WO2018062190A1 - Polyimide film, laminate, and display surface material - Google Patents

Polyimide film, laminate, and display surface material Download PDF

Info

Publication number
WO2018062190A1
WO2018062190A1 PCT/JP2017/034763 JP2017034763W WO2018062190A1 WO 2018062190 A1 WO2018062190 A1 WO 2018062190A1 JP 2017034763 W JP2017034763 W JP 2017034763W WO 2018062190 A1 WO2018062190 A1 WO 2018062190A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
polyimide
silicon atom
group
polyimide film
Prior art date
Application number
PCT/JP2017/034763
Other languages
French (fr)
Japanese (ja)
Inventor
前田 高徳
勝哉 坂寄
奈保美 金澤
滉大 岡田
小林 義弘
綾子 古瀬
敬輔 脇田
綾 高尾
太田 貴之
誠 溝尻
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017182598A external-priority patent/JP6939319B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018062190A1 publication Critical patent/WO2018062190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • Embodiment of this indication is related with a polyimide film, a layered product, and a surface material for displays.
  • a polyimide resin is a highly heat-resistant resin obtained by subjecting a polyamic acid (polyamic acid) obtained by a condensation reaction of an aromatic tetracarboxylic acid anhydride and an aromatic diamine to a dehydration ring-closing reaction.
  • polyamic acid polyamic acid
  • polyimide resins generally show yellow or brown coloration, it has been difficult to use them in fields that require transparency, such as display applications and optical applications. Therefore, it has been studied to apply a polyimide having improved transparency to a display member.
  • Patent Document 1 discloses 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid dicarboxylic acid as polyimide resins having high heat resistance, high transparency, and low water absorption.
  • a polyimide resin obtained by reacting with an imino forming compound is disclosed, and is described as being suitable for a substrate material such as a flat panel display or a mobile phone device.
  • Patent Document 2 states that as a polyimide film used for a substrate of a flexible device, a polyimide film that is colorless and transparent, has a low residual stress generated between the inorganic film, and has excellent mechanical and thermal properties.
  • a polyimide film obtained by imidizing a polyimide precursor using a specific fluorine-based aromatic diamine and a silicone compound having a siloxane skeleton having 3 to 200 silicon atoms as a monomer component is disclosed.
  • SiN film an inorganic film
  • Patent Document 3 as a water repellent polyimide film, a polyimide siloxane solution coating film is imidized or applied onto a polyamic acid solution coating film.
  • a polyimide film having a surface atom concentration of silicon atoms of 1% or more is disclosed by imidization after forming a film.
  • the improvement of adhesion was one of the problems.
  • the polyimide film appropriately containing silicon atoms improves the adhesion to the resin-containing layer, but on the other hand, the peelability deteriorates, so the film is peeled off from the support during the manufacturing process. It has been found that the film is difficult to peel off, and the film has problems such as wrinkles, cracks, streaks, or the film breaks. Therefore, in the polyimide film, coexistence with the peelability from the support body in a manufacture process and the adhesiveness at the time of laminating
  • the water-repellent polyimide film described in Patent Document 3 has low light transmittance and is used in fields such as display applications and optical applications where transparency is required. It is difficult to use.
  • the conventional polyimide film containing a silicone component has insufficient elastic modulus, low surface hardness, is easily scratched, or transmits an impact to a light-emitting panel or circuit, resulting in insufficient function as a protective film. There was also. From the above, while having both peelability from the support in the production process and adhesion when other layers are laminated, it has sufficient transparency as a transparent film and sufficient surface hardness as a protective film There is a need for a resin film that can be used.
  • the present disclosure has been made in view of the above-described problems. While improving the adhesion of one surface, defects caused by peeling from the support on the other surface are suppressed, and the transparency is improved.
  • the main object is to provide a polyimide film in which the decrease and the decrease in surface hardness are suppressed. Moreover, this indication aims at providing the surface material for displays which is the laminated body which has the said polyimide film, and the said polyimide film or the said laminated body.
  • One embodiment of the present disclosure contains a polyimide containing silicon atoms,
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high.
  • a polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
  • 1 embodiment of this indication contains the polyimide containing a silicon atom, and contains the silicon atom in the ratio of 0.2 mass% or more and 4.1 mass% or less in all the polyimides,
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • a polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
  • One embodiment of the present disclosure contains a polyimide having a structure represented by the following general formula (1-1),
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high.
  • a polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
  • R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 ′ is a divalent group that is a diamine residue.
  • It is a diamine residue having no aromatic ring or aliphatic ring.
  • N ′ represents the number of repeating units.
  • 1 embodiment of this indication contains the polyimide which has a structure denoted by the following general formula (1),
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • one surface and the other surface contain silicon atoms, the silicon atom concentration on one surface is different from the silicon atom concentration on the other surface, and the silicon atom concentration on at least one surface is 1.
  • a polyimide film that is 0 atomic% or more.
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom
  • N represents the number of repeating units.
  • the polyimide includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) the aromatic rings are substituted with a sulfonyl group or fluorine.
  • a polyimide film comprising at least one selected from the group consisting of a structure linked by an alkylene group which may be included.
  • a polyimide film which is at least one tetravalent group selected from the group consisting of:
  • the polyimide having the structure represented by the general formula (1-1) has the aromatic ring or the aliphatic ring in R 2 ′ in the general formula (1-1).
  • a diamine residue and a diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) in the polyimide having the structure represented by the general formula (1) are each trans.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • a polyimide that uses a surface having a relatively high silicon atom concentration as an adhesion surface with a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound Provide film.
  • One embodiment of the present disclosure is a laminate in which the polyimide film of the one embodiment of the present disclosure and a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound are positioned adjacent to each other. Provide the body.
  • the radical polymerizable compound is a compound having two or more (meth) acryloyl groups in one molecule
  • the cationic polymerizable compound includes at least one of an epoxy group and an oxetanyl group.
  • a laminate which is a compound having two or more molecules.
  • this indication provides the surface material for displays which is the polyimide film of one embodiment of the above-mentioned indication, or the layered product of one embodiment of the this indication.
  • this indication provides the surface material for flexible displays which is the polyimide film of one embodiment of the above-mentioned indication, or the layered product of one embodiment of this indication.
  • a suppressed polyimide film can be provided.
  • embodiment of this indication can provide the surface material for displays which is the laminated body which has the said polyimide film, and the said polyimide film or the said laminated body.
  • the first embodiment of the polyimide film of the present disclosure contains a polyimide containing silicon atoms,
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high.
  • 2nd Embodiment of the polyimide film of this indication contains the polyimide containing a silicon atom, contains the silicon atom in the ratio of 0.2 mass% or more and 4.1 mass% or less in all the polyimides,
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. It is a polyimide film whose atomic concentration is 10.0 atomic% or less.
  • the second embodiment includes silicon atoms in the proportion of 0.2% by mass or more and 4.1% by mass or less in the total polyimide in the first embodiment. This is a form that can easily improve the adhesion and the peelability of the other surface.
  • the third embodiment of the polyimide film of the present disclosure contains a polyimide having a structure represented by the following general formula (1-1),
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high.
  • R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 ′ is a divalent group that is a diamine residue.
  • It is a diamine residue having no aromatic ring or aliphatic ring.
  • N ′ represents the number of repeating units.
  • the third embodiment uses a polyimide having a structure represented by the general formula (1-1) as the polyimide containing silicon atoms in the first embodiment. It is the form which is easy to improve the adhesiveness of one surface and the peelability of the other surface.
  • the polyimide film of this indication contains the polyimide which has a structure represented by following General formula (1),
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 30 or less
  • a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127
  • the tensile velocity is 10 mm / min
  • the distance between chucks is 20 mm.
  • the tensile elastic modulus at 25 ° C. is 1.8 GPa or more
  • one surface and the other surface contain silicon atoms
  • the silicon atom concentration on one surface is different from the silicon atom concentration on the other surface
  • the silicon atom concentration on at least one surface is 1. It is a polyimide film which is 0 atomic% or more.
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom
  • N represents the number of repeating units.
  • a polyimide having a structure represented by the general formula (1) is used as the polyimide containing a silicon atom in the first embodiment, and the silicon atom concentration on at least one surface is 1. It is a polyimide film that is 0.0 atomic% or more, and has a form that can easily improve the adhesion of one surface of the polyimide film and the peelability of the other surface.
  • the silicon atom concentration on the surface having a relatively large silicon atom concentration is set to 10.0 atom% or less. be able to.
  • the polyimide film of the present disclosure has a total light transmittance of 85% or more as measured in accordance with JIS K7361-1.
  • the total light transmittance of the polyimide film of the present disclosure measured according to JIS K7361-1 is preferably 88% or more, more preferably 89% or more, particularly 90% or more. It is preferable.
  • the polyimide film of the present disclosure has a thickness of 5 ⁇ m or more and 100 ⁇ m or less, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more.
  • the polyimide film of the present disclosure has a thickness of 50 ⁇ m ⁇ 5 ⁇ m, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more. Further, it is preferably 89% or more, and particularly preferably 90% or more.
  • the total light transmittance measured according to JIS K7361-1 can be measured by, for example, a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory).
  • the converted value of the total light transmittance of different thickness can be obtained by Lambert Beer's law and can be used.
  • the polyimide film of the present disclosure preferably has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less.
  • YI value yellowness calculated in accordance with JIS K7373-2006 is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the polyimide film of the present disclosure has a thickness of 5 ⁇ m or more and 100 ⁇ m or less, and the yellowness (YI value) calculated based on JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, More preferably, it is 15 or less, and it is especially preferable that it is 10 or less.
  • the polyimide film of the present disclosure has a thickness of 50 ⁇ m ⁇ 5 ⁇ m, and the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 10 or less, and more preferably 7 or less. Preferably, it is 5 or less and still more preferable.
  • the yellowness is measured using a UV-Vis near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006. It can be calculated based on the transmittance measured by the color method. It should be noted that, from the measurement value of yellowness of a certain thickness, the yellowness of different thicknesses is calculated for each transmittance at each wavelength measured at 5 nm intervals between 380 nm and 780 nm of a sample with a specific thickness. Similarly to the light transmittance, a converted value of each transmittance at each wavelength of different thickness can be obtained according to Lambert Beer's law, and can be calculated and used based on it.
  • a converted value of each transmittance at each wavelength of different thickness can be obtained according to Lambert Beer's law, and can be calculated and used based on it.
  • the polyimide film of the present disclosure has a tensile elastic modulus at 25 ° C. of 1.8 GPa or more when a 15 mm ⁇ 40 mm test piece is measured according to JIS K7127, the tensile speed is 10 mm / min, and the distance between chucks is 20 mm. is there.
  • the tensile elastic modulus at 25 ° C. room temperature
  • the tensile elastic modulus is preferably 2.0 GPa or more, and more preferably 2.4 GPa or more.
  • the tensile elastic modulus is preferably 5.2 GPa or less from the viewpoint of improving bending resistance. From the viewpoint of improving bending resistance, the tensile elastic modulus may be 4.0 GPa or less, or 3.5 GPa or less.
  • the tensile elastic modulus was determined by cutting a test piece having a width of 15 mm ⁇ a length of 40 mm from a polyimide film using a tensile tester (for example, Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) at 25 ° C.
  • the tensile speed can be 10 mm / min, and the distance between chucks can be 20 mm.
  • the polyimide film for obtaining the tensile modulus of elasticity preferably has a thickness of 50 ⁇ m ⁇ 5 ⁇ m.
  • the polyimide films of the first, second, and third embodiments of the present disclosure include silicon atoms on one side and the other side, but the silicon atom concentration on one side and the other side
  • the silicon atom concentration on the surface having a relatively high silicon atom concentration is 10.0 atom% or less.
  • the polyimide film of the fourth embodiment of the present disclosure contains silicon atoms on one side and the other side, but the silicon atom concentration on one side and the silicon atoms on the other side Unlike the concentration, the silicon atom concentration on at least one surface is 1.0 atomic% or more.
  • the value of atomic% of each atom is a value obtained by rounding a measured value to the first decimal place according to the rule B of JIS Z8401: 1999.
  • the silicon atom concentration of 1.0 atom% or more is included if the silicon atom concentration is 0.950 atom% or more.
  • the silicon atom concentration on at least one surface is 1.0 atom% or more, and the silicon atom concentration on a surface having a relatively large silicon atom concentration is 10.0 atom% or less. Is preferable in terms of adhesion, peelability, and surface hardness.
  • the absolute value of the difference between the silicon atom concentration on one surface and the silicon atom concentration on the other surface is 0.1 from the point of improving the adhesion of one surface and the peelability of the other surface.
  • the silicon atom concentration on the surface having a relatively large silicon atom concentration is preferably 1.2 atom% or more, more preferably 1.6 atom% or more, and even more preferably 2. From the viewpoint of adhesion and surface hardness, it is preferably 8.0 atomic% or less, more preferably 5.0 atomic% or less.
  • the silicon atom concentration on the surface having a relatively small silicon atom concentration is preferably 4.0 atom% or less, more preferably 2.0 atom% or less, still more preferably 1.5 atom% or less, from the viewpoint of peelability.
  • the silicon atom concentration on the surface having a relatively large silicon atom concentration is 1.6 atom% or more and 10.0 atom% or less, and the silicon atom concentration on one surface and the silicon atom concentration on the other surface
  • the absolute value of the difference between the two is 0.8 atomic% or more, it is preferable from the viewpoint that both the adhesiveness and the peelability are compatible and the adhesiveness of the surface having a relatively large silicon atom concentration is particularly excellent.
  • the silicon atom concentration on the surface having a relatively low silicon atom concentration is 1.5 atomic% or less, and the absolute value of the difference between the silicon atom concentration on one surface and the silicon atom concentration on the other surface is 0.
  • it is at least 8 atomic%, it is preferable from the viewpoint of excellent releasability on a surface having a relatively low silicon atom concentration while achieving both adhesion and releasability.
  • the silicon atom concentration on the surface having a relatively high silicon atom concentration is 1.6 atom% or more and 10.0 atom% or less, and the silicon atom concentration on the surface having a relatively low silicon atom concentration is 1.5 atom%.
  • the atomic concentration on the surface of the polyimide film is determined by the X-ray photoelectron spectroscopy (XPS) using an X-ray photoelectron spectrometer (for example, Thermo Scientific Thea Probe) under the following conditions. It can be determined from the atomic% value.
  • XPS X-ray photoelectron spectroscopy
  • the polyimide contained in the polyimide film contains silicon atoms, has the specific total light transmittance, and the specific tensile elastic modulus, and is on either one surface or the other surface.
  • a polyimide containing silicon atoms, but having a silicon atom concentration on one surface different from a silicon atom concentration on the other surface, and a silicon atom concentration on a surface having a relatively large silicon atom concentration is 10.0 atom% or less
  • the present inventors paid attention to polyimide as a resin used as a glass substitute product.
  • Polyimide is known to have excellent heat resistance due to its chemical structure. Further, the present inventors have found that the adhesion between the polyimide film and a resin-containing layer such as a hard coat layer is improved by introducing silicon atoms into the polyimide. This is presumed to be reasonably excellent in mixing the polyimide film and the resin-containing layer when the resin-containing layer is laminated by introducing silicon atoms into the polyimide.
  • the polyimide film with silicon atoms introduced into the polyimide is difficult to peel off when peeling from the support during the manufacturing process, and it is confirmed that defects such as wrinkles, cracks, and streaks may occur or the film may break.
  • a polyimide film having a rate of 1.8 GPa or more and a total light transmittance of 85% or more can achieve both adhesion and releasability from the support in the production process, and has sufficient surface hardness as a protective film. It was found that the film has sufficient transparency as a transparent resin film while maintaining the above.
  • the polyimide film of the present disclosure has improved adhesion to a resin-containing layer such as a hard coat layer on the surface with a relatively high silicon atom concentration, and a support in the production process on a surface with a relatively low silicon atom concentration. The peelability when peeled from is improved.
  • the silicon atom concentrations on the front and back surfaces are different from each other because the molecular chains are arranged so that the amount of silicon atoms exposed on the front and back surfaces is different.
  • the reason why the molecular chain of the polyimide resin is so arranged is not clear, but the polyimide resin contains silicon atoms, so that the drying process before peeling the support is appropriately adjusted in the production process of the polyimide film.
  • the molecular chain is arranged so that silicon atoms are exposed on the surface in contact with air compared to the surface in contact with the support.
  • silicon atoms are more easily exposed on the surface in contact with the air by increasing the temperature stepwise in the drying step before peeling the support. Specifically, it is first dried at a low temperature of less than 70 ° C. At this stage, since the solvent is sufficiently present in the film, it is presumed that the silicon atoms in the coating film are present almost uniformly in the film. Next, when heating is performed at a temperature of 70 ° C. or more and further drying is performed, it is presumed that a part containing silicon atoms tends to aggregate on the film surface.
  • the polyimide films of the first, second, and third embodiments of the present disclosure have such adhesion because the silicon atom concentration on the surface having a relatively large silicon atom concentration is 10.0 atom% or less. It is considered that the decrease in sex is suppressed.
  • the polyimide film of this indication is excellent in the peelability from the support body in a manufacture process, when performing thermal imidation, it can peel from a support body in the state of the coating film before imidation. Therefore, when manufacturing the polyimide film of the present disclosure, the stretching treatment can be performed in the state of the coating film before imidization, thereby suppressing the shrinkage of the produced polyimide film and improving the elastic modulus. Can do.
  • the polyimide film shrinks on the support during the thermal imidization, so that the end is lifted from the support and curled. Or problems such as cracking may occur.
  • the coating film before imidation since it can peel from a support in the state of a coating film before imidation, it can be set as a highly elastic polyimide film by which generation of curl and a crack was controlled. Also, if the strength of the coating film before imidization is insufficient, the coating film will be stretched due to peeling stress when it is peeled off from the support, causing streaks, or the stretched coating film shrinking after imidization. Therefore, it tends to cause defects such as wrinkles.
  • the polyimide film of the present disclosure has a relatively low silicon atom concentration on the cast surface, and the coating film before imidization for forming a polyimide film having a tensile modulus of 1.8 GPa or more has sufficient strength. , Generation of streaks and wrinkles can be suppressed.
  • the coating film stretches due to peeling stress when it peels off from the support, and streaks are generated. Such a peeling failure is likely to occur. Since the polyimide film of the present disclosure has a relatively low silicon atom concentration on the cast surface, and the polyimide resin coating film for forming a polyimide film having a tensile modulus of 1.8 GPa or more has sufficient strength, Debonding failure can be suppressed. Moreover, it was confirmed that the surface hardness becomes insufficient when the tensile modulus of the film is small as in Comparative Examples 1 and 2 described later.
  • the polyimide film of the present disclosure has a tensile elastic modulus at room temperature of 1.8 GPa or more, so that a decrease in surface hardness at room temperature is suppressed, and a sufficient surface hardness as a protective film is maintained even at room temperature. be able to. Therefore, the polyimide film of the present disclosure is excellent in scratch resistance that prevents the surface from being scratched, and is also excellent in impact resistance that prevents breakage of a member located therebelow. Moreover, since the polyimide film of this indication can be made into a single layer structure, it is easy to improve transparency. Since the polyimide film of this indication can achieve the above-mentioned subject with a single layer structure, productivity is also high.
  • the polyimide film according to the present disclosure contains a polyimide containing a silicon atom and has the specific characteristics. As long as the effects of the present disclosure are not impaired, other components may be contained or other configurations may be included.
  • Polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to obtain imidization by obtaining a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component. The imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also manufacture by the method which used thermal imidation and chemical imidization together.
  • the polyimide used in the polyimide film according to the present disclosure contains a polyimide containing a silicon atom.
  • the content ratio (% by mass) of silicon atoms in all polyimides included in the polyimide film according to the present disclosure is not particularly limited, but the silicon atom concentration on the surface where the silicon atom concentration is relatively large is 10.0 atom% or less. However, it is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film, from the viewpoint of coexistence of adhesion and peelability of the polyimide film, and from the viewpoint of coexistence of bending resistance and surface hardness.
  • the content ratio (% by mass) of silicon atoms in all the polyimides included in the polyimide film can be determined from the molecular weight of the charge at the time of polyimide production.
  • the content ratio (mass%) of silicon atoms in all polyimides contained in the polyimide film is the high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA, and TOF-SIMS for the polyimide decomposition products. Can be obtained using
  • the polyimide used for this indication can contain 1 type (s) or 2 or more types.
  • Examples of the polyimide containing a silicon atom include a polyimide containing either a tetracarboxylic acid residue having a silicon atom or a diamine residue having a silicon atom.
  • silicon is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film, from the standpoint of compatibility of the adhesion and peelability of the polyimide film, and from the standpoint of both bending resistance and surface hardness.
  • a polyimide containing a diamine residue having an atom is preferred, and a polyimide containing a diamine residue having a silicon atom in the main chain is more preferred.
  • the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing acid dianhydride structure from tetracarboxylic dianhydride.
  • a diamine residue means the residue remove
  • the ratio of the diamine residue having a silicon atom in the total amount of 100 mol% of the diamine residue is 10.0% of the silicon atom concentration on the surface having a relatively large silicon atom concentration. It is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film while keeping the atomic% or less, the compatibility of the adhesion and peelability of the polyimide film, and the compatibility of bending resistance and surface hardness. From the viewpoint, it is preferably 2.5 mol% or more and 50 mol% or less.
  • polyimide containing a silicon atom a polyimide having a structure represented by the following general formula (1-1) is preferable.
  • R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 ′ is a divalent group that is a diamine residue.
  • It is a diamine residue having no aromatic ring or aliphatic ring.
  • N ′ represents the number of repeating units.
  • the polyimide having the structure represented by the general formula (1-1) a specific amount of a flexible molecular skeleton having a silicon atom in the main chain is introduced between molecular skeletons containing an aromatic ring or an aliphatic ring.
  • a specific structure it is considered that molecular chains are likely to be arranged so that silicon atoms are exposed on the surface, and silicon atoms in the polyimide film are more unevenly distributed. Compatibility can be further improved.
  • the polyimide having the structure represented by the general formula (1-1) has a molecular skeleton containing an aromatic ring or an aliphatic ring, and thus has a high tensile elastic modulus and excellent surface hardness.
  • the tetracarboxylic acid residue in R 1 ′ of the general formula (1-1) has a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from tetracarboxylic dianhydride.
  • Examples of the tetracarboxylic dianhydride having an aromatic ring include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′.
  • tetracarboxylic dianhydride having an aliphatic ring examples include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride.
  • An anhydride, cyclobutane tetracarboxylic dianhydride, etc. are mentioned. These may be used alone or in combination of two or more.
  • the diamine residue having a silicon atom in the main chain can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
  • the diamine represented by the following general formula (A) is mentioned, for example.
  • each L is independently a direct bond or —O— bond, and each R 10 may independently have a substituent and contains an oxygen atom or a nitrogen atom.
  • R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and each R 11 independently has a substituent and may contain an oxygen atom or a nitrogen atom.
  • Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and combinations thereof.
  • the alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group, hexyl group and the like.
  • the cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group.
  • the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group, and a phenylpropyl group.
  • Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. And a group bonded with at least one bond (—NH—).
  • the substituent that the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present disclosure are not impaired. For example, a halogen atom such as a fluorine atom or a chlorine atom And a hydroxyl group.
  • the monovalent hydrocarbon group represented by R 10 is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms from the viewpoint of compatibility between improvement in bending resistance and surface hardness.
  • the alkyl group having 1 to 3 carbon atoms is more preferably a methyl group
  • the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
  • Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof.
  • the alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms.
  • a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, or a cyclohexylene group.
  • a combination of a linear or branched alkylene group and a cyclic alkylene group are examples of the divalent hydrocarbon group represented by R 11.
  • the arylene group is preferably an arylene group having 6 to 12 carbon atoms, and examples of the arylene group include a phenylene group, a biphenylene group, a naphthylene group, and the like. May be.
  • the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom the divalent hydrocarbon groups may be ether bonds, carbonyl bonds, ester bonds, amide bonds, and imino bonds (—NH—).
  • a group bonded with at least one is exemplified.
  • the substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
  • the divalent hydrocarbon group represented by R 11 is an alkylene group having 1 to 6 carbon atoms or an arylene group having 6 to 10 carbon atoms from the viewpoint of compatibility between improvement in bending resistance and surface hardness. Preferably, it is more preferably an alkylene group having 2 to 4 carbon atoms.
  • K in the general formula (A) is a number of 0 or more and 200 or less, preferably 0 or more and 20 or less, and more preferably 0 or 1. That is, the diamine residue having a silicon atom in the main chain in R 2 ′ of the general formula (1-1) is preferably a diamine residue having one or two silicon atoms in the main chain. Examples of the diamine residue having one or two silicon atoms in the main chain include those similar to the diamine residue having one or two silicon atoms in the main chain in R 2 of the general formula (1) described later. Can be mentioned.
  • the molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3000 or less, and preferably 2000 or less from the viewpoint of imparting bending resistance while suppressing molecular mobility and compatibility of surface hardness. It is preferably 1000 or less, more preferably 800 or less, even more preferably 500 or less, and particularly preferably 300 or less.
  • the diamine residues having a silicon atom in the main chain can be used alone or in admixture of two or more.
  • the diamine residue having no silicon atom and having an aromatic ring is obtained by removing two amino groups from the diamine having no silicon atom and having an aromatic ring. It can be a residue.
  • the diamine having no silicon atom and having an aromatic ring include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diaminaminominomin
  • the diamine residue having an aliphatic ring without a silicon atom is obtained by removing two amino groups from the diamine having an aliphatic ring without a silicon atom. It can be a residue.
  • the diamine having no aliphatic atom and having an aliphatic ring include trans-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, and 2,6-bis (aminomethyl) bicyclo [2,2,1].
  • Examples include heptane and 2,5-bis (aminomethyl) bicyclo [2,2,1] heptane. These may be used alone or in combination of two or more.
  • the ratio of the diamine residue having a silicon atom in the main chain is such that a laminate with a resin-containing layer such as a hard coat layer described later is produced. From the point of improving the adhesion with the resin-containing layer at the time, it is preferably 10 mol% or more of the total amount of R 2 ′ , more preferably 15 mol% or more, and more than 15 mol%. Even more preferably, it is particularly preferably 20 mol% or more.
  • R 2 ′ in the general formula (1-1) improves the peelability from the support in the production process of the polyimide film, and improves the surface hardness and light transmittance.
  • the diamine residue is preferably less than 50 mol% of the total amount of R2 ' , more preferably 45 mol% or less, and even more preferably 40 mol% or less.
  • R 2 '50 mol% 2.5 mol% or more of the total amount of the following, a diamine residue having a silicon atom in the main chain, R 2' below 97.5 mol% 50 mol% or more of the total amount of If it is satisfied that the diamine residue does not have a silicon atom but has an aromatic ring or an aliphatic ring, the diamine residue having a silicon atom in the main chain in R 2 ′ of the general formula (1-1).
  • the other diamine residue is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol of the total amount of R 2 ′. % Or less is preferable.
  • the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring.
  • 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and among the total amount (100 mol%) of R 2 ′ , 50 mol% or more and 97.5 mol% or less of the remainder (100% ⁇ x%) of the mol% (x mol%) of the diamine residue having a silicon atom does not have a silicon atom, and is an aromatic ring or fatty acid.
  • a diamine residue having an aromatic ring is preferable.
  • polyimide containing a silicon atom a polyimide having a structure represented by the following general formula (1) is also preferable.
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom
  • N represents the number of repeating units.
  • Examples of the tetracarboxylic acid residue in R 1 of the general formula (1) include those similar to the tetracarboxylic acid residue in R 1 ′ of the general formula (1-1) described above.
  • the diamine residue having one or two silicon atoms in the main chain is the residue obtained by removing two amino groups from the diamine having one or two silicon atoms in the main chain. It can be based. Orientation is suppressed by introducing a specific amount of a flexible molecular skeleton having one or two silicon atoms in the main chain between molecular skeletons containing aromatic or aliphatic rings as the main component of the polyimide film.
  • the silicon atom concentration on the front and back surfaces of the polyimide film can be easily made different from each other, and the birefringence is easily reduced.
  • the polyimide has a molecular skeleton as described above, a specific amount of the flexible molecular skeleton having a short specific main chain is introduced into the rigid molecular skeleton, thereby lowering the modulus of elasticity at room temperature of the polyimide film. Therefore, sufficient surface hardness as a protective film can be maintained even at room temperature. Furthermore, when the polyimide has a molecular skeleton as described above, the bending resistance can be improved and the film can be bent for a long time as well as the restorability after repeated folding of the film, that is, the dynamic bending resistance. Since it can improve the restorability after being brought into the state, that is, static bending resistance, it can be used more suitably for a flexible display.
  • each L is independently a direct bond or —O— bond
  • each R 10 independently has a substituent.
  • And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may contain an oxygen atom or a nitrogen atom
  • each R 11 may independently have a substituent
  • a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom and a plurality of L, R 10 and R 11 may be the same or different.
  • the molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1000 or less from the viewpoints of bending resistance and surface hardness and the tendency of silicon atoms in the polyimide film to be unevenly distributed. Or less, more preferably 500 or less, even more preferably 300 or less.
  • the diamine residues having one or two silicon atoms in the main chain can be used alone or in combination of two or more.
  • R 2 of the general formula (1) as the diamine residue having no silicon atom and having an aromatic ring, and the diamine residue having no silicon atom and having an aliphatic ring, the general formula (1) Examples thereof are the same as those described for R 2 ′ in -1).
  • R 2 of the general formula (1) 50 mol% 10 mol% or more of the total amount of R 2 or less, a diamine residue having one or two silicon atoms in the main chain, 50 of the total amount of R 2
  • the mol% or more and 90 mol% or less is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring
  • silicon atoms in the polyimide film are likely to be unevenly distributed, and silicon atoms on the front and back surfaces It becomes easy to make a density
  • R 2 in the general formula (1) is a silicon atom in the main chain from the viewpoint of improving the adhesion to the resin-containing layer when producing a laminate with a resin-containing layer such as a hard coat layer described later.
  • one or two with the diamine residues is preferably 10 mol% excess of the total amount of R 2, more preferably 15 mol% or more, more preferably more from 15 mol% excess, more It is preferable that it is 20 mol% or more.
  • R 2 in the general formula (1) improves the peelability from the support in the process of producing the polyimide film and improves the surface hardness and light transmittance, so that one silicon atom in the main chain or diamine residue having two of preferably less than 50 mole% of the total amount of R 2, more preferably 45 mol% or less, preferably not more than an additional 40 mole%.
  • mol% 10 mol% or more of the total amount of R 2 or less a diamine residue having one or two silicon atoms in the main chain, 90 mol% 50 mol% or more of the total amount of R 2 or less, A diamine having one or two silicon atoms in the main chain in R 2 of the general formula (1) as long as it is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring It does not preclude inclusion of other diamine residues that are different from diamine residues having no residue and no silicon atom and having an aromatic ring or an aliphatic ring.
  • the other diamine residue is preferably 10 mol% or less of the total amount of R 2 , more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol%.
  • the following is preferable.
  • Examples of the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring. Moreover, it is preferable not to contain a diamine residue having 3 or more silicon atoms in the main chain from the viewpoint of increasing the tensile modulus and improving the surface hardness.
  • 50 mole% 10 mole% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, of the total amount of R 2 (100 mol%), the main chain 50 mol% or more and 90 mol% or less of the remainder (100% ⁇ x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in A diamine residue having an aromatic ring or an aliphatic ring is preferred.
  • the polyimide used in the present disclosure includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and the like, in terms of improving light transmittance and improving surface hardness.
  • the polyimide used in the present disclosure contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring.
  • the rigid aromatic ring skeleton tends to increase the absorption wavelength to a long wavelength, and tends to decrease the transmittance in the visible light region.
  • a fluorine atom is contained in the polyimide
  • the light transmittance is improved from the point that it is possible to make the electronic state in the polyimide skeleton difficult to charge transfer.
  • an aliphatic ring is included in the polyimide, light transmittance is improved because the transfer of charges in the skeleton can be inhibited by breaking the ⁇ -electron conjugation in the polyimide skeleton.
  • a polyimide containing a fluorine atom improves the light transmittance and improves the surface hardness, and improves the peelability of the coating film from the support. It is preferably used from the viewpoint.
  • the polyimide which has a structure represented by the said General formula (1) contains a fluorine atom, there exists a tendency for the adhesiveness of a polyimide film and a resin content layer to improve more.
  • the fluorine atom content ratio is preferably such that the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is 0.01 or more, Furthermore, it is preferably 0.05 or more, more preferably 0.1 or more. On the other hand, if the content ratio of fluorine atoms is too high, the inherent heat resistance of the polyimide may be lowered. Therefore, the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1. It is preferably 0 or less, more preferably 0.8 or less.
  • the said ratio by the measurement of X-ray photoelectron spectroscopy can be calculated
  • the polyimide used in the present disclosure has a tetracarboxylic acid residue and an aromatic ring having an aromatic ring when the total of the tetracarboxylic acid residue and the diamine residue is 100 mol% from the viewpoint of improving the surface hardness.
  • the total of diamine residues having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 75 mol% or more.
  • a tetracarboxylic acid residue and a diamine residue having no silicon atom contains an aromatic ring and a fluorine atom from the viewpoint of improving surface hardness and light transmittance.
  • both the tetracarboxylic acid residue and the diamine residue having no silicon atom contain an aromatic ring and a fluorine atom.
  • the polyimide used in the present disclosure has a tetracarboxylic acid having an aromatic ring and a fluorine atom when the total of the tetracarboxylic acid residue and the diamine residue is 100 mol% from the viewpoint of improving surface hardness and light transmittance.
  • the total of the acid residue, aromatic ring and diamine residue having a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 75 mol% or more. .
  • the polyimide used in the present disclosure is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms bonded directly to the aromatic ring, thereby improving light transmittance. And it is preferably used from the viewpoint of improving the surface hardness.
  • the proportion of hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to carbon atoms contained in the polyimide is preferably 60% or more, and more preferably 70% or more.
  • the film is stretched at, for example, 200 ° C. or higher even after a heating step in the atmosphere. Is preferable from the viewpoint of little change in optical characteristics, particularly total light transmittance and yellowness YI value.
  • polyimide is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the chemical structure of the polyimide changes due to low reactivity with oxygen. It is estimated that it is difficult.
  • Polyimide film uses its high heat resistance and is often used in devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are in the aromatic ring.
  • polyimide which is a hydrogen atom that is directly bonded
  • the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by high-performance liquid chromatography or gas chromatography mass of the polyimide decomposition product.
  • the sample is decomposed with an alkaline aqueous solution or supercritical methanol, and the resulting decomposition product is separated by high performance liquid chromatography, and a qualitative analysis of each separated peak is performed by a gas chromatograph mass spectrometer, NMR, etc.
  • the ratio of hydrogen atoms (numbers) directly bonded to the aromatic ring in the total hydrogen atoms (numbers) contained in the polyimide can be determined by performing determination using high performance liquid chromatography.
  • Formula R 1 of the polyimide having the structure represented by (1-1) ', and, R 1 of the polyimide having the structure represented by the general formula (1) are, inter alia, light transmitting point, From the viewpoint of bending resistance and surface hardness, and the point that silicon atoms in the film are likely to be unevenly distributed, cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3', 4,4'-biphenyltetracarboxylic dianhydride Residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic
  • R 1 ′ and R 1 these suitable residues are preferably contained in a total amount of 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more.
  • the general formula (1-1) R 1 in 'R 1 and of the general formula (1) 4,4' - (hexafluoro isopropylidene ) Diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalate More preferably, it is at least one tetravalent group selected from the group consisting of an acid anhydride residue and a 3,4′-oxydiphthalic anhydride residue.
  • the 'The R 1 and of the general formula (1), pyromellitic acid dianhydride residue, 3,3' general formula (1-1) R 1 in, 4,4'-biphenyltetracarboxylic acid Tetracarboxylic acid suitable for improving rigidity such as at least one selected from the group consisting of dianhydride residues and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residues Acid residue group (Group A), cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride Residue, cyclobutanetetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene)
  • the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving light transmittance is , 1 mol of tetracarboxylic acid residue group (group B) suitable for improving light transmittance is 0.4% of tetracarboxylic acid residue group (group A) suitable for improving rigidity. It is preferably from 05 mol to 9 mol, more preferably from 0.1 mol to 5 mol, and still more preferably from 0.3 mol to 4 mol.
  • the group B includes 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues and 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues containing fluorine atoms. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
  • Residues include trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2- At least one selected from the group consisting of bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane residue, and a divalent group represented by the following general formula (2)
  • the divalent group is preferably from the viewpoint of light transmission, bending resistance and surface hardness, and from the point that silicon atoms in the film are likely to be unevenly distributed.
  • R 3 and R 4 are more preferably perfluoroalkyl groups.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • a diamine residue having a silicon atom in the main chain of R 2 ′ in the general formula (1-1), and one or two silicon atoms in the main chain of R 2 in the general formula (1) is preferably a diamine residue having two silicon atoms from the viewpoint of light transmittance, bending resistance and surface hardness, and the point that silicon atoms in the film are likely to be unevenly distributed.
  • 1,3-bis (3-aminopropyl) tetramethyldisiloxane residue, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane Etc. are preferable from the viewpoints of availability and compatibility between light transmittance and surface hardness.
  • N ′ in the structure represented by the general formula (1-1) and n in the structure represented by the general formula (1) each represent the number of repeating units and are 1 or more.
  • the number of repeating units in the polyimide is preferably selected as appropriate according to the structure so as to exhibit a preferable glass transition temperature described later, and is not particularly limited.
  • the average number of repeating units is usually 10 to 2000, and more preferably 15 to 1000.
  • the polyimide used in the present disclosure has a structure represented by the general formula (1-1) and a structure represented by the general formula (1), as long as the effects of the present disclosure are not impaired. May have different structures.
  • the structure represented by the general formula (1-1) or the structure represented by the general formula (1) is 95% or more of the total number of repeating units of the polyimide used in the present disclosure. It is preferable that it is 98% or more, and it is still more preferable that it is 100%.
  • Examples of the structure represented by the general formula (1-1) and the structure different from the structure represented by the general formula (1) include a tetracarboxylic acid residue having no aromatic ring or aliphatic ring, and the like.
  • polyamide structure examples include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
  • the polyimide used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower.
  • the glass transition temperature is 150 ° C. or higher, it is excellent in heat resistance and is preferably 200 ° C. or higher.
  • the baking temperature can be reduced, and is preferably 380 ° C. or lower.
  • the polyimide used in the present disclosure preferably does not have a tan ⁇ curve peak in a temperature range of ⁇ 150 ° C. or higher and 0 ° C. or lower, which can improve the tensile modulus of the polyimide film at room temperature. , Surface hardness can be improved.
  • the polyimide used in the present disclosure may further have a tan ⁇ curve peak in a temperature range exceeding 0 ° C. and less than 150 ° C., but has a peak of the tan ⁇ curve only in a temperature region of 150 ° C. or higher. It is preferable from the viewpoint of easily improving the tensile modulus and bending resistance.
  • the glass transition temperature of the polyimide used in the present disclosure can be measured in the same manner as the glass transition temperature of the polyimide film described later.
  • the polyimide film of the present disclosure may further contain additives as necessary in addition to the polyimide.
  • additives include inorganic particles, a silica filler for facilitating winding, and a surfactant that improves film-forming properties and defoaming properties.
  • the polyimide film of the present disclosure has the specific total light transmittance and the specific tensile elastic modulus, and preferably has the specific yellowness. Moreover, it is preferable that the polyimide film of this indication has the characteristic further mentioned later.
  • the pencil hardness is preferably 2B or more, more preferably B or more, and even more preferably HB or more.
  • the pencil hardness of the polyimide film is determined by JIS K5600-5-4 using a test pencil specified by JIS-S-6006 after conditioning the sample for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. (1999), a pencil hardness test (0.98 N load) is performed on the film surface, and the highest pencil hardness that does not cause scratches can be evaluated.
  • a pencil scratch coating film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • the haze value of the polyimide film of the present disclosure is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less, from the viewpoint of light transmittance. It is preferable that the haze value can be achieved when the thickness of the polyimide film is 5 ⁇ m or more and 100 ⁇ m or less.
  • the haze value can be measured by a method according to JIS K-7105, for example, a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the polyimide film of the present disclosure when the adhesion test is performed according to the following adhesion test method on the surface where the silicon atom concentration is relatively large, the polyimide film and the resin are not peeled off. From the point of adhesiveness with a content layer, and the point of the surface hardness of the laminated body which laminated
  • Resin composition for adhesion evaluation prepared by adding 10 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone to 100 parts by weight of pentaerythritol triacrylate in a 40% by weight methyl isobutyl ketone solution of pentaerythritol triacrylate Is applied on a test piece of polyimide film cut out to 10 cm ⁇ 10 cm, and cured by irradiating ultraviolet rays with an exposure amount of 200 mJ / cm 2 under a nitrogen stream, thereby forming a cured film having a thickness of 10 ⁇ m.
  • the cured film is subjected to a cross-cut test in accordance with JIS K 5600-5-6, and after repeated peeling operations with a tape 5 times, the presence or absence of peeling of the coating film is observed.
  • the internal angle measured in the test is preferably 120 ° or more, More preferably, it is 125 ° or more.
  • Static bending test method A polyimide film test piece cut out to 15 mm ⁇ 40 mm is bent at a position of half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm ⁇ 30 mm ⁇ 6 mm) having a thickness of 6 mm from the upper and lower surfaces.
  • test piece Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each.
  • the test piece is fixed in a bent state with an inner diameter of 6 mm.
  • a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel.
  • the test piece fixed in a bent state in this way was allowed to stand for 24 hours in an environment of 60 ⁇ 2 ° C. and 93 ⁇ 2% relative humidity (RH), and then the glass plate and the fixing tape were removed, Release the force on the specimen. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
  • the polyimide film of the present disclosure was subjected to a dynamic bending test in an environment of 60 ⁇ 2 ° C. and 93 ⁇ 2% relative humidity (RH) in accordance with the following dynamic bending test method because of its excellent bending resistance.
  • the inner angle of the test piece is preferably 155 ° or more, and more preferably 160 ° or more.
  • the polyimide film of the present disclosure was subjected to a dynamic bending test in an environment of 25 ⁇ 2 ° C. and 50 ⁇ 2% relative humidity (RH) in accordance with the following dynamic bending test method because of its excellent bending resistance.
  • the inner angle of the test piece is preferably 170 ° or more, and more preferably 175 ° or more.
  • a thermostat-humidifier endurance test system manufactured by Yuasa System Equipment Co., Ltd., planar loadless U-shaped expansion / contraction test jig DMX-FS
  • the test piece was set in the same bent state as in the static bending test, that is, the distance between both ends of the long side of the bent test piece was set to 6 mm (fixed in a bent state with an inner diameter of 6 mm).
  • the number of bendings is 90 times per minute. Repeat flexing 10,000 times. Thereafter, the test piece is removed, one end of the obtained test piece is fixed, and the inner angle of the test piece 30 minutes after the bending is repeated 200,000 times is measured.
  • the polyimide film of the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less, more preferably 200 ° C. or more, and can reduce the baking temperature. From the viewpoint, it is preferably 380 ° C. or lower.
  • the glass transition temperature of the polyimide film refers to the temperature of the peak where the maximum value of the peak is maximum when there are a plurality of peaks of the tan ⁇ curve.
  • the dynamic viscoelasticity measurement for example, with a dynamic viscoelasticity measuring device RSA III (TA Instruments Japan Co., Ltd.), the measurement range is set to ⁇ 150 ° C. to 400 ° C., the frequency is 1 Hz, and the temperature is increased. This can be done at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
  • the peak of the tan ⁇ curve refers to a peak having an inflection point that is a maximum value and a peak width that is between 3 ° C. or more between peaks and valleys, and is derived from measurement such as noise. The fine vertical fluctuation is not interpreted as the peak.
  • the polyimide film of the present disclosure preferably has no tan ⁇ curve peak in a temperature range of ⁇ 150 ° C. or higher and 0 ° C. or lower.
  • a polyimide film having a tan ⁇ curve peak in the low temperature region has such a diamine residue having a long siloxane bond in the main chain.
  • the polyimide film of the present disclosure preferably has a peak of the tan ⁇ curve only in a temperature region of 150 ° C. or higher from the viewpoint of easily improving the tensile modulus and bending resistance.
  • the polyimide film of the present disclosure preferably has a birefringence of 0.020 or less in the thickness direction at the wavelength of 590 nm from the viewpoint of reducing optical distortion.
  • the birefringence in the thickness direction at the wavelength of 590 nm is preferably smaller, preferably 0.015 or less, more preferably 0.010 or less, and even more preferably less than 0.008.
  • the birefringence of the thickness direction in the said wavelength 590nm of the polyimide film of this indication can be calculated
  • the thickness direction retardation value (Rth) of the polyimide film is measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (for example, product name “KOBRA-WR” manufactured by Oji Scientific Instruments). To do.
  • a phase difference value at 0 degree incidence and a phase difference value at an incidence angle of 40 degrees are measured, and the thickness direction retardation value Rth is calculated from these phase difference values.
  • the retardation value at an oblique incidence of 40 degrees is measured by making light having a wavelength of 590 nm incident on the retardation film from a direction inclined by 40 degrees from the normal line of the retardation film.
  • the birefringence in the thickness direction of the polyimide film can be determined by substituting it into the formula: Rth / d.
  • Said d represents the film thickness (nm) of a polyimide film.
  • the thickness direction retardation value is nx the refractive index in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction in the film plane (film surface).
  • Rth [nm] ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d, where ny is the refractive index in the direction in which the refractive index in the inner direction is the minimum) and nz is the refractive index in the thickness direction of the film.
  • the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is 0.01 or more It is preferably 0 or less, more preferably 0.05 or more and 0.8 or less, and still more preferably 0.1 or more and 0.8 or less. These are preferably filled on both sides of the polyimide film.
  • the ratio (F / N) of the number of fluorine atoms (F) and the number of nitrogen atoms (N) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 20 or less.
  • the ratio (F / Si) of the number of fluorine atoms (F) and the number of silicon atoms (Si) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
  • the thickness of the polyimide film of the present disclosure may be appropriately selected depending on the use, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more. . On the other hand, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. If the thickness is thin, the strength is reduced and breakage is liable to occur. If the thickness is thick, the difference between the inner diameter and the outer diameter at the time of bending is increased, and the load on the film is increased.
  • the polyimide film of the present disclosure may be subjected to a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, or a flame treatment.
  • a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, or a flame treatment.
  • a step of preparing a polyimide precursor resin composition containing a silicon atom-containing polyimide precursor and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step); Applying the polyimide precursor resin composition to a support and drying to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming process); A step of peeling the polyimide precursor resin coating film from the support (hereinafter referred to as a peeling step);
  • a method for producing a polyimide film including a step of imidizing the polyimide precursor by heating the polyimide precursor resin coating film (hereinafter referred to as an imidization step) is exemplified.
  • the step of stretching at least one of the polyimide precursor resin coating film after the peeling step and the imidized coating film imidized from the polyimide precursor resin coating film (hereinafter, stretching) Process).
  • stretching the said polyimide precursor resin coating film after the said peeling process from the point which suppresses shrinkage
  • the surface of the polyimide precursor resin coating film that is in contact with the support has good peelability, and therefore the polyimide precursor resin coating film is easily peeled from the support. It is difficult to cause defects.
  • the polyimide precursor resin coating film formed by the polyimide precursor resin coating film forming step has a smaller silicon atom concentration on the surface in contact with the support than on the surface in contact with air. Easy to peel off the support.
  • the polyimide precursor resin composition prepared in the first production method contains a polyimide precursor containing a silicon atom and an organic solvent, and an additive as necessary. Etc. may be contained.
  • the polyimide precursor is a polyamic acid obtained by polymerization of a tetracarboxylic acid component and a diamine component.
  • a polyamic acid that becomes the above-described polyimide containing a silicon atom by an imidization reaction is used as the polyimide precursor containing a silicon atom.
  • the polyamic acid that becomes a polyimide having the structure represented by the general formula (1-1) by the imidization reaction is a polyimide precursor having a structure represented by the following general formula (1-1 ').
  • the polyimide precursor represented by the general formula (1-1 ′) includes a tetracarboxylic acid component to be a tetracarboxylic acid residue in R 1 ′ of the general formula (1-1 ′), and the general formula (1 ′).
  • -1 ′) is a polyamic acid obtained by polymerization with a diamine component which becomes a diamine residue in R 2 ′ .
  • the general formula (1-1 ') R 1 in', R 2 'and n', the formula described in the polyimide (1-1) R 1 in ', R 2' and and n ' Similar ones can be used.
  • the polyamic acid that becomes a polyimide having the structure represented by the general formula (1) by the imidation reaction is a polyimide precursor having a structure represented by the following general formula (1 ').
  • the polyimide precursor represented by the general formula (1 ′) includes a tetracarboxylic acid component that becomes a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and R 2 of the general formula (1 ′). It is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue in
  • R 1 , R 2 and n in the general formula (1 ′) those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
  • the polyimide precursor represented by the general formula (1-1 ′) and the polyimide precursor represented by the general formula (1 ′) have at least one of a number average molecular weight and a weight average molecular weight. From the viewpoint of the strength at the time of making, it is preferably 10,000 or more, more preferably 20,000 or more. On the other hand, if the average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
  • the number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER).
  • a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes, and then 10 mg of solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and NMR measurement is performed to bond to an aromatic ring.
  • the number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
  • the weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • NMP N-methylpyrrolidone
  • a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent.
  • the polyimide precursor solution is obtained by reacting the above tetracarboxylic dianhydride and the above diamine in a solvent.
  • the solvent used for the synthesis of the polyimide precursor is not particularly limited as long as it can dissolve the above-described tetracarboxylic dianhydride and diamine.
  • an aprotic polar solvent or a water-soluble alcohol solvent is used.
  • an organic solvent containing a nitrogen atom of ⁇ -butyrolactone or the like it is preferable to use an organic solvent containing a nitrogen atom of ⁇ -butyrolactone or the like.
  • an organic solvent containing a nitrogen atom among which N, N-dimethylacetamide, N— It is preferable to use methyl-2-pyrrolidone or a combination thereof.
  • the organic solvent is a solvent containing carbon atoms.
  • the polyimide precursor solution is prepared by combining at least two kinds of diamines.
  • An acid dianhydride may be added to a mixed solution of at least two kinds of diamines to synthesize polyamic acid, or at least Two kinds of diamine components may be added to the reaction solution step by step at an appropriate molar ratio, and the sequence in which each raw material is incorporated into the polymer chain may be controlled to some extent.
  • an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged into a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and reacted.
  • Amidic acid in which a diamine having a silicon atom in the main chain was reacted at both ends of the anhydride was synthesized, and all or part of the remaining diamine was added thereto, and acid dianhydride was added to polymerize the polyamic acid. Also good.
  • a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride. Polymerization of the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
  • Y / X may be 0.9 or more and 1.1 or less. Preferably, it is 0.95 or more and 1.05 or less, more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. By setting it as such a range, the molecular weight (polymerization degree) of the polyamic acid obtained can be adjusted moderately.
  • the procedure of the polymerization reaction can be appropriately selected from known methods and is not particularly limited.
  • the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed there if necessary.
  • the solvent of the polyimide precursor solution is dried and dissolved in another solvent. It may be used.
  • the viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the polyimide precursor resin composition may contain an additive as necessary.
  • the additive include inorganic particles, silica filler for facilitating winding, and surfactants for improving film-forming properties and defoaming properties, and those described in the polyimide film described above. Similar ones can be used.
  • the organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved.
  • nitrogen atoms such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone
  • Organic solvent: ⁇ -butyrolactone or the like can be used, and among them, an organic solvent containing a nitrogen atom is preferably used.
  • the content of the polyimide precursor in the polyimide precursor resin composition is 50% by weight or more in the solid content of the resin composition from the point of forming a polyimide film having a uniform coating film and a handleable strength. Preferably, it is preferably 60% by weight or more, and the upper limit may be appropriately adjusted depending on the components contained.
  • the organic solvent in the polyimide precursor resin composition is preferably 40% by weight or more, more preferably 50% by weight or more in the resin composition from the viewpoint of forming a uniform coating film and a polyimide film. Preferably, it is preferably 99% by weight or less.
  • the polyimide precursor resin composition preferably has a moisture content of 1000 ppm or less from the viewpoint of improving the storage stability of the polyimide precursor resin composition and improving the productivity. If the polyimide precursor resin composition contains a large amount of moisture, the polyimide precursor may be easily decomposed.
  • the water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture measuring device CA-200, manufactured by Mitsubishi Chemical Corporation).
  • the method for preparing the polyimide precursor resin composition is not particularly limited, as described above, in order to reduce the water content to 1000 ppm or less, the organic solvent to be used is dehydrated or the water content is controlled. In addition, it is preferable to handle in an environment with a humidity of 5% or less.
  • the viscosity of the polyimide precursor resin composition at 25 ° C. is preferably 500 cps or more and 100,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
  • the viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
  • the support used has a smooth surface and heat resistance.
  • the material is not particularly limited as long as the material is resistant and solvent resistant.
  • an inorganic material such as a glass plate, a metal plate having a mirror-finished surface, and the like can be given.
  • the shape of the support is selected depending on the coating method, and may be, for example, a plate shape, a drum shape, a belt shape, a sheet shape that can be wound around a roll, or the like.
  • the application means is not particularly limited as long as it can be applied at a desired film thickness, and for example, a known one such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater or the like can be used. . Application may be performed by a single-wafer coating apparatus or a roll-to-roll coating apparatus.
  • the solvent in the coating film is dried.
  • the drying temperature of the solvent is set to 150 ° C. or lower, imidization of the polyamic acid can be suppressed.
  • the drying temperature and time may be appropriately adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, and the like.
  • the drying temperature is preferably 150 ° C. or lower, more preferably 30 ° C. or higher and 120 ° C. or lower.
  • the drying is preferably performed while increasing the temperature stepwise, and is preferably performed while increasing the temperature stepwise in at least two steps.
  • the drying is preferably performed for 10 minutes or more in total, and more preferably for 20 minutes or more.
  • the drying method is, for example, 40 ° C.
  • a method of drying for 5 to 60 minutes at a temperature not lower than 140 ° C. and higher than the previous drying by 30 ° C. or higher can be preferably used. Drying at a high temperature from the beginning even in two stages or drying at a high temperature in one stage for a short time may make it difficult for silicon atoms to be unevenly distributed, and may cause film thickness unevenness or bubbles. is there.
  • the method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature.
  • an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
  • the atmosphere during drying of the solvent is preferably an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less.
  • heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
  • the polyimide precursor resin coating film is dried and then peeled from the support.
  • the method for peeling the polyimide precursor resin coating film from the support is not particularly limited, and a general peeling method can be used. In this indication, since the surface which touches the above-mentioned support of the above-mentioned polyimide precursor resin coat is excellent in releasability, it can be easily peeled off from the above-mentioned support by pulling on the above-mentioned polyimide precursor resin coat.
  • the peeling conditions in the peeling step are not particularly limited.
  • the peeling strength between the support and the polyimide precursor resin coating film is 0.05 N / 25 mm or more and 2.0 N / 25 mm or less, and the peeling speed is 100 mm / min or more.
  • the peeling angle can be set to 135 ° or more and 180 ° or less.
  • the peeling is performed by peeling at a substantially constant speed so that separation proceeds along the longitudinal direction of the polyimide precursor resin coating film, starting from the open end of the support and the polyimide precursor resin coating film. Can do.
  • the amount of residual solvent in the polyimide precursor resin coating film is preferably 40% by weight or less from the viewpoint of facilitating peeling of the support, More preferably, it is 30% by weight or less. Further, the amount of residual solvent in the polyimide precursor resin coating film in the peeling step may be 10% by weight or more from the viewpoint of suppressing unevenness in the film thickness of the polyimide film and making the surface quality uniform.
  • the amount of residual solvent in the polyimide precursor resin coating film at the time of the stripping process was determined by using 1 H-NMR for the polyimide precursor resin coating film immediately after the stripping process, and hydrogen atoms derived from the polyimide precursor, It can be measured by obtaining an integral intensity ratio with a solvent-derived hydrogen atom.
  • the imidation ratio of the said polyimide precursor resin coating film is 1% or more and 50% or less from the point which makes peeling of a support body easy. More preferably, it is 5% or more and 30% or less.
  • the imidation rate can be measured by analyzing the spectrum by infrared measurement (IR).
  • the said polyimide precursor resin coating film is heated, and the said polyimide precursor is imidized.
  • it is preferable to have an extending process and when it has the said extending process, an imidation process is with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process.
  • an imidation process is with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process.
  • the imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
  • the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher.
  • the temperature rise end temperature is preferably 250 ° C. or higher.
  • the rate of temperature increase is preferably selected as appropriate depending on the film thickness of the polyimide film to be obtained.
  • the film thickness of the polyimide film is thick, it is preferable to decrease the temperature increase rate. From the viewpoint of the production efficiency of the polyimide film, it is preferably 5 ° C./min or more, more preferably 10 ° C./min or more.
  • the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less. It is preferable to set the temperature increase rate from the viewpoint that the appearance defect and strength reduction of the film can be suppressed, and the whitening associated with the imidization reaction can be controlled, and the light transmittance is improved.
  • the temperature increase may be continuous or stepwise, but it is preferable to make it continuous from the viewpoint of controlling the appearance of the film, suppressing the strength reduction, and controlling the whitening associated with the imidization reaction. Moreover, in the above-mentioned whole temperature range, the temperature rising rate may be constant or may be changed in the middle.
  • the atmosphere at the time of temperature increase in imidation is preferably an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the film may be oxidized and colored, or the performance may deteriorate.
  • 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, there is little influence of oxygen on the optical properties, and an inert gas atmosphere is not used.
  • a polyimide having a high light transmittance can be obtained.
  • the heating method for imidation is not particularly limited as long as the temperature can be raised at the above temperature.
  • an oven, a heating furnace, infrared heating, electromagnetic induction heating, or the like can be used.
  • reaction In order to obtain a final polyimide film, it is preferable to proceed the reaction to 90% or more, further 95% or more, and further 100%. In order to allow the reaction to proceed to 90% or more, more preferably 100%, it is preferable to hold at a temperature rising end temperature for a certain period of time. Minutes are preferred.
  • the first production method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and a post-imidation coating film obtained by imidizing the polyimide precursor resin coating film. It may be. Among these, after the peeling step, and before the imidization step, including a stretching step of stretching the polyimide precursor resin coating film suppresses shrinkage of the polyimide film and improves the tensile elastic modulus. preferable. Moreover, it is also preferable to further include the process of extending
  • the heating temperature during stretching is preferably in the range of glass transition temperature ⁇ 50 ° C. of the polyimide or polyimide precursor, and more preferably in the range of glass transition temperature ⁇ 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching is relaxed by the temperature, and there is a possibility that sufficient orientation cannot be obtained.
  • the stretching step may be performed simultaneously with the imidization step. From the point of improving the surface hardness of the polyimide film by stretching the imidized film after imidization rate of 80% or more, further 90% or more, further 95% or more, particularly substantially 100% imidization. preferable.
  • the final draw ratio of the polyimide film is preferably from 101% to 10,000%, and more preferably from 101% to 500%.
  • the method for fixing the polyimide film during stretching is not particularly limited, and is selected according to the type of stretching apparatus. Moreover, there is no restriction
  • the polyimide film may be stretched only in one direction (longitudinal stretching or lateral stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like. Among these, after the peeling step and before the imidization step, the polyimide precursor resin coating film is stretched in two directions to suppress the shrinkage of the polyimide film and improve the tensile elastic modulus. This is preferable.
  • a step of preparing a polyimide resin composition containing a silicon atom-containing polyimide and an organic solvent (hereinafter referred to as a polyimide resin composition preparation step); Applying the polyimide resin composition to a support, drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming process), A step of peeling the support from the polyimide resin coating (hereinafter referred to as a peeling step);
  • the manufacturing method of the polyimide film containing is mentioned.
  • the surface of the polyimide resin coating film that has been in contact with the support has good peelability, and thus the polyimide resin coating film can be easily peeled off from the support. It is difficult to cause defects.
  • the polyimide resin coating film formed by the polyimide resin coating film forming process peels off the support because the silicon atom concentration is lower on the surface in contact with the support than on the surface in contact with air. It's easy to do.
  • the polyimide used in the present disclosure dissolves well in an organic solvent, it is not a polyimide precursor resin composition, but a polyimide resin composition in which the polyimide is dissolved in an organic solvent and an additive is added as necessary. Can also be suitably used.
  • the polyimide used in the present disclosure has solvent solubility such that 5% by weight or more is dissolved in an organic solvent at 25 ° C., the second production method can be suitably used.
  • the above-mentioned polyimide having solvent solubility can be selected from the same polyimides as described in the polyimide film.
  • a method for imidization it is preferable to use chemical imidation using a chemical imidizing agent instead of heat dehydration for the dehydration ring-closing reaction of the polyimide precursor.
  • known compounds such as amines such as pyridine and ⁇ -picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as a dehydration catalyst.
  • Examples of the acid anhydride are not limited to acetic anhydride, and propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, trifluoroacetic acid anhydride, and the like, but are not particularly limited.
  • a tertiary amine such as pyridine or ⁇ -picolinic acid may be used in combination.
  • the optical properties particularly the yellowness (YI value) are reduced.
  • reaction liquid reacted from the precursor to the polyimide is not cast as it is, It is preferable to form the film after purification by reprecipitation or the like, and removing components other than polyimide to 100 ppm or less of the total weight of the polyimide.
  • the same organic solvent as described in the polyimide precursor resin composition preparation step in the first production method can be used.
  • the polyimide resin composition may contain an additive as necessary.
  • an additive the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in a said 1st manufacturing method can be used.
  • the method similar to the method demonstrated in the said polyimide precursor resin composition preparation process in a said 1st manufacturing method Can be used.
  • the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step of the first manufacturing method. be able to.
  • the drying temperature is preferably 80 ° C. or higher and 150 ° C. or lower under normal pressure. It is preferable that the pressure be in the range of 10 ° C. to 100 ° C. under reduced pressure. Moreover, it is preferable to perform the drying of the polyimide resin coating film forming step in the second production method while increasing the temperature stepwise in at least two stages. The drying is preferably performed for 10 minutes or more in total, and more preferably for 20 minutes or more. Thereby, it is estimated that the silicon atoms in the coating film are likely to be unevenly distributed, and the difference in silicon atom concentration between the front and back surfaces is likely to increase.
  • the drying method preferably used in the first production method can be preferably used also in the second production method. Examples of the solvent drying method in the second manufacturing method include the same methods as those used in the first manufacturing method.
  • the peeling process in the second manufacturing method can be the same as the peeling method and the peeling conditions in the peeling process of the first manufacturing method.
  • the residual solvent amount in the polyimide resin coating film is preferably 40% by weight or less, and preferably 30% by weight or less from the viewpoint of facilitating peeling of the support. It is more preferable that Further, the residual solvent amount in the polyimide resin coating film in the peeling step may be 10% by weight or more from the viewpoint of suppressing unevenness in the film thickness of the polyimide film and uniforming the surface quality.
  • the amount of residual solvent in the polyimide resin coating film at the time of the peeling process was determined by using 1 H-NMR for the polyimide resin coating film immediately after the peeling process and the hydrogen atoms derived from the polyimide, It can measure by calculating
  • the second manufacturing method may have a stretching step of stretching the polyimide resin coating film after the peeling step.
  • the said extending process can be made to be the same as that of the extending process in the said 1st manufacturing method.
  • the second manufacturing method may further include a drying step for removing the residual solvent in the polyimide resin coating film.
  • the drying temperature and time in the drying step may be appropriately adjusted according to the thickness of the polyimide resin coating film, the type of solvent, and the like, and are not particularly limited, but are 100 ° C. or higher and 400 ° C. or lower, 1 minute or longer and 180 °. It is preferable to make it less than minutes.
  • the said drying process is in inert gas atmosphere from the point which suppresses the fall of the optical characteristic of a polyimide film.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less.
  • polyimide film of the present disclosure is not particularly limited, and can be used as a member such as a base material or a surface material for which a glass product such as a thin plate glass has been conventionally used.
  • the polyimide film of the present disclosure has improved bending resistance, has sufficient surface hardness as a protective film, and can reduce optical distortion. Can be used.
  • the polyimide film of the present disclosure is, for example, a thin and bent flexible organic EL display, a mobile terminal such as a smartphone or a wristwatch type terminal, a display device inside an automobile, a flexible panel used for a wristwatch, or the like. It can be used suitably.
  • the polyimide film of the present disclosure includes a member for an image display device such as a liquid crystal display device and an organic EL display device, a member for a touch panel, a flexible printed circuit board, a surface protection film and a substrate material for a solar cell panel, an optical waveguide, etc.
  • the present invention can also be applied to other members, other semiconductor-related members and the like.
  • the polyimide film of the present disclosure has a surface having a relatively large silicon atom concentration and excellent adhesion, and in particular, a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound. Excellent adhesion. Therefore, in the polyimide film of the present disclosure, a surface having a relatively large silicon atom concentration can be suitably used as an adhesion surface with the resin-containing layer. Since the resin-containing layer can be the same as the resin-containing layer used in the laminate described later, description thereof is omitted here.
  • Laminate The laminate of the present disclosure is a laminate in which the polyimide film of the present disclosure described above and a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound are adjacent to each other. is there.
  • the laminate of the present disclosure can improve the adhesion between the polyimide film and the resin-containing layer by bringing the resin-containing layer into close contact with the surface of the polyimide film of the present disclosure that has a relatively large silicon atom concentration. And thereby the surface hardness can be further improved. Moreover, since the laminated body of this indication uses the polyimide film of this indication mentioned above, the defect of a polyimide film is suppressed and the fall of the quality of a laminated body is also suppressed. Moreover, since the laminated body of this indication uses the polyimide film of this indication, the fall of transparency is suppressed and optical distortion can be reduced further.
  • the laminated body of this indication when used as a surface material for a display, it is possible to suppress a decrease in display quality of the display. Furthermore, since the laminated body of this indication uses the polyimide film of this indication, it can improve bending resistance and can be used suitably for flexible displays.
  • Resin-containing layer used in the laminate of the present disclosure contains at least one polymer of a radical polymerizable compound and a cationic polymerizable compound, and further contains a polymerization initiator and other additives as necessary. You may contain.
  • the resin-containing layer include functional layers used in displays, and specific examples include a hard coat layer.
  • the radical polymerizable compound is a compound having a radical polymerizable group.
  • the radical polymerizable group possessed by the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group.
  • these radical polymerizable groups may be the same or different from each other.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the resin-containing layer.
  • a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity, and further, adhesiveness between the polyimide film and the resin-containing layer, light transmittance, and surface hardness. From this point, a compound having two or more (meth) acryloyl groups in one molecule is preferable.
  • a compound called a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule a molecule called urethane (meth) acrylate, polyester (meth) acrylate, or epoxy (meth) acrylate
  • An oligomer having a molecular weight of several hundreds to several thousands having several (meth) acryloyl groups therein can be preferably used.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acrylate represents each of acrylate and methacrylate.
  • radical polymerizable compound examples include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, 9,9-bis [4- (2- ( Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide modified bisphenol A di (meth) acrylate (eg ethoxylated (ethylene oxide modified) bisphenol A di (meth) acrylate), trimethylolpropane tri (meth) acrylate, tri Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaeryth Polyol polyacrylates such as lithol tetra (meth) acrylate, dipentaerythritol penta (meth)
  • the cationic polymerizable compound is a compound having a cationic polymerizable group.
  • the cationic polymerizable group possessed by the cationic polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationic polymerizable groups may be the same or different from each other.
  • the number of cation polymerizable groups in the molecule of the cation polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the resin-containing layer.
  • a compound having at least one of an epoxy group and an oxetanyl group as the cationic polymerizable group is preferable, and the adhesiveness between the polyimide film and the resin-containing layer and the light transmittance and the surface are preferable. From the viewpoint of hardness, a compound having two or more of at least one of an epoxy group and an oxetanyl group in one molecule is more preferable.
  • Cyclic ether groups such as epoxy groups and oxetanyl groups are preferred from the viewpoint of small shrinkage accompanying the polymerization reaction.
  • compounds having an epoxy group among the cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained resin-containing layer, and can easily control the compatibility with the radical polymerizable compound.
  • the oxetanyl group has a high degree of polymerization and low toxicity compared to the epoxy group.
  • a cationically polymerizable compound having an epoxy group for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, a cyclohexene ring or a cyclopentene ring-containing compound may be used with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • Alicyclic epoxy resin obtained by epoxidation polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; glycidyl produced by reaction of bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts, and epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
  • alicyclic epoxy resin examples include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (The product names in parentheses are manufactured by Dow Chemical.)
  • Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), Polyglycerol polyglycidyl ether (Denacol EX).
  • epoxy resins include trade names such as Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801, Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000, Etc. (above product name, Turbocharger bread epoxy resin) and the like.
  • Examples of the cationically polymerizable compound having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121).
  • At least one polymer of the radical polymerizable compound and the cationic polymerizable compound contained in the resin-containing layer used in the present disclosure is, for example, the radical polymerizable compound or the cationic polymerizable compound. It can be obtained by adding a polymerization initiator to at least one kind, if necessary, and carrying out a polymerization reaction by a known method.
  • a radical polymerization initiator a cationic polymerization initiator, a radical, a cationic polymerization initiator, and the like can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • the radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating.
  • photo radical polymerization initiators include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives, and the like.
  • Irgacure 907 Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870 manufactured by Ciba Japan Co., Ltd. , Irgacure OXE01, DAROCUR TPO, DAROCUR1173, Japan Siber Hegner Co., Ltd.
  • the cationic polymerization initiator should just be able to discharge
  • the cationic polymerization initiator include sulfonic acid ester, imide sulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, ( ⁇ 6 -benzene) ( ⁇ 5 -cyclopentadidiene).
  • Enyl) iron (II) and the like and more specific examples include, but are not limited to, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide and the like.
  • radical polymerization initiators that can be used as cationic polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like.
  • iodonium chloride such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, bromide, borofluoride, hexafluorophosphate salt, hexafluoro Iodonium salts such as antimonate salts, chlorides of sulfonium such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, bromide, borofluoride, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, 2,4,6-sub
  • the resin-containing layer used in the present disclosure includes, as necessary, an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, You may contain additives, such as a leveling agent and various sensitizers.
  • an antistatic agent such as an antistatic agent
  • an antiglare agent such as an antiglare agent
  • an antifouling agent such as an antifouling agent
  • inorganic or organic fine particles for improving hardness You may contain additives, such as a leveling agent and various sensitizers.
  • inorganic fine particles such as silica particles are preferably used. However, when silica particles are used, it is preferable from the viewpoint of improving the adhesion between the polyimide film and the resin-containing layer.
  • the laminate of the present disclosure is one in which the polyimide film and the resin-containing layer are located adjacent to each other, and in particular, on the surface of the polyimide film having a relatively large silicon atom concentration, It is preferable from the point of the adhesiveness of a polyimide film and this resin containing layer that a content layer is closely_contact
  • the laminated body of the present disclosure is obtained by laminating other layers such as a gel containing urethane or acrylic resin in addition to the polyimide film and the resin-containing layer as long as the effects of the present disclosure are not impaired.
  • the resin-containing layer may have a multilayer structure of two or more layers.
  • the laminated body of this indication may laminate
  • the total thickness of the laminate of the present disclosure may be appropriately selected depending on the application, but is preferably 10 ⁇ m or more, and more preferably 40 ⁇ m or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, it is preferably 300 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the thickness of each resin-containing layer may be appropriately selected depending on the application, but is preferably 2 ⁇ m or more and 80 ⁇ m or less, and more preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the pencil hardness of the resin-containing layer side surface is preferably H or higher, more preferably 2H or higher, and even more preferably 3H or higher.
  • the pencil hardness of the laminate of the present disclosure can be measured in the same manner as the pencil hardness of the polyimide film.
  • the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more. Is preferred.
  • the total light transmittance of the laminate of the present disclosure can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
  • the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, and more preferably 15 or less. More preferred is 10 or less.
  • the yellowness (YI value) of the laminate of the present disclosure can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
  • the haze value of the laminate of the present disclosure is preferably 10 or less, more preferably 8 or less, and even more preferably 5 or less from the viewpoint of light transmittance.
  • the haze value of the laminate of the present disclosure can be measured in the same manner as the haze value of the polyimide film.
  • the birefringence in the thickness direction at a wavelength of 590 nm of the laminate of the present disclosure is preferably 0.020 or less, preferably 0.015 or less, more preferably 0.010 or less, and still more. Preferably it is less than 0.008.
  • the birefringence of the laminate of the present disclosure can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
  • Manufacturing method of laminated body As a manufacturing method of the laminated body of the present disclosure, for example, Forming a coating film of a resin-containing layer forming composition containing at least one of a radically polymerizable compound and a cationically polymerizable compound on the surface of the polyimide film of the present disclosure having a relatively large silicon atom concentration; And a step of curing the coating film.
  • the composition for forming a resin-containing layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like as necessary.
  • a polymerization initiator e.g., a polymerization initiator, a solvent, an additive, and the like.
  • the radical polymerizable compound, the cationic polymerizable compound, the polymerization initiator and the additive contained in the resin-containing layer forming composition can be the same as those described in the resin-containing layer.
  • the solvent can be appropriately selected from known solvents.
  • Examples of a method for forming a coating film of the resin-containing layer forming composition on a surface of the polyimide film having a relatively high silicon atom concentration include, for example, the resin on the surface of the polyimide film having a relatively high silicon atom concentration.
  • coating the composition for content layer formation by a well-known application means is mentioned.
  • the application means is not particularly limited as long as it is a method that can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
  • the solvent is removed by drying the coating film of the resin-containing layer forming composition as necessary.
  • the drying method include reduced-pressure drying or heat drying, and a method combining these drying methods.
  • a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is formed on the surface of the polyimide film having a relatively large silicon atom concentration by curing the coating film with at least one of Can be formed.
  • ultraviolet rays For light irradiation, ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are mainly used.
  • ultraviolet curing ultraviolet rays emitted from light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used.
  • the irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the treatment When heating, the treatment is usually performed at a temperature of 40 ° C. or higher and 120 ° C. or lower. Moreover, you may react by leaving it to stand for 24 hours or more at room temperature (25 degreeC).
  • the surface material for display of this indication is the polyimide film of this indication mentioned above, or the layered product of this indication.
  • the display surface material of the present disclosure is arranged and used so as to be positioned on the surface of various displays.
  • the surface material for display according to the present disclosure can improve bending resistance and has a sufficient surface hardness as a protective film, like the polyimide film according to the present disclosure and the laminate according to the present disclosure. It can be particularly preferably used.
  • the surface material for display of the present disclosure has sufficient transparency as a transparent film and can reduce optical distortion, as with the polyimide film of the present disclosure and the laminate of the present disclosure described above, A decrease in display quality of the display can be suppressed.
  • the display surface material of the present disclosure can be used for various known displays and is not particularly limited.
  • the display surface material can be used for the display described in the application of the polyimide film of the present disclosure.
  • positioning on the surface of a display may be the surface by the side of a polyimide film, or a resin containing layer
  • a hard coat layer is used as the resin-containing layer
  • the display surface material of the present disclosure may have a fingerprint adhesion preventing layer on the outermost surface.
  • the method for disposing the display surface material of the present disclosure on the surface of the display is not particularly limited, and examples thereof include a method through an adhesive layer.
  • the adhesive layer a conventionally known adhesive layer that can be used for adhesion of a display surface material can be used.
  • the surface in contact with the support in the drying step may be referred to as a cast surface, and the surface opposite to the cast surface may be referred to as an atmosphere surface.
  • the weight average molecular weight of the polyimide precursor was determined using GPC by using a polyimide precursor as an N-methylpyrrolidone (NMP) solution with a concentration of 0.5% by weight and using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less as a developing solvent.
  • NMP N-methylpyrrolidone
  • 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less as a developing solvent.
  • measurement was performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.5 mL / min, and 40 ° C.
  • the weight average molecular weight of the polyimide precursor was determined based on a polystyrene standard sample having the same concentration as the sample.
  • ⁇ Viscosity of polyimide precursor solution The viscosity of the polyimide precursor solution was measured using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
  • the weight average molecular weight of polyimide was determined by using a GPC apparatus (manufactured by Tosoh Corporation) using polyimide as an N-methylpyrrolidone (NMP) solution having a concentration of 0.2% by weight and using as a developing solvent a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less.
  • NMP N-methylpyrrolidone
  • measurement was performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.4 mL / min, and 40 ° C.
  • the weight average molecular weight of the polyimide was determined based on a polystyrene standard sample having the same concentration as the sample.
  • 2,2′-bis as the diamine component with respect to 1 mol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as the acid dianhydride component When 0.9 mol of (trifluoromethyl) benzidine (TFMB) and 0.1 mol of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) are used, it can be calculated as follows. .
  • an amino group is introduced via — (CH 2 ) 3 —.
  • the number of repeating units of diphenylsiloxane is 19.7 on average from the number average molecular weight 4400, and an average of 21.7 silicon atoms are contained in one molecule. Calculated as being.
  • the YI value is a transmittance measured by a spectrocolorimetric method stipulated in JIS Z8720 using an ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation V-7100) in accordance with JIS K7373-2006. And calculated. Further, for example, the YI value at a thickness of 100 ⁇ m is the same as the Lambert for each transmittance at each wavelength measured at 5 nm intervals between 380 nm and 780 nm of a sample having a specific thickness. A converted value of each transmittance at each wavelength of different thickness can be obtained according to Beer's law, and calculated and used based on that.
  • the thickness direction retardation value (Rth) of the polyimide film was measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (product name “KOBRA-WR” manufactured by Oji Scientific Instruments).
  • a phase difference value at 0 ° incidence and a phase difference value at an incidence angle of 40 ° were measured, and a thickness direction retardation value Rth was calculated from these retardation values.
  • the retardation value at an oblique incidence of 40 degrees was measured by making light having a wavelength of 590 nm incident on the retardation film from a direction inclined by 40 degrees from the normal line of the retardation film.
  • the birefringence of the polyimide film was determined by substituting it into the formula: Rth / d (polyimide film thickness (nm)).
  • RSA III TA Instruments Japan Co., Ltd.
  • ⁇ Tensile modulus> A polyimide film test piece cut out to 15 mm ⁇ 40 mm was conditioned for 2 hours under the conditions of a temperature of 25 ° C. and a relative humidity of 60%, and in accordance with JIS K7127, the tensile speed was 10 mm / min and the distance between chucks was 20 mm. The tensile elastic modulus at 25 ° C. was measured. A tensile tester (manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) was used.
  • the metal piece 2 on which the test piece 1 was fixed was sandwiched between glass plates (100 mm ⁇ 100 mm ⁇ 0.7 mm) 3a and 3b from above and below, and the test piece 1 was fixed in a state of being bent with an inner diameter of 6 mm.
  • dummy test pieces 4a and 4b were sandwiched between portions of the metal piece 2 where the test piece 1 was not provided, and fixed with tape so that the glass plates 3a and 3b were parallel.
  • the glass plate and the test piece fixing tape are removed.
  • the force applied to the test piece was released. Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after releasing the force applied to the test piece.
  • the inner angle is 180 °.
  • ⁇ Dynamic bending test> A test piece cut out to a size of 20 mm ⁇ 100 mm was fixed with a tape to a thermostat-humidifier durability test system (manufactured by Yuasa System Equipment Co., Ltd., planar surface unloaded U-shaped expansion / contraction test jig DMX-FS). After setting the test piece to be in the same folded state as in the static bending test, that is, the distance between both ends of the long side of the test piece in the folded state is 6 mm, it is 93 at 60 ⁇ 2 ° C. Bending was repeated 200,000 times with 90 bendings per minute in an environment of ⁇ 2% relative humidity (RH) or 50 ⁇ 10% relative humidity (RH) at 25 ° C.
  • RH relative humidity
  • RH relative humidity
  • ⁇ Pencil hardness> After conditioning the sample for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%, a pencil scratch coating hardness tester manufactured by Toyo Seiki Co., Ltd. was used, using the test pencil specified by JIS-S-6006. The pencil hardness test (0.98N load) defined in JIS K5600-5-4 (1999) was performed on the atmosphere surface of the film, and the highest pencil hardness without scratches was evaluated.
  • ⁇ Peelability evaluation> The polyimide film was visually observed, and the peelability from the support during production was evaluated according to the following evaluation criteria.
  • a streak refers to the pattern which generate
  • a wrinkle refers to a wrinkle generated in the longitudinal direction when the film is stretched when peeled from the support and then contracted.
  • Comparative polyimide precursor solution 1 (solid content 40 wt%) in which comparative polyimide precursor 1 was dissolved was synthesized.
  • the viscosity at 25 ° C. of the comparative polyimide precursor solution 1 (solid content 40% by weight) was 3900 cps, and the weight average molecular weight of the comparative polyimide precursor 1 measured by GPC was 42,000.
  • pyridine 59.05 g, 0.747 mmol
  • acetic anhydride 76.22 g, 0.747 mol
  • a part (692.2 g) of the obtained polyimide solution was transferred to a 5 L separable flask, and butyl acetate (471.1 g) was added and stirred until uniform.
  • methanol (1046 g) was gradually added to obtain a solution with slight turbidity.
  • Methanol 2443 kg was added all at once to the cloudy solution to obtain a white slurry.
  • polyimide 1 (104.7 g).
  • the weight average molecular weight of the polyimide 1 measured by GPC was 180000.
  • Polyimide 1 was dissolved in a mixed solvent of butyl acetate and PGMEA (8: 2, volume ratio) to prepare a polyimide solution 1 having a solid content of 25% by mass.
  • the viscosity of the polyimide solution 1 (solid content: 25% by weight) at 25 ° C. was 58500 cps.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • Example 9 Using the polyimide solution 1 obtained in Synthesis Example 9, the following steps (1) to (4) were performed to prepare polyimide films having thicknesses shown in Table 2.
  • the polyimide solution 1 was applied on a steel support, dried in a circulating oven at 40 ° C. for 60 minutes, and further dried at 100 ° C. for 30 minutes to form a coating film.
  • the coating film was peeled from the support (peel strength 0.1 N / 25 mm, peel rate 200 mm / min, peel angle 180 °).
  • the outer periphery of the coating film was fixed to a frame-shaped metal jig.
  • Under a nitrogen stream oxygen concentration of 100 ppm or less), the temperature is raised to 250 ° C. at a rate of temperature increase of 10 ° C./min. A polyimide film was obtained.
  • the polyimide films of Examples 1 to 9 corresponding to the polyimide film of the present disclosure contain silicon atoms in both the atmosphere surface and the cast surface, but the atmosphere surface has a higher silicon atom concentration and the atmosphere.
  • the silicon atom concentration on the surface is 10.0 atomic% or less and the tensile modulus is 1.8 GPa or more
  • the adhesion to the resin-containing layer on the atmosphere surface is improved, and the peelability from the support of the cast surface is improved.
  • the defect resulting from peeling from the support was suppressed.
  • the polyimide films of Examples 1 to 9 were improved in bending resistance by suppressing the decrease in transparency and the decrease in surface hardness.
  • Examples 1 to 9 laminates having improved adhesion between the polyimide film and the resin-containing layer could be obtained. Further, the laminates of Examples 1 to 5 had higher pencil hardness than the laminates of Examples 6 to 9. This is because the laminates of Examples 1 to 5 have a reasonably high silicon atom concentration on the surface of the polyimide film and excellent adhesion between the polyimide film and the hard coat layer, compared to the laminates of Examples 6 to 9. It is presumed that it was caused by what was. The polyimide film of Comparative Example 1 had a defect due to peeling from the support.
  • the polyimide film of Comparative Example 1 has a tensile modulus of less than 1.8 GPa, and the result of the static bending test is 0 degree. The pencil hardness was greatly inferior.
  • the polyimide film of Comparative Example 2 was defective due to peeling from the support. This is presumably because the strength of the coating film was insufficient when the support was peeled off.
  • the polyimide film of Comparative Example 2 had a tensile modulus of less than 1.8 GPa, was inferior in static bending resistance, and was inferior in pencil hardness. Moreover, the laminated body of the comparative example 2 was inferior to the adhesiveness of a polyimide film and a resin content layer. In Comparative Example 2, since the silicon atom concentration on the atmosphere surface exceeded 10 atomic%, the surface of the polyimide film was excessively dissolved by the solvent in the resin-containing layer forming composition. This is probably because a fragile part was generated at the interface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a polyimide film which contains a polyimide containing silicon atoms, has a total light transmittance of 85% or more as measured in accordance with JIS K7361-1, and has such a property that the tensile elastic modulus of a 15 mm × 40 mm test specimen formed therefrom is 1.8 GPa or more as measured at 25ºC in accordance with JIS K7127 at a tension speed of 10 mm/min. and a chuck spacing of 20 mm, wherein silicon atoms are contained in both surfaces of the film, the silicon atom concentration in one surface is different from that in the other surface, and the silicon atom concentration in a surface having a relatively higher silicon atom concentration is 10.0 at.% or less.

