WO2008010483A1 - Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto - Google Patents

Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto Download PDF

Info

Publication number
WO2008010483A1
WO2008010483A1 PCT/JP2007/064077 JP2007064077W WO2008010483A1 WO 2008010483 A1 WO2008010483 A1 WO 2008010483A1 JP 2007064077 W JP2007064077 W JP 2007064077W WO 2008010483 A1 WO2008010483 A1 WO 2008010483A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
thin film
crystal display
display device
color filter
Prior art date
Application number
PCT/JP2007/064077
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Yoshida
Tetsuo Yamashita
Masuichi Eguchi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CN2007800276433A priority Critical patent/CN101490607B/en
Publication of WO2008010483A1 publication Critical patent/WO2008010483A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/14Negative birefingence

Definitions

  • the present invention relates to a resin composition for a retardation film, a color filter substrate for a liquid crystal display device, a liquid crystal display device, and a method for producing a color filter substrate for a liquid crystal display device with a retardation film.
  • liquid crystal display devices are used in various applications such as notebook PCs, portable information terminals, desktop monitors, and digital cameras, taking advantage of characteristics such as light weight, thinness, and low power consumption. Liquid crystal display devices are required to have a wider viewing angle with the expansion of screens and monitor applications.
  • a liquid crystal display device generally has a structure in which a liquid crystal layer is sandwiched between two polarizing films. Therefore, the difference in the retardation of the liquid crystal layer resulting from the difference in the traveling direction of light affects the transmission intensity. That is, in the oblique direction, the retardation increases, so that the incident linearly polarized light becomes elliptically polarized light, and the amount of light leakage in the dark state increases, leading to a decrease in contrast.
  • VA Vertical Alignment
  • IPS In-plane Switching
  • a biaxially stretched retardation film is also used for the VA method in order to further increase the viewing angle.
  • the production of these films is not easy, and the orientation or Since the stretching process is indispensable, the process is troublesome.
  • Patent Document 1 a polyimide retardation film having an optically negative uniaxial anisotropy and having an optical axis perpendicular or substantially perpendicular to the thin film surface. A method for enlarging the field angle has been proposed.
  • Polyimide exhibits the function of a retardation film because it has an aromatic ring or aromatic heterocycle in the main chain direction of the polymer, and therefore has a refractive index in the main chain direction as compared to the direction perpendicular to the main chain. And the birefringence as a molecule increases, and the molecular chain easily aligns parallel to the substrate, so the difference in refractive index between the film thickness direction and the direction parallel to the film surface (birefringence as a film). Due to refraction).
  • the above-mentioned polyimide retardation thin film has a strong light absorption due to the aromatic molecular structure and cannot be said to have sufficient transparency.
  • the white display on the device was yellowish, and there was a problem in image display quality.
  • Patent Documents 2 to 4 In order to improve the transparency of the polyimide, an acid component having a non-aromatic group such as an alicyclic group is introduced into the polyimide resin to prevent intramolecular conjugation and charge transfer complex formation. It has been proposed (Patent Documents 2 to 4). In addition, it has been proposed to apply a polyimide resin having high transparency and low birefringence with improved transparency and reduced orientation birefringence and stress birefringence as an optical element. (Patent Documents 5 to 7).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-290023
  • Patent Document 2 Japanese Patent Laid-Open No. 7-56030
  • Patent Document 3 Japanese Patent Laid-Open No. 9-73172
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-161136
  • Patent Document 5 Japanese Patent Laid-Open No. 10-221549
  • Patent Document 6 Japanese Patent Laid-Open No. 11-60732
  • Patent Document 7 Japanese Patent Laid-Open No. 2005-163012
  • the present invention does not require an orientation and stretching step, and can form a highly transparent and highly birefringent retardation film by coating on a substrate, the retardation film resin composition, and the retardation oen
  • the present invention provides a color filter substrate having a thin film, a wide viewing angle, high contrast liquid crystal display device, and a method for producing a color filter substrate for a liquid crystal display device with a retardation film.
  • the present invention has the following configuration.
  • a resin composition for forming a retardation film comprising: a polyimide precursor obtained by reacting at least one tetracarboxylic dianhydride and at least one diamine; and an organic solvent.
  • a resin composition for forming a retardation film wherein at least one of the at least one tetracarboxylic dianhydride and the at least one diamine is an alicyclic compound.
  • Diamine an alicyclic compound, has the following general formula (1)
  • R 1 represents a monovalent organic group or a hydrogen atom.
  • Tetracarboxylic dianhydride has the following general formula (2)
  • R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.
  • the composition according to 2 which is a 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound represented by the formula:
  • composition according to item 3 wherein the polyimide precursor has at least a structural unit represented by the following general formula (3).
  • R 2 , R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom.
  • composition according to 1, wherein the compound is a tetracarboxylic dianhydride strength 1,2,3,4-cyclobutane tetraforce rubonic acid dianhydride which is an alicyclic compound.
  • composition according to 5, wherein the diamine is an aromatic diamine having a rigid molecular structure.
  • composition according to item 6 wherein the aromatic diamine having a rigid molecular structure is at least one selected from P-phenolenediamine, 4,4 and diaminobenza-lid force.
  • R 1 represents a monovalent organic group or a hydrogen atom.
  • R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.
  • composition according to item 8 which has at least a structural unit represented by the following general formula (3):
  • R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom.
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 10.
  • composition according to item 9 or 10 further comprising at least one structural unit selected from the group consisting of structural unit forces represented by the following general formulas (4) to (8): object.
  • R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom.
  • R 1 is a hydrogen atom or a linear or branched chain having 1 to 4 carbon atoms.
  • the total content of structural units represented by the formula (3), (4), (5), (6), (7) or (8) is the total structural unit constituting the polyamic acid. 13.
  • composition according to item 14 wherein the dicarboxylic anhydride is at least one dicarboxylic anhydride in which maleic anhydride, phthalic anhydride, succinic anhydride, and nadic anhydride are also selected.
  • composition according to any one of items 1 to 15 for the manufacture of a resin composition for forming a retardation film.
  • the retardation film has the following general formula (8)
  • R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.
  • a color filter substrate according to claim 17, comprising polyimide containing at least 50 mol% of the structural unit represented by
  • the liquid crystal display device is a liquid crystal display device in which the liquid crystal molecules are aligned in a direction substantially perpendicular to the liquid crystal cell surface, and the liquid crystal molecules are aligned in a direction substantially parallel to the liquid crystal cell surface when a voltage is applied.
  • the invention's effect [0042]
  • the phase difference thin film for a liquid crystal display device can be easily formed by using the resin composition for the phase difference thin film of this configuration, and further, the viewing angle characteristics and contrast of the liquid crystal display device can be further improved by the phase difference thin film. I can plan.
  • the resin composition for retardation film of the present invention is used in a liquid crystal display device, has optically negative uniaxial anisotropy, an optical axis is substantially perpendicular to the thin film surface, and the thickness direction
  • tetracarboxylic dianhydride and diamine is an alicyclic compound.
  • the polyimide precursor used in the present invention is a polyamic acid, polyamic acid ester, polyamic acid partial ester, polyamic acid silyl ester, polyamic acid salt, polyisoimide, or the like, which can be heated or chemically converted to polyimide. It's okay to make a difference.
  • trans-1,4-diaminocyclohexane compound represented by the following general formula (1) is preferable. .
  • R 1 represents a monovalent organic group or a hydrogen atom.
  • R 1 is preferably an organic group having 1 to 30 carbon atoms or a hydrogen atom, and more preferably a methyl group, an ethyl group, a ⁇ -propyl group, an isopropyl group, a ⁇ -butyl group, an isobutyl group. And a straight-chain or branched alkyl group having 1 to 4 carbon atoms such as sec-butyl group or a hydrogen atom.
  • trans-1,4-diaminocyclohexane, trans-1,4-diamino-2-methylcyclohexane, and trans-1,4-diamino-2,5-dimethylcyclohexane are particularly preferred.
  • Trans-1,4-diaminocyclohexane is preferred.
  • trans-1,4-diaminocyclohexane compound the configuration of the amino group at positions 1 and 4 is trans There are trans isomers that are cis configurations and cis isomers that are cis configurations.
  • trans-1,4-diaminocyclohexane compound is obtained by hydrogenating the precursor P-phenylenediamine compound, but the product of this reaction is trans form and cis form.
  • a suitable trans-1,4-diaminocyclohexane compound used in the present invention a product obtained by separating and purifying the hydrogenated compound according to a known method such as distillation, recrystallization or the like is used.
  • the cis-isomer content is not particularly limited as long as the effects of the present invention are not impaired. It is usually recommended to refine the cis-isomer content to 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less. By setting the cis-isomer content in the above range, it is possible to suppress a decrease in the orientation of the polyimide molecular chain due to the bent structure of the cis-isomer, and to obtain birefringence sufficient for practical use.
  • the trans-1,4-diaminocyclohexane compound can be used in combination with another diamine compound as long as the effects of the present invention are not impaired.
  • the proportion of the trans-1,4-diaminocyclohexane compound used is preferably 50 mol% or more, more preferably 70 mol% or more in the entire diamine, and 90 mol% or more. More preferably it is. If the proportion of trans 1,4-diaminocyclohexane compound used is lower than 50 mol%, the target characteristics of the present invention may not be obtained.
  • Examples of diamines that can be used in combination with trans-1,4-diaminocyclohexane compound include 2,2'-bis (trifluoromethyl) benzidine, p-phenylenediamine, and m-phenylenediamine.
  • siloxane diamine When siloxane diamine is used as a part of diamine, adhesion to an inorganic substrate or the like can be improved. Siloxane diamine is usually preferably used in an amount of 1 to 20 mol% in the total diamine. A specific example of siloxane diamine is bis (3-aminopropyl) tetramethyldisiloxane.
  • the tetracarboxylic dianhydride to be reacted with diamine which is an alicyclic compound, includes 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, pyromellitic anhydride, 3,4, 9, 10-perylene Tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4 oxydiphthalic dianhydride, 1,2,5,6-naphthalenetetracarboxylic Acid dianhydride, 3,3 ', 4,4'-paraterphenyl tetracarboxylic dianhydride, 3,3', 4,4 Aromatic tetracarboxylic dianhydrides such as
  • substituted or unsubstituted 3,3 ′, 4,4 biphenyltetracarboxylic dianhydrides represented by the following general formula (2) may be used. It is more preferable to use 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • R 2 and IT each represent a monovalent organic group or a hydrogen atom, and may be the same or different.
  • R 2 and R 3 include hydrogen, an alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a phenyl group, or a substituted phenyl group. In particular, hydrogen is preferable.
  • the proportion of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound used is preferably at least 50 mol% in the total tetracarboxylic dianhydride 70 mol% More preferably, it is more preferably 90 mol% or more. This is because if the proportion of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound is less than 50 mol%, the target characteristics of the present invention may not be obtained.
  • the polyimide precursor obtained by reacting a physical compound preferably has a structural unit represented by the following general formula (3).
  • the structural unit represented by the general formulas (4) to (8) may be included. These structural units are converted into the same structural unit represented by the general formula (8) by heating or chemical imidization reaction.
  • R 2 , R 3 , R 4 and R 5 each represent a monovalent organic group or a hydrogen atom, and may be the same or different.
  • R 2 , R 3 , R 4 and R 5 each represent a monovalent organic group or a hydrogen atom, and may be the same or different.
  • R 1 and R 2 and R 3 are as described in the description of each of the above formulas (1) and formula (2), R 4 and R Preferred examples of 5 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a phenol group, or a substituted phenol group. .
  • the ratio of the structural units represented by the general formulas (3) to (8) in the polyimide precursor to the total structural units is preferably 50 mol% or more, more preferably 70 mol% or more. . If the proportion of the structural units represented by the general formulas (3) to (8) is lower than 50 mol%, the target characteristics of the present invention may not be obtained. As described above, after imidization by heating or the like, these structural units become structural units represented by the general formula (8). Therefore, in the polyimide after imidization, the structure represented by the general formula (8) is used.
  • the proportion of units to the total structural units is preferably 50 mol% or more, more preferably 70 mol% or more.
  • the present invention also provides a diamine component containing a trans-1,4-diaminocyclohexane compound represented by the general formula (1), and a 3,4-diaminocyclohexane compound represented by the general formula (2).
  • a diamine component containing a trans-1,4-diaminocyclohexane compound represented by the general formula (1) and a 3,4-diaminocyclohexane compound represented by the general formula (2).
  • a liquid crystal display device comprising a polyamic acid compound obtained by reacting a tetracarboxylic dianhydride component including a 3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound and an organic solvent.
  • the polyamic acid compound has at least a structural unit represented by the general formula (3).
  • the birefringence ⁇ in the thickness direction of the phase difference thin film is preferably 0.01 to 0.3.
  • the trans-1,4-diaminocyclohexane compound represented by the general formula (1) and the 3,3 ′, 4,4′-biphenyltetracarboxylic acid represented by the general formula (2) The above explanation can be applied as it is to the explanation regarding the acid dianhydride compound and the preferred compounds included therein.
  • the polyimide precursor can be obtained by a known method by reacting tetracarboxylic dianhydride with diamine.
  • the polyamic acid ester is a tetracarboxylic acid diester obtained by esterifying a tetracarboxylic dianhydride with an organic substance having an alcoholic hydroxyl group, as described in, for example, JP-A-8-92496. Later, acid chloride, and then react with diamine.
  • Tetracarboxylic dianhydride is esterified with an organic substance having an alcoholic hydroxyl group to form a tetracarboxylic diester, reacted with carpositimides, and then reacted with diamine. Obtained by.
