す概略平面図である。It is a schematic plan view which shows another example of an electroconductive member provided with the laminated body of this indication. 本開示のタッチパネル部材の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the touchscreen member of this indication. 本開示の液晶表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the liquid crystal display device of this indication. 本開示の液晶表示装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the liquid crystal display device of this indication. 本開示の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic electroluminescent display apparatus of this indication. 本開示の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the organic electroluminescent display apparatus of this indication.
I.積層体
 本開示の積層体は、ポリイミドフィルムの少なくとも一方の面に、相溶層を介して、ラジカル重合性合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する機能層を有し、
 前記相溶層が、前記ポリイミドフィルムの構成成分の少なくとも1種の成分と、前記機能層の構成成分の少なくとも1種の成分とを含有し、
 前記ポリイミドフィルムが、下記一般式(1)で表される構造を有するポリイミドを含有する、積層体である。
I. Laminate The laminate of the present disclosure has a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound via a compatible layer on at least one surface of a polyimide film. ,
The compatible layer contains at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer,
The said polyimide film is a laminated body containing the polyimide which has a structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000005
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid. (A diamine residue having a group ring. N represents the number of repeating units.)
 本開示の積層体について図を参照して説明する。図1は、本開示の積層体の一例を示す概略断面図である。図1に示す本開示の積層体10は、ポリイミドフィルム1の一方の面に、相溶層2を介して、機能層3を有する。本開示の積層体は、図1に示すように、ポリイミドフィルムの一方の面に、相溶層を介して、機能層を有していても良いし、図示はしないが、ポリイミドフィルムの両面において、相溶層を介して、機能層を有していても良い。 The laminated body of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating an example of a laminated body of the present disclosure. A laminated body 10 of the present disclosure shown in FIG. 1 has a functional layer 3 on one surface of a polyimide film 1 with a compatible layer 2 interposed. As shown in FIG. 1, the laminate of the present disclosure may have a functional layer on one surface of the polyimide film via a compatible layer, and although not shown, on both sides of the polyimide film The functional layer may be provided via a compatible layer.
 本開示によれば、積層体が有するポリイミドフィルムが含有するポリイミドが、芳香族環又は脂肪族環を有するテトラカルボン酸残基を有し、ジアミン残基として、主鎖にケイ素原子を有するジアミン残基を10モル%以上90モル%以下含み、ケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基を10モル%以上90モル%以下含む特定の構造を有し、当該特定のポリイミドフィルムと機能層との間に、ポリイミドフィルムの構成成分の少なくとも1種の成分と、機能層の構成成分の少なくとも1種の成分とを含有する相溶層が介在することにより、屈曲耐性、及び機能層とポリイミドフィルムとの密着性を向上し、干渉縞の発生が抑制された積層体を提供することができる。
 この理由については、以下のように推定される。
According to the present disclosure, the polyimide contained in the polyimide film included in the laminate has a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a diamine residue having a silicon atom in the main chain as a diamine residue. Having a specific structure containing 10 mol% or more and 90 mol% or less of a group and containing 10 mol% or more and 90 mol% or less of a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring, Between the polyimide film and the functional layer, an interstitial layer containing at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer intervenes, whereby bending resistance, And the adhesiveness of a functional layer and a polyimide film can be improved, and the laminated body by which generation | occurrence | production of the interference fringe was suppressed can be provided.
About this reason, it estimates as follows.
 本発明者らは、樹脂の中でもポリイミドに着目した。ポリイミドは、その化学構造に由来し耐熱性が優れることが知られている。また、ポリイミドフィルムは、内部の分子鎖の配置が一定の秩序構造を形成することが知られており、そのおかげで、室温において、平坦状態、折り曲げ状態を一定の周期で繰り返した場合の復元性において良好な結果を示すと考えられる。
 一方で、平坦状態、折り曲げ状態を一定の周期で繰り返した場合の復元性は良好であっても、フィルムを長時間折り曲げられた状態が続くと、折り癖がつき、平坦に戻らない場合があり、特に、剛直性の高いポリイミドフィルムでは、フィルムを長時間折り曲げられた状態が続くと、平坦に戻り難いことが確認された。屈曲状態が長時間維持されることで屈曲部外周に引張りの応力が継続的に印加されることによるフィルムの塑性変形が起きており、それにより、屈曲の力を外しても復元し難くなっていると推察される。
 また、ポリイミドフィルムの少なくとも一方の面に、ハードコート性等の機能を有する機能層を積層することにより、所望の機能を有する積層体とすることができる。しかし、従来のポリイミドフィルムでは、ポリイミドフィルム自体の静的屈曲耐性が劣るため、更に機能層を積層した積層体では、静的屈曲耐性がより劣るという問題がある。また、従来のポリイミドフィルムでは、機能層を積層する場合、ポリイミドフィルムと機能層との密着性を十分なものにするためには、ポリイミドフィルムと機能層との間に接着層を設ける必要があった。ポリイミドフィルムと機能層との密着性が不十分であると、機能層が剥がれやすく、耐久性に劣り、品質に問題があるとみなされる。加えて、従来のポリイミドフィルムでは、ポリイミドフィルム上に形成される機能層とポリイミドフィルムとの屈折率が異なる場合、その屈折率差に由来する干渉縞が生じ、この干渉縞により、フレキシブルディスプレイ等に組み込んだ際の視認性が低下するという問題もあった。
 それに対して、本発明者らは、芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入したポリイミドを用いると、静的屈曲耐性に優れたポリイミドフィルムが得られ、さらに、当該ポリイミドフィルムに、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する機能層を積層した積層体においては、ポリイミドフィルムと機能層との間に、ポリイミドフィルムの成分と機能層の成分とを混合して含有する相溶層が介在し、それにより、ポリイミドフィルムと機能層との密着性が向上し、干渉縞の発生が抑制され、屈曲耐性が向上した積層体が得られることを見出した。本開示に用いられるポリイミドフィルムは、芳香族環又は脂肪族環を含んだ剛直な分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入することで、分子運動による応力緩和が可能になったことにより、屈曲時にフィルムにかかる応力を低減できるため、静的屈曲耐性が向上していると推定される。また、本開示においては、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を特定量含有することにより、当該ポリイミドフィルムの耐溶剤性、及び、当該ポリイミドフィルムと機能層の形成に用いられる機能層用組成物との相溶性が適切になると考えられる。本開示に係る積層体では、機能層を形成する際、ポリイミドフィルム上に機能層用組成物の塗膜を形成する工程において、機能層用組成物中の成分の一部がポリイミドフィルムに浸透することにより相溶層が形成され、更に、形成される相溶層は、ポリイミドフィルムの成分と機能層の成分とが適度に混合したものとなり、光学的にも屈折率の中間層となるため、ポリイミドフィルムと機能層との密着性を向上する効果や干渉縞を抑制する効果に優れた態様になると考えられる。
 以下、本開示に係る積層体の各構成について詳細に説明する。
The present inventors paid attention to polyimide among resins. Polyimide is known to have excellent heat resistance due to its chemical structure. Polyimide film is also known to form an ordered structure with a constant arrangement of molecular chains inside, which makes it possible to restore the flatness and the bent state at a constant cycle at room temperature. It is considered that good results are shown in FIG.
On the other hand, even when the flat state and the folded state are repeated at a constant cycle, if the film is bent for a long time, the film may be folded and may not return flat. In particular, it was confirmed that a polyimide film having high rigidity is difficult to return to a flat state when the film is bent for a long time. Since the bending state is maintained for a long time, the plastic deformation of the film occurs due to the continuous application of tensile stress to the outer periphery of the bending part, which makes it difficult to restore even if the bending force is removed. It is assumed that
Moreover, it can be set as the laminated body which has a desired function by laminating | stacking the functional layer which has functions, such as hard-coat property, on the at least one surface of a polyimide film. However, in the conventional polyimide film, since the static bending resistance of the polyimide film itself is inferior, the laminated body in which the functional layers are further laminated has a problem that the static bending resistance is inferior. In addition, when laminating a functional layer with a conventional polyimide film, it is necessary to provide an adhesive layer between the polyimide film and the functional layer in order to ensure sufficient adhesion between the polyimide film and the functional layer. It was. When the adhesiveness between the polyimide film and the functional layer is insufficient, the functional layer is easily peeled off, is inferior in durability, and is considered to have a quality problem. In addition, in the conventional polyimide film, when the refractive index of the functional layer formed on the polyimide film is different from that of the polyimide film, an interference fringe derived from the difference in refractive index is generated. There was also a problem that visibility when incorporated was lowered.
On the other hand, when using a polyimide in which a specific amount of a flexible molecular skeleton having a silicon atom in the main chain is introduced between molecular skeletons containing an aromatic ring or an aliphatic ring, the present inventors have static bending. In a laminate in which a polyimide film having excellent resistance is obtained and a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is laminated on the polyimide film, the polyimide film and the function A compatible layer containing a mixture of the components of the polyimide film and the functional layer is interposed between the layers, thereby improving the adhesion between the polyimide film and the functional layer and generating interference fringes. It has been found that a laminate that is suppressed and has improved bending resistance can be obtained. The polyimide film used in the present disclosure introduces a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between rigid molecular skeletons containing an aromatic ring or an aliphatic ring, thereby causing stress due to molecular motion. Since relaxation is possible, the stress applied to the film at the time of bending can be reduced, and it is estimated that the resistance to static bending is improved. Further, in the present disclosure, the polyimide contained in the polyimide film contains a specific amount of a diamine residue having a silicon atom in the main chain, so that the solvent resistance of the polyimide film, and the polyimide film and the functional layer It is considered that the compatibility with the functional layer composition used for formation is appropriate. In the laminate according to the present disclosure, when forming the functional layer, in the step of forming the coating film of the functional layer composition on the polyimide film, a part of the components in the functional layer composition penetrates the polyimide film. A compatible layer is formed by this, and the formed compatible layer is a mixture of a component of the polyimide film and a component of the functional layer appropriately, and optically becomes an intermediate layer of refractive index, It is thought that it will become the aspect excellent in the effect which improves the adhesiveness of a polyimide film and a functional layer, and the effect which suppresses an interference fringe.
Hereinafter, each structure of the laminated body which concerns on this indication is demonstrated in detail.
1.ポリイミドフィルム
 本開示に用いられるポリイミドフィルムは、前記一般式(1)で表される構造を有するポリイミドを含有するものであり、本開示の効果が損なわれない限り、更にその他の成分を含有していても良い。
1. Polyimide film The polyimide film used in the present disclosure contains a polyimide having a structure represented by the general formula (1), and further contains other components as long as the effects of the present disclosure are not impaired. May be.
(ポリイミド)
 ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよい。また、熱イミド化と化学イミド化とを併用した方法で製造することもできる。
 本開示で用いられるポリイミドは、下記一般式(1)で表される構造を有するポリイミドを含有する。
(Polyimide)
A polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to obtain imidization by obtaining a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component. The imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also manufacture by the method which used thermal imidation and chemical imidization together.
The polyimide used in the present disclosure contains a polyimide having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid. (A diamine residue having a group ring. N represents the number of repeating units.)
 ここで、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。
 また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
Here, the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing acid dianhydride structure from tetracarboxylic dianhydride. .
Moreover, a diamine residue means the residue remove | excluding two amino groups from diamine.
 前記一般式(1)のRにおけるテトラカルボン酸残基は、芳香族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基、又は、脂肪族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。
 芳香族環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 脂肪族環を有するテトラカルボン酸二無水物としては、例えば、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
The tetracarboxylic acid residue in R 1 of the general formula (1) is a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or a tetracarboxylic acid having an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from the dianhydride.
Examples of the tetracarboxylic dianhydride having an aromatic ring include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′. -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis ( 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3 , 4-Zika Boxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4- Bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4 -[3- (1,2-dicarboxy) Phenoxy] phenyl} ketone dianhydride, 4,4′-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4,4′-bis [3- (1,2-dicarboxy) Phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} Ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfone Anhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride, 4′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, and the like.
Examples of the tetracarboxylic dianhydride having an aliphatic ring include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride. An anhydride, cyclobutane tetracarboxylic dianhydride, etc. are mentioned.
These may be used alone or in combination of two or more.
 前記一般式(1)のRにおける、主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。本開示に用いられるポリイミドフィルムは、主成分として芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入することで、上述のように、屈曲耐性を向上し、機能層を積層した場合に、機能層との間に相溶層が形成され、機能層との密着性及び干渉縞の発生を抑制することができる。 The diamine residue having a silicon atom in the main chain in R 2 of the general formula (1) can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain. As described above, the polyimide film used in the present disclosure introduces a specific amount of a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component. Furthermore, when the bending resistance is improved and the functional layer is laminated, a compatible layer is formed between the functional layer and adhesion with the functional layer and generation of interference fringes can be suppressed.
 主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 主鎖にケイ素原子を有するジアミン残基としては、例えば、下記一般式(A)で表されるジアミンが挙げられる。
The diamine residue having a silicon atom in the main chain can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
As a diamine residue which has a silicon atom in a principal chain, the diamine represented by the following general formula (A) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000007
(一般式(A)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。kは0~200の数である。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (A), each L is independently a direct bond or —O— bond, and each R 10 may independently have a substituent and contains an oxygen atom or a nitrogen atom. R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and each R 11 independently has a substituent and may contain an oxygen atom or a nitrogen atom. Represents a divalent hydrocarbon group having a number of 1 or more and 20 or less, k is a number of 0 to 200. Plural L, R 10 and R 11 may be the same or different.
 R10で表される1価の炭化水素基としては、炭素数1以上20以下のアルキル基、アリール基、及びこれらの組み合わせが挙げられる。アルキル基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキル基としては、炭素数1以上10以下のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。前記環状のアルキル基としては、炭素数3以上10以下のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アリール基としては、炭素数6以上12以下のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。また、R10で表される1価の炭化水素基としては、アラルキル基であっても良く、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
 酸素原子又は窒素原子を含んでいても良い炭化水素基としては、例えば後述する2価の炭化水素基と前記1価の炭化水素基とをエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R10で表される1価の炭化水素基が有していても良い置換基としては、本開示の効果が損なわれない範囲で特に限定されず、例えば、フッ素原子、塩素原子等のハロゲン原子、水酸基等が挙げられる。
Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and combinations thereof. The alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group, hexyl group and the like. The cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group. Further, the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group, and a phenylpropyl group.
Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. And a group bonded with at least one bond (—NH—).
The substituent that the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present disclosure are not impaired. For example, a halogen atom such as a fluorine atom or a chlorine atom And a hydroxyl group.
 R10で表される1価の炭化水素基としては、機能層との密着性及び干渉縞抑制の点、並びに、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上3以下のアルキル基、又は炭素数6以上10以下のアリール基であることが好ましく、炭素数1以上3以下のアルキル基であることがより好ましい。炭素数1以上3以下のアルキル基としては、メチル基であることがより好ましく、前記炭素数6以上10以下のアリール基としては、フェニル基であることがより好ましい。 The monovalent hydrocarbon group represented by R 10 has from 1 to 3 carbon atoms from the viewpoint of adhesion to the functional layer and interference fringe suppression, as well as improvement in bending resistance and surface hardness. Or an aryl group having 6 to 10 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms. The alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
 R11で表される2価の炭化水素基としては、炭素数1以上20以下のアルキレン基、アリーレン基、及びこれらの組み合わせの基が挙げられる。アルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキレン基としては、炭素数1以上10以下のアルキレン基であることが好ましく、例えば、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、シクロヘキシレン基等の直鎖状又は分岐状アルキレン基と環状アルキレン基との組合せの基などを挙げることができる。
 前記アリーレン基としては、炭素数6以上12以下のアリーレン基であることが好ましく、アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基等が挙げられ、更に後述する芳香族環に対する置換基を有していてもよい。
 酸素原子又は窒素原子を含んでいても良い2価の炭化水素基としては、前記2価の炭化水素基同士をエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R11で表される2価の炭化水素基が有していても良い置換基としては、前記R10で表される1価の炭化水素基が有していても良い置換基と同様であって良い。
Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof. The alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms. For example, a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, or a cyclohexylene group. And a combination of a linear or branched alkylene group and a cyclic alkylene group.
The arylene group is preferably an arylene group having 6 to 12 carbon atoms, and examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for an aromatic ring described later. You may do it.
As the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom, the divalent hydrocarbon groups may be ether bonds, carbonyl bonds, ester bonds, amide bonds, and imino bonds (—NH—). A group bonded with at least one is exemplified.
The substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
 R11で表される2価の炭化水素基としては、機能層との密着性及び干渉縞抑制の点、並びに、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上6以下のアルキレン基、又は炭素数6以上10以下のアリーレン基であることが好ましく、更に、炭素数2以上4以下のアルキレン基であることがより好ましく、当該アルキレン基は、直鎖状又は分岐状であることが好ましい。 The divalent hydrocarbon group represented by R 11 has from 1 to 6 carbon atoms from the viewpoint of adhesion to the functional layer and interference fringe suppression, as well as improvement in bending resistance and surface hardness. Or an arylene group having 6 to 10 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and the alkylene group is linear or branched. Preferably there is.
 kは0~200の数である。kの平均は、機能層との密着性及び干渉縞抑制の点、並びに、屈曲耐性の向上と表面硬度の両立性の点から、0以上6以下であることが好ましく、0以上4以下であることが好ましい。中でもkは0又は1であることが好ましい。 K is a number from 0 to 200. The average of k is preferably 0 or more and 6 or less, and preferably 0 or more and 4 or less, from the viewpoint of adhesion to the functional layer and suppression of interference fringes, and the compatibility between improvement in bending resistance and surface hardness. It is preferable. Among these, k is preferably 0 or 1.
 前記Rにおける、前記主鎖にケイ素原子を有するジアミン残基としては、中でも、屈曲耐性及び機能層との密着性をより向上し、干渉縞の発生をより抑制する点、さらに、表面硬度の低下を抑制することもできる点から、主鎖にケイ素原子を1個又は2個有するジアミン残基であることが好ましい。 As the diamine residue having a silicon atom in the main chain in R 2 , the bending resistance and the adhesion to the functional layer are further improved, and the occurrence of interference fringes is further suppressed. A diamine residue having one or two silicon atoms in the main chain is preferable from the viewpoint of suppressing the decrease.
 主鎖にケイ素原子を1個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=0である下記一般式(A-1)で表されるジアミンが挙げられる。また、主鎖にケイ素原子を2個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=1である下記一般式(A-2)で表されるジアミンが挙げられる。 Examples of the diamine having one silicon atom in the main chain include diamines represented by the following general formula (A-1) where k = 0 among the diamines represented by the general formula (A). . Examples of the diamine having two silicon atoms in the main chain include diamines represented by the following general formula (A-2) in which k = 1 among the diamines represented by the general formula (A). Can be mentioned.
Figure JPOXMLDOC01-appb-C000008
(一般式(A-1)及び一般式(A-2)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (A-1) and the general formula (A-2), each L is independently a direct bond or —O— bond, and each R 10 independently has a substituent. And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may contain an oxygen atom or a nitrogen atom, and each R 11 may independently have a substituent, Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom, and a plurality of L, R 10 and R 11 may be the same or different.
 機能層との密着性及び干渉縞抑制の点、並びに、屈曲耐性の向上と表面硬度の両立性の点から、主鎖にケイ素原子を有するジアミン残基の分子量は、3000以下であることが好ましく、2000以下であることが好ましく、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 主鎖にケイ素原子を有するジアミン残基は単独でも、2種以上を混合して用いることもできる。
The molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3000 or less from the viewpoint of adhesion to the functional layer and suppression of interference fringes, and compatibility between improvement in bending resistance and surface hardness. , 2000 or less, preferably 1000 or less, more preferably 800 or less, still more preferably 500 or less, and particularly preferably 300 or less.
The diamine residues having a silicon atom in the main chain can be used alone or in admixture of two or more.
 前記一般式(1)のRにおける、ケイ素原子を有さず芳香族環を有するジアミン残基は、ケイ素原子を有さず芳香族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 ケイ素原子を有さず芳香族環を有するジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(2,2-ビス(トリフルオロメチル)ベンジジン)、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等、及び、前記ジアミンの芳香族環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。
 これらは単独でも、2種以上を混合して用いることもできる。
In R 2 of the general formula (1), the diamine residue having no aromatic ring and having no silicon atom is a residue obtained by removing two amino groups from a diamine having no silicon atom and having an aromatic ring; can do.
Examples of the diamine having no silicon atom and having an aromatic ring include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzanilide, 3,3'-diaminodiphenylmethane 4,4'-Diaminodiphenylmethane 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) Propane, 2,2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3 , 3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3 -Aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminopheno B) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3 -Aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) Benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis ( 4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α- Ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, N, N′-bis (4-aminophenyl) terephthalamide, 9 , 9-bis (4-aminophenyl) fluorene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (2,2-bis ( Trifluoromethyl) benzidine), 3,3′-dichloro-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dimethyl 4,4′-diaminobiphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] Ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3 -Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) Enyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) ) Phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-amino) Phenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3 -amino Phenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4′-bis [4- (4-aminophenoxy) ) Benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) ) Phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4 , 4′-dibiphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone, 6 6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-aminophenoxy) -3,3,3 ′ , 3′-tetramethyl-1,1′-spirobiindane, etc., and a part or all of the hydrogen atoms on the aromatic ring of the diamine are fluoro group, methyl group, methoxy group, trifluoromethyl group, or trifluoromethoxy group Diamines substituted with substituents selected from the group can also be used.
These may be used alone or in combination of two or more.
 前記一般式(1)のRにおける、ケイ素原子を有さず脂肪族環を有するジアミン残基は、脂肪族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 脂肪族環を有するジアミンとしては、例えば、1,4-シクロヘキサンジアミン、trans-1,4-ビスメチレンシクロヘキサンジアミン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
The diamine residue which does not have a silicon atom and has an aliphatic ring in R 2 of the general formula (1) can be a residue obtained by removing two amino groups from a diamine having an aliphatic ring.
Examples of the diamine having an aliphatic ring include 1,4-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 2, And 5-bis (aminomethyl) bicyclo [2,2,1] heptane.
These may be used alone or in combination of two or more.
 本開示に用いられるポリイミドフィルムは、前記一般式(1)のRにおいて、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることにより、静的屈曲耐性が向上し、ポリイミドフィルムと機能層との間に後述する相溶層が介在するため、本開示に係る積層体は、ポリイミドフィルムと機能層との密着性が向上し、静的屈曲耐性に優れ、干渉縞の発生が抑制される。前記一般式(1)のRは、後述する機能層との密着性及び静的屈曲耐性をより向上し、干渉縞の発生をより抑制する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の12モル%以上であることが好ましく、更に14モル%以上であることが好ましく、特に機能層との密着性の点から、15モル%以上であることが好ましい。中でも、前記一般式(1)のRは、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の12モル%以上であることが好ましく、更に14モル%以上であることが好ましく、より更に15モル%以上であることが好ましい。一方で、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、Rの総量の88モル%以下であることが好ましく、更に86モル%以下であることが好ましく、より更に85モル%以下であることが好ましい。また、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の50モル%以下であることが好ましく、更に45モル%以下であることが好ましく、光学特性の点からは、更に40モル%以下であることが好ましい。一方で、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基は、Rの総量の50モル%以上であることが好ましく、更に55モル%以上であることが好ましい。
 なお、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1)のRに、主鎖にケイ素原子を有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、Rの総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環及び脂肪族環を有しないジアミン残基等が挙げられる。
In the polyimide film used in the present disclosure, in R 2 of the general formula (1), 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and R 2 10 mol% or more and 90 mol% or less of the total amount of bismuth is a diamine residue that does not have a silicon atom and has an aromatic ring or an aliphatic ring. Therefore, the laminate according to the present disclosure improves the adhesion between the polyimide film and the functional layer, has excellent static bending resistance, and suppresses the generation of interference fringes. . R 2 in the general formula (1) is a diamine residue having a silicon atom in the main chain from the viewpoint of further improving adhesion and static bending resistance with a functional layer described later and further suppressing the generation of interference fringes. but is preferably at least 12 mol% of the total amount of R 2, still preferably at 14 mol% or more, especially from the viewpoint of adhesion to the functional layer is preferably 15 mol% or more. Of these, the R 2 of the general formula (1), the main chain of silicon atoms is 1 or 2 with a diamine residue, is preferably at least 12 mol% of the total amount of R 2, further 14 mol% or more It is preferable that it is more preferably 15 mol% or more. On the other hand, having no silicon atom, a diamine residue having an aromatic ring or an aliphatic ring is preferably It is preferably not more than 88 mole% of the total amount of R 2, or less more 86 mol%, Furthermore, it is preferable that it is 85 mol% or less. Further, the R 2 of the general formula (1) may be from the viewpoint of improving the surface hardness and optical transparency, diamine residue having a silicon atom in the main chain, more than 50 mole% of the total amount of R 2 Preferably, it is further preferably 45 mol% or less, and further preferably 40 mol% or less from the viewpoint of optical properties. On the other hand, having no silicon atom, a diamine residue having an aromatic ring or an aliphatic ring is preferably at least 50 mol% of the total amount of R 2, is preferably further 55 mol% or more.
Incidentally, more than 10 mole% of the total amount of R 2 90 mol% or less, a diamine residue having a silicon atom in the main chain, 90 mol% 10 mol% or more of the total amount of R 2 or less, free of silicon atoms If the diamine residue having an aromatic ring or an aliphatic ring is satisfied, R 2 in the general formula (1) does not have a diamine residue having a silicon atom in the main chain and a silicon atom. It does not preclude inclusion of another diamine residue different from the diamine residue having an aromatic ring or an aliphatic ring. The other diamine residue is preferably 10 mol% or less of the total amount of R 2 , more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol%. The following is preferable. Examples of the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring.
 中でも、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を有するジアミン残基のモル%(xモル%)の残余(100%-x%)である10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
 中でも、Rの総量の10モル%以上90モル%以下、望ましくは12モル%以上90モル%以下、14モル%以上90モル%以下、15モル%以上90モル%以下、10モル%以上50モル%以下、12モル%以上50モル%以下、14モル%以上50モル%以下、又は15モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残余(100%-x%)である10モル%以上90モル%以下、望ましくは10モル%以上88モル%以下、10モル%以上86モル%以下、10モル%以上85モル%以下、50モル%以上90モル%以下、50モル%以上88モル%以下、50モル%以上86モル%以下、又は50モル%以上85モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
Among them, more than 10 mole% of the total amount of R 2 90 mol% or less, a diamine residue having a silicon atom in the main chain, of the total amount of R 2 (100 mol%), having a silicon atom in the main chain The residue (100% -x%) of the diamine residue mol% (x mol%), which is 10 mol% or more and 90 mol% or less, has no silicon atom and has an aromatic ring or an aliphatic ring. It is preferably a group.
Among them, 10 mol% or more and 90 mol% or less of the total amount of R 2 , desirably 12 mol% or more and 90 mol% or less, 14 mol% or more and 90 mol% or less, 15 mol% or more and 90 mol% or less, 10 mol% or more and 50 mol% or less. Mol% or less, 12 mol% or more and 50 mol% or less, 14 mol% or more and 50 mol% or less, or 15 mol% or more and 50 mol% or less are diamine residues having one or two silicon atoms in the main chain. , R 2 of the total amount (100 mol%) is 10 mol which is the remainder (100% -x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in the main chain % To 90 mol%, preferably 10 mol% to 88 mol%, 10 mol% to 86 mol%, 10 mol% to 85 mol%, 50 mol% to 90 mol%, 50 mol% to 88 mol% Less than mol%, 50% % Or more 86 mol% or less, or 50 mole% or more 85 mol% or less, having no silicon atom, and is preferably a diamine residue having an aromatic ring or an aliphatic ring.
 前記一般式(1)で表される構造を有するポリイミドとしては、光透過性を向上し、且つ、表面硬度を向上する点から、中でも、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むポリイミドであることが好ましい。前記一般式(1)で表される構造を有するポリイミドは、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。
 ポリイミドに(i)フッ素原子を含むとポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。
 ポリイミドに(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
 ポリイミドに(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
The polyimide having the structure represented by the general formula (1) includes an aromatic ring, and (i) a fluorine atom, in terms of improving light transmittance and improving surface hardness. It is a polyimide containing at least one selected from the group consisting of (ii) an aliphatic ring and (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted with fluorine. Is preferred. The polyimide having the structure represented by the general formula (1) includes at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring, so that the molecular skeleton becomes rigid. Although the orientation is increased and the surface hardness is improved, the rigid aromatic ring skeleton tends to increase the absorption wavelength to a long wavelength, and tends to decrease the transmittance in the visible light region.
When (i) a fluorine atom is contained in the polyimide, the light transmission is improved because the electronic state in the polyimide skeleton can be hardly transferred.
When (ii) an aliphatic ring is included in the polyimide, light transmittance is improved because the transfer of charges in the skeleton can be inhibited by breaking the π-electron conjugation in the polyimide skeleton.
When (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group that may be substituted with fluorine is included in the polyimide, the charge transfer in the skeleton is prevented by breaking the π-electron conjugation in the polyimide skeleton. The light transmittance improves from the point which can be inhibited.
 前記一般式(1)で表される構造を有するポリイミドとしては、中でも、フッ素原子を含むポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。
 フッ素原子の含有割合は、ポリイミド表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1以下であることが好ましく、更に0.8以下であることが好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
As the polyimide having the structure represented by the general formula (1), a polyimide containing a fluorine atom is preferably used from the viewpoint of improving light transmittance and improving surface hardness.
The fluorine atom content ratio is preferably such that the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is 0.01 or more, Further, it is preferably 0.05 or more. On the other hand, if the fluorine atom content is too high, the inherent heat resistance of the polyimide may be lowered, so the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less. Preferably, it is preferably 0.8 or less.
Here, the said ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be calculated | required from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Thermo Scientific Thea Probe). .
 また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。 Further, the polyimide having the structure represented by the general formula (1), from the viewpoint of improving the surface hardness, the sum of R 1 and R 2 is 100 mole% in the general formula (1), an aromatic The total of the tetracarboxylic acid residue having an aromatic ring and the diamine residue having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and 75 mol% or more. Even more preferred.
 また、前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の少なくとも1つが、芳香族環とフッ素原子とを含むことが好ましく、更に、Rのテトラカルボン酸残基、及びRのケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基の両方が、芳香族環とフッ素原子とを含むことが好ましい。
 前記一般式(1)で表される構造を有するポリイミドは、表面硬度と光透過性が向上する点から、前記一般式(1)におけるR及びRの合計を100モル%としたときに、芳香族環及びフッ素原子を有するテトラカルボン酸残基及び芳香族環及びフッ素原子を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
Further, the polyimide having the structure represented by the general formula (1), from the viewpoint of improving the surface hardness and optical transparency, no tetracarboxylic acid residue of R 1, and a silicon atom of R 2 aromatic It is preferable that at least one of the diamine residues having an aromatic ring or an aliphatic ring includes an aromatic ring and a fluorine atom, and further does not have a tetracarboxylic acid residue of R 1 and a silicon atom of R 2. Both of the diamine residues having an aromatic ring or an aliphatic ring preferably contain an aromatic ring and a fluorine atom.
When the polyimide having the structure represented by the general formula (1) is improved in surface hardness and light transmittance, the total of R 1 and R 2 in the general formula (1) is 100 mol%. The total of the tetracarboxylic acid residue having an aromatic ring and a fluorine atom and the diamine residue having an aromatic ring and a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, More preferably, it is 75 mol% or more.