Description

ポリイミドフィルム、積層体、及びディスプレイ用表面材Polyimide film, laminate, and display surface material
 本開示の実施形態は、ポリイミドフィルム、積層体、及びディスプレイ用表面材に関するものである。 Embodiment of this indication is related with a polyimide film, a layered product, and a surface material for displays.
 薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすく、加工性に問題があり、また、プラスチック製品と比較して重いといった欠点があった。このため、近年、樹脂基材や樹脂フィルム等の樹脂製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあり、ガラス代替製品となる樹脂製品の研究が行われてきている。 Although thin plate glass is excellent in hardness, heat resistance, etc., it is difficult to bend, it is easy to break when dropped, there is a problem in workability, and it is heavy compared to plastic products. Therefore, in recent years, resin products such as resin base materials and resin films are being replaced with glass products from the viewpoint of processability and weight reduction, and research on resin products that are glass substitute products has been conducted.
 例えば、液晶や有機EL等のディスプレイや、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスには従来、薄い板ガラス上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、この薄い板ガラスを樹脂フィルムに変えることにより、パネル自体の耐衝撃性の強化、フレキシブル化、薄型化や軽量化が図れる。 For example, with the rapid progress of electronics such as liquid crystal and organic EL displays and touch panels, it has become necessary to make devices thinner and lighter and more flexible. Conventionally, these devices have various electronic elements such as thin transistors and transparent electrodes formed on a thin glass plate. By changing this thin glass plate to a resin film, the impact resistance of the panel itself is enhanced. , Flexible, thin and light.
 一般にポリイミド樹脂は、芳香族テトラカルボン酸無水物と芳香族ジアミンとの縮合反応により得られたポリアミド酸(ポリアミック酸)を脱水閉環反応させて得られる高耐熱性の樹脂である。しかしながら、一般にポリイミド樹脂は黄色或いは褐色に着色を示すことから、ディスプレイ用途や光学用途など透明性が要求される分野に用いることは困難であった。そこで、透明性を向上したポリイミドを、ディスプレイ部材へ適用することが検討されている。例えば、特許文献1には、高耐熱性、高透明性、低吸水性のポリイミド樹脂として、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、特定の式で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させてなるポリイミド樹脂が開示されており、フラットパネルディスプレイや携帯電話機器等の基板材料に好適であると記載されている。 Generally, a polyimide resin is a highly heat-resistant resin obtained by subjecting a polyamic acid (polyamic acid) obtained by a condensation reaction of an aromatic tetracarboxylic acid anhydride and an aromatic diamine to a dehydration ring-closing reaction. However, since polyimide resins generally show yellow or brown coloration, it has been difficult to use them in fields that require transparency, such as display applications and optical applications. Therefore, it has been studied to apply a polyimide having improved transparency to a display member. For example, Patent Document 1 discloses 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid dicarboxylic acid as polyimide resins having high heat resistance, high transparency, and low water absorption. At least one acyl-containing compound selected from the group consisting of anhydrides and reactive derivatives thereof, and at least one compound selected from compounds having at least one phenylene group and isopropylidene group represented by a specific formula A polyimide resin obtained by reacting with an imino forming compound is disclosed, and is described as being suitable for a substrate material such as a flat panel display or a mobile phone device.
 特許文献2には、フレキシブルデバイスの基板に用いられるポリイミドフィルムとして、無色透明であり、無機膜との間に発生する残留応力が低く、機械的物性及び熱物性に優れたポリイミドフィルムを得ることを目的として、特定のフッ素系芳香族ジアミンと、ケイ素原子数が3~200個のシロキサン骨格を有するシリコーン化合物とをモノマー成分として用いたポリイミド前駆体をイミド化したポリイミドフィルムが開示されている。特許文献2には、前記ポリイミド前駆体を用いて無機膜(SiN膜)付きポリイミドフィルムを形成したところ、折り曲げを10回繰り返し行った折り曲げ試験後にクラックも剥離も観察されないか(○)、クラックが観察された(△)と記載されている。 Patent Document 2 states that as a polyimide film used for a substrate of a flexible device, a polyimide film that is colorless and transparent, has a low residual stress generated between the inorganic film, and has excellent mechanical and thermal properties. For the purpose, a polyimide film obtained by imidizing a polyimide precursor using a specific fluorine-based aromatic diamine and a silicone compound having a siloxane skeleton having 3 to 200 silicon atoms as a monomer component is disclosed. In Patent Document 2, when a polyimide film with an inorganic film (SiN film) is formed using the polyimide precursor, cracks and peeling are not observed after a bending test in which bending is repeated 10 times (◯). Observed (Δ).
 一方、特許文献3には、撥水性のポリイミドフィルムとして、ポリイミドシロキサンを含有させたポリアミック酸溶液の塗膜をイミド化することにより、或いは、ポリアミック酸溶液の塗膜上に、ポリイミドシロキサン溶液の塗膜を形成した後、イミド化することにより、ケイ素原子の表面原子濃度を1%以上としたポリイミドフィルムが開示されている。 On the other hand, in Patent Document 3, as a water repellent polyimide film, a polyimide siloxane solution coating film is imidized or applied onto a polyamic acid solution coating film. A polyimide film having a surface atom concentration of silicon atoms of 1% or more is disclosed by imidization after forming a film.
特開2006-199945号公報JP 2006-199945 A 国際公開2014/098235号公報International Publication No. 2014/098235 特開平10-110032号公報JP 10-1110032 A
 発明者らは、ガラス代替となる樹脂製品として、ポリイミドフィルムと、樹脂を含有する各種機能層との積層体が有効であると考え、鋭意検討しているが、ポリイミドフィルムの前記樹脂含有層に対する密着性の向上が課題の1つであった。発明者らの検討により、ケイ素原子を適切に含有させたポリイミドフィルムは、前記樹脂含有層に対する密着性が向上するが、その一方で剥離性が悪化するため、製造過程でフィルムを支持体から剥離する際に剥離し難く、フィルムにシワ、クラック、スジ等の不良が生じたり、フィルムが破断する等の問題があることを知見した。そのため、ポリイミドフィルムにおいては、製造過程における支持体からの剥離性と、他の層を積層した場合の密着性との両立が求められている。
 また、ケイ素原子を含有させたポリイミドフィルムであっても、特許文献3に記載されている撥水性ポリイミドフィルムでは、光透過性が低く、透明性が要求されるディスプレイ用途や光学用途などの分野に用いることが困難である。
 さらに、従来のシリコーン成分を含有させたポリイミドフィルムは、弾性率が不足し、表面硬度が低く、傷付きやすかったり、発光パネルや回路へ衝撃を伝えてしまい、保護フィルムとしての機能が不足する場合もあった。
 以上のことから、製造過程における支持体からの剥離性と、他の層を積層した場合の密着性とを両立しながら、透明フィルムとして十分な透明性を有し、保護フィルムとして十分な表面硬度をする樹脂フィルムが求められている。
The inventors considered that a laminate of a polyimide film and various functional layers containing a resin is effective as a resin product to replace glass. The improvement of adhesion was one of the problems. According to the inventors' investigation, the polyimide film appropriately containing silicon atoms improves the adhesion to the resin-containing layer, but on the other hand, the peelability deteriorates, so the film is peeled off from the support during the manufacturing process. It has been found that the film is difficult to peel off, and the film has problems such as wrinkles, cracks, streaks, or the film breaks. Therefore, in the polyimide film, coexistence with the peelability from the support body in a manufacture process and the adhesiveness at the time of laminating | stacking another layer is calculated | required.
Moreover, even if it is a polyimide film containing a silicon atom, the water-repellent polyimide film described in Patent Document 3 has low light transmittance and is used in fields such as display applications and optical applications where transparency is required. It is difficult to use.
In addition, the conventional polyimide film containing a silicone component has insufficient elastic modulus, low surface hardness, is easily scratched, or transmits an impact to a light-emitting panel or circuit, resulting in insufficient function as a protective film. There was also.
From the above, while having both peelability from the support in the production process and adhesion when other layers are laminated, it has sufficient transparency as a transparent film and sufficient surface hardness as a protective film There is a need for a resin film that can be used.
 本開示は、上記問題点に鑑みてなされたものであり、一方の面の密着性が向上しながら、もう一方の面の支持体からの剥離に起因する不良が抑制され、且つ、透明性の低下及び表面硬度の低下が抑制されたポリイミドフィルムを提供することを主目的とする。
 また、本開示は、前記ポリイミドフィルムを有する積層体、及び、前記ポリイミドフィルム又は前記積層体であるディスプレイ用表面材を提供することを目的とする。
The present disclosure has been made in view of the above-described problems. While improving the adhesion of one surface, defects caused by peeling from the support on the other surface are suppressed, and the transparency is improved. The main object is to provide a polyimide film in which the decrease and the decrease in surface hardness are suppressed.
Moreover, this indication aims at providing the surface material for displays which is the laminated body which has the said polyimide film, and the said polyimide film or the said laminated body.
 本開示の1実施形態は、ケイ素原子を含むポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムを提供する。
One embodiment of the present disclosure contains a polyimide containing silicon atoms,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
 本開示の1実施形態は、ケイ素原子を含むポリイミドを含有し、ケイ素原子を全ポリイミド中に0.2質量%以上4.1質量%以下の割合で含み、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムを提供する。
1 embodiment of this indication contains the polyimide containing a silicon atom, and contains the silicon atom in the ratio of 0.2 mass% or more and 4.1 mass% or less in all the polyimides,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
 本開示の1実施形態は、下記一般式(1-1)で表される構造を有するポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムを提供する。
One embodiment of the present disclosure contains a polyimide having a structure represented by the following general formula (1-1),
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less is provided.
Figure JPOXMLDOC01-appb-C000005
(一般式(1-1)において、R1’は芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、R2’は、ジアミン残基である2価の基を表し、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。n’は繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1-1), R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and R 2 ′ is a divalent group that is a diamine residue. Represents a group, wherein 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and 50 mol% or more and 97.5 mol% or less contains silicon atoms. (It is a diamine residue having no aromatic ring or aliphatic ring. N ′ represents the number of repeating units.)
 本開示の1実施形態は、下記一般式(1)で表される構造を有するポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、少なくとも一方の面のケイ素原子濃度が1.0原子%以上である、ポリイミドフィルムを提供する。
1 embodiment of this indication contains the polyimide which has a structure denoted by the following general formula (1),
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
Although one surface and the other surface contain silicon atoms, the silicon atom concentration on one surface is different from the silicon atom concentration on the other surface, and the silicon atom concentration on at least one surface is 1. Provided is a polyimide film that is 0 atomic% or more.
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom, (A diamine residue having an aromatic ring or an aliphatic ring. N represents the number of repeating units.)
 本開示の1実施形態においては、前記ポリイミドが、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含む、ポリイミドフィルムを提供する。 In one embodiment of the present disclosure, the polyimide includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) the aromatic rings are substituted with a sulfonyl group or fluorine. There is provided a polyimide film comprising at least one selected from the group consisting of a structure linked by an alkylene group which may be included.
 本開示の1実施形態においては、前記一般式(1-1)で表される構造を有するポリイミドにおける前記一般式(1-1)中のR1’、及び、前記一般式(1)で表される構造を有するポリイミドにおける前記一般式(1)中のRが、各々、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、ポリイミドフィルムを提供する。 In one embodiment of the present disclosure, R 1 ′ in the general formula (1-1) in the polyimide having the structure represented by the general formula (1-1), and the general formula (1) In the polyimide having the structure, R 1 in the general formula (1) is, respectively, cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3. ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3', 4,4'-biphenyltetracarboxylic dianhydride Residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene Reden) Talic anhydride residue, 3,3 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic anhydride residue, and 3,4'-oxydiphthalic anhydride residue A polyimide film, which is at least one tetravalent group selected from the group consisting of:
 本開示の1実施形態においては、前記一般式(1-1)で表される構造を有するポリイミドにおける前記一般式(1-1)中のR2’における前記芳香族環又は脂肪族環を有するジアミン残基、及び、前記一般式(1)で表される構造を有するポリイミドにおける前記一般式(1)中のRにおける前記芳香族環又は脂肪族環を有するジアミン残基が、各々、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、ポリイミドフィルムを提供する。 In one embodiment of the present disclosure, the polyimide having the structure represented by the general formula (1-1) has the aromatic ring or the aliphatic ring in R 2 ′ in the general formula (1-1). A diamine residue and a diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) in the polyimide having the structure represented by the general formula (1) are each trans. -Cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4-amino) Selected from the group consisting of a phenyl) propane residue, a 2,2-bis (4-aminophenyl) hexafluoropropane residue, and a divalent group represented by the following general formula (2). Is at least one divalent group, to provide a polyimide film.
Figure JPOXMLDOC01-appb-C000007
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 本開示の1実施形態においては、ケイ素原子濃度が相対的に大きい表面を、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層との密着面に用いる、ポリイミドフィルムを提供する。 In one embodiment of the present disclosure, a polyimide that uses a surface having a relatively high silicon atom concentration as an adhesion surface with a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound Provide film.
 本開示の1実施形態は、前記本開示の1実施形態のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層とが隣接して位置する積層体を提供する。 One embodiment of the present disclosure is a laminate in which the polyimide film of the one embodiment of the present disclosure and a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound are positioned adjacent to each other. Provide the body.
 本開示の1実施形態においては、前記ラジカル重合性化合物が(メタ)アクリロイル基を1分子中に2つ以上有する化合物であり、前記カチオン重合性化合物がエポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物である、積層体を提供する。 In one embodiment of the present disclosure, the radical polymerizable compound is a compound having two or more (meth) acryloyl groups in one molecule, and the cationic polymerizable compound includes at least one of an epoxy group and an oxetanyl group. Provided is a laminate which is a compound having two or more molecules.
 本開示の1実施形態は、前記本開示の1実施形態のポリイミドフィルム、又は、前記本開示の1実施形態の積層体である、ディスプレイ用表面材を提供する。 1 embodiment of this indication provides the surface material for displays which is the polyimide film of one embodiment of the above-mentioned indication, or the layered product of one embodiment of the this indication.
 本開示の1実施形態は、前記本開示の1実施形態のポリイミドフィルム、又は、前記本開示の1実施形態の積層体である、フレキシブルディスプレイ用表面材を提供する。 1 embodiment of this indication provides the surface material for flexible displays which is the polyimide film of one embodiment of the above-mentioned indication, or the layered product of one embodiment of this indication.
 本開示の実施形態によれば、一方の面の密着性が向上しながら、もう一方の面の支持体からの剥離に起因する不良が抑制され、且つ、透明性の低下及び表面硬度の低下が抑制されたポリイミドフィルムを提供することができる。
 また、本開示の実施形態は、前記ポリイミドフィルムを有する積層体、及び、前記ポリイミドフィルム又は前記積層体であるディスプレイ用表面材を提供することができる。
According to the embodiment of the present disclosure, while improving the adhesion of one surface, defects due to peeling from the support on the other surface are suppressed, and the decrease in transparency and the decrease in surface hardness are achieved. A suppressed polyimide film can be provided.
Moreover, embodiment of this indication can provide the surface material for displays which is the laminated body which has the said polyimide film, and the said polyimide film or the said laminated body.
静的屈曲試験の方法を説明するための図である。It is a figure for demonstrating the method of a static bending test.
I.ポリイミドフィルム
 本開示のポリイミドフィルムの第1の実施形態は、ケイ素原子を含むポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムである。
I. Polyimide film The first embodiment of the polyimide film of the present disclosure contains a polyimide containing silicon atoms,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. It is a polyimide film whose atomic concentration is 10.0 atomic% or less.
 本開示のポリイミドフィルムの第2の実施形態は、ケイ素原子を含むポリイミドを含有し、ケイ素原子を全ポリイミド中に0.2質量%以上4.1質量%以下の割合で含み、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムである。
2nd Embodiment of the polyimide film of this indication contains the polyimide containing a silicon atom, contains the silicon atom in the ratio of 0.2 mass% or more and 4.1 mass% or less in all the polyimides,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. It is a polyimide film whose atomic concentration is 10.0 atomic% or less.
 前記第2の実施形態は、前記第1の実施形態において、ケイ素原子を全ポリイミド中に0.2質量%以上4.1質量%以下の割合で含むものであり、ポリイミドフィルムの一方の面の密着性と、もう一方の面の剥離性とを向上し易い形態である。 The second embodiment includes silicon atoms in the proportion of 0.2% by mass or more and 4.1% by mass or less in the total polyimide in the first embodiment. This is a form that can easily improve the adhesion and the peelability of the other surface.
 本開示のポリイミドフィルムの第3の実施形態は、下記一般式(1-1)で表される構造を有するポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルムである。
The third embodiment of the polyimide film of the present disclosure contains a polyimide having a structure represented by the following general formula (1-1),
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. It is a polyimide film whose atomic concentration is 10.0 atomic% or less.
Figure JPOXMLDOC01-appb-C000008
(一般式(1-1)において、R1’は芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、R2’は、ジアミン残基である2価の基を表し、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。n’は繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (1-1), R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and R 2 ′ is a divalent group that is a diamine residue. Represents a group, wherein 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and 50 mol% or more and 97.5 mol% or less contains silicon atoms. (It is a diamine residue having no aromatic ring or aliphatic ring. N ′ represents the number of repeating units.)
 前記第3の実施形態は、前記第1の実施形態において、ケイ素原子を含むポリイミドとして、前記一般式(1-1)で表される構造を有するポリイミドを用いたものであり、ポリイミドフィルムの一方の面の密着性と、もう一方の面の剥離性とを向上し易い形態である。 The third embodiment uses a polyimide having a structure represented by the general formula (1-1) as the polyimide containing silicon atoms in the first embodiment. It is the form which is easy to improve the adhesiveness of one surface and the peelability of the other surface.
 本開示のポリイミドフィルムの第4の実施形態は、下記一般式(1)で表される構造を有するポリイミドを含有し、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
 JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
 15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
 一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、少なくとも一方の面のケイ素原子濃度が1.0原子%以上である、ポリイミドフィルムである。
4th Embodiment of the polyimide film of this indication contains the polyimide which has a structure represented by following General formula (1),
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
Although one surface and the other surface contain silicon atoms, the silicon atom concentration on one surface is different from the silicon atom concentration on the other surface, and the silicon atom concentration on at least one surface is 1. It is a polyimide film which is 0 atomic% or more.
Figure JPOXMLDOC01-appb-C000009
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom, (A diamine residue having an aromatic ring or an aliphatic ring. N represents the number of repeating units.)
 前記第4の実施形態は、前記第1の実施形態において、ケイ素原子を含むポリイミドとして、前記一般式(1)で表される構造を有するポリイミドを用い、少なくとも一方の面のケイ素原子濃度が1.0原子%以上であるポリイミドフィルムであり、ポリイミドフィルムの一方の面の密着性と、もう一方の面の剥離性とを向上し易い形態である。前記第4の実施形態においては、前記一般式(1)で表される構造を有するポリイミドを用いることにより、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度を10.0原子%以下とすることができる。 In the fourth embodiment, a polyimide having a structure represented by the general formula (1) is used as the polyimide containing a silicon atom in the first embodiment, and the silicon atom concentration on at least one surface is 1. It is a polyimide film that is 0.0 atomic% or more, and has a form that can easily improve the adhesion of one surface of the polyimide film and the peelability of the other surface. In the fourth embodiment, by using the polyimide having the structure represented by the general formula (1), the silicon atom concentration on the surface having a relatively large silicon atom concentration is set to 10.0 atom% or less. be able to.
 本開示のポリイミドフィルムは、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。本開示のポリイミドフィルムの前記JIS K7361-1に準拠して測定する全光線透過率は、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 本開示のポリイミドフィルムは、厚み5μm以上100μm以下において、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 また、本開示のポリイミドフィルムは、厚み50μm±5μmにおいて、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
 JIS K7361-1に準拠して測定する全光線透過率は、例えば、ヘイズメーター(例えば村上色彩技術研究所製 HM150)により測定することができる。なお、ある厚みの全光線透過率の測定値から、異なる厚みの全光線透過率は、ランベルトベールの法則により換算値を求めることができ、それを利用することができる。
The polyimide film of the present disclosure has a total light transmittance of 85% or more as measured in accordance with JIS K7361-1. Thus, since the transmittance | permeability is high, transparency becomes favorable and it can become a glass substitute material. The total light transmittance of the polyimide film of the present disclosure measured according to JIS K7361-1 is preferably 88% or more, more preferably 89% or more, particularly 90% or more. It is preferable.
The polyimide film of the present disclosure has a thickness of 5 μm or more and 100 μm or less, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more. Further, it is preferably 89% or more, and particularly preferably 90% or more.
In addition, the polyimide film of the present disclosure has a thickness of 50 μm ± 5 μm, and the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, and more preferably 88% or more. Further, it is preferably 89% or more, and particularly preferably 90% or more.
The total light transmittance measured according to JIS K7361-1 can be measured by, for example, a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory). In addition, from the measured value of the total light transmittance of a certain thickness, the converted value of the total light transmittance of different thickness can be obtained by Lambert Beer's law and can be used.
 また、本開示のポリイミドフィルムは、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、30以下であることが好ましい。このように黄色度が低いことから、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料となり得る。前記JIS K7373-2006に準拠して算出される黄色度(YI値)は、中でも、20以下であることが好ましく、15以下であることが更に好ましく、10以下であることがより更に好ましい。
 本開示のポリイミドフィルムは、厚み5μm以上100μm以下において、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が30以下であることが好ましく、20以下であることが更に好ましく、15以下であることがより更に好ましく、10以下であることが特に好ましい。
 また、本開示のポリイミドフィルムは、厚み50μm±5μmにおいて、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、10以下であることが好ましく、7以下であることが更に好ましく、5以下であることがより更に好ましい。
 なお、黄色度(YI値)は、前記JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用い、JIS Z8722に規定する分光測色方法により測定される透過率をもとに算出することができる。
 なお、ある厚みの黄色度の測定値から、異なる厚みの黄色度は、ある特定の膜厚のサンプルの380nm以上780nm以下の間の5nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
In addition, the polyimide film of the present disclosure preferably has a yellowness (YI value) calculated in accordance with JIS K7373-2006 of 30 or less. Thus, since yellowness is low, coloring of yellowishness is suppressed, light transmittance improves, and it can become a glass substitute material. Above all, the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
The polyimide film of the present disclosure has a thickness of 5 μm or more and 100 μm or less, and the yellowness (YI value) calculated based on JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, More preferably, it is 15 or less, and it is especially preferable that it is 10 or less.
In addition, the polyimide film of the present disclosure has a thickness of 50 μm ± 5 μm, and the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 10 or less, and more preferably 7 or less. Preferably, it is 5 or less and still more preferable.
The yellowness (YI value) is measured using a UV-Vis near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006. It can be calculated based on the transmittance measured by the color method.
It should be noted that, from the measurement value of yellowness of a certain thickness, the yellowness of different thicknesses is calculated for each transmittance at each wavelength measured at 5 nm intervals between 380 nm and 780 nm of a sample with a specific thickness. Similarly to the light transmittance, a converted value of each transmittance at each wavelength of different thickness can be obtained according to Lambert Beer's law, and can be calculated and used based on it.
 また、本開示のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が、1.8GPa以上である。このように、25℃(室温)での引張弾性率が高いことから、保護フィルムとして十分な表面硬度を室温でも維持することができ、表面材として用いることができる。前記引張弾性率は、中でも、2.0GPa以上であることが好ましく、2.4GPa以上であることが更に好ましい。一方で、前記引張弾性率は、屈曲耐性を向上させる点から、5.2GPa以下であることが好ましい。屈曲耐性を向上させる点から、前記引張弾性率は4.0GPa以下であっても良く、3.5GPa以下であっても良い。
 前記引張弾性率は、引張り試験機(例えば島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用い、幅15mm×長さ40mmの試験片をポリイミドフィルムから切り出して、25℃で、引張り速度10mm/min、チャック間距離は20mmとして測定することができる。前記引張弾性率を求める際のポリイミドフィルムは厚みが50μm±5μmであることが好ましい。
In addition, the polyimide film of the present disclosure has a tensile elastic modulus at 25 ° C. of 1.8 GPa or more when a 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile speed is 10 mm / min, and the distance between chucks is 20 mm. is there. Thus, since the tensile elastic modulus at 25 ° C. (room temperature) is high, surface hardness sufficient as a protective film can be maintained even at room temperature, and it can be used as a surface material. Above all, the tensile elastic modulus is preferably 2.0 GPa or more, and more preferably 2.4 GPa or more. On the other hand, the tensile elastic modulus is preferably 5.2 GPa or less from the viewpoint of improving bending resistance. From the viewpoint of improving bending resistance, the tensile elastic modulus may be 4.0 GPa or less, or 3.5 GPa or less.
The tensile elastic modulus was determined by cutting a test piece having a width of 15 mm × a length of 40 mm from a polyimide film using a tensile tester (for example, Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) at 25 ° C. The tensile speed can be 10 mm / min, and the distance between chucks can be 20 mm. The polyimide film for obtaining the tensile modulus of elasticity preferably has a thickness of 50 μm ± 5 μm.
 また、本開示の前記第1、2、及び3の実施形態のポリイミドフィルムは、一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である。
 また、本開示の前記第4の実施形態のポリイミドフィルムは、一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、少なくとも一方の面のケイ素原子濃度が1.0原子%以上である。
 なお、本開示において、各原子の原子%の値は、測定値をJIS Z8401:1999の規則Bに従い、小数点以下第1位に丸めた値とする。例えば、ケイ素原子濃度が1.0原子%以上とは、ケイ素原子濃度が0.950原子%以上であれば含まれる。
 本開示のポリイミドフィルムは、少なくとも一方の面のケイ素原子濃度が1.0原子%以上であり、且つ、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下であることが、密着性、剥離性、及び表面硬度の点から好ましい。
 一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度との差の絶対値は、一方の面の密着性と、もう一方の面の剥離性をそれぞれ向上する点から、0.1原子%以上であることが好ましく、0.4原子%以上であることがより好ましく、0.8原子%以上であることがより更に好ましい。
 また、相対的にケイ素原子濃度が大きい面のケイ素原子濃度は、密着性の点から、好ましくは1.2原子%以上、より好ましくは1.6原子%以上であり、より更に好ましくは2.0原子%以上であり、密着性及び表面硬度の点から、好ましくは8.0原子%以下、より好ましくは5.0原子%以下である。
 相対的にケイ素原子濃度が小さい面のケイ素原子濃度は、剥離性の点から、好ましくは4.0原子%以下、より好ましくは2.0原子%以下、より更に好ましくは1.5原子%以下であり、屈曲耐性の点から、好ましくは0.1原子%以上、より好ましくは0.2原子%以上、より更に好ましくは0.5原子%以上である。
 また、相対的にケイ素原子濃度が大きい面のケイ素原子濃度が1.6原子%以上10.0原子%以下であり、且つ、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度との差の絶対値が0.8原子%以上である場合は、密着性と剥離性を両立しながら、特に相対的にケイ素原子濃度が大きい面の密着性に優れる点から好ましい。
 相対的にケイ素原子濃度が小さい面のケイ素原子濃度が1.5原子%以下であり、且つ、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度との差の絶対値が0.8原子%以上である場合は、密着性と剥離性を両立しながら、特に相対的にケイ素原子濃度が小さい面の剥離性に優れる点から好ましい。
 また、相対的にケイ素原子濃度が大きい面のケイ素原子濃度が1.6原子%以上10.0原子%以下であり、且つ、相対的にケイ素原子濃度が小さい面のケイ素原子濃度が1.5原子%以下である場合は、密着性及び剥離性の双方を向上する点から好ましい。
 なお、本開示においてポリイミドフィルム表面の各原子濃度は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて、X線光電子分光法(XPS)により下記条件で測定される各原子の原子%の値から求めることができる。
・入射X線: Monochromated Al Kα線(単色化X線、hν=1486.6eV) 
・X線照射領域(測定面積):400μmφ
・X線出力:100W(15kV・6.7mA) 
・光電子取り込み角度:53°(但し、試料法線を0°とする) 
・帯電中和条件:電子中和銃(+6V、0.05mA)、低加速Arイオン照射 
・測定ピーク:Si2p、C1s、N1s、O1s、F1s 
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて原子数比を算出する。
In addition, the polyimide films of the first, second, and third embodiments of the present disclosure include silicon atoms on one side and the other side, but the silicon atom concentration on one side and the other side The silicon atom concentration on the surface having a relatively high silicon atom concentration is 10.0 atom% or less.
Further, the polyimide film of the fourth embodiment of the present disclosure contains silicon atoms on one side and the other side, but the silicon atom concentration on one side and the silicon atoms on the other side Unlike the concentration, the silicon atom concentration on at least one surface is 1.0 atomic% or more.
In the present disclosure, the value of atomic% of each atom is a value obtained by rounding a measured value to the first decimal place according to the rule B of JIS Z8401: 1999. For example, the silicon atom concentration of 1.0 atom% or more is included if the silicon atom concentration is 0.950 atom% or more.
In the polyimide film of the present disclosure, the silicon atom concentration on at least one surface is 1.0 atom% or more, and the silicon atom concentration on a surface having a relatively large silicon atom concentration is 10.0 atom% or less. Is preferable in terms of adhesion, peelability, and surface hardness.
The absolute value of the difference between the silicon atom concentration on one surface and the silicon atom concentration on the other surface is 0.1 from the point of improving the adhesion of one surface and the peelability of the other surface. It is preferably at least atomic percent, more preferably at least 0.4 atomic percent, and even more preferably at least 0.8 atomic percent.
In addition, the silicon atom concentration on the surface having a relatively large silicon atom concentration is preferably 1.2 atom% or more, more preferably 1.6 atom% or more, and even more preferably 2. From the viewpoint of adhesion and surface hardness, it is preferably 8.0 atomic% or less, more preferably 5.0 atomic% or less.
The silicon atom concentration on the surface having a relatively small silicon atom concentration is preferably 4.0 atom% or less, more preferably 2.0 atom% or less, still more preferably 1.5 atom% or less, from the viewpoint of peelability. From the viewpoint of bending resistance, it is preferably 0.1 atomic% or more, more preferably 0.2 atomic% or more, and still more preferably 0.5 atomic% or more.
In addition, the silicon atom concentration on the surface having a relatively large silicon atom concentration is 1.6 atom% or more and 10.0 atom% or less, and the silicon atom concentration on one surface and the silicon atom concentration on the other surface When the absolute value of the difference between the two is 0.8 atomic% or more, it is preferable from the viewpoint that both the adhesiveness and the peelability are compatible and the adhesiveness of the surface having a relatively large silicon atom concentration is particularly excellent.
The silicon atom concentration on the surface having a relatively low silicon atom concentration is 1.5 atomic% or less, and the absolute value of the difference between the silicon atom concentration on one surface and the silicon atom concentration on the other surface is 0. When it is at least 8 atomic%, it is preferable from the viewpoint of excellent releasability on a surface having a relatively low silicon atom concentration while achieving both adhesion and releasability.
In addition, the silicon atom concentration on the surface having a relatively high silicon atom concentration is 1.6 atom% or more and 10.0 atom% or less, and the silicon atom concentration on the surface having a relatively low silicon atom concentration is 1.5 atom%. When it is at most atomic%, it is preferable from the viewpoint of improving both adhesion and peelability.
In the present disclosure, the atomic concentration on the surface of the polyimide film is determined by the X-ray photoelectron spectroscopy (XPS) using an X-ray photoelectron spectrometer (for example, Thermo Scientific Thea Probe) under the following conditions. It can be determined from the atomic% value.
Incident X-ray: Monochromated Al Kα ray (monochromated X-ray, hν = 1486.6 eV)
・ X-ray irradiation area (measurement area): 400 μmφ
・ X-ray output: 100 W (15 kV, 6.7 mA)
Photoelectron uptake angle: 53 ° (sample normal is 0 °)
・ Charge neutralization conditions: electron neutralization gun (+6 V, 0.05 mA), low acceleration Ar + ion irradiation
Measurement peak: Si2p, C1s, N1s, O1s, F1s
Quantification: The background is obtained by the Shirley method, and the atomic ratio is calculated from the obtained peak area using the relative sensitivity coefficient method.
 本開示によれば、ポリイミドフィルムが含有するポリイミドが、ケイ素原子を含み、前記特定の全光線透過率、及び前記特定の引張弾性率を有し、一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下であるポリイミドフィルムとしたことにより、一方の面の密着性が向上しながら、もう一方の面の支持体からの剥離に起因する不良が抑制され、且つ、透明性の低下及び表面硬度の低下が抑制されたポリイミドフィルムを提供することができる。
 この理由については、以下のように推定される。
According to the present disclosure, the polyimide contained in the polyimide film contains silicon atoms, has the specific total light transmittance, and the specific tensile elastic modulus, and is on either one surface or the other surface. A polyimide containing silicon atoms, but having a silicon atom concentration on one surface different from a silicon atom concentration on the other surface, and a silicon atom concentration on a surface having a relatively large silicon atom concentration is 10.0 atom% or less By using the film, while improving the adhesion of one surface, defects due to peeling from the support on the other surface were suppressed, and a decrease in transparency and a decrease in surface hardness were suppressed. A polyimide film can be provided.
About this reason, it estimates as follows.
 本発明者らは、ガラス代替製品として用いる樹脂として、ポリイミドに着目した。ポリイミドは、その化学構造に由来し耐熱性が優れることが知られている。また、本発明者らは、ポリイミドにケイ素原子を導入することにより、ポリイミドフィルムとハードコート層等の樹脂含有層との密着性が向上することを知見した。これは、ポリイミドにケイ素原子を導入することにより、樹脂含有層を積層する際に、ポリイミドフィルムと樹脂含有層とのミキシングに適度に優れるためと推定される。
 一方で、ポリイミドにケイ素原子を導入したポリイミドフィルムは、製造過程で支持体から剥離する際に剥離し難く、シワ、クラック、スジ等の不良が生じたり、フィルムが破断する場合があることが確認された。しかし、上述したように、樹脂フィルムの密着性と剥離性とは相反する特性であると考えられ、多層構造を有しないポリイミドフィルム単体で、密着性と剥離性の両立は困難である。
 それに対して、本発明者らは、ケイ素原子を含むポリイミドを用いると、ポリイミドフィルム中のケイ素原子が偏在しやすく、作製されるポリイミドフィルムの表面のケイ素原子濃度が表裏面で互いに異なる場合があることを見出した。そして、そのような、表裏面でのケイ素原子濃度が互いに異なるポリイミドフィルムにおいて、更に、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下であり、室温での引張弾性率が1.8GPa以上であり、全光線透過率が85%以上であるポリイミドフィルムは、密着性と製造過程での支持体からの剥離性とを両立でき、更に、保護フィルムとして十分な表面硬度をを維持しつつ、透明樹脂フィルムとしての十分な透明性を有することを見出した。本開示のポリイミドフィルムは、相対的にケイ素原子濃度が高い面では、ハードコート層等の樹脂含有層との密着性が向上し、相対的にケイ素原子濃度の低い面では、製造過程で支持体から剥離される際の剥離性が向上したものである。本開示のポリイミドフィルムにおいて表裏面でのケイ素原子濃度が互いに異なるのは、表裏面で露出するケイ素原子の量が異なるように分子鎖が配置されているためと推定される。ポリイミド樹脂の分子鎖がそのように配置される理由は、明らかではないが、ポリイミド樹脂がケイ素原子を含むことにより、ポリイミドフィルムの製造過程において、支持体を剥離する前の乾燥工程を適宜調整することで、空気と接する面の方が、支持体と接する面に比べて、ケイ素原子が表面に露出するように分子鎖が配列されると考えられる。また、支持体を剥離する前の乾燥工程において、段階的に温度を上げて乾燥を行うことにより、空気と接する面に、よりケイ素原子が露出しやすくなると推定される。具体的には、初めに70℃未満の低温で乾燥させる。この段階では、フィルム中に溶媒が十分に存在するため、塗膜中のケイ素原子はフィルム中にほぼ均等に存在すると推定される。次に70℃以上の温度で加熱し、さらに乾燥が進むと、ケイ素原子を含む部位がフィルム表面に凝集しやすくなると推定される。また、後述する比較例2のように、ポリイミドフィルム表面のケイ素原子濃度が大きすぎると、樹脂含有層との密着性が不十分になる傾向がみられた。これは、樹脂含有層を形成する際に用いられる樹脂含有層形成用組成物中の溶剤によりポリイミドフィルムの表面が溶解しすぎてしまい、樹脂含有層形成用組成物を硬化させる際に、ポリイミドフィルム表面の溶解した部分が再度硬化する過程で、シワがよったり、クラックが発生したりすることで、ポリイミドフィルムと樹脂含有層との界面に脆弱な部分を生じるため、密着性が低下すると推定される。それに対し、本開示の第1、2、及び3の実施形態のポリイミドフィルムは、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下であることにより、このような密着性の低下が抑制されると考えられる。
 また、本開示のポリイミドフィルムは、製造過程での支持体からの剥離性に優れるため、熱イミド化を行う場合は、イミド化前塗膜の状態で支持体から剥離することができる。そのため、本開示のポリイミドフィルムを製造する際には、イミド化前塗膜の状態で延伸処理を行うことができ、それにより、作製されるポリイミドフィルムの収縮を抑制し、弾性率を向上することができる。また、支持体上で熱イミド化を行った後に支持体の剥離を行う場合は、熱イミド化の際に、支持体上でポリイミドフィルムが収縮することにより、端部が支持体から浮き上がってカールが生じたり、クラックが発生する等の問題が生じ得る。それに対し本開示では、イミド化前塗膜の状態で支持体から剥離することができるため、カールやクラックの発生が抑制された高弾性のポリイミドフィルムとすることができる。
また、イミド化前塗膜の強度が不十分であると、支持体から剥離する際に剥離応力によって塗膜が伸びてしまい、スジが発生したり、伸びた塗膜がイミド化後に収縮することにより、シワが発生する等の不良となりやすい。本開示のポリイミドフィルムは、キャスト面のケイ素原子濃度が相対的に低く、また、引張弾性率が1.8GPa以上となるポリイミドフィルムを形成するためのイミド化前塗膜は十分な強度を有するため、スジやシワの発生を抑制することができる。
 一方で、熱イミド化を行わず、化学イミド化によりイミド化を行う場合は、熱イミド化の際に行われるような高温加熱処理を行わなくても良いため、熱によるフィルムの収縮を抑制することができる。しかし、化学イミド化を行う場合においても、支持体から剥離されるポリイミド樹脂塗膜自体の強度が不十分であると、支持体から剥離する際に剥離応力によって塗膜が伸びてスジが発生する等の剥離不良が生じやすい。本開示のポリイミドフィルムは、キャスト面のケイ素原子濃度が相対的に低く、また、引張弾性率が1.8GPa以上となるポリイミドフィルムを形成するためのポリイミド樹脂塗膜は十分な強度を有するため、剥離不良を抑制することができる。
 また、後述する比較例1、2のように、フィルムの引張弾性率が小さいと、表面硬度が不十分になることが確認された。それに対し、本開示のポリイミドフィルムは、室温での引張弾性率が1.8GPa以上であることにより、室温での表面硬度の低下が抑制され、室温においても保護フィルムとして十分な表面硬度を維持することができる。そのため、本開示のポリイミドフィルムは、表面の傷付を防止する耐擦傷性に優れ、また、その下部に位置する部材の破損を防ぐ耐衝撃性にも優れる。
 また、本開示のポリイミドフィルムは、単層構造とすることができるため、透明性を向上しやすい。本開示のポリイミドフィルムは、単層構造で上記課題を達成できるため、生産性も高い。
The present inventors paid attention to polyimide as a resin used as a glass substitute product. Polyimide is known to have excellent heat resistance due to its chemical structure. Further, the present inventors have found that the adhesion between the polyimide film and a resin-containing layer such as a hard coat layer is improved by introducing silicon atoms into the polyimide. This is presumed to be reasonably excellent in mixing the polyimide film and the resin-containing layer when the resin-containing layer is laminated by introducing silicon atoms into the polyimide.
On the other hand, the polyimide film with silicon atoms introduced into the polyimide is difficult to peel off when peeling from the support during the manufacturing process, and it is confirmed that defects such as wrinkles, cracks, and streaks may occur or the film may break. It was done. However, as described above, it is considered that the adhesiveness and peelability of the resin film are contradictory properties, and it is difficult to achieve both adhesiveness and peelability with a single polyimide film having no multilayer structure.
In contrast, when the present inventors use polyimide containing silicon atoms, silicon atoms in the polyimide film are likely to be unevenly distributed, and the silicon atom concentration on the surface of the produced polyimide film may be different between the front and back surfaces. I found out. In such polyimide films having different silicon atom concentrations on the front and back surfaces, the silicon atom concentration on the surface having a relatively large silicon atom concentration is 10.0 atom% or less, and the tensile elasticity at room temperature. A polyimide film having a rate of 1.8 GPa or more and a total light transmittance of 85% or more can achieve both adhesion and releasability from the support in the production process, and has sufficient surface hardness as a protective film. It was found that the film has sufficient transparency as a transparent resin film while maintaining the above. The polyimide film of the present disclosure has improved adhesion to a resin-containing layer such as a hard coat layer on the surface with a relatively high silicon atom concentration, and a support in the production process on a surface with a relatively low silicon atom concentration. The peelability when peeled from is improved. In the polyimide film of the present disclosure, the silicon atom concentrations on the front and back surfaces are different from each other because the molecular chains are arranged so that the amount of silicon atoms exposed on the front and back surfaces is different. The reason why the molecular chain of the polyimide resin is so arranged is not clear, but the polyimide resin contains silicon atoms, so that the drying process before peeling the support is appropriately adjusted in the production process of the polyimide film. Thus, it is considered that the molecular chain is arranged so that silicon atoms are exposed on the surface in contact with air compared to the surface in contact with the support. In addition, it is presumed that silicon atoms are more easily exposed on the surface in contact with the air by increasing the temperature stepwise in the drying step before peeling the support. Specifically, it is first dried at a low temperature of less than 70 ° C. At this stage, since the solvent is sufficiently present in the film, it is presumed that the silicon atoms in the coating film are present almost uniformly in the film. Next, when heating is performed at a temperature of 70 ° C. or more and further drying is performed, it is presumed that a part containing silicon atoms tends to aggregate on the film surface. Moreover, when the silicon atom density | concentration on the surface of a polyimide film was too large like the comparative example 2 mentioned later, the tendency for adhesiveness with a resin content layer to become inadequate was seen. This is because the surface of the polyimide film is excessively dissolved by the solvent in the resin-containing layer forming composition used when forming the resin-containing layer, and when the resin-containing layer forming composition is cured, the polyimide film In the process where the dissolved part of the surface is cured again, wrinkles or cracks are generated, and a brittle part is generated at the interface between the polyimide film and the resin-containing layer, so that the adhesion is estimated to be lowered. The On the other hand, the polyimide films of the first, second, and third embodiments of the present disclosure have such adhesion because the silicon atom concentration on the surface having a relatively large silicon atom concentration is 10.0 atom% or less. It is considered that the decrease in sex is suppressed.
Moreover, since the polyimide film of this indication is excellent in the peelability from the support body in a manufacture process, when performing thermal imidation, it can peel from a support body in the state of the coating film before imidation. Therefore, when manufacturing the polyimide film of the present disclosure, the stretching treatment can be performed in the state of the coating film before imidization, thereby suppressing the shrinkage of the produced polyimide film and improving the elastic modulus. Can do. When the support is peeled off after thermal imidization on the support, the polyimide film shrinks on the support during the thermal imidization, so that the end is lifted from the support and curled. Or problems such as cracking may occur. On the other hand, in this indication, since it can peel from a support in the state of a coating film before imidation, it can be set as a highly elastic polyimide film by which generation of curl and a crack was controlled.
Also, if the strength of the coating film before imidization is insufficient, the coating film will be stretched due to peeling stress when it is peeled off from the support, causing streaks, or the stretched coating film shrinking after imidization. Therefore, it tends to cause defects such as wrinkles. The polyimide film of the present disclosure has a relatively low silicon atom concentration on the cast surface, and the coating film before imidization for forming a polyimide film having a tensile modulus of 1.8 GPa or more has sufficient strength. , Generation of streaks and wrinkles can be suppressed.
On the other hand, when performing imidization by chemical imidization without performing thermal imidization, it is not necessary to perform a high-temperature heat treatment that is performed during thermal imidization, so that the film shrinkage due to heat is suppressed. be able to. However, even in the case of chemical imidization, if the strength of the polyimide resin coating film itself peeled off from the support is insufficient, the coating film stretches due to peeling stress when it peels off from the support, and streaks are generated. Such a peeling failure is likely to occur. Since the polyimide film of the present disclosure has a relatively low silicon atom concentration on the cast surface, and the polyimide resin coating film for forming a polyimide film having a tensile modulus of 1.8 GPa or more has sufficient strength, Debonding failure can be suppressed.