  • the polyamic acid partial ester is, for example, a method in which an organic substance having a glycidyl group or an isocyanate group is added to a carboxyl group of a polyamic acid obtained by reacting tetracarboxylic dianhydride and diamine. As described in 2000-212216, it can be obtained by a method of reacting an acetal compound with a carboxyl group of a polyamic acid obtained by reacting tetracarboxylic dianhydride and diamine.
  • the polyamic acid silyl ester is described in, for example, JP-A-64-63070, JP-A-2001-72768, JP-A-2005-146073, and the diamine is converted into bissilylidamine by a silylating agent. Thereafter, it is obtained by a method of reacting with tetracarboxylic dianhydride.
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride is an alicyclic compound used for obtaining a polyimide precursor.
  • 1,2,3,4-Cyclobutanetetracarboxylic dianhydride can be obtained by a known method (for example, Japanese Patent Publication No. 2-619 56, Japanese Patent Laid-Open No. 3-137125, J. Polym. Sci .: Part A: Polymer Chemistry, 38 ⁇ , 108 (2000)).
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride and other tetracarboxylic dianhydrides.
  • the proportion of 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is preferably 50 mol% or more in the total tetracarboxylic dianhydride, and more preferably 70 mol% or more. It is more preferable that it is 90 mol% or more preferable. If the proportion of 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is as low as 50 mol%, the intended characteristics of the present invention may not be obtained.
  • the tetracarboxylic dianhydride used together with 1,2,3,4-cyclobutanetetracarboxylic dianhydride includes 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2 , 3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, pyromellitic anhydride, 3,4,9, 10-perylenetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 1,2,5,6- Naphthalenetetracarboxylic dianhydride, 3,3 ', 4,4'-paraterphenyl tetracarboxylic acid dianhydride, 3,3', 4,4'-metatertetrac
  • an aromatic diamine having a rigid molecular structure is a structure in which the change in the relative position of the two amino groups constituting the diamine is small, the conformation change due to the thermal motion of the molecule is small.
  • an aromatic diamine having a rigid molecular structure is a structure in which the change in the relative position of the two amino groups constituting the diamine is small, the conformation change due to the thermal motion of the molecule is small.
  • a benzene ring, an aromatic heterocyclic ring, or a condensed ring force of them is selected.
  • Examples of the aromatic diamine having a rigid molecular structure include compounds represented by the following formulas (9) to (11).
  • R 6 , R 7 , R °, R 9 and R 1Q are -H, -CH, -OH, -CF, -SO H, -COOH, respectively.
  • Each group may be the same or different.
  • aromatic diamine having a rigid molecular structure examples include 4,4'-diaminobenzanilide, benzidine, 3, 3, -dimethylbenzidine, 3,3, -dihydroxybenzidine, 3, 3'— Dimethoxybenzidine, 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, p-ferylenediamine, 2,5 diaminotoluene, 3,6 diaminodurene, m-phenylenediamine, 2,4 diaminotoluene, 2, 4 Diaminoxylene I can get lost.
  • 4,4,1-diaminobenzaldehyde, p-phenylenediamine, 2,2,1-dimethylbenzidine and 2,2'-bis (trifluoromethyl) benzidine can be preferably used.
  • -Lido and p-phenoldiamine are more preferred.
  • a retardation film containing a polyimide obtained by reacting these diamines with 1,2,3,4 cyclobutanetetracarboxylic dianhydride is preferably used because it has particularly high transparency and high birefringence. .
  • the above diamine can be used alone or in combination of two or more.
  • an aromatic diamine having a rigid molecular structure may be used in combination with another diamine.
  • the proportion of aromatic diamine having a rigid molecular structure is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 90 mol% or more of the total diamine. More preferably. If the use ratio of the aromatic diamine having a rigid molecular structure is lower than 50 mol%, the intended characteristics of the present invention may not be obtained.
  • Aliphatics such as ndecylenedimethyldiamine, 4,4'-methylenebis (cyclohexylamine), 2,5 norbornanebis (methylamine), 2,6 norbornanebis (methylamine), 2,7 norbornanebis (methylamine) and Alicyclic diamines can also be used.
  • siloxane diamine When siloxane diamine is used as a part of diamine, adhesion with an inorganic substrate or the like can be improved. Siloxane diamine is usually preferably used in an amount of 1 to 20 mol% in the total diamine. Specific examples of siloxane diamine include bis (3-aminopropyl) tetramethyldisiloxane.
  • the reaction of tetracarboxylic dianhydride and diamine can be carried out by mixing in a polar organic solvent. At this time, the degree of polymerization of the resulting polyamic acid can be adjusted by the mixing ratio of tetracarboxylic dianhydride and diamine.
  • the proportion of tetracarboxylic dianhydride and diamine used in the polyamic acid synthesis reaction is 0.2 mol of tetracarboxylic dianhydride acid anhydride group with respect to 1 equivalent of amino group contained in diamine. A ratio of ⁇ 2 equivalents is preferable, and a ratio of 0.8 to 1.2 equivalents is more preferable.
  • the degree of polymerization of polyamic acid has a reduced viscosity (also referred to as r? SpZC) of 0.05 to 5. Odl / g (measured at a concentration of 0.5 g / dl in N-methylpyrrolidone at a temperature of 30 ° C). Preferred 0.1-2. OdlZg is more preferred.
  • dicarboxylic acid anhydride in order to seal part or all of the amino group or carboxyl group of the polyamic acid molecule for the purpose of improving heat resistance and workability, dicarboxylic acid anhydride, monoamine compound, monoisocyanate are used. It is also possible to add a compound or the like to the reaction system.
  • dicarboxylic acid anhydrides include maleic anhydride, phthalic anhydride, 4-methyl phthalic anhydride, 4-tert butyl phthalic anhydride, itaconic anhydride, and nadic anhydride.
  • monoamine compounds include a-line, cyclohexylamine, n-butylamine, n-pentylamine, and n-hexylamine.
  • monoisocyanate compounds include phenol isocyanate and naphthyl isocyanate.
  • some or all of the amine end groups Preferably end-capped by amic acid formation reaction with rubonic anhydride.
  • Maleic anhydride, phthalic anhydride, succinic anhydride, and dianhydric acid power are selected from dicarboxylic anhydrides.
  • the dicarboxylic acid anhydride is preferably used.
  • the polyamic acid synthesis reaction is preferably carried out in an organic solvent under a temperature condition of -20 to 200 ° C, more preferably 0 to 150 ° C.
  • the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid.
  • Examples include aprotic polar solvents such as petit-mouth rataton, tetramethinoreurea, 1,3 dimethyl-2-imidazolidinone, and hexamethylphosphoramide.
  • the amount of the organic solvent used is preferably such that the concentration of the solid content including tetracarboxylic dianhydride and diamine is 0.1 to 30% by weight based on the total amount of the reaction solution. Yes.
  • organic solvent alcohol, ketone, ester, ether, halogenated hydrocarbon and hydrocarbon, which are poor solvents for polyamic acid, can be used in combination as long as the polyamic acid to be produced does not precipitate. .
  • strong anti-solvents include, for example, methylanolenoleole, ethenoreanoreconolele, isopropinoleanoreconole, cyclohexanolenole, ethylene glycol, propylene glycol, 1,4 butanediol, diethyleneglycolene, triethylene Ethylene glycol, 3-methyl-3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl 3-methoxypropionate, 3- Methyl-3-methoxybutyl acetate, ethyl ethoxypropionate, cetyl oxalate, methyl malonate, jetyl ether, tetrahydrofuran, ethylene
  • the resin composition for retardation film can be produced by adding an organic solvent to a polyimide precursor or a solution thereof and mixing them uniformly by a conventional method.
  • the temperature at which the rosin composition is prepared is preferably 0 ° C to 200 ° C, more preferably 20 ° C to 60 ° C.
  • the organic solvent include those exemplified as those used in the polyamic acid synthesis reaction.
  • the poor solvents exemplified as those that can be used together in the synthesis reaction of the polyamic acid can be appropriately selected and used together.
  • the solid content concentration in the rosin composition is selected in consideration of viscosity, volatility, etc., but is preferably in the range of 1 to 10% by weight. That is, the resin composition is applied to the substrate surface to form a coating film that becomes a retardation film, but when the solid content concentration is less than 1% by weight, the coating film thickness is too small. Thus, a good retardation film cannot be obtained, and if the solid concentration exceeds 10% by weight, the film thickness of the coating becomes excessive and a good retardation film cannot be obtained. In addition, the viscosity of the rosin composition is increased and the coating properties are inferior.
  • the resin composition includes 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and N-phenyl-3-amide.
  • non-ionic surfactants such as polyoxyethylene lauryl ether and polyoxyethylene dilaurate, fluorine-based surfactants, and silane-based surfactants.
  • a surfactant such as a surfactant and an acrylic acid copolymer-based surfactant may be contained.
  • the content of these additives is such that the effects of the present invention are not adversely affected, and is usually 20% by weight or less, preferably 10% by weight or less, based on the total composition.
  • the resin composition is applied on a substrate by a dipping method, a roll coater method, a spinner method, a die coating method, a method using a wire bar, etc., and then air-dried, vacuum-dried, or oven hot plate is used.
  • a coating film is formed by heating and drying. The heating conditions vary depending on the resin, solvent, and coating amount used. It is preferable to heat at 50 to 400 ° C for 1 to 300 minutes.
  • the substrate to be coated may be a liquid crystal display substrate, that is, a color filter substrate or a TFT substrate itself.
  • the resin composition may be applied to the base film and then pasted on the liquid crystal display substrate through an adhesive layer. These are formed on the substrate surface opposite to the liquid crystal layer.
  • it may be formed on the surface of the substrate for a liquid crystal display device that is in contact with the liquid crystal layer.
  • the above-mentioned resin composition may be applied to the surface on the side where pixels are formed on a color filter substrate for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged on a transparent substrate. It is also possible to apply so as to cover the surface.
  • covering the pixel means that the pixel is formed closer to the liquid crystal layer than the pixel, and the pixel and the retardation film made of the above resin composition may be in direct contact with each other.
  • the retardation film made of the above resin composition can be formed on the liquid crystal layer side of the overcoat layer. Yes, it can be formed on the substrate side of the overcoat layer.
  • a retardation film made of the above resin composition is formed on a substrate, and a color filter for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged thereon is formed. It is also possible.
  • the above-mentioned resin composition contains coloring components such as pigments and dyes, which are used as varnishes for each color pixel of the color filter, and provide a retardation compensation function to each color pixel itself. It is also possible to do.
  • the retardation R is adjusted so that the phase difference RZ ⁇ is approximately the same as the main wavelength ⁇ for each color pixel, that is, the red, green, and blue pixels. It is preferable for aligning the phase difference compensation effect in
  • the retardation film for a liquid crystal display device of the present invention is formed by applying a resin composition on a substrate and performing a heat treatment.
  • the retardation film has a retardation, and has a function of correcting birefringence generated in the process of light passing through the liquid crystal layer in the liquid crystal display device. Since the molecular chain of polyimide resin is easily oriented parallel to the substrate surface, a difference in refractive index (birefringence as a film) occurs between the film thickness direction and the direction parallel to the film surface. In addition, since the molecular orientation in the film plane is random, there is no anisotropy of the refractive index in the direction parallel to the film plane.
  • the refractive index in each direction of the thin film containing the polyimide-based resin is nx ⁇ ny> nz, which is a retardation thin film (negative C plate) that has optically negative uniaxial anisotropy and whose optical axis is substantially perpendicular to the film surface.
  • optically negative uniaxial anisotropy means that the refractive index of the remaining one axis is small compared to the refractive index of the two axes that are equal to each other, and the optical axis is relative to the film surface.
  • the thickness of the retardation film is preferably 0.5 to 20 ⁇ m! /.
  • the retardation film of the present invention is generally effective for liquid crystal display devices.
  • the optical axis is substantially perpendicular to the retardation film surface
  • the liquid crystal molecules in the liquid crystal display device particularly when no voltage is applied, to the liquid crystal cell surface.
  • Display method in which liquid crystal molecules are aligned in a direction substantially parallel to the liquid crystal cell surface when a voltage is applied specifically, MVA (Multi-domain Vertical Alignment) method. It is more preferably used in a liquid crystal display device of a vertical alignment method such as a PVA (Patterned Vertical Alignment) method or a CPA (Continuous Pinwheel Alignment) method.
  • the retardation compensation effect is obtained when the screen is viewed vertically.
  • the phase difference of the liquid crystal layer is almost zero in the vertical direction when no voltage is applied, so that compensation for the phase difference is not necessary. That is, when no voltage is applied, good black display can be obtained without compensating for the phase difference.
  • the retardation film of the present invention has a remarkable effect in improving the contrast in the oblique direction and thus in widening the viewing angle in the vertical alignment method.
  • a solution obtained by dissolving and diluting the polyimide precursor with N-methylpyrrolidone to a concentration of 0.5 gZdl was measured at 30 ° C. using an Ubbelohde viscometer.
  • the polyimide precursor solution After applying the polyimide precursor solution on a glass substrate with a spinner so that the finished thickness is 2.0 m, it is dried at 120 ° C for 20 minutes and then at 240 ° C for 30 minutes or 270 ° C for 40 minutes.
  • a polyimide resin thin film was obtained by heat treatment. The refractive index anisotropy in the direction parallel to the film surface of this polyimide resin thin film and the refractive index anisotropy in the direction perpendicular to the film surface were measured.