 また、前記一般式(1)で表される構造を有するポリイミドは、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、60%以上であることが好ましく、より更に70%以上であることが好ましい。
 ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率や黄色度YI値の変化が少ない点から好ましい。ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、酸素との反応性が低いため、ポリイミドの化学構造が変化し難いことが推定される。ポリイミドフィルムはその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。
 ここで、ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、又は、超臨界メタノールにより分解し、得られたポリイミドの分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計及びNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
The polyimide having the structure represented by the general formula (1) is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring. However, it is preferably used from the viewpoints of improving light transmittance and improving surface hardness. The proportion of hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to carbon atoms contained in the polyimide is preferably 60% or more, and more preferably 70% or more. It is preferable that
When 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide is a polyimide that is a hydrogen atom directly bonded to the aromatic ring, the film is stretched at, for example, 200 ° C. or higher even after a heating step in the atmosphere. Is preferable from the viewpoint of little change in optical characteristics, particularly total light transmittance and yellowness YI value. When polyimide is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the chemical structure of the polyimide changes due to low reactivity with oxygen. It is estimated that it is difficult. Polyimide film uses its high heat resistance and is often used in devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are in the aromatic ring. In the case of polyimide, which is a hydrogen atom that is directly bonded, there is no need to carry out these subsequent processes in an inert atmosphere in order to maintain transparency, so that the cost of equipment costs and atmospheric control can be suppressed. There is.
Here, the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by high-performance liquid chromatography or gas chromatography mass of the polyimide decomposition product. It can be determined using an analyzer and NMR. For example, the sample is decomposed with an alkaline aqueous solution or supercritical methanol, and the resulting polyimide decomposition product is separated by high performance liquid chromatography, and the qualitative analysis of each separated peak is performed by a gas chromatograph mass spectrometer and NMR. The ratio of the hydrogen atom (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) contained in the polyimide can be determined by quantification using high performance liquid chromatography.
 前記一般式(1)で表される構造を有するポリイミドは、中でも、光透過性の点、及び屈曲耐性及び表面硬度の点から、前記一般式(1)中のRがシクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが好ましい。
 前記Rにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
 特に光透過性と表面硬度のバランスが良い点から、前記一般式(1)中のRは、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることがより好ましい。
Among the polyimides having the structure represented by the general formula (1), R 1 in the general formula (1) is a cyclohexanetetracarboxylic acid dibenzoate from the viewpoint of light transmittance, bending resistance and surface hardness. Anhydrous residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromerit Acid dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 '-(Hexafluoroisopropylidene) diphthalic anhydride residue, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 '-(hexafluoroisopropylidene) diphthalic anhydride residue , It is preferably at least one tetravalent group selected from the group consisting of 4,4′-oxydiphthalic anhydride residue and 3,4′-oxydiphthalic anhydride residue.
In R 1 , these suitable residues are preferably contained in a total amount of 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more.
In particular, R 1 in the general formula (1) is 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-() because of a good balance between light transmittance and surface hardness. Hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalate More preferably, it is at least one tetravalent group selected from the group consisting of acid anhydride residues.
 前記一般式(1)のRとしては、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基からなる群から選択される少なくとも一種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選択される少なくとも一種のような光透過性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。この場合、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
 中でも、前記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の少なくとも一種を用いることが、表面硬度と光透過性の向上の点から好ましい。
R 1 in the general formula (1) includes pyromellitic dianhydride residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue, and 2,2 ′, 3, A tetracarboxylic acid residue group (group A) suitable for improving rigidity such as at least one selected from the group consisting of 3′-biphenyltetracarboxylic dianhydride residues, Anhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, 4, 4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 '-(hexafluoroisopropylidene) diphthalate Improving light transmittance such as at least one selected from the group consisting of an acid anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalic anhydride residue It is also preferable to use a mixture of tetracarboxylic acid residue groups (group B) suitable for the above. In this case, the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving light transmittance is , 1 mol of tetracarboxylic acid residue group (group B) suitable for improving light transmittance is 0.4% of tetracarboxylic acid residue group (group A) suitable for improving rigidity. It is preferably from 05 mol to 9 mol, more preferably from 0.1 mol to 5 mol, and still more preferably from 0.3 mol to 4 mol.
Among them, the group B includes 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues and 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues containing fluorine atoms. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
 前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける芳香族環又は脂肪族環を有するジアミン残基が、1,4-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、特に光透過性と表面硬度の両立の点から、更に、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び、下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、下記一般式(2)で表される2価の基であることがより好ましい。下記一般式(2)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましく、中でも、炭素数1以上3以下のパーフルオロアルキル基が好ましく、トリフルオロメチル基又はパーフルオロエチル基であることがより好ましい。また、下記一般式(2)中のR及びRにおけるアルキル基としては、炭素数1以上3以下のアルキル基が好ましく、メチル基又はエチル基であることがより好ましい。 In the polyimide having the structure represented by the general formula (1), the diamine residue having an aromatic ring or an aliphatic ring in R 2 in the general formula (1) is a 1,4-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, And at least one divalent group selected from the group consisting of divalent groups represented by the following general formula (2) is preferable from the viewpoints of light transmittance, bending resistance and surface hardness. In particular, from the viewpoint of compatibility between light transmittance and surface hardness, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) It is preferably at least one divalent group selected from the group consisting of a propane residue and a divalent group represented by the following general formula (2), and is represented by the following general formula (2) More preferably, it is a divalent group. As the divalent group represented by the following general formula (2), R 3 and R 4 are more preferably a perfluoroalkyl group, and among them, a perfluoroalkyl group having 1 to 3 carbon atoms is preferable. A trifluoromethyl group or a perfluoroethyl group is more preferable. The alkyl group in R 3 and R 4 in the following general formula (2) is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
Figure JPOXMLDOC01-appb-C000009
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 また、前記一般式(1)で表される構造を有するポリイミドは、前記一般式(1)中のRにおける主鎖にケイ素原子を有するジアミン残基が、ケイ素原子を2個有するジアミン残基であることが、機能層との密着性及び干渉縞抑制の点、屈曲耐性及び表面硬度の点、光透過性の点から好ましく、更に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、1,3-ビス(5-アミノペンチル)テトラメチルジシロキサン等が、入手容易性や光透過性と表面硬度の両立の観点から好ましい。 Moreover, the polyimide which has a structure represented by the said General formula (1) is a diamine residue in which the diamine residue which has a silicon atom in the principal chain in R < 2 > in the said General formula (1) has two silicon atoms. In view of adhesion to the functional layer, interference fringe suppression, bending resistance and surface hardness, and light transmittance, 1,3-bis (3-aminopropyl) tetramethyldiethyl is further preferred. Siloxane residues, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, etc. are compatible with easy availability, light transmission and surface hardness From the viewpoint of
 ポリイミド中の各繰り返し単位の含有割合、各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中の各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、上記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。 The content ratio of each repeating unit in the polyimide, and the content ratio (mol%) of each tetracarboxylic acid residue or each diamine residue can be determined from the molecular weight of the charge at the time of polyimide production. In addition, the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide is about high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR for the polyimide degradation product obtained in the same manner as described above. , Elemental analysis, XPS / ESCA and TOF-SIMS.
 前記一般式(1)で表される構造において、nは繰り返し単位数を表し、1以上である。
 ポリイミドにおける繰り返し単位数nは、後述する好ましいガラス転移温度を示すように、構造に応じて適宜選択することが好ましいが、特に限定されない。
 平均繰り返し単位数は、通常10~2000であり、更に15~1000であることが好ましい。
 なお、各繰り返し単位におけるRは各々同一であっても異なっていても良く、各繰り返し単位におけるRは各々同一でも異なっていても良い。
In the structure represented by the general formula (1), n represents the number of repeating units and is 1 or more.
The number of repeating units n in the polyimide is preferably selected as appropriate according to the structure so as to exhibit a preferable glass transition temperature described later, but is not particularly limited.
The average number of repeating units is usually 10 to 2000, and more preferably 15 to 1000.
R 1 in each repeating unit may be the same or different, and R 2 in each repeating unit may be the same or different.
 また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、数平均分子量が10000以上であることが好ましく、20000以上であることがより好ましく、30000以上であることがより更に好ましく、50000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 なお、ポリイミドの数平均分子量は、後述するポリイミド前駆体の数平均分子量と同様にして測定することができる。
In addition, the polyimide having the structure represented by the general formula (1) preferably has a number average molecular weight of 10,000 or more, more preferably 20000 or more from the viewpoint of strength and bending resistance when formed into a film. Preferably, it is more preferably 30000 or more, and particularly preferably 50000 or more. The upper limit is not particularly limited, but is preferably 10000000 or less, more preferably 500000 or less, from the viewpoint of easy synthesis and availability.
In addition, the number average molecular weight of a polyimide can be measured similarly to the number average molecular weight of the polyimide precursor mentioned later.
 また、前記一般式(1)で表される構造を有するポリイミドは、フィルムとした際の強度及び屈曲耐性の点から、重量平均分子量が、20000以上であることが好ましく、30000以上であることがより好ましく、40000以上であることがより更に好ましく、80000以上であることが特に好ましい。上限は特に限定はされないが、合成が容易であり、入手し易い点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミドの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミドを0.1重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、37℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
In addition, the polyimide having the structure represented by the general formula (1) preferably has a weight average molecular weight of 20000 or more and 30000 or more from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is more preferably 40000 or more, and particularly preferably 80000 or more. The upper limit is not particularly limited, but is preferably 10000000 or less, more preferably 500000 or less, from the viewpoint of easy synthesis and availability.
The weight average molecular weight of polyimide can be measured by gel permeation chromatography (GPC). Specifically, polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by weight, and as a developing solvent, a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used. 8120, column used: GPC LF-804 manufactured by SHODEX), and measurement is performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.4 mL / min, and 37 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
 また、本開示に用いられるポリイミドは、本開示の効果が損なわれない限り、その一部に前記一般式(1)で表される構造とは異なる構造を有していても良い。本開示に用いられるポリイミドは、前記一般式(1)で表される構造が、ポリイミドの全繰り返し単位数の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
 前記一般式(1)で表される構造とは異なる構造としては、例えば、芳香族環又は脂肪族環を有しないテトラカルボン酸残基等が含まれる場合や、ポリアミド構造が挙げられる。
 含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
Moreover, as long as the effect of this indication is not impaired, the polyimide used for this indication may have a structure different from the structure represented by the said General formula (1) in the one part. In the polyimide used in the present disclosure, the structure represented by the general formula (1) is preferably 95% or more of the total number of repeating units of the polyimide, more preferably 98% or more, and 100%. Even more preferably.
Examples of the structure different from the structure represented by the general formula (1) include a case where a tetracarboxylic acid residue having no aromatic ring or aliphatic ring is included, and a polyamide structure.
Examples of the polyamide structure that may be included include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
 本開示に用いられるポリイミドは、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましい。前記ガラス転移温度が150℃以上であることにより、耐熱性に優れ、更に、200℃以上であることが好ましく、250℃以上であることがより更に好ましい。また、ガラス転移温度が400℃以下であることにより、ベーク温度を低減することができ、更に、380℃以下であることが好ましい。また、本開示に用いられるポリイミドは、150℃以上400℃以下の温度領域に1つのtanδ曲線のピークを有することが好ましい。
 また、本開示に用いられるポリイミドは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましく、これにより、ポリイミドフィルムの室温での表面硬度を向上することができる。また、本開示に用いられるポリイミドは、0℃超過150℃未満の温度領域に更にtanδ曲線のピークを有していても良い。
 本開示に用いられるポリイミドのガラス転移温度は、動的粘弾性測定によって得られる温度-tanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))曲線のピーク温度から求められるものである。ポリイミドのガラス転移温度は、tanδ曲線のピークが複数存在する場合、ピークの極大値が最大であるピークの温度をいう。
 本開示に用いられるポリイミドのガラス転移温度は、後述するポリイミドフィルムのガラス転移温度と同様にして測定することができる。
The polyimide used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower. When the glass transition temperature is 150 ° C. or higher, heat resistance is excellent, and it is preferably 200 ° C. or higher, and more preferably 250 ° C. or higher. Moreover, when the glass transition temperature is 400 ° C. or lower, the baking temperature can be reduced, and is preferably 380 ° C. or lower. The polyimide used in the present disclosure preferably has one tan δ curve peak in a temperature range of 150 ° C. or higher and 400 ° C. or lower.
In addition, the polyimide used in the present disclosure preferably does not have a tan δ curve peak in a temperature range of −150 ° C. or more and 0 ° C. or less, which can improve the surface hardness of the polyimide film at room temperature. In addition, the polyimide used in the present disclosure may further have a tan δ curve peak in a temperature range of more than 0 ° C. and less than 150 ° C.
The glass transition temperature of the polyimide used in the present disclosure is determined from the peak temperature of the temperature-tan δ (tan δ = loss elastic modulus (E ″) / storage elastic modulus (E ′)) curve obtained by dynamic viscoelasticity measurement. Is. The glass transition temperature of polyimide refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of tan δ curve peaks.
The glass transition temperature of the polyimide used in the present disclosure can be measured in the same manner as the glass transition temperature of the polyimide film described later.
(添加剤)
 また、本開示に用いられるポリイミドフィルムは、前記ポリイミドの他に、必要に応じて更に添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられる。
 本開示に用いられるポリイミドフィルムが、前記ポリイミドの他に添加剤を含有する場合、ポリイミドフィルム中の添加剤の含有量は、添加剤の種類により適宜調整され、特に限定はされないが、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより更に好ましい。
(Additive)
Moreover, the polyimide film used for this indication may contain the additive further as needed other than the said polyimide. Examples of the additive include inorganic particles, a silica filler for facilitating winding, and a surfactant that improves film-forming properties and defoaming properties.
When the polyimide film used in the present disclosure contains an additive in addition to the polyimide, the content of the additive in the polyimide film is appropriately adjusted depending on the type of the additive and is not particularly limited, but is 30% by mass. Preferably, it is preferably 10% by mass or less, more preferably 5% by mass or less.
(ポリイミドフィルムの特性)
 本開示に用いられるポリイミドフィルムは、本開示に係る積層体の屈曲耐性を向上する点から、下記静的屈曲試験方法に従って、静的屈曲試験を行った場合に、当該試験で測定される内角が120°以上であることが好ましく、125°以上であることが更に好ましい。
[静的屈曲試験方法]
 15mm×40mmに切り出したポリイミドフィルムの試験片を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片の両端部と金属片との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板(100mm×100mm×0.7mm)で挟み、当該試験片を内径6mmで屈曲した状態で固定する。その際に、金属片とガラス板の間で当該試験片がない部分には、ダミーの試験片を挟み込み、ガラス板が平行になるようにテープで固定する。このようにして屈曲した状態で固定した当該試験片を、60℃、90%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放する。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定する。
(Characteristics of polyimide film)
The polyimide film used in the present disclosure has an internal angle measured in the test when a static bending test is performed according to the following static bending test method from the viewpoint of improving the bending resistance of the laminate according to the present disclosure. It is preferably 120 ° or more, and more preferably 125 ° or more.
[Static bending test method]
A polyimide film test piece cut out to 15 mm × 40 mm is bent at a position of half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm × 30 mm × 6 mm) having a thickness of 6 mm from the upper and lower surfaces. Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each. The test piece is fixed in a bent state with an inner diameter of 6 mm. At that time, a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel. The test piece thus fixed in a bent state is left to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and fixing tape are removed, and the test piece is attached to the test piece. Release this force. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
 本開示に用いられるポリイミドフィルムは、本開示に係る積層体の表面硬度を向上する点から、鉛筆硬度は2B以上であることが好ましく、B以上であることがより好ましく、HB以上であることがより更に好ましい。
 前記ポリイミドフィルムの鉛筆硬度は、測定サンプルを、温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行うことができる。例えば東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
In terms of improving the surface hardness of the laminate according to the present disclosure, the polyimide film used in the present disclosure preferably has a pencil hardness of 2B or higher, more preferably B or higher, and HB or higher. Even more preferred.
The pencil hardness of the polyimide film is determined by adjusting the measurement sample for 2 hours under conditions of a temperature of 25 ° C. and a relative humidity of 60%, and then using a test pencil specified by JIS-S-6006. 4 (1999), a pencil hardness test (0.98N load) is performed on the film surface, and the highest pencil hardness without scratches can be evaluated. For example, a pencil scratch coating film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
 本開示に用いられるポリイミドフィルムは、本開示に係る積層体の透明性を向上する点から、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 本開示に用いられるポリイミドフィルムは、厚み5μm以上100μm以下において、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 また、本開示に用いられるポリイミドフィルムは、厚み50μm±5μmにおいて、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 JIS K7361-1に準拠して測定する全光線透過率は、例えば、ヘイズメーター(例えば村上色彩技術研究所製 HM150)により測定することができる。なお、ある厚みの全光線透過率の測定値から、異なる厚みの全光線透過率は、ランベルトベールの法則により換算値を求めることができ、それを利用することができる。
 具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
 フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
The polyimide film used in the present disclosure preferably has a total light transmittance of 85% or more measured in accordance with JIS K7361-1, from the viewpoint of improving the transparency of the laminate according to the present disclosure. It is preferably 88% or more, more preferably 89% or more, and particularly preferably 90% or more.
The polyimide film used in the present disclosure has a thickness of 5 μm or more and 100 μm or less, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more. More preferably, it is more preferably 89% or more, and particularly preferably 90% or more.
In addition, the polyimide film used in the present disclosure preferably has a total light transmittance of 85% or more, more preferably 88% or more when measured in accordance with JIS K7361-1 at a thickness of 50 μm ± 5 μm. Is preferable, more preferably 89% or more, and particularly preferably 90% or more.
The total light transmittance measured according to JIS K7361-1 can be measured by, for example, a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory). In addition, from the measured value of the total light transmittance of a certain thickness, the converted value of the total light transmittance of different thickness can be obtained by Lambert Beer's law and can be used.
Specifically, according to Lambert Beer's law, the transmittance T is
Log 10 (1 / T) = kcb
(K = constant specific to substance, c = concentration, b = optical path length).
In the case of the transmittance of the film, if the density is assumed to be constant even if the film thickness is changed, c is also a constant. Therefore, the above equation is expressed by Log 10 (1 / T) = fb using the constant f.
(F = kc). Here, if the transmittance at a certain film thickness is known, a specific constant f of each substance can be obtained. Therefore, the transmittance at a desired film thickness can be obtained by substituting a constant specific to f and a target film thickness into b using the formula T = 1/10 f · b .
 本開示に用いられるポリイミドフィルムは、本開示に係る積層体の光透過性を向上する点から、JIS K7373-2006に準拠して算出される黄色度(YI値)が、30以下であることが好ましく、20以下であることがより好ましく、15以下であることが更に好ましく、10以下であることがより更に好ましい。
 本開示に用いられるポリイミドフィルムは、厚み5μm以上100μm以下において、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が30以下であることが好ましく、20以下であることが更に好ましく、15以下であることがより更に好ましく、10以下であることが特に好ましい。
 また、本開示に用いられるポリイミドフィルムは、厚み50μm±5μmにおいて、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、10以下であることが好ましく、7以下であることが更に好ましく、5以下であることがより更に好ましい。
 なお、黄色度(YI値)は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出することができる。
  YI=100(1.2769X-1.0592Z)/Y
 なお、ある厚みの黄色度の測定値から、異なる厚みの黄色度は、ある特定の膜厚のサンプルの250nm以上800nm以下の間の1nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
The polyimide film used in the present disclosure has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less from the viewpoint of improving the light transmittance of the laminate according to the present disclosure. Preferably, it is 20 or less, more preferably 15 or less, still more preferably 10 or less.
The polyimide film used in the present disclosure preferably has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less and more preferably 20 or less when the thickness is 5 μm or more and 100 μm or less. It is preferably 15 or less, more preferably 10 or less.
The polyimide film used in the present disclosure has a thickness of 50 μm ± 5 μm, and the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 10 or less, preferably 7 or less. Is more preferable, and it is still more preferable that it is 5 or less.
The yellowness (YI value) is determined according to JIS K7373-2006 by using an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100) and by a spectrocolorimetric method. C. Using a two-degree field, tristimulus values X, Y, and Z in the XYZ color system are obtained based on transmittance measured at 1 nm intervals in a range of 250 nm to 800 nm, and the X, Y, It can be calculated from the value of Z by the following formula.
YI = 100 (1.2769X−1.0592Z) / Y
It should be noted that, from the measured value of yellowness of a certain thickness, the yellowness of a different thickness is calculated for each transmittance at each wavelength measured at 1 nm intervals between 250 nm and 800 nm of a sample having a specific thickness. Similarly to the light transmittance, a converted value of each transmittance at each wavelength of different thickness can be obtained according to Lambert Beer's law, and can be calculated and used based on it.
 また、本開示に用いられるポリイミドフィルムは、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))が0.2以下であることが好ましく、0.05以下であることがより好ましく、0.04以下であることがより更に好ましい。
 なお、本開示において、前記黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))は、JIS Z8401:1999の規則Bに従い、小数点以下第2位に丸めた値とする。
In addition, the polyimide film used in the present disclosure is calculated in accordance with JIS K7373-2006 because yellowish coloring is suppressed, light transmittance is improved, and it can be suitably used as a glass substitute material. The value (YI value / film thickness (μm)) obtained by dividing the yellowness (YI value) by the film thickness (μm) is preferably 0.2 or less, more preferably 0.05 or less, and 0 More preferably, it is 0.04 or less.
In the present disclosure, the value obtained by dividing the yellowness (YI value) by the film thickness (μm) (YI value / film thickness (μm)) is the second decimal place according to the rule B of JIS Z8401: 1999. Rounded value.
 本開示に用いられるポリイミドフィルムは、本開示に係る積層体の光透過性を向上する点から、ヘイズ値が10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。当該ヘイズ値は、ポリイミドフィルムの厚みが5μm以上100μm以下において達成できることが好ましい。
 前記ヘイズ値は、JIS K-7105に準拠した方法で測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
The polyimide film used in the present disclosure preferably has a haze value of 10 or less, more preferably 8 or less, and more preferably 5 or less from the viewpoint of improving the light transmittance of the laminate according to the present disclosure. Is even more preferable. It is preferable that the haze value can be achieved when the thickness of the polyimide film is 5 μm or more and 100 μm or less.
The haze value can be measured by a method according to JIS K-7105, for example, a haze meter HM150 manufactured by Murakami Color Research Laboratory.
 本開示に用いられるポリイミドフィルムは、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましい。前記ガラス転移温度が150℃以上であることにより、耐熱性に優れ、更に、200℃以上であることが好ましく、250℃以上であることがより更に好ましい。また、ガラス転移温度が400℃以下であることにより、ベーク温度を低減することができ、更に、380℃以下であることが好ましい。また、本開示に用いられるポリイミドフィルムは、150℃以上400℃以下の温度領域に1つのtanδ曲線のピークを有することが好ましい。
 また、本開示に用いられるポリイミドフィルムは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが、室温での表面硬度に優れる点から好ましい。
 なお、前記ガラス転移温度は、動的粘弾性測定によって得られる温度-tanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))曲線のピーク温度から求められるものである。ポリイミドのガラス転移温度は、tanδ曲線のピークが複数存在する場合、ピークの極大値が最大であるピークの温度をいう。動的粘弾性測定としては、例えば、動的粘弾性測定装置 RSA III(ティー・エイ・インスツルメント・ジャパン(株))によって、測定範囲を-150℃~400℃として、周波数1Hz、昇温速度5℃/minにより行うことができる。また、サンプル幅を5mm、チャック間距離を20mmとして測定することができる。ピーク及び変曲点の解析時は、目視評価せず、データを数値化して、数値から解析する。
 本開示において、tanδ曲線のピークとは、極大値である変曲点を有し、且つ、ピークの谷と谷の間であるピーク幅が3℃以上であるものをいい、ノイズ等測定由来の細かい上下変動については、前記ピークと解釈しない。
The polyimide film used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower. When the glass transition temperature is 150 ° C. or higher, heat resistance is excellent, and it is preferably 200 ° C. or higher, and more preferably 250 ° C. or higher. Moreover, when the glass transition temperature is 400 ° C. or lower, the baking temperature can be reduced, and is preferably 380 ° C. or lower. Moreover, it is preferable that the polyimide film used for this indication has the peak of one tan-delta curve in the temperature range of 150 to 400 degreeC.
In addition, the polyimide film used in the present disclosure preferably has no tan δ curve peak in a temperature range of −150 ° C. or more and 0 ° C. or less from the viewpoint of excellent surface hardness at room temperature.
The glass transition temperature is obtained from the peak temperature of a temperature-tan δ (tan δ = loss elastic modulus (E ″) / storage elastic modulus (E ′)) curve obtained by dynamic viscoelasticity measurement. The glass transition temperature of polyimide refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of tan δ curve peaks. As the dynamic viscoelasticity measurement, for example, with a dynamic viscoelasticity measuring device RSA III (TA Instruments Japan Co., Ltd.), the measurement range is set to −150 ° C. to 400 ° C., the frequency is 1 Hz, and the temperature is increased. This can be done at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm. When analyzing peaks and inflection points, the data is digitized and analyzed from the numerical values without visual evaluation.
In the present disclosure, the peak of the tan δ curve refers to a peak having an inflection point that is a maximum value and a peak width that is between 3 ° C. or more between peaks and valleys, and is derived from measurement such as noise. The fine vertical fluctuation is not interpreted as the peak.
 また、本開示に用いられるポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が、1.8GPa以上であることが好ましい。このように、25℃(室温)での引張弾性率が高いと、室温での表面硬度に優れるため、本開示に係る積層体の表面硬度が向上する。本開示に用いられるポリイミドフィルムにおける前記引張弾性率は、2.0GPa以上であることがより好ましく、2.4GPa以上であることが更に好ましい。
 前記引張弾性率は、引張り試験機(例えば島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用い、幅15mm×長さ40mmの試験片をポリイミドフィルムから切り出して、25℃で、引張り速度10mm/min、チャック間距離は20mmとして測定することができる。前記引張弾性率を求める際のポリイミドフィルムは厚みが50μm±5μmであることが好ましい。
In addition, the polyimide film used in the present disclosure has a tensile elastic modulus at 25 ° C. of 1.8 GPa measured with a test piece of 15 mm × 40 mm in accordance with JIS K7127, a tensile speed of 10 mm / min, and a distance between chucks of 20 mm. The above is preferable. Thus, since the surface hardness at room temperature is excellent when the tensile modulus at 25 ° C. (room temperature) is high, the surface hardness of the laminate according to the present disclosure is improved. The tensile elastic modulus in the polyimide film used in the present disclosure is more preferably 2.0 GPa or more, and further preferably 2.4 GPa or more.
The tensile elastic modulus was determined by cutting a test piece having a width of 15 mm × a length of 40 mm from a polyimide film using a tensile tester (for example, Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) at 25 ° C. The tensile speed can be 10 mm / min, and the distance between chucks can be 20 mm. The polyimide film for obtaining the tensile modulus of elasticity preferably has a thickness of 50 μm ± 5 μm.
 また、本開示に用いられるポリイミドフィルムは、波長590nmにおける厚み方向の複屈折率が0.040以下であることが好ましい。このような複屈折率を有することにより、ポリイミドフィルムの光学的歪みが低減されるため、本開示に係る積層体をディスプレイ用表面材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。本開示に用いられるポリイミドフィルムにおける波長590nmにおける厚み方向の複屈折率は、より小さい方が好ましく、0.020以下であることがより好ましく、0.015以下であることがより好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。また、波長590nmにおける厚み方向の複屈折率が0.040超過のフィルムをディスプレイ表面に設置して、偏光サングラスをかけてディスプレイを見た場合、虹ムラが発生し、視認性が低下する場合がある。一方、ディスプレイ表面に設置したフィルムの前記厚み方向の複屈折率が0.040以下であれば、偏光サングラスをかけてディスプレイを見た時の虹ムラの発生が抑制される。さらに、ディスプレイ表面に設置したフィルムの前記厚み方向の複屈折率が0.020以下であれば、ディスプレイを斜めから見たときの色再現性が向上する。
 なお、本開示に用いられるポリイミドフィルムの前記波長590nmにおける厚み方向の複屈折率は、以下のように求めることができる。
 まず、位相差測定装置(例えば、王子計測機器株式会社製、製品名「KOBRA-WR」)を用いて、25℃、波長590nmの光で、ポリイミドフィルムの厚み方向位相差値(Rth)を測定する。厚み方向位相差値(Rth)は、0度入射の位相差値と、斜め40度入射の位相差値を測定し、これらの位相差値から厚み方向位相差値Rthを算出する。前記斜め40度入射の位相差値は、ポリイミドフィルムの法線から40度傾けた方向から、波長590nmの光をポリイミドフィルムに入射させて測定する。
 ポリイミドフィルムの厚み方向の複屈折率は、式:Rth/dに代入して求めることができる。前記dは、ポリイミドフィルムの膜厚(nm)を表す。
 なお、厚み方向位相差値は、フィルムの面内方向における遅相軸方向(フィルム面内方向における屈折率が最大となる方向)の屈折率をnx、フィルム面内における進相軸方向(フィルム面内方向における屈折率が最小となる方向)の屈折率をny、及びフィルムの厚み方向の屈折率をnzとしたときに、Rth[nm]={(nx+ny)/2-nz}×dと表すことができる。
In addition, the polyimide film used in the present disclosure preferably has a birefringence in the thickness direction at a wavelength of 590 nm of 0.040 or less. Since the optical distortion of the polyimide film is reduced by having such a birefringence, when the laminate according to the present disclosure is used as a display surface material, it suppresses a decrease in display quality of the display. be able to. The birefringence in the thickness direction at a wavelength of 590 nm in the polyimide film used in the present disclosure is preferably smaller, more preferably 0.020 or less, more preferably 0.015 or less, and further preferably It is preferably 010 or less, and more preferably less than 0.008. In addition, when a film having a birefringence in the thickness direction at a wavelength of 590 nm of more than 0.040 is placed on the display surface and the display is viewed with polarized sunglasses, rainbow unevenness may occur and visibility may be reduced. is there. On the other hand, if the birefringence in the thickness direction of the film placed on the display surface is 0.040 or less, the occurrence of rainbow unevenness when viewing the display with polarized sunglasses is suppressed. Furthermore, when the birefringence in the thickness direction of the film placed on the display surface is 0.020 or less, color reproducibility when the display is viewed from an oblique direction is improved.
In addition, the birefringence of the thickness direction in the said wavelength 590nm of the polyimide film used for this indication can be calculated | required as follows.
First, the thickness direction retardation value (Rth) of the polyimide film is measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (for example, product name “KOBRA-WR” manufactured by Oji Scientific Instruments). To do. For the thickness direction retardation value (Rth), a phase difference value at 0 degree incidence and a phase difference value at an incidence angle of 40 degrees are measured, and the thickness direction retardation value Rth is calculated from these phase difference values. The phase difference value at an oblique incidence of 40 degrees is measured by making light having a wavelength of 590 nm incident on the polyimide film from a direction inclined by 40 degrees from the normal line of the polyimide film.
The birefringence in the thickness direction of the polyimide film can be determined by substituting it into the formula: Rth / d. Said d represents the film thickness (nm) of a polyimide film.
The thickness direction retardation value is nx the refractive index in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction in the film plane (film surface). Rth [nm] = {(nx + ny) / 2−nz} × d, where ny is the refractive index in the direction in which the refractive index in the inner direction is the minimum) and nz is the refractive index in the thickness direction of the film. be able to.
 また、本開示に用いられるポリイミドフィルムは、機能層との密着性の点、及び積層体の干渉縞抑制の点から、X線光電子分光法により測定した、フィルム表面のケイ素原子(Si)の原子%が、0.1以上10以下が好ましく、0.2以上5以下がさらに好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
Moreover, the polyimide film used for this indication is a silicon atom (Si) atom of the film surface measured by the X ray photoelectron spectroscopy from the point of adhesiveness with a functional layer, and the point of interference fringe suppression of a laminated body. % Is preferably from 0.1 to 10, more preferably from 0.2 to 5.
Here, the said ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be calculated | required from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Thermo Scientific Thea Probe). .