Moreover, it was confirmed that the surface hardness becomes insufficient when the tensile modulus of the film is small as in Comparative Examples 1 and 2 described later. In contrast, the polyimide film of the present disclosure has a tensile elastic modulus at room temperature of 1.8 GPa or more, so that a decrease in surface hardness at room temperature is suppressed, and a sufficient surface hardness as a protective film is maintained even at room temperature. be able to. Therefore, the polyimide film of the present disclosure is excellent in scratch resistance that prevents the surface from being scratched, and is also excellent in impact resistance that prevents breakage of a member located therebelow.
Moreover, since the polyimide film of this indication can be made into a single layer structure, it is easy to improve transparency. Since the polyimide film of this indication can achieve the above-mentioned subject with a single layer structure, productivity is also high.
 以下、本開示に係るポリイミドフィルムについて詳細に説明する。
 本開示に係るポリイミドフィルムは、ケイ素原子を含むポリイミドを含有し、前記特定の特性を有するものである。本開示の効果が損なわれない限り、更にその他の成分を含有していても良いし、他の構成を有していてもよい。
Hereinafter, the polyimide film according to the present disclosure will be described in detail.
The polyimide film according to the present disclosure contains a polyimide containing a silicon atom and has the specific characteristics. As long as the effects of the present disclosure are not impaired, other components may be contained or other configurations may be included.
1.ポリイミド
 ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよい。また、熱イミド化と化学イミド化とを併用した方法で製造することもできる。
1. Polyimide Polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to obtain imidization by obtaining a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component. The imidization may be performed by thermal imidization or chemical imidization. Moreover, it can also manufacture by the method which used thermal imidation and chemical imidization together.
 本開示に係るポリイミドフィルムで用いられるポリイミドは、ケイ素原子を含むポリイミドを含有する。
 本開示に係るポリイミドフィルムが含む全ポリイミド中のケイ素原子の含有割合(質量%)は、特に限定はされないが、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度を10.0原子%以下としながら、ポリイミドフィルムの表裏面においてケイ素原子濃度を互いに異なるものとすることが容易な点、ポリイミドフィルムの密着性及び剥離性の両立の点、並びに、屈曲耐性及び表面硬度の両立の点から、0.2質量%以上4.1質量%以下であることが好ましく、0.5質量%以上4.1質量%以下であることがより好ましい。
 ここで、ポリイミドフィルムが含む全ポリイミド中のケイ素原子の含有割合(質量%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミドフィルムが含む全ポリイミド中のケイ素原子の含有割合(質量%)は、ポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
 なお、本開示に用いられるポリイミドは、1種又は2種以上含有することができる。
The polyimide used in the polyimide film according to the present disclosure contains a polyimide containing a silicon atom.
The content ratio (% by mass) of silicon atoms in all polyimides included in the polyimide film according to the present disclosure is not particularly limited, but the silicon atom concentration on the surface where the silicon atom concentration is relatively large is 10.0 atom% or less. However, it is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film, from the viewpoint of coexistence of adhesion and peelability of the polyimide film, and from the viewpoint of coexistence of bending resistance and surface hardness. It is preferably 2% by mass or more and 4.1% by mass or less, and more preferably 0.5% by mass or more and 4.1% by mass or less.
Here, the content ratio (% by mass) of silicon atoms in all the polyimides included in the polyimide film can be determined from the molecular weight of the charge at the time of polyimide production. In addition, the content ratio (mass%) of silicon atoms in all polyimides contained in the polyimide film is the high-performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA, and TOF-SIMS for the polyimide decomposition products. Can be obtained using
In addition, the polyimide used for this indication can contain 1 type (s) or 2 or more types.
 ケイ素原子を含むポリイミドとしては、例えば、ケイ素原子を有するテトラカルボン酸残基及びケイ素原子を有するジアミン残基のいずれかを含むポリイミドが挙げられる。中でも、ポリイミドフィルムの表裏面においてケイ素原子濃度を互いに異なるものとすることが容易な点、ポリイミドフィルムの密着性及び剥離性の両立の点、並びに、屈曲耐性及び表面硬度の両立の点から、ケイ素原子を有するジアミン残基を含むポリイミドが好ましく、主鎖にケイ素原子を有するジアミン残基を含むポリイミドがより好ましい。
 ここで、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
Examples of the polyimide containing a silicon atom include a polyimide containing either a tetracarboxylic acid residue having a silicon atom or a diamine residue having a silicon atom. Above all, silicon is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film, from the standpoint of compatibility of the adhesion and peelability of the polyimide film, and from the standpoint of both bending resistance and surface hardness. A polyimide containing a diamine residue having an atom is preferred, and a polyimide containing a diamine residue having a silicon atom in the main chain is more preferred.
Here, the tetracarboxylic acid residue means a residue obtained by removing four carboxyl groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing acid dianhydride structure from tetracarboxylic dianhydride. . Moreover, a diamine residue means the residue remove | excluding two amino groups from diamine.
 ケイ素原子を有するジアミン残基を含むポリイミドにおいて、ジアミン残基の総量100モル%中、ケイ素原子を有するジアミン残基の割合は、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度を10.0原子%以下としながら、ポリイミドフィルムの表裏面においてケイ素原子濃度を互いに異なるものとすることが容易な点、ポリイミドフィルムの密着性及び剥離性の両立の点、並びに、屈曲耐性及び表面硬度の両立の点から、2.5モル%以上50モル%以下であることが好ましい。 In the polyimide containing a diamine residue having a silicon atom, the ratio of the diamine residue having a silicon atom in the total amount of 100 mol% of the diamine residue is 10.0% of the silicon atom concentration on the surface having a relatively large silicon atom concentration. It is easy to make the silicon atom concentrations different from each other on the front and back surfaces of the polyimide film while keeping the atomic% or less, the compatibility of the adhesion and peelability of the polyimide film, and the compatibility of bending resistance and surface hardness. From the viewpoint, it is preferably 2.5 mol% or more and 50 mol% or less.
 ケイ素原子を含むポリイミドとしては、中でも、下記一般式(1-1)で表される構造を有するポリイミドが好ましい。 As the polyimide containing a silicon atom, a polyimide having a structure represented by the following general formula (1-1) is preferable.
Figure JPOXMLDOC01-appb-C000010
(一般式(1-1)において、R1’は芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、R2’は、ジアミン残基である2価の基を表し、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。n’は繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (1-1), R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and R 2 ′ is a divalent group that is a diamine residue. Represents a group, wherein 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and 50 mol% or more and 97.5 mol% or less contains silicon atoms. (It is a diamine residue having no aromatic ring or aliphatic ring. N ′ represents the number of repeating units.)
 前記一般式(1-1)で表される構造を有するポリイミドは、芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を特定量導入した特定の構造を有することにより、ケイ素原子が表面に露出するように分子鎖が配列されやすいと考えられ、ポリイミドフィルム中のケイ素原子がより偏在しやすいことから、ポリイミドフィルムの密着性及び剥離性の両立性をより向上することができる。更に、前記一般式(1-1)で表される構造を有するポリイミドは、芳香族環又は脂肪族環を含んだ分子骨格を有することにより、引張弾性率が高く、表面硬度に優れる。 In the polyimide having the structure represented by the general formula (1-1), a specific amount of a flexible molecular skeleton having a silicon atom in the main chain is introduced between molecular skeletons containing an aromatic ring or an aliphatic ring. By having a specific structure, it is considered that molecular chains are likely to be arranged so that silicon atoms are exposed on the surface, and silicon atoms in the polyimide film are more unevenly distributed. Compatibility can be further improved. Furthermore, the polyimide having the structure represented by the general formula (1-1) has a molecular skeleton containing an aromatic ring or an aliphatic ring, and thus has a high tensile elastic modulus and excellent surface hardness.
 前記一般式(1-1)のR1’におけるテトラカルボン酸残基は、芳香族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基、又は、脂肪族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。
 芳香族環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 脂肪族環を有するテトラカルボン酸二無水物としては、例えば、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
The tetracarboxylic acid residue in R 1 ′ of the general formula (1-1) has a residue obtained by removing an acid dianhydride structure from a tetracarboxylic dianhydride having an aromatic ring, or an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from tetracarboxylic dianhydride.
Examples of the tetracarboxylic dianhydride having an aromatic ring include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′. -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis ( 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3 , 4-Zika Boxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4- Bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4 -[3- (1,2-dicarboxy) Phenoxy] phenyl} ketone dianhydride, 4,4′-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4,4′-bis [3- (1,2-dicarboxy) Phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} Ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfone Anhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride, 4′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, and the like.
Examples of the tetracarboxylic dianhydride having an aliphatic ring include cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride. An anhydride, cyclobutane tetracarboxylic dianhydride, etc. are mentioned.
These may be used alone or in combination of two or more.
 前記一般式(1-1)のR2’における、主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 主鎖にケイ素原子を有するジアミン残基としては、例えば、下記一般式(A)で表されるジアミンが挙げられる。
In R 2 ′ of the general formula (1-1), the diamine residue having a silicon atom in the main chain can be a residue obtained by removing two amino groups from a diamine having a silicon atom in the main chain.
As a diamine residue which has a silicon atom in a principal chain, the diamine represented by the following general formula (A) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000011
(一般式(A)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。kは0以上200以下の数である。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000011
(In the general formula (A), each L is independently a direct bond or —O— bond, and each R 10 may independently have a substituent and contains an oxygen atom or a nitrogen atom. R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and each R 11 independently has a substituent and may contain an oxygen atom or a nitrogen atom. Represents a divalent hydrocarbon group having a number of 1 or more and 20 or less, k is a number of 0 or more and 200 or less, and a plurality of L, R 10 and R 11 may be the same or different.
 R10で表される1価の炭化水素基としては、炭素数1以上20以下のアルキル基、アリール基、及びこれらの組み合わせが挙げられる。アルキル基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキル基としては、炭素数1以上10以下のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。前記環状のアルキル基としては、炭素数3以上10以下のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アリール基としては、炭素数6以上12以下のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。また、R10で表される1価の炭化水素基としては、アラルキル基であっても良く、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
 酸素原子又は窒素原子を含んでいても良い炭化水素基としては、例えば後述する2価の炭化水素基と前記1価の炭化水素基とをエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R10で表される1価の炭化水素基が有していても良い置換基としては、本開示の効果が損なわれない範囲で特に限定されず、例えば、フッ素原子、塩素原子等のハロゲン原子、水酸基等が挙げられる。
Examples of the monovalent hydrocarbon group represented by R 10 include an alkyl group having 1 to 20 carbon atoms, an aryl group, and combinations thereof. The alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group, hexyl group and the like. The cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, and a naphthyl group. Further, the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group, and a phenylpropyl group.
Examples of the hydrocarbon group that may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. And a group bonded with at least one bond (—NH—).
The substituent that the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present disclosure are not impaired. For example, a halogen atom such as a fluorine atom or a chlorine atom And a hydroxyl group.
 R10で表される1価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上3以下のアルキル基、又は炭素数6以上10以下のアリール基であることが好ましい。炭素数1以上3以下のアルキル基としては、メチル基であることがより好ましく、前記炭素数6以上10以下のアリール基としては、フェニル基であることがより好ましい。 The monovalent hydrocarbon group represented by R 10 is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms from the viewpoint of compatibility between improvement in bending resistance and surface hardness. Preferably there is. The alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
 R11で表される2価の炭化水素基としては、炭素数1以上20以下のアルキレン基、アリーレン基、及びこれらの組み合わせの基が挙げられる。アルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキレン基としては、炭素数1以上10以下のアルキレン基であることが好ましく、例えば、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、シクロヘキシレン基等の直鎖状又は分岐状アルキレン基と環状アルキレン基との組合せの基などを挙げることができる。
 前記アリーレン基としては、炭素数6~12のアリーレン基であることが好ましく、アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基等が挙げられ、更に後述する芳香族環に対する置換基を有していても良い。
 酸素原子又は窒素原子を含んでいても良い2価の炭化水素基としては、前記2価の炭化水素基同士をエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R11で表される2価の炭化水素基が有していても良い置換基としては、前記R10で表される1価の炭化水素基が有していても良い置換基と同様であって良い。
Examples of the divalent hydrocarbon group represented by R 11 include an alkylene group having 1 to 20 carbon atoms, an arylene group, and a combination thereof. The alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkylene group having 1 to 20 carbon atoms is preferably an alkylene group having 1 to 10 carbon atoms. For example, a linear chain such as a methylene group, an ethylene group, various propylene groups, various butylene groups, or a cyclohexylene group. And a combination of a linear or branched alkylene group and a cyclic alkylene group.
The arylene group is preferably an arylene group having 6 to 12 carbon atoms, and examples of the arylene group include a phenylene group, a biphenylene group, a naphthylene group, and the like. May be.
As the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom, the divalent hydrocarbon groups may be ether bonds, carbonyl bonds, ester bonds, amide bonds, and imino bonds (—NH—). A group bonded with at least one is exemplified.
The substituent that the divalent hydrocarbon group represented by R 11 may have is the same as the substituent that the monovalent hydrocarbon group represented by R 10 may have. Good.
 R11で表される2価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上6以下のアルキレン基、又は炭素数6以上10以下のアリーレン基であることが好ましく、更に、炭素数2以上4以下のアルキレン基であることがより好ましい。 The divalent hydrocarbon group represented by R 11 is an alkylene group having 1 to 6 carbon atoms or an arylene group having 6 to 10 carbon atoms from the viewpoint of compatibility between improvement in bending resistance and surface hardness. Preferably, it is more preferably an alkylene group having 2 to 4 carbon atoms.
 前記一般式(A)におけるkは、0以上200以下の数であり、中でも、0以上20以下であることが好ましく、より好ましくは0又は1である。すなわち、前記一般式(1-1)のR2’における、主鎖にケイ素原子を有するジアミン残基は、中でも、主鎖にケイ素原子を1個又は2個有するジアミン残基が好ましい。主鎖にケイ素原子を1個又は2個有するジアミン残基としては、後述する一般式(1)のRにおける、主鎖にケイ素原子を1個又は2個有するジアミン残基と同様のものが挙げられる。 K in the general formula (A) is a number of 0 or more and 200 or less, preferably 0 or more and 20 or less, and more preferably 0 or 1. That is, the diamine residue having a silicon atom in the main chain in R 2 ′ of the general formula (1-1) is preferably a diamine residue having one or two silicon atoms in the main chain. Examples of the diamine residue having one or two silicon atoms in the main chain include those similar to the diamine residue having one or two silicon atoms in the main chain in R 2 of the general formula (1) described later. Can be mentioned.
 主鎖にケイ素原子を有するジアミン残基の分子量は、分子の運動性を抑制しつつ屈曲耐性を付与する点、表面硬度の両立性の点から、3000以下であることが好ましく、2000以下であることが好ましく、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 主鎖にケイ素原子を有するジアミン残基は、単独でも、2種以上を混合して用いることもできる。
The molecular weight of the diamine residue having a silicon atom in the main chain is preferably 3000 or less, and preferably 2000 or less from the viewpoint of imparting bending resistance while suppressing molecular mobility and compatibility of surface hardness. It is preferably 1000 or less, more preferably 800 or less, even more preferably 500 or less, and particularly preferably 300 or less.
The diamine residues having a silicon atom in the main chain can be used alone or in admixture of two or more.
 前記一般式(1-1)のR2’における、ケイ素原子を有さず芳香族環を有するジアミン残基は、ケイ素原子を有さず芳香族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 ケイ素原子を有さず芳香族環を有するジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等、及び、前記ジアミンの芳香族環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。
 これらは単独でも、2種以上を混合して用いることもできる。
In R 2 ′ of the general formula (1-1), the diamine residue having no silicon atom and having an aromatic ring is obtained by removing two amino groups from the diamine having no silicon atom and having an aromatic ring. It can be a residue.
Examples of the diamine having no silicon atom and having an aromatic ring include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzanilide, 3,3'-diaminodiphenylmethane 4,4'-Diaminodiphenylmethane 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) Propane, 2,2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3 , 3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3 -Aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminopheno B) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3 -Aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) Benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis ( 4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α- Ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, N, N′-bis (4-aminophenyl) terephthalamide, 9 , 9-bis (4-aminophenyl) fluorene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 3,3'-dichloro -4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-bis ( -Aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [ 4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) Phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-amino Phenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3- Hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3 -Aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4′-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [ 4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3 ′ -Diamino-4-phenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 6,6'-bis (3-aminophenoxy) -3,3,3 ', 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, and the like A diamine obtained by substituting some or all of the hydrogen atoms on the aromatic ring of the diamine with a substituent selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group can also be used.
These may be used alone or in combination of two or more.
 前記一般式(1-1)のR2’における、ケイ素原子を有さず脂肪族環を有するジアミン残基は、ケイ素原子を有さず脂肪族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 ケイ素原子を有さず脂肪族環を有するジアミンとしては、例えば、trans-シクロヘキサンジアミン、trans-1,4-ビスメチレンシクロヘキサンジアミン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等が挙げられる。
 これらは単独でも、2種以上を混合して用いることもできる。
In R 2 ′ of the general formula (1-1), the diamine residue having an aliphatic ring without a silicon atom is obtained by removing two amino groups from the diamine having an aliphatic ring without a silicon atom. It can be a residue.
Examples of the diamine having no aliphatic atom and having an aliphatic ring include trans-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, and 2,6-bis (aminomethyl) bicyclo [2,2,1]. Examples include heptane and 2,5-bis (aminomethyl) bicyclo [2,2,1] heptane.
These may be used alone or in combination of two or more.
 前記一般式(1-1)で表される構造を有するポリイミドにおいて、主鎖にケイ素原子を有するジアミン残基の割合は、後述するハードコート層のような樹脂含有層との積層体を製造する際の樹脂含有層との密着性を向上する点から、R2’の総量の10モル%以上であることが好ましく、15モル%以上であることがより好ましく、15モル%超過であることがより更に好ましく、20モル%以上であることが特に好ましい。一方、前記一般式(1-1)のR2’は、ポリイミドフィルムの製造過程における支持体からの剥離性を向上し、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、R2’の総量の50モル%未満であることが好ましく、45モル%以下であることがより好ましく、更に40モル%以下であることが好ましい。
 なお、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、R2’の総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1-1)のR2’に、主鎖にケイ素原子を有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、R2’の総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環又は脂肪族環を有しないジアミン残基等が挙げられる。また、引張弾性率を高くし、表面硬度を向上する点から、主鎖にケイ素原子を3個以上有するジアミン残基を含まない方が好ましい。
 中でも、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、R2’の総量(100モル%)のうち、前記主鎖にケイ素原子を有するジアミン残基のモル%(xモル%)の残余(100%-x%)である50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
In the polyimide having the structure represented by the general formula (1-1), the ratio of the diamine residue having a silicon atom in the main chain is such that a laminate with a resin-containing layer such as a hard coat layer described later is produced. From the point of improving the adhesion with the resin-containing layer at the time, it is preferably 10 mol% or more of the total amount of R 2 ′ , more preferably 15 mol% or more, and more than 15 mol%. Even more preferably, it is particularly preferably 20 mol% or more. On the other hand, R 2 ′ in the general formula (1-1) improves the peelability from the support in the production process of the polyimide film, and improves the surface hardness and light transmittance. The diamine residue is preferably less than 50 mol% of the total amount of R2 ' , more preferably 45 mol% or less, and even more preferably 40 mol% or less.
Incidentally, R 2 '50 mol% 2.5 mol% or more of the total amount of the following, a diamine residue having a silicon atom in the main chain, R 2' below 97.5 mol% 50 mol% or more of the total amount of If it is satisfied that the diamine residue does not have a silicon atom but has an aromatic ring or an aliphatic ring, the diamine residue having a silicon atom in the main chain in R 2 ′ of the general formula (1-1). It does not preclude the inclusion of other diamine residues different from diamine residues having no group and no silicon atom and having an aromatic ring or an aliphatic ring. The other diamine residue is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol of the total amount of R 2 ′. % Or less is preferable. Examples of the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring. Moreover, it is preferable not to contain a diamine residue having 3 or more silicon atoms in the main chain from the viewpoint of increasing the tensile modulus and improving the surface hardness.
Among them, 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and among the total amount (100 mol%) of R 2 ′ , 50 mol% or more and 97.5 mol% or less of the remainder (100% −x%) of the mol% (x mol%) of the diamine residue having a silicon atom does not have a silicon atom, and is an aromatic ring or fatty acid. A diamine residue having an aromatic ring is preferable.
 ケイ素原子を含むポリイミドとしては、下記一般式(1)で表される構造を有するポリイミドも好ましい。 As the polyimide containing a silicon atom, a polyimide having a structure represented by the following general formula (1) is also preferable.
Figure JPOXMLDOC01-appb-C000012
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom, (A diamine residue having an aromatic ring or an aliphatic ring. N represents the number of repeating units.)
 前記一般式(1)のRにおけるテトラカルボン酸残基としては、上述した前記一般式(1-1)のR1’におけるテトラカルボン酸残基と同様のものが挙げられる。 Examples of the tetracarboxylic acid residue in R 1 of the general formula (1) include those similar to the tetracarboxylic acid residue in R 1 ′ of the general formula (1-1) described above.
 前記一般式(1)のRにおける、主鎖にケイ素原子を1個又は2個有するジアミン残基は、主鎖にケイ素原子を1個又は2個有するジアミンから2つのアミノ基を除いた残基とすることができる。ポリイミドフィルムの主成分として芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を1個又は2個有する柔軟な分子骨格を特定量導入することで、配向性が抑制され易く、ポリイミドフィルムの表裏面のケイ素原子濃度を互いに異なるものとすることが容易にでき、さらに、複屈折率が低減されたものとなりやすい。また、ポリイミドが上述したような分子骨格を有する場合は、前記特定の主鎖が短い柔軟な分子骨格を、剛直な分子骨格に特定量導入することで、ポリイミドフィルムの室温での弾性率の低下を抑制することができるため、室温においても保護フィルムとして十分な表面硬度を維持することができる。さらに、ポリイミドが上述したような分子骨格を有する場合は、屈曲耐性を向上することができ、フィルムの折り曲げを繰り返し行った後の復元性、すなわち動的屈曲耐性だけでなく、フィルムを長時間折り曲げた状態にした後の復元性、すなわち静的屈曲耐性も向上することができるため、フレキシブルディスプレイ用としてより好適に用いることができる。 In R 2 of the general formula (1), the diamine residue having one or two silicon atoms in the main chain is the residue obtained by removing two amino groups from the diamine having one or two silicon atoms in the main chain. It can be based. Orientation is suppressed by introducing a specific amount of a flexible molecular skeleton having one or two silicon atoms in the main chain between molecular skeletons containing aromatic or aliphatic rings as the main component of the polyimide film. The silicon atom concentration on the front and back surfaces of the polyimide film can be easily made different from each other, and the birefringence is easily reduced. In addition, when the polyimide has a molecular skeleton as described above, a specific amount of the flexible molecular skeleton having a short specific main chain is introduced into the rigid molecular skeleton, thereby lowering the modulus of elasticity at room temperature of the polyimide film. Therefore, sufficient surface hardness as a protective film can be maintained even at room temperature. Furthermore, when the polyimide has a molecular skeleton as described above, the bending resistance can be improved and the film can be bent for a long time as well as the restorability after repeated folding of the film, that is, the dynamic bending resistance. Since it can improve the restorability after being brought into the state, that is, static bending resistance, it can be used more suitably for a flexible display.
 主鎖にケイ素原子を1個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=0である下記一般式(A-1)で表されるジアミンが挙げられる。また、主鎖にケイ素原子を2個有するジアミンとしては、例えば、前記一般式(A)で表されるジアミンのうち、k=1である下記一般式(A-2)で表されるジアミンが挙げられる。 Examples of the diamine having one silicon atom in the main chain include diamines represented by the following general formula (A-1) where k = 0 among the diamines represented by the general formula (A). . Examples of the diamine having two silicon atoms in the main chain include diamines represented by the following general formula (A-2) in which k = 1 among the diamines represented by the general formula (A). Can be mentioned.
Figure JPOXMLDOC01-appb-C000013
(一般式(A-1)及び一般式(A-2)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (A-1) and the general formula (A-2), each L is independently a direct bond or —O— bond, and each R 10 independently has a substituent. And represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, which may contain an oxygen atom or a nitrogen atom, and each R 11 may independently have a substituent, Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom, and a plurality of L, R 10 and R 11 may be the same or different.
 屈曲耐性及び表面硬度の点、及びポリイミドフィルム中のケイ素原子が偏在しやすい点から、主鎖にケイ素原子を1個又は2個有するジアミン残基の分子量は、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 主鎖にケイ素原子を1個又は2個有するジアミン残基は単独でも、2種以上を混合して用いることもできる。
The molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1000 or less from the viewpoints of bending resistance and surface hardness and the tendency of silicon atoms in the polyimide film to be unevenly distributed. Or less, more preferably 500 or less, even more preferably 300 or less.
The diamine residues having one or two silicon atoms in the main chain can be used alone or in combination of two or more.
 前記一般式(1)のRにおける、ケイ素原子を有さず芳香族環を有するジアミン残基、及び、ケイ素原子を有さず脂肪族環を有するジアミン残基としては、前記一般式(1-1)のR2’で説明したものと同様のものが挙げられる。 In R 2 of the general formula (1), as the diamine residue having no silicon atom and having an aromatic ring, and the diamine residue having no silicon atom and having an aliphatic ring, the general formula (1) Examples thereof are the same as those described for R 2 ′ in -1).
 前記一般式(1)のRにおいて、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることにより、ポリイミドフィルム中のケイ素原子が偏在しやすく、表裏面でのケイ素原子濃度を互いに異なるものとすることが容易になり、且つ、フレキシブルディスプレイ用途として十分な屈曲耐性を有し、保護フィルムとして十分な表面硬度を有することができる。前記一般式(1)のRは、後述するハードコート層のような樹脂含有層との積層体を製造する際の樹脂含有層との密着性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の10モル%超過であることが好ましく、15モル%以上であることがより好ましく、15モル%超過であることがより更に好ましく、更に20モル%以上であることが好ましい。一方、前記一般式(1)のRは、ポリイミドフィルムの製造過程における支持体からの剥離性を向上し、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の50モル%未満であることが好ましく、45モル%以下であることがより好ましく、更に40モル%以下であることが好ましい。
 なお、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1)のRに、主鎖にケイ素原子を1個又は2個有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、Rの総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環又は脂肪族環を有しないジアミン残基等が挙げられる。また、引張弾性率を高くし、表面硬度を向上する点から、主鎖にケイ素原子を3個以上有するジアミン残基を含まない方が好ましい。
 中でも、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残余(100%-x%)である50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
In R 2 of the general formula (1), 50 mol% 10 mol% or more of the total amount of R 2 or less, a diamine residue having one or two silicon atoms in the main chain, 50 of the total amount of R 2 When the mol% or more and 90 mol% or less is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring, silicon atoms in the polyimide film are likely to be unevenly distributed, and silicon atoms on the front and back surfaces It becomes easy to make a density | concentration different from each other, and it has sufficient bending tolerance as a flexible display use, and can have sufficient surface hardness as a protective film. R 2 in the general formula (1) is a silicon atom in the main chain from the viewpoint of improving the adhesion to the resin-containing layer when producing a laminate with a resin-containing layer such as a hard coat layer described later. one or two with the diamine residues is preferably 10 mol% excess of the total amount of R 2, more preferably 15 mol% or more, more preferably more from 15 mol% excess, more It is preferable that it is 20 mol% or more. On the other hand, R 2 in the general formula (1) improves the peelability from the support in the process of producing the polyimide film and improves the surface hardness and light transmittance, so that one silicon atom in the main chain or diamine residue having two of preferably less than 50 mole% of the total amount of R 2, more preferably 45 mol% or less, preferably not more than an additional 40 mole%.
Incidentally, 50 mol% 10 mol% or more of the total amount of R 2 or less, a diamine residue having one or two silicon atoms in the main chain, 90 mol% 50 mol% or more of the total amount of R 2 or less, A diamine having one or two silicon atoms in the main chain in R 2 of the general formula (1) as long as it is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring It does not preclude inclusion of other diamine residues that are different from diamine residues having no residue and no silicon atom and having an aromatic ring or an aliphatic ring. The other diamine residue is preferably 10 mol% or less of the total amount of R 2 , more preferably 5 mol% or less, still more preferably 3 mol% or less, particularly 1 mol%. The following is preferable. Examples of the other diamine residue include a diamine residue that does not have a silicon atom and does not have an aromatic ring or an aliphatic ring. Moreover, it is preferable not to contain a diamine residue having 3 or more silicon atoms in the main chain from the viewpoint of increasing the tensile modulus and improving the surface hardness.
Among them, 50 mole% 10 mole% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, of the total amount of R 2 (100 mol%), the main chain 50 mol% or more and 90 mol% or less of the remainder (100% −x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in A diamine residue having an aromatic ring or an aliphatic ring is preferred.
 本開示に用いられるポリイミドとしては、光透過性を向上し、且つ、表面硬度を向上する点から、中でも、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むポリイミドであることが好ましい。本開示に用いられるポリイミドは、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。
 ポリイミドに(i)フッ素原子を含むと、ポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。
 ポリイミドに(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
 ポリイミドに(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
The polyimide used in the present disclosure includes an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and the like, in terms of improving light transmittance and improving surface hardness. (Iii) A polyimide containing at least one selected from the group consisting of a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group which may be substituted with fluorine. The polyimide used in the present disclosure contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring. Although improved, the rigid aromatic ring skeleton tends to increase the absorption wavelength to a long wavelength, and tends to decrease the transmittance in the visible light region.
When (i) a fluorine atom is contained in the polyimide, the light transmittance is improved from the point that it is possible to make the electronic state in the polyimide skeleton difficult to charge transfer.
When (ii) an aliphatic ring is included in the polyimide, light transmittance is improved because the transfer of charges in the skeleton can be inhibited by breaking the π-electron conjugation in the polyimide skeleton.
When (iii) a structure in which aromatic rings are connected to each other by a sulfonyl group or an alkylene group that may be substituted with fluorine is included in the polyimide, the charge transfer in the skeleton is prevented by breaking the π-electron conjugation in the polyimide skeleton. The light transmittance improves from the point which can be inhibited.
 本開示に用いられるポリイミドとしては、中でも、フッ素原子を含むポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点、及び塗膜の支持体からの剥離性が向上する点から好ましく用いられる。また、前記一般式(1)で表される構造を有するポリイミドがフッ素原子を含む場合、ポリイミドフィルムと樹脂含有層との密着性はより向上する傾向がある。 Among the polyimides used in the present disclosure, among them, a polyimide containing a fluorine atom improves the light transmittance and improves the surface hardness, and improves the peelability of the coating film from the support. It is preferably used from the viewpoint. Moreover, when the polyimide which has a structure represented by the said General formula (1) contains a fluorine atom, there exists a tendency for the adhesiveness of a polyimide film and a resin content layer to improve more.
 フッ素原子の含有割合は、ポリイミド表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましく、より更に0.1以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1.0以下であることが好ましく、更に0.8以下であることが好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
The fluorine atom content ratio is preferably such that the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) measured on the polyimide surface by X-ray photoelectron spectroscopy is 0.01 or more, Furthermore, it is preferably 0.05 or more, more preferably 0.1 or more. On the other hand, if the content ratio of fluorine atoms is too high, the inherent heat resistance of the polyimide may be lowered. Therefore, the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1. It is preferably 0 or less, more preferably 0.8 or less.
Here, the said ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be calculated | required from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Thermo Scientific Thea Probe). .
 また、本開示に用いられるポリイミドは、表面硬度が向上する点から、テトラカルボン酸残基及びジアミン残基の合計を100モル%としたときに、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。 In addition, the polyimide used in the present disclosure has a tetracarboxylic acid residue and an aromatic ring having an aromatic ring when the total of the tetracarboxylic acid residue and the diamine residue is 100 mol% from the viewpoint of improving the surface hardness. The total of diamine residues having an aromatic ring is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 75 mol% or more.
 また、本開示に用いられるポリイミドは、表面硬度と光透過性が向上する点から、ケイ素原子を有しないテトラカルボン酸残基及びジアミン残基の少なくとも1つが、芳香族環とフッ素原子とを含むことが好ましく、更に、ケイ素原子を有しないテトラカルボン酸残基及びジアミン残基の両方が、芳香族環とフッ素原子とを含むことが好ましい。
 本開示に用いられるポリイミドは、表面硬度と光透過性が向上する点から、テトラカルボン酸残基及びジアミン残基の合計を100モル%としたときに、芳香族環及びフッ素原子を有するテトラカルボン酸残基及び芳香族環及びフッ素原子を有するジアミン残基の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
Further, in the polyimide used in the present disclosure, at least one of a tetracarboxylic acid residue and a diamine residue having no silicon atom contains an aromatic ring and a fluorine atom from the viewpoint of improving surface hardness and light transmittance. In addition, it is preferable that both the tetracarboxylic acid residue and the diamine residue having no silicon atom contain an aromatic ring and a fluorine atom.
The polyimide used in the present disclosure has a tetracarboxylic acid having an aromatic ring and a fluorine atom when the total of the tetracarboxylic acid residue and the diamine residue is 100 mol% from the viewpoint of improving surface hardness and light transmittance. The total of the acid residue, aromatic ring and diamine residue having a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 75 mol% or more. .
 また、本開示に用いられるポリイミドは、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドであることが、光透過性を向上し、且つ、表面硬度を向上する点から好ましく用いられる。ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、60%以上であることが好ましく、より更に70%以上であることが好ましい。
 ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率や黄色度YI値の変化が少ない点から好ましい。ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、酸素との反応性が低いため、ポリイミドの化学構造が変化し難いことが推定される。ポリイミドフィルムはその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。
 ここで、ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、又は、超臨界メタノールにより分解し、得られた分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計及びNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
In addition, the polyimide used in the present disclosure is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms bonded directly to the aromatic ring, thereby improving light transmittance. And it is preferably used from the viewpoint of improving the surface hardness. The proportion of hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to carbon atoms contained in the polyimide is preferably 60% or more, and more preferably 70% or more. It is preferable that
When 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide is a polyimide that is a hydrogen atom directly bonded to the aromatic ring, the film is stretched at, for example, 200 ° C. or higher even after a heating step in the atmosphere. Is preferable from the viewpoint of little change in optical characteristics, particularly total light transmittance and yellowness YI value. When polyimide is a polyimide in which 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the chemical structure of the polyimide changes due to low reactivity with oxygen. It is estimated that it is difficult. Polyimide film uses its high heat resistance and is often used in devices that require processing steps involving heating, but more than 50% of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are in the aromatic ring. In the case of polyimide, which is a hydrogen atom that is directly bonded, there is no need to carry out these subsequent processes in an inert atmosphere in order to maintain transparency, so that the cost of equipment costs and atmospheric control can be suppressed. There is.
Here, the ratio of the hydrogen atoms (number) directly bonded to the aromatic ring in the total hydrogen atoms (number) bonded to the carbon atoms contained in the polyimide is determined by high-performance liquid chromatography or gas chromatography mass of the polyimide decomposition product. It can be determined using an analyzer and NMR. For example, the sample is decomposed with an alkaline aqueous solution or supercritical methanol, and the resulting decomposition product is separated by high performance liquid chromatography, and a qualitative analysis of each separated peak is performed by a gas chromatograph mass spectrometer, NMR, etc. The ratio of hydrogen atoms (numbers) directly bonded to the aromatic ring in the total hydrogen atoms (numbers) contained in the polyimide can be determined by performing determination using high performance liquid chromatography.
 前記一般式(1-1)で表される構造を有するポリイミドのR1’、及び、前記一般式(1)で表される構造を有するポリイミドのRは、中でも、光透過性の点、屈曲耐性及び表面硬度の点、並びにフィルム中のケイ素原子が偏在しやすい点から、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが好ましい。
 前記R’及び前記Rにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
 特に光透過性と表面硬度のバランスが良い点から、前記一般式(1-1)中のR1’及び前記一般式(1)中のRは、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることがより好ましい。
Formula R 1 of the polyimide having the structure represented by (1-1) ', and, R 1 of the polyimide having the structure represented by the general formula (1) are, inter alia, light transmitting point, From the viewpoint of bending resistance and surface hardness, and the point that silicon atoms in the film are likely to be unevenly distributed, cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ', 4'-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3', 4,4'-biphenyltetracarboxylic dianhydride Residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene Lide ) Diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3,4′-oxydiphthalic anhydride residue It is preferably at least one tetravalent group selected from the group consisting of groups.
In R 1 ′ and R 1 , these suitable residues are preferably contained in a total amount of 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more.
Particularly from the point balance of light transmittance and surface hardness are good, the general formula (1-1) R 1 in 'R 1 and of the general formula (1), 4,4' - (hexafluoro isopropylidene ) Diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalate More preferably, it is at least one tetravalent group selected from the group consisting of an acid anhydride residue and a 3,4′-oxydiphthalic anhydride residue.
 前記一般式(1-1)中のR1’及び前記一般式(1)中のRとしては、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基からなる群から選択される少なくとも一種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選択される少なくとも一種のような光透過性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。この場合、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、光透過性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
 中でも、前記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の少なくとも一種を用いることが、表面硬度と光透過性の向上の点から好ましい。
The 'The R 1 and of the general formula (1), pyromellitic acid dianhydride residue, 3,3' general formula (1-1) R 1 in, 4,4'-biphenyltetracarboxylic acid Tetracarboxylic acid suitable for improving rigidity such as at least one selected from the group consisting of dianhydride residues and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residues Acid residue group (Group A), cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride Residue, cyclobutanetetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3 , 3 '-(Heki Light transmission such as at least one selected from the group consisting of fluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic anhydride residue, and 3,4'-oxydiphthalic anhydride residue It is also preferable to use a mixture of tetracarboxylic acid residue groups (group B) suitable for improving the properties. In this case, the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving light transmittance is , 1 mol of tetracarboxylic acid residue group (group B) suitable for improving light transmittance is 0.4% of tetracarboxylic acid residue group (group A) suitable for improving rigidity. It is preferably from 05 mol to 9 mol, more preferably from 0.1 mol to 5 mol, and still more preferably from 0.3 mol to 4 mol.
Among them, the group B includes 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues and 3,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residues containing fluorine atoms. It is preferable to use at least one kind from the viewpoint of improving surface hardness and light transmittance.