  • ⁇ and Ay are preferably 0.005 or less, and more preferably 0.003 or less.
  • a 2 liter internal-irradiation glass reaction flask equipped with a Neurex (registered trademark) glass water-cooled lamp jacket was charged with 255 g (2.60 mol) maleic anhydride and 1,445 g ethyl acetate, and the flask was filled with nitrogen. Then, the solution was stirred and dissolved at room temperature. The reaction solution was cooled to 5 ° C with continuous stirring, and then irradiation with a 400 W high-pressure mercury lamp was started and light irradiation was continued for 96 hours. During the irradiation, the reaction solution temperature was kept at 3-5 ° C. After completion of the reaction, the crystals and the filtrate were separated by filtration.
  • Neurex registered trademark
  • the crude crystals were washed with ethyl acetate and then dried in a vacuum dryer at 40 ° C. for 10 hours to obtain 194 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride crystals.
  • Polyamic acid solution A was applied on a glass substrate to a thickness of 2.0 m with a spinner, dried at 120 ° C for 20 minutes, and further heat-treated to obtain a polyimide resin film.
  • nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative-axis anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • Example 4 Under a dry nitrogen stream, 11.42 g (0.100 mol) of trans-1,4 diaminocyclohexane was dissolved in 174.42 g of N-methylol-2-pyrrolidone. Then, 3, 3 ', 4, 4, 1-biphenyltetracarboxylic dianhydride 29.42g (0.100mol) and N-methyl-2-pyrrolidone 40.00g were added and stirred at 60 ° C for 5 hours. . After cooling to room temperature, 85.07 g of N-methyl-2 pyrrolidone was added to obtain a transparent and viscous polyamic acid solution D (polymer concentration: 12% by weight). The viscosity of Solution D measured at 25 ° C was 5,878 mPa's. Reduced viscosity is 1.68dl / g, 7 pieces.
  • nx ny.
  • nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • P-Phenylenediamine 10.38 g (0.096 mol) and bis (3 aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) to 24.79 g of N-methyl-2-pyrrolidone 1 under dry nitrogen flow Dissolved. Then, 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride 1 8.83 g (0.096 mol) and N-methyl-2 pyrrolidone 40.00 g were added. Stir at C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution F (polymer concentration: 16% by weight). The viscosity of Solution F measured at 25 ° C was 384 mPa's. The reduced viscosity was 0.56 dlZg.
  • nx ny.
  • nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx ny.
  • nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx ny.
  • nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface.
  • nx ny.
  • nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film has optically negative uniaxial anisotropy and the optical axis is substantially perpendicular to the thin film surface.
  • a method for producing a color filter having a retardation film is described below.
  • Pigment Red 177 (Anthraquinone Red) 4g, ⁇ -Butaguchi Rataton 40g, Ethylene glycol butyl ether 6g together with 100g of glass beads and dispersed at 7000rpm for 30 minutes, glass beads are removed by filtration Thus, a pigment dispersion having a pigment concentration of 8% by weight was obtained.
  • a red paste was applied on a substrate on which a black resin black matrix was formed, and pre-beta treatment was performed to form a polyamic acid red colored film.
  • pre-beta treatment was performed to form a polyamic acid red colored film.
  • red pixels were formed by the same means as described above, and heated to 290 ° C. for thermal curing.
  • Pigment Green 7 (Phthalocyanine Green) 3.6 g, Pigment Yellow 83 (Benzidine Yellow) 0.4 g, ⁇ -Butyl Ratatone 32 g, Ethylene Glyco-Lebutinoleate Tenole 4 g with Glass Beads 120 g at 7000 rpm After 30 minutes of dispersion treatment, the glass beads were removed by filtration to obtain a pigment dispersion having a pigment concentration of 10% by weight.
  • a green color paste was used to form a green pixel, which was then heated to 290 ° C and thermally cured.
  • the pixel for the polyamic acid solution 60g of the polymer concentration of 10 wt 0/0, Pigment Blue 1 5 (Futaroshia - Nburu) 2. 8 g, N-methyl-2-pyrrolidone 30g, glass beads 150g of ethylene glycol butyl ether 10g And a homogenizer for 30 minutes at 7000 rpm for dispersion treatment, and then the glass beads were removed by filtration to obtain a blue color paste.
  • a polyimide thin film was formed on the color filter in the same manner as in Example 13 except that the polyamic acid solution F (polymer concentration: 16% by weight) prepared in Example 6 was used.
  • a color filter having an anisotropic retardation film could be obtained.
  • Polyamic acid solution K prepared in Example 11 (polymer concentration 15% by weight) 200. Og, 0.25 g of surfactant “Disparon” LC951 (manufactured by Enomoto Isei), N-methyl-2 pip Lidon 205.8 g, 3-methoxy-1-methyl 1-butanol 94. Add Og, polymer A coating solution having a concentration of 6% by weight was prepared. As in Example 13, the color filter substrate was coated on the surface on which the pixels were formed by the slit die coating method, dried at 120 ° C for 10 minutes, and then heat treated at 240 ° C for 30 minutes to obtain a film thickness of 4. A 0 m polyimide film was formed on the color filter.
  • a color filter having a retardation film having an optically negative refractive index anisotropy with a retardation of 204 nm and an optical axis perpendicular to the thin film. could get.
  • a transparent electrode made of indium oxide was formed on the color filter with a retardation film produced in Example 13. Separately, a substrate in which TFT elements, pixel electrodes, reflectors, etc. were formed on alkali-free glass was prepared as a counter substrate.
  • test liquid crystal display device simulating the MVA (Multi-domain Vertical Alignment) method was fabricated.
  • the cell electrode spacing was about 5 m using a bead spacer.
  • a test liquid crystal display element (sample B) that differs only in that no polyimide retardation film was provided was prepared as a comparative product.
  • Example C Similar to Example 16 using the color filter with retardation film prepared in Example 14, Thus, a test liquid crystal display element (sample C) was produced.
  • the transmitted light intensity ratio (contrast) of sample C was 18, and the effect of improving the contrast by the polyimide retardation film was recognized. A good white display without yellowing was also obtained.
  • sample D A test liquid crystal display element (sample D) was produced in the same manner as in Example 16 using the color filter with a retardation film produced in Example 15.
  • Sample D had a transmitted light intensity ratio (contrast) of 18, and the contrast enhancement effect of the polyimide retardation film was confirmed.
  • a good white display without yellowing was also obtained.
  • a polyimide thin film was formed on the color filter in the same manner as in Example 13 except that the polyamic acid solution O (polymer concentration: 16% by weight) prepared in Comparative Example 3 was used.
  • a color filter having an anisotropic retardation film was obtained.
  • sample E A test liquid crystal display element (sample E) was produced in the same manner as in Example 16 using the produced color filter with retardation film.
  • Sample E had a transmitted light intensity ratio (contrast) of 15. However, the white display is yellowish and the image display quality is poor.
  • Table 1 shows the results of Examples 1 to 12 and Comparative Examples 1 to 5. As shown in Table 1, in Examples 1 to 12, it can be seen that retardation films with little coloring and good birefringence are obtained. In Table 1, each abbreviation represents the following compound.
  • BPDA 3, 3, 4, 4, 4-biphenyltetracarboxylic dianhydride
  • CBDA 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride
  • PA phthalic anhydride
  • DABA 4, 4,-Gaminobensanilide
  • t-DACH trans 1,4-diaminocyclohexane
  • DDE 4,4'-diaminodiphenyl ether
  • SiDA Bis (3-aminopropyl) tetramethyldisiloxane m-TB-HG: 2, 2'-Dimethenolevenedidine

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed is a resin composition for a retardation thin film, which can form a retardation thin film having high transparency and high birefringency by applying the composition onto a substrate without the need of an alignment or stretching process. The composition comprises a polyimide precursor produced by reacting at least one tetracarboxylic acid dianhydride with at least one diamine and an organic solvent, wherein at least either one of the at least one tetracarboxylic acid dianhydride and the at least one diamine is an alicyclic compound. The composition can be used in a liquid crystal display device for forming a retardation thin film having an optically negative uniaxial anisotropy, an optical axis approximately perpendicular to a the surface of the thin film and a birefringence (Δn) in the thicknesswise direction of 0.01 to 0.3.

Description

明 細 書  Specification
位相差薄膜用樹脂組成物、液晶表示装置用カラーフィルター基板、およ び液晶表示装置、並びに位相差薄膜付き液晶表示装置用カラーフィルター基板 の製造方法  RESIN COMPOSITION FOR RELATING THIN FILM, COLOR FILTER SUBSTRATE FOR LIQUID CRYSTAL DISPLAY DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE, AND METHOD FOR PRODUCING COLOR FILTER SUBSTRATE FOR LIQUID CRYSTAL DISPLAY DEVICE WITH RELATING THIN FILM
技術分野  Technical field
[0001] 本発明は、位相差薄膜用榭脂組成物、液晶表示装置用カラーフィルター基板、お よび液晶表示装置、並びに位相差薄膜付き液晶表示装置用カラーフィルター基板 の製造方法に関する。  The present invention relates to a resin composition for a retardation film, a color filter substrate for a liquid crystal display device, a liquid crystal display device, and a method for producing a color filter substrate for a liquid crystal display device with a retardation film.
背景技術  Background art
[0002] 現在、液晶表示装置は、軽量、薄型、低消費電力などの特性を生かし、ノート PC、 携帯情報端末、デスクトップモニタ、デジタルカメラなど様々な用途で使用されている 。液晶表示装置は、大画面化やモニター用途への展開に伴い視野角の拡大が求め られている。  Currently, liquid crystal display devices are used in various applications such as notebook PCs, portable information terminals, desktop monitors, and digital cameras, taking advantage of characteristics such as light weight, thinness, and low power consumption. Liquid crystal display devices are required to have a wider viewing angle with the expansion of screens and monitor applications.
[0003] 液晶表示装置の視野角が自発光型の陰極線管 (CRT)表示装置やプラズマ表示 装置と比べて狭い理由は、液晶表示装置が一般に 2枚の偏光フィルムで液晶層を挟 む構造をしているため、光の進行方向の違いから生じる液晶層のリタ一デーシヨンの 違いが透過強度に影響を与えるためである。すなわち、斜め方向ではリターデーショ ンが大きくなるため入射直線偏光が楕円偏光になり、暗状態での光漏れ量が増え、 コントラストの低下に繋がるためである。  The reason why the viewing angle of a liquid crystal display device is narrower than that of a self-luminous cathode ray tube (CRT) display device or a plasma display device is that a liquid crystal display device generally has a structure in which a liquid crystal layer is sandwiched between two polarizing films. Therefore, the difference in the retardation of the liquid crystal layer resulting from the difference in the traveling direction of light affects the transmission intensity. That is, in the oblique direction, the retardation increases, so that the incident linearly polarized light becomes elliptically polarized light, and the amount of light leakage in the dark state increases, leading to a decrease in contrast.
[0004] したがって、斜め方向でのコントラスト低下を抑制するためには、液晶層のリターデ ーシヨンを補償するための位相差薄膜を使用することが有効である。現在、ッイスティ ド 'ネマチック方式の液晶表示装置では、位相差薄膜としてディスコティック液晶から なる視野角拡大フィルムを貼付することによって視野角拡大が図られている。  [0004] Therefore, in order to suppress a decrease in contrast in an oblique direction, it is effective to use a retardation film for compensating for retardation of the liquid crystal layer. Currently, in a twisted 'nematic liquid crystal display device, the viewing angle is widened by attaching a viewing angle widening film made of discotic liquid crystal as a retardation film.
[0005] 一方、視野角拡大を目指した新規な液晶表示方式である VA (Vertical Alignment) 方式、 IPS(In-plane Switching)方式などが開発されている。  [0005] On the other hand, VA (Vertical Alignment) method, IPS (In-plane Switching) method, etc., which are new liquid crystal display methods aiming at widening the viewing angle, have been developed.
[0006] VA方式に対しても、さらに視野角を拡大する目的で 2軸延伸した位相差フィルムが 使用されている。しかし、これらのフィルムの作製は容易ではなぐまた、配向または 延伸工程が不可欠であるため、工程が煩瑣となっている。 [0006] A biaxially stretched retardation film is also used for the VA method in order to further increase the viewing angle. However, the production of these films is not easy, and the orientation or Since the stretching process is indispensable, the process is troublesome.
[0007] この課題に対して、光学的に負の一軸異方性を有し、光軸が薄膜面に対して垂直 または略垂直であるポリイミド位相差薄膜を設けることによって、液晶表示装置の視 野角を拡大する方法が提案されている。(特許文献 1)  [0007] To solve this problem, a polyimide retardation film having an optically negative uniaxial anisotropy and having an optical axis perpendicular or substantially perpendicular to the thin film surface is provided. A method for enlarging the field angle has been proposed. (Patent Document 1)
[0008] ポリイミドが位相差薄膜の機能を示すのは、高分子の主鎖方向に芳香族環や芳香 族複素環などをもっため、主鎖に垂直な方向に比べて主鎖方向の屈折率が大きくな り、分子として大きな複屈折を示すこと、また、その分子鎖が基板に平行に配向しや すいため膜厚方向と膜面に平行な方向の間に屈折率差 (膜としての複屈折)が生じ ることによる。  [0008] Polyimide exhibits the function of a retardation film because it has an aromatic ring or aromatic heterocycle in the main chain direction of the polymer, and therefore has a refractive index in the main chain direction as compared to the direction perpendicular to the main chain. And the birefringence as a molecule increases, and the molecular chain easily aligns parallel to the substrate, so the difference in refractive index between the film thickness direction and the direction parallel to the film surface (birefringence as a film). Due to refraction).