 また好ましい一形態としては、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上1以下であることが好ましく、更に0.05以上0.8以下であることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と窒素原子数(N)の比率(F/N)が、0.1以上20以下であることが好ましく、更に0.5以上15以下であることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)とケイ素原子数(Si)の比率(F/Si)が、1以上50以下であることが好ましく、更に3以上30以下であることが好ましい。
As a preferred embodiment, the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) on the film surface, measured by X-ray photoelectron spectroscopy of a polyimide film, is 0.01 or more and 1 or less. It is preferable that it is 0.05 or more and 0.8 or less.
The ratio (F / N) of the number of fluorine atoms (F) and the number of nitrogen atoms (N) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film, is preferably 0.1 or more and 20 or less. Further, it is preferably 0.5 or more and 15 or less.
Further, the ratio (F / Si) of the number of fluorine atoms (F) and the number of silicon atoms (Si) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film, is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
 また、本開示に用いられるポリイミドフィルムの厚さは、積層体の用途により適宜選択されれば良いが、1μm以上であることが好ましく、更に5μm以上であることが好ましく、より更に10μm以上であることが好ましい。一方、200μm以下であることが好ましく、更に150μm以下であることが好ましく、より更に100μm以下であることが好ましい。ポリイミドフィルムの厚みが薄すぎると、強度が低下し破断しやすくなり、ポリイミドフィルムの厚みが厚すぎると、屈曲耐性が低下する恐れがある。 Further, the thickness of the polyimide film used in the present disclosure may be appropriately selected depending on the use of the laminate, but is preferably 1 μm or more, more preferably 5 μm or more, and further more preferably 10 μm or more. It is preferable. On the other hand, it is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. If the thickness of the polyimide film is too thin, the strength is reduced and the film tends to break. If the thickness of the polyimide film is too thick, the bending resistance may be reduced.
(ポリイミドフィルムの製造方法)
 本開示に用いられるポリイミドフィルムの製造方法としては、例えば、第一の製造方法として、
 下記一般式(1’)で表される構造を有するポリイミド前駆体と、有機溶剤とを含むポリイミド前駆体樹脂組成物を調製する工程(以下、ポリイミド前駆体樹脂組成物調製工程という)と、
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程(以下、ポリイミド前駆体樹脂塗膜形成工程という)と、
 加熱をすることにより、前記ポリイミド前駆体をイミド化する工程(以下、イミド化工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
(Production method of polyimide film)
As a manufacturing method of the polyimide film used in the present disclosure, for example, as a first manufacturing method,
A step of preparing a polyimide precursor resin composition containing a polyimide precursor having a structure represented by the following general formula (1 ′) and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step);
Applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming process);
The process of imidating the said polyimide precursor by heating (henceforth an imidation process) and the manufacturing method of the polyimide film containing are mentioned.
Figure JPOXMLDOC01-appb-C000010
(一般式(1’)において、R、R及びnは、前記一般式(1)と同様である。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (1 ′), R 1 , R 2 and n are the same as those in the general formula (1).)
 前記第一の製造方法においては、更に、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する工程(以下、延伸工程という)を有していてもよい。
 以下、各工程について詳細に説明する。
In the first production method, the step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as stretching process). ).
Hereinafter, each step will be described in detail.
(1)ポリイミド前駆体樹脂組成物調製工程
 前記第一の製造方法において調製するポリイミド前駆体樹脂組成物は、前記一般式(1’)で表される構造を有するポリイミド前駆体と、有機溶剤とを含有し、必要に応じて添加剤等を含有していてもよい。
(1) Polyimide precursor resin composition preparation step The polyimide precursor resin composition prepared in the first production method includes a polyimide precursor having a structure represented by the general formula (1 ′), an organic solvent, And may contain additives as required.
<ポリイミド前駆体>
 本開示に用いられるポリイミドフィルム乃至ポリイミドを製造するのに適した、本開示のポリイミド前駆体は、前記一般式(1’)で表される構造を有するポリイミド前駆体である。
 前記一般式(1’)で表される構造を有するポリイミド前駆体は、前記一般式(1’)のRにおけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1’)のRにおけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
 ここで、前記一般式(1’)のR、R及びnは、前記ポリイミドにおいて説明した前記一般式(1)のR、R及びnと同様のものを用いることができる。
<Polyimide precursor>
The polyimide precursor of this indication suitable for manufacturing the polyimide film thru | or polyimide used for this indication is a polyimide precursor which has a structure represented by the said General formula (1 ').
The polyimide precursor having the structure represented by the general formula (1 ′) includes a tetracarboxylic acid component that becomes a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and the general formula (1 ′). a polyamic acid obtained in the R 2 by polymerization of a diamine residues become diamine component.
Here, as R 1 , R 2 and n in the general formula (1 ′), those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
 前記一般式(1’)で表される構造を有するポリイミド前駆体は、フィルムとした際の強度及び屈曲耐性の点から、数平均分子量が10000以上であることが好ましく、20000以上であることがより好ましく、30000以上であることがより更に好ましく、50000以上であることが特に好ましい。一方、数平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミド前駆体の数平均分子量は、NMR(例えば、BRUKER製、AVANCEIII)により求めることができる。例えば、ポリイミド前駆体溶液をガラス板に塗布して100℃で5分乾燥後、固形分10mgをジメチルスルホキシド-d6溶媒7.5mlに溶解し、NMR測定を行い、芳香族環に結合している水素原子のピーク強度比から数平均分子量を算出することができる。
The polyimide precursor having the structure represented by the general formula (1 ′) preferably has a number average molecular weight of 10,000 or more, and 20,000 or more from the viewpoint of strength and bending resistance when formed into a film. More preferably, it is more preferably 30000 or more, and particularly preferably 50000 or more. On the other hand, if the number average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
The number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER). For example, a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes, and then 10 mg of solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and NMR measurement is performed to bond to an aromatic ring. The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
 また、前記一般式(1’)で表される構造を有するポリイミド前駆体は、フィルムとした際の強度及び屈曲耐性の点から、重量平均分子量が、20000以上であることが好ましく、30000以上であることがより好ましく、40000以上であることがより更に好ましく、80000以上であることが特に好ましい。一方、重量平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミド前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
In addition, the polyimide precursor having the structure represented by the general formula (1 ′) preferably has a weight average molecular weight of 20000 or more and 30000 or more from the viewpoint of strength and bending resistance when used as a film. More preferably, it is more preferably 40000 or more, and particularly preferably 80000 or more. On the other hand, when the weight average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
The weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC). Specifically, the polyimide precursor was made into an N-methylpyrrolidone (NMP) solution having a concentration of 0.5% by weight, and the developing solvent was a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less. Using HLC-8120, column used: GPC LF-804 manufactured by SHODEX, measurement is performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.5 mL / min, and 40 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
 前記ポリイミド前駆体溶液は、上述のテトラカルボン酸二無水物と、上述のジアミンとを、溶剤中で反応させて得られる。ポリイミド前駆体(ポリアミド酸)の合成に用いる溶剤としては、上述のテトラカルボン酸二無水物及びジアミンを溶解可能であれば特に制限はなく、例えば非プロトン性極性溶剤または水溶性アルコール系溶剤等を用い得る。本開示においては、中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。中でも、前記ポリイミド前駆体溶液(ポリアミド酸溶液)をそのままポリイミド前駆体樹脂組成物の調製に用いる場合は、窒素原子を含む有機溶剤を用いることが好ましく、中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンもしくはこれらの組み合わせを用いることが好ましい。なお、有機溶剤とは、炭素原子を含む溶剤である。 The polyimide precursor solution is obtained by reacting the above tetracarboxylic dianhydride and the above diamine in a solvent. The solvent used for the synthesis of the polyimide precursor (polyamic acid) is not particularly limited as long as it can dissolve the above-described tetracarboxylic dianhydride and diamine. For example, an aprotic polar solvent or a water-soluble alcohol solvent is used. Can be used. In the present disclosure, among others, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone, etc. It is preferable to use an organic solvent containing a nitrogen atom of γ-butyrolactone or the like. In particular, when the polyimide precursor solution (polyamic acid solution) is used as it is for the preparation of the polyimide precursor resin composition, it is preferable to use an organic solvent containing a nitrogen atom, among which N, N-dimethylacetamide, N— It is preferable to use methyl-2-pyrrolidone or a combination thereof. The organic solvent is a solvent containing carbon atoms.
 また、前記ポリイミド前駆体溶液は、少なくとも2種のジアミンを組み合わせて調製されるが、少なくとも2種のジアミンの混合溶液に酸二無水物を添加し、ポリアミド酸を合成してもよいし、少なくとも2種のジアミン成分を適切なモル比で段階を踏んで反応液に添加し、ある程度、各原料が高分子鎖へ組み込まれるシーケンスをコントロールしてもよい。
 たとえば、主鎖にケイ素原子を有するジアミンが溶解された反応液に、主鎖にケイ素原子を有するジアミンの0.5等量のモル比の酸二無水物を投入し反応させることで、酸二無水物の両端に主鎖にケイ素原子を有するジアミンが反応したアミド酸を合成し、そこへ、残りのジアミンを全部、又は一部投入し、酸二無水物を加えてポリアミド酸を重合しても良い。この方法で重合すると、主鎖にケイ素原子を有するジアミンが1つの酸二無水物を介して、連結した形でポリアミド酸の中に導入される。
 このような方法でポリアミド酸を重合することは、主鎖にケイ素原子を有するアミド酸の位置関係がある程度特定され、表面硬度を維持しつつ屈曲耐性の優れた膜を得易い点から好ましい。
The polyimide precursor solution is prepared by combining at least two kinds of diamines. An acid dianhydride may be added to a mixed solution of at least two kinds of diamines to synthesize polyamic acid, or at least Two kinds of diamine components may be added to the reaction solution step by step at an appropriate molar ratio, and the sequence in which each raw material is incorporated into the polymer chain may be controlled to some extent.
For example, an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged into a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and reacted. Amidic acid in which a diamine having a silicon atom in the main chain was reacted at both ends of the anhydride was synthesized, and all or part of the remaining diamine was added thereto, and acid dianhydride was added to polymerize the polyamic acid. Also good. When polymerized by this method, a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride.
Polymerization of the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
 前記ポリイミド前駆体溶液(ポリアミド酸溶液)中のジアミンのモル数をX、テトラカルボン酸二無水物のモル数をYとしたとき、Y/Xを0.9以上1.1以下とすることが好ましく、0.95以上1.05以下とすることがより好ましく、0.97以上1.03以下とすることがさらに好ましく、0.99以上1.01以下とすることが特に好ましい。このような範囲とすることにより得られるポリアミド酸の分子量(重合度)を適度に調整することができる。
 重合反応の手順は、公知の方法を適宜選択して用いることができ、特に限定されない。
 また、合成反応により得られたポリイミド前駆体溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良いし、ポリイミド前駆体溶液の溶剤を乾燥させ、別の溶剤に溶解して用いても良い。
When the number of moles of diamine in the polyimide precursor solution (polyamic acid solution) is X and the number of moles of tetracarboxylic dianhydride is Y, Y / X may be 0.9 or more and 1.1 or less. Preferably, it is 0.95 or more and 1.05 or less, more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. By setting it as such a range, the molecular weight (polymerization degree) of the polyamic acid obtained can be adjusted moderately.
The procedure of the polymerization reaction can be appropriately selected from known methods and is not particularly limited.
Moreover, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed there if necessary. The solvent of the polyimide precursor solution is dried and dissolved in another solvent. It may be used.
 前記ポリイミド前駆体溶液の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で測定することができる。
The viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
<ポリイミド前駆体樹脂組成物>
 前記ポリイミド前駆体樹脂組成物としては、前記ポリイミド前駆体溶液を用いてもよいし、必要に応じて添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられ、前述のポリイミドフィルムにおいて説明したものと同様のものを用いることができる。
<Polyimide precursor resin composition>
As said polyimide precursor resin composition, the said polyimide precursor solution may be used and the additive may be contained as needed. Examples of the additive include inorganic particles, silica filler for facilitating winding, a surfactant for improving film forming property and defoaming property, and the like described in the above polyimide film. Similar ones can be used.
 前記ポリイミド前駆体樹脂組成物に用いられる有機溶剤は、前記ポリイミド前駆体が溶解可能であれば特に制限はない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることができるが、中でも、窒素原子を含む有機溶剤を用いることが好ましい。 The organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved. For example, containing nitrogen atoms such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone Organic solvent: γ-butyrolactone or the like can be used, and among them, an organic solvent containing a nitrogen atom is preferably used.
 前記ポリイミド前駆体樹脂組成物中の前記ポリイミド前駆体の含有量は、均一な塗膜及びハンドリング可能な強度を有するポリイミドフィルムを形成する点から、樹脂組成物の固形分中に50質量%以上であることが好ましく、更に60質量%以上であることが好ましく、更に70質量%以上であることが好ましく、更に90質量%以上であることが好ましく、上限は含有成分により適宜調整されればよい。
 なお、本開示において固形分とは、溶剤以外の成分をいう。
 前記ポリイミド前駆体樹脂組成物中の有機溶剤は、均一な塗膜及びポリイミドフィルムを形成する点から、樹脂組成物中に40質量%以上であることが好ましく、更に50質量%以上であることが好ましく、また99質量%以下であることが好ましい。
Content of the said polyimide precursor in the said polyimide precursor resin composition is 50 mass% or more in solid content of a resin composition from the point which forms the polyimide film which has a uniform coating film and the intensity | strength which can be handled. Preferably, it is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more, and the upper limit may be appropriately adjusted depending on the components contained.
In addition, in this indication, solid content means components other than a solvent.
The organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more and more preferably 50% by mass or more in the resin composition from the viewpoint of forming a uniform coating film and a polyimide film. Preferably, it is 99% by mass or less.
 また、前記ポリイミド前駆体樹脂組成物は、含有水分量が1000ppm以下であることが、ポリイミド前駆体樹脂組成物の保存安定性が良好になり、生産性を向上することができる点から好ましい。ポリイミド前駆体樹脂組成物中に水分を多く含むと、ポリイミド前駆体が分解しやすくなる恐れがある。
 なお、ポリイミド前駆体樹脂組成物の含有水分量は、カールフィッシャー水分計(例えば、三菱化学株式会社製、微量水分測定装置CA-200型)を用いて求めることができる。
 前述のように含有水分量1000ppm以下とするには、使用する有機溶剤を脱水したり、水分量が管理されたものを用いた上で、湿度5%以下の環境下で取り扱うことが好ましい。
The polyimide precursor resin composition preferably has a moisture content of 1000 ppm or less from the viewpoint of improving the storage stability of the polyimide precursor resin composition and improving the productivity. If the polyimide precursor resin composition contains a large amount of moisture, the polyimide precursor may be easily decomposed.
The water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture measuring device CA-200, manufactured by Mitsubishi Chemical Corporation).
As described above, in order to control the water content to 1000 ppm or less, it is preferable to dehydrate the organic solvent to be used or use a water whose amount is controlled and handle it in an environment with a humidity of 5% or less.
 前記ポリイミド前駆体樹脂組成物の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
 ポリイミド前駆体樹脂組成物の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定することができる。
The viscosity of the polyimide precursor resin composition at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
(2)ポリイミド前駆体樹脂塗膜形成工程
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程において、用いられる支持体としては、表面が平滑で耐熱性および耐溶剤性のある材料であれば特に制限はない。例えばガラス板などの無機材料、表面を鏡面処理した金属板等が挙げられる。また支持体の形状は塗布方式によって選択され、例えば板状であってもよく、またドラム状やベルト状、ロールに巻き取り可能なシート状等であってもよい。
(2) Polyimide precursor resin coating film forming step In the step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film, the support used has a smooth surface and heat resistance. The material is not particularly limited as long as the material is resistant and solvent resistant. For example, an inorganic material such as a glass plate, a metal plate having a mirror-finished surface, and the like can be given. The shape of the support is selected depending on the coating method, and may be, for example, a plate shape, a drum shape, a belt shape, a sheet shape that can be wound around a roll, or the like.
 前記塗布手段は目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えばダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータ等の公知のものを用いることができる。
 塗布は、枚葉式の塗布装置により行ってもよく、ロールtoロール方式の塗布装置により行ってもよい。
The application means is not particularly limited as long as it can be applied at a desired film thickness, and for example, a known one such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater or the like can be used. .
Application may be performed by a single-wafer coating apparatus or a roll-to-roll coating apparatus.
 ポリイミド前駆体樹脂組成物を支持体に塗布した後は、塗膜がタックフリーとなるまで、150℃以下の温度、好ましくは30℃以上120℃以下で前記塗膜中の溶剤を乾燥する。溶剤の乾燥温度を150℃以下とすることにより、ポリアミド酸のイミド化を抑制することができる。 After the polyimide precursor resin composition is applied to the support, the solvent in the coating film is dried at a temperature of 150 ° C. or lower, preferably 30 ° C. or higher and 120 ° C. or lower until the coating film is tack-free. By setting the drying temperature of the solvent to 150 ° C. or lower, imidization of the polyamic acid can be suppressed.
 乾燥時間は、ポリイミド前駆体樹脂塗膜の膜厚や、溶剤の種類、乾燥温度等に応じて適宜調整されれば良いが、通常30秒~240分、好ましくは1分~180分、より好ましくは90秒~120分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。 The drying time may be appropriately adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, etc., but is usually 30 seconds to 240 minutes, preferably 1 minute to 180 minutes, more preferably. Is preferably 90 seconds to 120 minutes. When exceeding an upper limit, it is unpreferable from the surface of the production efficiency of a polyimide film. On the other hand, when the value is below the lower limit, the appearance of the resulting polyimide film may be affected by rapid solvent drying.
 溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
 光学特性の高度な管理が必要な場合、溶剤の乾燥時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることが最も好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
The method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature. For example, an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
When high management of optical properties is required, the atmosphere during drying of the solvent is preferably an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less. When heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
(3)イミド化工程
 前記第一の製造方法においては、加熱をすることにより、前記ポリイミド前駆体をイミド化する。
 当該製造方法において、延伸工程を有する場合、イミド化工程は、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程後の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体及び延伸工程後の膜中に存在するポリイミド前駆体の両方に対して行っても良い。
(3) Imidization process In said 1st manufacturing method, the said polyimide precursor is imidized by heating.
In the said manufacturing method, when it has an extending process, an imidation process may be performed with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process, and the said polyimide precursor resin after an extending process You may perform with respect to the polyimide precursor in a coating film, and with respect to both the polyimide precursor in the said polyimide precursor resin coating film before an extending process, and the polyimide precursor which exists in the film | membrane after an extending process. You can go.
 イミド化の温度は、ポリイミド前駆体の構造に合わせて適宜選択されれば良い。
 通常、昇温開始温度を30℃以上とすることが好ましく、100℃以上とすることがより好ましい。一方、昇温終了温度は250℃以上とすることが好ましい。
The imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
Usually, the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher. On the other hand, the temperature rise end temperature is preferably 250 ° C. or higher.
 昇温速度は、得られるポリイミドフィルムの膜厚によって適宜選択することが好ましく、ポリイミドフィルムの膜厚が厚い場合には、昇温速度を遅くすることが好ましい。
 ポリイミドフィルムの製造効率の点から、5℃/分以上とすることが好ましく、10℃/分以上とすることが更に好ましい。一方、昇温速度の上限は、通常50℃/分とされ、好ましくは40℃/分以下、さらに好ましくは30℃/分以下である。上記昇温速度とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化をコントロールでき、光透過性が向上する点から好ましい。
The rate of temperature increase is preferably selected as appropriate depending on the film thickness of the polyimide film to be obtained. When the film thickness of the polyimide film is thick, it is preferable to decrease the temperature increase rate.
From the viewpoint of the production efficiency of the polyimide film, it is preferably 5 ° C./min or more, more preferably 10 ° C./min or more. On the other hand, the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less. It is preferable to set the temperature increase rate from the viewpoint that the appearance defect and strength reduction of the film can be suppressed, and the whitening associated with the imidization reaction can be controlled, and the light transmittance is improved.
 昇温は、連続的でも段階的でもよいが、連続的とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化のコントロールの面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、また途中で変化させてもよい。 The temperature increase may be continuous or stepwise, but it is preferable to make it continuous from the viewpoint of controlling the appearance of the film, suppressing the strength reduction, and controlling the whitening associated with the imidization reaction. Moreover, in the above-mentioned whole temperature range, the temperature rising rate may be constant or may be changed in the middle.
 イミド化の昇温時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
 ただし、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合は、光学特性に対する酸素の影響が少なく、不活性ガス雰囲気を用いなくても光透過性の高いポリイミドが得られる。
The atmosphere at the time of temperature increase in imidation is preferably an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less. When heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
However, when 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, there is little influence of oxygen on the optical properties, and an inert gas atmosphere is not used. In addition, a polyimide having a high light transmittance can be obtained.
 イミド化のための加熱方法は、上記温度で昇温が可能であれば特に制限はなく、例えばオーブンや、加熱炉、赤外線加熱、電磁誘導加熱等を用いることが可能である。 The heating method for imidation is not particularly limited as long as the temperature can be raised at the above temperature. For example, an oven, a heating furnace, infrared heating, electromagnetic induction heating, or the like can be used.
 中でも、延伸工程前に、ポリイミド前駆体のイミド化率を50%以上とすることがより好ましい。延伸工程前にイミド化率を50%以上とすることにより、当該工程後に延伸を行い、その後さらに高い温度で一定時間加熱を行い、イミド化を行った場合であっても、フィルムの外観不良や白化が抑制される。中でもポリイミドフィルムの表面硬度が向上する点から、延伸工程前に、当該イミド化工程において、イミド化率を80%以上とすることが好ましく、90%以上、さらには100%まで反応を進行させることが好ましい。イミド化後に延伸することにより、剛直な高分子鎖が配向しやすいことから表面硬度が向上すると推定される。
 なお、イミド化率の測定は、赤外測定(IR)によるスペクトルの分析等により行うことができる。
Especially, it is more preferable that the imidation ratio of a polyimide precursor shall be 50% or more before an extending process. Even if the imidization rate is 50% or more before the stretching step, the film is stretched after the step, and then heated at a higher temperature for a certain period of time to perform imidization. Whitening is suppressed. In particular, from the point that the surface hardness of the polyimide film is improved, it is preferable that the imidization rate is 80% or more in the imidization step before the stretching step, and the reaction is allowed to proceed to 90% or more, and further to 100%. Is preferred. By stretching after imidization, it is presumed that the surface hardness is improved because a rigid polymer chain is easily oriented.
The imidation rate can be measured by analyzing the spectrum by infrared measurement (IR).
 最終的なポリイミドフィルムを得るには、イミド化を90%以上、さらには95%以上、さらには100%まで反応を進行させることが好ましい。
 イミド化を90%以上、さらには100%まで反応を進行させるには、昇温終了温度で一定時間保持することが好ましく、当該保持時間は、通常1分~180分、更に、5分~150分とすることが好ましい。
In order to obtain a final polyimide film, it is preferable to proceed the reaction to 90% or more, further 95% or more, and further 100%.
In order to allow the reaction to proceed to 90% or more, more preferably 100%, it is preferable to hold at a temperature rising end temperature for a certain period of time. Minutes are preferred.
(4)延伸工程
 前記第一の製造方法は、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する延伸工程を有していてもよい。当該延伸工程を有する場合は、中でも、イミド化後塗膜を延伸する工程を含むことが、ポリイミドフィルムの表面硬度が向上する点から好ましい。
(4) Stretching step The first production method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and a post-imidation coating film obtained by imidizing the polyimide precursor resin coating film. It may be. When it has the said extending | stretching process, it is preferable from the point which the surface hardness of a polyimide film improves including the process of extending | stretching the coating film after imidation especially.
 前記第一の製造方法では、延伸を実施する前の初期の寸法を100%とした時に101%以上10000%以下延伸する工程を、80℃以上で加熱しながら行うことが好ましい。
 延伸時の加熱温度は、ポリイミド乃至ポリイミド前駆体のガラス転移温度±50℃の範囲内であることが好ましく、ガラス転移温度±40℃の範囲内であることが好ましい。延伸温度が低すぎるとフィルムが変形せず充分に配向を誘起できない恐れがある。一方で、延伸温度が高すぎると延伸によって得られた配向が温度で緩和し、充分な配向が得られない恐れがある。
 延伸工程は、イミド化工程と同時に行っても良い。イミド化率80%以上、更に90%以上、より更に95%以上、特に実質的に100%イミド化を行った後のイミド化後塗膜を延伸することが、ポリイミドフィルムの表面硬度を向上する点から好ましい。
In the first production method, it is preferable to perform the step of stretching 101% or more and 10000% or less while heating at 80 ° C. or higher when the initial dimension before stretching is 100%.
The heating temperature during stretching is preferably in the range of glass transition temperature ± 50 ° C. of the polyimide or polyimide precursor, and preferably in the range of glass transition temperature ± 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching is relaxed by the temperature, and there is a possibility that sufficient orientation cannot be obtained.
The stretching step may be performed simultaneously with the imidization step. Stretching the film after imidization after imidation rate of 80% or more, further 90% or more, even more 95% or more, and particularly substantially 100% imidation improves the surface hardness of the polyimide film. It is preferable from the point.
 ポリイミドフィルムの延伸倍率は、好ましくは101%以上10000%以下であり、さらに好ましくは101%以上500%以下である。上記範囲で延伸を行うことにより、得られるポリイミドフィルムの表面硬度をより向上することができる。 The draw ratio of the polyimide film is preferably from 101% to 10,000%, more preferably from 101% to 500%. By stretching in the above range, the surface hardness of the obtained polyimide film can be further improved.
 延伸時におけるポリイミドフィルムの固定方法は、特に制限はなく、延伸装置の種類等に合わせて選択される。また、延伸方法は特に制限はなく、例えばテンター等の搬送装置を有する延伸装置を用い、加熱炉を通しながら延伸することが可能である。ポリイミドフィルムは、一方向のみに延伸(縦延伸または横延伸)してもよく、また同時2軸延伸、もしくは逐次2軸延伸、斜め延伸等によって、二方向に延伸処理を行ってもよい。 The method for fixing the polyimide film during stretching is not particularly limited, and is selected according to the type of stretching apparatus. Moreover, there is no restriction | limiting in particular in the extending | stretching method, For example, it can extend | stretch through a heating furnace using the extending | stretching apparatus which has conveyance apparatuses, such as a tenter. The polyimide film may be stretched only in one direction (longitudinal stretching or lateral stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
 前記第一の製造方法は、ポリイミドフィルムの複屈折率を低減しやすい点から好ましい。前記第一の製造方法によれば、波長590nmにおける厚み方向の複屈折率が0.020以下、更には0.010以下であるポリイミドフィルムを好適に形成可能である。 The first production method is preferable from the viewpoint of easily reducing the birefringence of the polyimide film. According to the first production method, a polyimide film having a birefringence in the thickness direction at a wavelength of 590 nm of 0.020 or less, further 0.010 or less can be suitably formed.
 また、本開示に用いられるポリイミドフィルムの製造方法としては、第二の製造方法として、
 前記一般式(1)で表される構造を有するポリイミドと、有機溶剤とを含むポリイミド樹脂組成物を調製する工程(以下、ポリイミド樹脂組成物調製工程という)と、
 前記ポリイミド樹脂組成物を支持体に塗布して、溶剤を乾燥させてポリイミド樹脂塗膜を形成する工程(以下、ポリイミド樹脂塗膜形成工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
Moreover, as a manufacturing method of the polyimide film used for this indication, as a 2nd manufacturing method,
A step of preparing a polyimide resin composition containing a polyimide having a structure represented by the general formula (1) and an organic solvent (hereinafter referred to as a polyimide resin composition preparation step);
The polyimide resin composition is applied to a support, the solvent is dried, and a polyimide resin coating film is formed (hereinafter referred to as a polyimide resin coating film forming process).
 前記一般式(1)で表される構造を有するポリイミドが有機溶剤に良好に溶解する場合には、ポリイミド前駆体樹脂組成物ではなく、前記ポリイミドを有機溶剤に溶解させ、必要に応じて添加剤を含有させたポリイミド樹脂組成物も好適に用いることができる。
 前記一般式(1)で表される構造を有するポリイミドが25℃で有機溶剤に5質量%以上溶解するような溶剤溶解性を有する場合には、当該製造方法を好適に用いることができる。
When the polyimide having the structure represented by the general formula (1) dissolves well in an organic solvent, the polyimide is not dissolved in the polyimide precursor resin composition, and the additive is added as necessary. A polyimide resin composition containing bismuth can also be suitably used.
In the case where the polyimide having the structure represented by the general formula (1) has solvent solubility such that 5% by mass or more is dissolved in an organic solvent at 25 ° C., the production method can be suitably used.
 ポリイミド樹脂組成物調製工程において、前記一般式(1)で表される構造を有するポリイミドは、前記ポリイミドフィルムにおいて説明したものと同様のポリイミドの中から、前述した溶剤溶解性を有するポリイミドを選択して用いることができる。イミド化する方法としては、前記一般式(1’)で表される構造を有するポリイミド前駆体の脱水閉環反応について、加熱脱水の代わりに、化学イミド化剤を用いて行う化学イミド化を用いることが好ましい。化学イミド化を行う場合は、脱水触媒としてピリジンやβ―ピコリン酸等のアミン、ジシクロヘキシルカルボジイミドなどのカルボジイミド、無水酢酸等の酸無水物等、公知の化合物を用いても良い。酸無水物としては無水酢酸に限らず、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられるが特に限定されない。また、その際にピリジンやβ―ピコリン酸等の3級アミンを併用してもよい。ただし、これらアミン類は、フィルム中に残存すると光学特性、特に黄色度(YI値)を低下させるため、前駆体からポリイミドへと反応させた反応液をそのままキャストして製膜するのではなく、再沈殿などにより精製し、ポリイミド以外の成分をそれぞれ、ポリイミド全重量の100ppm以下まで除去してから製膜することが好ましい。 In the polyimide resin composition preparation step, the polyimide having the structure represented by the general formula (1) is selected from the polyimides having the solvent solubility described above from the same polyimides described in the polyimide film. Can be used. As a method for imidization, chemical deimidation using a chemical imidizing agent is used instead of heat dehydration for the dehydration and cyclization reaction of the polyimide precursor having the structure represented by the general formula (1 ′). Is preferred. In the case of performing chemical imidization, known compounds such as amines such as pyridine and β-picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as a dehydration catalyst. Examples of the acid anhydride are not limited to acetic anhydride, and propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, trifluoroacetic acid anhydride, and the like, but are not particularly limited. At that time, a tertiary amine such as pyridine or β-picolinic acid may be used in combination. However, when these amines remain in the film, the optical properties, particularly the yellowness (YI value), are reduced. Therefore, the reaction liquid reacted from the precursor to the polyimide is not cast as it is, It is preferable to form the film after purification by reprecipitation or the like, and removing components other than polyimide to 100 ppm or less of the total weight of the polyimide.
 ポリイミド樹脂組成物調製工程において、ポリイミド前駆体の化学イミド化を行う反応液に用いられる有機溶剤としては、例えば、前記第一の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。ポリイミド樹脂組成物調製工程において、反応液から精製したポリイミドを再溶解させる際に用いられる有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、オルト-ジクロルベンゼン、キシレン、クレゾール、クロルベンゼン、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、シクロヘキサノール、シクロヘキサノン、1.4-ジオキサン、テトラクロルエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン、ジクロロメタン、ジクロロエタン及びこれらの混合溶剤等が挙げられ、中でも、ジクロロメタン、酢酸ノルマル-ブチル、プロピレングリコールモノメチルエーテルアセテート及びこれらの混合溶剤からなる群から選ばれる少なくとも1種を好ましく用いることができる。 In the polyimide resin composition preparation step, as the organic solvent used in the reaction solution for chemical imidization of the polyimide precursor, for example, those described in the polyimide precursor resin composition preparation step in the first production method Similar ones can be used. Examples of the organic solvent used when redissolving the polyimide purified from the reaction solution in the polyimide resin composition preparation step include ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, Ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone, 1.4-Dioxane, tetrachloroethylene, toluene, methyl isobutyl ketone, methylcyclohexanol, methylcyclohexane Sanone, methyl-normal-butyl ketone, dichloromethane, dichloroethane, and mixed solvents thereof are mentioned. Among them, at least one selected from the group consisting of dichloromethane, normal-butyl acetate, propylene glycol monomethyl ether acetate, and mixed solvents thereof is used. It can be preferably used.