 前記一般式(1-1)中のR2’における芳香族環又は脂肪族環を有するジアミン残基、及び、前記一般式(1)中のRにおける芳香族環又は脂肪族環を有するジアミン残基は、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性の点、屈曲耐性及び表面硬度の点、並びにフィルム中のケイ素原子が偏在しやすい点から好ましく、特に光透過性と表面硬度の両立の点から、更に、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。下記一般式(2)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましい。 A diamine residue having an aromatic ring or an aliphatic ring in R 2 ′ in the general formula (1-1), and a diamine having an aromatic ring or an aliphatic ring in R 2 in the general formula (1) Residues include trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2- At least one selected from the group consisting of bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane residue, and a divalent group represented by the following general formula (2) The divalent group is preferably from the viewpoint of light transmission, bending resistance and surface hardness, and from the point that silicon atoms in the film are likely to be unevenly distributed. In addition, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4 -Aminophenyl) It is preferably at least one divalent group selected from the group consisting of a hexafluoropropane residue and a divalent group represented by the following general formula (2). As the divalent group represented by the following general formula (2), R 3 and R 4 are more preferably perfluoroalkyl groups.
Figure JPOXMLDOC01-appb-C000014
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000014
(In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
 また、前記一般式(1-1)中のR2’における主鎖にケイ素原子を有するジアミン残基、及び、前記一般式(1)中のRにおける主鎖にケイ素原子を1個又は2個有するジアミン残基は、ケイ素原子を2個有するジアミン残基であることが、光透過性の点、屈曲耐性及び表面硬度の点、並びにフィルム中のケイ素原子が偏在しやすい点から好ましく、更に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、1,3-ビス(5-アミノペンチル)テトラメチルジシロキサン等が、入手容易性や光透過性と表面硬度の両立の観点から好ましい。 In addition, a diamine residue having a silicon atom in the main chain of R 2 ′ in the general formula (1-1), and one or two silicon atoms in the main chain of R 2 in the general formula (1) The diamine residue having two silicon atoms is preferably a diamine residue having two silicon atoms from the viewpoint of light transmittance, bending resistance and surface hardness, and the point that silicon atoms in the film are likely to be unevenly distributed. 1,3-bis (3-aminopropyl) tetramethyldisiloxane residue, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane Etc. are preferable from the viewpoints of availability and compatibility between light transmittance and surface hardness.
 前記一般式(1-1)で表される構造におけるn’、及び、前記一般式(1)で表される構造におけるnは、それぞれ繰り返し単位数を表し、1以上である。
 ポリイミドにおける繰り返し単位数は、後述する好ましいガラス転移温度を示すように、構造に応じて適宜選択することが好ましく、特に限定されない。
 平均繰り返し単位数は、通常10~2000であり、更に15~1000であることが好ましい。
N ′ in the structure represented by the general formula (1-1) and n in the structure represented by the general formula (1) each represent the number of repeating units and are 1 or more.
The number of repeating units in the polyimide is preferably selected as appropriate according to the structure so as to exhibit a preferable glass transition temperature described later, and is not particularly limited.
The average number of repeating units is usually 10 to 2000, and more preferably 15 to 1000.
 また、本開示に用いられるポリイミドは、本開示の効果が損なわれない限り、その一部に前記一般式(1-1)で表される構造及び前記一般式(1)で表される構造とは異なる構造を有していても良い。本開示に用いられるポリイミドは、前記一般式(1-1)で表される構造又は前記一般式(1)で表される構造が、本開示に用いられるポリイミドの全繰り返し単位数の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
 前記一般式(1-1)で表される構造及び前記一般式(1)で表される構造とは異なる構造としては、例えば、芳香族環又は脂肪族環を有しないテトラカルボン酸残基等が含まれる場合や、ポリアミド構造が挙げられる。
 含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
In addition, the polyimide used in the present disclosure has a structure represented by the general formula (1-1) and a structure represented by the general formula (1), as long as the effects of the present disclosure are not impaired. May have different structures. In the polyimide used in the present disclosure, the structure represented by the general formula (1-1) or the structure represented by the general formula (1) is 95% or more of the total number of repeating units of the polyimide used in the present disclosure. It is preferable that it is 98% or more, and it is still more preferable that it is 100%.
Examples of the structure represented by the general formula (1-1) and the structure different from the structure represented by the general formula (1) include a tetracarboxylic acid residue having no aromatic ring or aliphatic ring, and the like. Or a polyamide structure.
Examples of the polyamide structure that may be included include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
 本開示に用いられるポリイミドは、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましい。前記ガラス転移温度が150℃以上であることにより、耐熱性に優れ、更に、200℃以上であることが好ましい。また、ガラス転移温度が400℃以下であることにより、ベーク温度を低減することができ、更に、380℃以下であることが好ましい。
 また、本開示に用いられるポリイミドは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましく、これにより、ポリイミドフィルムの室温での引張弾性率を向上することができ、表面硬度を向上することができる。また、本開示に用いられるポリイミドは、0℃超過150℃未満の温度領域に更にtanδ曲線のピークを有していても良いが、tanδ曲線のピークの頂点を150℃以上の温度領域にのみ有することが、引張弾性率を向上しやすい点及び屈曲耐性の点から好ましい。前記tanδ曲線で、ピークの頂点が150℃未満に存在すると、ポリイミドの分子鎖が動きやすく、塑性変形しやすくなって、屈曲耐性が悪くなる恐れがあるのに対し、前記tanδ曲線のピークの頂点が150℃未満に存在しない場合、分子鎖の運動性が抑制され、塑性変形し難くなり、屈曲耐性を向上しやすい。
 本開示に用いられるポリイミドのガラス転移温度は、後述するポリイミドフィルムのガラス転移温度と同様にして測定することができる。
The polyimide used in the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or higher and 400 ° C. or lower. When the glass transition temperature is 150 ° C. or higher, it is excellent in heat resistance and is preferably 200 ° C. or higher. Moreover, when the glass transition temperature is 400 ° C. or lower, the baking temperature can be reduced, and is preferably 380 ° C. or lower.
In addition, the polyimide used in the present disclosure preferably does not have a tan δ curve peak in a temperature range of −150 ° C. or higher and 0 ° C. or lower, which can improve the tensile modulus of the polyimide film at room temperature. , Surface hardness can be improved. In addition, the polyimide used in the present disclosure may further have a tan δ curve peak in a temperature range exceeding 0 ° C. and less than 150 ° C., but has a peak of the tan δ curve only in a temperature region of 150 ° C. or higher. It is preferable from the viewpoint of easily improving the tensile modulus and bending resistance. In the tan δ curve, if the peak apex is lower than 150 ° C., the molecular chain of polyimide tends to move, plastic deformation tends to occur, and the bending resistance may deteriorate, whereas the peak apex of the tan δ curve Is not present below 150 ° C., the mobility of the molecular chain is suppressed, plastic deformation is difficult, and bending resistance is easily improved.
The glass transition temperature of the polyimide used in the present disclosure can be measured in the same manner as the glass transition temperature of the polyimide film described later.
2.添加剤
 本開示のポリイミドフィルムは、前記ポリイミドの他に、必要に応じて更に添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられる。
2. Additives The polyimide film of the present disclosure may further contain additives as necessary in addition to the polyimide. Examples of the additive include inorganic particles, a silica filler for facilitating winding, and a surfactant that improves film-forming properties and defoaming properties.
3.ポリイミドフィルムの特性
 本開示のポリイミドフィルムは、前記特定の全光線透過率及び前記特定の引張弾性率を有するものであり、前記特定の黄色度を有することが好ましい。また、本開示のポリイミドフィルムは、更に後述する特性を有することが好ましい。
3. Characteristics of Polyimide Film The polyimide film of the present disclosure has the specific total light transmittance and the specific tensile elastic modulus, and preferably has the specific yellowness. Moreover, it is preferable that the polyimide film of this indication has the characteristic further mentioned later.
 本開示のポリイミドフィルムにおいて、鉛筆硬度は2B以上であることが好ましく、B以上であることがより好ましく、HB以上であることがより更に好ましい。
 前記ポリイミドフィルムの鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行うことができる。例えば東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
In the polyimide film of the present disclosure, the pencil hardness is preferably 2B or more, more preferably B or more, and even more preferably HB or more.
The pencil hardness of the polyimide film is determined by JIS K5600-5-4 using a test pencil specified by JIS-S-6006 after conditioning the sample for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. (1999), a pencil hardness test (0.98 N load) is performed on the film surface, and the highest pencil hardness that does not cause scratches can be evaluated. For example, a pencil scratch coating film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
 本開示のポリイミドフィルムのヘイズ値は、光透過性の点から、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。当該ヘイズ値は、ポリイミドフィルムの厚みが5μm以上100μm以下において達成できることが好ましい。
 前記ヘイズ値は、JIS K-7105に準拠した方法で測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
The haze value of the polyimide film of the present disclosure is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less, from the viewpoint of light transmittance. It is preferable that the haze value can be achieved when the thickness of the polyimide film is 5 μm or more and 100 μm or less.
The haze value can be measured by a method according to JIS K-7105, for example, a haze meter HM150 manufactured by Murakami Color Research Laboratory.
 また、本開示のポリイミドフィルムにおいては、ケイ素原子濃度が相対的に大きい面で、下記密着性試験方法に従って密着性試験を行った場合に、塗膜の剥がれが生じないことが、ポリイミドフィルムと樹脂含有層との密着性の点及びポリイミドフィルムに隣接して樹脂含有層を積層した積層体の表面硬度の点から好ましい。
[密着性試験方法]
 ペンタエリスリトールトリアクリレートの40重量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100重量部に対して10重量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを添加して調製した密着性評価用樹脂組成物を、10cm×10cmに切り出したポリイミドフィルムの試験片上に塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させることにより、10μm膜厚の硬化膜を形成する。当該硬化膜について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、塗膜の剥がれの有無を観察する。
In addition, in the polyimide film of the present disclosure, when the adhesion test is performed according to the following adhesion test method on the surface where the silicon atom concentration is relatively large, the polyimide film and the resin are not peeled off. From the point of adhesiveness with a content layer, and the point of the surface hardness of the laminated body which laminated | stacked the resin content layer adjacent to the polyimide film, it is preferable.
[Adhesion test method]
Resin composition for adhesion evaluation prepared by adding 10 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone to 100 parts by weight of pentaerythritol triacrylate in a 40% by weight methyl isobutyl ketone solution of pentaerythritol triacrylate Is applied on a test piece of polyimide film cut out to 10 cm × 10 cm, and cured by irradiating ultraviolet rays with an exposure amount of 200 mJ / cm 2 under a nitrogen stream, thereby forming a cured film having a thickness of 10 μm. The cured film is subjected to a cross-cut test in accordance with JIS K 5600-5-6, and after repeated peeling operations with a tape 5 times, the presence or absence of peeling of the coating film is observed.
 本開示のポリイミドフィルムにおいては、屈曲耐性に優れる点から、下記静的屈曲試験方法に従って、静的屈曲試験を行った場合に、当該試験で測定される内角が120°以上であることが好ましく、125°以上であることが更に好ましい。
[静的屈曲試験方法]
 15mm×40mmに切り出したポリイミドフィルムの試験片を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片の両端部と金属片との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板(100mm×100mm×0.7mm)で挟み、当該試験片を内径6mmで屈曲した状態で固定する。その際に、金属片とガラス板の間で当該試験片がない部分には、ダミーの試験片を挟み込み、ガラス板が平行になるようにテープで固定する。このようにして屈曲した状態で固定した当該試験片を、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放する。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定する。
In the polyimide film of the present disclosure, from the viewpoint of excellent bending resistance, when a static bending test is performed according to the following static bending test method, the internal angle measured in the test is preferably 120 ° or more, More preferably, it is 125 ° or more.
[Static bending test method]
A polyimide film test piece cut out to 15 mm × 40 mm is bent at a position of half of the long side, and both ends of the long side of the test piece sandwich a metal piece (100 mm × 30 mm × 6 mm) having a thickness of 6 mm from the upper and lower surfaces. Placed between glass plates (100 mm x 100 mm x 0.7 mm) from above and below with the tape fixed so that the overlap between the top and bottom surfaces of the test piece and the metal piece is 10 mm each. The test piece is fixed in a bent state with an inner diameter of 6 mm. At that time, a dummy test piece is sandwiched between the metal piece and the glass plate where there is no test piece, and is fixed with tape so that the glass plate is parallel. The test piece fixed in a bent state in this way was allowed to stand for 24 hours in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH), and then the glass plate and the fixing tape were removed, Release the force on the specimen. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece 30 minutes after the force applied to the test piece is released is measured.
 また、本開示のポリイミドフィルムにおいては、屈曲耐性に優れる点から、下記動的屈曲試験方法に従って、60±2℃、93±2%相対湿度(RH)の環境下で動的屈曲試験を行った場合に、試験片の内角が155°以上であることが好ましく、160°以上であることが更に好ましい。さらに、本開示のポリイミドフィルムにおいては、屈曲耐性に優れる点から、下記動的屈曲試験方法に従って、25±2℃、50±2%相対湿度(RH)の環境下で動的屈曲試験を行った場合に、試験片の内角が170°以上であることが好ましく、175°以上であることが更に好ましい。
[動的屈曲試験方法]
 20mm×100mmの大きさに切り出したポリイミドフィルムの試験片を、恒温恒湿器内耐久試験システム(ユアサシステム機器製、面状体無負荷U字伸縮試験治具 DMX-FS)にテープで固定する。試験片を前記静的屈曲試験と同様の屈曲した状態、すなわち、屈曲した状態の試験片の長辺の両端部間の距離が6mmとなるように設定(内径6mmで屈曲した状態で固定)した後、60±2℃、93±2%相対湿度(RH)の環境下、又は25±2℃、50±2%相対湿度(RH)の環境下、1分間に90回の屈曲回数で、20万回屈曲を繰り返す。
 その後、試験片を取り外し、得られた試験片の一方の端部を固定し、20万回屈曲を繰り返してから30分後の試験片の内角を測定する。
In addition, the polyimide film of the present disclosure was subjected to a dynamic bending test in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH) in accordance with the following dynamic bending test method because of its excellent bending resistance. In this case, the inner angle of the test piece is preferably 155 ° or more, and more preferably 160 ° or more. Furthermore, the polyimide film of the present disclosure was subjected to a dynamic bending test in an environment of 25 ± 2 ° C. and 50 ± 2% relative humidity (RH) in accordance with the following dynamic bending test method because of its excellent bending resistance. In this case, the inner angle of the test piece is preferably 170 ° or more, and more preferably 175 ° or more.
[Dynamic bending test method]
Fix a polyimide film specimen cut to a size of 20 mm x 100 mm to a thermostat-humidifier endurance test system (manufactured by Yuasa System Equipment Co., Ltd., planar loadless U-shaped expansion / contraction test jig DMX-FS) with tape. . The test piece was set in the same bent state as in the static bending test, that is, the distance between both ends of the long side of the bent test piece was set to 6 mm (fixed in a bent state with an inner diameter of 6 mm). After that, in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH), or in an environment of 25 ± 2 ° C. and 50 ± 2% relative humidity (RH), the number of bendings is 90 times per minute. Repeat flexing 10,000 times.
Thereafter, the test piece is removed, one end of the obtained test piece is fixed, and the inner angle of the test piece 30 minutes after the bending is repeated 200,000 times is measured.
 本開示のポリイミドフィルムは、耐熱性の点から、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましく、200℃以上であることがより好ましく、ベーク温度を低減することができる点から、380℃以下であることが好ましい。
 なお、前記ガラス転移温度は、動的粘弾性測定によって得られる温度-tanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))曲線のピーク温度から求められるものである。ポリイミドフィルムのガラス転移温度は、tanδ曲線のピークが複数存在する場合、ピークの極大値が最大であるピークの温度をいう。
 動的粘弾性測定としては、例えば、動的粘弾性測定装置 RSA III(ティー・エイ・インスツルメント・ジャパン(株))によって、測定範囲を-150℃~400℃として、周波数1Hz、昇温速度5℃/minにより行うことができる。また、サンプル幅を5mm、チャック間距離を20mmとして測定することができる。
 本開示において、tanδ曲線のピークとは、極大値である変曲点を有し、且つ、ピークの谷と谷の間であるピーク幅が3℃以上であるものをいい、ノイズ等測定由来の細かい上下変動については、前記ピークと解釈しない。
 また、本開示のポリイミドフィルムは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましい。主鎖に長いシロキサン結合を有するジアミン残基を有する場合にはこのように低い温度領域にtanδ曲線のピークを有するが、そのような、主鎖に長いシロキサン結合を有するジアミン残基を有するポリイミドフィルムに比べて、室温での引張弾性率の低下が抑制され、保護フィルムとして十分な表面硬度を維持することができる。
 また、本開示のポリイミドフィルムは、tanδ曲線のピークの頂点を150℃以上の温度領域にのみ有することが、引張弾性率を向上しやすい点及び屈曲耐性の点から好ましい。
From the viewpoint of heat resistance, the polyimide film of the present disclosure preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less, more preferably 200 ° C. or more, and can reduce the baking temperature. From the viewpoint, it is preferably 380 ° C. or lower.
The glass transition temperature is obtained from the peak temperature of a temperature-tan δ (tan δ = loss elastic modulus (E ″) / storage elastic modulus (E ′)) curve obtained by dynamic viscoelasticity measurement. The glass transition temperature of the polyimide film refers to the temperature of the peak where the maximum value of the peak is maximum when there are a plurality of peaks of the tan δ curve.
As the dynamic viscoelasticity measurement, for example, with a dynamic viscoelasticity measuring device RSA III (TA Instruments Japan Co., Ltd.), the measurement range is set to −150 ° C. to 400 ° C., the frequency is 1 Hz, and the temperature is increased. This can be done at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
In the present disclosure, the peak of the tan δ curve refers to a peak having an inflection point that is a maximum value and a peak width that is between 3 ° C. or more between peaks and valleys, and is derived from measurement such as noise. The fine vertical fluctuation is not interpreted as the peak.
In addition, the polyimide film of the present disclosure preferably has no tan δ curve peak in a temperature range of −150 ° C. or higher and 0 ° C. or lower. In the case of having a diamine residue having a long siloxane bond in the main chain, such a polyimide film having a tan δ curve peak in the low temperature region has such a diamine residue having a long siloxane bond in the main chain. In comparison with the above, a decrease in the tensile modulus at room temperature is suppressed, and a sufficient surface hardness as a protective film can be maintained.
In addition, the polyimide film of the present disclosure preferably has a peak of the tan δ curve only in a temperature region of 150 ° C. or higher from the viewpoint of easily improving the tensile modulus and bending resistance.
 また、本開示のポリイミドフィルムは、光学的歪みを低減する点から、前記波長590nmにおける厚み方向の複屈折率は0.020以下であることが好ましい。これにより、本開示のポリイミドフィルムをディスプレイ用表面材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。前記波長590nmにおける厚み方向の複屈折率は、より小さい方が好ましく、0.015以下であることが好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。
 なお、本開示のポリイミドフィルムの前記波長590nmにおける厚み方向の複屈折率は、以下のように求めることができる。
 まず、位相差測定装置(例えば、王子計測機器株式会社製、製品名「KOBRA-WR」)を用いて、25℃、波長590nmの光で、ポリイミドフィルムの厚み方向位相差値(Rth)を測定する。厚み方向位相差値(Rth)は、0度入射の位相差値と、斜め40度入射の位相差値を測定し、これらの位相差値から厚み方向位相差値Rthを算出する。前記斜め40度入射の位相差値は、位相差フィルムの法線から40度傾けた方向から、波長590nmの光を位相差フィルムに入射させて測定する。
 ポリイミドフィルムの厚み方向の複屈折率は、式:Rth/dに代入して求めることができる。前記dは、ポリイミドフィルムの膜厚(nm)を表す。
 なお、厚み方向位相差値は、フィルムの面内方向における遅相軸方向(フィルム面内方向における屈折率が最大となる方向)の屈折率をnx、フィルム面内における進相軸方向(フィルム面内方向における屈折率が最小となる方向)の屈折率をny、及びフィルムの厚み方向の屈折率をnzとしたときに、Rth[nm]={(nx+ny)/2-nz}×dと表すことができる。
The polyimide film of the present disclosure preferably has a birefringence of 0.020 or less in the thickness direction at the wavelength of 590 nm from the viewpoint of reducing optical distortion. Thereby, when the polyimide film of this indication is used as a surface material for displays, a display quality fall of a display can be controlled. The birefringence in the thickness direction at the wavelength of 590 nm is preferably smaller, preferably 0.015 or less, more preferably 0.010 or less, and even more preferably less than 0.008. .
In addition, the birefringence of the thickness direction in the said wavelength 590nm of the polyimide film of this indication can be calculated | required as follows.
First, the thickness direction retardation value (Rth) of the polyimide film is measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (for example, product name “KOBRA-WR” manufactured by Oji Scientific Instruments). To do. For the thickness direction retardation value (Rth), a phase difference value at 0 degree incidence and a phase difference value at an incidence angle of 40 degrees are measured, and the thickness direction retardation value Rth is calculated from these phase difference values. The retardation value at an oblique incidence of 40 degrees is measured by making light having a wavelength of 590 nm incident on the retardation film from a direction inclined by 40 degrees from the normal line of the retardation film.
The birefringence in the thickness direction of the polyimide film can be determined by substituting it into the formula: Rth / d. Said d represents the film thickness (nm) of a polyimide film.
The thickness direction retardation value is nx the refractive index in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction in the film plane (film surface). Rth [nm] = {(nx + ny) / 2−nz} × d, where ny is the refractive index in the direction in which the refractive index in the inner direction is the minimum) and nz is the refractive index in the thickness direction of the film. be able to.
 また好ましい一形態としては、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上1.0以下であることが好ましく、更に0.05以上0.8以下であることが好ましく、より更に0.1以上0.8以下であることが好ましい。また、これらはポリイミドフィルムの両面で満たされることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と窒素原子数(N)の比率(F/N)が、0.1以上20以下であることが好ましく、更に0.5以上15以下であることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)とケイ素原子数(Si)の比率(F/Si)が、1以上50以下であることが好ましく、更に3以上30以下であることが好ましい。
As a preferred embodiment, the ratio (F / C) of the number of fluorine atoms (F) and the number of carbon atoms (C) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is 0.01 or more It is preferably 0 or less, more preferably 0.05 or more and 0.8 or less, and still more preferably 0.1 or more and 0.8 or less. These are preferably filled on both sides of the polyimide film.
The ratio (F / N) of the number of fluorine atoms (F) and the number of nitrogen atoms (N) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film, is preferably 0.1 or more and 20 or less. Further, it is preferably 0.5 or more and 15 or less.
Further, the ratio (F / Si) of the number of fluorine atoms (F) and the number of silicon atoms (Si) on the film surface, measured by X-ray photoelectron spectroscopy of the polyimide film, is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
4.ポリイミドフィルムの構成
 本開示のポリイミドフィルムの厚さは、用途により適宜選択されれば良いが、1μm以上であることが好ましく、更に5μm以上であることが好ましく、より更に10μm以上であることが好ましい。一方、200μm以下であることが好ましく、更に150μm以下であることが好ましく、より更に100μm以下であることが好ましい。
 厚みが薄いと強度が低下し破断しやすくなり、厚みが厚いと屈曲時の内径と外径の差が大きくなり、フィルムへの負荷が大きくなることから屈曲耐性が低下する恐れがある。
4). Configuration of Polyimide Film The thickness of the polyimide film of the present disclosure may be appropriately selected depending on the use, but is preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. . On the other hand, it is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less.
If the thickness is thin, the strength is reduced and breakage is liable to occur. If the thickness is thick, the difference between the inner diameter and the outer diameter at the time of bending is increased, and the load on the film is increased.
 また、本開示のポリイミドフィルムには、例えば、けん化処理、グロー放電処理、コロナ放電処理、紫外線処理、火炎処理等の表面処理が施されていてもよい。 In addition, the polyimide film of the present disclosure may be subjected to a surface treatment such as a saponification treatment, a glow discharge treatment, a corona discharge treatment, an ultraviolet treatment, or a flame treatment.
5.ポリイミドフィルムの製造方法
 本開示のポリイミドフィルムの製造方法は、上述した本開示のポリイミドフィルムを作製することができる方法であれば特に限定はされないが、例えば、第1の製造方法として、
 ケイ素原子を含むポリイミド前駆体と、有機溶剤とを含むポリイミド前駆体樹脂組成物を調製する工程(以下、ポリイミド前駆体樹脂組成物調製工程という)と、
 前記ポリイミド前駆体樹脂組成物を支持体に塗布し、乾燥して、ポリイミド前駆体樹脂塗膜を形成する工程(以下、ポリイミド前駆体樹脂塗膜形成工程という)と、
 前記ポリイミド前駆体樹脂塗膜を前記支持体から剥離する工程(以下、剥離工程という)と、
 前記ポリイミド前駆体樹脂塗膜を加熱することにより、前記ポリイミド前駆体をイミド化する工程(以下、イミド化工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
5). Production method of polyimide film The production method of the polyimide film of the present disclosure is not particularly limited as long as it is a method capable of producing the above-described polyimide film of the present disclosure. For example, as the first production method,
A step of preparing a polyimide precursor resin composition containing a silicon atom-containing polyimide precursor and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step);
Applying the polyimide precursor resin composition to a support and drying to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming process);
A step of peeling the polyimide precursor resin coating film from the support (hereinafter referred to as a peeling step);
A method for producing a polyimide film including a step of imidizing the polyimide precursor by heating the polyimide precursor resin coating film (hereinafter referred to as an imidization step) is exemplified.
 前記第1の製造方法においては、前記剥離工程後の前記ポリイミド前駆体樹脂塗膜、及び前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する工程(以下、延伸工程という)を有していてもよい。中でも、前記剥離工程後の前記ポリイミド前駆体樹脂塗膜を延伸する工程を有することが、ポリイミドフィルムの収縮を抑制し、引張弾性率を向上する点から好ましい。 In the first production method, the step of stretching at least one of the polyimide precursor resin coating film after the peeling step and the imidized coating film imidized from the polyimide precursor resin coating film (hereinafter, stretching) Process). Especially, it is preferable to have the process of extending | stretching the said polyimide precursor resin coating film after the said peeling process from the point which suppresses shrinkage | contraction of a polyimide film and improves a tensile elasticity modulus.
 前記第1の製造方法では、前記ポリイミド前駆体樹脂塗膜の前記支持体に接していた面の剥離性が良好であるため、前記ポリイミド前駆体樹脂塗膜を前記支持体から容易に剥離することができ、不良が生じ難い。ポリイミド前駆体樹脂塗膜形成工程により形成されたポリイミド前駆体樹脂塗膜は、空気と接していた面に比べて、前記支持体と接していた面の方が、ケイ素原子濃度が小さくなるため、支持体を剥離しやすい。
 以下、各工程について詳細に説明する。
In the first production method, the surface of the polyimide precursor resin coating film that is in contact with the support has good peelability, and therefore the polyimide precursor resin coating film is easily peeled from the support. It is difficult to cause defects. The polyimide precursor resin coating film formed by the polyimide precursor resin coating film forming step has a smaller silicon atom concentration on the surface in contact with the support than on the surface in contact with air. Easy to peel off the support.
Hereinafter, each step will be described in detail.
(1)ポリイミド前駆体樹脂組成物調製工程
 前記第1の製造方法において調製するポリイミド前駆体樹脂組成物は、ケイ素原子を含むポリイミド前駆体と、有機溶剤とを含有し、必要に応じて添加剤等を含有していてもよい。
 ポリイミド前駆体は、テトラカルボン酸成分とジアミン成分との重合によって得られるポリアミド酸である。前記第1の製造方法において、ケイ素原子を含むポリイミド前駆体としては、イミド化反応により前述したケイ素原子を含むポリイミドとなるポリアミド酸が用いられる。
(1) Polyimide precursor resin composition preparation step The polyimide precursor resin composition prepared in the first production method contains a polyimide precursor containing a silicon atom and an organic solvent, and an additive as necessary. Etc. may be contained.
The polyimide precursor is a polyamic acid obtained by polymerization of a tetracarboxylic acid component and a diamine component. In the first production method, as the polyimide precursor containing a silicon atom, a polyamic acid that becomes the above-described polyimide containing a silicon atom by an imidization reaction is used.
 イミド化反応により前記一般式(1-1)で表される構造を有するポリイミドとなるポリアミド酸は、下記一般式(1-1’)で表される構造を有するポリイミド前駆体である。 The polyamic acid that becomes a polyimide having the structure represented by the general formula (1-1) by the imidization reaction is a polyimide precursor having a structure represented by the following general formula (1-1 ').
Figure JPOXMLDOC01-appb-C000015
(一般式(1-1’)において、R1’、R2’及びn’は、前記一般式(1-1)と同様である。)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (1-1 ′), R 1 ′ , R 2 ′ and n ′ are the same as those in the general formula (1-1).)
 前記一般式(1-1’)で表されるポリイミド前駆体は、前記一般式(1-1’)のR1’におけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1-1’)のR2’におけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
 ここで、前記一般式(1-1’)のR1’、R2’及びn’は、前記ポリイミドにおいて説明した前記一般式(1-1)のR1’、R2’及びn’と同様のものを用いることができる。
The polyimide precursor represented by the general formula (1-1 ′) includes a tetracarboxylic acid component to be a tetracarboxylic acid residue in R 1 ′ of the general formula (1-1 ′), and the general formula (1 ′). -1 ′) is a polyamic acid obtained by polymerization with a diamine component which becomes a diamine residue in R 2 ′ .
Here, the general formula (1-1 ') R 1 in', R 2 'and n', the formula described in the polyimide (1-1) R 1 in ', R 2' and and n ' Similar ones can be used.
 イミド化反応により前記一般式(1)で表される構造を有するポリイミドとなるポリアミド酸は、下記一般式(1’)で表される構造を有するポリイミド前駆体である。 The polyamic acid that becomes a polyimide having the structure represented by the general formula (1) by the imidation reaction is a polyimide precursor having a structure represented by the following general formula (1 ').
Figure JPOXMLDOC01-appb-C000016
(一般式(1’)において、R、R及びnは、前記一般式(1)と同様である。)
Figure JPOXMLDOC01-appb-C000016
(In the general formula (1 ′), R 1 , R 2 and n are the same as those in the general formula (1).)
 前記一般式(1’)で表されるポリイミド前駆体は、前記一般式(1’)のRにおけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1’)のRにおけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
 ここで、前記一般式(1’)のR、R及びnは、前記ポリイミドにおいて説明した前記一般式(1)のR、R及びnと同様のものを用いることができる。
The polyimide precursor represented by the general formula (1 ′) includes a tetracarboxylic acid component that becomes a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and R 2 of the general formula (1 ′). It is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue in
Here, as R 1 , R 2 and n in the general formula (1 ′), those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
 前記一般式(1-1’)で表されるポリイミド前駆体、及び、前記一般式(1’)で表されるポリイミド前駆体は、数平均分子量、または重量平均分子量の少なくともいずれかが、フィルムとした際の強度の点から、10000以上であることが好ましく、更に20000以上であることが好ましい。一方、平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミド前駆体の数平均分子量は、NMR(例えば、BRUKER製、AVANCEIII)により求めることができる。例えば、ポリイミド前駆体溶液をガラス板に塗布して100℃で5分乾燥後、固形分10mgをジメチルスルホキシド-d6溶媒7.5mlに溶解し、NMR測定を行い、芳香族環に結合している水素原子のピーク強度比から数平均分子量を算出することができる。
 ポリイミド前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。例えば、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
The polyimide precursor represented by the general formula (1-1 ′) and the polyimide precursor represented by the general formula (1 ′) have at least one of a number average molecular weight and a weight average molecular weight. From the viewpoint of the strength at the time of making, it is preferably 10,000 or more, more preferably 20,000 or more. On the other hand, if the average molecular weight is too large, the viscosity becomes high and the workability such as filtration may be reduced, and therefore it is preferably 10000000 or less, and more preferably 500000 or less.
The number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER). For example, a polyimide precursor solution is applied to a glass plate and dried at 100 ° C. for 5 minutes, and then 10 mg of solid content is dissolved in 7.5 ml of dimethyl sulfoxide-d6 solvent, and NMR measurement is performed to bond to an aromatic ring. The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
The weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC). For example, an N-methylpyrrolidone (NMP) solution having a concentration of 0.5% by weight is used as a polyimide precursor, and a 10 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent. , Using column: GPC LF-804 manufactured by SHODEX), measurement is performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.5 mL / min, and 40 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
 前記ポリイミド前駆体溶液は、上述のテトラカルボン酸二無水物と、上述のジアミンとを、溶剤中で反応させて得られる。ポリイミド前駆体(ポリアミド酸)の合成に用いる溶剤としては、上述のテトラカルボン酸二無水物及びジアミンを溶解可能であれば特に制限はなく、例えば非プロトン性極性溶剤または水溶性アルコール系溶剤等を用い得る。本開示においては、中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。中でも、前記ポリイミド前駆体溶液(ポリアミド酸溶液)をそのままポリイミド前駆体樹脂組成物の調製に用いる場合は、窒素原子を含む有機溶剤を用いることが好ましく、中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンもしくはこれらの組み合わせを用いることが好ましい。なお、有機溶剤とは、炭素原子を含む溶剤である。 The polyimide precursor solution is obtained by reacting the above tetracarboxylic dianhydride and the above diamine in a solvent. The solvent used for the synthesis of the polyimide precursor (polyamic acid) is not particularly limited as long as it can dissolve the above-described tetracarboxylic dianhydride and diamine. For example, an aprotic polar solvent or a water-soluble alcohol solvent is used. Can be used. In the present disclosure, among others, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone, etc. It is preferable to use an organic solvent containing a nitrogen atom of γ-butyrolactone or the like. In particular, when the polyimide precursor solution (polyamic acid solution) is used as it is for the preparation of the polyimide precursor resin composition, it is preferable to use an organic solvent containing a nitrogen atom, among which N, N-dimethylacetamide, N— It is preferable to use methyl-2-pyrrolidone or a combination thereof. The organic solvent is a solvent containing carbon atoms.
 また、前記ポリイミド前駆体溶液は、少なくとも2種のジアミンを組み合わせて調製されるが、少なくとも2種のジアミンの混合溶液に酸二無水物を添加し、ポリアミド酸を合成してもよいし、少なくとも2種のジアミン成分を適切なモル比で段階を踏んで反応液に添加し、ある程度、各原料が高分子鎖へ組み込まれるシーケンスをコントロールしてもよい。
 たとえば、主鎖にケイ素原子を有するジアミンが溶解された反応液に、主鎖にケイ素原子を有するジアミンの0.5等量のモル比の酸二無水物を投入し反応させることで、酸二無水物の両端に主鎖にケイ素原子を有するジアミンが反応したアミド酸を合成し、そこへ、残りのジアミンを全部、又は一部投入し、酸二無水物を加えてポリアミド酸を重合しても良い。この方法で重合すると、主鎖にケイ素原子を有するジアミンが1つの酸二無水物を介して、連結した形でポリアミド酸の中に導入される。
 このような方法でポリアミド酸を重合することは、主鎖にケイ素原子を有するアミド酸の位置関係がある程度特定され、表面硬度を維持しつつ屈曲耐性の優れた膜を得易い点から好ましい。
The polyimide precursor solution is prepared by combining at least two kinds of diamines. An acid dianhydride may be added to a mixed solution of at least two kinds of diamines to synthesize polyamic acid, or at least Two kinds of diamine components may be added to the reaction solution step by step at an appropriate molar ratio, and the sequence in which each raw material is incorporated into the polymer chain may be controlled to some extent.
For example, an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged into a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and reacted. Amidic acid in which a diamine having a silicon atom in the main chain was reacted at both ends of the anhydride was synthesized, and all or part of the remaining diamine was added thereto, and acid dianhydride was added to polymerize the polyamic acid. Also good. When polymerized by this method, a diamine having a silicon atom in the main chain is introduced into the polyamic acid in a linked form via one acid dianhydride.
Polymerization of the polyamic acid by such a method is preferable because the positional relationship of the amic acid having a silicon atom in the main chain is specified to some extent, and it is easy to obtain a film having excellent bending resistance while maintaining the surface hardness.
 前記ポリイミド前駆体溶液(ポリアミド酸溶液)中のジアミンのモル数をX、テトラカルボン酸二無水物のモル数をYとしたとき、Y/Xを0.9以上1.1以下とすることが好ましく、0.95以上1.05以下とすることがより好ましく、0.97以上1.03以下とすることがさらに好ましく、0.99以上1.01以下とすることが特に好ましい。このような範囲とすることにより得られるポリアミド酸の分子量(重合度)を適度に調整することができる。
 重合反応の手順は、公知の方法を適宜選択して用いることができ、特に限定されない。
 また、合成反応により得られたポリイミド前駆体溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良いし、ポリイミド前駆体溶液の溶剤を乾燥させ、別の溶剤に溶解して用いても良い。
When the number of moles of diamine in the polyimide precursor solution (polyamic acid solution) is X and the number of moles of tetracarboxylic dianhydride is Y, Y / X may be 0.9 or more and 1.1 or less. Preferably, it is 0.95 or more and 1.05 or less, more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. By setting it as such a range, the molecular weight (polymerization degree) of the polyamic acid obtained can be adjusted moderately.
The procedure of the polymerization reaction can be appropriately selected from known methods and is not particularly limited.
Moreover, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and other components may be mixed there if necessary. The solvent of the polyimide precursor solution is dried and dissolved in another solvent. It may be used.
 前記ポリイミド前駆体溶液の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で測定することができる。
The viscosity of the polyimide precursor solution at 25 ° C. is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
 前記ポリイミド前駆体樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられ、前述のポリイミドフィルムにおいて説明したものと同様のものを用いることができる。 The polyimide precursor resin composition may contain an additive as necessary. Examples of the additive include inorganic particles, silica filler for facilitating winding, and surfactants for improving film-forming properties and defoaming properties, and those described in the polyimide film described above. Similar ones can be used.
 前記ポリイミド前駆体樹脂組成物に用いられる有機溶剤は、前記ポリイミド前駆体が溶解可能であれば特に制限はない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることができるが、中でも、窒素原子を含む有機溶剤を用いることが好ましい。 The organic solvent used in the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved. For example, containing nitrogen atoms such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone Organic solvent: γ-butyrolactone or the like can be used, and among them, an organic solvent containing a nitrogen atom is preferably used.
 前記ポリイミド前駆体樹脂組成物中の前記ポリイミド前駆体の含有量は、均一な塗膜及びハンドリング可能な強度を有するポリイミドフィルムを形成する点から、樹脂組成物の固形分中に50重量%以上であることが好ましく、更に60重量%以上であることが好ましく、上限は含有成分により適宜調整されればよい。
 前記ポリイミド前駆体樹脂組成物中の有機溶剤は、均一な塗膜及びポリイミドフィルムを形成する点から、樹脂組成物中に40重量%以上であることが好ましく、更に50重量%以上であることが好ましく、また99重量%以下であることが好ましい。
The content of the polyimide precursor in the polyimide precursor resin composition is 50% by weight or more in the solid content of the resin composition from the point of forming a polyimide film having a uniform coating film and a handleable strength. Preferably, it is preferably 60% by weight or more, and the upper limit may be appropriately adjusted depending on the components contained.
The organic solvent in the polyimide precursor resin composition is preferably 40% by weight or more, more preferably 50% by weight or more in the resin composition from the viewpoint of forming a uniform coating film and a polyimide film. Preferably, it is preferably 99% by weight or less.
 また、前記ポリイミド前駆体樹脂組成物は、含有水分量が1000ppm以下であることが、ポリイミド前駆体樹脂組成物の保存安定性が良好になり、生産性を向上することができる点から好ましい。ポリイミド前駆体樹脂組成物中に水分を多く含むと、ポリイミド前駆体が分解しやすくなる恐れがある。
 なお、ポリイミド前駆体樹脂組成物の含有水分量は、カールフィッシャー水分計(例えば、三菱化学株式会社製、微量水分測定装置CA-200型)を用いて求めることができる。
The polyimide precursor resin composition preferably has a moisture content of 1000 ppm or less from the viewpoint of improving the storage stability of the polyimide precursor resin composition and improving the productivity. If the polyimide precursor resin composition contains a large amount of moisture, the polyimide precursor may be easily decomposed.
The water content of the polyimide precursor resin composition can be determined using a Karl Fischer moisture meter (for example, a trace moisture measuring device CA-200, manufactured by Mitsubishi Chemical Corporation).
 前記ポリイミド前駆体樹脂組成物を調製する方法は特に限定はされないが、前述のように含有水分量1000ppm以下とするには、使用する有機溶剤を脱水したり、水分量が管理されたものを用いた上で、湿度5%以下の環境下で取り扱うことが好ましい。 Although the method for preparing the polyimide precursor resin composition is not particularly limited, as described above, in order to reduce the water content to 1000 ppm or less, the organic solvent to be used is dehydrated or the water content is controlled. In addition, it is preferable to handle in an environment with a humidity of 5% or less.
 前記ポリイミド前駆体樹脂組成物の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上100000cps以下であることが好ましい。
 ポリイミド前駆体樹脂組成物の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定することができる。
The viscosity of the polyimide precursor resin composition at 25 ° C. is preferably 500 cps or more and 100,000 cps or less from the viewpoint of forming a uniform coating film and a polyimide film.
The viscosity of the polyimide precursor resin composition can be measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
(2)ポリイミド前駆体樹脂塗膜形成工程
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程において、用いられる支持体としては、表面が平滑で耐熱性および耐溶剤性のある材料であれば特に制限はない。例えばガラス板などの無機材料、表面を鏡面処理した金属板等が挙げられる。また支持体の形状は塗布方式によって選択され、例えば板状であってもよく、またドラム状やベルト状、ロールに巻き取り可能なシート状等であってもよい。
(2) Polyimide precursor resin coating film forming step In the step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film, the support used has a smooth surface and heat resistance. The material is not particularly limited as long as the material is resistant and solvent resistant. For example, an inorganic material such as a glass plate, a metal plate having a mirror-finished surface, and the like can be given. The shape of the support is selected depending on the coating method, and may be, for example, a plate shape, a drum shape, a belt shape, a sheet shape that can be wound around a roll, or the like.
 前記塗布手段は目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えばダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータ等の公知のものを用いることができる。
 塗布は、枚葉式の塗布装置により行ってもよく、ロールtoロール方式の塗布装置により行ってもよい。
The application means is not particularly limited as long as it can be applied at a desired film thickness, and for example, a known one such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater or the like can be used. .
Application may be performed by a single-wafer coating apparatus or a roll-to-roll coating apparatus.
 ポリイミド前駆体樹脂組成物を支持体に塗布した後は、前記塗膜中の溶剤を乾燥する。溶剤の乾燥温度を150℃以下とすることにより、ポリアミド酸のイミド化を抑制することができる。 After applying the polyimide precursor resin composition to the support, the solvent in the coating film is dried. By setting the drying temperature of the solvent to 150 ° C. or lower, imidization of the polyamic acid can be suppressed.
 前記乾燥の温度及び時間は、ポリイミド前駆体樹脂塗膜の膜厚や、溶剤の種類等に応じて適宜調整されれば良い。前記乾燥の温度は、150℃以下であることが好ましく、より好ましくは30℃以上120℃以下である。
 また、前記乾燥は、段階的に温度を上げながら行うことが好ましく、少なくとも2段階で段階的に温度を上げながら行うことが好ましい。また、前記乾燥は、合計で10分以上行うことが好ましく、20分以上行うことがより好ましい。これにより、塗膜中のケイ素原子が偏在し易くなり、表裏面でのケイ素原子濃度の差が大きくなり易くなると推定される。前記乾燥の方法としては、具体的には例えば、40℃以上70℃未満、より好ましくは40℃以上65℃以下で5分~60分間乾燥した後、70℃以上140℃以下、より好ましくは80℃以上140℃以下で且つ先の乾燥より30℃以上高い温度で5分~60分間乾燥する方法を好ましく用いることができる。
 2段階でも最初から高温で乾燥したり、1段階の高温で、短時間で乾燥すると、ケイ素原子が偏在し難くなる恐れがあり、また、フィルムの膜厚ムラが生じたり、気泡が生じる場合がある。
The drying temperature and time may be appropriately adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, and the like. The drying temperature is preferably 150 ° C. or lower, more preferably 30 ° C. or higher and 120 ° C. or lower.
The drying is preferably performed while increasing the temperature stepwise, and is preferably performed while increasing the temperature stepwise in at least two steps. The drying is preferably performed for 10 minutes or more in total, and more preferably for 20 minutes or more. Thereby, it is estimated that the silicon atoms in the coating film are likely to be unevenly distributed, and the difference in silicon atom concentration between the front and back surfaces is likely to increase. Specifically, the drying method is, for example, 40 ° C. or higher and lower than 70 ° C., more preferably 40 ° C. or higher and 65 ° C. or lower for 5 minutes to 60 minutes, and then 70 ° C. or higher and 140 ° C. or lower, more preferably 80 ° C. A method of drying for 5 to 60 minutes at a temperature not lower than 140 ° C. and higher than the previous drying by 30 ° C. or higher can be preferably used.
Drying at a high temperature from the beginning even in two stages or drying at a high temperature in one stage for a short time may make it difficult for silicon atoms to be unevenly distributed, and may cause film thickness unevenness or bubbles. is there.
 溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
 光学特性の高度な管理が必要な場合、溶剤の乾燥時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
The method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature. For example, an oven, a drying furnace, a hot plate, infrared heating, or the like can be used.
When high management of optical properties is required, the atmosphere during drying of the solvent is preferably an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less. When heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
(3)剥離工程
 前記ポリイミド前駆体樹脂塗膜は、乾燥した後、前記支持体から剥離される。
 前記ポリイミド前駆体樹脂塗膜を前記支持体から剥離する方法は、特に限定されず、一般的な剥離方法を用いることができる。本開示においては、前記ポリイミド前駆体樹脂塗膜の前記支持体と接する面が剥離性に優れるため、前記ポリイミド前駆体樹脂塗膜を引っ張ることにより、前記支持体から容易に剥離することができる。
 前記剥離工程における剥離条件は、特に限定はされないが、例えば、支持体とポリイミド前駆体樹脂塗膜の剥離強度を0.05N/25mm以上2.0N/25mm以下とし、剥離速度を100mm/min以上1,000mm/min以下とし、剥離角度を135°以上180°以下とすることができる。前記剥離は、支持体とポリイミド前駆体樹脂塗膜との開放端から始まり、ポリイミド前駆体樹脂塗膜の長手方向に沿って分離が進行するように実質的な定速度で引きはがすことにより行うことができる。
(3) Peeling step The polyimide precursor resin coating film is dried and then peeled from the support.
The method for peeling the polyimide precursor resin coating film from the support is not particularly limited, and a general peeling method can be used. In this indication, since the surface which touches the above-mentioned support of the above-mentioned polyimide precursor resin coat is excellent in releasability, it can be easily peeled off from the above-mentioned support by pulling on the above-mentioned polyimide precursor resin coat.