[0009] し力しながら、前述のポリイミド位相差薄膜は芳香族性の分子構造に起因する光吸 収性が強ぐ透明性が十分とは言えず、位相差薄膜に使用した場合に液晶表示装 置の白表示が黄色みを帯び、画像表示品位上課題があった。  [0009] However, the above-mentioned polyimide retardation thin film has a strong light absorption due to the aromatic molecular structure and cannot be said to have sufficient transparency. The white display on the device was yellowish, and there was a problem in image display quality.
[0010] ポリイミドの透明性を向上するために、ポリイミド系榭脂に脂環式基などの非芳香族 性基をもつ酸成分ゃジァミン成分を導入し、分子内共役および電荷移動錯体形成を 妨害することが提案されている (特許文献 2〜4)。また、透明性を向上するとともに、 配向複屈折および応力複屈折を低減した、高透明性と低複屈折性を特徴とするポリ イミド系榭脂を光学用素子として応用することが提案されている (特許文献 5〜7)。  [0010] In order to improve the transparency of the polyimide, an acid component having a non-aromatic group such as an alicyclic group is introduced into the polyimide resin to prevent intramolecular conjugation and charge transfer complex formation. It has been proposed (Patent Documents 2 to 4). In addition, it has been proposed to apply a polyimide resin having high transparency and low birefringence with improved transparency and reduced orientation birefringence and stress birefringence as an optical element. (Patent Documents 5 to 7).
[0011] 一方、位相差薄膜に好適なポリイミド材料として、高い透明性とともに、高い複屈折 性を有するポリイミド材料が求められて ヽた。 On the other hand, as a polyimide material suitable for a retardation film, a polyimide material having high transparency and high birefringence has been demanded.
[0012] 特許文献 1:特開 2001-290023号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-290023
特許文献 2:特開平 7-56030号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-56030
特許文献 3:特開平 9-73172号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-73172
特許文献 4:特開 2002-161136号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-161136
特許文献 5:特開平 10-221549号公報  Patent Document 5: Japanese Patent Laid-Open No. 10-221549
特許文献 6:特開平 11-60732号公報  Patent Document 6: Japanese Patent Laid-Open No. 11-60732
特許文献 7:特開 2005-163012号公報  Patent Document 7: Japanese Patent Laid-Open No. 2005-163012
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0013] 本発明は、配向および延伸工程が不要であり、基板上に塗布することによって高透 明性、高複屈折性の位相差薄膜が形成できる位相差薄膜用樹脂組成物、該位相差 oen Problems to be solved by the invention [0013] The present invention does not require an orientation and stretching step, and can form a highly transparent and highly birefringent retardation film by coating on a substrate, the retardation film resin composition, and the retardation oen
薄膜を有するカラーフィルター基板、および広視野角、高コントラストの液晶表示装 置、並びに位相差薄膜付き液晶表示装置用カラーフィルター基板の製造方法を提 供するものである。  The present invention provides a color filter substrate having a thin film, a wide viewing angle, high contrast liquid crystal display device, and a method for producing a color filter substrate for a liquid crystal display device with a retardation film.
課題を解決するための手段  Means for solving the problem
[0014] 上記課題を解決するために、本発明は下記の構成カゝらなる。 In order to solve the above problems, the present invention has the following configuration.
1.液晶表示装置に用いられ、光学的に負の一軸異方性を有し、光軸が薄膜面に対 して略垂直であり、かつ、厚み方向の複屈折 Δ ηが 0.01〜0.3である位相差薄膜を形 成するための榭脂組成物であって、少なくとも 1種のテトラカルボン酸二無水物と少な くとも 1種のジァミンとを反応させて得られるポリイミド前駆体および有機溶剤を含み、 前記少なくとも 1種のテトラカルボン酸二無水物および前記少なくとも 1種のジァミン の少なくともいずれかが脂環式ィ匕合物である位相差薄膜形成用榭脂組成物。  1. Used in liquid crystal display devices, has optically negative uniaxial anisotropy, the optical axis is substantially perpendicular to the thin film surface, and the birefringence Δη in the thickness direction is 0.01 to 0.3. A resin composition for forming a retardation film, comprising: a polyimide precursor obtained by reacting at least one tetracarboxylic dianhydride and at least one diamine; and an organic solvent. A resin composition for forming a retardation film, wherein at least one of the at least one tetracarboxylic dianhydride and the at least one diamine is an alicyclic compound.
2.脂環式ィ匕合物であるジァミンが、下記一般式 (1)  2. Diamine, an alicyclic compound, has the following general formula (1)
[0015] [化 1]
Figure imgf000004_0001
[0015] [Chemical 1]
Figure imgf000004_0001
(式中、 R1は 1価の有機基または水素原子を表す。 ) (In the formula, R 1 represents a monovalent organic group or a hydrogen atom.)
で表されるトランス- 1,4-ジァミノシクロへキサンィ匕合物である 1項記載の組成物。 3.テトラカルボン酸二無水物が、下記一般式 (2)  2. The composition according to 1, which is a trans-1,4-diaminocyclohexane compound represented by the formula: 3. Tetracarboxylic dianhydride has the following general formula (2)
[0016] [化 2]  [0016] [Chemical 2]
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 R2、および R3は互いに独立にそれぞれ 1価の有機基または水素原子を表す。 ) で表される 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物である 2項記載の 組成物。 (In the formula, R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.) 3. The composition according to 2, which is a 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound represented by the formula:
[0017] 4.前記ポリイミド前駆体が、少なくとも下記一般式 (3)で示される構成単位を有する 3 項記載の組成物。  [0017] 4. The composition according to item 3, wherein the polyimide precursor has at least a structural unit represented by the following general formula (3).
[0018] [化 3] [0018] [Chemical 3]
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 、 R2
Figure imgf000005_0002
R4および R5は互いに独立して、それぞれ 1価の有機基または水素 原子を表わす。 )
(Where R 2 ,
Figure imgf000005_0002
R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom. )
[0019] 5.脂環式ィ匕合物であるテトラカルボン酸二無水物力 1,2,3,4-シクロブタンテトラ力 ルボン酸二無水物である 1項記載の組成物。  [0019] 5. The composition according to 1, wherein the compound is a tetracarboxylic dianhydride strength 1,2,3,4-cyclobutane tetraforce rubonic acid dianhydride which is an alicyclic compound.
6.ジァミンが、剛直な分子構造を有する芳香族ジァミンである 5項記載の組成物。  6. The composition according to 5, wherein the diamine is an aromatic diamine having a rigid molecular structure.
[0020] 7.剛直な分子構造を有する芳香族ジァミンが、 P-フエ-レンジァミン、 4,4しジァミノ ベンズァ -リド力 選ばれる少なくとも 1種である 6項記載の組成物。 [0020] 7. The composition according to item 6, wherein the aromatic diamine having a rigid molecular structure is at least one selected from P-phenolenediamine, 4,4 and diaminobenza-lid force.
8.下記一般式 (1)  8. The following general formula (1)
[0021] [化 4]
Figure imgf000005_0003
[0021] [Chemical 4]
Figure imgf000005_0003
(式中、 R1は 1価の有機基または水素原子を表す。 ) (In the formula, R 1 represents a monovalent organic group or a hydrogen atom.)
で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物を含むジァミン成分と、下記一 般式 (2)  A diamine component including a trans-1,4-diaminocyclohexane compound represented by the following general formula (2):
[0022] [化 5] [0022] [Chemical 5]
Figure imgf000005_0004
(式中、 R2、および R3は互いに独立にそれぞれ 1価の有機基または水素原子を表す。 )
Figure imgf000005_0004
(In the formula, R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.)
で表される 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物を含むテトラカルボ ン酸ニ無水物成分を反応させて得られるポリアミック酸化合物及び有機溶剤を含有 する、液晶表示装置に用いられ、光学的に負の一軸異方性を有し、光軸が薄膜面に 対して略垂直である位相差薄膜を形成するための榭脂組成物。  A liquid crystal containing a polyamic acid compound obtained by reacting a tetracarboxylic dianhydride component including a 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride compound represented by A resin composition for use in a display device to form a retardation thin film having optically negative uniaxial anisotropy and an optical axis being substantially perpendicular to a thin film surface.
[0023] 9.前記ポリアミック酸ィ匕合物力 少なくとも下記一般式 (3)で示される構成単位を有す る 8項記載の組成物。  [0023] 9. The composition according to item 8, which has at least a structural unit represented by the following general formula (3):
[0024] [化 6]  [0024] [Chemical 6]
Figure imgf000006_0001
Figure imgf000006_0001
(式中、
Figure imgf000006_0002
R4及び R5は互いに独立して、それぞれ 1価の有機基または水素原 子を表わす。 )
(Where
Figure imgf000006_0002
R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom. )
[0025] 10.前記 R1が水素原子又は炭素数 1〜4の直鎖状若しくは分岐鎖状アルキル基であ り、 R2
Figure imgf000006_0003
R4及び R5が水素原子である 9項記載の組成物。
[0025] 10. R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 ,
Figure imgf000006_0003
10. The composition according to 9, wherein R 4 and R 5 are hydrogen atoms.
[0026] 11.前記ポリアミック酸ィ匕合物力 下記一般式 (4)〜(8)で示される構造単位力 成る 群より選ばれる少なくとも 1種の構造単位をさらに含む 9項又は 10項記載の組成物。 [0026] 11. The composition according to item 9 or 10, further comprising at least one structural unit selected from the group consisting of structural unit forces represented by the following general formulas (4) to (8): object.
[0027] [化 7] [0027] [Chemical 7]
Figure imgf000006_0004
Figure imgf000006_0004
[0028] [ィ匕 8]
Figure imgf000007_0001
[0028] [Yi 8]
Figure imgf000007_0001
(式 (4)、(5)、(6)、(7)及び (8)中、
Figure imgf000007_0002
R4及び R5は互いに独立して、それぞれ 1価 の有機基または水素原子を表わす。 )
(In the formulas (4), (5), (6), (7) and (8),
Figure imgf000007_0002
R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom. )
[0031] 12.式 (4)、(5)、(6)、(7)及び (8)中、前記 R1が水素原子又は炭素数 1〜4の直鎖状若し くは分岐鎖状アルキル基であり、 R2
Figure imgf000007_0003
R4及び R5が水素原子である 10項記載の組 成物。
[0031] 12. In the formulas (4), (5), (6), (7) and (8), R 1 is a hydrogen atom or a linear or branched chain having 1 to 4 carbon atoms. An alkyl group, R 2 ,
Figure imgf000007_0003
11. The composition according to 10, wherein R 4 and R 5 are hydrogen atoms.
[0032] 13.式 (3)、(4)、(5)、(6)、(7)又は(8)で示される構造単位の合計含量が、前記ポリアミ ック酸を構成する全構造単位の 50モル%以上である 11項又は 12項記載の組成物。  [0032] 13. The total content of structural units represented by the formula (3), (4), (5), (6), (7) or (8) is the total structural unit constituting the polyamic acid. 13. The composition according to 11 or 12, which is 50 mol% or more.
[0033] 14.前記ポリイミド前駆体又は前記ポリアミック酸のアミン末端基の一部または全部が[0033] 14. Part or all of the amine end groups of the polyimide precursor or the polyamic acid are
、ジカルボン酸無水物とのァミック酸形成反応によって末端封止されている 1項〜 13 項の 、ずれか 1項に記載の榭脂組成物。 14. The resin composition according to any one of items 1 to 13, which is end-capped by an amic acid forming reaction with a dicarboxylic acid anhydride.
[0034] 15.前記ジカルボン酸無水物が、無水マレイン酸、無水フタル酸、無水コハク酸お よび無水ナジック酸力も選ばれた少なくとも 1種のジカルボン酸無水物である 14項記 載の組成物。 [0034] 15. The composition according to item 14, wherein the dicarboxylic anhydride is at least one dicarboxylic anhydride in which maleic anhydride, phthalic anhydride, succinic anhydride, and nadic anhydride are also selected.
[0035] 16. 1項〜 15項のいずれか 1項に記載の組成物の、位相差薄膜形成用榭脂組成物 の製造のための使用。 [0036] 17.透明基板上に赤、青、緑の各色の画素が二次元的に配列された液晶表示装置 用カラーフィルター基板であって、 1項〜 15項のいずれか 1項に記載の位相差薄膜 用榭脂組成物から形成された位相差薄膜が形成されている液晶表示装置用カラー フィルター基板。 [0035] 16. Use of the composition according to any one of items 1 to 15 for the manufacture of a resin composition for forming a retardation film. [0036] 17. A color filter substrate for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged on a transparent substrate, and the liquid crystal display device according to any one of items 1 to 15 A color filter substrate for a liquid crystal display device, on which a retardation film formed from a resin composition for retardation film is formed.
18.前記位相差薄膜は、下記一般式 (8)  18. The retardation film has the following general formula (8)
[0037] [化 11] [0037] [Chemical 11]
Figure imgf000008_0001
Figure imgf000008_0001
(式中、
Figure imgf000008_0002
R2及び R3は互いに独立して、それぞれ 1価の有機基または水素原子を表 わす。)
(Where
Figure imgf000008_0002
R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom. )
で示される構造単位を 50モル%以上含むポリイミドを含む 17項記載のカラーフィル ター基板。  18. A color filter substrate according to claim 17, comprising polyimide containing at least 50 mol% of the structural unit represented by
[0038] 19.前記 R1が水素原子又は炭素数 1〜4の直鎖状若しくは分岐鎖状アルキル基であ り、 R2及び R3が水素原子である 18項記載のカラーフィルター基板。 [0038] 19. The color filter substrate according to 18, wherein R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are hydrogen atoms.