 前記ポリイミド樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、前記第一の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
 また、前記第二の方法において、前記ポリイミド樹脂組成物の含有水分量1000ppm以下とする方法としては、前記第一の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明した方法と同様の方法を用いることができる。
The polyimide resin composition may contain an additive as necessary. As said additive, the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in said 1st manufacturing method can be used.
In the second method, the method of setting the moisture content of the polyimide resin composition to 1000 ppm or less is the same method as the method described in the polyimide precursor resin composition preparation step in the first production method. Can be used.
 また、前記第二の製造方法におけるポリイミド樹脂塗膜形成工程において、支持体や、塗布方法は、前記第一の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明したものと同様のものを用いることができる。
 前記第二の製造方法におけるポリイミド樹脂塗膜形成工程において、乾燥温度としては、常圧下では80℃以上150℃以下とすることが好ましい。減圧下では10℃以上100℃以下の範囲とすることが好ましい。
In the polyimide resin coating film forming step in the second manufacturing method, the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first manufacturing method. be able to.
In the polyimide resin coating film forming step in the second production method, the drying temperature is preferably 80 ° C. or higher and 150 ° C. or lower under normal pressure. It is preferable that the pressure be in the range of 10 ° C. to 100 ° C. under reduced pressure.
 また、前記第二の製造方法は、前記ポリイミド樹脂塗膜形成工程の後、ポリイミド樹脂塗膜を延伸する延伸工程を有していてもよい。当該延伸工程は、前記第一の製造方法における延伸工程と同様にすることができる。 Further, the second production method may have a stretching step of stretching the polyimide resin coating film after the polyimide resin coating film forming step. The said extending process can be made to be the same as the extending process in said 1st manufacturing method.
 また、本開示に用いられるポリイミドフィルムには、例えば、けん化処理、グロー放電処理、コロナ放電処理、紫外線処理、火炎処理等の表面処理を施してもよい。 In addition, the polyimide film used in the present disclosure may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet treatment, flame treatment, and the like.
 前記第二の製造方法は、ポリイミドフィルムの黄色度(YI値)を低減しやすい点から好ましい。前記第二の製造方法によれば、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で割った値が、0.04以下であるポリイミドフィルムを好適に形成可能である。
 また、前記第二の製造方法は、相溶層の厚みを厚くしやすく、機能層との密着性を向上しやすい点から好ましい。前記第二の製造方法によれば、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色した積層体の厚さ方向の断面において、染色された前記相溶層の厚みが5nm以上であり、10nmを超える部分を有するポリイミドフィルムを好適に形成可能である。
The second production method is preferable from the viewpoint of easily reducing the yellowness (YI value) of the polyimide film. According to the second manufacturing method, it is possible to suitably form a polyimide film having a value obtained by dividing the yellowness calculated in accordance with JIS K7373-2006 by the film thickness (μm) of 0.04 or less. is there.
The second production method is preferable from the viewpoint of easily increasing the thickness of the compatible layer and improving the adhesion with the functional layer. According to the second production method, the compatible layer dyed in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate. The polyimide film having a thickness of 5 nm or more and having a portion exceeding 10 nm can be suitably formed.
2.機能層
 本開示に係る積層体が有する機能層は、何らかの機能を発揮することを意図された層であり、具体的には、例えば、ハードコート性、反射防止性、帯電防止性、防汚性等の機能を発揮する層が挙げられ、公知の機能層を用いることができる。
 本開示に用いられる機能層としては、中でも、本開示に係る積層体の表面硬度を向上する点から、ハードコート層として機能するものであることが好ましい。ここで、「ハードコート層」とは、表面硬度を向上させるための層であり、具体的には、JIS 5600-5-4(1999)で規定される鉛筆硬度試験で「H」以上の硬度を示すものをいう。
2. Functional layer The functional layer included in the laminate according to the present disclosure is a layer intended to exhibit some function, and specifically includes, for example, hard coat properties, antireflection properties, antistatic properties, and antifouling properties. And the like, and a known functional layer can be used.
In particular, the functional layer used in the present disclosure preferably functions as a hard coat layer from the viewpoint of improving the surface hardness of the laminate according to the present disclosure. Here, the “hard coat layer” is a layer for improving the surface hardness, and specifically, a hardness of “H” or higher in a pencil hardness test defined in JIS 5600-5-4 (1999). Means something.
 本開示に用いられる機能層は、バインダー成分としてラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するものであり、本開示の効果が損なわれない限り、必要に応じて、任意添加成分を含有していても良い。ここで、機能層が含有する重合物には、後述する機能層用組成物中のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種が、機能層を形成する際の硬化工程で重合することにより得られる重合物、及び、機能層を形成する前に予めラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を重合して得られる重合物のいずれも含まれるが、機能層用組成物中のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種が、機能層を形成する際の硬化工程で重合することにより得られる重合物であることが好ましい。
 また、本開示に用いられる機能層は、効果が損なわれない範囲において、バインダー成分として、前記重合物の他、未反応のモノマー及びオリゴマー等を含有していても良い。
The functional layer used in the present disclosure contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound as a binder component, and as long as the effects of the present disclosure are not impaired, An optional additive component may be contained. Here, in the polymer contained in the functional layer, at least one of a radical polymerizable compound and a cationic polymerizable compound in the functional layer composition described later is polymerized in a curing step when the functional layer is formed. And a polymer obtained by polymerizing at least one of a radically polymerizable compound and a cationically polymerizable compound in advance before forming the functional layer are included in the functional layer composition. It is preferable that at least one of the radically polymerizable compound and the cationically polymerizable compound is a polymer obtained by polymerization in a curing step when forming the functional layer.
Moreover, the functional layer used for this indication may contain the unreacted monomer, oligomer, etc. other than the said polymer as a binder component in the range by which an effect is not impaired.
(ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物)
 ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。
(At least one polymer of a radical polymerizable compound and a cationic polymerizable compound)
At least one polymer of a radical polymerizable compound and a cationic polymerizable compound is polymerized by a known method using at least one of a radical polymerizable compound and a cationic polymerizable compound, if necessary, using a polymerization initiator. Can be obtained.
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 The radical polymerizable compound is a compound having a radical polymerizable group. The radical polymerizable group possessed by the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group. When the radical polymerizable compound has two or more radical polymerizable groups, these radical polymerizable groups may be the same or different from each other.
 前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、機能層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 前記ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等と称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千の多官能(メタ)アクリレートモノマー及びオリゴマーを好ましく使用でき、またアクリレートポリマーの側鎖に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートポリマーも好ましく使用できる。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーを好ましく使用できる。前記機能層が、前記多官能(メタ)アクリレートモノマーの重合物を含むことにより、機能層の硬度を向上し、さらに、密着性を向上し、干渉縞の発生を抑制することができる。また、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートオリゴマー又はポリマーも好ましく使用できる。前記機能層が、前記多官能(メタ)アクリレートオリゴマー又はポリマーの重合物を含むことにより、機能層の硬度及び屈曲耐性を向上し、さらに、密着性を向上し、干渉縞の発生を抑制することができる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
The number of radical polymerizable groups contained in one molecule of the radical polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the functional layer.
As the radical polymerizable compound, a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity. For example, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, melamine A polyfunctional (meth) acrylate having a molecular weight of several hundreds to several thousands having several (meth) acryloyl groups in a molecule called (meth) acrylate, polyfluoroalkyl (meth) acrylate, silicone (meth) acrylate, etc. Monomers and oligomers can be preferably used, and polyfunctional (meth) acrylate polymers having two or more (meth) acryloyl groups in the side chain of the acrylate polymer can also be preferably used. Especially, the polyfunctional (meth) acrylate monomer which has a 2 or more (meth) acryloyl group in 1 molecule can be used preferably. When the functional layer contains a polymer of the polyfunctional (meth) acrylate monomer, it is possible to improve the hardness of the functional layer, further improve the adhesion, and suppress the occurrence of interference fringes. Moreover, the polyfunctional (meth) acrylate oligomer or polymer which has a 2 or more (meth) acryloyl group in 1 molecule can also be used preferably. The functional layer contains the polyfunctional (meth) acrylate oligomer or polymer, thereby improving the hardness and bending resistance of the functional layer, further improving the adhesion and suppressing the occurrence of interference fringes. Can do.
In this specification, (meth) acryloyl represents each of acryloyl and methacryloyl, and (meth) acrylate represents each of acrylate and methacrylate.
 前記多官能(メタ)アクリレートモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、及びこれらをPO、EO、カプロラクトン等で変性したもの等が挙げられる。中でも、反応性が高く、機能層の硬度を向上する点、及び密着性及び干渉縞抑制の点から、1分子中に3個以上6個以下の(メタ)アクリロイル基を有するものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等を好ましく用いることができ、特に、ペンタエリスリトールトリ(メタ)アクリレート、及びジペンタエリスリトールペンタ(メタ)アクリレートから選ばれる少なくとも1種が好ましい。 Examples of the polyfunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and pentaerythritol tris. (Meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa ) Acrylate, tetrapentaerythritol deca (meth) acrylate, isocyanuric acid tri (meth) acrylate, isocyanuric acid di (meth) acrylate, polyester tri (meth) acrylate, polyester di (meth) acrylate, bisphenol di (meth) acrylate, di Glycerin tetra (meth) acrylate, adamantyl di (meth) acrylate, isoboronyl di (meth) acrylate, dicyclopentanedi (meth) acrylate, tricyclodecane di (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and these Examples thereof include those modified with PO, EO, caprolactone and the like. Among them, those having 3 to 6 (meth) acryloyl groups in one molecule are preferable from the viewpoint of high reactivity, improving the hardness of the functional layer, and adhesion and interference fringe suppression. , Pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane tri (meth) acrylate, tripentaerythritol octa (meta) ) Acrylate, tetrapentaerythritol deca (meth) acrylate, etc. can be preferably used, and in particular, selected from pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate. At least one is preferable.
 本開示においては、前記ラジカル重合性化合物として、硬度や機能層用組成物の粘度調整、密着性の向上、干渉縞の抑制等のために、単官能(メタ)アクリレートモノマーを含んでいてもよい。前記単官能(メタ)アクリレートモノマーとしては、例えば、ヒドロキシエチルアクリレート(HEA)、グリシジルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-アクリロイルオキシエチルサクシネート、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、シクロヘキシルアクリレート、テトラヒドロフリルアクリレート、イソボルニルアクリレート、フェノキシエチルアクリレート、及び、アダマンチルアクリレート等が挙げられる。 In the present disclosure, the radical polymerizable compound may include a monofunctional (meth) acrylate monomer for adjusting the hardness and viscosity of the functional layer composition, improving adhesion, suppressing interference fringes, and the like. . Examples of the monofunctional (meth) acrylate monomer include hydroxyethyl acrylate (HEA), glycidyl methacrylate, methoxypolyethylene glycol (meth) acrylate, isostearyl (meth) acrylate, 2-acryloyloxyethyl succinate, acryloylmorpholine, N -Acryloyloxyethyl hexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, adamantyl acrylate and the like.
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。前記カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、前記カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 The cationic polymerizable compound is a compound having a cationic polymerizable group. The cationic polymerizable group possessed by the cationic polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group. When the cationic polymerizable compound has two or more cationic polymerizable groups, these cationic polymerizable groups may be the same or different from each other.
 前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、機能層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2個以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られた機能層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られた機能層を、エポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
The number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the functional layer.
Moreover, as the cationic polymerizable compound, among them, a compound having at least one of an epoxy group and an oxetanyl group as a cationic polymerizable group is preferable, and has at least one of an epoxy group and an oxetanyl group in one molecule. Compounds are more preferred. Cyclic ether groups such as epoxy groups and oxetanyl groups are preferred from the viewpoint of small shrinkage accompanying the polymerization reaction. In addition, compounds having an epoxy group among the cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained functional layer, and can easily control the compatibility with the radical polymerizable compound. There are advantages. Of the cyclic ether groups, the oxetanyl group has a high degree of polymerization and low toxicity as compared with the epoxy group. When the obtained functional layer is combined with a compound having an epoxy group, a cation in the coating film is obtained. There are advantages such as speeding up the network formation obtained from the polymerizable compound and forming an independent network without leaving unreacted monomer in the film even in a region mixed with the radical polymerizable compound.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 As the cationically polymerizable compound having an epoxy group, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, a cyclohexene ring or a cyclopentene ring-containing compound may be used with an appropriate oxidizing agent such as hydrogen peroxide or peracid. Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; glycidyl produced by reaction of bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts, and epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
 上記脂環族エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(UVR-6105、UVR-6107、UVR-6110)、ビス-3,4-エポキシシクロヘキシルメチルアディペート(UVR-6128)(以上、カッコ内は商品名で、ダウ・ケミカル製である。)が挙げられる。 Examples of the alicyclic epoxy resin include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (The product names in parentheses are manufactured by Dow Chemical.)
 また、上記グリシジルエーテル型エポキシ樹脂としては、ソルビトールポリグリシジルエーテル(デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-614B、デナコールEX-622)、ポリグリセロールポリグリシジルエーテル(デナコールEX-512、デナコールEX-521)、ペンタエリスリトルポリグリシジルエーテル(デナコールEX-411)、ジグリセロールポリグリシジルエーテル(デナコールEX-421)、グリセロールポリグリシジルエーテル(デナコールEX-313、デナコールEX-314)、トリメチロールプロパンポリグリシジルエーテル(デナコールEX-321)、レソルチノールジグリシジルエーテル(デナコールEX-201)、ネオペンチルグリコールジグリシジルエーテル(デナコールEX-211)、1,6ヘキサンジオールジグリシジルエーテル(デナコールEX―212)、ヒドロジビスフェノールAジグリシジルエーテル(デナコールEX-252)、エチレングリコールジグリシジルエーテル(デナコールEX-810、デナコールEX-811)、ポリエチレングリコールジグリシジルエーテル(デナコールEX―850、デナコールEX―851、デナコールEX―821)、プロピレングリコールグリシジルエーテル(デナコールEX―911)、ポリプロピレングリコールグリシジルエーテル(デナコールEX―941、デナコールEX-920)、アリルグリシジルエーテル(デナコールEX-111)、2-エチルヘキシルグリシジルエーテル(デナコールEX-121)、フェニルグリシジルエーテル(デナコールEX-141)、フェノールグリシジルエーテル(デナコールEX-145)、ブチルフェニルグリシジルエーテル(デナコールEX-146)、ジグリシジルフタレート(デナコールEX-721)、ヒドロキノンジグリシジルエーテル(デナコールEX-203)、ジグリシジルテレフタレート(デナコールEX-711)、グリシジルフタルイミド(デナコールEX-731)、ジブロモフェニルグリシジルエーテル(デナコールEX-147)、ジブロモネオペンチルグリコールジグリシジルエーテル(デナコールEX-221) (以上、カッコ内は商品名で、ナガセケムテックス製である。)が挙げられる。 Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), Polyglycerol polyglycidyl ether (Denacol EX). -512, Denacol EX-521), pentaerythritol polyglycidyl ether (Denacol EX-411), diglycerol polyglycidyl ether (Denacol EX-421), glycerol polyglycidyl ether (Denacol EX-313, Denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), neopentyl glycol diglycol Dil ether (Denacol EX-211), 1,6 hexanediol diglycidyl ether (Denacol EX-212), hydrodibisphenol A diglycidyl ether (Denacol EX-252), ethylene glycol diglycidyl ether (Denacol EX-810, Denacol) EX-811), polyethylene glycol diglycidyl ether (Denacol EX-850, Denacol EX-851, Denacol EX-821), propylene glycol glycidyl ether (Denacol EX-911), polypropylene glycol glycidyl ether (Denacol EX-941, Denacol EX) -920), allyl glycidyl ether (Denacol EX-111), 2-ethylhexyl glycidyl ether (Denacol EX-121), phenyl glycidyl ether (Denacol EX-141), phenol glycidyl ether (Denacol EX-145), butylphenyl glycidyl ether (Denacol EX-146), diglycidyl phthalate (Denacol EX-721), hydroquinone diglycidyl ether (Denacol EX-203), Diglycidyl terephthalate (Denacol EX-711), glycidyl phthalimide (Denacol EX-731), dibromophenyl glycidyl ether (Denacol EX-147), dibromoneopentylglycol diglycidyl ether (Denacol EX-221) The name is made by Nagase ChemteX).
 また、その他の市販品のエポキシ樹脂としては、商品名エピコート825、エピコート827、エピコート828、エピコート828EL、エピコート828XA、エピコート834、エピコート801、エピコート801P、エピコート802、エピコート815、エピコート815XA、エピコート816A、エピコート819、エピコート834X90、エピコート1001B80、エピコート1001X70、エピコート1001X75、エピコート1001T75、エピコート806、エピコート806P、エピコート807、エピコート152、エピコート154、エピコート871、エピコート191P、エピコートYX310、エピコートDX255、エピコートYX8000、エピコートYX8034等(以上商品名、ジャパンエポキシレジン製)が挙げられる。 Other commercially available epoxy resins include trade names such as Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801, Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000, Etc. (above product name, Turbocharger bread epoxy resin) and the like.
 オキセタニル基を有するカチオン重合性化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101)、1,4-ビス-3-エチルオキセタン-3-イルメトキシメチルベンゼン(OXT-121)、ビス-1-エチル-3-オキセタニルメチルエーテル(OXT-221)、3-エチル-3-2-エチルへキシロキシメチルオキセタン(OXT-212)、3-エチル-3-フェノキシメチルオキセタン(OXT-211)(以上、カッコ内は商品名で東亜合成製である。)や、商品名エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上商品名、宇部興産製)が挙げられる。 Examples of the cationically polymerizable compound having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121). Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3--2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT- 211) (the name in parentheses is a product name manufactured by Toa Gosei Co., Ltd.), and the product names Etanacol EHO, Etanacol OXBP, Etanacol OXTP, Etanacol OXMA (above, trade name, manufactured by Ube Industries).
 前記ラジカル重合性化合物及び前記カチオン重合性化合物としては、相溶層が形成されやすい点、及び樹脂硬化層の硬度を向上させる点から、重量平均分子量が、1000以上2万以下であることが好ましく、1000以上1万以下であることがより好ましく、2000以上7000以下であることが更に好ましい。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレン換算値として求める。
The radically polymerizable compound and the cationically polymerizable compound preferably have a weight average molecular weight of 1,000 or more and 20,000 or less from the viewpoint of easily forming a compatible layer and improving the hardness of the resin cured layer. , More preferably 1000 or more and 10,000 or less, and still more preferably 2000 or more and 7000 or less.
In addition, a weight average molecular weight is calculated | required as a standard polystyrene conversion value by gel permeation chromatography (GPC).
 前記機能層は、中でも、硬度の点、並びに密着性及び干渉縞抑制の点から、前記ラジカル重合性化合物の重合物を含有することが好ましく、前記多官能(メタ)アクリレートモノマーの重合物を含有することがより好ましい。
 また、前記機能層が含有するラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物の総量100質量%中、前記多官能(メタ)アクリレートモノマーの重合物の含有割合が、45質量%以上であることが好ましく、50質量%以上であることがより好ましい。
The functional layer preferably contains a polymer of the radical polymerizable compound from the viewpoint of hardness, adhesion, and interference fringe suppression, and contains a polymer of the polyfunctional (meth) acrylate monomer. More preferably.
Moreover, the content ratio of the polymer of the polyfunctional (meth) acrylate monomer is 45% by mass in a total amount of 100% by mass of at least one polymer of the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer. It is preferable that it is the above, and it is more preferable that it is 50 mass% or more.
 前記機能層に含まれるバインダー成分中、前記多官能(メタ)アクリレートモノマーの重合物とは異なるバインダー成分としては、表面硬度及び屈曲耐性の点から、多官能ウレタン(メタ)アクリレートの重合物、及び多官能(メタ)アクリレートと多官能ウレタン(メタ)アクリレートとの重合物が好ましい。
 多官能ウレタン(メタ)アクリレートとしては、中でも、表面硬度及び屈曲耐性の点から、5官能以上で、重量平均分子量が1000以上1万以下のものが好ましい。
 多官能ウレタン(メタ)アクリレートとしては、市販品を用いても良く、例えば、日本合成化学工業(株)製:UV1700B(分子量2000、10官能)、UV6300B(分子量3700、7官能)及びUV7640B(分子量1500、7官能)、日本化薬(株)製:DPHA40H(分子量7000、8官能)、UX5000(分子量1000、5官能)及びUX5001T(分子量6200、8官能)、根上工業(株)製:UN3320HS(分子量5000、15官能)、UN904(分子量4900、10官能)、UN3320HC(分子量1500、6官能)及びUN3320HA(分子量1500、6官能)、荒川化学工業(株)製:BS577(分子量1000、6官能)、並びに新中村化学工業(株)製:U15H(15官能)及びU6H(6官能)等を挙げることができる。
Among the binder components contained in the functional layer, as a binder component different from the polymer of the polyfunctional (meth) acrylate monomer, in terms of surface hardness and bending resistance, a polymer of polyfunctional urethane (meth) acrylate, and A polymer of polyfunctional (meth) acrylate and polyfunctional urethane (meth) acrylate is preferred.
As the polyfunctional urethane (meth) acrylate, those having 5 or more functionalities and having a weight average molecular weight of 1000 or more and 10,000 or less are preferable from the viewpoint of surface hardness and bending resistance.
As polyfunctional urethane (meth) acrylate, you may use a commercial item, for example, Nippon Synthetic Chemical Industry Co., Ltd. product: UV1700B (molecular weight 2000, 10 functional), UV6300B (molecular weight 3700, 7 functional), and UV7640B (molecular weight). 1500, 7 functional), manufactured by Nippon Kayaku Co., Ltd .: DPHA40H (molecular weight 7000, 8 functional), UX5000 (molecular weight 1000, 5 functional) and UX5001T (molecular weight 6200, 8 functional), manufactured by Negami Kogyo Co., Ltd .: UN3320HS ( Molecular weight 5000, 15 functional), UN904 (molecular weight 4900, 10 functional), UN3320HC (molecular weight 1500, 6 functional) and UN3320HA (molecular weight 1500, 6 functional), Arakawa Chemical Industries, Ltd .: BS577 (molecular weight 1000, 6 functional) And Shin-Nakamura Chemical Co., Ltd .: U15H 15 functional) and U6H (6 functional), and the like.
 前記機能層におけるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物の合計含有量は、機能層の表面硬度及び密着性の点、並びに干渉縞の発生を抑制する点から、前記機能層が後述する無機又は有機微粒子を含有しない場合は、45質量%以上であることが好ましく、50質量%以上であることがより好ましく、前記機能層が後述する無機又は有機微粒子を含有する場合は、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。前記機能層におけるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物の合計含有量の上限は特に限定されないが、前記機能層が後述する無機又は有機微粒子を含有する場合は、当該微粒子を十分に含有させてその効果をより発揮させる点から、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。 The total content of the radically polymerizable compound and the cationically polymerizable compound in the functional layer is selected from the viewpoints of the surface hardness and adhesion of the functional layer, and the occurrence of interference fringes. When the layer does not contain inorganic or organic fine particles described later, it is preferably 45% by mass or more, more preferably 50% by mass or more, and when the functional layer contains inorganic or organic fine particles described later. 30% by mass or more, and more preferably 40% by mass or more. The upper limit of the total content of at least one polymer of the radical polymerizable compound and the cationic polymerizable compound in the functional layer is not particularly limited, but when the functional layer contains inorganic or organic fine particles described later, the fine particles Is preferably 60% by mass or less, and more preferably 50% by mass or less, from the viewpoint of fully containing the above-described effect.
(任意添加成分)
 前記任意添加成分は、機能層に付与する機能に応じて適宜選択され、特に限定はされないが、例えば、硬度や屈折率を調整するための無機又は有機微粒子、紫外線吸収剤、赤外線吸収剤、防眩剤、防汚剤、帯電防止剤等が挙げられ、更に、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等を含んでいても良い。
(Optional additive)
The optional additive component is appropriately selected according to the function to be imparted to the functional layer, and is not particularly limited. For example, inorganic or organic fine particles for adjusting the hardness and refractive index, an ultraviolet absorber, an infrared absorber, a protective agent Examples include glazes, antifouling agents, antistatic agents, and leveling agents, surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, and surface modifiers. An agent or the like may be included.
 前記機能層がハードコート層である場合、前記機能層用組成物は、中でも硬度を向上する点から、無機又は有機微粒子を含有することが好ましく、無機微粒子を含有することがより好ましい。一方で、防眩性も付与できる点からは、有機微粒子を好ましく用いることができる。 In the case where the functional layer is a hard coat layer, the functional layer composition preferably contains inorganic or organic fine particles, and more preferably contains inorganic fine particles, from the viewpoint of improving the hardness. On the other hand, organic fine particles can be preferably used from the viewpoint of imparting antiglare property.
 無機微粒子としては、例えば、シリカ(SiO)、酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物微粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物微粒子、金属微粒子、金属硫化物微粒子、金属窒化物微粒子等が挙げられ、中でも金属酸化物微粒子が好ましく、シリカ微粒子及び酸化アルミニウム微粒子から選ばれる少なくとも一種がより好ましく、シリカ微粒子がより更に好ましい。 Examples of the inorganic fine particles include metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide. Examples include fine particles, metal fluoride fine particles such as magnesium fluoride and sodium fluoride, metal fine particles, metal sulfide fine particles, metal nitride fine particles, etc. Among them, metal oxide fine particles are preferable, and are selected from silica fine particles and aluminum oxide fine particles. At least one type is more preferable, and silica fine particles are still more preferable.
 また、前記無機微粒子は、当該無機微粒子表面に当該無機微粒子同士又は前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種との間で架橋反応し、共有結合が形成可能な光反応性を有する反応性官能基を少なくとも粒子表面の一部に有する反応性無機微粒子であることが好ましい。反応性無機微粒子同士又は反応性無機微粒子と前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種との間で架橋反応することにより、ハードコートフィルムの硬度を更に向上させることができる。 Further, the inorganic fine particles have a photoreactive property capable of forming a covalent bond by crosslinking reaction between the inorganic fine particles or at least one of the radical polymerizable compound and the cationic polymerizable compound on the surface of the inorganic fine particles. Reactive inorganic fine particles having a reactive functional group having at least a part of the particle surface are preferable. The hardness of the hard coat film can be further improved by a cross-linking reaction between the reactive inorganic fine particles or the reactive inorganic fine particles and at least one of the radical polymerizable compound and the cationic polymerizable compound.
 前記反応性無機微粒子は、少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する。ここで、有機成分とは、炭素を含有する成分である。また、少なくとも表面の一部に有機成分が被覆されている態様としては、例えば、無機微粒子の表面に存在する水酸基にシランカップリング剤等の有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様、または、無機微粒子の表面に存在する水酸基にイソシアネート基を有する有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様、のほか、例えば、無機微粒子の表面に存在する水酸基に水素結合等の相互作用により有機成分を付着させた態様や、ポリマー粒子中に1個又は2個以上の無機微粒子を含有する態様、などが含まれる。また、前記反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合、及びエポキシ基等が挙げられる。 The reactive inorganic fine particles have at least a part of the surface coated with an organic component, and have a reactive functional group introduced by the organic component on the surface. Here, the organic component is a component containing carbon. In addition, as an aspect in which at least a part of the surface is coated with an organic component, for example, a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the inorganic fine particles to cause a part of the surface In addition to the mode in which the organic component is bonded to the surface, or the mode in which the organic component having an isocyanate group reacts with the hydroxyl group present on the surface of the inorganic fine particles, the organic component is bonded to a part of the surface. Examples include an aspect in which an organic component is attached to a hydroxyl group present on the surface of the inorganic fine particle by an interaction such as hydrogen bonding, and an aspect in which one or two or more inorganic fine particles are contained in the polymer particle. Moreover, as said reactive functional group, ethylenically unsaturated bonds, such as a (meth) acryloyl group, a vinyl group, an allyl group, an epoxy group, etc. are mentioned, for example.
 前記反応性無機微粒子としては、中でも反応性シリカ微粒子が好ましい。反応性シリカ微粒子としては、従来公知のものを使用することができ、例えば、特開2008-165040号公報記載の反応性シリカ微粒子等が挙げられる。また、特開2009-108123号公報記載のシリカ微粒子が鎖状に連結し、シランカップリング剤で表面処理された粒子(反応性異型シリカ微粒子)も用いることができる。前記反応性シリカ微粒子の市販品としては、例えば、日産化学工業社製;MIBK-SD、MIBK-SDMS、MIBK-SDL、MIBK-SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。 Among the reactive inorganic fine particles, reactive silica fine particles are particularly preferable. As the reactive silica fine particles, conventionally known fine particles can be used, and examples thereof include reactive silica fine particles described in JP-A-2008-165040. Also, particles (reactive atypical silica fine particles) in which silica fine particles described in JP-A-2009-108123 are linked in a chain and surface-treated with a silane coupling agent can be used. Examples of commercially available reactive silica fine particles include Nissan Chemical Industries, Ltd .; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, JGC Catalysts &Chemicals; V8802, V8803, and the like.
 有機微粒子としては、例えば、プラスチックビーズを挙げることができる。プラスチックビーズの具体例としては、スチレンビーズ、メラミンビーズ、アクリルビーズ、アクリル-スチレンビーズ、ポリカーボネートビーズ、ポリエチレンビーズなどが挙げられる。 Examples of the organic fine particles include plastic beads. Specific examples of the plastic beads include styrene beads, melamine beads, acrylic beads, acrylic-styrene beads, polycarbonate beads, and polyethylene beads.
 また、前記無機又は有機微粒子は、中空粒子のような粒子内部に空孔や多孔質組織を有する粒子よりも、粒子内部に空孔や多孔質組織を有しない中実粒子を用いることが硬度向上の点から好ましい。 In addition, the inorganic or organic fine particles use solid particles that do not have pores or a porous structure inside the particles, such as hollow particles, to improve the hardness. From the point of view, it is preferable.
 前記無機又は有機微粒子の平均粒径は、硬度向上の点から、5nm以上であることが好ましく、10nm以上であることがより好ましく、一方で、透明性の点から、100nm以下であることが好ましく、50nm以下であることがより好ましい。
 前記無機又は有機微粒子の平均粒径は、前記機能層の電子顕微鏡による断面観察により測定することができ、任意に選択した10個の微粒子の粒径の平均を平均粒径とする。
The average particle diameter of the inorganic or organic fine particles is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of improving the hardness, and more preferably 100 nm or less from the viewpoint of transparency. More preferably, it is 50 nm or less.
The average particle diameter of the inorganic or organic fine particles can be measured by observing a cross section of the functional layer with an electron microscope. The average particle diameter of 10 arbitrarily selected fine particles is defined as the average particle diameter.
 本開示において、前記無機又は有機微粒子としては、単一の材質且つ単一の平均粒径のものを用いても良いし、材質又は平均粒径の異なるものを2種類以上組み合わせて用いても良い。平均粒径の異なる微粒子を2種類以上組み合わせて用いる場合は、各種微粒子において、平均粒径が上記範囲内であることが好ましい。 In the present disclosure, as the inorganic or organic fine particles, those having a single material and a single average particle diameter may be used, or two or more kinds having different materials or average particle diameters may be used in combination. . When two or more kinds of fine particles having different average particle diameters are used in combination, the average particle diameter of the various fine particles is preferably within the above range.