The peeling conditions in the peeling step are not particularly limited. For example, the peeling strength between the support and the polyimide precursor resin coating film is 0.05 N / 25 mm or more and 2.0 N / 25 mm or less, and the peeling speed is 100 mm / min or more. The peeling angle can be set to 135 ° or more and 180 ° or less. The peeling is performed by peeling at a substantially constant speed so that separation proceeds along the longitudinal direction of the polyimide precursor resin coating film, starting from the open end of the support and the polyimide precursor resin coating film. Can do.
 また、前記第1の製造方法では、前記剥離工程において、前記ポリイミド前駆体樹脂塗膜中の残留溶媒量は、支持体の剥離を容易にする点から、40重量%以下であることが好ましく、30重量%以下であることがより好ましい。また、前記剥離工程における前記ポリイミド前駆体樹脂塗膜中の残留溶媒量は、ポリイミドフィルムの膜厚ムラを抑制し、面質を均一化させる点から、10重量%以上であってもよい。
 なお、剥離工程時の前記ポリイミド前駆体樹脂塗膜中の残留溶媒量は、剥離工程直後の前記ポリイミド前駆体樹脂塗膜について、H-NMRを用いて、ポリイミド前駆体由来の水素原子と、溶媒由来の水素原子との積分強度比を求めることで測定することができる。
In the first production method, in the peeling step, the amount of residual solvent in the polyimide precursor resin coating film is preferably 40% by weight or less from the viewpoint of facilitating peeling of the support, More preferably, it is 30% by weight or less. Further, the amount of residual solvent in the polyimide precursor resin coating film in the peeling step may be 10% by weight or more from the viewpoint of suppressing unevenness in the film thickness of the polyimide film and making the surface quality uniform.
Note that the amount of residual solvent in the polyimide precursor resin coating film at the time of the stripping process was determined by using 1 H-NMR for the polyimide precursor resin coating film immediately after the stripping process, and hydrogen atoms derived from the polyimide precursor, It can be measured by obtaining an integral intensity ratio with a solvent-derived hydrogen atom.
 また、前記第1の製造方法では、前記剥離工程において、前記ポリイミド前駆体樹脂塗膜のイミド化率は、支持体の剥離を容易にする点から、1%以上50%以下であることが好ましく、5%以上30%以下であることがより好ましい。
 なお、イミド化率の測定は、赤外測定(IR)によるスペクトルの分析等により行うことができる。
Moreover, in the said 1st manufacturing method, it is preferable in the said peeling process that the imidation ratio of the said polyimide precursor resin coating film is 1% or more and 50% or less from the point which makes peeling of a support body easy. More preferably, it is 5% or more and 30% or less.
The imidation rate can be measured by analyzing the spectrum by infrared measurement (IR).
(4)イミド化工程
 前記第1の製造方法においては、前記ポリイミド前駆体樹脂塗膜を加熱することにより、前記ポリイミド前駆体をイミド化する。
 また、前記第1の製造方法においては、延伸工程を有することが好ましく、前記延伸工程を有する場合、イミド化工程は、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程後の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体及び延伸工程後の膜中に存在するポリイミド前駆体の両方に対して行っても良い。
(4) Imidization process In the said 1st manufacturing method, the said polyimide precursor resin coating film is heated, and the said polyimide precursor is imidized.
Moreover, in the said 1st manufacturing method, it is preferable to have an extending process, and when it has the said extending process, an imidation process is with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process. Or may be performed on the polyimide precursor in the polyimide precursor resin coating film after the stretching process, or the polyimide precursor and the stretching process in the polyimide precursor resin coating film before the stretching process. You may carry out with respect to both the polyimide precursors which exist in a subsequent film | membrane.
 イミド化の温度は、ポリイミド前駆体の構造に合わせて適宜選択されれば良い。
 通常、昇温開始温度を30℃以上とすることが好ましく、100℃以上とすることがより好ましい。一方、昇温終了温度は250℃以上とすることが好ましい。
The imidization temperature may be appropriately selected according to the structure of the polyimide precursor.
Usually, the temperature rise start temperature is preferably 30 ° C. or higher, more preferably 100 ° C. or higher. On the other hand, the temperature rise end temperature is preferably 250 ° C. or higher.
 昇温速度は、得られるポリイミドフィルムの膜厚によって適宜選択することが好ましく、ポリイミドフィルムの膜厚が厚い場合には、昇温速度を遅くすることが好ましい。
 ポリイミドフィルムの製造効率の点から、5℃/分以上とすることが好ましく、10℃/分以上とすることが更に好ましい。一方、昇温速度の上限は、通常50℃/分とされ、好ましくは40℃/分以下、さらに好ましくは30℃/分以下である。上記昇温速度とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化をコントロールでき、光透過性が向上する点から好ましい。
The rate of temperature increase is preferably selected as appropriate depending on the film thickness of the polyimide film to be obtained. When the film thickness of the polyimide film is thick, it is preferable to decrease the temperature increase rate.
From the viewpoint of the production efficiency of the polyimide film, it is preferably 5 ° C./min or more, more preferably 10 ° C./min or more. On the other hand, the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, more preferably 30 ° C./min or less. It is preferable to set the temperature increase rate from the viewpoint that the appearance defect and strength reduction of the film can be suppressed, and the whitening associated with the imidization reaction can be controlled, and the light transmittance is improved.
 昇温は、連続的でも段階的でもよいが、連続的とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化のコントロールの面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、また途中で変化させてもよい。 The temperature increase may be continuous or stepwise, but it is preferable to make it continuous from the viewpoint of controlling the appearance of the film, suppressing the strength reduction, and controlling the whitening associated with the imidization reaction. Moreover, in the above-mentioned whole temperature range, the temperature rising rate may be constant or may be changed in the middle.
 イミド化の昇温時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
 ただし、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合は、光学特性に対する酸素の影響が少なく、不活性ガス雰囲気を用いなくても光透過性の高いポリイミドが得られる。
The atmosphere at the time of temperature increase in imidation is preferably an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less. When heat treatment is performed in the atmosphere, the film may be oxidized and colored, or the performance may deteriorate.
However, when 50% or more of the hydrogen atoms bonded to the carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, there is little influence of oxygen on the optical properties, and an inert gas atmosphere is not used. In addition, a polyimide having a high light transmittance can be obtained.
 イミド化のための加熱方法は、上記温度で昇温が可能であれば特に制限はなく、例えばオーブンや、加熱炉、赤外線加熱、電磁誘導加熱等を用いることが可能である。 The heating method for imidation is not particularly limited as long as the temperature can be raised at the above temperature. For example, an oven, a heating furnace, infrared heating, electromagnetic induction heating, or the like can be used.
 最終的なポリイミドフィルムを得るには、イミド化を90%以上、さらには95%以上、さらには100%まで反応を進行させることが好ましい。
 イミド化を90%以上、さらには100%まで反応を進行させるには、昇温終了温度で一定時間保持することが好ましく、当該保持時間は、通常1分~180分、更に、5分~150分とすることが好ましい。
In order to obtain a final polyimide film, it is preferable to proceed the reaction to 90% or more, further 95% or more, and further 100%.
In order to allow the reaction to proceed to 90% or more, more preferably 100%, it is preferable to hold at a temperature rising end temperature for a certain period of time. Minutes are preferred.
(5)延伸工程
 前記第1の製造方法は、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する延伸工程を有していてもよい。中でも、前記剥離工程後であって、前記イミド化工程前に、前記ポリイミド前駆体樹脂塗膜を延伸する延伸工程を含むことが、ポリイミドフィルムの収縮を抑制し、引張弾性率を向上する点から好ましい。また、ポリイミドフィルムの表面硬度の点からは、イミド化後塗膜を延伸する工程を更に含むことも好ましい。
(5) Stretching step The first production method includes a stretching step of stretching at least one of the polyimide precursor resin coating film and a post-imidation coating film obtained by imidizing the polyimide precursor resin coating film. It may be. Among these, after the peeling step, and before the imidization step, including a stretching step of stretching the polyimide precursor resin coating film suppresses shrinkage of the polyimide film and improves the tensile elastic modulus. preferable. Moreover, it is also preferable to further include the process of extending | stretching the coating film after imidation from the point of the surface hardness of a polyimide film.
 前記第1の製造方法では、延伸を実施する前の初期の寸法を100%とした時に101%以上10000%以下延伸する工程を、80℃以上で加熱しながら行うことが好ましい。
 延伸時の加熱温度は、ポリイミド乃至ポリイミド前駆体のガラス転移温度±50℃の範囲内であることが好ましく、ガラス転移温度±40℃の範囲内であることがより好ましい。延伸温度が低すぎるとフィルムが変形せず充分に配向を誘起できない恐れがある。一方で、延伸温度が高すぎると延伸によって得られた配向が温度で緩和し、充分な配向が得られない恐れがある。
 延伸工程は、イミド化工程と同時に行っても良い。イミド化率80%以上、更に90%以上、より更に95%以上、特に実質的に100%イミド化を行った後のイミド化後塗膜を延伸すると、ポリイミドフィルムの表面硬度を向上する点から好ましい。
In the first manufacturing method, it is preferable to perform the step of stretching 101% or more and 10000% or less while heating at 80 ° C. or higher when the initial dimension before stretching is 100%.
The heating temperature during stretching is preferably in the range of glass transition temperature ± 50 ° C. of the polyimide or polyimide precursor, and more preferably in the range of glass transition temperature ± 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by stretching is relaxed by the temperature, and there is a possibility that sufficient orientation cannot be obtained.
The stretching step may be performed simultaneously with the imidization step. From the point of improving the surface hardness of the polyimide film by stretching the imidized film after imidization rate of 80% or more, further 90% or more, further 95% or more, particularly substantially 100% imidization. preferable.
 ポリイミドフィルムの延伸倍率は、最終的な延伸倍率が、好ましくは101%以上10000%以下であり、さらに好ましくは101%以上500%以下である。上記範囲で延伸を行うことにより、得られるポリイミドフィルムの収縮を抑制し、引張弾性率及び表面硬度をより向上することができる。 The final draw ratio of the polyimide film is preferably from 101% to 10,000%, and more preferably from 101% to 500%. By stretching in the above range, shrinkage of the resulting polyimide film can be suppressed, and the tensile modulus and surface hardness can be further improved.
 延伸時におけるポリイミドフィルムの固定方法は、特に制限はなく、延伸装置の種類等に合わせて選択される。また、延伸方法は特に制限はなく、例えばテンター等の搬送装置を有する延伸装置を用い、加熱炉を通しながら延伸することが可能である。ポリイミドフィルムは、一方向のみに延伸(縦延伸または横延伸)してもよく、また同時2軸延伸、もしくは逐次2軸延伸、斜め延伸等によって、二方向に延伸処理を行ってもよい。中でも、前記剥離工程後であって前記イミド化工程前に、前記ポリイミド前駆体樹脂塗膜に対して、二方向に延伸処理を行うことが、ポリイミドフィルムの収縮を抑制し、引張弾性率を向上する点から好ましい。 The method for fixing the polyimide film during stretching is not particularly limited, and is selected according to the type of stretching apparatus. Moreover, there is no restriction | limiting in particular in the extending | stretching method, For example, it can extend | stretch through a heating furnace using the extending | stretching apparatus which has conveyance apparatuses, such as a tenter. The polyimide film may be stretched only in one direction (longitudinal stretching or lateral stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like. Among these, after the peeling step and before the imidization step, the polyimide precursor resin coating film is stretched in two directions to suppress the shrinkage of the polyimide film and improve the tensile elastic modulus. This is preferable.
 また、本開示のポリイミドフィルムの製造方法としては、第2の製造方法として、
 ケイ素原子を含むポリイミドと、有機溶剤とを含むポリイミド樹脂組成物を調製する工程(以下、ポリイミド樹脂組成物調製工程という)と、
 前記ポリイミド樹脂組成物を支持体に塗布して、溶剤を乾燥させてポリイミド樹脂塗膜を形成する工程(以下、ポリイミド樹脂塗膜形成工程という)と、
 前記ポリイミド樹脂塗膜から前記支持体を剥離する工程(以下、剥離工程という)と、
を含むポリイミドフィルムの製造方法が挙げられる。
 前記第2の製造方法では、前記ポリイミド樹脂塗膜の前記支持体に接していた面の剥離性が良好であるため、前記ポリイミド樹脂塗膜を前記支持体から容易に剥離することができ、剥離による不良が生じ難い。ポリイミド樹脂塗膜形成工程により形成されたポリイミド樹脂塗膜は、空気と接していた面に比べて、前記支持体と接していた面の方が、ケイ素原子濃度が小さくなるため、支持体を剥離しやすい。
Moreover, as a manufacturing method of the polyimide film of this indication, as a 2nd manufacturing method,
A step of preparing a polyimide resin composition containing a silicon atom-containing polyimide and an organic solvent (hereinafter referred to as a polyimide resin composition preparation step);
Applying the polyimide resin composition to a support, drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming process),
A step of peeling the support from the polyimide resin coating (hereinafter referred to as a peeling step);
The manufacturing method of the polyimide film containing is mentioned.
In the second production method, the surface of the polyimide resin coating film that has been in contact with the support has good peelability, and thus the polyimide resin coating film can be easily peeled off from the support. It is difficult to cause defects. The polyimide resin coating film formed by the polyimide resin coating film forming process peels off the support because the silicon atom concentration is lower on the surface in contact with the support than on the surface in contact with air. It's easy to do.
 本開示で用いられるポリイミドが有機溶剤に良好に溶解する場合には、ポリイミド前駆体樹脂組成物ではなく、前記ポリイミドを有機溶剤に溶解させ、必要に応じて添加剤を含有させたポリイミド樹脂組成物も好適に用いることができる。
 本開示で用いられるポリイミドが25℃で有機溶剤に5重量%以上溶解するような溶剤溶解性を有する場合には、前記第2の製造方法を好適に用いることができる。
When the polyimide used in the present disclosure dissolves well in an organic solvent, it is not a polyimide precursor resin composition, but a polyimide resin composition in which the polyimide is dissolved in an organic solvent and an additive is added as necessary. Can also be suitably used.
In the case where the polyimide used in the present disclosure has solvent solubility such that 5% by weight or more is dissolved in an organic solvent at 25 ° C., the second production method can be suitably used.
 ポリイミド樹脂組成物調製工程において、ケイ素原子を含むポリイミドは、前記ポリイミドフィルムにおいて説明したのと同様のポリイミドの中から、前述した溶剤溶解性を有するポリイミドを選択して用いることができる。イミド化する方法としては、ポリイミド前駆体の脱水閉環反応について、加熱脱水の代わりに、化学イミド化剤を用いて行う化学イミド化を用いることが好ましい。化学イミド化を行う場合は、脱水触媒としてピリジンやβ―ピコリン酸等のアミン、ジシクロヘキシルカルボジイミドなどのカルボジイミド、無水酢酸等の酸無水物等、公知の化合物を用いても良い。酸無水物としては無水酢酸に限らず、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられるが特に限定されない。また、その際にピリジンやβ―ピコリン酸等の3級アミンを併用してもよい。ただし、これらアミン類は、フィルム中に残存すると光学特性、特に黄色度(YI値)を低下させるため、前駆体からポリイミドへと反応させた反応液をそのままキャストして製膜するのではなく、再沈殿などにより精製し、ポリイミド以外の成分をそれぞれ、ポリイミド全重量の100ppm以下まで除去してから製膜することが好ましい。 In the polyimide resin composition preparation step, as the polyimide containing silicon atoms, the above-mentioned polyimide having solvent solubility can be selected from the same polyimides as described in the polyimide film. As a method for imidization, it is preferable to use chemical imidation using a chemical imidizing agent instead of heat dehydration for the dehydration ring-closing reaction of the polyimide precursor. In the case of performing chemical imidization, known compounds such as amines such as pyridine and β-picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as a dehydration catalyst. Examples of the acid anhydride are not limited to acetic anhydride, and propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, trifluoroacetic acid anhydride, and the like, but are not particularly limited. At that time, a tertiary amine such as pyridine or β-picolinic acid may be used in combination. However, when these amines remain in the film, the optical properties, particularly the yellowness (YI value), are reduced. Therefore, the reaction liquid reacted from the precursor to the polyimide is not cast as it is, It is preferable to form the film after purification by reprecipitation or the like, and removing components other than polyimide to 100 ppm or less of the total weight of the polyimide.
 ポリイミド樹脂組成物調製工程において用いられる有機溶剤としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。 As the organic solvent used in the polyimide resin composition preparation step, the same organic solvent as described in the polyimide precursor resin composition preparation step in the first production method can be used.
 前記ポリイミド樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
 また、前記第2の方法において、前記ポリイミド樹脂組成物の含有水分量1000ppm以下とする方法としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明した方法と同様の方法を用いることができる。
The polyimide resin composition may contain an additive as necessary. As said additive, the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in a said 1st manufacturing method can be used.
Moreover, in the said 2nd method, as a method of setting the moisture content of the said polyimide resin composition to 1000 ppm or less, the method similar to the method demonstrated in the said polyimide precursor resin composition preparation process in a said 1st manufacturing method Can be used.
 また、前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、支持体や、塗布方法は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明したものと同様のものを用いることができる。 Further, in the polyimide resin coating film forming step in the second manufacturing method, the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step of the first manufacturing method. be able to.
 前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、乾燥温度としては、常圧下では80℃以上150℃以下とすることが好ましい。減圧下では10℃以上100℃以下の範囲とすることが好ましい。
 また、前記第2の製造方法におけるポリイミド樹脂塗膜形成工程の乾燥は、少なくとも2段階で段階的に温度を上げながら行うことが好ましい。また、前記乾燥は、合計で10分以上行うことが好ましく、20分以上行うことがより好ましい。これにより、塗膜中のケイ素原子が偏在し易くなり、表裏面でのケイ素原子濃度の差が大きくなり易くなると推定される。前記乾燥の方法としては、前記第1の製造方法で好ましく用いられる乾燥の方法を、前記第2の製造方法においても好ましく用いることができる。また、前記第2の製造方法における溶剤の乾燥方法としては、前記第1の製造方法で用いられる方法と同様の方法を挙げることができる。
In the polyimide resin coating film forming step in the second production method, the drying temperature is preferably 80 ° C. or higher and 150 ° C. or lower under normal pressure. It is preferable that the pressure be in the range of 10 ° C. to 100 ° C. under reduced pressure.
Moreover, it is preferable to perform the drying of the polyimide resin coating film forming step in the second production method while increasing the temperature stepwise in at least two stages. The drying is preferably performed for 10 minutes or more in total, and more preferably for 20 minutes or more. Thereby, it is estimated that the silicon atoms in the coating film are likely to be unevenly distributed, and the difference in silicon atom concentration between the front and back surfaces is likely to increase. As the drying method, the drying method preferably used in the first production method can be preferably used also in the second production method. Examples of the solvent drying method in the second manufacturing method include the same methods as those used in the first manufacturing method.
 また、前記第2の製造方法における剥離工程は、前記第1の製造方法の剥離工程の剥離方法及び剥離条件と同様にすることができる。
 前記第2の製造方法では、前記剥離工程において、前記ポリイミド樹脂塗膜中の残留溶媒量は、支持体の剥離を容易にする点から、40重量%以下であることが好ましく、30重量%以下であることがより好ましい。また、前記剥離工程における前記ポリイミド樹脂塗膜中の残留溶媒量は、ポリイミドフィルムの膜厚ムラを抑制し、面質を均一化させる点から、10重量%以上であってもよい。
 なお、剥離工程時の前記ポリイミド樹脂塗膜中の残留溶媒量は、剥離工程直後の前記ポリイミド樹脂塗膜について、H-NMRを用いて、ポリイミド由来の水素原子と、溶媒由来の水素原子との積分強度比を求めることで測定することができる。
Moreover, the peeling process in the second manufacturing method can be the same as the peeling method and the peeling conditions in the peeling process of the first manufacturing method.
In the second production method, in the peeling step, the residual solvent amount in the polyimide resin coating film is preferably 40% by weight or less, and preferably 30% by weight or less from the viewpoint of facilitating peeling of the support. It is more preferable that Further, the residual solvent amount in the polyimide resin coating film in the peeling step may be 10% by weight or more from the viewpoint of suppressing unevenness in the film thickness of the polyimide film and uniforming the surface quality.
Note that the amount of residual solvent in the polyimide resin coating film at the time of the peeling process was determined by using 1 H-NMR for the polyimide resin coating film immediately after the peeling process and the hydrogen atoms derived from the polyimide, It can measure by calculating | requiring the integral intensity ratio.
 また、前記第2の製造方法は、前記剥離工程の後、ポリイミド樹脂塗膜を延伸する延伸工程を有していてもよい。当該延伸工程は、前記第1の製造方法における延伸工程と同様にすることができる。 In addition, the second manufacturing method may have a stretching step of stretching the polyimide resin coating film after the peeling step. The said extending process can be made to be the same as that of the extending process in the said 1st manufacturing method.
 また、前記第2の製造方法は、前記ポリイミド樹脂塗膜中の残留溶媒を除去するための乾燥工程を更に有していてもよい。当該乾燥工程における乾燥の温度及び時間は、ポリイミド樹脂塗膜の膜厚や溶剤の種類等に応じて適宜調整されれば良く、特に限定はされないが、100℃以上400℃以下、1分以上180分以下とすることが好ましい。また、当該乾燥工程は、ポリイミドフィルムの光学特性の低下を抑制する点から、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。 The second manufacturing method may further include a drying step for removing the residual solvent in the polyimide resin coating film. The drying temperature and time in the drying step may be appropriately adjusted according to the thickness of the polyimide resin coating film, the type of solvent, and the like, and are not particularly limited, but are 100 ° C. or higher and 400 ° C. or lower, 1 minute or longer and 180 °. It is preferable to make it less than minutes. Moreover, it is preferable that the said drying process is in inert gas atmosphere from the point which suppresses the fall of the optical characteristic of a polyimide film. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less.
6.ポリイミドフィルムの用途
 本開示のポリイミドフィルムの用途は特に限定されるものではなく、従来薄い板ガラス等ガラス製品が用いられていた基材や表面材等の部材として用いることができる。本開示のポリイミドフィルムは、屈曲耐性を向上し、保護フィルムとして十分な表面硬度を有し、光学的歪みを低減することができるものであるため、中でも、曲面に対応できるディスプレイ用表面材として好適に用いることができる。
 本開示のポリイミドフィルムは、具体的には例えば、薄くて曲げられるフレキシブルタイプの有機ELディスプレイや、スマートフォンや腕時計型端末などの携帯端末、自動車内部の表示装置、腕時計などに使用するフレキシブルパネル等に好適に用いることができる。また、本開示のポリイミドフィルムは、液晶表示装置、有機EL表示装置等の画像表示装置用部材や、タッチパネル用部材、フレキシブルプリント基板、表面保護膜や基板材料等の太陽電池パネル用部材、光導波路用部材、その他半導体関連部材等に適用することもできる。
6). Use of polyimide film The use of the polyimide film of the present disclosure is not particularly limited, and can be used as a member such as a base material or a surface material for which a glass product such as a thin plate glass has been conventionally used. The polyimide film of the present disclosure has improved bending resistance, has sufficient surface hardness as a protective film, and can reduce optical distortion. Can be used.
Specifically, the polyimide film of the present disclosure is, for example, a thin and bent flexible organic EL display, a mobile terminal such as a smartphone or a wristwatch type terminal, a display device inside an automobile, a flexible panel used for a wristwatch, or the like. It can be used suitably. In addition, the polyimide film of the present disclosure includes a member for an image display device such as a liquid crystal display device and an organic EL display device, a member for a touch panel, a flexible printed circuit board, a surface protection film and a substrate material for a solar cell panel, an optical waveguide, etc. The present invention can also be applied to other members, other semiconductor-related members and the like.
 また、本開示のポリイミドフィルムは、ケイ素原子濃度が相対的に大きい面が密着性に優れ、特に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層との密着性に優れる。そのため、本開示のポリイミドフィルムにおいては、ケイ素原子濃度が相対的に大きい面を、樹脂含有層との密着面として好適に用いることができる。
 樹脂含有層は、後述する積層体に用いられる樹脂含有層と同様とすることができるため、ここでの説明を省略する。
In addition, the polyimide film of the present disclosure has a surface having a relatively large silicon atom concentration and excellent adhesion, and in particular, a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound. Excellent adhesion. Therefore, in the polyimide film of the present disclosure, a surface having a relatively large silicon atom concentration can be suitably used as an adhesion surface with the resin-containing layer.
Since the resin-containing layer can be the same as the resin-containing layer used in the laminate described later, description thereof is omitted here.
II.積層体
 本開示の積層体は、前述した本開示のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層とが隣接して位置する積層体である。
II. Laminate The laminate of the present disclosure is a laminate in which the polyimide film of the present disclosure described above and a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound are adjacent to each other. is there.
 本開示の積層体は、前述した本開示のポリイミドフィルムのケイ素原子濃度が相対的に大きい面に、樹脂含有層を密着させることにより、ポリイミドフィルムと樹脂含有層との密着性を向上することができ、それにより、表面硬度もより向上することができる。また、本開示の積層体は、前述した本開示のポリイミドフィルムを用いたものであるため、ポリイミドフィルムの不良が抑制されたものであり、積層体の品質の低下も抑制されたものである。
 また、本開示の積層体は、本開示のポリイミドフィルムを用いたものであるため、透明性の低下が抑制されたものであり、更に、光学的歪みを低減することができる。そのため、本開示の積層体をディスプレイ用表面材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。さらに、本開示の積層体は、本開示のポリイミドフィルムを用いたものであることから、屈曲耐性を向上することができ、フレキシブルディスプレイ用として好適に用いることができる。
The laminate of the present disclosure can improve the adhesion between the polyimide film and the resin-containing layer by bringing the resin-containing layer into close contact with the surface of the polyimide film of the present disclosure that has a relatively large silicon atom concentration. And thereby the surface hardness can be further improved. Moreover, since the laminated body of this indication uses the polyimide film of this indication mentioned above, the defect of a polyimide film is suppressed and the fall of the quality of a laminated body is also suppressed.
Moreover, since the laminated body of this indication uses the polyimide film of this indication, the fall of transparency is suppressed and optical distortion can be reduced further. Therefore, when the laminated body of this indication is used as a surface material for a display, it is possible to suppress a decrease in display quality of the display. Furthermore, since the laminated body of this indication uses the polyimide film of this indication, it can improve bending resistance and can be used suitably for flexible displays.
1.ポリイミドフィルム
 本開示の積層体に用いられるポリイミドフィルムとしては、前述した本開示のポリイミドフィルムを用いることができるので、ここでの説明を省略する。
1. Polyimide film Since the polyimide film of this indication mentioned above can be used as a polyimide film used for the layered product of this indication, explanation here is omitted.
2.樹脂含有層
 本開示の積層体に用いられる樹脂含有層は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有し、更に必要に応じて重合開始剤及びその他の添加剤を含有してもよい。
 前記樹脂含有層としては、例えば、ディスプレイに用いられる機能層等が挙げられ、具体的には例えば、ハードコート層等が挙げられる。
2. Resin-containing layer The resin-containing layer used in the laminate of the present disclosure contains at least one polymer of a radical polymerizable compound and a cationic polymerizable compound, and further contains a polymerization initiator and other additives as necessary. You may contain.
Examples of the resin-containing layer include functional layers used in displays, and specific examples include a hard coat layer.
(1)ラジカル重合性化合物
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(1) Radical polymerizable compound The radical polymerizable compound is a compound having a radical polymerizable group. The radical polymerizable group possessed by the radical polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth) acryloyl group. When the radical polymerizable compound has two or more radical polymerizable groups, these radical polymerizable groups may be the same or different from each other.
 前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、樹脂含有層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 前記ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、更に、ポリイミドフィルムと樹脂含有層との密着性の点及び光透過性と表面硬度の点から、(メタ)アクリロイル基を1分子中に2つ以上有する化合物が好ましい。例えば、1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーを好ましく使用できる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
The number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the resin-containing layer.
As the radical polymerizable compound, a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity, and further, adhesiveness between the polyimide film and the resin-containing layer, light transmittance, and surface hardness. From this point, a compound having two or more (meth) acryloyl groups in one molecule is preferable. For example, a compound called a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule, a molecule called urethane (meth) acrylate, polyester (meth) acrylate, or epoxy (meth) acrylate An oligomer having a molecular weight of several hundreds to several thousands having several (meth) acryloyl groups therein can be preferably used.
In this specification, (meth) acryloyl represents each of acryloyl and methacryloyl, and (meth) acrylate represents each of acrylate and methacrylate.
 前記ラジカル重合性化合物としては、具体的には、例えば、ジビニルベンゼンなどのビニル化合物;エチレングリコールジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、アルキレンオキサイド変性ビスフェノールAジ(メタ)アクリレート(例えば、エトキシ化(エチレンオキサイド変性)ビスフェノールAジ(メタ)アクリレートなど)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート類、ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類、ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を挙げることができる。 Specific examples of the radical polymerizable compound include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, 9,9-bis [4- (2- ( Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide modified bisphenol A di (meth) acrylate (eg ethoxylated (ethylene oxide modified) bisphenol A di (meth) acrylate), trimethylolpropane tri (meth) acrylate, tri Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaeryth Polyol polyacrylates such as lithol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A diglycidyl ether diacrylate, hexanediol diglycidyl ether diacrylate, etc. Examples include acrylates, urethane acrylates obtained by the reaction of polyisocyanate and hydroxyl group-containing acrylates such as hydroxyethyl acrylate.
(2)カチオン重合性化合物
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。前記カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、前記カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(2) Cationic polymerizable compound The cationic polymerizable compound is a compound having a cationic polymerizable group. The cationic polymerizable group possessed by the cationic polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group. When the cationic polymerizable compound has two or more cationic polymerizable groups, these cationic polymerizable groups may be the same or different from each other.
 前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、樹脂含有層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、ポリイミドフィルムと樹脂含有層との密着性の点及び光透過性と表面硬度の点から、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られた樹脂含有層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られた樹脂含有層をエポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
The number of cation polymerizable groups in the molecule of the cation polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the resin-containing layer.
Moreover, as the cationic polymerizable compound, a compound having at least one of an epoxy group and an oxetanyl group as the cationic polymerizable group is preferable, and the adhesiveness between the polyimide film and the resin-containing layer and the light transmittance and the surface are preferable. From the viewpoint of hardness, a compound having two or more of at least one of an epoxy group and an oxetanyl group in one molecule is more preferable. Cyclic ether groups such as epoxy groups and oxetanyl groups are preferred from the viewpoint of small shrinkage accompanying the polymerization reaction. In addition, compounds having an epoxy group among the cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained resin-containing layer, and can easily control the compatibility with the radical polymerizable compound. There is an advantage. Of the cyclic ether groups, the oxetanyl group has a high degree of polymerization and low toxicity compared to the epoxy group. When the obtained resin-containing layer is combined with a compound having an epoxy group, a cation in the coating film is obtained. There are advantages such as speeding up the network formation obtained from the polymerizable compound and forming an independent network without leaving unreacted monomer in the film even in a region mixed with the radical polymerizable compound.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 As the cationically polymerizable compound having an epoxy group, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, a cyclohexene ring or a cyclopentene ring-containing compound may be used with an appropriate oxidizing agent such as hydrogen peroxide or peracid. Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; glycidyl produced by reaction of bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts, and epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
 上記脂環族エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(UVR-6105、UVR-6107、UVR-6110)、ビス-3,4-エポキシシクロヘキシルメチルアディペート(UVR-6128)(以上、カッコ内は商品名で、ダウ・ケミカル製である。)が挙げられる。 Examples of the alicyclic epoxy resin include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate. (UVR-6128) (The product names in parentheses are manufactured by Dow Chemical.)
 また、上記グリシジルエーテル型エポキシ樹脂としては、ソルビトールポリグリシジルエーテル(デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-614B、デナコールEX-622)、ポリグリセロールポリグリシジルエーテル(デナコールEX-512、デナコールEX-521)、ペンタエリスリトルポリグリシジルエーテル(デナコールEX-411)、ジグリセロールポリグリシジルエーテル(デナコールEX-421)、グリセロールポリグリシジルエーテル(デナコールEX-313、デナコールEX-314)、トリメチロールプロパンポリグリシジルエーテル(デナコールEX-321)、レソルチノールジグリシジルエーテル(デナコールEX-201)、ネオペンチルグリコールジグリシジルエーテル(デナコールEX-211)、1,6ヘキサンジオールジグリシジルエーテル(デナコールEX―212)、ヒドロジビスフェノールAジグリシジルエーテル(デナコールEX-252)、エチレングリコールジグリシジルエーテル(デナコールEX-810、デナコールEX-811)、ポリエチレングリコールジグリシジルエーテル(デナコールEX―850、デナコールEX―851、デナコールEX―821)、プロピレングリコールグリシジルエーテル(デナコールEX―911)、ポリプロピレングリコールグリシジルエーテル(デナコールEX―941、デナコールEX-920)、アリルグリシジルエーテル(デナコールEX-111)、2-エチルヘキシルグリシジルエーテル(デナコールEX-121)、フェニルグリシジルエーテル(デナコールEX-141)、フェノールグリシジルエーテル(デナコールEX-145)、ブチルフェニルグリシジルエーテル(デナコールEX-146)、ジグリシジルフタレート(デナコールEX-721)、ヒドロキノンジグリシジルエーテル(デナコールEX-203)、ジグリシジルテレフタレート(デナコールEX-711)、グリシジルフタルイミド(デナコールEX-731)、ジブロモフェニルグリシジルエーテル(デナコールEX-147)、ジブロモネオペンチルグリコールジグリシジルエーテル(デナコールEX-221) (以上、カッコ内は商品名で、ナガセケムテックス製である。)が挙げられる。 Examples of the glycidyl ether type epoxy resin include sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), Polyglycerol polyglycidyl ether (Denacol EX). -512, Denacol EX-521), pentaerythritol polyglycidyl ether (Denacol EX-411), diglycerol polyglycidyl ether (Denacol EX-421), glycerol polyglycidyl ether (Denacol EX-313, Denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), neopentyl glycol diglycol Dil ether (Denacol EX-211), 1,6 hexanediol diglycidyl ether (Denacol EX-212), hydrodibisphenol A diglycidyl ether (Denacol EX-252), ethylene glycol diglycidyl ether (Denacol EX-810, Denacol) EX-811), polyethylene glycol diglycidyl ether (Denacol EX-850, Denacol EX-851, Denacol EX-821), propylene glycol glycidyl ether (Denacol EX-911), polypropylene glycol glycidyl ether (Denacol EX-941, Denacol EX) -920), allyl glycidyl ether (Denacol EX-111), 2-ethylhexyl glycidyl ether (Denacol EX-121), phenyl glycidyl ether (Denacol EX-141), phenol glycidyl ether (Denacol EX-145), butylphenyl glycidyl ether (Denacol EX-146), diglycidyl phthalate (Denacol EX-721), hydroquinone diglycidyl ether (Denacol EX-203), Diglycidyl terephthalate (Denacol EX-711), glycidyl phthalimide (Denacol EX-731), dibromophenyl glycidyl ether (Denacol EX-147), dibromoneopentylglycol diglycidyl ether (Denacol EX-221) The name is made by Nagase ChemteX).
 また、その他の市販品のエポキシ樹脂としては、商品名エピコート825、エピコート827、エピコート828、エピコート828EL、エピコート828XA、エピコート834、エピコート801、エピコート801P、エピコート802、エピコート815、エピコート815XA、エピコート816A、エピコート819、エピコート834X90、エピコート1001B80、エピコート1001X70、エピコート1001X75、エピコート1001T75、エピコート806、エピコート806P、エピコート807、エピコート152、エピコート154、エピコート871、エピコート191P、エピコートYX310、エピコートDX255、エピコートYX8000、エピコートYX8034等(以上商品名、ジャパンエポキシレジン製)が挙げられる。 Other commercially available epoxy resins include trade names such as Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 828EL, Epicoat 828XA, Epicoat 834, Epicoat 801, Epicoat 801P, Epicoat 802, Epicoat 815, Epicoat 815XA, Epicoat 816A, Epicoat 819, Epicoat 834X90, Epicoat 1001B80, Epicoat 1001X70, Epicoat 1001X75, Epicoat 1001T75, Epicoat 806, Epicoat 806P, Epicoat 807, Epicoat 152, Epicoat 154, Epicoat 871, Epicoat 191P, Epicoat YX310, Epicoat DX255, Epicoat YX8000, Etc. (above product name, Turbocharger bread epoxy resin) and the like.
 オキセタニル基を有するカチオン重合性化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101)、1,4-ビス-3-エチルオキセタン-3-イルメトキシメチルベンゼン(OXT-121)、ビス-1-エチル-3-オキセタニルメチルエーテル(OXT-221)、3-エチル-3-2-エチルへキシロキシメチルオキセタン(OXT-212)、3-エチル-3-フェノキシメチルオキセタン(OXT-211)(以上、カッコ内は商品名で東亜合成製である。)や、商品名エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上商品名、宇部興産製)が挙げられる。 Examples of the cationically polymerizable compound having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane (OXT-101) and 1,4-bis-3-ethyloxetane-3-ylmethoxymethylbenzene (OXT-121). Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3--2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT- 211) (the name in parentheses is a product name manufactured by Toa Gosei Co., Ltd.), and the product names Etanacol EHO, Etanacol OXBP, Etanacol OXTP, Etanacol OXMA (above, trade name, manufactured by Ube Industries).
(3)重合開始剤
 本開示に用いられる樹脂含有層が含有する前記ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物は、例えば、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種に、必要に応じて重合開始剤を添加して、公知の方法で重合反応させることにより得ることができる。
(3) Polymerization initiator At least one polymer of the radical polymerizable compound and the cationic polymerizable compound contained in the resin-containing layer used in the present disclosure is, for example, the radical polymerizable compound or the cationic polymerizable compound. It can be obtained by adding a polymerization initiator to at least one kind, if necessary, and carrying out a polymerization reaction by a known method.
 前記重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。 As the polymerization initiator, a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator, and the like can be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
 ラジカル重合開始剤は、光照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であれば良い。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられ、更に具体的には、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・ジャパン(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・ジャパン(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア369、チバ・ジャパン(株)製)、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア784、チバ・ジャパン(株)製)等が挙げられるが、これらに限定されるものではない。 The radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating. For example, photo radical polymerization initiators include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives, and the like. More specifically, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name Irgacure 651, Ciba Japan Co., Ltd.) 1-hydroxy-cyclohexyl-phenyl Ketone (trade name Irgacure 184, manufactured by Ciba Japan), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (trade names Irgacure 369, Ciba Japan ( Bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium) (trade name Irgacure 784) However, it is not limited to these.
 上記以外にも、市販品が使用でき、具体的には、チバ・ジャパン(株)製のイルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR  TPO、DAROCUR1173、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure  ONE、Esacure  KIP150、Esacure  KTO46、日本化薬(株)製のKAYACURE  DETX-S、KAYACURE  CTX、KAYACURE  BMS、KAYACURE  DMBI等が挙げられる。 In addition to the above, commercially available products can be used. Specifically, Irgacure 907, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870 manufactured by Ciba Japan Co., Ltd. , Irgacure OXE01, DAROCUR TPO, DAROCUR1173, Japan Siber Hegner Co., Ltd. of SpeedcureMBB, SpeedcurePBZ, SpeedcureITX, SpeedcureCTX, SpeedcureEDB, Esacure ONE, Esacure KIP150, Esacure KTO46, manufactured by Nippon Kayaku Co., of (stock) KAYACURE DETX-S, KAYACURE CTX , KAYACURE BMS, KAYACURE DMBI, etc. may be mentioned.
 また、カチオン重合開始剤は、光照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であれば良い。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η-ベンゼン)(η-シクロペンタジエニル)鉄(II)等が例示され、さらに具体的には、ベンゾイントシレート、2,5-ジニトロベンジルトシレート、N-トシフタル酸イミド等が挙げられるが、これらに限定されるものではない。 Moreover, the cationic polymerization initiator should just be able to discharge | release the substance which starts cationic polymerization by at least any one of light irradiation and a heating. Examples of the cationic polymerization initiator include sulfonic acid ester, imide sulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, (η 6 -benzene) (η 5 -cyclopentadidiene). Enyl) iron (II) and the like, and more specific examples include, but are not limited to, benzoin tosylate, 2,5-dinitrobenzyl tosylate, N-tosiphthalimide and the like.
  ラジカル重合開始剤としても、カチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示され、更に具体的には、ジフェニルヨードニウム、ジトリルヨードニウム、ビス(p-tert-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウム等のヨードニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のヨードニウム塩、トリフェニルスルホニウム、4-tert-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム等のスルホニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のスルホニウム塩、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等の2,4,6-置換-1,3,5トリアジン化合物等が挙げられるが、これらに限定されるものではない。 Examples of radical polymerization initiators that can be used as cationic polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, and the like. More specifically, iodonium chloride such as diphenyliodonium, ditolyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, bromide, borofluoride, hexafluorophosphate salt, hexafluoro Iodonium salts such as antimonate salts, chlorides of sulfonium such as triphenylsulfonium, 4-tert-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, bromide, borofluoride, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, 2,4,6-substituted-1,3,5 triazine compounds such as 3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, etc. It is not limited to these.
(4)添加剤
 本開示に用いられる樹脂含有層は、前記重合物の他に、必要に応じて、帯電防止剤、防眩剤、防汚剤、硬度を向上させるための無機又は有機微粒子、レべリング剤、各種増感剤等の添加剤を含有していてもよい。
 硬度を向上させるための粒子としては、シリカ粒子のような無機微粒子が好適に用いられるが、シリカ粒子を用いた場合、前記ポリイミドフィルムと、樹脂含有層との密着性が向上する点から好ましい。
(4) Additives In addition to the polymer, the resin-containing layer used in the present disclosure includes, as necessary, an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, You may contain additives, such as a leveling agent and various sensitizers.
As the particles for improving the hardness, inorganic fine particles such as silica particles are preferably used. However, when silica particles are used, it is preferable from the viewpoint of improving the adhesion between the polyimide film and the resin-containing layer.
3.積層体の構成
 本開示の積層体は、前記ポリイミドフィルムと、前記樹脂含有層とが隣接して位置するものであり、中でも、前記ポリイミドフィルムの相対的にケイ素原子濃度が大きい面に、前記樹脂含有層が密着されてなるものであることが、ポリイミドフィルムと該樹脂含有層との密着性の点から好ましい。
 また、本開示の積層体は、本開示の効果を損なわない範囲で、前記ポリイミドフィルム及び前記樹脂含有層の他に、更にウレタンやアクリル樹脂などを含むゲル等の他の層が積層されたものであってもよいし、前記樹脂含有層が2層以上の多層構造を有するものであってもよい。また、本開示の積層体は、前記ポリイミドフィルムの相対的にケイ素原子濃度が小さい面側にも、前記樹脂含有層や前記他の層が積層されていてもよい。
3. Configuration of Laminate The laminate of the present disclosure is one in which the polyimide film and the resin-containing layer are located adjacent to each other, and in particular, on the surface of the polyimide film having a relatively large silicon atom concentration, It is preferable from the point of the adhesiveness of a polyimide film and this resin containing layer that a content layer is closely_contact | adhered.
In addition, the laminated body of the present disclosure is obtained by laminating other layers such as a gel containing urethane or acrylic resin in addition to the polyimide film and the resin-containing layer as long as the effects of the present disclosure are not impaired. The resin-containing layer may have a multilayer structure of two or more layers. Moreover, the laminated body of this indication may laminate | stack the said resin content layer and the said other layer also on the surface side with a relatively small silicon atom density | concentration of the said polyimide film.
 本開示の積層体の全体厚さは、用途により適宜選択されれば良いが、強度の点から、10μm以上であることが好ましく、更に40μm以上であることが好ましい。一方、屈曲耐性の点から、300μm以下であることが好ましく、更に250μm以下であることが好ましい。
 また、本開示の積層体において、各樹脂含有層の厚さは、用途により適宜選択されれば良いが、2μm以上80μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。また、カール防止の観点からポリイミドフィルムの両面に樹脂含有層を形成しても良い。
The total thickness of the laminate of the present disclosure may be appropriately selected depending on the application, but is preferably 10 μm or more, and more preferably 40 μm or more from the viewpoint of strength. On the other hand, from the viewpoint of bending resistance, it is preferably 300 μm or less, and more preferably 250 μm or less.
In the laminate of the present disclosure, the thickness of each resin-containing layer may be appropriately selected depending on the application, but is preferably 2 μm or more and 80 μm or less, and more preferably 3 μm or more and 50 μm or less. Moreover, you may form a resin content layer on both surfaces of a polyimide film from a viewpoint of curl prevention.