[0039] 20.位相差薄膜用榭脂組成物カゝら形成された位相差薄膜が画素を被覆するように 形成されている 17項ないし 19項のいずれか 1項に記載の液晶表示装置用カラーフ ィルター基板。  20. The liquid crystal display device according to any one of items 17 to 19, wherein the phase difference thin film formed by the resin composition for the phase difference thin film is formed so as to cover the pixel. Color filter board.
[0040] 21. 17項ないし 20項のいずれか 1項に記載の液晶表示装置用カラーフィルタ一基 板を用いた液晶表示装置であって、該液晶表示装置の表示方式が、電圧無印加時 に液晶分子が液晶セル面に対し略垂直な方向に配向しており、電圧印加時に液晶 分子が液晶セル面に対し略平行な方向に配向する液晶表示方式である液晶表示装 置。  [0040] 21. A liquid crystal display device using the color filter substrate for a liquid crystal display device according to any one of items 17 to 20, wherein the display method of the liquid crystal display device is when no voltage is applied. The liquid crystal display device is a liquid crystal display device in which the liquid crystal molecules are aligned in a direction substantially perpendicular to the liquid crystal cell surface, and the liquid crystal molecules are aligned in a direction substantially parallel to the liquid crystal cell surface when a voltage is applied.
[0041] 22. 1項〜 15項のいずれか 1項に記載の位相差薄膜用榭脂組成物を、透明基板上 に赤、青、緑の各色の画素が二次元的に配列されたカラーフィルター基板の画素が 配列された側の面に塗布し、熱処理することを含む位相差薄膜付き液晶表示装置用 カラーフィルター基板の製造方法。  [0041] 22. The resin composition for retardation film according to any one of items 1 to 15, wherein the red, blue and green pixels are two-dimensionally arranged on a transparent substrate. A method for producing a color filter substrate for a liquid crystal display device with a retardation film, which comprises applying a heat treatment to a surface of the filter substrate on which the pixels are arranged and heat-treating the surface.
発明の効果 [0042] 本構成の位相差薄膜用榭脂組成物によって簡便に液晶表示装置用位相差薄膜を 形成でき、さら〖こ、該位相差薄膜によって液晶表示装置の視野角特性、コントラスト のさらなる向上が図れる。 The invention's effect [0042] The phase difference thin film for a liquid crystal display device can be easily formed by using the resin composition for the phase difference thin film of this configuration, and further, the viewing angle characteristics and contrast of the liquid crystal display device can be further improved by the phase difference thin film. I can plan.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明をさらに詳細に説明する。  [0043] Hereinafter, the present invention will be described in more detail.
本発明の位相差薄膜用榭脂組成物は、液晶表示装置に用いられ、光学的に負の 一軸異方性を有し、光軸が薄膜面に対して略垂直であり、かつ、厚み方向の複屈折 Δ ηが 0.01〜0.3である位相差薄膜を形成するための位相差薄膜用榭脂組成物であ つて、テトラカルボン酸二無水物とジァミンとを反応させて得られるポリイミド前駆体お よび有機溶剤を含み、テトラカルボン酸二無水物およびジァミンの少なくとも 、ずれ か一方が脂環式ィ匕合物であることを特徴とする。  The resin composition for retardation film of the present invention is used in a liquid crystal display device, has optically negative uniaxial anisotropy, an optical axis is substantially perpendicular to the thin film surface, and the thickness direction A resin composition for a retardation film for forming a retardation film having a birefringence Δη of 0.01 to 0.3, and a polyimide precursor obtained by reacting tetracarboxylic dianhydride with diamine. And at least one of tetracarboxylic dianhydride and diamine is an alicyclic compound.
[0044] 本発明に用いるポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステル、ポリアミ ック酸部分エステル、ポリアミック酸シリルエステル、ポリアミック酸塩、ポリイソイミド等 、加熱もしくは化学的にポリイミドに変換可能な構造体の 、ずれでも良 、。  [0044] The polyimide precursor used in the present invention is a polyamic acid, polyamic acid ester, polyamic acid partial ester, polyamic acid silyl ester, polyamic acid salt, polyisoimide, or the like, which can be heated or chemically converted to polyimide. It's okay to make a difference.
[0045] ポリイミド前駆体を得るために用いる脂環式ィ匕合物であるジァミンとしては、下記一 般式(1)で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物が好ましい。  As diamine which is an alicyclic compound used for obtaining a polyimide precursor, trans-1,4-diaminocyclohexane compound represented by the following general formula (1) is preferable. .
[0046] [化 12]
Figure imgf000009_0001
[0046] [Chemical 12]
Figure imgf000009_0001
(式中、 R1は 1価の有機基または水素原子を表す。 ) (In the formula, R 1 represents a monovalent organic group or a hydrogen atom.)
[0047] ここで、 R1は好ましくは炭素数 1〜30の有機基または水素原子であり、さらに好まし くはメチル基、ェチル基、 η—プロピル基、イソプロピル基、 η—ブチル基、イソブチル 基、 sec-ブチル基等の炭素数 1〜4の直鎖状または分岐鎖状アルキル基または水素 原子が挙げられる。これらのうち、トランス- 1,4-ジアミノシクロへキサン、トランス- 1,4- ジァミノ- 2-メチルシクロへキサン、トランス- 1,4-ジァミノ- 2,5-ジメチルシクロへキサン が好ましぐ特に、トランス- 1,4-ジアミノシクロへキサンが好ましい。 Here, R 1 is preferably an organic group having 1 to 30 carbon atoms or a hydrogen atom, and more preferably a methyl group, an ethyl group, a η-propyl group, an isopropyl group, a η-butyl group, an isobutyl group. And a straight-chain or branched alkyl group having 1 to 4 carbon atoms such as sec-butyl group or a hydrogen atom. Of these, trans-1,4-diaminocyclohexane, trans-1,4-diamino-2-methylcyclohexane, and trans-1,4-diamino-2,5-dimethylcyclohexane are particularly preferred. Trans-1,4-diaminocyclohexane is preferred.
[0048] 1,4-ジアミノシクロへキサン化合物には、 1, 4位のアミノ基の立体配置がトランス配 置であるトランス体と、シス配置であるシス体が存在する。通常、トランス- 1,4-ジァミノ シクロへキサンィ匕合物は、前駆体である P-フエ-レンジアミンィ匕合物を水添して得ら れるが、この反応の生成物はトランス体とシス体の混合物である(例えば、特公昭 51- 48198号)。本発明に用いられる好適なトランス- 1,4-ジアミノシクロへキサンィ匕合物と しては、上記水添化合物を蒸留、再結晶等の公知の方法に従い分離精製したもの 力 S用いられる。シス体含有量は、本発明の効果が損なわれない限り特に限定されな い。通常シス体含有量は 50重量%以下、好ましくは 30重量%以下、さらに好ましく は 10重量%以下に精製することが推奨される。シス体含有量を上記の範囲とするこ とによって、シス体の折れ曲がり構造に起因するポリイミド分子鎖の配向性低下を抑 え、実用上十分な複屈折を得ることができる。 [0048] In 1,4-diaminocyclohexane compounds, the configuration of the amino group at positions 1 and 4 is trans There are trans isomers that are cis configurations and cis isomers that are cis configurations. Usually, trans-1,4-diaminocyclohexane compound is obtained by hydrogenating the precursor P-phenylenediamine compound, but the product of this reaction is trans form and cis form. (For example, Japanese Patent Publication No. 51-48198). As a suitable trans-1,4-diaminocyclohexane compound used in the present invention, a product obtained by separating and purifying the hydrogenated compound according to a known method such as distillation, recrystallization or the like is used. The cis-isomer content is not particularly limited as long as the effects of the present invention are not impaired. It is usually recommended to refine the cis-isomer content to 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less. By setting the cis-isomer content in the above range, it is possible to suppress a decrease in the orientation of the polyimide molecular chain due to the bent structure of the cis-isomer, and to obtain birefringence sufficient for practical use.
[0049] トランス- 1,4-ジアミノシクロへキサンィ匕合物を、 n-へキサン等の溶媒を用いて再結 晶による精製を繰り返すことによって着色成分を低減することは、透明性を高めるうえ で有効な方法である。 [0049] Reducing the coloring component by repeating purification by recrystallization of a trans-1,4-diaminocyclohexane compound using a solvent such as n-hexane increases transparency. This is an effective method.
[0050] トランス- 1,4-ジアミノシクロへキサンィ匕合物には、本発明の効果を損なわない範囲 で他のジァミンィ匕合物を併用することができる。この場合のトランス- 1,4-ジアミノシクロ へキサン化合物の使用割合は、全体のジァミン中 50モル%以上であることが好ましく 、 70モル%以上であることがより好ましぐ 90モル%以上であることがさらに好ましい 。トランス 1, 4ージアミノシクロへキサンィ匕合物の使用割合が 50モル%よりも低いと 本発明の目標とする特性が得られない場合がある。  [0050] The trans-1,4-diaminocyclohexane compound can be used in combination with another diamine compound as long as the effects of the present invention are not impaired. In this case, the proportion of the trans-1,4-diaminocyclohexane compound used is preferably 50 mol% or more, more preferably 70 mol% or more in the entire diamine, and 90 mol% or more. More preferably it is. If the proportion of trans 1,4-diaminocyclohexane compound used is lower than 50 mol%, the target characteristics of the present invention may not be obtained.
[0051] トランス- 1,4-ジアミノシクロへキサンィ匕合物と併用できるジァミンとしては、例えば、 2 ,2'-ビス (トリフルォロメチル)ベンジジン、 p-フエ二レンジァミン、 m-フエ二レンジァミン 、 2,4-ジァミノトルエン、 2,5-ジァミノトルエン、 2,4-ジアミノキシレン、 2,4-ジアミノデュ レン、 4,4'-ジアミノジフエ二ルメタン、 4,4'-ジアミノジフエニルェタン、 4,4'-ジアミノジフ ェ-ルエーテル、 3,4'-ジアミノジフエ-ルエーテル、 4,4'-ジアミノジフエ-ルスルホン 、 3,3'-ジアミノジフエニルスルホン、 4,4'-ジァミノべンゾフエノン、 3,3'-ジァミノべンゾ フエノン、 4,4'-ジァミノベンズァ-リド、ベンジジン、 3,3'-ジヒドロキシベンジジン、 3,3' -ジメトキシベンジジン、 0-トリジン、 m-トリジン、 1,4-ビス (4-アミノフエノキシ)ベンゼン、 1,3-ビス (4-アミノフエノキシ)ベンゼン、 1,3-ビス (3-アミノフエノキシ)ベンゼン、 4,4しビ ス (4-アミノフエノキシ)ビフエ-ル、ビス (4- (3-アミノフエノキシ)フエ-ル)スルホン、ビス( 4-(4-アミノフエノキシ)フエ-ル)スルホン、 2, 2-ビス (4- (4-アミノフエノキシ)フエ-ル)プ 口パン、 2,2-ビス (4- (4-アミノフエノキシ)フエ-ル)へキサフルォロプロパン、 2,2-ビス (4 -ァミノフエ-ル)へキサフルォロプロパンなどの芳香族ジァミン; 1 ,3-プロパンジァミン 、テトラメチレンジァミン、ペンタメチレンジァミン、へキサメチレンジァミン、イソホロン ジァミン、テトラヒドロジシクロペンタジェ-レンジァミン、へキサヒドロ- 4,7-メタノインダ 二レンジメチレンジァミン、トリシクロ [6.2.1.02'7]-ゥンデシレンジメチルジァミン、 4,4'-メ チレンビス(シクロへキシルァミン)、 2,5-ノルボルナンビス(メチルァミン)、 2,6-ノルボ ルナンビス (メチルァミン)、 2,7-ノルボルナンビス (メチルァミン)などの脂肪族および 脂環式ジァミンが挙げられる。 [0051] Examples of diamines that can be used in combination with trans-1,4-diaminocyclohexane compound include 2,2'-bis (trifluoromethyl) benzidine, p-phenylenediamine, and m-phenylenediamine. 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethane, 4,4 '-Diaminodiphenyl ether, 3,4'-Diaminodiphenyl ether, 4,4'-Diaminodiphenyl sulfone, 3,3'-Diaminodiphenyl sulfone, 4,4'-Diaminobenzophenone, 3,3'-Diamino Benzo phenone, 4,4'-diaminobenzaldehyde, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, 0-tolidine, m-tolidine, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-amino Phenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4 Sibi (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenol) sulfone, bis (4- (4-aminophenoxy) phenol) sulfone, 2,2-bis (4- (4 -Aminophenol) phenol) bread, 2,2-bis (4- (4-aminophenoxy) phenol) hexafluoropropane, 2,2-bis (4-aminophenol) hexaflu Aromatic diamines such as chloropropane; 1,3-propanediamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, isophorone diamine, tetrahydrodicyclopenta-dirangeamine, hexahydro-4 7 Metanoinda two range methylenedioxy § Min, tricyclo [6.2.1.0 2 '7] - © down decimeter range methyldichlorosilane § Min, 4,4' main Chirenbisu (Kishiruamin cyclohexylene), 2,5 Noruborunanbisu (Mechiruamin ), 2,6-norbornambis (medium Ruamin), 2,7 Noruborunanbisu (Mechiruamin) include aliphatic and cycloaliphatic Jiamin such.