 前記機能層が前記無機又は有機微粒子を含む場合、前記機能層における前記無機又は有機微粒子の合計含有量は、硬度付与の点から、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、一方で、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。前記無機又は有機微粒子の含有量が多すぎると、充填率が上がり過ぎ、かえって機能層の硬度を低下させてしまう恐れがある。 When the functional layer contains the inorganic or organic fine particles, the total content of the inorganic or organic fine particles in the functional layer is preferably 25% by mass or more and 30% by mass or more from the viewpoint of imparting hardness. More preferably, it is preferably 60% by mass or less, and more preferably 50% by mass or less. When the content of the inorganic or organic fine particles is too large, the filling rate is excessively increased, which may reduce the hardness of the functional layer.
(機能層の構成)
 本開示に係る積層体が有する機能層の厚さは、機能層が有する機能及び積層体の用途により適宜選択されれば良いが、機能層の機能を発揮させる点から、各機能層において、2μm以上であることが好ましく、更に3μm以上であることが好ましく、一方で、積層体の屈曲耐性の点及び薄膜化の点から、50μm以下であることが好ましく、更に30μm以下であることが好ましく、より更に20μm以下であることが好ましく、より更に10μm以下であることが好ましい。
 なお、本開示に係る積層体が有する各層の厚さは、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は走査透過型電子顕微鏡(STEM)により観察される積層体の厚さ方向の断面から測定することができる。
(Configuration of functional layer)
The thickness of the functional layer included in the multilayer body according to the present disclosure may be appropriately selected depending on the function of the functional layer and the use of the multilayer body. However, in order to exhibit the function of the functional layer, each functional layer has a thickness of 2 μm. Preferably, it is preferably 3 μm or more. On the other hand, it is preferably 50 μm or less, more preferably 30 μm or less, from the viewpoint of bending resistance and thinning of the laminate. Further, it is preferably 20 μm or less, more preferably 10 μm or less.
In addition, the thickness of each layer which the laminated body which concerns on this indication has is the thickness direction of the laminated body observed with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). It can be measured from the cross section.
 また、本開示の積層体が有する機能層は、単層のみならず、2層以上の多層構成を有するものであっても良い。
 本開示に係る積層体が2層以上の機能層を有する場合、機能層の合計厚さは、特に限定はされないが、積層体の屈曲耐性の点及び薄膜化の点から、50μm以下であることが好ましく、更に30μm以下であることが好ましく、より更に20μm以下であることが好ましく、より更に15μm以下であることが好ましい。機能層の合計厚さの下限は、特に限定はされないが、機能層の機能を発揮させる点から、2μm以上であることが好ましく、更に3μm以上であることがより好ましい。
Moreover, the functional layer included in the laminate of the present disclosure may have not only a single layer but also a multilayer configuration of two or more layers.
When the laminate according to the present disclosure has two or more functional layers, the total thickness of the functional layers is not particularly limited, but is 50 μm or less from the viewpoint of bending resistance and thinning of the laminate. Is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less. The lower limit of the total thickness of the functional layer is not particularly limited, but is preferably 2 μm or more and more preferably 3 μm or more from the viewpoint of exerting the function of the functional layer.
 2層以上の機能層を有する場合の好ましい層構成としては、例えば、前記相溶層と隣接する機能層が、前記無機又は有機微粒子を含む機能層であり、前記相溶層とは反対側の最表面に位置する機能層が、防汚剤を含む機能層であることが、本開示の積層体のハードコート性及び防汚性を向上する点から好ましい。 As a preferable layer configuration in the case of having two or more functional layers, for example, the functional layer adjacent to the compatible layer is a functional layer containing the inorganic or organic fine particles, and is on the side opposite to the compatible layer. The functional layer located on the outermost surface is preferably a functional layer containing an antifouling agent from the viewpoint of improving the hard coat property and antifouling property of the laminate of the present disclosure.
 また、本開示に係る積層体が有する機能層は、表面硬度及び屈曲耐性の点から、前記ポリイミドフィルムが位置する側とは反対側の前記機能層の表面のマルテンス硬さが350MPa以上1000MPa未満であることが好ましく、より好ましくは350MPa以上600MPa以下であり、より更に好ましくは375MPa以上575MPa以下である。
 前記マルテンス硬さは、機能層の組成により調整することができ、例えば、無機又は有機微粒子の含有量を多くすることにより、マルテンス硬さを増大させることができる。
 なお、前記マルテンス硬さは、ナノインデンテーション法による硬度測定により、圧子を押込んだときの硬度であり、例えば、HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて行うことができる。具体的には、積層体の機能層側の表面に三角錐状の圧子を押し込み、一定保持して残留応力の緩和を行った後、除荷させて、緩和後の最大荷重を計測し、該最大荷重(Pmax(μN))と押し込んだ深さのくぼみ面積(A(nm))とを用い、Pmax/Aにより、マルテンス硬さを算出することができる。
In addition, the functional layer included in the laminate according to the present disclosure has a Martens hardness of 350 MPa or more and less than 1000 MPa on the surface of the functional layer on the side opposite to the side where the polyimide film is located from the viewpoint of surface hardness and bending resistance. Preferably, it is 350 MPa or more and 600 MPa or less, more preferably 375 MPa or more and 575 MPa or less.
The Martens hardness can be adjusted by the composition of the functional layer. For example, the Martens hardness can be increased by increasing the content of inorganic or organic fine particles.
The Martens hardness is a hardness when an indenter is pressed by a hardness measurement by a nanoindentation method, and can be performed by using, for example, “TI950 TriboIndenter” manufactured by HYSITRON. Specifically, a triangular pyramid-shaped indenter is pushed into the surface of the laminated body on the functional layer side, and after holding and relaxing the residual stress, unloading, measuring the maximum load after relaxation, The Martens hardness can be calculated from P max / A using the maximum load (P max (μN)) and the indentation depth (A (nm 2 )).
(機能層の形成方法)
 本開示に係る積層体において、前記機能層は、例えば、
 前記ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む機能層用組成物の塗膜を形成する工程と、
 前記機能層用組成物の塗膜を硬化する工程と、を有する方法により形成することができる。
(Method for forming functional layer)
In the laminate according to the present disclosure, the functional layer is, for example,
Forming a coating film of a functional layer composition containing at least one of a radical polymerizable compound and a cationic polymerizable compound on at least one surface of the polyimide film;
And a step of curing the coating film of the functional layer composition.
(1)機能層用組成物の塗膜を形成する工程
 前記機能層の形成に用いられる機能層用組成物は、少なくともラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含み、更に必要に応じて、重合開始剤、溶剤、及びその他の任意添加成分を含有する。
(1) The process of forming the coating film of the composition for functional layers The composition for functional layers used for formation of the said functional layer contains at least 1 sort (s) of a radically polymerizable compound and a cationically polymerizable compound, and is further needed. Accordingly, it contains a polymerization initiator, a solvent, and other optional components.
 前記機能層用組成物が含有するラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種は、前述の通りである。
 前記機能層用組成物におけるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の合計含有量は、機能層の表面硬度を向上し、相溶層が形成されやすいことにより機能層の密着性を向上し、干渉縞の発生を抑制する点から、前記機能層用組成物が無機又は有機微粒子を含有しない場合は、機能層用組成物の全固形分中に45質量%以上であることが好ましく、50質量%以上であることがより好ましく、前記機能層が無機又は有機微粒子を含有する場合は、機能層用組成物の全固形分中に30質量%以上であることが好ましく、40質量%以上であることがより好ましい。前記ラジカル重合性化合物及び前記カチオン重合性化合物の合計含有量の上限は特に限定されないが、前記機能層用組成物が無機又は有機微粒子を含有する場合は、前記機能層用組成物の全固形分中に60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
At least one of the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer composition is as described above.
The total content of at least one of the radically polymerizable compound and the cationically polymerizable compound in the functional layer composition improves the surface hardness of the functional layer and improves the adhesion of the functional layer by easily forming a compatible layer. In terms of improving and suppressing the occurrence of interference fringes, when the functional layer composition does not contain inorganic or organic fine particles, it is preferably 45% by mass or more in the total solid content of the functional layer composition. 50% by mass or more, and when the functional layer contains inorganic or organic fine particles, the total solid content of the functional layer composition is preferably 30% by mass or more, and 40% by mass. More preferably. The upper limit of the total content of the radical polymerizable compound and the cationic polymerizable compound is not particularly limited, but when the functional layer composition contains inorganic or organic fine particles, the total solid content of the functional layer composition The content is preferably 60% by mass or less, and more preferably 50% by mass or less.
 前記機能層用組成物は、必要に応じて重合開始剤を含有していても良い。
 前記重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
The functional layer composition may contain a polymerization initiator as necessary.
As the polymerization initiator, radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators can be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
 ラジカル重合開始剤は、光照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であれば良い。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられ、更に具体的には、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・ジャパン(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・ジャパン(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア369、チバ・ジャパン(株)製)、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア784、チバ・ジャパン(株)製)等が挙げられるが、これらに限定されるものではない。 The radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating. For example, photo radical polymerization initiators include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives, and the like. More specifically, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name Irgacure 651, Ciba Japan Co., Ltd.) 1-hydroxy-cyclohexyl-phenyl Ketone (trade name Irgacure 184, manufactured by Ciba Japan), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (trade names Irgacure 369, Ciba Japan ( Bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium) (trade name Irgacure 784) However, it is not limited to these.
 上記以外にも、市販品が使用でき、具体的には、チバ・ジャパン(株)製のイルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR  TPO、DAROCUR1173、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure  ONE、Esacure  KIP150、Esacure  KTO46、日本化薬(株)製のKAYACURE  DETX-S、KAYACURE  CTX、KAYACURE  BMS、KAYACURE  DMBI等が挙げられる。 In addition to the above, commercially available products can be used. Specifically, Irgacure 907, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870 manufactured by Ciba Japan Co., Ltd. , Irgacure OXE01, DAROCUR TPO, DAROCUR1173, Japan Siber Hegner Co., Ltd. of SpeedcureMBB, SpeedcurePBZ, SpeedcureITX, SpeedcureCTX, SpeedcureEDB, Esacure ONE, Esacure KIP150, Esacure KTO46, manufactured by Nippon Kayaku Co., of (stock) KAYACURE DETX-S, KAYACURE CTX , KAYACURE BMS, KAYACURE DMBI, etc. may be mentioned.
 また、カチオン重合開始剤は、光照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であれば良い。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η-ベンゼン)(η-シクロペンタジエニル)鉄(II)等が例示され、さらに具体的には、ベンゾイントシレート、2,5-ジニトロベンジルトシレート、N-トシフタル酸イミド等が挙げられるが、これらに限定されるものではない。 Moreover, the cationic polymerization initiator should just be able to discharge | release the substance which starts cationic polymerization by at least any one of light irradiation and a heating. Examples of the cationic polymerization initiator include sulfonic acid ester, imide sulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, (η 6 -benzene) (η 5 -cyclopentadidiene). Enyl) iron (II) and the like, and more specific examples include, but are not limited to, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide and the like.
  ラジカル重合開始剤としても、カチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示され、更に具体的には、ジフェニルヨードニウム、ジトリルヨードニウム、ビス(p-tert-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウム等のヨードニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のヨードニウム塩、トリフェニルスルホニウム、4-tert-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム等のスルホニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のスルホニウム塩、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等の2,4,6-置換-1,3,5トリアジン化合物等が挙げられるが、これらに限定されるものではない。 Examples of radical polymerization initiators that can be used as cationic polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like. More specifically, iodonium chloride such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, bromide, borofluoride, hexafluorophosphate salt, hexafluoro Iodonium salts such as antimonate salts, chlorides of sulfonium such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, bromide, borofluoride, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, 2,4,6-substituted-1,3,5 triazine compounds such as 3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, etc. It is not limited to these.
 前記重合開始剤の含有量は、特に限定はされないが、十分に重合反応を生じさせ、機能層の硬度を十分なものとする点から、前記ラジカル重合性化合物及び前記カチオン重合性化合物の合計100質量部に対して、0.5質量部以上10.0質量部以下であることが好ましい。 The content of the polymerization initiator is not particularly limited, but a total of 100 of the radical polymerizable compound and the cationic polymerizable compound from the viewpoint of sufficiently causing a polymerization reaction and sufficient hardness of the functional layer. It is preferable that they are 0.5 mass part or more and 10.0 mass parts or less with respect to a mass part.
 前記機能層用組成物に用いられる溶剤としては、機能層用組成物が含有する各成分を分散乃至溶解することができる溶剤を適宜選択して用いることができ、特に限定はされないが、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、t-ブタノール、ベンジルアルコール、PGME、エチレングリコール等のアルコール;アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、メチルイソブチルケトン、ジアセトンアルコール、シクロヘプタノン、ジエチルケトン等のケトン類;1,4-ジオキサン、ジオキソラン、ジイソプロピルエーテルジオキサン、テトラヒドロフラン等のエーテル類;蟻酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸エチル等のエステル類;ヘキサン等の脂肪族炭化水素類;シクロヘキサン等の脂環式炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、ジクロロエタン等のハロゲン化炭素類;蟻酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸エチル等のエステル類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;セロソルブアセテート類;ジメチルスルホキシド等のスルホキシド類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;フェノール、オルトクロロフェノール等のフェノール類等が例示でき、これらの混合物であってもよい。
 前記機能層用組成物に用いられる溶剤としては、中でも、相溶層が形成されやすく、機能層とポリイミドフィルムとの密着性が向上し、干渉縞の発生が抑制されやすい点から、メチルイソブチルケトン及びメチルエチルケトンから選ばれる少なくとも1種を含有する溶剤が好ましい。また、溶剤全体に対する、メチルイソブチルケトン及びメチルエチルケトンから選ばれる少なくとも1種の合計含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがより更に好ましい。
As the solvent used in the functional layer composition, a solvent capable of dispersing or dissolving each component contained in the functional layer composition can be appropriately selected and used, and is not particularly limited. Alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, benzyl alcohol, PGME, ethylene glycol; acetone, methyl ethyl ketone (MEK), cyclohexanone, methyl isobutyl ketone, diacetone alcohol, cyclohepta Non-, ketones such as diethyl ketone; ethers such as 1,4-dioxane, dioxolane, diisopropyl ether dioxane, tetrahydrofuran; methyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl lactate, etc. Stealtes; Aliphatic hydrocarbons such as hexane; Cycloaliphatic hydrocarbons such as cyclohexane; Aromatic hydrocarbons such as toluene and xylene; Halogenated carbons such as dichloromethane and dichloroethane; Methyl formate, Methyl acetate, Acetic acid Esters such as ethyl, propyl acetate, butyl acetate and ethyl lactate; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide; Phenols such as orthochlorophenol can be exemplified, and a mixture thereof may be used.
As the solvent used for the functional layer composition, methyl isobutyl ketone is particularly preferable because a compatible layer is easily formed, adhesion between the functional layer and the polyimide film is improved, and generation of interference fringes is easily suppressed. And a solvent containing at least one selected from methyl ethyl ketone. Further, the total content of at least one selected from methyl isobutyl ketone and methyl ethyl ketone is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more based on the entire solvent. It is even more preferable.
 前記機能層用組成物中の溶剤の含有量は、相溶層が形成されやすく、機能層とポリイミドフィルムとの密着性が向上し、干渉縞の発生が抑制されやすい点から、機能層用組成物全体に対して、30質量%以上70質量%以下であることが好ましく、35質量%以上60質量%以下であることがより好ましい。 The content of the solvent in the functional layer composition is such that a compatible layer is easily formed, the adhesion between the functional layer and the polyimide film is improved, and the occurrence of interference fringes is easily suppressed. It is preferable that it is 30 to 70 mass% with respect to the whole thing, and it is more preferable that it is 35 to 60 mass%.
 前記機能層用組成物が含有し得るその他の任意添加成分としては、例えば、前述した前記機能層が含有し得る任意添加成分と同様のものが挙げられる。
 任意添加成分として含まれる前記無機又は有機微粒子は、前記機能層用組成物においては、組成物中の微粒子を動的光散乱方法で測定し、粒径分布を累積分布で表したときの50%粒子径(d50  メジアン径)が、硬度向上の点から、5nm以上であることが好ましく、10nm以上であることが好ましく、一方で、透明性の点から、100nm以下であることが好ましく、50nm以下であることがより好ましい。
当該メジアン径は、日機装(株)製のMicrotrac粒度分析計又はNanotrac粒度分析計を用いて測定することができる。
 また、前記無機又は有機微粒子は、透明性及び硬度の点から、粒径分布が狭く、単分散であることが好ましい。
Examples of other optional additive components that can be contained in the functional layer composition include the same optional additive components that can be contained in the functional layer described above.
In the functional layer composition, the inorganic or organic fine particles contained as an optional additive component are 50% when the fine particles in the composition are measured by a dynamic light scattering method and the particle size distribution is expressed as a cumulative distribution. The particle diameter (d50 median diameter) is preferably 5 nm or more from the viewpoint of improving hardness, and is preferably 10 nm or more. On the other hand, from the viewpoint of transparency, it is preferably 100 nm or less, and 50 nm or less. More preferably.
The median diameter can be measured using a Microtrac particle size analyzer or a Nanotrac particle size analyzer manufactured by Nikkiso Co., Ltd.
The inorganic or organic fine particles preferably have a narrow particle size distribution and are monodispersed from the viewpoint of transparency and hardness.
 前記機能層用組成物が前記無機又は有機微粒子を含む場合、前記機能層用組成物における前記無機又は有機微粒子の合計含有量は、機能層用組成物の全固形分に対して、硬度付与の点から、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、一方で、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。 When the functional layer composition contains the inorganic or organic fine particles, the total content of the inorganic or organic fine particles in the functional layer composition is given to the total solid content of the functional layer composition. From the viewpoint, it is preferably 25% by mass or more, more preferably 30% by mass or more, and on the other hand, it is preferably 60% by mass or less, and more preferably 50% by mass or less.
 ポリイミドフィルムの少なくとも一方の面に、前記機能層用組成物の塗膜を形成する方法としては、例えば、ポリイミドフィルムの少なくとも一方の面に、前記機能層用組成物を、公知の塗布手段により塗布する方法が挙げられる。
 前記塗布手段は、目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えば、前記ポリイミド前駆体樹脂組成物を支持体に塗布する手段と同様のものが挙げられる。
As a method for forming a coating film of the functional layer composition on at least one surface of the polyimide film, for example, the functional layer composition is applied to at least one surface of the polyimide film by a known coating means. The method of doing is mentioned.
The application means is not particularly limited as long as it is a method that can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
 前記機能層用組成物を塗布した後は、必要に応じ、乾燥することにより溶剤を除去して、前記機能層用組成物の塗膜を形成する。前記乾燥の方法としては、例えば、減圧乾燥又は加熱乾燥、更にはこれらの乾燥を組み合わせる方法等が挙げられる。また、常圧で乾燥させる場合は、30℃以上110℃以下で乾燥させることが好ましい。 After applying the functional layer composition, if necessary, the solvent is removed by drying to form a coating film of the functional layer composition. Examples of the drying method include reduced-pressure drying or heat drying, and a combination of these drying methods. Moreover, when drying at a normal pressure, it is preferable to dry at 30 degreeC or more and 110 degrees C or less.
(2)機能層用組成物の塗膜を硬化する工程
 前記機能層用組成物の塗膜を硬化する工程においては、前記機能層用組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物の重合性基に応じて、光照射及び加熱の少なくともいずれかにより、前記塗膜を硬化することができる。前記塗膜を硬化することにより、前記機能層用組成物中の前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種が重合して重合物が生成し、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種の重合物を含有する機能層を形成することができる。
(2) The step of curing the coating film of the functional layer composition In the step of curing the coating layer of the functional layer composition, the radical polymerizable compound and the cationic polymerizable compound contained in the functional layer composition Depending on the polymerizable group, the coating film can be cured by at least one of light irradiation and heating. By curing the coating film, at least one of the radical polymerizable compound and the cation polymerizable compound in the functional layer composition is polymerized to form a polymer, and the radical polymerizable compound and the cation are generated. A functional layer containing at least one polymer of a polymerizable compound can be formed.
 光照射には、主に、紫外線、可視光、電子線、電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50mJ/cm以上5000mJ/cm以下程度である。
 加熱をする場合は、通常40℃以上120℃以下の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
For light irradiation, ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are mainly used. In the case of ultraviolet curing, ultraviolet rays emitted from light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used. The amount of irradiation with the energy radiation source of accumulative exposure at an ultraviolet wavelength of 365 nm, a degree 50 mJ / cm 2 or more 5000 mJ / cm 2 or less.
When heating, the treatment is usually performed at a temperature of 40 ° C. or higher and 120 ° C. or lower. Moreover, you may react by leaving it to stand for 24 hours or more at room temperature (25 degreeC).
 また、前記機能層用組成物の塗膜を硬化する工程においては、酸素による塗膜の硬化反応の阻害を防止する点から、酸素濃度が300ppm以下の条件下にて行うことが好ましく、酸素濃度が200ppm以下の条件下にて行うことがより好ましい。 Further, in the step of curing the coating film of the functional layer composition, the oxygen concentration is preferably 300 ppm or less from the viewpoint of preventing inhibition of the curing reaction of the coating film due to oxygen. Is more preferably performed under a condition of 200 ppm or less.
 また、2層構成を有する機能層を形成する方法としては、例えば、
 前記ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む第一の機能層用組成物の塗膜を形成する工程と、
 前記第一の機能層用組成物の塗膜の表面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む第二の機能層用組成物の塗膜を形成する工程と、
 前記第一の機能層用組成物の塗膜と、前記第二の機能層用組成物の塗膜とを硬化する工程と、を有する方法が挙げられる。
 3層以上の多層構成を有する機能層を形成する方法としては、例えば、前述した方法において、前記第二の機能層用組成物の塗膜を形成する工程の後に、当該塗膜上に、更に所望の機能層用組成物の塗膜を積層する工程と、ポリイミドフィルム上に積層した各塗膜を硬化する工程と、を有する方法が挙げられる。
 また、多層構成を有する機能層を形成する方法においては、各機能層用組成物の塗膜を形成する工程の後、当該塗膜上に別の機能層用組成物の塗膜を形成する前に、当該塗膜を半硬化又は硬化する工程を有していてもよく、半硬化する工程を有することが、密着性の観点から好ましい。例えば、2層構成を有する機能層を形成する場合、具体的には、前記ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む第一の機能層用組成物の塗膜を形成する工程と、
 前記第一の機能層用組成物の塗膜を半硬化させる工程と、
 前記半硬化させた前記第一の機能層用組成物の塗膜の表面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む第二の機能層用組成物の塗膜を形成する工程と、
 前記半硬化させた前記第一の機能層用組成物の塗膜と、前記第二の機能層用組成物の塗膜とを硬化する工程と、を有する方法が好ましい。
As a method for forming a functional layer having a two-layer structure, for example,
Forming a coating film of a first functional layer composition comprising at least one of a radical polymerizable compound and a cationic polymerizable compound on at least one surface of the polyimide film;
Forming a coating film of the second functional layer composition containing at least one of a radical polymerizable compound and a cationic polymerizable compound on the surface of the coating film of the first functional layer composition;
And a method of curing the coating film of the first functional layer composition and the coating film of the second functional layer composition.
As a method of forming a functional layer having a multilayer structure of three or more layers, for example, in the method described above, after the step of forming a coating film of the second functional layer composition, further on the coating film, The method which has the process of laminating | stacking the coating film of the composition for desired functional layers, and the process of hardening | curing each coating film laminated | stacked on the polyimide film is mentioned.
In the method of forming a functional layer having a multilayer structure, after the step of forming a coating film of each functional layer composition, before forming a coating film of another functional layer composition on the coating film It may have a step of semi-curing or curing the coating film, and it is preferable from the viewpoint of adhesion to have a step of semi-curing. For example, when forming a functional layer having a two-layer structure, specifically, for the first functional layer including at least one of a radical polymerizable compound and a cationic polymerizable compound on at least one surface of the polyimide film. Forming a coating film of the composition;
A step of semi-curing the coating film of the first functional layer composition;
A coating film of the second functional layer composition containing at least one of a radical polymerizable compound and a cationic polymerizable compound is formed on the surface of the semi-cured coating film of the first functional layer composition. Process,
A method comprising a step of curing the semi-cured coating film of the first functional layer composition and the coating film of the second functional layer composition is preferable.
3.相溶層
 本開示の積層体は、前記ポリイミドフィルムの少なくとも一方の面に、相溶層を介して、前記機能層を有し、前記相溶層は、前記ポリイミドフィルムの構成成分の少なくとも1種の成分と、前記機能層の構成成分の少なくとも1種の成分とを含有する層である。すなわち、前記相溶層は、前記ポリイミドフィルムの構成成分と同じ成分のうち少なくとも1種の成分と、前記機能層の構成成分と同じ成分のうち少なくとも1種の成分とを含有する層である。また、前記機能層が2層以上の多層構成を有する場合は、前記相溶層が含有する前記機能層の構成成分の少なくとも1種の成分とは、前記相溶層に隣接して位置する機能層の構成成分と同じ成分のうち少なくとも1種の成分である。
 また、ポリイミドフィルムと機能層との密着性の点、及び干渉縞の発生を抑制する点から、前記相溶層が含有する前記ポリイミドフィルムの構成成分の少なくとも1種の成分は、ポリイミドを含むことが好ましく、前記相溶層が含有する前記機能層の構成成分の少なくとも1種の成分は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含むことが好ましい。
 前記相溶層は、前記機能層を形成する際、前記ポリイミドフィルムの少なくとも一方の面に前記機能層用組成物の塗膜を形成する工程において、前記機能層用組成物中の成分の1部が、前記ポリイミドフィルムに浸透することにより形成される。
 本開示に係る積層体は、ポリイミドフィルムと機能層との間に相溶層を有することにより、機能層とポリイミドフィルムとの密着性を向上し、干渉縞の発生を抑制し、更に、屈曲耐性を向上したものである。
3. Compatible Layer The laminate of the present disclosure has the functional layer on at least one surface of the polyimide film via the compatible layer, and the compatible layer is at least one component of the polyimide film. And at least one component of the constituent components of the functional layer. That is, the compatible layer is a layer containing at least one component among the same components as the constituent components of the polyimide film and at least one component among the same components as the constituent components of the functional layer. When the functional layer has a multilayer structure of two or more layers, at least one component of the functional layer contained in the compatible layer is a function located adjacent to the compatible layer. It is at least one component among the same components as the constituent components of the layer.
Moreover, from the point of the adhesiveness of a polyimide film and a functional layer, and the point which suppresses generation | occurrence | production of an interference fringe, at least 1 sort (s) of the component of the said polyimide film which the said compatible layer contains contains a polyimide. It is preferred that at least one component of the functional layer contained in the compatible layer contains at least one polymer of a radical polymerizable compound and a cationic polymerizable compound.
When the compatible layer forms the functional layer, in the step of forming a coating film of the functional layer composition on at least one surface of the polyimide film, 1 part of the component in the functional layer composition Is formed by penetrating into the polyimide film.
The laminate according to the present disclosure has a compatible layer between the polyimide film and the functional layer, thereby improving the adhesion between the functional layer and the polyimide film, suppressing the occurrence of interference fringes, and bending resistance. Is an improvement.
 前記相溶層は、機能層とポリイミドフィルムとの密着性及び干渉縞抑制の点、並びに屈曲耐性の点から、前記ポリイミドフィルムと前記機能層との間において、途切れた箇所がないことが好ましく、積層体の任意の箇所において、前記相溶層の厚みが1nm以上であることが好ましく、3nm以上であることがより好ましく、5nm以上であることがより更に好ましい。 The compatible layer preferably has no discontinuity between the polyimide film and the functional layer in terms of adhesion between the functional layer and the polyimide film, interference fringe suppression, and bending resistance. In any part of the laminate, the thickness of the compatible layer is preferably 1 nm or more, more preferably 3 nm or more, and even more preferably 5 nm or more.
 前記相溶層は、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色した積層体の厚さ方向の断面において、染色された層として観察される層であることが好ましい。ここで、染色された層とは、染色により着色された層のことをいう。
 四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種は、非晶部位などの分子運動性が大きく、低密度な部位に入り込んで反応しやすい。前記相溶層は、前記一般式(1)で表されるポリイミドを含有するポリイミドフィルム上に機能層を形成する際に、機能層用組成物が前記ポリイミドフィルム表面に浸透することにより形成されるものであり、前記相溶層となる領域は、機能層用組成物が浸透することにより、ポリイミドの密度が適度に低下して、低密度領域になると考えられる。四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種は、当該低密度領域に付着することにより、前記相溶層を選択的に染色することができると考えられる。本開示においては、中でも、四酸化ルテニウム及び四酸化オスミウムから選ばれる少なくとも1種を用いることが好ましく、四酸化ルテニウムを用いることがより好ましい。
The compatible layer is a layer observed as a dyed layer in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate. It is preferable. Here, the dyed layer refers to a layer colored by dyeing.
At least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide, and tungsten phosphate has a large molecular mobility such as an amorphous part and easily enters and reacts with a low density part. The compatible layer is formed when the functional layer composition permeates the polyimide film surface when the functional layer is formed on the polyimide film containing the polyimide represented by the general formula (1). Therefore, it is considered that the area to be the compatible layer is a low density area due to a moderate decrease in the density of polyimide due to the penetration of the functional layer composition. It is considered that at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate can selectively dye the compatible layer by adhering to the low density region. In the present disclosure, it is preferable to use at least one selected from ruthenium tetroxide and osmium tetroxide, and more preferably ruthenium tetroxide.
四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種の染色試薬により積層体の厚さ方向の断面における相溶層を染色する方法としては、例えば、本開示に係る積層体を2mm×10mmの短冊状に切り出したサンプルを、樹脂により包理固化して固定した後、固定されたサンプルの厚さ方向に、ミクロトームを用いて50nm以上150nm以下程度の幅で切断して作製した超薄切片を、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種とともに容器に入れて密閉し、室温(25℃)で一定時間放置することにより染色する方法が挙げられる。前記放置する時間は、適宜調整することができ、特に限定はされないが、例えば、10分以上60分以内とすることができる。前記超薄切片を、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種とともに容器に入れて密閉し、一定時間放置した後、更にサンプル内中に残った染色試薬を取り除くために、前記容器の蓋を空けて一定時間放置しても良い。前記容器の蓋を空けてから放置する時間は、適宜調整することができ、特に限定はされないが、例えば、5分以上30分以内とすることができる。
 このようにして染色した前記超薄切片を、走査透過型電子顕微鏡(STEM)等の電子顕微鏡により観察することにより、染色された相溶層を観察することができる。
As a method for staining a compatible layer in a cross section in the thickness direction of the laminate with at least one dyeing reagent selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate, for example, the lamination according to the present disclosure After the sample cut into a 2 mm x 10 mm strip is solidified and fixed with resin, it is cut in the thickness direction of the fixed sample with a width of about 50 nm to 150 nm using a microtome. A method of staining the prepared ultrathin sections by placing them in a container together with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate, and allowing them to stand at room temperature (25 ° C.) for a certain period of time. Is mentioned. The standing time can be adjusted as appropriate, and is not particularly limited, but may be, for example, 10 minutes or more and 60 minutes or less. The ultrathin section is placed in a container together with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate, sealed, allowed to stand for a certain period of time, and then the staining reagent remaining in the sample is added. In order to remove, the container lid may be opened and left for a certain period of time. The time to leave the container after it is opened can be adjusted as appropriate, and is not particularly limited, but can be, for example, 5 minutes or more and 30 minutes or less.
The stained compatible layer can be observed by observing the stained ultrathin section with an electron microscope such as a scanning transmission electron microscope (STEM).