4.積層体の特性
 本開示の積層体は、樹脂含有層側表面の鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがより更に好ましい。なお、両面に樹脂含有層を有する積層体の場合は、少なくとも一方の面において、前記鉛筆硬度であれることが好ましい。
 本開示の積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度と同様にして測定することができる。
4). Characteristics of Laminate In the laminate of the present disclosure, the pencil hardness of the resin-containing layer side surface is preferably H or higher, more preferably 2H or higher, and even more preferably 3H or higher. In addition, in the case of the laminated body which has a resin containing layer on both surfaces, it is preferable that it is the said pencil hardness in at least one surface.
The pencil hardness of the laminate of the present disclosure can be measured in the same manner as the pencil hardness of the polyimide film.
 本開示の積層体は、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に90%以上であることが好ましい。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。
 本開示の積層体の前記全光線透過率は、前記ポリイミドフィルムのJIS K7361-1に準拠して測定する全光線透過率と同様にして測定することができる。
In the laminate of the present disclosure, the total light transmittance measured in accordance with JIS K7361-1 is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more. Is preferred. Thus, since the transmittance | permeability is high, transparency becomes favorable and it can become a glass substitute material.
The total light transmittance of the laminate of the present disclosure can be measured in the same manner as the total light transmittance of the polyimide film measured according to JIS K7361-1.
 本開示の積層体は、JIS K7373-2006に準拠して算出される黄色度(YI値)が、30以下であることが好ましく、20以下であることがより好ましく、15以下であることがより更に好ましく、10以下であることが特に好ましい。
 本開示の積層体の前記黄色度(YI値)は、前記ポリイミドフィルムのJIS K7373-2006に準拠して算出される黄色度(YI値)と同様にして測定することができる。
In the laminate of the present disclosure, the yellowness (YI value) calculated in accordance with JIS K7373-2006 is preferably 30 or less, more preferably 20 or less, and more preferably 15 or less. More preferred is 10 or less.
The yellowness (YI value) of the laminate of the present disclosure can be measured in the same manner as the yellowness (YI value) calculated based on JIS K7373-2006 of the polyimide film.
 本開示の積層体のヘイズ値は、光透過性の点から、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。
 本開示の積層体のヘイズ値は、前記ポリイミドフィルムのヘイズ値と同様にして測定することができる。
The haze value of the laminate of the present disclosure is preferably 10 or less, more preferably 8 or less, and even more preferably 5 or less from the viewpoint of light transmittance.
The haze value of the laminate of the present disclosure can be measured in the same manner as the haze value of the polyimide film.
 本開示の積層体の波長590nmにおける厚み方向の複屈折率は、0.020以下であることが好ましく、0.015以下であることが好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。
 本開示の積層体の前記複屈折率は、前記ポリイミドフィルムの波長590nmにおける厚み方向の複屈折率と同様にして測定することができる。
The birefringence in the thickness direction at a wavelength of 590 nm of the laminate of the present disclosure is preferably 0.020 or less, preferably 0.015 or less, more preferably 0.010 or less, and still more. Preferably it is less than 0.008.
The birefringence of the laminate of the present disclosure can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
5.積層体の用途
 本開示の積層体の用途は特に限定されるものではなく、例えば、前述した本開示のポリイミドフィルムの用途と同様の用途に用いることができる。
5). Use of laminated body The use of the laminated body of this indication is not specifically limited, For example, it can be used for the use similar to the use of the polyimide film of this indication mentioned above.
6.積層体の製造方法
 本開示の積層体の製造方法としては、例えば、
 前記本開示のポリイミドフィルムの相対的にケイ素原子濃度が大きい面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有する樹脂含有層形成用組成物の塗膜を形成する工程と、
 前記塗膜を硬化する工程と、を含む製造方法が挙げられる。
6). Manufacturing method of laminated body As a manufacturing method of the laminated body of the present disclosure, for example,
Forming a coating film of a resin-containing layer forming composition containing at least one of a radically polymerizable compound and a cationically polymerizable compound on the surface of the polyimide film of the present disclosure having a relatively large silicon atom concentration;
And a step of curing the coating film.
 前記樹脂含有層形成用組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有し、必要に応じて更に重合開始剤、溶剤及び添加剤等を含有していてもよい。
 ここで、前記樹脂含有層形成用組成物が含有するラジカル重合性化合物、カチオン重合性化合物、重合開始剤及び添加剤については、前記樹脂含有層において説明したものと同様のものを用いることができ、溶剤は、公知の溶剤から適宜選択して用いることができる。
The composition for forming a resin-containing layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like as necessary.
Here, the radical polymerizable compound, the cationic polymerizable compound, the polymerization initiator and the additive contained in the resin-containing layer forming composition can be the same as those described in the resin-containing layer. The solvent can be appropriately selected from known solvents.
 ポリイミドフィルムの相対的にケイ素原子濃度が大きい面に、前記樹脂含有層形成用組成物の塗膜を形成する方法としては、例えば、ポリイミドフィルムの相対的にケイ素原子濃度が大きい面に、前記樹脂含有層形成用組成物を、公知の塗布手段により塗布する方法が挙げられる。
 前記塗布手段は、目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えば、前記ポリイミド前駆体樹脂組成物を支持体に塗布する手段と同様のものが挙げられる。
Examples of a method for forming a coating film of the resin-containing layer forming composition on a surface of the polyimide film having a relatively high silicon atom concentration include, for example, the resin on the surface of the polyimide film having a relatively high silicon atom concentration. The method of apply | coating the composition for content layer formation by a well-known application means is mentioned.
The application means is not particularly limited as long as it is a method that can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
 前記樹脂含有層形成用組成物の塗膜は必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、更にはこれらの乾燥を組み合わせる方法等が挙げられる。また、常圧で乾燥させる場合は、30℃以上110℃以下で乾燥させることが好ましい。 The solvent is removed by drying the coating film of the resin-containing layer forming composition as necessary. Examples of the drying method include reduced-pressure drying or heat drying, and a method combining these drying methods. Moreover, when drying at a normal pressure, it is preferable to dry at 30 degreeC or more and 110 degrees C or less.
 前記樹脂含有層形成用組成物を塗布、必要に応じて乾燥させた塗膜に対し、当該組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物の重合性基に応じて、光照射及び加熱の少なくともいずれかにより塗膜を硬化させることにより、ポリイミドフィルムの相対的にケイ素原子濃度が大きい面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層を形成することができる。 Applying the composition for forming a resin-containing layer and drying the coating as necessary, light irradiation and heating according to the polymerizable group of the radical polymerizable compound and the cationic polymerizable compound contained in the composition A resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound is formed on the surface of the polyimide film having a relatively large silicon atom concentration by curing the coating film with at least one of Can be formed.
 光照射には、主に、紫外線、可視光、電子線、電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cm程度である。
 加熱をする場合は、通常40℃以上120℃以下の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
For light irradiation, ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are mainly used. In the case of ultraviolet curing, ultraviolet rays emitted from light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp are used. The irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
When heating, the treatment is usually performed at a temperature of 40 ° C. or higher and 120 ° C. or lower. Moreover, you may react by leaving it to stand for 24 hours or more at room temperature (25 degreeC).
III.ディスプレイ用表面材
 本開示のディスプレイ用表面材は、前述した本開示のポリイミドフィルム又は本開示の積層体である。
III. Surface material for display The surface material for display of this indication is the polyimide film of this indication mentioned above, or the layered product of this indication.
 本開示のディスプレイ用表面材は、各種ディスプレイの表面に位置するように配置して用いられる。本開示のディスプレイ用表面材は、前述した本開示のポリイミドフィルム及び本開示の積層体と同様に、屈曲耐性を向上することができ、保護フィルムとして十分な表面硬度を有するため、フレキシブルディスプレイ用として特に好適に用いることができる。また、本開示のディスプレイ用表面材は、前述した本開示のポリイミドフィルム及び本開示の積層体と同様に、透明フィルムとして十分な透明性を有し、光学的歪みを低減することができるため、ディスプレイの表示品質の低下を抑制することができる。 The display surface material of the present disclosure is arranged and used so as to be positioned on the surface of various displays. The surface material for display according to the present disclosure can improve bending resistance and has a sufficient surface hardness as a protective film, like the polyimide film according to the present disclosure and the laminate according to the present disclosure. It can be particularly preferably used. Moreover, since the surface material for display of the present disclosure has sufficient transparency as a transparent film and can reduce optical distortion, as with the polyimide film of the present disclosure and the laminate of the present disclosure described above, A decrease in display quality of the display can be suppressed.
 本開示のディスプレイ用表面材は、公知の各種ディスプレイに用いることができ、特に限定はされないが、例えば、前記本開示のポリイミドフィルムの用途で説明したディスプレイ等に用いることができる。 The display surface material of the present disclosure can be used for various known displays and is not particularly limited. For example, the display surface material can be used for the display described in the application of the polyimide film of the present disclosure.
 なお、本開示のディスプレイ用表面材が前記本開示の積層体である場合、ディスプレイの表面に配置した後の最表面となる面は、ポリイミドフィルム側の表面であってもよいし、樹脂含有層側の表面であってもよいが、樹脂含有層としてハードコート層を用いる場合は、ハードコート層側の面が表面となるように本開示のディスプレイ用表面材を配置することが好ましい。また、本開示のディスプレイ用表面材は、最表面に指紋付着防止層を有するものであっても良い。 In addition, when the surface material for display of this indication is the laminated body of this indication, the surface used as the outermost surface after arrange | positioning on the surface of a display may be the surface by the side of a polyimide film, or a resin containing layer However, when a hard coat layer is used as the resin-containing layer, it is preferable to dispose the display surface material of the present disclosure so that the surface on the hard coat layer side is the surface. Further, the display surface material of the present disclosure may have a fingerprint adhesion preventing layer on the outermost surface.
 また、本開示のディスプレイ用表面材をディスプレイの表面に配置する方法としては、特に限定はされないが、例えば、接着層を介する方法等が挙げられる。前記接着層としては、ディスプレイ用表面材の接着に用いることができる従来公知の接着層を用いることができる。 Further, the method for disposing the display surface material of the present disclosure on the surface of the display is not particularly limited, and examples thereof include a method through an adhesive layer. As the adhesive layer, a conventionally known adhesive layer that can be used for adhesion of a display surface material can be used.
[評価方法]
 以下において、ポリイミドフィルムが有する表面のうち、乾燥工程において支持体と接していた表面をキャスト面と称し、当該キャスト面とは反対側の表面を雰囲気面と称する場合がある。
[Evaluation methods]
Hereinafter, among the surfaces of the polyimide film, the surface in contact with the support in the drying step may be referred to as a cast surface, and the surface opposite to the cast surface may be referred to as an atmosphere surface.
<ポリイミド前駆体の重量平均分子量>
 ポリイミド前駆体の重量平均分子量は、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒として、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行った。ポリイミド前駆体の重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求めた。
<ポリイミド前駆体溶液の粘度>
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Weight average molecular weight of polyimide precursor>
The weight average molecular weight of the polyimide precursor was determined using GPC by using a polyimide precursor as an N-methylpyrrolidone (NMP) solution with a concentration of 0.5% by weight and using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less as a developing solvent. Using an apparatus (manufactured by Tosoh Corporation, HLC-8120, column used: GPC LF-804, manufactured by SHODEX), measurement was performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.5 mL / min, and 40 ° C. The weight average molecular weight of the polyimide precursor was determined based on a polystyrene standard sample having the same concentration as the sample.
<Viscosity of polyimide precursor solution>
The viscosity of the polyimide precursor solution was measured using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
<ポリイミドの重量平均分子量>
 ポリイミドの重量平均分子量は、ポリイミドを0.2重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒として、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、40℃の条件で測定を行った。ポリイミドの重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求めた。
<ポリイミド溶液の粘度>
 ポリイミド溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Weight average molecular weight of polyimide>
The weight average molecular weight of polyimide was determined by using a GPC apparatus (manufactured by Tosoh Corporation) using polyimide as an N-methylpyrrolidone (NMP) solution having a concentration of 0.2% by weight and using as a developing solvent a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less. , HLC-8120, column used: GPC LF-804 manufactured by SHODEX), and measurement was performed under the conditions of a sample injection amount of 50 μL, a solvent flow rate of 0.4 mL / min, and 40 ° C. The weight average molecular weight of the polyimide was determined based on a polystyrene standard sample having the same concentration as the sample.
<Viscosity of polyimide solution>
The viscosity of the polyimide solution was measured using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.) at 25 ° C. and a sample amount of 0.8 ml.
<ポリイミドのケイ素原子含有割合(質量%)>
 ポリイミドのケイ素原子含有割合(質量%)は、仕込みの分子量から算出した。
 例えば、実施例8のポリイミドのように、酸二無水物成分として4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)1モルに対して、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)0.9モルと1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)0.1モルを用いた場合、以下のように算出することができる。
 ポリイミド繰り返し単位1モル分の分子量は、
6FDA由来:(C)12.01×19+(F)19.00×6+(O)16.00×4+(H)1.01×6=412.25
TFMB由来:{(C)12.01×14+(F)19.00×6+(N)14.01×2+(H)1.01×6}×0.9=284.60
AprTMOS由来:{(C)12.01×10+(O)16.00×1+(N)14.01×2+(Si)28.09×2+(H)1.01×24}×0.1=24.45
から、412.25+284.60+24.45=721.30と算出される。
 ポリイミド繰り返し単位1モル中のケイ素原子含有割合(質量%)は、
(28.09×2×0.1)/721.30×100=0.8(質量%)と求められる。
 なお、比較例2の両末端アミン変性ジフェニルシリコーンオイル(信越化学社製:X22-1660B-3、側鎖フェニルタイプ、数平均分子量4400)については、-(CH-を介してアミノ基がシリコーンに結合していると仮定して、数平均分子量4400からジフェニルシロキサンの繰り返し単位数が平均19.7であると算出し、1分子中に平均21.7個のケイ素原子が含まれているものとして算出した。
<Silicon atom content of polyimide (mass%)>
The silicon atom content (% by mass) of the polyimide was calculated from the charged molecular weight.
For example, as in the polyimide of Example 8, 2,2′-bis as the diamine component with respect to 1 mol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as the acid dianhydride component When 0.9 mol of (trifluoromethyl) benzidine (TFMB) and 0.1 mol of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) are used, it can be calculated as follows. .
The molecular weight of one mole of polyimide repeating unit is
6FDA origin: (C) 12.01 × 19 + (F) 19.00 × 6 + (O) 16.00 × 4 + (H) 1.01 × 6 = 412.25
TFMB origin: {(C) 12.01 × 14 + (F) 19.00 × 6 + (N) 14.01 × 2 + (H) 1.01 × 6} × 0.9 = 284.60
From AprTMOS: {(C) 12.01 × 10 + (O) 16.00 × 1 + (N) 14.01 × 2 + (Si) 28.09 × 2 + (H) 1.01 × 24} × 0.1 = 24.45
From this, it is calculated as 412.25 + 284.60 + 24.45 = 721.30.
Silicon atom content ratio (% by mass) in 1 mol of polyimide repeating unit is:
It is calculated as (28.09 × 2 × 0.1) /721.30×100=0.8 (mass%).
In addition, with respect to the both-end amine-modified diphenyl silicone oil of Comparative Example 2 (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3, side chain phenyl type, number average molecular weight 4400), an amino group is introduced via — (CH 2 ) 3 —. As a result, it is calculated that the number of repeating units of diphenylsiloxane is 19.7 on average from the number average molecular weight 4400, and an average of 21.7 silicon atoms are contained in one molecule. Calculated as being.
<全光線透過率>
 JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
 また、例えば、厚み100μmでの全光線透過率は、ランベルトベールの法則により換算することができる。
 具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
 フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
<Total light transmittance>
Based on JIS K7361-1, it was measured with a haze meter (HM150, manufactured by Murakami Color Research Laboratory).
For example, the total light transmittance at a thickness of 100 μm can be converted according to Lambert Beer's law.
Specifically, according to Lambert Beer's law, the transmittance T is
Log 10 (1 / T) = kcb
(K = constant specific to substance, c = concentration, b = optical path length).
For the transmittance of the film, so even if the film thickness is changed density is also constant c assuming a constant, the above formula, Log 10 using constants f (1 / T) = fb
(F = kc). Here, if the transmittance at a certain film thickness is known, a specific constant f of each substance can be obtained. Therefore, the transmittance at a desired film thickness can be obtained by substituting a constant specific to f and a target film thickness into b using the formula T = 1/10 f · b .
<YI値(黄色度)>
 YI値は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(日本分光(株) V-7100)を用い、JIS Z8720に規定する分光測色方法により測定した透過率をもとに算出した。
 また、例えば、厚み100μmでのYI値は、ある特定の膜厚のサンプルの380nm以上780nm以下の間の5nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
<YI value (yellowness)>
The YI value is a transmittance measured by a spectrocolorimetric method stipulated in JIS Z8720 using an ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation V-7100) in accordance with JIS K7373-2006. And calculated.
Further, for example, the YI value at a thickness of 100 μm is the same as the Lambert for each transmittance at each wavelength measured at 5 nm intervals between 380 nm and 780 nm of a sample having a specific thickness. A converted value of each transmittance at each wavelength of different thickness can be obtained according to Beer's law, and calculated and used based on that.
<ヘイズ値>
 JIS K-7105に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
<Haze value>
Based on JIS K-7105, it was measured with a haze meter (HM150 manufactured by Murakami Color Research Laboratory).
<複屈折率>
 位相差測定装置(王子計測機器株式会社製、製品名「KOBRA-WR」)を用いて、25℃、波長590nmの光で、ポリイミドフィルムの厚み方向位相差値(Rth)を測定した。厚み方向位相差値(Rth)は、0度入射の位相差値と、斜め40度入射の位相差値を測定し、これらの位相差値から厚み方向位相差値Rthを算出した。前記斜め40度入射の位相差値は、位相差フィルムの法線から40度傾けた方向から、波長590nmの光を位相差フィルムに入射させて測定した。
 ポリイミドフィルムの複屈折率は、式:Rth/d(ポリイミドフィルムの膜厚(nm))に代入して求めた。
<Birefractive index>
The thickness direction retardation value (Rth) of the polyimide film was measured with a light of 25 ° C. and a wavelength of 590 nm using a phase difference measuring apparatus (product name “KOBRA-WR” manufactured by Oji Scientific Instruments). For the thickness direction retardation value (Rth), a phase difference value at 0 ° incidence and a phase difference value at an incidence angle of 40 ° were measured, and a thickness direction retardation value Rth was calculated from these retardation values. The retardation value at an oblique incidence of 40 degrees was measured by making light having a wavelength of 590 nm incident on the retardation film from a direction inclined by 40 degrees from the normal line of the retardation film.
The birefringence of the polyimide film was determined by substituting it into the formula: Rth / d (polyimide film thickness (nm)).
<ガラス転移温度>
 動的粘弾性測定装置 RSA III(ティー・エイ・インスツルメント・ジャパン(株))を用い、測定範囲を-150℃~400℃として、周波数1Hz、昇温速度5℃/min、サンプル幅を5mm、チャック間距離を20mmとして動的粘弾性測定を行い、tanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))のピーク温度から、ガラス転移温度(Tg)を求めた。
<Glass transition temperature>
Using a dynamic viscoelasticity measuring device RSA III (TA Instruments Japan Co., Ltd.), setting the measurement range to -150 ° C to 400 ° C, frequency 1Hz, heating rate 5 ° C / min, sample width Dynamic viscoelasticity measurement is performed at 5 mm and the distance between chucks is 20 mm, and the glass transition temperature (Tg) is obtained from the peak temperature of tan δ (tan δ = loss elastic modulus (E ″) / storage elastic modulus (E ′)). It was.
<引張弾性率>
 15mm×40mmに切り出したポリイミドフィルムの試験片を、温度25℃、相対湿度60%の条件で2時間調湿した後、JIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして、25℃における引張弾性率を測定した。引張り試験機は(島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用いた。
<Tensile modulus>
A polyimide film test piece cut out to 15 mm × 40 mm was conditioned for 2 hours under the conditions of a temperature of 25 ° C. and a relative humidity of 60%, and in accordance with JIS K7127, the tensile speed was 10 mm / min and the distance between chucks was 20 mm. The tensile elastic modulus at 25 ° C. was measured. A tensile tester (manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) was used.
<静的屈曲試験>
 以下、静的屈曲試験の方法について、図1を参照して説明する。
 15mm×40mmに切り出したポリイミドフィルムの試験片1を長辺の半分の位置で折り曲げ、試験片1の長辺の両端部が厚み6mmの金属片2(100mm×30mm×6mm)を上下面から挟むようにして配置し、試験片1の両端部と金属片2との上下面での重なりしろが各々10mmずつになるようにテープで固定した。試験片1が固定された金属片2を、上下からガラス板(100mm×100mm×0.7mm)3a、3bで挟み、試験片1を内径6mmで屈曲した状態で固定した。その際に、金属片2上で試験片1がない部分にダミーの試験片4a、4bを挟み込み、ガラス板3a、3bが平行になるようにテープで固定した。
 このようにして屈曲した状態で固定した試験片を、60±2℃、93±2%相対湿度(RH)の環境下で24時間静置した後、ガラス板と試験片固定用のテープを外し、試験片にかかる力を解放した。その後、試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後に試験片の内角を測定した。
 なお、当該静的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
<Static bending test>
Hereinafter, the method of the static bending test will be described with reference to FIG.
The polyimide film test piece 1 cut out to 15 mm × 40 mm is bent at the half of the long side, and the metal piece 2 (100 mm × 30 mm × 6 mm) having a thickness of 6 mm at both ends of the test piece 1 is sandwiched from above and below. The test piece 1 was fixed with tape so that the overlap between the upper and lower surfaces of the test piece 1 and the metal piece 2 was 10 mm each. The metal piece 2 on which the test piece 1 was fixed was sandwiched between glass plates (100 mm × 100 mm × 0.7 mm) 3a and 3b from above and below, and the test piece 1 was fixed in a state of being bent with an inner diameter of 6 mm. At that time, dummy test pieces 4a and 4b were sandwiched between portions of the metal piece 2 where the test piece 1 was not provided, and fixed with tape so that the glass plates 3a and 3b were parallel.
After the test piece fixed in the bent state in this manner is left to stand for 24 hours in an environment of 60 ± 2 ° C. and 93 ± 2% relative humidity (RH), the glass plate and the test piece fixing tape are removed. The force applied to the test piece was released. Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after releasing the force applied to the test piece.
In addition, when the film returns completely without being affected by the static bending test, the inner angle is 180 °.
<動的屈曲試験>
 20mm×100mmの大きさに切り出した試験片を、恒温恒湿器内耐久試験システム(ユアサシステム機器製、面状体無負荷U字伸縮試験治具 DMX-FS)にテープで固定した。試験片を前記静的屈曲試験と同様の折り畳まれた状態、すなわち、折り畳まれた状態の試験片の長辺の両端部間の距離が6mmとなるように設定した後、60±2℃で93±2%相対湿度(RH)、又は、25℃±2℃で50±10%相対湿度(RH)の環境下で1分間に90回の屈曲回数で、20万回屈曲を繰り返した。
 その後、試験片を取り外してから30分後に、得られた試験片の一方の端部を固定し、試験片の内角を測定した。
 なお、当該動的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
<Dynamic bending test>
A test piece cut out to a size of 20 mm × 100 mm was fixed with a tape to a thermostat-humidifier durability test system (manufactured by Yuasa System Equipment Co., Ltd., planar surface unloaded U-shaped expansion / contraction test jig DMX-FS). After setting the test piece to be in the same folded state as in the static bending test, that is, the distance between both ends of the long side of the test piece in the folded state is 6 mm, it is 93 at 60 ± 2 ° C. Bending was repeated 200,000 times with 90 bendings per minute in an environment of ± 2% relative humidity (RH) or 50 ± 10% relative humidity (RH) at 25 ° C. ± 2 ° C.
Thereafter, 30 minutes after removing the test piece, one end of the obtained test piece was fixed, and the inner angle of the test piece was measured.
In addition, when the film returns completely without being affected by the dynamic bending test, the inner angle becomes 180 °.
<鉛筆硬度>
 測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用い、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルムの雰囲気面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行った。
<Pencil hardness>
After conditioning the sample for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%, a pencil scratch coating hardness tester manufactured by Toyo Seiki Co., Ltd. was used, using the test pencil specified by JIS-S-6006. The pencil hardness test (0.98N load) defined in JIS K5600-5-4 (1999) was performed on the atmosphere surface of the film, and the highest pencil hardness without scratches was evaluated.
<剥離性評価>
 ポリイミドフィルムを目視観察し、下記評価基準により製造時における支持体からの剥離性を評価した。
A:支持体からの剥離性良好により、フィルムにシワ、クラック、スジ、破断が発生しなかった。
B:支持体からの剥離に起因して、フィルムにわずかなスジ、シワが発生したが、実用可能レベルであった。
C:剥離不良。フィルムに顕著なスジ、シワが発生し、部分的にフィルムが破断するレベルであった。
 なお、スジとは、剥離応力によってフィルムが不均一に伸びることにより、短辺方向(TD方向)に発生する模様を指す。シワとは、支持体から剥離する際にフィルムが伸長し、その後収縮することにより、長手方向に発生するシワを指す。
<Peelability evaluation>
The polyimide film was visually observed, and the peelability from the support during production was evaluated according to the following evaluation criteria.
A: Due to good peelability from the support, wrinkles, cracks, streaks and breakage did not occur in the film.
B: Although slight streaks and wrinkles were generated on the film due to peeling from the support, it was at a practical level.
C: Peeling failure. Remarkable stripes and wrinkles were generated on the film, and the film was partially broken.
In addition, a streak refers to the pattern which generate | occur | produces in a short side direction (TD direction), when a film extends nonuniformly by peeling stress. A wrinkle refers to a wrinkle generated in the longitudinal direction when the film is stretched when peeled from the support and then contracted.
<原子濃度測定>
 ポリイミドフィルムの雰囲気面及びキャスト面の各原子濃度を、下記測定条件で、X線光電子分光法(XPS)により測定した。n=2の平均値を表2に示す。なお、JIS Z8401:1999に準拠して小数点以下第1位に丸めた値と併せて、括弧内に測定された小数点以下第2位までの値を示す。
・使用装置: Theta-Probe (Thermo Scientific製XPS装置) 
・入射X線: Monochromated Al Kα線(単色化X線、hν=1486.6eV) 
・X線照射領域(測定面積):400μmφ
・X線出力:100W(15kV・6.7mA) 
・光電子取り込み角度:53°(但し、試料法線を0°とする) 
・帯電中和条件:電子中和銃(+6V、0.05mA)、低加速Arイオン照射 
・測定ピーク:Si2p、C1s、N1s、O1s、F1s 
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて原子数比を算出した。
<Atomic concentration measurement>
Each atomic concentration of the atmosphere surface and cast surface of the polyimide film was measured by X-ray photoelectron spectroscopy (XPS) under the following measurement conditions. Table 2 shows the average value of n = 2. In addition, together with the value rounded to the first decimal place according to JIS Z8401: 1999, the value to the second decimal place measured in parentheses is shown.
・ Device used: Theta-Probe (Thermo Scientific XPS device)
Incident X-ray: Monochromated Al Kα ray (monochromated X-ray, hν = 1486.6 eV)
・ X-ray irradiation area (measurement area): 400 μmφ
・ X-ray output: 100 W (15 kV, 6.7 mA)
Photoelectron uptake angle: 53 ° (sample normal is 0 °)
・ Charge neutralization conditions: electron neutralization gun (+6 V, 0.05 mA), low acceleration Ar + ion irradiation
Measurement peak: Si2p, C1s, N1s, O1s, F1s
-Quantification: The background was determined by the Shirley method, and the atomic ratio was calculated from the obtained peak area using the relative sensitivity coefficient method.
(合成例1)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド302.0g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)3.735g(15mmol)、を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)2.22g(5mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで4時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)27.2g(85mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)42.0g(94.5mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体1が溶解したポリイミド前駆体溶液1(固形分20重量%)を合成した。ポリイミド前駆体1に用いられたTFMBとAprTMOSとのモル比は85:15であった。ポリイミド前駆体溶液1(固形分20重量%)の25℃における粘度は17770cpsであり、GPCによって測定したポリイミド前駆体1の重量平均分子量は117000であった。
(Synthesis Example 1)
In a 500 ml separable flask, a solution in which 302.0 g of dehydrated dimethylacetamide and 3.735 g (15 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) were dissolved was liquid. To a place where the temperature was controlled at 30 ° C., 2.22 g (5 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was gradually added so that the temperature rise was 2 ° C. or less. The mixture was stirred with a mechanical stirrer for 4 hours. 2,2′-bis (trifluoromethyl) benzidine (TFMB) 27.2 g (85 mmol) was added thereto, and after confirming complete dissolution, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid Anhydrous anhydride (6FDA) 42.0 g (94.5 mmol) was gradually added in several portions so that the temperature rise was 2 ° C. or less, and polyimide precursor solution 1 (solid content 20) in which polyimide precursor 1 was dissolved was added. % By weight) was synthesized. The molar ratio of TFMB used for the polyimide precursor 1 to AprTMOS was 85:15. The viscosity at 25 ° C. of the polyimide precursor solution 1 (solid content 20% by weight) was 17770 cps, and the weight average molecular weight of the polyimide precursor 1 measured by GPC was 117,000.
(合成例2~8)
 前記合成例1の手順で、表1に記載の原料、固形分濃度になるように反応を実施し、ポリイミド前駆体溶液2~8とした。
(Synthesis Examples 2 to 8)
Reaction was carried out by the procedure of Synthesis Example 1 so that the raw material and solid content concentrations shown in Table 1 were obtained, and polyimide precursor solutions 2 to 8 were obtained.
(比較合成例1)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド345.3g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)49.7g(200mmol)、を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)88.4g(199mmol)を、温度上昇が2℃以下になるように徐々に投入し、比較ポリイミド前駆体1が溶解した比較ポリイミド前駆体溶液1(固形分40重量%)を合成した。比較ポリイミド前駆体溶液1(固形分40重量%)の25℃における粘度は3900cpsであり、GPCによって測定した比較ポリイミド前駆体1の重量平均分子量は42000であった。
(Comparative Synthesis Example 1)
In a 500 ml separable flask, a solution in which 345.3 g of dehydrated dimethylacetamide and 49.7 g (200 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) were dissolved was liquid. To the place where the temperature was controlled to 30 ° C., 88.4 g (199 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was gradually added so that the temperature rise was 2 ° C. or less. Comparative polyimide precursor solution 1 (solid content 40 wt%) in which comparative polyimide precursor 1 was dissolved was synthesized. The viscosity at 25 ° C. of the comparative polyimide precursor solution 1 (solid content 40% by weight) was 3900 cps, and the weight average molecular weight of the comparative polyimide precursor 1 measured by GPC was 42,000.
 (比較合成例2)
 オイルバスを備えた撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、両末端アミン変性ジメチルフェニルシリコーンオイル(信越化学社製:X22-1660B-3(数平均分子量4400))12.25g、N-メチル-2-ピロリドン(NMP)を3432g加え、続いて6FDA222.12g(0.5モル)加えて、室温で30分撹拌した。その後、2,2’‐ビス(トリフルオロメチル)ベンジジン(TFMB)を152.99g(0.478モル)投入して溶解したことを確認した後、室温で3時間撹拌した後、80℃に昇温し、4時間撹拌した後、オイルバスを外して室温に戻し、比較ポリイミド前駆体溶液2(固形分10重量%)を得た。比較ポリイミド前駆体溶液2(固形分10重量%)の25℃における粘度は89cpsであり、GPCによって測定した比較ポリイミド前駆体2の重量平均分子量は66900であった。
(Comparative Synthesis Example 2)
While introducing nitrogen gas into a 3 L separable flask equipped with a stir bar equipped with an oil bath, 12.25 g of both-end amine-modified dimethylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (number average molecular weight 4400)) 3432 g of N-methyl-2-pyrrolidone (NMP) was added, followed by 222.22 g (0.5 mol) of 6FDA, and the mixture was stirred at room temperature for 30 minutes. Thereafter, it was confirmed that 152.99 g (0.478 mol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was added and dissolved, and the mixture was stirred at room temperature for 3 hours and then raised to 80 ° C. After warming and stirring for 4 hours, the oil bath was removed and the temperature was returned to room temperature to obtain a comparative polyimide precursor solution 2 (solid content 10% by weight). The viscosity at 25 ° C. of the comparative polyimide precursor solution 2 (solid content 10% by weight) was 89 cps, and the weight average molecular weight of the comparative polyimide precursor 2 measured by GPC was 66900.
 (合成例9(化学イミド化))
 500mLのセパラブルフラスコに、脱水されたジメチルアセトアミド(367.1g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(2.33g、9.4mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(2.08g、4.7mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで1時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(57.07g、178.2mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(80.83g、182.0mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体1’が溶解したポリイミド前駆体溶液1’(固形分28重量%)を合成した。
 上記溶液を室温に下げ、脱水されたジメチルアセトアミド(202.2g)を加え均一になるまで撹拌した。次に触媒であるピリジン(59.05g、0.747mmol)と無水酢酸(76.22g、0.747mol)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液の一部(692.2g)を5Lのセパラブルフラスコに移し、酢酸ブチル(471.1g)を加え均一になるまで撹拌した。次にメタノール(1046g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(2443kg)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド1(104.7g)を得た。GPCによって測定したポリイミド1の重量平均分子量は180000であった。
 ポリイミド1を酢酸ブチルとPGMEAの混合溶媒(8:2、体積比)に溶かし、固形分25質量%のポリイミド溶液1を作製した。ポリイミド溶液1(固形分25重量%)の25℃における粘度は58500cpsであった。
(Synthesis Example 9 (chemical imidization))
Dehydrated dimethylacetamide (367.1 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (2.33 g, 9.4 mmol) were dissolved in a 500 mL separable flask. To the place where the solution temperature was controlled at 30 ° C., 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (2.08 g, 4.7 mmol) was added to a temperature rise of 2 ° C. or less. The mixture was gradually added and stirred with a mechanical stirrer for 1 hour. 2,2′-bis (trifluoromethyl) benzidine (TFMB) (57.07 g, 178.2 mmol) was added thereto, and after confirming complete dissolution, 4,4 ′-(hexafluoroisopropylidene) ) Diphthalic anhydride (6FDA) (80.83 g, 182.0 mmol) was gradually added several times so that the temperature rise was 2 ° C. or less, and the polyimide precursor solution in which the polyimide precursor 1 ′ was dissolved 1 ′ (solid content 28% by weight) was synthesized.
The solution was cooled to room temperature and dehydrated dimethylacetamide (202.2 g) was added and stirred until homogeneous. Next, pyridine (59.05 g, 0.747 mmol) as a catalyst and acetic anhydride (76.22 g, 0.747 mol) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution. A part (692.2 g) of the obtained polyimide solution was transferred to a 5 L separable flask, and butyl acetate (471.1 g) was added and stirred until uniform. Next, methanol (1046 g) was gradually added to obtain a solution with slight turbidity. Methanol (2443 kg) was added all at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed 5 times with methanol to obtain polyimide 1 (104.7 g). The weight average molecular weight of the polyimide 1 measured by GPC was 180000.
Polyimide 1 was dissolved in a mixed solvent of butyl acetate and PGMEA (8: 2, volume ratio) to prepare a polyimide solution 1 having a solid content of 25% by mass. The viscosity of the polyimide solution 1 (solid content: 25% by weight) at 25 ° C. was 58500 cps.
 以下において、表中の略称はそれぞれ以下のとおりである。
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
AprTMOS:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
In the following, the abbreviations in the table are as follows.
TFMB: 2,2′-bis (trifluoromethyl) benzidine AprTMOS: 1,3-bis (3-aminopropyl) tetramethyldisiloxane 6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[ポリイミドフィルムの作製]
(実施例1~8、比較例1~2)
 ポリイミド前駆体溶液1~8及び比較ポリイミド前駆体溶液1~2を用い、下記(1)~(4)の手順を行うことで、表2に示す厚みのポリイミドフィルムをそれぞれ作製した。
(1)各ポリイミド前駆体溶液をスチール製の支持体上に塗布し、循環オーブンにて、40℃で60分間乾燥した後、さらに100℃で30分間乾燥することにより塗膜を形成した。
(2)塗膜を支持体から剥離した(剥離強度0.1N/25mm、剥離速度200mm/min、剥離角度180°)。
(3)剥離後、塗膜の外周を枠状の金属製冶具に固定した。
(4)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、350℃まで昇温し、350℃で1時間保持後、室温まで冷却し、枠状の金属製冶具から取り外し、各ポリイミドフィルムを得た。
[Preparation of polyimide film]
(Examples 1-8, Comparative Examples 1-2)
Using the polyimide precursor solutions 1 to 8 and the comparative polyimide precursor solutions 1 and 2, the following steps (1) to (4) were performed to prepare polyimide films having thicknesses shown in Table 2.
(1) Each polyimide precursor solution was coated on a steel support, dried in a circulation oven at 40 ° C. for 60 minutes, and further dried at 100 ° C. for 30 minutes to form a coating film.
(2) The coating film was peeled from the support (peel strength 0.1 N / 25 mm, peel rate 200 mm / min, peel angle 180 °).
(3) After peeling, the outer periphery of the coating film was fixed to a frame-shaped metal jig.
(4) In a nitrogen stream (oxygen concentration of 100 ppm or less), the temperature was raised to 350 ° C. at a rate of temperature increase of 10 ° C./min. Each polyimide film was obtained.
(実施例9)
 合成例9で得られたポリイミド溶液1を用い、下記(1)~(4)の手順を行うことで、表2に示す厚みのポリイミドフィルムを作製した。
(1)ポリイミド溶液1をスチール製の支持体上に塗布し、循環オーブンにて、40℃で60分間乾燥した後、さらに100℃で30分間乾燥することにより塗膜を形成した。
(2)塗膜を支持体から剥離した(剥離強度0.1N/25mm、剥離速度200mm/min、剥離角度180°)。
(3)剥離後、塗膜の外周を枠状の金属製冶具に固定した。
(4)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、250℃まで昇温し、250℃で1時間保持後、室温まで冷却し、枠状の金属製冶具から取り外し、ポリイミドフィルムを得た。
Example 9
Using the polyimide solution 1 obtained in Synthesis Example 9, the following steps (1) to (4) were performed to prepare polyimide films having thicknesses shown in Table 2.
(1) The polyimide solution 1 was applied on a steel support, dried in a circulating oven at 40 ° C. for 60 minutes, and further dried at 100 ° C. for 30 minutes to form a coating film.
(2) The coating film was peeled from the support (peel strength 0.1 N / 25 mm, peel rate 200 mm / min, peel angle 180 °).
(3) After peeling, the outer periphery of the coating film was fixed to a frame-shaped metal jig.
(4) Under a nitrogen stream (oxygen concentration of 100 ppm or less), the temperature is raised to 250 ° C. at a rate of temperature increase of 10 ° C./min. A polyimide film was obtained.
 得られた各ポリイミドフィルムについて、前記評価方法を用いて評価した。評価結果を表2に示す。 Each polyimide film obtained was evaluated using the above evaluation method. The evaluation results are shown in Table 2.
[積層体の作製]
 ペンタエリスリトールトリアクリレートの40重量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100重量部に対して10重量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF製、イルガキュア184)を添加して、樹脂含有層形成用樹脂組成物を調製した。
 前記で得られたポリイミドフィルムを10cm×10cmに切り出し、雰囲気面に前記樹脂含有層形成用樹脂組成物を塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させ、10μm膜厚の硬化膜である樹脂含有層を形成し、積層体を作製した。
[Production of laminate]
To a 40 wt% methyl isobutyl ketone solution of pentaerythritol triacrylate, 10 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, Irgacure 184) is added to 100 parts by weight of pentaerythritol triacrylate. A resin composition for forming a containing layer was prepared.
The polyimide film obtained above is cut out to 10 cm × 10 cm, the resin composition for forming a resin-containing layer is applied to the atmosphere surface, and ultraviolet rays are irradiated and cured at an exposure amount of 200 mJ / cm 2 under a nitrogen stream to form a 10 μm film. A resin-containing layer that is a thick cured film was formed to produce a laminate.
<密着性評価>
 得られた各積層体の樹脂含有層の密着性について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、樹脂含有層の剥がれの有無を観察し、下記評価基準により評価した。評価結果を表2に示す。
A:テープによる剥離操作を繰り返し5回実施した後も樹脂含有層の剥がれが生じなかった。
B:テープによる剥離操作を1回実施した後は樹脂含有層の剥がれが生じないが、テープによる剥離操作を繰り返し5回実施するまでに、樹脂含有層の剥がれが生じた。
C:テープによる剥離操作を1回実施した後に、樹脂含有層がカットの縁に沿って全面的に剥がれた。
<Adhesion evaluation>
For the adhesiveness of the resin-containing layer of each laminate obtained, a cross-cut test in accordance with JIS K 5600-5-6 was conducted, and the tape was repeatedly peeled five times. Were observed and evaluated according to the following evaluation criteria. The evaluation results are shown in Table 2.
A: No peeling of the resin-containing layer occurred even after repeating the peeling operation with the tape 5 times.
B: After the peeling operation with the tape was performed once, the resin-containing layer was not peeled off, but until the peeling operation with the tape was repeated 5 times, the resin-containing layer was peeled off.
C: After performing the peeling operation with the tape once, the resin-containing layer was peeled entirely along the edge of the cut.
<鉛筆硬度>
 得られた各積層体の樹脂含有層側表面について、ポリイミドフィルムと同様の方法により、鉛筆硬度の評価を行った。評価結果を表2に示す。
<Pencil hardness>
About the resin content layer side surface of each obtained laminated body, pencil hardness was evaluated by the method similar to a polyimide film. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表2より、本開示のポリイミドフィルムに相当する実施例1~9のポリイミドフィルムは、雰囲気面とキャスト面のいずれにもケイ素原子を含むが、雰囲気面の方がケイ素原子濃度が大きく、且つ雰囲気面のケイ素原子濃度が10.0原子%以下であり、引張弾性率が1.8GPa以上であることにより、雰囲気面の樹脂含有層に対する密着性が向上し、キャスト面の支持体からの剥離性が良好であり、支持体からの剥離に起因する不良が抑制されていた。また、実施例1~9のポリイミドフィルムは、透明性の低下及び表面硬度の低下が抑制され、屈曲耐性が向上したものであることが示された。また、実施例1~9では、ポリイミドフィルムと樹脂含有層との密着性が向上した積層体を得ることができた。
 また、実施例1~5の積層体は、実施例6~9の積層体に比べ、鉛筆硬度が高かった。これは、実施例1~5の積層体の方が、実施例6~9の積層体に比べ、ポリイミドフィルム表面のケイ素原子濃度が適度に高く、ポリイミドフィルムとハードコート層との密着性に優れていたことに起因していると推定される。
 比較例1のポリイミドフィルムは、支持体からの剥離に起因する不良が生じた。これは、ポリイミド中のケイ素原子含有量が多く、フィルムの表裏面でのSi濃度が実質的に同一となり、キャスト面のSi濃度が大きすぎ、また、支持体を剥離する際に塗膜の強度が不十分であったためと推定される。また、比較例1のポリイミドフィルムは、引張弾性率が1.8GPa未満であり、静的屈曲試験の結果が0度となり、フィルムに静的屈曲試験の折り癖のまま全く戻らない程、屈曲耐性が劣り、鉛筆硬度が大きく劣っていた。
 比較例2のポリイミドフィルムは、支持体からの剥離に起因する不良が生じた。これは、支持体を剥離する際に塗膜の強度が不十分であったためと推定される。比較例2のポリイミドフィルムは、引張弾性率が1.8GPa未満であり、静的屈曲耐性に劣り、鉛筆硬度が大きく劣っていた。また、比較例2の積層体は、ポリイミドフィルムと樹脂含有層との密着性に劣っていた。比較例2では、雰囲気面のケイ素原子濃度が10原子%超過であったため、樹脂含有層形成用組成物中の溶剤によりポリイミドフィルムの表面が溶解しすぎたことにより、ポリイミドフィルムと樹脂含有層との界面に脆弱な部分を生じたためと考えられる。
From Table 2, the polyimide films of Examples 1 to 9 corresponding to the polyimide film of the present disclosure contain silicon atoms in both the atmosphere surface and the cast surface, but the atmosphere surface has a higher silicon atom concentration and the atmosphere. When the silicon atom concentration on the surface is 10.0 atomic% or less and the tensile modulus is 1.8 GPa or more, the adhesion to the resin-containing layer on the atmosphere surface is improved, and the peelability from the support of the cast surface is improved. The defect resulting from peeling from the support was suppressed. In addition, it was shown that the polyimide films of Examples 1 to 9 were improved in bending resistance by suppressing the decrease in transparency and the decrease in surface hardness. In Examples 1 to 9, laminates having improved adhesion between the polyimide film and the resin-containing layer could be obtained.
Further, the laminates of Examples 1 to 5 had higher pencil hardness than the laminates of Examples 6 to 9. This is because the laminates of Examples 1 to 5 have a reasonably high silicon atom concentration on the surface of the polyimide film and excellent adhesion between the polyimide film and the hard coat layer, compared to the laminates of Examples 6 to 9. It is presumed that it was caused by what was.
The polyimide film of Comparative Example 1 had a defect due to peeling from the support. This is because the content of silicon atoms in the polyimide is large, the Si concentration on the front and back surfaces of the film is substantially the same, the Si concentration on the cast surface is too large, and the strength of the coating film when peeling the support Is presumed to have been insufficient. In addition, the polyimide film of Comparative Example 1 has a tensile modulus of less than 1.8 GPa, and the result of the static bending test is 0 degree. The pencil hardness was greatly inferior.
The polyimide film of Comparative Example 2 was defective due to peeling from the support. This is presumably because the strength of the coating film was insufficient when the support was peeled off. The polyimide film of Comparative Example 2 had a tensile modulus of less than 1.8 GPa, was inferior in static bending resistance, and was inferior in pencil hardness. Moreover, the laminated body of the comparative example 2 was inferior to the adhesiveness of a polyimide film and a resin content layer. In Comparative Example 2, since the silicon atom concentration on the atmosphere surface exceeded 10 atomic%, the surface of the polyimide film was excessively dissolved by the solvent in the resin-containing layer forming composition. This is probably because a fragile part was generated at the interface.