[0052] また、ジァミンの一部として、シロキサンジァミンを用いると、無機基板等との接着性 を良好にすることができる。シロキサンジァミンは、通常、全ジァミン中の 1〜20モル %量用いることが好ましい。シロキサンジァミンの具体例としては、ビス (3-ァミノプロピ ル)テトラメチルジシロキサンが挙げられる。  [0052] When siloxane diamine is used as a part of diamine, adhesion to an inorganic substrate or the like can be improved. Siloxane diamine is usually preferably used in an amount of 1 to 20 mol% in the total diamine. A specific example of siloxane diamine is bis (3-aminopropyl) tetramethyldisiloxane.
[0053] 脂環式ィ匕合物であるジァミンと反応させるテトラカルボン酸二無水物としては、 3,3', 4,4'-ビフエ-ルテトラカルボン酸二無水物、 2,3,3',4'-ビフエ-ルテトラカルボン酸二 無水物、 3,3',4,4'-ベンゾフヱノンテトラカルボン酸二無水物、無水ピロメリット酸、 3,4, 9, 10-ペリレンテトラカルボン酸二無水物、 3,3', 4,4'-ジフエ-ルスルホンテトラカルボ ン酸ニ無水物、 4,4しォキシジフタル酸二無水物、 1,2,5,6-ナフタレンテトラカルボン 酸二無水物、 3,3',4,4'-パラターフェ-ルテトラカルボン酸二無水物、 3,3',4,4しメタタ 一フエ-ルテトラカルボン酸二無水物、 4,4し(2,2-へキサフルォロイソプロピリデン)ジ フタル酸ニ無水物などの芳香族テトラカルボン酸二無水物; 1,2,3,4-ブタンテトラカル ボン酸二無水物、 1,3-ジメチル -1,2,3,4-シクロブタンテトラカルボン酸二無水物、 1,2, 3,4-シクロペンタンテトラカルボン酸二無水物、 2,3, 5-トリカルボキシシクロペンチル酢 酸二無水物、 1,2,4,5-シクロへキサンテトラカルボン酸二無水物、 3,3',4,4'-ジシクロ へキサンテトラカルボン酸二無水物、 1,2,4,5-ノルボルネンテトラカルボン酸二無水物 、 5-(2,5-ジォキソテトラヒドロフラル) -3-メチル -3-シクロへキセン- 1,2-ジカルボン酸 二無水物、 l,3,3a,4,5,9b-へキサヒドロ- 5- (テトラヒドロ- 2,5-ジォキソ- 3-フラ-ル)-ナ フト [1,2- c]フラン- 1,3-ジオン、 l,3,3a,4,5,9b-へキサヒドロ- 5-メチル - 5- (テトラヒドロ- 2 ,5 ジォキソ- 3-フラ -ル) -ナフト [1,2- c]フラン- 1,3-ジオン、 l,3,3a,4,5,9b-へキサヒド oen [0053] The tetracarboxylic dianhydride to be reacted with diamine, which is an alicyclic compound, includes 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, pyromellitic anhydride, 3,4, 9, 10-perylene Tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4 oxydiphthalic dianhydride, 1,2,5,6-naphthalenetetracarboxylic Acid dianhydride, 3,3 ', 4,4'-paraterphenyl tetracarboxylic dianhydride, 3,3', 4,4 Aromatic tetracarboxylic dianhydrides such as (2,2-hexafluoroisopropylidene) diphthalic dianhydride; 1,2,3,4-butanetetracarboxylic dianhydride, 1,3 -Dimethyl-1,2,3,4-cyclobutanetetra Rubonic acid dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, 1,2,4,5-cyclohexanetetra Carboxylic dianhydride, 3,3 ', 4,4'-dicyclohexanetetracarboxylic dianhydride, 1,2,4,5-norbornene tetracarboxylic dianhydride, 5- (2,5-di Oxotetrahydrofural) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, l, 3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5- (Dioxo-3-full) -N [1,2-c] furan-1,3-dione, l, 3,3a, 4,5,9b-hexahydro-5-methyl-5- (tetrahydro-2,5 dioxo-3-furan ) -Naphtho [1,2-c] furan-1,3-dione, l, 3,3a, 4,5,9b-hexahydr oen
口- 5,8-ジメチル- 5- (テトラヒドロ- 2,5-ジォキソ- 3-フラ -ル) -ナフト [1,2- c]フラン- 1,3- ジオン、ビシクロ [2.2.2]-ォクト -7-ェン -2,3:5, 6-テトラカルボン酸二無水物、ビシクロ [ 2.2.2]オクタン- 2,3:5,6-テトラカルボン酸二無水物などの脂肪族および脂環式テトラ カルボン酸二無水 が挙げられる。  Mouth-5,8-dimethyl-5- (tetrahydro-2,5-dioxo-3-fural) -naphtho [1,2-c] furan-1,3-dione, bicyclo [2.2.2] -oct Aliphatic and alicyclic such as -7-en-2,3: 5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane-2,3: 5,6-tetracarboxylic dianhydride And the formula tetracarboxylic dianhydride.
[0054] これらテトラカルボン酸二無水物のうち、下記一般式(2)で表される置換あるいは無 置換の 3,3',4,4しビフエ-ルテトラカルボン酸二無水物を用いることが好ましぐ 3,3',4, 4'-ビフエ-ルテトラカルボン酸二無水物を用いることがより好ましい。  Of these tetracarboxylic dianhydrides, substituted or unsubstituted 3,3 ′, 4,4 biphenyltetracarboxylic dianhydrides represented by the following general formula (2) may be used. It is more preferable to use 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
[0055] [化 13]  [0055] [Chemical 13]
Figure imgf000012_0001
Figure imgf000012_0001
(式中、 R2および ITはそれぞれ 1価の有機基または水素原子を表し、それぞれ同じも のであっても異なるものであってもよい。 ) (In the formula, R 2 and IT each represent a monovalent organic group or a hydrogen atom, and may be the same or different.)
なお、式 (2)中、 R2および R3の好ましい例としては水素、炭素数 1〜3個のアルキル基 、炭素数 1〜3個のハロゲンィ匕アルキル基、フエニル基、または、置換フエ-ル基等を 挙げることができ、特に水素が好ましい。 In the formula (2), preferred examples of R 2 and R 3 include hydrogen, an alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a phenyl group, or a substituted phenyl group. In particular, hydrogen is preferable.
[0056] 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物とともに、他のテトラカルボン 酸二無水物を使用することも可能である。この場合の 3,3',4,4'-ビフエ-ルテトラカル ボン酸二無水物化合物の使用割合は、全体のテトラカルボン酸二無水物中 50モル %以上であることが好ましぐ 70モル%以上であることがより好ましぐ 90モル%以上 であることがさらに好ましい。 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物の 使用割合が 50モル%よりも低いと本発明の目標とする特性が得られないことがあるた めである。 [0056] Along with the 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride compound, other tetracarboxylic dianhydrides may be used. In this case, the proportion of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound used is preferably at least 50 mol% in the total tetracarboxylic dianhydride 70 mol% More preferably, it is more preferably 90 mol% or more. This is because if the proportion of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound is less than 50 mol%, the target characteristics of the present invention may not be obtained.
[0057] 下記一般式(1)で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物と下記一般 式(2)で表される置換あるいは無置換の 3,3',4,4しビフエ-ルテトラカルボン酸二無水 物化合物を反応させて得られるポリイミド前駆体は、下記一般式 (3)で示される構造 単位を有することが好ましい。また、一般式 (3)で示される構造単位以外にも一般式 (4)〜(8)で示される構造単位を含んで 、ても良 、。これらの構造単位は 、ずれも、 加熱もしくは化学的なイミド化反応によって一般式 (8)で示される同一の構造単位に 変換される。 [0057] A trans-1,4-diaminocyclohexane compound represented by the following general formula (1) and a substituted or unsubstituted 3,3 ', 4,4 represented by the following general formula (2): Biphenyl tetracarboxylic dianhydride The polyimide precursor obtained by reacting a physical compound preferably has a structural unit represented by the following general formula (3). In addition to the structural unit represented by the general formula (3), the structural unit represented by the general formulas (4) to (8) may be included. These structural units are converted into the same structural unit represented by the general formula (8) by heating or chemical imidization reaction.
[0058] [化 14]  [0058] [Chemical 14]
Figure imgf000013_0001
Figure imgf000013_0001
(式中、
Figure imgf000013_0002
R2、 R3、 R4および R5はそれぞれ 1価の有機基または水素原子を表し、そ れぞれ同じものであっても異なるものであってもよい。 )
(Where
Figure imgf000013_0002
R 2 , R 3 , R 4 and R 5 each represent a monovalent organic group or a hydrogen atom, and may be the same or different. )
[0059] [化 15]  [0059] [Chemical 15]
Figure imgf000013_0003
Figure imgf000013_0003
[0060] [化 16]  [0060] [Chemical 16]
Figure imgf000013_0004
Figure imgf000013_0004
[0061] [化 17]  [0061] [Chemical 17]
Figure imgf000013_0005
Figure imgf000013_0005
[0062] [化 18]
Figure imgf000014_0001
[0062] [Chemical 18]
Figure imgf000014_0001
[0063] [化 19]  [0063] [Chemical 19]
Figure imgf000014_0002
Figure imgf000014_0002
(式 (3)〜式 (8)中、
Figure imgf000014_0003
R2、 R3、 R4および R5はそれぞれ 1価の有機基または水素原子 を表し、それぞれ同じものであっても異なるものであってもよい。 )
(In Formula (3)-Formula (8),
Figure imgf000014_0003
R 2 , R 3 , R 4 and R 5 each represent a monovalent organic group or a hydrogen atom, and may be the same or different. )
なお、式 (3)〜式 (8)中、 R1並びに R2及び R3の好ましい例は、それぞれ上記式 (1)及び 式 (2)の説明で述べた通りであり、 R4および R5の好ましい例としては、水素原子、炭素 数 1〜20個のアルキル基、炭素数 1〜20個のハロゲン化アルキル基、フエ-ル基、 または、置換フエ-ル基等を挙げることができる。 In the formula (3) to (8), preferred examples of R 1 and R 2 and R 3 are as described in the description of each of the above formulas (1) and formula (2), R 4 and R Preferred examples of 5 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a phenol group, or a substituted phenol group. .
[0064] ポリイミド前駆体中の一般式 (3)〜(8)で示される構造単位の全構造単位に対する 割合は 50モル%以上であることが好ましぐ 70モル%以上であることがより好ましい。 一般式 (3)〜(8)で示される構造単位の割合が 50モル%よりも低 、と本発明の目標 とする特性が得られないことがある。上記の通り、加熱等によるイミドィ匕後には、これら の構造単位は一般式 (8)で表される構造単位になるので、イミドィ匕後のポリイミド中で は、一般式 (8)で示される構造単位の全構造単位に対する割合が 50モル%以上であ ることが好ましぐ 70モル%以上であることがより好ましい。  [0064] The ratio of the structural units represented by the general formulas (3) to (8) in the polyimide precursor to the total structural units is preferably 50 mol% or more, more preferably 70 mol% or more. . If the proportion of the structural units represented by the general formulas (3) to (8) is lower than 50 mol%, the target characteristics of the present invention may not be obtained. As described above, after imidization by heating or the like, these structural units become structural units represented by the general formula (8). Therefore, in the polyimide after imidization, the structure represented by the general formula (8) is used. The proportion of units to the total structural units is preferably 50 mol% or more, more preferably 70 mol% or more.
[0065] 本発明は、また、上記一般式 (1)で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合 物を含むジァミン成分と、上記一般式 (2)で表される 3,3',4,4'-ビフエ-ルテトラカルボ ン酸ニ無水物化合物を含むテトラカルボン酸二無水物成分を反応させて得られるポ リアミック酸化合物及び有機溶剤を含有する、液晶表示装置に用いられ、光学的に 負の一軸異方性を有し、光軸が薄膜面に対して略垂直である位相差薄膜を形成す るための榭脂組成物をも提供する。この場合、好ましくは、前記ポリアミック酸ィ匕合物 力 少なくとも上記一般式 (3)で示される構成単位を有するものである。形成される位 相差薄膜の厚み方向の複屈折 Δ ηが 0.01〜0.3であることが好ましい。なお、一般式( 1)で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物及び上記一般式 (2)で表され る 3,3', 4,4'-ビフエ-ルテトラカルボン酸二無水物化合物並びにこれらに包含される 好ましいィ匕合物等に関する説明は、上記の説明をそのまま適用することができる。 [0065] The present invention also provides a diamine component containing a trans-1,4-diaminocyclohexane compound represented by the general formula (1), and a 3,4-diaminocyclohexane compound represented by the general formula (2). Used in a liquid crystal display device comprising a polyamic acid compound obtained by reacting a tetracarboxylic dianhydride component including a 3 ′, 4,4′-biphenyltetracarboxylic dianhydride compound and an organic solvent, There is also provided a resin composition for forming a retardation film having optically negative uniaxial anisotropy and an optical axis being substantially perpendicular to the thin film surface. In this case, preferably, the polyamic acid compound has at least a structural unit represented by the general formula (3). Formed The birefringence Δη in the thickness direction of the phase difference thin film is preferably 0.01 to 0.3. The trans-1,4-diaminocyclohexane compound represented by the general formula (1) and the 3,3 ′, 4,4′-biphenyltetracarboxylic acid represented by the general formula (2) The above explanation can be applied as it is to the explanation regarding the acid dianhydride compound and the preferred compounds included therein.