 また、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色した積層体の厚さ方向の断面において、染色された前記相溶層の厚みは、機能層とポリイミドフィルムとの密着性及び干渉縞抑制の点、並びに屈曲耐性の点から、3nm以上であることが好ましく、5nm以上であることがより好ましく、7nm以上であることがより更に好ましい。また、同様の点から、四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色された前記相溶層の厚みは、3μm以下であることが好ましく、1μm以下であることがより好ましく、500nm以下であることがより更に好ましく、300nm以下や100nm以下であってよい。染色された前記相溶層の厚みにおいて、10nmを超える部分を有する場合、より好ましくは15nmを超える部分を有する場合には、密着性が向上する点から好ましい。
 なお、積層体の任意の箇所において、染色された前記相溶層の厚みが前記範囲内であることが好ましい。
Further, in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate, the thickness of the dyed compatible layer is the functional layer and polyimide From the viewpoint of adhesion to the film, suppression of interference fringes, and bending resistance, the thickness is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more. From the same point, the thickness of the compatible layer dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate is preferably 3 μm or less, preferably 1 μm or less. More preferably, it is more preferably 500 nm or less, and may be 300 nm or less or 100 nm or less. The thickness of the dyed compatible layer having a portion exceeding 10 nm, more preferably having a portion exceeding 15 nm is preferable from the viewpoint of improving adhesion.
In addition, it is preferable that the thickness of the dye | stained compatible layer exists in the said range in the arbitrary locations of a laminated body.
4.積層体の構成
 本開示に係る積層体の全体厚さは、用途により適宜選択されれば良いが、強度の点から、10μm以上であることが好ましく、更に40μm以上であることが好ましい。一方、屈曲耐性の点から、300μm以下であることが好ましく、更に200μm以下であることが好ましく、より更に100μm以下であることが好ましい。
4). Configuration of Laminate The overall thickness of the laminate according to the present disclosure may be appropriately selected depending on the application, but is preferably 10 μm or more, and more preferably 40 μm or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, it is preferably 300 μm or less, more preferably 200 μm or less, and still more preferably 100 μm or less.
 また、本開示に係る積層体においては、積層体の全体厚みに対する、前記機能層と前記相溶層との合計厚みの割合が、表面硬度の点、並びに密着性及び干渉縞抑制の点から、10%以上であることが好ましく、15%以上であることがより好ましく、一方で、屈曲耐性の点から、30%以下であることが好ましく、20%以下であることがより好ましい。 Moreover, in the laminate according to the present disclosure, the ratio of the total thickness of the functional layer and the compatible layer with respect to the total thickness of the laminate is in terms of surface hardness, and adhesion and interference fringe suppression. It is preferably 10% or more, more preferably 15% or more. On the other hand, from the viewpoint of bending resistance, it is preferably 30% or less, and more preferably 20% or less.
 なお、本開示に係る積層体は、前記ポリイミドフィルムの少なくとも一方の面に、前記相溶層を介して、前記機能層を有するものであれば良く、すなわち、前記ポリイミドフィルムの少なくとも一方の面に、前記相溶層と、前記機能層とがこの順で隣接して位置するものであれば良く、本開示の効果を損なわない範囲で、更に他の層を有するものであっても良い。 In addition, the laminated body which concerns on this indication should just have the said functional layer in the at least one surface of the said polyimide film through the said compatible layer, ie, on the at least one surface of the said polyimide film. As long as the compatible layer and the functional layer are adjacent to each other in this order, other layers may be included as long as the effects of the present disclosure are not impaired.
5.積層体の特性
 本開示に係る積層体は、屈曲耐性に優れる点から、静的屈曲試験を行った場合に、当該試験で測定される内角が120°以上であることが好ましい。なお、静的屈曲試験の方法は、上述したポリイミドフィルムの静的屈曲試験と同様の方法とすることができる。積層体の静的屈曲試験において、積層体は、機能層側表面が内側になるように屈曲させる。
5). Characteristics of Laminated Body The laminated body according to the present disclosure preferably has an internal angle measured by the test of 120 ° or more when a static bending test is performed from the viewpoint of excellent bending resistance. In addition, the method of a static bending test can be made the same method as the static bending test of the polyimide film mentioned above. In the static bending test of the laminate, the laminate is bent so that the functional layer side surface is on the inside.
 本開示に係る積層体は、光透過性の点から、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に90%以上であることが好ましい。
 本開示の積層体の前記全光線透過率は、前記ポリイミドフィルムのJIS K7361-1に準拠して測定する全光線透過率と同様にして測定することができる。
In the laminate according to the present disclosure, the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, more preferably 88% or more, from the viewpoint of light transmittance. Further, it is preferably 90% or more.
The total light transmittance of the laminate of the present disclosure can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
 本開示の積層体は、機能層側表面の鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがより更に好ましい。
 本開示の積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度の測定方法において、荷重を9.8Nとする以外は同様にして測定することができる。
In the laminate of the present disclosure, the pencil hardness of the functional layer side surface is preferably H or higher, more preferably 2H or higher, and still more preferably 3H or higher.
The pencil hardness of the laminate of the present disclosure can be measured in the same manner except that the load is 9.8 N in the method for measuring the pencil hardness of the polyimide film.
 本開示の積層体は、光透過性の点から、JIS K7373-2006に準拠して算出される黄色度(YI値)が、30以下であることが好ましく、20以下であることがより好ましく、15以下であることがより更に好ましく、13以下であることがより更に好ましく、10以下であることが特に好ましい。また、特に限定はされないが、本開示の積層体の前記黄色度(YI値)は、2.5以下であることが望ましい。
 また、本開示の積層体は、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))が0.04以下であることが好ましく、0.03以下であることがより好ましい。
 本開示の積層体の前記黄色度(YI値)は、前記ポリイミドフィルムのJIS K7373-2006に準拠して算出される黄色度(YI値)と同様にして測定することができる。
In the laminated body of the present disclosure, the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, from the viewpoint of light transmittance. More preferably, it is 15 or less, More preferably, it is 13 or less, It is especially preferable that it is 10 or less. Moreover, although not specifically limited, it is desirable that the yellowness (YI value) of the laminate of the present disclosure is 2.5 or less.
In addition, the laminated body of the present disclosure has a yellow color calculated in accordance with JIS K7373-2006 because yellowish coloring is suppressed, light transmittance is improved, and it can be suitably used as a glass substitute material. A value (YI value / film thickness (μm)) obtained by dividing the degree (YI value) by the film thickness (μm) is preferably 0.04 or less, and more preferably 0.03 or less.
The yellowness (YI value) of the laminate of the present disclosure can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
 本開示の積層体は、光透過性の点から、ヘイズ値が、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。また、特に限定はされないが、本開示の積層体のヘイズ値は、1.0以下であることが望ましい。
 本開示の積層体のヘイズ値は、前記ポリイミドフィルムのヘイズ値と同様にして測定することができる。
The laminate of the present disclosure preferably has a haze value of 10 or less, more preferably 8 or less, and even more preferably 5 or less, from the viewpoint of light transmittance. Moreover, although it does not specifically limit, it is desirable that the haze value of the laminated body of this indication is 1.0 or less.
The haze value of the laminate of the present disclosure can be measured in the same manner as the haze value of the polyimide film.
 本開示の積層体の波長590nmにおける厚み方向の複屈折率は、光学的歪みが低減される点から、0.040以下であることが好ましく、0.020以下であることが好ましく、0.015以下であることが好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。
 本開示の積層体の前記複屈折率は、前記ポリイミドフィルムの波長590nmにおける厚み方向の複屈折率と同様にして測定することができる。
The birefringence in the thickness direction of the laminate of the present disclosure at a wavelength of 590 nm is preferably 0.040 or less, more preferably 0.020 or less, from the viewpoint of reducing optical distortion, Or less, more preferably 0.010 or less, and even more preferably less than 0.008.
The birefringence of the laminate of the present disclosure can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
 本開示の積層体は、下記密着性試験方法に従って、密着性試験を行った場合に、機能層の剥がれが生じないことが、ポリイミドフィルムと機能層との密着性の点、干渉縞の発生を抑制する点、及び積層体の屈曲耐性及び表面硬度の点から好ましい。
[密着性試験方法]
 10cm×10cmに切り出した積層体の試験片の機能層について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、機能層の剥がれの有無を観察する。
When the adhesion test is performed according to the following adhesion test method, the laminated body of the present disclosure does not cause peeling of the functional layer, which causes adhesion between the polyimide film and the functional layer and generation of interference fringes. It is preferable from the point of suppression, and the point of the bending tolerance and surface hardness of a laminated body.
[Adhesion test method]
The functional layer of the test piece of the laminate cut out to 10 cm × 10 cm was subjected to a cross-cut test in accordance with JIS K 5600-5-6, and after repeating the tape peeling operation 5 times, whether or not the functional layer was peeled off Observe.
6.積層体の製造方法
 本開示に係る積層体の製造方法としては、前述した本開示に係る積層体が得られる方法であれば特に限定はされないが、例えば、
 前記一般式(1)で表される構造を有するポリイミドを含有するポリイミドフィルムを準備する工程と、
 前記ポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含む機能層用組成物の塗膜を形成する工程と、
 前記機能層用組成物の塗膜を硬化する工程と、を有する、
 前記ポリイミドフィルムの少なくとも一方の面に、相溶層を介して、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種の重合物を含有する機能層を有し、前記相溶層が、前記ポリイミドフィルムの構成成分の少なくとも1種の成分と、前記機能層の構成成分の少なくとも1種の成分とを含有する積層体の製造方法、を挙げることができる。
 なお、前記積層体の製造方法において、前記ポリイミドフィルムは、前述したポリイミドフィルムの製造方法と同様の方法により準備することができる。また、前記機能層用組成物の塗膜を形成する工程、及び、前記機能層用組成物の塗膜を硬化する工程は、前述した機能層の形成方法と同様の方法とすることができる。
6). Production method of laminate The production method of the laminate according to the present disclosure is not particularly limited as long as it is a method by which the laminate according to the present disclosure described above is obtained.
Preparing a polyimide film containing a polyimide having a structure represented by the general formula (1);
Forming a coating film of a functional layer composition containing at least one of a radical polymerizable compound and a cationic polymerizable compound on at least one surface of the polyimide film;
Curing the coating film of the functional layer composition,
At least one surface of the polyimide film has a functional layer containing at least one polymer of the radical polymerizable compound and the cationic polymerizable compound via a compatible layer, and the compatible layer is The manufacturing method of the laminated body containing the at least 1 sort (s) of component of the said polyimide film and the at least 1 sort (s) of the component of the said functional layer can be mentioned.
In addition, in the manufacturing method of the said laminated body, the said polyimide film can be prepared by the method similar to the manufacturing method of the polyimide film mentioned above. Moreover, the process of forming the coating film of the composition for functional layers, and the process of hardening the coating film of the composition for functional layers can be made into the method similar to the formation method of the functional layer mentioned above.
7.積層体の用途
 本開示の積層体の用途は特に限定されるものではなく、例えば、従来薄い板ガラス等ガラス製品が用いられていた基材や表面材等の部材として用いることができる。本開示の積層体は、屈曲耐性が向上し、ポリイミドフィルムと機能層との密着性に優れ、干渉縞の発生が抑制された良好な品質を有するものであり、更に好ましい態様においては優れた表面硬度及び光透過性を有するものであるため、中でも、ディスプレイ用表面材として好適に用いることができ、特に、フレキシブルディスプレイ用の表面材として好適に用いることができ、折り畳み可能なディスプレイ用の表面材としても好適に用いることができる。
 また、本開示の積層体は、具体的には例えば、薄くて曲げられるフレキシブルタイプの有機ELディスプレイや、スマートフォンや腕時計型端末などの携帯端末、自動車内部の表示装置、腕時計などに使用するフレキシブルパネル等に好適に用いることができる。また、本開示の積層体は、液晶表示装置、有機EL表示装置等の画像表示装置用部材や、タッチパネル用部材、フレキシブルプリント基板、表面保護膜や基板材料等の太陽電池パネル用部材、光導波路用部材、その他半導体関連部材等に適用することもできる。
7). Use of laminated body The use of the laminated body of this indication is not specifically limited, For example, it can be used as members, such as a base material and surface material which glass products, such as thin plate glass, were conventionally used. The laminate of the present disclosure has improved bending resistance, excellent adhesion between the polyimide film and the functional layer, and has a good quality in which the generation of interference fringes is suppressed. Since it has hardness and light transmittance, it can be suitably used as a surface material for a display, in particular, it can be suitably used as a surface material for a flexible display, and can be used as a surface material for a foldable display. Can also be suitably used.
In addition, the laminated body of the present disclosure is specifically a flexible panel used for, for example, a thin and bent flexible organic EL display, a portable terminal such as a smartphone or a wristwatch type terminal, a display device inside a car, a wristwatch, or the like. It can use suitably for etc. In addition, the laminate of the present disclosure includes a member for an image display device such as a liquid crystal display device and an organic EL display device, a member for a touch panel, a flexible printed circuit board, a surface protection film, a member for solar cell panel such as a substrate material, and an optical waveguide. The present invention can also be applied to other members, other semiconductor-related members, and the like.
II.ディスプレイ用表面材
 本開示のディスプレイ用表面材は、前述した本開示の積層体である。
 本開示のディスプレイ用表面材は、各種ディスプレイの表面に位置するように配置して用いられる。本開示のディスプレイ用表面材は、前述した本開示の積層体と同様に、屈曲耐性が向上し、ポリイミドフィルムと機能層との密着性に優れ、干渉縞の発生が抑制された良好な品質を有するものであり、更に好ましい態様においては優れた表面硬度及び光透過性を有するものであるため、フレキシブルディスプレイ用として特に好適に用いることができる。
II. Surface material for display The surface material for display of this indication is a layered product of this indication mentioned above.
The display surface material of the present disclosure is used so as to be positioned on the surface of various displays. The display surface material of the present disclosure, like the laminate of the present disclosure described above, has improved bending resistance, excellent adhesion between the polyimide film and the functional layer, and good quality with suppressed generation of interference fringes. Since it has excellent surface hardness and light transmittance in a more preferred embodiment, it can be particularly suitably used for a flexible display.
 本開示のディスプレイ用表面材は、公知の各種ディスプレイに用いることができ、特に限定はされないが、例えば、前記本開示の積層体の用途で説明したディスプレイ等に用いることができる。 The display surface material of the present disclosure can be used for various known displays and is not particularly limited. For example, the display surface material can be used for the display described in the application of the laminate of the present disclosure.
 なお、本開示のディスプレイ用表面材は、ディスプレイの表面に配置した後の最表面となる面は、ポリイミドフィルム側の表面であってもよいし、機能層側の表面であってもよい。中でも、機能層側の表面が、より表側の面となるように本開示のディスプレイ用表面材を配置することが好ましい。また、本開示のディスプレイ用表面材は、最表面に指紋付着防止層を有するものであっても良い。 In the display surface material of the present disclosure, the outermost surface after being arranged on the display surface may be a polyimide film side surface or a functional layer side surface. Especially, it is preferable to arrange | position the surface material for a display of this indication so that the surface by the side of a functional layer may become a surface of the front side more. Further, the display surface material of the present disclosure may have a fingerprint adhesion preventing layer on the outermost surface.
 また、本開示のディスプレイ用表面材をディスプレイの表面に配置する方法としては、特に限定はされないが、例えば、接着層を介する方法等が挙げられる。前記接着層としては、ディスプレイ用表面材の接着に用いることができる従来公知の接着層を用いることができる。 Further, the method for disposing the display surface material of the present disclosure on the surface of the display is not particularly limited, and examples thereof include a method through an adhesive layer. As the adhesive layer, a conventionally known adhesive layer that can be used for adhesion of a display surface material can be used.
III.タッチパネル部材
 本開示のタッチパネル部材は、前述した本開示の積層体と、
 前記積層体の一方の面側に配置された、複数の導電部を有する透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を備える。
III. Touch panel member The touch panel member of the present disclosure includes the laminate of the present disclosure described above,
A transparent electrode having a plurality of conductive portions arranged on one surface side of the laminate;
A plurality of lead wires electrically connected to at least one side of the end portion of the conductive portion.
 本開示のタッチパネル部材は、前述した本開示の積層体を備えるものであることから、機能層とポリイミドフィルムとの密着性に優れ、屈曲耐性に優れ、干渉縞の発生が抑制されたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本開示のタッチパネル部材に用いられる本開示の積層体は、ポリイミドフィルムの両面に、相溶層を介して機能層を有するものであることが好ましい。
 また、本開示のタッチパネル部材は、特に限定はされないが、前記透明電極が、前記積層体の一方の面側に接して積層されてなるものであることが好ましい。
 本開示のタッチパネル部材は、例えば、各種ディスプレイの表面に位置するように配置して用いることができる。また、各種ディスプレイの表面に、本開示のタッチパネル部材と、表面材としての本開示の積層体とを、この順に配置して用いることもできる。
Since the touch panel member of the present disclosure includes the above-described laminate of the present disclosure, the touch panel member has excellent adhesion between the functional layer and the polyimide film, excellent bending resistance, and interference fringes are suppressed. Therefore, it can be particularly suitably used for a flexible display and has excellent optical characteristics.
It is preferable that the laminated body of this indication used for the touchscreen member of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer.
In addition, the touch panel member of the present disclosure is not particularly limited, but it is preferable that the transparent electrode is laminated in contact with one surface side of the laminate.
The touch panel member of this indication can be arranged and used so that it may be located on the surface of various displays, for example. Moreover, the touch panel member of this indication and the laminated body of this indication as a surface material can also be arrange | positioned and used in this order on the surface of various displays.
 図12は、本開示のタッチパネル部材の一例の一方の面の概略平面図であり、図13は、図12に示すタッチパネル部材のもう一方の面の概略平面図であり、図14は、図12及び図13に示すタッチパネル部材のA-A’断面図である。図12、図13及び図14に示すタッチパネル部材20は、本開示の積層体10と、積層体10の一方の面に接して配置された第一の透明電極4と、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第一の透明電極4においては、x軸方向に伸長するように延在する短冊状の電極片である複数の第一の導電部41が、所定の間隔を空けて配置されている。第一の導電部41には、その長手方向の端部のいずれか一方において、当該第一の導電部41と電気的に接続される第一の取出し線7が接続されている。積層体10の端縁21まで延設された第一の取出し線7の端部には、外部回路と電気的に接続するための第一の端子71を設けることがよい。第一の導電部41と第一の取出し線7とは、一般には、タッチパネルの使用者が視認可能なアクティブエリア22の外側に位置する、非アクティブエリア23内において接続される。
 第一の導電部41と第一の取出し線7との接続は、例えば図12に示すように、接続部24を介在させた接続構造を採用することができる。接続部24は、具体的には、第一の導電部41の長手方向端部から、非アクティブエリア23内の所定の位置まで導電性材料の層を延設することにより形成することができる。さらに、当該接続部24上に、第一の取出し線7の少なくとも一部を重ねることにより、第一の導電部41と第一の取出し線7との接続構造を形成することができる。
 第一の導電部41と第一の取出し線7との接続は、図12に示すような、接続部24を形成する構造には限定されない。例えば、図示は省略するが、第一の導電部41の長手方向端部を非アクティブエリア23まで伸長させ、非アクティブエリア23内において、当該非アクティブエリア23まで伸長させた第一の導電部41の端部に、第一の取出し線7を乗り上げさせることによって、両者を電気的に接続させてもよい。
 なお、図12では、第一の導電部41の長手方向端部のいずれか一方と、第一の取出し線7とを接続する形態を示したが、本開示においては、1つの第一の導電部41の長手方向の両端に、それぞれ、第一の取出し線7を電気的に接続する形態としてもよい。
12 is a schematic plan view of one surface of an example of the touch panel member of the present disclosure, FIG. 13 is a schematic plan view of the other surface of the touch panel member shown in FIG. 12, and FIG. FIG. 14 is a cross-sectional view taken along the line AA ′ of the touch panel member shown in FIG. 13. The touch panel member 20 shown in FIGS. 12, 13, and 14 includes the laminate 10 according to the present disclosure, the first transparent electrode 4 disposed in contact with one surface of the laminate 10, and the other of the laminate 10. And a second transparent electrode 5 disposed in contact with the surface. In the first transparent electrode 4, a plurality of first conductive portions 41, which are strip-like electrode pieces extending so as to extend in the x-axis direction, are arranged at a predetermined interval. A first lead wire 7 that is electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at either one of its longitudinal ends. A first terminal 71 for electrical connection with an external circuit may be provided at the end of the first lead-out line 7 extending to the end edge 21 of the laminate 10. The first conductive portion 41 and the first lead-out line 7 are generally connected in an inactive area 23 located outside the active area 22 that can be visually recognized by a touch panel user.
For the connection between the first conductive portion 41 and the first lead-out line 7, for example, as shown in FIG. 12, a connection structure in which a connection portion 24 is interposed can be adopted. Specifically, the connection portion 24 can be formed by extending a layer of a conductive material from a longitudinal end portion of the first conductive portion 41 to a predetermined position in the inactive area 23. Furthermore, a connection structure between the first conductive portion 41 and the first extraction line 7 can be formed by overlapping at least a part of the first extraction line 7 on the connection portion 24.
The connection between the first conductive portion 41 and the first lead-out line 7 is not limited to the structure forming the connection portion 24 as shown in FIG. For example, although not shown, the first conductive portion 41 is extended to the inactive area 23 in the longitudinal direction of the first conductive portion 41 and extended to the inactive area 23 in the inactive area 23. Both of them may be electrically connected by riding the first lead-out wire 7 on the end of the first lead wire 7.
In addition, in FIG. 12, although the form which connects either one of the longitudinal direction ends of the 1st electroconductive part 41 and the 1st extraction line 7 was shown, in this indication, one 1st electroconductivity is shown. It is good also as a form which electrically connects the 1st extraction line 7 to the both ends of the longitudinal direction of the part 41, respectively.
 図13に示すように、タッチパネル部材20は、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第二の透明電極5においては、y軸方向に伸長するように延在する複数の短冊状の電極片である第二の導電部51が、x軸方向に所定の間隔を空けて配置されている。
 第二の導電部51には、その長手方向端部の一方において、当該第二の導電部51と電気的に接続される第二の取出し線8が接続されている。
 第二の取出し線8は、積層体10の端縁のうち、前述した第一の取出し線7が延設された端縁21における、第一の端子71と重ならない位置まで延設されている。
 積層体10の端縁21まで延設された第二の取出し線8の端部には、外部回路と電気的に接続するための第二の端子81を設けることがよい。
 第二の導電部51と第二の取出し線8との電気的な接続は、第一の取出し線7と第一の導電部41との電気的な接続と同様の形態を適用することができる。
As shown in FIG. 13, the touch panel member 20 includes a second transparent electrode 5 disposed in contact with the other surface of the laminate 10. In the second transparent electrode 5, the second conductive portions 51, which are a plurality of strip-shaped electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction. Yes.
A second lead wire 8 that is electrically connected to the second conductive portion 51 is connected to the second conductive portion 51 at one of its longitudinal ends.
The second lead-out line 8 is extended to a position that does not overlap the first terminal 71 in the end edge 21 where the first lead-out line 7 described above is extended among the end edges of the laminated body 10. .
A second terminal 81 for electrical connection with an external circuit is preferably provided at the end of the second lead-out line 8 extending to the end edge 21 of the laminate 10.
For the electrical connection between the second conductive portion 51 and the second lead-out line 8, the same form as the electrical connection between the first lead-out wire 7 and the first conductive portion 41 can be applied. .
 なお、図12及び図13に示すような、第1取出し線7を長尺配線とし、第2取出し線8を短尺配線とするパターンは、本開示のタッチパネル部材の一実施形態に過ぎず、例えば、第一の取出し線7を短尺配線とし、第二の取出し線8を長尺配線とするパターンとすることも可能である。また、第一の取出し線7の伸長方向及び第二の取出し線8の伸長方向も、図12及び図13に示す方向に限られず、任意に設計することが可能である。 12 and 13, the pattern in which the first extraction line 7 is a long wiring and the second extraction line 8 is a short wiring is only one embodiment of the touch panel member of the present disclosure. It is also possible to use a pattern in which the first extraction line 7 is a short wiring and the second extraction line 8 is a long wiring. Further, the extending direction of the first extraction line 7 and the extending direction of the second extraction line 8 are not limited to the directions shown in FIGS. 12 and 13 and can be arbitrarily designed.
 本開示のタッチパネル部材が備える導電部は、タッチパネル部材において透明電極を構成するものを適宜選択して適用することができ、導電部のパターンは、図12及び図13に示すものに限定されない。例えば、静電容量方式によって、指などの接触または接触に近い状態による電気容量の変化を検知可能な透明電極のパターンを適宜選択して適用することができる。
 前記導電部の材料としては、光透過性の材料であることが好ましく、例えば、インジウム錫オキサイド(ITO)、酸化インジウム、インジウム亜鉛オキサイド(IZO)等を主たる構成成分とする酸化インジウム系透明電極材料、酸化錫(SnO)、酸化亜鉛(ZnO)等を主たる構成成分とする透明導電膜、ポリアニリン、ポリアセチレン等の導電性高分子化合物等が挙げられるが、これらに限定されるものではない。また、第一の導電部41及び第二の導電部51は、互いに同種の導電性材料を用いて形成してもよいし、異種の材料を用いて形成してもよい。特に同種の導電性材料を用いて第一の導電部41及び第2導電部51を形成すると、タッチパネル部材の反りや歪みの発生をより効果的に抑制できる観点で好ましい。
 前記導電部の厚みは、特に限定されないが、例えばフォトリソグラフィ手法により導電部を形成する場合には、一般的には、10nm~500nm程度に形成することができる。
The conductive part included in the touch panel member of the present disclosure can be appropriately selected and applied to those constituting the transparent electrode in the touch panel member, and the pattern of the conductive part is not limited to those shown in FIGS. 12 and 13. For example, a transparent electrode pattern capable of detecting a change in capacitance due to contact with a finger or the like or a state close to contact can be appropriately selected and applied by a capacitance method.
The material of the conductive portion is preferably a light transmissive material, for example, an indium oxide based transparent electrode material mainly composed of indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), or the like. , Tin oxide (SnO 2 ), zinc oxide (ZnO), and the like, and the like, and conductive polymer compounds such as transparent conductive film, polyaniline, polyacetylene, and the like are not limited thereto. The first conductive portion 41 and the second conductive portion 51 may be formed using the same kind of conductive material, or may be formed using different materials. In particular, it is preferable to form the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material from the viewpoint of more effectively suppressing the occurrence of warpage and distortion of the touch panel member.
The thickness of the conductive portion is not particularly limited, but when the conductive portion is formed by, for example, a photolithography technique, it can be generally formed to about 10 nm to 500 nm.
 本開示のタッチパネル部材が備える取出し線を構成する導電材料は、光透過性の有無を問わない。一般的には、取出し線は、高い導電性を有する銀や銅などの金属材料を用いて形成することができる。具体的には、金属単体、金属の複合体、金属と金属化合物の複合体、金属合金を挙げることができる。金属単体としては、銀、銅、金、クロム、プラチナ、アルミニウムの単体などを例示することができる。金属の複合体としては、MAM(モリブデン、アルミニウム、モリブデンの3層構造体)等を例示することができる。金属と金属化合物の複合体としては、酸化クロムとクロムの積層体等を例示することができる。金属合金としては、銀合金や銅合金が汎用される。また、金属合金としては、APC(銀、パラジウム及び銅の合金)等を例示することができる。また、前記取出し線には、前述した金属材料に、適宜樹脂成分が混在していてもよい。
 本開示のタッチパネル部材において、取出し線の端部に設けられる端子は、例えば、前記取出し線と同じ材料を用いて形成することができる。
 前記取出し線の厚み、及び幅寸法は、特に限定されないが、例えばフォトリソグラフィ手法により取出し線を形成する場合には、一般的には、厚みは10nm~1000nm程度に形成され、幅寸法は5μm~200μm程度に形成される。一方、スクリーン印刷などの印刷により取出し線を形成する場合には、一般的には、厚みは5μm~20μm程度に形成され、幅寸法は20μm~300μm程度に形成される。
The conductive material constituting the lead-out line included in the touch panel member of the present disclosure may or may not be light transmissive. In general, the lead-out line can be formed using a metal material such as silver or copper having high conductivity. Specific examples include a metal simple substance, a metal composite, a metal / metal compound composite, and a metal alloy. Examples of the simple metal include silver, copper, gold, chromium, platinum, and aluminum. Examples of the metal composite include MAM (a three-layer structure of molybdenum, aluminum, and molybdenum). As a composite of a metal and a metal compound, a laminate of chromium oxide and chromium can be exemplified. As the metal alloy, a silver alloy or a copper alloy is generally used. Examples of the metal alloy include APC (silver, palladium and copper alloy). Further, in the lead-out line, a resin component may be appropriately mixed in the metal material described above.
In the touch panel member of the present disclosure, the terminal provided at the end of the lead-out line can be formed using the same material as the lead-out line, for example.
The thickness and width dimension of the extraction line are not particularly limited, but when the extraction line is formed by, for example, a photolithography technique, the thickness is generally about 10 nm to 1000 nm, and the width dimension is 5 μm to It is formed to about 200 μm. On the other hand, when the lead-out line is formed by printing such as screen printing, the thickness is generally formed to about 5 μm to 20 μm and the width dimension is formed to about 20 μm to 300 μm.
 本開示のタッチパネル部材は、図12~図14に示す形態には限られず、例えば、第一の透明電極と、第二の透明電極とが、それぞれ別個の積層体の上に積層されて構成されるものであってもよい。
 図15及び図16は、各々本開示の積層体を備える導電性部材の一例を示す概略平面図である。図15に示す第一の導電性部材201は、本開示の積層体10と、当該積層体10の一方の面に接して配置された第一の透明電極4とを有し、当該第一の透明電極4は、複数の第一の導電部41を有する。図16に示す第二の導電性部材202は、本開示の積層体10’と、当該積層体10’の一方の面に接して配置された第二の透明電極5とを有し、当該第二の透明電極5は、複数の第二の導電部51を有する。
 図17は、本開示のタッチパネル部材の別の一例を示す概略断面図であり、図17に示すタッチパネル部材20’は、図15に示す第一の導電性部材201と、図16に示す第二の導電性部材202とを備える。タッチパネル部材20’においては、第一の導電性部材201の第一の透明電極4を有しない面と、第二の導電性部材202の透明電極5を有する面とが、接着層6を介して貼り合わせられている。なお、本開示において、例えば、本開示の積層体と本開示のタッチパネル部材とを接着するための接着層、本開示のタッチパネル部材同士を接着するための接着層、本開示のタッチパネル部材と表示装置等とを接着するための接着層としては、光学部材に用いられている従来公知の接着層を適宜選択して用いることができる。本開示のタッチパネル部材に用いられる導電性部材において、透明電極、取出し線及び端子の構成及び材料は、前述した本開示のタッチパネル部材に用いられる透明電極、取出し線及び端子と各々同様とすることができる。
The touch panel member of the present disclosure is not limited to the form shown in FIGS. 12 to 14, and is configured, for example, by laminating a first transparent electrode and a second transparent electrode on separate laminates. It may be a thing.
FIG.15 and FIG.16 is a schematic plan view which shows an example of an electroconductive member provided with the laminated body of this indication, respectively. A first conductive member 201 illustrated in FIG. 15 includes the stacked body 10 of the present disclosure and the first transparent electrode 4 disposed in contact with one surface of the stacked body 10. The transparent electrode 4 has a plurality of first conductive portions 41. A second conductive member 202 illustrated in FIG. 16 includes the multilayer body 10 ′ of the present disclosure and the second transparent electrode 5 disposed in contact with one surface of the multilayer body 10 ′. The second transparent electrode 5 has a plurality of second conductive portions 51.