Claims (14)

  1.  ケイ素原子を含むポリイミドを含有し、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
     15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
     一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルム。
    Containing polyimide containing silicon atoms,
    The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
    A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
    One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less.
  2.  ケイ素原子を含むポリイミドを含有し、ケイ素原子を全ポリイミド中に0.2質量%以上4.1質量%以下の割合で含み、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
     JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
     15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
     一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルム。
    Containing polyimides containing silicon atoms, including silicon atoms in a proportion of 0.2% by mass or more and 4.1% by mass or less in all polyimides,
    The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
    The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
    A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
    One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less.
  3.  下記一般式(1-1)で表される構造を有するポリイミドを含有し、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
     JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
     15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
     一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、ケイ素原子濃度が相対的に大きい面のケイ素原子濃度が10.0原子%以下である、ポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1-1)において、R1’は芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、R2’は、ジアミン残基である2価の基を表し、R2’の総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。n’は繰り返し単位数を表す。)
    Containing a polyimide having a structure represented by the following general formula (1-1),
    The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
    The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
    A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
    One side and the other side contain silicon atoms, but the silicon atom concentration on one side is different from the silicon atom concentration on the other side and the silicon atom concentration is relatively high. A polyimide film having an atomic concentration of 10.0 atomic% or less.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1-1), R 1 ′ represents a tetravalent group that is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and R 2 ′ is a divalent group that is a diamine residue. Represents a group, wherein 2.5 mol% or more and 50 mol% or less of the total amount of R 2 ′ is a diamine residue having a silicon atom in the main chain, and 50 mol% or more and 97.5 mol% or less contains silicon atoms. (It is a diamine residue having no aromatic ring or aliphatic ring. N ′ represents the number of repeating units.)
  4.  下記一般式(1)で表される構造を有するポリイミドを含有し、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、
     JIS K7373-2006に準拠して算出される黄色度が、30以下であり、
     15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が1.8GPa以上であり、
     一方の面ともう一方の面のいずれにもケイ素原子を含むが、一方の面のケイ素原子濃度と、もう一方の面のケイ素原子濃度とが異なり、少なくとも一方の面のケイ素原子濃度が1.0原子%以上である、ポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Rは、ジアミン残基である2価の基を表し、Rの総量の10モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、50モル%以上90モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である。nは繰り返し単位数を表す。)
    Containing polyimide having a structure represented by the following general formula (1),
    The total light transmittance measured in accordance with JIS K7361-1 is 85% or more,
    The yellowness calculated in accordance with JIS K7373-2006 is 30 or less,
    A 15 mm × 40 mm test piece is measured according to JIS K7127, the tensile velocity is 10 mm / min, and the distance between chucks is 20 mm. The tensile elastic modulus at 25 ° C. is 1.8 GPa or more,
    Although one surface and the other surface contain silicon atoms, the silicon atom concentration on one surface is different from the silicon atom concentration on the other surface, and the silicon atom concentration on at least one surface is 1. A polyimide film which is 0 atomic% or more.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, R 2 represents a divalent group which is a diamine residue, 50 mol% 10 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, at least 50 mol% 90 mol% or less, having no silicon atom, (A diamine residue having an aromatic ring or an aliphatic ring. N represents the number of repeating units.)
  5.  前記ポリイミドが、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含む、請求項1~4のいずれか1項に記載のポリイミドフィルム。 The polyimide contains an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) the aromatic rings are connected to each other with a sulfonyl group or an alkylene group which may be substituted with fluorine. The polyimide film according to any one of claims 1 to 4, comprising at least one selected from the group consisting of structures.
  6.  前記一般式(1-1)で表される構造を有するポリイミドにおいて、前記一般式(1-1)中のR1’が、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項3に記載のポリイミドフィルム。 In the polyimide having the structure represented by the general formula (1-1), R 1 ′ in the general formula (1-1) is a cyclohexanetetracarboxylic dianhydride residue, cyclopentanetetracarboxylic dianhydride Product residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ′, 4,4'-biphenyltetracarboxylic dianhydride residue, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride residue, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride Residue, 3,4 '-(Hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(Hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic anhydride residue , And Is at least one tetravalent group selected from the group consisting of 3,4'-oxydiphthalic anhydride residue, a polyimide film according to claim 3.
  7.  前記一般式(1-1)で表される構造を有するポリイミドにおいて、前記一般式(1-1)中のR2’における、前記芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項3又は6に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
    In the polyimide having the structure represented by the general formula (1-1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 ′ in the general formula (1-1) is trans- Cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) ) A propane residue, a 2,2-bis (4-aminophenyl) hexafluoropropane residue, and at least one divalent group selected from the group consisting of a divalent group represented by the following general formula (2): The polyimide film according to claim 3 or 6, which is a group.
    Figure JPOXMLDOC01-appb-C000003
    (In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
  8.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項4に記載のポリイミドフィルム。 In the polyimide having the structure represented by the general formula (1), R 1 in the general formula (1) is a cyclohexanetetracarboxylic dianhydride residue, a cyclopentanetetracarboxylic dianhydride residue, a di Cyclohexane-3,4,3 ′, 4′-tetracarboxylic dianhydride residue, cyclobutanetetracarboxylic dianhydride residue, pyromellitic dianhydride residue, 3,3 ′, 4,4′- Biphenyltetracarboxylic dianhydride residue, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride residue, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3, 4 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4′-oxydiphthalic anhydride residue, and 3, '- is at least one tetravalent group selected from the group consisting of oxydiphthalic anhydride residue, a polyimide film according to claim 4.
  9.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項4又は8に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
    In the polyimide having the structure represented by the general formula (1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is a trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4′-diaminodiphenylsulfone residue, 3,4′-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, 2,2-bis (4-aminophenyl) hexafluoropropane residue and at least one divalent group selected from the group consisting of divalent groups represented by the following general formula (2): Item 9. The polyimide film according to Item 4 or 8.
    Figure JPOXMLDOC01-appb-C000004
    (In General Formula (2), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, or a perfluoroalkyl group.)
  10.  ケイ素原子濃度が相対的に大きい面を、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層との密着面に用いる、請求項1~9のいずれか1項に記載のポリイミドフィルム。 The surface having a relatively large silicon atom concentration is used as an adhesive surface with a resin-containing layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound. The polyimide film described in 1.
  11.  前記請求項1~10のいずれか1項に記載のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する樹脂含有層とが隣接して位置する積層体。 A laminate in which the polyimide film according to any one of claims 1 to 10 and a resin-containing layer containing at least one polymer of a radical polymerizable compound and a cationic polymerizable compound are located adjacent to each other.
  12.  前記ラジカル重合性化合物が(メタ)アクリロイル基を1分子中に2つ以上有する化合物であり、前記カチオン重合性化合物がエポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物である、請求項11に記載の積層体。 The radical polymerizable compound is a compound having two or more (meth) acryloyl groups in one molecule, and the cationic polymerizable compound is a compound having two or more epoxy groups or oxetanyl groups in one molecule. The laminate according to claim 11, wherein
  13.  前記請求項1~10のいずれか1項に記載のポリイミドフィルム、又は、前記請求項11又は12に記載の積層体である、ディスプレイ用表面材。 A display surface material, which is the polyimide film according to any one of claims 1 to 10 or the laminate according to claim 11 or 12.
  14.  フレキシブルディスプレイ用である、請求項13に記載のディスプレイ用表面材。 The display surface material according to claim 13, which is for a flexible display.
PCT/JP2017/034763 2016-09-30 2017-09-26 Polyimide film, laminate, and display surface material WO2018062190A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-193573 2016-09-30
JP2016193573 2016-09-30
JP2017182598A JP6939319B2 (en) 2016-09-30 2017-09-22 Polyimide film, laminate, and display surface material
JP2017-182598 2017-09-22