[0066] ポリイミド前駆体はテトラカルボン酸二無水物とジァミンの反応によって公知の方法 で得られる。また、ポリアミック酸エステルは、例えば特開平 8-92496号公報に記載さ れて 、るように、テトラカルボン酸二無水物をアルコール性水酸基をもつ有機物でェ ステルイ匕してテトラカルボン酸ジエステルとした後、酸クロライド化し、その後ジァミンと 反応させる方法、テトラカルボン酸二無水物をアルコール性水酸基をもつ有機物で エステルイ匕してテトラカルボン酸ジエステルとし、カルポジイミド類と反応させた後に、 ジァミンと反応させる方法によって得られる。ポリアミック酸部分エステルは、例えばテ トラカルボン酸二無水物とジァミンを反応させることによって得られたポリアミック酸の カルボキシル基に、グリシジル基またはイソシアナ一ト基をもつ有機物を付加反応さ せる方法、特開 2000-212216号公報に記載されているようにテトラカルボン酸二無水 物とジァミンを反応させることによって得られたポリアミック酸のカルボキシル基にァセ タールイ匕合物を反応させる方法によって得られる。ポリアミック酸シリルエステルは、 例えば特開昭 64-63070号公報、特開 2001-72768号公報、特開 2005-146073号公報 に記載されて 、るようにジアミンをシリル化剤によってビスシリルイ匕ジァミンとした後、 テトラカルボン酸二無水物と反応させる方法によって得られる。  [0066] The polyimide precursor can be obtained by a known method by reacting tetracarboxylic dianhydride with diamine. The polyamic acid ester is a tetracarboxylic acid diester obtained by esterifying a tetracarboxylic dianhydride with an organic substance having an alcoholic hydroxyl group, as described in, for example, JP-A-8-92496. Later, acid chloride, and then react with diamine. Tetracarboxylic dianhydride is esterified with an organic substance having an alcoholic hydroxyl group to form a tetracarboxylic diester, reacted with carpositimides, and then reacted with diamine. Obtained by. The polyamic acid partial ester is, for example, a method in which an organic substance having a glycidyl group or an isocyanate group is added to a carboxyl group of a polyamic acid obtained by reacting tetracarboxylic dianhydride and diamine. As described in 2000-212216, it can be obtained by a method of reacting an acetal compound with a carboxyl group of a polyamic acid obtained by reacting tetracarboxylic dianhydride and diamine. The polyamic acid silyl ester is described in, for example, JP-A-64-63070, JP-A-2001-72768, JP-A-2005-146073, and the diamine is converted into bissilylidamine by a silylating agent. Thereafter, it is obtained by a method of reacting with tetracarboxylic dianhydride.
[0067] ポリイミド前駆体を得るために用いる脂環式ィ匕合物であるテトラカルボン酸二無水 物としては、 1,2,3,4-シクロブタンテトラカルボン酸二無水物を用いることが好ましい。 1,2,3,4-シクロブタンテトラカルボン酸二無水物は公知の方法 (例えば、特公平 2-619 56号方法、特開平 3— 137125号公報、 J. Polym. Sci.: Part A: Polymer Chemistry, 38卷, 108頁 (2000年))によって合成できる。  [0067] It is preferable to use 1,2,3,4-cyclobutanetetracarboxylic dianhydride as the tetracarboxylic dianhydride which is an alicyclic compound used for obtaining a polyimide precursor. 1,2,3,4-Cyclobutanetetracarboxylic dianhydride can be obtained by a known method (for example, Japanese Patent Publication No. 2-619 56, Japanese Patent Laid-Open No. 3-137125, J. Polym. Sci .: Part A: Polymer Chemistry, 38 卷, 108 (2000)).
[0068] 1,2,3,4-シクロブタンテトラカルボン酸二無水物と他のテトラカルボン酸二無水物を 共に用いることも可能である。この場合の 1,2,3,4-シクロブタンテトラカルボン酸二無 水物の使用割合は、全体のテトラカルボン酸二無水物中 50モル%以上であることが 好ましぐ 70モル%以上であることがより好ましぐ 90モル%以上であることがさらに 好ましい。 1,2,3,4-シクロブタンテトラカルボン酸二無水物の使用割合が 50モル%ょ りも低いと本発明の目的とする特性が得られないことがある。 [0068] It is also possible to use both 1,2,3,4-cyclobutanetetracarboxylic dianhydride and other tetracarboxylic dianhydrides. In this case, the proportion of 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is preferably 50 mol% or more in the total tetracarboxylic dianhydride, and more preferably 70 mol% or more. It is more preferable that it is 90 mol% or more preferable. If the proportion of 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is as low as 50 mol%, the intended characteristics of the present invention may not be obtained.
[0069] 1,2,3,4-シクロブタンテトラカルボン酸二無水物と共に用いられるテトラカルボン酸 二無水物としては 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物、 2,3,3',4'-ビフエ- ルテトラカルボン酸二無水物、 3,3',4,4'-ベンゾフエノンテトラカルボン酸二無水物、 無水ピロメリット酸、 3,4,9,10-ペリレンテトラカルボン酸二無水物、 3,3',4,4'-ジフエ- ルスルホンテトラカルボン酸二無水物、 4,4'-ォキシジフタル酸二無水物、 1,2,5, 6-ナ フタレンテトラカルボン酸二無水物、 3,3',4,4'-パラターフェ-ルテトラカルボン酸二無 水物、 3,3',4,4'-メタターフェ-ルテトラカルボン酸二無水物、 4,4し(2,2-へキサフルォ 口イソプロピリデン)ジフタル酸二無水物などの芳香族テトラカルボン酸二無水物; 1, 2, 3, 4 ブタンテトラカルボン酸二無水物、 1,3-ジメチル -1,2,3,4-シクロブタンテトラ カルボン酸二無水物、 1,2,3,4-シクロペンタンテトラカルボン酸二無水物、 2,3, 5-トリ力 ルボキシシクロペンチル酢酸二無水物、 1,2,4,5-シクロへキサンテトラカルボン酸二 無水物、 3,3',4,4'-ジシクロへキサンテトラカルボン酸二無水物、 1,2,4,5-ノルボルネ ンテトラカルボン酸二無水物、 5-(2,5-ジォキソテトラヒドロフラル) -3-メチル -3-シクロ へキセン- 1,2-ジカルボン酸二無水物、 l,3,3a,4,5,9b-へキサヒドロ- 5- (テトラヒドロ- 2, 5-ジォキソ- 3-フラ -ル) -ナフト [1,2-c]フラン- 1,3-ジオン、 l,3,3a,4,5,9b-へキサヒドロ -5-メチル -5- (テトラヒドロ- 2,5-ジォキソ- 3-フラ -ル) -ナフト [1,2-c]フラン- 1,3-ジオン 、 l,3,3a,4,5,9b-へキサヒドロ- 5,8-ジメチル- 5- (テトラヒドロ- 2,5-ジォキソ- 3-フラニル) -ナフト [1,2-c]フラン- 1,3-ジオン、ビシクロ [2.2.2]-ォクト -7-ェン -2,3:5, 6-テトラ力ノレ ボン酸二無水物、ビシクロ [2.2.2]オクタン- 2,3:5,6-テトラカルボン酸二無水物などの 脂肪族および脂環式テトラカルボン酸二無水物が挙げられる。  [0069] The tetracarboxylic dianhydride used together with 1,2,3,4-cyclobutanetetracarboxylic dianhydride includes 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2 , 3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, pyromellitic anhydride, 3,4,9, 10-perylenetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 1,2,5,6- Naphthalenetetracarboxylic dianhydride, 3,3 ', 4,4'-paraterphenyl tetracarboxylic acid dianhydride, 3,3', 4,4'-metatertetracarboxylic dianhydride 4,4 (aromatic isopropylidene), aromatic dicarboxylic dianhydrides such as diphthalic dianhydride; 1, 2, 3, 4 butanetetracarboxylic dianhydride, 1,3 -Dimethyl-1,2,3,4-si Lobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-triforce ruboxycyclopentylacetic acid dianhydride, 1,2,4,5-cyclo Xanthatetracarboxylic dianhydride, 3,3 ', 4,4'-dicyclohexanetetracarboxylic dianhydride, 1,2,4,5-norbornene tetracarboxylic dianhydride, 5- (2, 5-Dioxotetrahydrofural) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, l, 3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2 , 5-Dioxo-3-furyl) -naphtho [1,2-c] furan-1,3-dione, l, 3,3a, 4,5,9b-hexahydro-5-methyl-5- ( Tetrahydro-2,5-dioxo-3-furyl) -naphtho [1,2-c] furan-1,3-dione, l, 3,3a, 4,5,9b-hexahydro-5,8- Dimethyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, bicyclo [2.2.2]- Oct-7-ene-2,3: 5, 6-tetra-force carboxylic dianhydride, bicyclo [2.2.2] octane-2,3: 5,6-tetracarboxylic dianhydride And alicyclic tetracarboxylic dianhydrides.
[0070] 脂環式ィ匕合物であるテトラカルボン酸二無水物と反応させるジァミンとしては、高複 屈折の位相差薄膜を得る目的から剛直な分子構造を有する芳香族ジァミンを用いる ことが好ましい。ここで、剛直な分子構造を有する芳香族ジァミンとは、分子の熱運動 によるコンフオメーシヨン(立体配座)変化が小さぐジァミンを構成する 2個のアミノ基 の相対的位置の変化が小さい構造を有する芳香族ジァミンを言う。好ましくは、 (1) ベンゼン環、芳香族複素環、若しくはそれらの縮合環力 なる群力 選択されるいず れか 1個からなり、 2個のアミノ基が対向し、一方のァミノ基の C N結合ともう一方の ァミノ基の C—N結合がおよそ同一直線上にある力、あるいはおよそ平行である構造 を有する芳香族ジァミン、 (2)ベンゼン環、芳香族複素環、若しくはそれらの縮合環 力 なる群力 選択される 2個以上の構造単位力 なり、それらが直接またはアミド結 合を介して連結した構造を有し、 2個のアミノ基が対向し、一方のァミノ基の C N結 合ともう一方のァミノ基の C—N結合がおよそ同一直線上にある力、あるいはおよそ平 行である構造を有する芳香族ジァミンを言う。 [0070] As the diamine reacted with the tetracarboxylic dianhydride which is an alicyclic compound, it is preferable to use an aromatic diamine having a rigid molecular structure for the purpose of obtaining a highly birefringent retardation film. . Here, an aromatic diamine having a rigid molecular structure is a structure in which the change in the relative position of the two amino groups constituting the diamine is small, the conformation change due to the thermal motion of the molecule is small. Say aromatic diamine with. Preferably, (1) a benzene ring, an aromatic heterocyclic ring, or a condensed ring force of them is selected. A structure in which two amino groups are facing each other, and the CN bond of one amino group and the C—N bond of the other amino group are approximately collinear or approximately parallel. (2) benzene ring, aromatic heterocyclic ring, or their condensed ring force Group force selected Two or more structural unit forces, which are linked directly or via an amide bond Two amino groups are facing each other, and the CN bond of one amino group and the C—N bond of the other amino group are approximately on the same straight line, or have a structure that is approximately parallel. Says the aromatic diamine.
[0071] 剛直な分子構造を有する芳香族ジァミンの例としては、下記式(9)〜(11)に示した ような化合物を挙げることができる。  [0071] Examples of the aromatic diamine having a rigid molecular structure include compounds represented by the following formulas (9) to (11).
[0072] [化 20]  [0072] [Chemical 20]
Figure imgf000017_0001
Figure imgf000017_0001
(式中、 R6、 R7、 R°、 R9および R1Qはそれぞれ- H、 - CH、 - OH、 - CF、 -SO H、 - COOH (Where R 6 , R 7 , R °, R 9 and R 1Q are -H, -CH, -OH, -CF, -SO H, -COOH, respectively.
3 3 3 3 3 3
、 - CONH、 - F、 - Cl、 -Br、 - CFおよび- OCH力もなる群から選択されるいずれかひ , -CONH, -F, -Cl, -Br, -CF and -OCH
2 3 3  2 3 3
とつの基を表し、それぞれ同じものであっても異なるものであってもよい。 )  Each group may be the same or different. )
[0075] 剛直な分子構造を有する芳香族ジァミンの具体例としては、 4, 4'ージァミノべンズ ァニリド、ベンジジン、 3, 3,ージメチルベンジジン、 3, 3,ージヒドロキシベンジジン、 3, 3'—ジメトキシベンジジン、 2, 2'—ジメチルベンジジン、 2, 2 '—ビス (トリフルォロ メチル)ベンジジン、 p フエ-レンジァミン、 2, 5 ジァミノトルエン、 3, 6 ジァミノデ ュレン、 m—フエ二レンジァミン、 2, 4 ジァミノトルエン、 2, 4 ジアミノキシレンが挙 げられる。中でも、 4, 4,一ジァミノベンズァ-リド、 p フエ-レンジァミン、 2, 2,一ジ メチルベンジジン、 2, 2'—ビス (トリフルォロメチル)ベンジジンが好ましく使用でき、 特に 4, 4,一ジァミノベンズァ-リド、 p フエ-レンジァミンがより好ましく使用できる。 これらのジァミンと 1,2,3,4 シクロブタンテトラカルボン酸二無水物とを反応させて得 られるポリイミドを含有する位相差薄膜は、特に高透明性、高複屈折性を有するため 好ましく使用される。上記のジァミンは 1種または 2種以上を混合して使用することが できる。 [0075] Specific examples of the aromatic diamine having a rigid molecular structure include 4,4'-diaminobenzanilide, benzidine, 3, 3, -dimethylbenzidine, 3,3, -dihydroxybenzidine, 3, 3'— Dimethoxybenzidine, 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, p-ferylenediamine, 2,5 diaminotoluene, 3,6 diaminodurene, m-phenylenediamine, 2,4 diaminotoluene, 2, 4 Diaminoxylene I can get lost. Among these, 4,4,1-diaminobenzaldehyde, p-phenylenediamine, 2,2,1-dimethylbenzidine and 2,2'-bis (trifluoromethyl) benzidine can be preferably used. -Lido and p-phenoldiamine are more preferred. A retardation film containing a polyimide obtained by reacting these diamines with 1,2,3,4 cyclobutanetetracarboxylic dianhydride is preferably used because it has particularly high transparency and high birefringence. . The above diamine can be used alone or in combination of two or more.