17 is a schematic cross-sectional view illustrating another example of the touch panel member of the present disclosure. The touch panel member 20 ′ illustrated in FIG. 17 includes the first conductive member 201 illustrated in FIG. 15 and the second conductive member illustrated in FIG. The conductive member 202 is provided. In the touch panel member 20 ′, the surface of the first conductive member 201 that does not have the first transparent electrode 4 and the surface of the second conductive member 202 that has the transparent electrode 5 are interposed via the adhesive layer 6. It is pasted together. In the present disclosure, for example, an adhesive layer for bonding the laminate of the present disclosure and the touch panel member of the present disclosure, an adhesive layer for bonding the touch panel members of the present disclosure, the touch panel member and the display device of the present disclosure. As the adhesive layer for adhering to the above, a conventionally known adhesive layer used for optical members can be appropriately selected and used. In the conductive member used in the touch panel member of the present disclosure, the configuration and materials of the transparent electrode, the lead-out line, and the terminal may be the same as the transparent electrode, the lead-out line, and the terminal used in the touch panel member of the present disclosure described above, respectively. it can.
IV.液晶表示装置
 本開示の液晶表示装置は、前述した本開示の積層体と、前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部とを有する。
IV. Liquid crystal display device The liquid crystal display device of the present disclosure includes the above-described stacked body of the present disclosure and a liquid crystal display unit that is disposed on one surface side of the stacked body and includes a liquid crystal layer between opposing substrates. .
 本開示の液晶表示装置は、前述した本開示の積層体を備えるものであることから、機能層とポリイミドフィルムとの密着性に優れ、屈曲耐性に優れ、干渉縞の発生が抑制されたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本開示の液晶表示装置に用いられる本開示の積層体は、ポリイミドフィルムの両面に、相溶層を介して機能層を有するものであることが好ましい。
 また、本開示の液晶表示装置は、前述した本開示のタッチパネル部材を備えるものであっても良い。
 また、本開示の液晶表示装置が有する対向基板は、本開示の積層体を備えるものであっても良い。
Since the liquid crystal display device of the present disclosure includes the above-described laminate of the present disclosure, the liquid crystal display device has excellent adhesion between the functional layer and the polyimide film, excellent bending resistance, and interference fringes are suppressed. Therefore, it can be particularly suitably used for a flexible display and has excellent optical characteristics.
It is preferable that the laminated body of this indication used for the liquid crystal display device of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer.
Further, the liquid crystal display device of the present disclosure may include the touch panel member of the present disclosure described above.
Further, the counter substrate included in the liquid crystal display device of the present disclosure may be provided with the stacked body of the present disclosure.
 図18は、本開示の液晶表示装置の一例を示す概略断面図である。図18に示す液晶表示装置100は、本開示の積層体10と、本開示の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、液晶表示部30とを有する。液晶表示装置100において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。 FIG. 18 is a schematic cross-sectional view illustrating an example of the liquid crystal display device of the present disclosure. The liquid crystal display device 100 illustrated in FIG. 18 includes the multilayer body 10 of the present disclosure and the first transparent electrode 4 on one surface of the multilayer body 10 ′ of the present disclosure, and the second transparent electrode 5 on the other surface. And a liquid crystal display unit 30. In the liquid crystal display device 100, the stacked body 10 is used as a surface material, and the stacked body 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
 本開示の液晶表示装置に用いられる液晶表示部は、対向配置された基板の間に形成された液晶層を有するものであり、従来公知の液晶表示装置に用いられている構成を採用することができる。
 本開示の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができ、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。
 本開示の液晶表示装置に用いられる対向基板としては、液晶表示装置の駆動方式等に応じて適宜選択して用いることができ、本開示の積層体を備えるものを用いても良い。
 液晶層を構成する液晶としては、本開示の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。前記方法によって液晶層を形成後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
 本開示の液晶表示装置において、対向配置された基板の間には、さらに複数色の着色層や、画素を画定する遮光部を有していてもよい。また、液晶表示部は、対向配置された基板の外側において、タッチパネル部材が位置する側とは反対側の位置に、発光素子や蛍光体を有するバックライト部を有していてもよい。また、対向配置された基板の外表面には、それぞれ偏光板を有していてもよい。
The liquid crystal display unit used in the liquid crystal display device of the present disclosure has a liquid crystal layer formed between substrates disposed to face each other, and may adopt a configuration used in a conventionally known liquid crystal display device. it can.
A driving method of the liquid crystal display device of the present disclosure is not particularly limited, and a driving method generally used for a liquid crystal display device can be adopted, for example, a TN method, an IPS method, an OCB method, and an MVA method. Etc.
The counter substrate used in the liquid crystal display device of the present disclosure can be appropriately selected and used depending on the driving method of the liquid crystal display device, and a substrate provided with the stacked body of the present disclosure may be used.
As the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy and mixtures thereof can be used according to the driving method of the liquid crystal display device of the present disclosure.
As a method for forming the liquid crystal layer, a method generally used as a method for manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method. After forming the liquid crystal layer by the above-described method, the sealed liquid crystal can be aligned by slowly cooling the liquid crystal cell to room temperature.
In the liquid crystal display device according to the present disclosure, a plurality of colored layers and a light-shielding portion for defining pixels may be further provided between the substrates arranged opposite to each other. In addition, the liquid crystal display unit may include a backlight unit including a light emitting element and a phosphor at a position opposite to the side where the touch panel member is positioned outside the substrate disposed oppositely. Moreover, you may have a polarizing plate in the outer surface of the board | substrate opposingly arranged, respectively.
 図19は、本開示の液晶表示装置の別の一例を示す概略断面図である。図19に示す液晶表示装置200は、本開示の積層体10と、本開示の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本開示の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、液晶表示部30とを有する。液晶表示装置200において、積層体10と第一の導電性部材201、及び第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図17に示すタッチパネル部材20’の構成と同様にすることができる。本開示の液晶表示装置に用いられる導電性部材としては、本開示のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 19 is a schematic cross-sectional view showing another example of the liquid crystal display device of the present disclosure. A liquid crystal display device 200 illustrated in FIG. 19 includes a laminate 10 according to the present disclosure, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ according to the present disclosure, The touch panel member 20 ′ having the second conductive member 202 including the second transparent electrode 5 on one surface of the stacked body 10 ″ and the liquid crystal display unit 30. In the liquid crystal display device 200, the stacked body 10. And the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6. The configuration of the touch panel member 20 ′ is, for example, 17 can be the same as the configuration of the touch panel member 20 'shown in Fig. 17. The conductive member used for the liquid crystal display device of the present disclosure is the same as the conductive member used for the touch panel member of the present disclosure. To use Can.
V.有機エレクトロルミネッセンス表示装置
 本開示の有機エレクトロルミネッセンス表示装置は、前述した本開示の積層体と、前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部とを有する。
V. Organic electroluminescence display device The organic electroluminescence display device of the present disclosure includes the above-described laminate of the present disclosure and an organic electroluminescence layer disposed between the opposing substrates disposed on one surface side of the laminate. An organic electroluminescence display portion.
 本開示の有機エレクトロルミネッセンス表示装置は、前述した本開示の積層体を備えるものであることから、機能層とポリイミドフィルムとの密着性に優れ、屈曲耐性に優れ、干渉縞の発生が抑制されたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本開示の有機エレクトロルミネッセンス表示装置に用いられる本開示の積層体は、ポリイミドフィルムの両面に、相溶層を介して機能層を有するものであることが好ましい。
 また、本開示の有機エレクトロルミネッセンス表示装置は、前述した本開示のタッチパネル部材を備えるものであっても良い。
 また、本開示の有機エレクトロルミネッセンス表示装置が有する対向基板は、本開示の積層体を備えるものであっても良い。
Since the organic electroluminescence display device of the present disclosure is provided with the laminate of the present disclosure described above, the adhesion between the functional layer and the polyimide film is excellent, the bending resistance is excellent, and the generation of interference fringes is suppressed. Therefore, it can be used particularly suitably for flexible displays and has excellent optical properties.
It is preferable that the laminated body of this indication used for the organic electroluminescent display apparatus of this indication has a functional layer on both surfaces of a polyimide film through a compatible layer.
Moreover, the organic electroluminescence display device of the present disclosure may include the touch panel member of the present disclosure described above.
In addition, the counter substrate included in the organic electroluminescence display device of the present disclosure may include the stacked body of the present disclosure.
 図20は、本開示の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。図20に示す有機エレクトロルミネッセンス表示装置300は、本開示の積層体10と、本開示の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置300において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。 FIG. 20 is a schematic cross-sectional view illustrating an example of the organic electroluminescence display device of the present disclosure. An organic electroluminescence display device 300 shown in FIG. 20 includes the laminate 10 of the present disclosure and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present disclosure, and the second transparent on the other surface. A touch panel member 20 including the electrodes 5 and an organic electroluminescence display unit 40 are included. In the organic electroluminescence display device 300, the stacked body 10 is used as a surface material, and the stacked body 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
 本開示の有機エレクトロルミネッセンス表示装置(有機EL表示装置)に用いられる有機エレクトロルミネッセンス表示部(有機EL表示部)は、対向配置された基板の間に形成された有機エレクトロルミネッセンス層(有機EL層)を有するものであり、従来公知の有機EL表示装置に用いられている構成を採用することができる。
 有機EL表示部は、さらに、支持基板と、有機EL層並びに有機EL層を挟持する陽極層及び陰極層を含む有機EL素子と、有機EL素子を封止する封止基材と、を有していてもよい。前記有機EL層としては、少なくとも有機EL発光層を有するものであれば良いが、例えば、上記陽極層側から、正孔注入層、正孔輸送層、有機EL発光層、電子輸送層および電子注入層がこの順で積層した構造を有するものを有するものを用いることができる。
 本開示の有機EL表示装置は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。本開示の有機EL表示装置に用いられる対向基板としては、有機EL表示装置の駆動方式等に応じて適宜選択して用いることができ、本開示の積層体を備えるものを用いても良い。
An organic electroluminescence display unit (organic EL display unit) used in the organic electroluminescence display device (organic EL display device) of the present disclosure is an organic electroluminescence layer (organic EL layer) formed between substrates disposed to face each other. The structure used for a conventionally known organic EL display device can be employed.
The organic EL display unit further includes a support substrate, an organic EL element including an organic EL layer and an anode layer and a cathode layer that sandwich the organic EL layer, and a sealing substrate that seals the organic EL element. It may be. The organic EL layer only needs to have at least an organic EL light-emitting layer. For example, from the anode layer side, a hole injection layer, a hole transport layer, an organic EL light-emitting layer, an electron transport layer, and an electron injection What has the structure which the layer laminated | stacked in this order can be used.
The organic EL display device of the present disclosure is applicable to, for example, a passive drive type organic EL display and an active drive type organic EL display. The counter substrate used in the organic EL display device of the present disclosure can be appropriately selected and used according to the driving method of the organic EL display device, and a substrate provided with the stacked body of the present disclosure may be used.
 図21は、本開示の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。図21に示す有機エレクトロルミネッセンス表示装置400は、本開示の積層体10と、本開示の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本開示の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置400において、積層体10と第一の導電性部材201、第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図17に示すタッチパネル部材20’の構成と同様にすることができる。本開示の有機エレクトロルミネッセンス表示装置に用いられる導電性部材としては、本開示のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 21 is a schematic cross-sectional view showing another example of the organic electroluminescence display device of the present disclosure. An organic electroluminescence display device 400 shown in FIG. 21 includes a laminate 10 of the present disclosure, a first conductive member 201 including the first transparent electrode 4 on one surface of the laminate 10 ′ of the present disclosure, It has the touch panel member 20 'which has the 2nd electroconductive member 202 provided with the 2nd transparent electrode 5 in one surface of the laminated body 10 "of an indication, and the organic electroluminescent display part 40. Organic electroluminescent display apparatus In 400, the laminated body 10 and the first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded together via the adhesive layer 6. The touch panel member 20 ′. The configuration of can be the same as the configuration of the touch panel member 20 'shown in Fig. 17. The configuration of the organic electroluminescence display device of the present disclosure can be used. The that the conductive member may be the same as the conductive member for use in a touch panel member of the present disclosure.
 以下、特に断りがない場合は、25℃で測定又は評価を行った。
[評価方法]
<ポリイミド前駆体の重量平均分子量>
 ポリイミド前駆体の重量平均分子量は、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行った。ポリイミド前駆体の重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド前駆体溶液の粘度>
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
Hereinafter, when there was no notice in particular, it measured or evaluated at 25 degreeC.
[Evaluation methods]
<Weight average molecular weight of polyimide precursor>
The weight average molecular weight of the polyimide precursor was developed by making the polyimide precursor a 0.5% by weight N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore diameter: 0.45 μm), and developing the polyimide precursor. As a solvent, a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used, a GPC apparatus (manufactured by Tosoh Corporation, HLC-8120, column used: GPC LF-804 made by SHODEX), a sample injection amount of 50 μL, and a solvent flow rate of 0.5 mL. The measurement was performed under the conditions of 40 ° C./min. The weight average molecular weight of the polyimide precursor is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300, 3,070) was used as a conversion value with respect to standard polystyrene measured. The elution time was compared with a calibration curve to determine the weight average molecular weight.
<Viscosity of polyimide precursor solution>
The viscosity of the polyimide precursor solution was measured using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
<ポリイミドの重量平均分子量>
 ポリイミド粉体15mgを、15000mgのN-メチルピロリドン(NMP)に浸漬し、ウォーターバスで60℃に加熱しながら、スターラーを用いて回転速度200rpmで、目視で溶解を確認するまで3~60時間撹拌することにより、0.1重量%の濃度のNMP溶液を得た。その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、検出器:示差屈折率(RID)検出器、使用カラム:SHODEX製GPC LF-804を2本直列に接続)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、カラム温度37℃、検出器温度37℃の条件で測定を行った。ポリイミドの重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<Weight average molecular weight of polyimide>
15 mg of polyimide powder is immersed in 15000 mg of N-methylpyrrolidone (NMP), and heated at 60 ° C. in a water bath, with a stirrer at a rotation speed of 200 rpm, and stirred for 3 to 60 hours until dissolution is visually confirmed. As a result, an NMP solution having a concentration of 0.1% by weight was obtained. The solution was filtered through a syringe filter (pore size: 0.45 μm), a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less was used as a developing solvent, and a GPC apparatus (manufactured by Tosoh Corporation, HLC-8120, detector: differential) Refractive index (RID) detector, column used: two SHODEX GPC LF-804s connected in series), sample injection amount 50 μL, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions. The weight average molecular weight of the polyimide is the same as the polystyrene standard sample (weight average molecular weight: 364,700, 204,000, 103,500, 44,360,27,500, 13,030, 6,300, 3, 070) was used as a conversion value with respect to standard polystyrene measured. The elution time was compared with a calibration curve to determine the weight average molecular weight.
<ポリイミド溶液の粘度>
 ポリイミド溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Viscosity of polyimide solution>
The viscosity of the polyimide solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
<膜厚測定法>
 10cm×10cmの大きさに切り出したポリイミドフィルム又は積層体の試験片の四隅と中央の計5点の膜厚を、デジタルリニアゲージ(株式会社尾崎製作所製、型式PDN12 デジタルゲージ)を用いて測定し、測定値の平均をポリイミドフィルム又は積層体の膜厚とした。
<Thickness measurement method>
The film thickness of a total of five points at the four corners and the center of a polyimide film or laminate test piece cut into a size of 10 cm × 10 cm was measured using a digital linear gauge (manufactured by Ozaki Mfg. Co., Ltd., model PDN12 digital gauge). The average of the measured values was taken as the film thickness of the polyimide film or laminate.
 <相溶層の染色>
 2mm×10mmの短冊状に切り出した積層体のサンプルを、エポキシ樹脂により包理固化して固定した後、固定されたサンプルの厚さ方向に、ミクロトーム(ライカ製、LEICA EM UC7)を用いて50nm以上150nm程度の幅で切断して作製した超薄切片を、四酸化ルテニウム(レアメタリック社製)とともに、30mL容量の秤量瓶に入れて密閉し、室温(25℃)で30分間放置した。その後、秤量瓶の蓋を空け、15分間放置した後、超薄切片に含まれるサンプルの厚さ方向の断面をSTEMにて観察した。
 一方で、四酸化ルテニウムによる染色を行う前の超薄切片に含まれるサンプルの厚さ方向の断面もSTEMにて観察した。
 各実施例及び各比較例において、四酸化ルテニウムによる染色前後のSTEM写真を比較することにより、染色された相溶層を確認して厚みを測定し、下記評価基準により評価した。なお、比較例3は、染色された相溶層の界面が不明瞭で、厚みを測定することができなかった。
(評価基準)
A:染色された相溶層の厚みが、任意の箇所において5nm以上であった。
B:ポリイミドフィルムと機能層との間において、染色された相溶層を観察できない箇所があり、染色された相溶層が海島状であった。
<Dyeing of compatible layer>
A sample of a laminate cut into 2 mm × 10 mm strips was fixed by embedding and fixing with an epoxy resin, and then 50 nm using a microtome (Leica, LEICA EM UC7) in the thickness direction of the fixed sample. The ultra-thin sections prepared by cutting with a width of about 150 nm were sealed in a 30 mL capacity weighing bottle together with ruthenium tetroxide (manufactured by Rare Metallic), and left at room temperature (25 ° C.) for 30 minutes. Thereafter, the lid of the weighing bottle was opened and left for 15 minutes, and then the cross section in the thickness direction of the sample contained in the ultrathin slice was observed with STEM.
On the other hand, the cross section in the thickness direction of the sample included in the ultrathin slice before staining with ruthenium tetroxide was also observed with STEM.
In each example and each comparative example, by comparing STEM photographs before and after dyeing with ruthenium tetroxide, the dyed compatible layer was confirmed, the thickness was measured, and evaluated according to the following evaluation criteria. In Comparative Example 3, the interface of the dyed compatible layer was unclear, and the thickness could not be measured.
(Evaluation criteria)
A: The thickness of the dyed compatible layer was 5 nm or more at an arbitrary position.
B: Between the polyimide film and the functional layer, there was a portion where the dyed compatible layer could not be observed, and the dyed compatible layer was a sea-island shape.
 実施例1で得られた積層体の厚さ方向の断面を、四酸化ルテニウムにより染色した後のSTEM画像を図3に示し、染色する前のSTEM画像を図4に示す。
 実施例2で得られた積層体の厚さ方向の断面を、四酸化ルテニウムにより染色した後のSTEM画像を図5に示し、染色する前のSTEM画像を図6に示す。
 実施例3で得られた積層体の厚さ方向の断面を、四酸化ルテニウムにより染色した後のSTEM画像を図7に示す。
 図3に示す実施例1の積層体の染色後のSTEM画像、図5に示す実施例2の積層体の染色後のSTEM画像、図7に示す実施例3の積層体の染色後のSTEM画像からは、各積層体が、ポリイミドフィルム1の一方の面に、四酸化ルテニウムにより染色された相溶層2を介して、機能層3を有していることを観察することができた。
 比較例2で得られた積層体の厚さ方向の断面を、四酸化ルテニウムにより染色した後のSTEM画像を図8に示し、染色する前のSTEM画像を図9に示す。図8に示す比較例2の積層体の染色後のSTEM画像からは、ポリイミドフィルム1と機能層3との間において、四酸化ルテニウムにより染色された相溶層2を観察できない箇所があった。
 比較例3で得られた積層体の厚さ方向の断面を、四酸化ルテニウムにより染色した後のSTEM画像を図10及び図11に各々示す。図10に示すSTEM画像と、図11に示すSTEM画像とは、撮影時の倍率が異なっている。図10及び図11に示す比較例3の積層体の染色後のSTEM画像からは、ポリイミドフィルムと機能層との界面が不明瞭であり、四酸化ルテニウムにより染色された相溶層を観察することができなかった。
The STEM image after dyeing the cross section in the thickness direction of the laminate obtained in Example 1 with ruthenium tetroxide is shown in FIG. 3, and the STEM image before dyeing is shown in FIG.
FIG. 5 shows a STEM image after staining the cross section in the thickness direction of the laminate obtained in Example 2 with ruthenium tetroxide, and FIG. 6 shows a STEM image before dyeing.
The STEM image after dyeing the cross section of the thickness direction of the laminated body obtained in Example 3 with ruthenium tetroxide is shown in FIG.
STEM image after dyeing of the laminate of Example 1 shown in FIG. 3, STEM image after dyeing of the laminate of Example 2 shown in FIG. 5, STEM image after dyeing of the laminate of Example 3 shown in FIG. From the above, it was observed that each laminate had the functional layer 3 on one surface of the polyimide film 1 through the compatible layer 2 dyed with ruthenium tetroxide.
FIG. 8 shows a STEM image of the cross section in the thickness direction of the laminate obtained in Comparative Example 2 after dyeing with ruthenium tetroxide, and FIG. 9 shows a STEM image before dyeing. From the STEM image after dyeing | staining of the laminated body of the comparative example 2 shown in FIG. 8, between the polyimide film 1 and the functional layer 3, there was a location which cannot observe the compatible layer 2 dye | stained with the ruthenium tetroxide.
FIGS. 10 and 11 show STEM images after the cross section in the thickness direction of the laminate obtained in Comparative Example 3 is dyed with ruthenium tetroxide. The STEM image shown in FIG. 10 and the STEM image shown in FIG. 11 have different magnifications at the time of photographing. From the STEM image after dyeing of the laminate of Comparative Example 3 shown in FIGS. 10 and 11, the interface between the polyimide film and the functional layer is unclear, and the compatible layer dyed with ruthenium tetroxide is observed. I could not.
<密着性評価>
 10cm×10cmに切り出した積層体の試験片の機能層について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、機能層の剥がれの有無を観察し、下記評価基準により密着性を評価した。
(評価基準)
A:テープによる剥離操作を繰り返し5回実施した後も機能層の剥がれが生じなかった。
B:テープによる剥離操作を1回実施した後は機能層の剥がれが生じないが、テープによる剥離操作を繰り返し5回実施するまでに、機能層の剥がれが生じた。
C:テープによる剥離操作を1回実施した後に、機能層がカットの縁に沿って全面的に剥がれた。
<Adhesion evaluation>
The functional layer of the test piece of the laminate cut out to 10 cm × 10 cm was subjected to a cross-cut test in accordance with JIS K 5600-5-6, and after repeating the tape peeling operation 5 times, whether or not the functional layer was peeled off Was observed and the adhesion was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: No peeling of the functional layer occurred even after repeating the peeling operation with the tape 5 times.
B: The peeling of the functional layer did not occur after the tape peeling operation was performed once, but the functional layer was peeled until the tape peeling operation was repeated 5 times.
C: After performing the peeling operation with the tape once, the functional layer was peeled entirely along the edge of the cut.
<干渉縞の評価>
 フナテック社製の干渉縞検査ランプ(Naランプ)を用い、目視にて積層体の干渉縞の有無を検査し、下記評価基準で評価した。なお、積層体のポリイミドフィルム側表面は黒インキで塗りつぶし、機能層側表面に干渉縞検査ランプをあて、反射観察にて評価を行った。
(評価基準)
A:干渉縞の発生が見られなかった。
B:干渉縞が薄く観察された。
C:干渉縞がはっきり観察された。
<Evaluation of interference fringes>
Using an interference fringe inspection lamp (Na lamp) manufactured by Funatech, the presence or absence of interference fringes in the laminate was visually inspected and evaluated according to the following evaluation criteria. The polyimide film side surface of the laminate was painted with black ink, and an interference fringe inspection lamp was applied to the functional layer side surface for evaluation by reflection observation.
(Evaluation criteria)
A: Generation of interference fringes was not observed.
B: A thin interference fringe was observed.
C: Interference fringes were clearly observed.
<鉛筆硬度>
 積層体の作製に用いたポリイミドフィルム、及び積層体の機能層側表面について、鉛筆硬度の測定を行った。
 ポリイミドフィルムの鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用い、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をサンプル表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行った。
 積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度の測定方法において、荷重を9.8Nに変更する以外は同様にして、評価した。
<Pencil hardness>
Pencil hardness was measured about the polyimide film used for preparation of a laminated body, and the functional layer side surface of a laminated body.
The pencil hardness of the polyimide film is determined by conditioning the sample for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%, and then using a test pencil specified by JIS-S-6006 and making a pencil scratch by Toyo Seiki Co., Ltd. By performing a pencil hardness test (0.98N load) specified in JIS K5600-5-4 (1999) on the surface of the sample using a coating film hardness tester and evaluating the highest pencil hardness without scratches went.
The pencil hardness of the laminate was evaluated in the same manner except that the load was changed to 9.8 N in the method for measuring the pencil hardness of the polyimide film.
<静的屈曲試験>
 積層体の作製に用いたポリイミドフィルム、及び積層体について、静的屈曲試験を行った。
 以下、静的屈曲試験の方法について、図2を参照して説明する。
 15mm×40mmに切り出したポリイミドフィルム又は積層体の試験片11を長辺の半分の位置で折り曲げ、試験片11の長辺の両端部が厚み6mmの金属片12(100mm×30mm×6mm)を上下面から挟むようにして配置し、試験片11の両端部と金属片12との上下面での重なりしろが各々10mmずつになるようにテープで固定した。試験片11が固定された金属片12を、上下からガラス板(100mm×100mm×0.7mm)13a、13bで挟み、試験片11を内径6mmで屈曲した状態で固定した。その際に、金属片12上で試験片11がない部分にダミーの試験片14a、14bを挟み込み、ガラス板13a、13bが平行になるようにテープで固定した。
 このようにして屈曲した状態で固定した試験片を、60℃、90%相対湿度(RH)の環境下で24時間静置した後、ガラス板と試験片固定用のテープを外し、試験片11にかかる力を解放した。その後、試験片11の一方の端部を固定し、試験片11にかかる力を解放してから30分後に試験片11の内角を測定した。
 なお、積層体は、機能層側表面が内側になるように屈曲させた。当該静的屈曲試験によって試験片が影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
<Static bending test>
A static bending test was performed on the polyimide film used for manufacturing the laminate and the laminate.
Hereinafter, the method of the static bending test will be described with reference to FIG.
A test piece 11 of a polyimide film or laminate cut out to 15 mm × 40 mm is bent at a half of the long side, and both ends of the long side of the test piece 11 are 6 mm thick metal pieces 12 (100 mm × 30 mm × 6 mm) on top. They were placed so as to be sandwiched from the lower surface, and fixed with tape so that the overlap between the upper and lower surfaces of both ends of the test piece 11 and the metal piece 12 was 10 mm each. The metal piece 12 on which the test piece 11 was fixed was sandwiched between glass plates (100 mm × 100 mm × 0.7 mm) 13a and 13b from above and below, and the test piece 11 was fixed in a bent state with an inner diameter of 6 mm. At that time, dummy test pieces 14a and 14b were sandwiched between portions of the metal piece 12 where the test piece 11 was not provided, and fixed with tape so that the glass plates 13a and 13b were parallel.
The test piece fixed in the bent state in this way was allowed to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and the test piece fixing tape were removed, and the test piece 11 was removed. Release the power of the. Thereafter, one end of the test piece 11 was fixed, and the internal angle of the test piece 11 was measured 30 minutes after releasing the force applied to the test piece 11.
The laminate was bent so that the functional layer side surface was on the inside. When the specimen is completely restored without being affected by the static bending test, the inner angle is 180 °.
<複屈折率>
 位相差測定装置(王子計測機器株式会社製、製品名「KOBRA-WR」)を用いて、25℃、波長590nmの光で、ポリイミドフィルムの厚み方向位相差値(Rth)を測定した。厚み方向位相差値(Rth)は、0度入射の位相差値と、斜め40度入射の位相差値を測定し、これらの位相差値から厚み方向位相差値Rthを算出した。前記斜め40度入射の位相差値は、フィルムの法線から40度傾けた方向から、波長590nmの光をフィルムに入射させて測定した。
 ポリイミドフィルムの複屈折率は、式:Rth/d(ポリイミドフィルムの膜厚(nm))に代入して求めた。
<Birefractive index>
The thickness direction retardation value (Rth) of the polyimide film was measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (product name “KOBRA-WR” manufactured by Oji Scientific Instruments). For the thickness direction retardation value (Rth), a phase difference value at 0 ° incidence and a phase difference value at an incidence angle of 40 ° were measured, and a thickness direction retardation value Rth was calculated from these retardation values. The retardation value at an oblique incidence of 40 degrees was measured by allowing light having a wavelength of 590 nm to enter the film from a direction inclined by 40 degrees from the normal line of the film.
The birefringence of the polyimide film was determined by substituting it into the formula: Rth / d (polyimide film thickness (nm)).
<全光線透過率>
 全光線透過率は、JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
<Total light transmittance>
The total light transmittance was measured with a haze meter (HM150, manufactured by Murakami Color Research Laboratory) in accordance with JIS K7361-1.
<YI値(黄色度)>
 YI値は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出した。
  YI=100(1.2769X-1.0592Z)/Y
<YI value (yellowness)>
The YI value is determined according to JIS K7373-2006 using an ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation V-7100), by spectrocolorimetric method, using auxiliary illuminant C, and 2 degree field of view. The tristimulus values X, Y, Z in the XYZ color system are obtained based on the transmittance measured in the range of 250 nm to 800 nm at 1 nm intervals, and the following formula is obtained from the X, Y, Z values. Calculated.
YI = 100 (1.2769X−1.0592Z) / Y
<ヘイズ値>
 ヘイズ値は、JIS K-7105に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
<Haze value>
The haze value was measured with a haze meter (HM150, manufactured by Murakami Color Research Laboratory) in accordance with JIS K-7105.
(合成例1)
 5Lのセパラブルフラスコに、脱水されたジメチルアセトアミド3327.9g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)59.7g(240.2mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)53.3g(120.1mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで4時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)472.4g(1475.3mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)663.0g(1492.5mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体1が溶解したポリイミド前駆体溶液1(固形分20重量%)を合成した。ポリイミド前駆体1に用いられたTFMBとAprTMOSとのモル比は86:14であった。ポリイミド前駆体溶液1(固形分20重量%)の25℃における粘度、及びGPCによって測定したポリイミド前駆体1の重量平均分子量を表1に示す。
(Synthesis Example 1)
In a 5 L separable flask, a solution of 3327.9 g of dehydrated dimethylacetamide and 59.7 g (240.2 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) was dissolved. To the place where the liquid temperature was controlled to 30 ° C., 53.3 g (120.1 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was gradually added so that the temperature rise was 2 ° C. or less. And stirred with a mechanical stirrer for 4 hours. To this, 472.4 g (1475.3 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was added, and after confirming complete dissolution, 4,4 ′-(hexafluoroisopropylidene) 663.0 g (1492.5 mmol) of diphthalic anhydride (6FDA) was gradually added in several times so that the temperature rise was 2 ° C. or less, and polyimide precursor solution 1 (solid) in which polyimide precursor 1 was dissolved 20% by weight) was synthesized. The molar ratio of TFMB used for the polyimide precursor 1 to AprTMOS was 86:14. Table 1 shows the viscosity at 25 ° C. of the polyimide precursor solution 1 (solid content 20% by weight) and the weight average molecular weight of the polyimide precursor 1 measured by GPC.
(合成例2~5、比較合成例2)
 前記合成例1の手順で、表1に記載の原料、固形分濃度になるように反応を実施し、ポリイミド前駆体溶液2~5及び比較ポリイミド前駆体溶液2とした。
(Synthesis Examples 2 to 5, Comparative Synthesis Example 2)
The reaction was carried out by the procedure of Synthesis Example 1 so that the raw material and solid content concentrations shown in Table 1 were obtained, to obtain polyimide precursor solutions 2 to 5 and comparative polyimide precursor solution 2.