Publications (1)

Publication Number Publication Date
WO2018062190A1 true WO2018062190A1 (en) 2018-04-05

Family

ID=61763361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034763 WO2018062190A1 (en) 2016-09-30 2017-09-26 Polyimide film, laminate, and display surface material

Country Status (1)

Country Link
WO (1) WO2018062190A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013169A1 (en) * 2017-07-12 2019-01-17 大日本印刷株式会社 Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device and organic electroluminescent display device
JP2019182974A (en) * 2018-04-09 2019-10-24 大日本印刷株式会社 Manufacturing method of polyimide laminate, and manufacturing method of polyimide film
CN110570768A (en) * 2019-09-11 2019-12-13 Oppo(重庆)智能科技有限公司 Folding substrate, folding screen and electronic equipment
JP2020052138A (en) * 2018-09-25 2020-04-02 大日本印刷株式会社 Method of manufacturing retardation film, retardation film, display panel using the same, and image display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317554A (en) * 1987-06-19 1988-12-26 Shin Etsu Chem Co Ltd Liquid polyimide polymer composition
JPH05341291A (en) * 1992-06-04 1993-12-24 Sumitomo Bakelite Co Ltd Oriented film for liquid crystal display element
JPH10114824A (en) * 1996-07-18 1998-05-06 Reitetsuku Kk Production of polyimide, composition, and its product
JP2000017072A (en) * 1998-06-30 2000-01-18 Nitto Denko Corp Heat bondable polyimide resin film, and semiconductor device using the same, its preparation and tape carrier for semiconductor device used therefor
JP2000026602A (en) * 1998-07-07 2000-01-25 Nitto Denko Corp Heat fusible polyimide resin film, semiconductor device using this, and multilayered wiring board
JP2000160007A (en) * 1998-11-30 2000-06-13 Nitto Denko Corp Heat sealing polyimide resin film, and semiconductor unit and multilayer wiring board using the same
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2006253185A (en) * 2005-03-08 2006-09-21 Toray Ind Inc Polyimide film, heat-resistant resin laminated film using the same, and laminated film with metallic layer
WO2008010483A1 (en) * 2006-07-21 2008-01-24 Toray Industries, Inc. Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto
JP2010221523A (en) * 2009-03-24 2010-10-07 Toray Ind Inc Method for manufacturing metallic layer laminated film
WO2014207963A1 (en) * 2013-06-26 2014-12-31 東レ株式会社 Polyimide precursor, polyimide, flexible substrate using same, color filter and manufacturing method therefor, and flexible display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317554A (en) * 1987-06-19 1988-12-26 Shin Etsu Chem Co Ltd Liquid polyimide polymer composition
JPH05341291A (en) * 1992-06-04 1993-12-24 Sumitomo Bakelite Co Ltd Oriented film for liquid crystal display element
JPH10114824A (en) * 1996-07-18 1998-05-06 Reitetsuku Kk Production of polyimide, composition, and its product
JP2000017072A (en) * 1998-06-30 2000-01-18 Nitto Denko Corp Heat bondable polyimide resin film, and semiconductor device using the same, its preparation and tape carrier for semiconductor device used therefor
JP2000026602A (en) * 1998-07-07 2000-01-25 Nitto Denko Corp Heat fusible polyimide resin film, semiconductor device using this, and multilayered wiring board
JP2000160007A (en) * 1998-11-30 2000-06-13 Nitto Denko Corp Heat sealing polyimide resin film, and semiconductor unit and multilayer wiring board using the same
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2006253185A (en) * 2005-03-08 2006-09-21 Toray Ind Inc Polyimide film, heat-resistant resin laminated film using the same, and laminated film with metallic layer
WO2008010483A1 (en) * 2006-07-21 2008-01-24 Toray Industries, Inc. Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto
JP2010221523A (en) * 2009-03-24 2010-10-07 Toray Ind Inc Method for manufacturing metallic layer laminated film
WO2014207963A1 (en) * 2013-06-26 2014-12-31 東レ株式会社 Polyimide precursor, polyimide, flexible substrate using same, color filter and manufacturing method therefor, and flexible display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013169A1 (en) * 2017-07-12 2019-01-17 大日本印刷株式会社 Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device and organic electroluminescent display device
JPWO2019013169A1 (en) * 2017-07-12 2020-05-07 大日本印刷株式会社 Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP7226312B2 (en) 2017-07-12 2023-02-21 大日本印刷株式会社 Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2019182974A (en) * 2018-04-09 2019-10-24 大日本印刷株式会社 Manufacturing method of polyimide laminate, and manufacturing method of polyimide film
JP7099019B2 (en) 2018-04-09 2022-07-12 大日本印刷株式会社 Method for manufacturing polyimide laminate and method for manufacturing polyimide film
JP2020052138A (en) * 2018-09-25 2020-04-02 大日本印刷株式会社 Method of manufacturing retardation film, retardation film, display panel using the same, and image display device
JP7434704B2 (en) 2018-09-25 2024-02-21 大日本印刷株式会社 Method for producing a retardation film, retardation film, display panel and image display device using the retardation film
CN110570768A (en) * 2019-09-11 2019-12-13 Oppo(重庆)智能科技有限公司 Folding substrate, folding screen and electronic equipment

Similar Documents

Publication Publication Date Title
JP6939225B2 (en) Polyimide film, laminate, and display surface material
JP6973476B2 (en) Polyimide film, laminates, and surface materials for displays
JP6939319B2 (en) Polyimide film, laminate, and display surface material
JP7363019B2 (en) Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
JP7009902B2 (en) A method for manufacturing a polyimide film, a method for manufacturing a polyimide precursor, a method for manufacturing a laminate, and a method for manufacturing a surface material for a display.
WO2018230495A1 (en) Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018062190A1 (en) Polyimide film, laminate, and display surface material
JP2019137864A (en) Polyimide film, laminate, display member, touch panel member, liquid crystal display device and organic electroluminescence display device
JP7155533B2 (en) Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
WO2019065624A1 (en) Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP7027867B2 (en) Surface material for flexible displays
WO2018030410A1 (en) Polyimide film, laminate, and surface material for display
WO2018117145A1 (en) Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP2023154059A (en) Polyimide film, laminate, member for display, touch panel member, liquid crystal display device, and organic electronic luminescent display device
JP7226312B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
TWI766002B (en) Polyimide film, laminate, and surface material for display
WO2020004293A1 (en) Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device
WO2019078051A1 (en) Polyimide film, polyimide film production method, laminate, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
TWI809133B (en) Polyimide film, polyimide material, laminate, member for display, member for touch panel, liquid crystal display device, and organic electroluminescence display device
JP7247510B2 (en) Polyimide film, method for producing polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856140

Country of ref document: EP

Kind code of ref document: A1