(比較合成例1)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド169.5g、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)32.0g(100mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)44.2g(99.5mmol)を、温度上昇が2℃以下になるように数回に分けて徐々に投入し、比較ポリイミド前駆体1が溶解した比較ポリイミド前駆体溶液1(固形分25重量%)を合成した。比較ポリイミド前駆体溶液1の25℃における粘度、及びGPCによって測定した比較ポリイミド前駆体1の重量平均分子量を表1に示す。
(Comparative Synthesis Example 1)
A solution in which 169.5 g of dehydrated dimethylacetamide and 32.0 g (100 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) were dissolved in a 500 ml separable flask at a liquid temperature of 30 ° C. To the controlled part, 44.2 g (99.5 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was gradually divided into several times so that the temperature rise was 2 ° C. or less. The comparative polyimide precursor solution 1 (solid content 25% by weight) in which the comparative polyimide precursor 1 was dissolved was synthesized. Table 1 shows the viscosity of the comparative polyimide precursor solution 1 at 25 ° C. and the weight average molecular weight of the comparative polyimide precursor 1 measured by GPC.
(比較合成例3)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド345.3g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)49.7g(200mmol)、を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)88.4g(199mmol)を、温度上昇が2℃以下になるように徐々に投入し、比較ポリイミド前駆体3が溶解した比較ポリイミド前駆体溶液3(固形分40重量%)を合成した。比較ポリイミド前駆体溶液3(固形分40重量%)の25℃における粘度、及びGPCによって測定した比較ポリイミド前駆体3の重量平均分子量を表1に示す。
(Comparative Synthesis Example 3)
In a 500 ml separable flask, a solution in which 345.3 g of dehydrated dimethylacetamide and 49.7 g (200 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) were dissolved was liquid. To the place where the temperature was controlled to 30 ° C., 88.4 g (199 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was gradually added so that the temperature rise was 2 ° C. or less. A comparative polyimide precursor solution 3 (solid content 40 wt%) in which the comparative polyimide precursor 3 was dissolved was synthesized. Table 1 shows the viscosity at 25 ° C. of the comparative polyimide precursor solution 3 (solid content 40% by weight) and the weight average molecular weight of the comparative polyimide precursor 3 measured by GPC.
 以下において、表中の略称はそれぞれ以下のとおりである。
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
AprTMOS:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
In the following, the abbreviations in the table are as follows.
TFMB: 2,2′-bis (trifluoromethyl) benzidine AprTMOS: 1,3-bis (3-aminopropyl) tetramethyldisiloxane 6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例1~5、比較例1~3)
1.ポリイミドフィルムの準備
 ポリイミド前駆体溶液1~5及び比較ポリイミド前駆体溶液1~3を用い、下記(1)~(3)の手順を行うことで、約50μmの厚みのポリイミドフィルムをそれぞれ作製した。
(1)各ポリイミド前駆体溶液をガラス板上に塗布し、120℃の循環オーブンで10分乾燥した。
(2)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、350℃まで昇温し、1時間保持後、室温まで冷却した。
(3)ガラス板より剥離し、各ポリイミドフィルムを得た。
(Examples 1 to 5, Comparative Examples 1 to 3)
1. Preparation of Polyimide Film Using the polyimide precursor solutions 1 to 5 and the comparative polyimide precursor solutions 1 to 3, the following steps (1) to (3) were performed to prepare polyimide films having a thickness of about 50 μm.
(1) Each polyimide precursor solution was apply | coated on the glass plate, and it dried for 10 minutes with 120 degreeC circulation oven.
(2) Under a nitrogen stream (oxygen concentration of 100 ppm or less), the temperature was raised to 350 ° C. at a rate of temperature rise of 10 ° C./min, held for 1 hour, and then cooled to room temperature.
(3) It peeled from the glass plate and obtained each polyimide film.
2.機能層及び相溶層の形成
 得られたポリイミドフィルムの一方の面に、機能層1の硬化後の厚みが7μmとなるように、下記組成の機能層用組成物1を塗布し、70℃で1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜をハーフキュアーさせ、機能層用組成物1の半硬化膜を形成した。次いで、当該半硬化膜の表面に、機能層2の硬化後の厚みが3μmとなるように、下記組成の機能層用組成物2を塗布し、70℃で1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化させることにより、ポリイミドフィルム上に、厚さ7μmの機能層1と、厚さ3μmの機能層2とをこの順で形成し、全体厚みが約60μmの積層体を作製した。各積層体の膜厚を表2に示す。
<機能層用組成物1の組成>
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
・ジペンタエリスリトールEO変性ヘキサアクリレート(A-DPH-6E、新中村化学社製) 25質量部
・異型シリカ微粒子(平均粒子径25nm、日揮触媒化成社製) 50質量部(固形分換算)
・光重合開始剤(イルガキュア184、BASF製) 4質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形分換算)
・溶剤(メチルイソブチルケトン(MIBK)) 150質量部
<機能層用組成物2の組成>
・ウレタンアクリレート(UX5000、日本化薬社製) 25質量部
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 50質量部
・多官能アクリレートポリマー(アクリット8KX-012C、大成ファインケミカル社製) 25質量部(固形分換算)
・防汚剤(BYKUV3500、ビックケミー社製) 1.5質量部(固形分換算)
・光重合開始剤(イルガキュア184、BASF製) 4質量部
・溶剤(メチルイソブチルケトン(MIBK)) 150質量部
2. Formation of functional layer and compatible layer On one surface of the obtained polyimide film, the functional layer composition 1 having the following composition was applied so that the thickness after curing of the functional layer 1 would be 7 μm, and at 70 ° C. The solvent in the coating film is evaporated by heating for 1 minute, and using an ultraviolet irradiation device (Fusion UV System Japan, light source H bulb), the total amount of light in the air is 100 mJ / cm 2. The film was half cured by irradiation to form a semi-cured film of the functional layer composition 1. Next, the functional layer composition 2 having the following composition is applied to the surface of the semi-cured film so that the thickness after curing of the functional layer 2 is 3 μm, and heated at 70 ° C. for 1 minute in the coating film. The solvent was evaporated, and ultraviolet rays were irradiated using an ultraviolet ray irradiation device (light source H bulb, manufactured by Fusion UV System Japan Co., Ltd.) so that the integrated light amount was 200 mJ / cm 2 under an oxygen concentration of 200 ppm or less. By completely curing the coating film, a functional layer 1 having a thickness of 7 μm and a functional layer 2 having a thickness of 3 μm were formed in this order on the polyimide film, and a laminate having an overall thickness of about 60 μm was produced. . Table 2 shows the film thickness of each laminate.
<Composition of functional layer composition 1>
-25 parts by mass of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.)-25 parts by mass of dipentaerythritol EO-modified hexaacrylate (A-DPH-6E, manufactured by Shin-Nakamura Chemical Co., Ltd.) Atypical silica fine particles (average particle size 25 nm, manufactured by JGC Catalysts & Chemicals Co., Ltd.)
Photopolymerization initiator (Irgacure 184, manufactured by BASF) 4 parts by mass Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (in terms of solid content)
-Solvent (methyl isobutyl ketone (MIBK)) 150 parts by mass <Composition of composition 2 for functional layer>
・ Urethane acrylate (UX5000, manufactured by Nippon Kayaku Co., Ltd.) 25 mass parts ・ Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 50 mass parts ・ Polyfunctional acrylate polymer (Acryt 8KX-012C) , Manufactured by Taisei Fine Chemical Co., Ltd.) 25 parts by mass (in terms of solid content)
-Antifouling agent (BYKUV3500, manufactured by Big Chemie) 1.5 parts by mass (in terms of solid content)
Photopolymerization initiator (Irgacure 184, manufactured by BASF) 4 parts by mass Solvent (methyl isobutyl ketone (MIBK)) 150 parts by mass
 また、得られた積層体の機能層側の表面のマルテンス硬さをナノインデンテーション法により測定した。具体的には、HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用い、圧子としてBerkovich圧子(三角錐)を、積層体の機能層2の表面に500nm押し込み、一定保持して残留応力の緩和を行った後、除荷させて、緩和後の最大荷重を計測し、該最大荷重(Pmax(μN))と深さ500nmのくぼみ面積(A(nm))とを用い、Pmax/Aにより、マルテンス硬さを算出した。得られた積層体の機能層側の表面のマルテンス硬さは500MPaであった。 Moreover, the Martens hardness of the surface of the functional layer side of the obtained laminate was measured by a nanoindentation method. Specifically, using “TI950 TriboIndenter” manufactured by HYSITRON, Berkovich indenter (triangular pyramid) is pushed into the surface of the functional layer 2 of the laminated body by 500 nm, and the residual stress is alleviated by holding it constant. Then, unloading is performed, and the maximum load after relaxation is measured. Using the maximum load (P max (μN)) and the indentation area (A (nm 2 ) having a depth of 500 nm, P max / From A, Martens hardness was calculated. The Martens hardness of the surface on the functional layer side of the obtained laminate was 500 MPa.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2より、本開示の積層体に相当する実施例1~5の積層体は、静的屈曲耐性及び機能層の密着性が向上し、干渉縞の発生が抑制され、更に表面硬度が向上したことが示された。また、表2より、本開示の積層体に相当する実施例1~5の積層体は、透明性の高い光学特性に優れたものであることが示された。
 それに対して、比較例1、2の積層体は、機能層の密着性に劣り、干渉縞が観察され、静的屈曲耐性も劣っていた。比較例3の積層体は、静的屈曲耐性が大きく劣り、表面硬度にも劣っていた。
From Table 2, the laminated bodies of Examples 1 to 5 corresponding to the laminated body of the present disclosure have improved static bending resistance and functional layer adhesion, suppressed generation of interference fringes, and further improved surface hardness. It was shown that. Further, from Table 2, it was shown that the laminates of Examples 1 to 5 corresponding to the laminate of the present disclosure are excellent in optical properties with high transparency.
On the other hand, the laminates of Comparative Examples 1 and 2 were inferior in adhesion of the functional layer, interference fringes were observed, and static bending resistance was also inferior. The laminate of Comparative Example 3 was greatly inferior in static bending resistance and inferior in surface hardness.
 (実施例6)
1.ポリイミドフィルムの準備
(1)ポリイミドの調製(化学イミド化)
 合成例1と同様にして、ポリイミド前駆体1が溶解したポリイミド前駆体溶液1(固形分20重量%)を合成した。
 上記ポリイミド前駆体溶液500gを室温に下げ、触媒であるピリジン(42.0g、531mmol)と無水酢酸(54.2g、531mol)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液(596.2g)を5Lのセパラブルフラスコに移し、酢酸ブチル(403.8g)を加え均一になるまで撹拌した。次にメタノール(3000g)を徐々に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド6(100g)を得た。GPCによって測定したポリイミドの重量平均分子量は114322であった。
(2)ポリイミドフィルムの製造
 ポリイミド6の粉体を溶剤(ジクロロメタン)に溶かし、固形分17質量%のポリイミド溶液6を作製した。ポリイミド溶液6(固形分17質量%)の25℃における粘度は4801cpsであった。
 上述のように得られたポリイミド溶液6を用いて、下記(i)~(iii)の手順を行うことで、約50μmの厚みのポリイミドフィルムを作製した。
(i)ポリイミド溶液6をガラス板上に塗布し、自然乾燥後、フィルムをガラス板より剥離した。
(ii)フィルムを50℃の循環オーブンで10分乾燥した。
(iii)フィルムを、窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、200℃まで昇温し、200℃で1時間保持後、室温まで冷却し、ポリイミドフィルムを得た。
(Example 6)
1. Preparation of polyimide film (1) Preparation of polyimide (chemical imidization)
In the same manner as in Synthesis Example 1, a polyimide precursor solution 1 (solid content 20% by weight) in which the polyimide precursor 1 was dissolved was synthesized.
The polyimide precursor solution 500 g was lowered to room temperature, pyridine (42.0 g, 531 mmol) as a catalyst and acetic anhydride (54.2 g, 531 mol) were added, and the mixture was stirred at room temperature for 24 hours to synthesize a polyimide solution. The obtained polyimide solution (596.2 g) was transferred to a 5 L separable flask, and butyl acetate (403.8 g) was added and stirred until uniform. Next, methanol (3000 g) was gradually added to obtain a white slurry. The slurry was filtered and washed 5 times with methanol to obtain polyimide 6 (100 g). The weight average molecular weight of the polyimide measured by GPC was 114322.
(2) Manufacture of a polyimide film The powder of the polyimide 6 was dissolved in the solvent (dichloromethane), and the polyimide solution 6 with a solid content of 17 mass% was produced. The viscosity of the polyimide solution 6 (solid content: 17% by mass) at 25 ° C. was 4801 cps.
Using the polyimide solution 6 obtained as described above, a polyimide film having a thickness of about 50 μm was prepared by performing the following procedures (i) to (iii).
(I) The polyimide solution 6 was apply | coated on the glass plate, the film was peeled from the glass plate after natural drying.
(Ii) The film was dried in a circulation oven at 50 ° C. for 10 minutes.
(Iii) The film was heated to 200 ° C. under a nitrogen stream (oxygen concentration of 100 ppm or less) at a heating rate of 10 ° C./min, held at 200 ° C. for 1 hour, and then cooled to room temperature to obtain a polyimide film. .
2.機能層及び相溶層の形成
 得られたポリイミドフィルムの一方の面に、実施例1と同様にして、厚さ7μmの機能層1と、厚さ3μmの機能層2とをこの順で形成し、全体厚みが約60μmの積層体を作製した。積層体の膜厚を表4に示す。
2. Formation of functional layer and compatible layer In the same manner as in Example 1, a functional layer 1 having a thickness of 7 μm and a functional layer 2 having a thickness of 3 μm were formed in this order on one surface of the obtained polyimide film. A laminate having an overall thickness of about 60 μm was produced. Table 4 shows the thickness of the laminate.
(実施例7~10)
1.ポリイミドフィルムの準備
(1)ポリイミドの調製(化学イミド化)
 前記実施例6のポリイミドを合成した手順で、合成例1で得られたポリイミド前駆体溶液1の代わりに、それぞれ合成例2~5と同様にして得られたポリイミド前駆体溶液2~5を用いた以外は同様に反応させて、ポリイミド7~10を得た。
(2)ポリイミドフィルムの製造
 実施例6において、ポリイミド6の代わりに、ポリイミド7~10を用い、表3に記載の固形分濃度になるように調整した以外は実施例6と同様にして、表3に示すポリイミド溶液7~10を得た。
 実施例6においてポリイミド溶液6を用いる代わりに、ポリイミド溶液7~10を用いた以外は実施例6と同様にして、実施例7~10のポリイミドフィルムを得た。
(Examples 7 to 10)
1. Preparation of polyimide film (1) Preparation of polyimide (chemical imidization)
In the procedure for synthesizing the polyimide of Example 6, polyimide precursor solutions 2 to 5 obtained in the same manner as Synthesis Examples 2 to 5 were used in place of the polyimide precursor solution 1 obtained in Synthesis Example 1, respectively. Except that, polyimides 7 to 10 were obtained by the same reaction.
(2) Manufacture of polyimide film In Example 6, in place of polyimide 6, polyimides 7 to 10 were used, except that the solid content concentration shown in Table 3 was adjusted. The polyimide solutions 7 to 10 shown in 3 were obtained.
In Example 6, polyimide films of Examples 7 to 10 were obtained in the same manner as Example 6 except that polyimide solutions 7 to 10 were used instead of polyimide solution 6.
2.機能層及び相溶層の形成
 得られたポリイミドフィルムの一方の面に、実施例1と同様にして、厚さ7μmの機能層1と、厚さ3μmの機能層2とをこの順で形成し、全体厚みが約60μmの積層体を作製した。各積層体の膜厚を表4に示す。
2. Formation of functional layer and compatible layer In the same manner as in Example 1, a functional layer 1 having a thickness of 7 μm and a functional layer 2 having a thickness of 3 μm were formed in this order on one surface of the obtained polyimide film. A laminate having an overall thickness of about 60 μm was produced. Table 4 shows the film thickness of each laminate.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表4より、本開示の積層体に相当する実施例6~10の積層体は、静的屈曲耐性及び機能層の密着性が向上し、干渉縞の発生が抑制され、更に表面硬度が向上したことが示された。また、表4より、本開示の積層体に相当する実施例6~10の積層体は、特に黄色味の着色が抑制され、透明性の高い光学特性に優れたものであることが示された。また、実施例6~10の積層体はそれぞれ、同様のSi含有ジアミン比率を有する実施例1~5の積層体に比べて、相溶層が厚くなる傾向が見られ、密着性が向上した。 From Table 4, the laminated bodies of Examples 6 to 10 corresponding to the laminated body of the present disclosure have improved static bending resistance and functional layer adhesion, suppressed generation of interference fringes, and further improved surface hardness. It was shown that. Further, from Table 4, it was shown that the laminates of Examples 6 to 10 corresponding to the laminate of the present disclosure were particularly excellent in optical properties with high yellowness, in which yellowing was suppressed. . Further, each of the laminates of Examples 6 to 10 showed a tendency that the compatible layer was thicker and the adhesion was improved as compared with the laminates of Examples 1 to 5 having the same Si-containing diamine ratio.
 1  ポリイミドフィルム
 2  相溶層
 3  機能層
 10、10’、10” 積層体
 11 試験片
 12 金属片
 13a、13b ガラス板
 14a、14b ダミーの試験片
 4 第一の透明電極
 41 第一の導電部
 5 第二の透明電極
 51 第二の導電部
 6 接着層
 7 第一の取出し線
 71 第一の端子
 8 第二の取出し線
 81 第二の端子
 20、20’ タッチパネル部材
 21 積層体の端縁
 22 アクティブエリア
 23 非アクティブエリア
 24 接続部
 201 第一の導電性部材
 202 第二の導電性部材
 30 液晶表示部
 40 有機エレクトロルミネッセンス表示部
 100、200 液晶表示装置
 300、400 有機エレクトロルミネッセンス表示装置
DESCRIPTION OF SYMBOLS 1 Polyimide film 2 Compatibility layer 3 Functional layer 10, 10 ', 10 "Laminated body 11 Test piece 12 Metal piece 13a, 13b Glass plate 14a, 14b Dummy test piece 4 1st transparent electrode 41 1st electroconductive part 5 Second transparent electrode 51 Second conductive portion 6 Adhesive layer 7 First lead wire 71 First terminal 8 Second lead wire 81 Second terminal 20, 20 'Touch panel member 21 Edge of laminate 22 Active Area 23 Inactive area 24 Connection unit 201 First conductive member 202 Second conductive member 30 Liquid crystal display unit 40 Organic electroluminescence display unit 100, 200 Liquid crystal display device 300, 400 Organic electroluminescence display device

Claims (16)

  1.  ポリイミドフィルムの少なくとも一方の面に、相溶層を介して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する機能層を有し、
     前記相溶層が、前記ポリイミドフィルムの構成成分の少なくとも1種の成分と、前記機能層の構成成分の少なくとも1種の成分とを含有し、
     前記ポリイミドフィルムが、下記一般式(1)で表される構造を有するポリイミドを含有する、積層体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上90モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、10モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
    At least one surface of the polyimide film has a functional layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound via a compatible layer,
    The compatible layer contains at least one component of the constituent components of the polyimide film and at least one component of the constituent components of the functional layer,
    The laminated body in which the said polyimide film contains the polyimide which has a structure represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 10 mol% or more and 90 mol% or less of the total amount of R 2 is a diamine residue having a silicon atom in the main chain, and 10 mol% or more and 90 mol% or less does not have a silicon atom, and is an aromatic ring or a fatty acid. (A diamine residue having a group ring. N represents the number of repeating units.)
  2.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記主鎖にケイ素原子を有するジアミン残基が、主鎖にケイ素原子を1個又は2個有するジアミン残基である、請求項1に記載の積層体。 In the polyimide having the structure represented by the general formula (1), the diamine residue having a silicon atom in the main chain in R 2 in the general formula (1) has one silicon atom in the main chain or The laminate according to claim 1, which is a diamine residue having two.
  3.  四酸化ルテニウム、四酸化オスミウム及びリン酸タングステンからなる群から選ばれる少なくとも1種で染色した積層体の厚さ方向の断面において、染色された前記相溶層の厚みが5nm以上である、請求項1又は2に記載の積層体。 The thickness of the compatible layer dyed in the cross section in the thickness direction of the laminate dyed with at least one selected from the group consisting of ruthenium tetroxide, osmium tetroxide and tungsten phosphate is 5 nm or more. The laminate according to 1 or 2.
  4.  下記静的屈曲試験方法に従って、静的屈曲試験を行った場合に、当該試験で測定される内角が120°以上である、請求項1~3のいずれか1項に記載の積層体。
    [静的屈曲試験方法]
     15mm×40mmに切り出した積層体の試験片を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片の両端部と金属片との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板(100mm×100mm×0.7mm)で挟み、当該試験片を内径6mmで屈曲した状態で固定する。その際に、金属片とガラス板の間で当該試験片がない部分には、ダミーの試験片を挟み込み、ガラス板が平行になるようにテープで固定する。このようにして屈曲した状態で固定した当該試験片を、60℃、90%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放する。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定する。
    The laminate according to any one of claims 1 to 3, wherein when a static bending test is performed according to the following static bending test method, an internal angle measured in the test is 120 ° or more.
    [Static bending test method]
    The laminate test piece cut out to 15 mm × 40 mm is bent at a half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm × 30 mm × 6 mm) having a thickness of 6 mm from the upper and lower surfaces. Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each. The test piece is fixed in a bent state with an inner diameter of 6 mm. At that time, a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel. The test piece thus fixed in a bent state is left to stand for 24 hours in an environment of 60 ° C. and 90% relative humidity (RH), and then the glass plate and fixing tape are removed, and the test piece is attached to the test piece. Release this force. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
  5.  JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
     JIS K7373-2006に準拠して算出される黄色度が、30以下である、請求項1~4のいずれか1項に記載の積層体。
    The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
    The laminate according to any one of claims 1 to 4, wherein the yellowness calculated in accordance with JIS K7373-2006 is 30 or less.
  6.  前記JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で割った値が、0.04以下である、請求項5に記載の積層体。 The laminate according to claim 5, wherein a value obtained by dividing the yellowness calculated in accordance with JIS K7373-2006 by the film thickness (μm) is 0.04 or less.
  7.  前記一般式(1)で表される構造を有するポリイミドが、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含む、請求項1~6のいずれか1項に記載の積層体。 The polyimide having the structure represented by the general formula (1) contains an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic ring is a sulfonyl group or fluorine. The laminate according to any one of claims 1 to 6, comprising at least one selected from the group consisting of a structure linked by an alkylene group which may be substituted with.
  8.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項1~7のいずれか1項に記載の積層体。 In the polyimide having the structure represented by the general formula (1), R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, a cyclopentanetetracarboxylic dianhydride residue, a di Cyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ′, 4,4′- Biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3, 4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3, '- is at least one tetravalent group selected from the group consisting of oxydiphthalic anhydride residue, laminate according to any one of claims 1 to 7.
  9.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記芳香族環又は脂肪族環を有するジアミン残基が、1,4-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項1~8のいずれか1項に記載の積層体。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
    In the polyimide having the structure represented by the general formula (1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is a 1,4-cyclohexanediamine residue. Group, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue The laminate according to any one of claims 1 to 8, which is at least one divalent group selected from the group consisting of a group and a divalent group represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
  10.  前記機能層が、多官能(メタ)アクリレートモノマーの重合物を含有する、請求項1~9のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 9, wherein the functional layer contains a polymer of a polyfunctional (meth) acrylate monomer.
  11.  前記ポリイミドフィルムが位置する側とは反対側の前記機能層の表面のマルテンス硬さが、350MPa以上1000MPa未満である、請求項1~10のいずれか1項に記載の積層体。 The laminate according to any one of Claims 1 to 10, wherein the Martens hardness of the surface of the functional layer on the side opposite to the side on which the polyimide film is located is 350 MPa or more and less than 1000 MPa.
  12.  前記請求項1~11のいずれか1項に記載の積層体である、ディスプレイ用表面材。 A display surface material, which is the laminate according to any one of claims 1 to 11.
  13.  フレキシブルディスプレイ用である、請求項12に記載のディスプレイ用表面材。 The display surface material according to claim 12, which is used for a flexible display.
  14.  前記請求項1~11のいずれか1項に記載の積層体と、
     前記積層体の一方の面側に配置された、複数の導電部を有する透明電極と、
     前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を備えるタッチパネル部材。
    The laminate according to any one of claims 1 to 11,
    A transparent electrode having a plurality of conductive portions arranged on one surface side of the laminate;
    A touch panel member comprising: a plurality of lead wires that are electrically connected on at least one side of an end portion of the conductive portion.
  15.  前記請求項1~11のいずれか1項に記載の積層体と、
     前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、
    を有する液晶表示装置。
    The laminate according to any one of claims 1 to 11,
    A liquid crystal display unit having a liquid crystal layer disposed between opposing substrates, disposed on one surface side of the laminate;
    A liquid crystal display device.
  16.  前記請求項1~11のいずれか1項に記載の積層体と、
     前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、
    を有する有機エレクトロルミネッセンス表示装置。
    The laminate according to any one of claims 1 to 11,
    An organic electroluminescence display unit having an organic electroluminescence layer disposed between opposing substrates, disposed on one surface side of the laminate,
    An organic electroluminescence display device.
PCT/JP2018/022201 2017-06-16 2018-06-11 Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device WO2018230495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525408A JP7107311B2 (en) 2017-06-16 2018-06-11 Laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017118412 2017-06-16
JP2017-118412 2017-06-16
JP2018-024416 2018-02-14
JP2018024416 2018-02-14

Publications (1)

Publication Number Publication Date
WO2018230495A1 true WO2018230495A1 (en) 2018-12-20

Family

ID=64659263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022201 WO2018230495A1 (en) 2017-06-16 2018-06-11 Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device

Country Status (3)

Country Link
JP (1) JP7107311B2 (en)
TW (1) TWI757512B (en)
WO (1) WO2018230495A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071152A1 (en) * 2019-10-07 2021-04-15 삼성에스디아이 주식회사 Flexible window film and display apparatus comprising same
US10985344B2 (en) 2017-10-27 2021-04-20 Applied Materials, Inc. Flexible cover lens films
US11579339B2 (en) 2018-05-10 2023-02-14 Applied Materials, Inc. Replaceable cover lens for flexible display
WO2023163152A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
US11789300B2 (en) 2019-06-26 2023-10-17 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11988810B2 (en) 2018-08-14 2024-05-21 Applied Materials, Inc. Multi-layer wet-dry hardcoats for flexible cover lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170420A (en) * 1987-01-08 1988-07-14 Nitto Electric Ind Co Ltd Molded article of colorless transparent polyimide and production thereof
JPH09123357A (en) * 1996-08-06 1997-05-13 Ube Ind Ltd Polyimide film base plate having coat layer
JP2003113264A (en) * 2001-07-31 2003-04-18 Ube Ind Ltd Film resistant to atomic oxygen
JP2006142683A (en) * 2004-11-19 2006-06-08 Kaneka Corp Laminate and printed wiring board
WO2013039029A1 (en) * 2011-09-12 2013-03-21 東レ株式会社 Polyimide resin, resin composition and laminated film that use same
WO2015129682A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Polyimide resin, resin composition using same, and laminated film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317554A (en) * 1987-06-19 1988-12-26 Shin Etsu Chem Co Ltd Liquid polyimide polymer composition
JP3132734B2 (en) * 1992-06-04 2001-02-05 住友ベークライト株式会社 Alignment film for liquid crystal display device
JP2003231752A (en) * 2002-02-12 2003-08-19 Toyobo Co Ltd Photosensitive polyimide precursor, photosensitive resin composition, color filter, liquid crystal drive side- substrate, and liquid crystal panel
JP4044485B2 (en) * 2003-05-02 2008-02-06 日東電工株式会社 Optical film, method for producing the same, and polarizing plate using the same
JP2006253185A (en) * 2005-03-08 2006-09-21 Toray Ind Inc Polyimide film, heat-resistant resin laminated film using the same, and laminated film with metallic layer
KR101423167B1 (en) * 2006-07-13 2014-07-25 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible light guide and laminate board for optical/electrical composite wiring board
JP6342263B2 (en) * 2014-08-27 2018-06-13 住友電工プリントサーキット株式会社 Coverlay, flexible printed wiring board and LED module
JP7016605B2 (en) * 2015-07-17 2022-02-07 大日本印刷株式会社 Laminated body for touch panel and foldable image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170420A (en) * 1987-01-08 1988-07-14 Nitto Electric Ind Co Ltd Molded article of colorless transparent polyimide and production thereof
JPH09123357A (en) * 1996-08-06 1997-05-13 Ube Ind Ltd Polyimide film base plate having coat layer
JP2003113264A (en) * 2001-07-31 2003-04-18 Ube Ind Ltd Film resistant to atomic oxygen
JP2006142683A (en) * 2004-11-19 2006-06-08 Kaneka Corp Laminate and printed wiring board
WO2013039029A1 (en) * 2011-09-12 2013-03-21 東レ株式会社 Polyimide resin, resin composition and laminated film that use same
WO2015129682A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Polyimide resin, resin composition using same, and laminated film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985344B2 (en) 2017-10-27 2021-04-20 Applied Materials, Inc. Flexible cover lens films
US11758757B2 (en) 2017-10-27 2023-09-12 Applied Materials, Inc. Flexible cover lens films
US11579339B2 (en) 2018-05-10 2023-02-14 Applied Materials, Inc. Replaceable cover lens for flexible display
US11988810B2 (en) 2018-08-14 2024-05-21 Applied Materials, Inc. Multi-layer wet-dry hardcoats for flexible cover lens
US11789300B2 (en) 2019-06-26 2023-10-17 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11934056B2 (en) 2019-06-26 2024-03-19 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11940682B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11940683B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
WO2021071152A1 (en) * 2019-10-07 2021-04-15 삼성에스디아이 주식회사 Flexible window film and display apparatus comprising same
CN114938649A (en) * 2019-10-07 2022-08-23 三星Sdi株式会社 Flexible window film and display device including the same
CN114938649B (en) * 2019-10-07 2023-11-03 三星Sdi株式会社 Flexible window film and display device including the same
WO2023163152A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device

Also Published As

Publication number Publication date
JPWO2018230495A1 (en) 2020-04-16
JP7107311B2 (en) 2022-07-27
TW201906733A (en) 2019-02-16
TWI757512B (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6973476B2 (en) Polyimide film, laminates, and surface materials for displays
KR102434812B1 (en) Surface materials for polyimide films, laminates and displays
JP7107311B2 (en) Laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP7363019B2 (en) Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
JP2020204022A (en) Polyimide film, polyimide varnish, production method of polyimide film, laminate, display member, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2018059075A (en) Polyimide film, laminate and display surface material
JP2019137864A (en) Polyimide film, laminate, display member, touch panel member, liquid crystal display device and organic electroluminescence display device
WO2019065624A1 (en) Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP2020203479A (en) Laminate, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018062190A1 (en) Polyimide film, laminate, and display surface material
JP7139715B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018030410A1 (en) Polyimide film, laminate, and surface material for display
JP2019001989A (en) Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
TWI784993B (en) Surface material for flexible display
JP2023154059A (en) Polyimide film, laminate, member for display, touch panel member, liquid crystal display device, and organic electronic luminescent display device
WO2018117145A1 (en) Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
WO2020004293A1 (en) Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device
JP7226312B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2019137865A (en) Polyimide composition, production method of polyimide composition, production method of polyimide film, production method of laminate, method for manufacturing display optical member, method for manufacturing touch panel member, method for manufacturing liquid crystal display device, and method for manufacturing organic electroluminescence display device
WO2019078051A1 (en) Polyimide film, polyimide film production method, laminate, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018190179A1 (en) Polyimide film, layered product, surface material for display
JP7388011B2 (en) Polyimide films, polyimide materials, laminates, display members, touch panel members, liquid crystal display devices, and organic electroluminescent display devices
JP7247510B2 (en) Polyimide film, method for producing polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2020255864A1 (en) Polyimide film, polyimide varnish, method for producing polyimide film, multilayer body, member for displays, touch panel member, liquid crystal display device and organic electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818544

Country of ref document: EP

Kind code of ref document: A1