[0076] また、剛直な分子構造を有する芳香族ジァミンとともに他のジァミンを併用すること もできる。この場合の剛直な分子構造を有する芳香族ジァミンの使用割合は、全体の ジァミン中 50モル%以上であることが好ましぐ 70モル%以上であることがより好まし ぐ 90モル%以上であることがさらに好ましい。剛直な分子構造を有する芳香族ジァ ミンの使用割合が 50モル%よりも低いと本発明の目的とする特性が得られないことが ある。  [0076] In addition, an aromatic diamine having a rigid molecular structure may be used in combination with another diamine. In this case, the proportion of aromatic diamine having a rigid molecular structure is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 90 mol% or more of the total diamine. More preferably. If the use ratio of the aromatic diamine having a rigid molecular structure is lower than 50 mol%, the intended characteristics of the present invention may not be obtained.
[0077] 剛直な分子構造を有する芳香族ジァミンとともに併用できる他のジァミンとしては、 4, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジフエニルェタン、 4, 4'ージァミノ ジフエニルエーテル、 3, 4'ージアミノジフエニルエーテル、 4, 4'ージアミノジフエ二 ルスルホン、 3, 3'—ジアミノジフエ-ルスルホン、 4, 4'—ジァミノべンゾフエノン、 3, 3,ージァミノべンゾフエノン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン、 1, 3 ビス( 4 アミノフエノキシ)ベンゼン、 1, 3 ビス(3 アミノフエノキシ)ベンゼン、 4, 4'—ビ ス(4—アミノフエノキシ)ビフエ-ル、ビス(4— (3—アミノフエノキシ)フエ-ル)スルホ ン、ビス(4— (4 アミノフエノキシ)フエ-ル)スルホン、 2, 2 ビス(4— (4 アミノフ エノキシ)フエ-ル)プロパン、 2, 2 ビス(4— (4 アミノフエノキシ)フエ-ル)へキサ フルォロプロパン、 2, 2—ビス(4 ァミノフエ-ル)へキサフルォロプロパンなどの芳 香族ジァミンが使用できる。  [0077] Other diamines that can be used together with an aromatic diamine having a rigid molecular structure include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethane, and 4,4'-diaminodiphenyl ether. 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3, 3'-diaminodiphenyl sulfone, 4, 4'-diaminobenzophenone, 3, 3, -diaminobenzophenone, 1,4bis ( 4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) Phenol) sulfone, bis (4— (4 aminophenoxy) phenol) sulfone, 2,2 bis (4— (4 aminophenoxy) phenol) propane, 2,2 bis (4— ( Aromatic diamines such as 4-aminophenoxy) phenol) hexafluoropropane and 2,2-bis (4-aminophenol) hexafluoropropane can be used.
[0078] また、 1, 3 プロパンジァミン、テトラメチレンジァミン、ペンタメチレンジァミン、へキ サメチレンジァミン、トランス 1, 4ージアミノシクロへキサン、シス 1, 4ージアミノシ クロへキサン、イソホロンジァミン、テトラヒドロジシクロペンタジェ二レンジァミン、へキ サヒドロ一 4, 7—メタノインダニレンジメチレンジァミン、トリシクロ [6. 2. 1. 02'7]—ゥ ンデシレンジメチルジァミン、 4, 4'ーメチレンビス(シクロへキシルァミン)、 2, 5 ノ ルボルナンビス(メチルァミン)、 2, 6 ノルボルナンビス(メチルァミン)、 2, 7 ノル ボルナンビス (メチルァミン)などの脂肪族および脂環式ジァミンも使用できる。 [0078] In addition, 1,3 propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, trans 1,4-diaminocyclohexane, cis 1,4-diaminocyclohexane, isophorone diamine Mine, Tetrahydrodicyclopentadenylenediamine, Hexahydro-1,7-Methanoindanylenediethylenediamine, Tricyclo [6. 2. 1. 0 2 ' 7 ] —U Aliphatics such as ndecylenedimethyldiamine, 4,4'-methylenebis (cyclohexylamine), 2,5 norbornanebis (methylamine), 2,6 norbornanebis (methylamine), 2,7 norbornanebis (methylamine) and Alicyclic diamines can also be used.
[0079] また、ジァミンの一部として、シロキサンジァミンを用いると、無機基板等との接着性 を良好にすることができる。シロキサンジァミンは、通常、全ジァミン中の 1〜20モル %量用いることが好ましい。シロキサンジァミンの具体例としては、ビス(3—ァミノプロ ピル)テトラメチルジシロキサンが挙げられる。  [0079] When siloxane diamine is used as a part of diamine, adhesion with an inorganic substrate or the like can be improved. Siloxane diamine is usually preferably used in an amount of 1 to 20 mol% in the total diamine. Specific examples of siloxane diamine include bis (3-aminopropyl) tetramethyldisiloxane.
[0080] テトラカルボン酸二無水物とジァミンの反応は、極性有機溶媒中で混合させること により行うことができる。この時、テトラカルボン酸二無水物とジァミンの混合比により、 得られるポリアミック酸の重合度を調節することができる。ポリアミック酸の合成反応に 供されるテトラカルボン酸二無水物とジァミンの使用割合は、ジァミンに含まれるアミ ノ基 1当量に対して、テトラカルボン酸二無水物の酸無水物基が 0. 2〜2当量となる 割合が好ましぐさらに好ましくは 0. 8〜1. 2当量となる割合である。通常の重縮合 反応同様に、テトラカルボン酸二無水物とジァミンのモル比が 1に近いほど生成する 重合体の重合度は大きくなる。重合度が小さすぎるとポリイミド塗膜の強度が不十分 となり、重合度が大きすぎるとポリイミド塗膜形成時の作業性が悪くなる場合がある。 従って、ポリアミック酸の重合度は、還元粘度( r? spZCとも記す)が 0. 05〜5. Odl /g (温度 30°Cの N—メチルピロリドン中、濃度 0. 5g/dlで測定)が好ましぐ 0. 1〜 2. OdlZgがより好ましい。  [0080] The reaction of tetracarboxylic dianhydride and diamine can be carried out by mixing in a polar organic solvent. At this time, the degree of polymerization of the resulting polyamic acid can be adjusted by the mixing ratio of tetracarboxylic dianhydride and diamine. The proportion of tetracarboxylic dianhydride and diamine used in the polyamic acid synthesis reaction is 0.2 mol of tetracarboxylic dianhydride acid anhydride group with respect to 1 equivalent of amino group contained in diamine. A ratio of ˜2 equivalents is preferable, and a ratio of 0.8 to 1.2 equivalents is more preferable. Similar to the usual polycondensation reaction, the closer the molar ratio of tetracarboxylic dianhydride to diamine is to 1, the higher the degree of polymerization of the polymer produced. If the degree of polymerization is too small, the strength of the polyimide coating film becomes insufficient, and if the degree of polymerization is too large, workability at the time of forming the polyimide coating film may be deteriorated. Therefore, the degree of polymerization of polyamic acid has a reduced viscosity (also referred to as r? SpZC) of 0.05 to 5. Odl / g (measured at a concentration of 0.5 g / dl in N-methylpyrrolidone at a temperature of 30 ° C). Preferred 0.1-2. OdlZg is more preferred.
[0081] また、耐熱性、加工性の向上を目的としてポリアミック酸分子末端のアミノ基または カルボキシル基の一部または全部を封止するために、ジカルボン酸無水物、モノアミ ン化合物、モノイソシァネートイ匕合物などを反応系に添加することも可能である。ジカ ルボン酸無水物としては、例えば無水マレイン酸、無水フタル酸、 4 メチル無水フタ ル酸、 4 tert ブチル無水フタル酸、無水ィタコン酸、無水ナジック酸などを挙げる ことができる。また、モノアミンィ匕合物としては、例えばァ-リン、シクロへキシルァミン 、 n—ブチルァミン、 n—ペンチルァミン、 n—へキシルァミンなどを挙げることができる 。また、モノイソシァネートイ匕合物としては、例えばフエ-ルイソシァネート、ナフチル イソシァネートなどを挙げることができる。特にアミン末端基の一部または全部がジカ ルボン酸無水物とのァミック酸形成反応によって末端封止されていることが好ましぐ ジカルボン酸無水物が無水マレイン酸、無水フタル酸、無水コハク酸および無水ナ ジック酸力 選ばれた少なくとも 1種のジカルボン酸無水物であることが好ましい。 [0081] Further, in order to seal part or all of the amino group or carboxyl group of the polyamic acid molecule for the purpose of improving heat resistance and workability, dicarboxylic acid anhydride, monoamine compound, monoisocyanate are used. It is also possible to add a compound or the like to the reaction system. Examples of dicarboxylic acid anhydrides include maleic anhydride, phthalic anhydride, 4-methyl phthalic anhydride, 4-tert butyl phthalic anhydride, itaconic anhydride, and nadic anhydride. Examples of monoamine compounds include a-line, cyclohexylamine, n-butylamine, n-pentylamine, and n-hexylamine. Examples of monoisocyanate compounds include phenol isocyanate and naphthyl isocyanate. In particular, some or all of the amine end groups Preferably end-capped by amic acid formation reaction with rubonic anhydride. Maleic anhydride, phthalic anhydride, succinic anhydride, and dianhydric acid power are selected from dicarboxylic anhydrides. The dicarboxylic acid anhydride is preferably used.
[0082] ポリアミック酸の合成反応は、有機溶媒中において、好ましくは— 20〜200°C、より 好ましくは 0〜150°Cの温度条件下で行われる。ここで、有機溶媒としては、合成され るポリアミック酸を溶解できるものであれば特に制限はなぐ例えば N—メチルー 2— ピロリドン、 N, N ジメチルァセトアミド、 N, N ジメチルホルムアミド、ジメチルスル ホキシド、 γ プチ口ラタトン、テトラメチノレ尿素、 1, 3 ジメチルー 2 イミダゾリジノ ン、へキサメチルホスホルアミドなどの非プロトン性極性溶媒を例示することができる。 また、有機溶媒の使用量は、テトラカルボン酸二無水物およびジァミンを含む固形分 の濃度が、反応溶液の全量に対して 0. 1〜30重量%になるような量であることが好 ましい。 [0082] The polyamic acid synthesis reaction is preferably carried out in an organic solvent under a temperature condition of -20 to 200 ° C, more preferably 0 to 150 ° C. Here, the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone, N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, γ Examples include aprotic polar solvents such as petit-mouth rataton, tetramethinoreurea, 1,3 dimethyl-2-imidazolidinone, and hexamethylphosphoramide. The amount of the organic solvent used is preferably such that the concentration of the solid content including tetracarboxylic dianhydride and diamine is 0.1 to 30% by weight based on the total amount of the reaction solution. Yes.
[0083] 上記有機溶媒には、ポリアミック酸の貧溶媒であるアルコール、ケトン、エステル、ェ 一テル、ハロゲンィ匕炭化水素および炭化水素などを、生成するポリアミック酸が析出 しない範囲で併用することができる。力かる貧溶媒の具体例としては、例えばメチル ァノレコーノレ、ェチノレアノレコーノレ、イソプロピノレアノレコーノレ、シクロへキサノーノレ、ェチ レングリコール、プロピレングリコール、 1, 4 ブタンジオール、ジエチレングリコーノレ 、トリエチレングリコール、 3—メチルー 3—メトキシブタノール、アセトン、メチルェチル ケトン、メチルイソブチルケトン、シクロへキサノン、乳酸ェチル、乳酸ブチル、酢酸メ チル、酢酸ェチル、酢酸ブチル、メチルー 3—メトキシプロピオネート、 3—メチルー 3 ーメトキシブチルアセテート、ェチルエトキシプロピオネート、シユウ酸ジェチル、マロ ン酸ジェチル、ジェチルエーテル、テトラヒドロフラン、エチレングリコールメチルエー テノレ、エチレングリコーノレエチノレエーテノレ、エチレングリコーノレ η—プロピノレエーテ ル、エチレングリコール イソプロピルエーテル、エチレングリコール η—ブチルェ ーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレェチノレエーテノレア セテート、ジエチレングリコーノレモノメチノレエーテル、ジエチレングリコーノレモノェチノレ エーテノレ、ジエチレングリコーノレジメチノレエーテノレ、ジエチレングリコーノレジェチノレエ 一テル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコーノレ モノェチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテノレアセテート[0083] For the organic solvent, alcohol, ketone, ester, ether, halogenated hydrocarbon and hydrocarbon, which are poor solvents for polyamic acid, can be used in combination as long as the polyamic acid to be produced does not precipitate. . Specific examples of strong anti-solvents include, for example, methylanolenoleole, ethenoreanoreconolele, isopropinoleanoreconole, cyclohexanolenole, ethylene glycol, propylene glycol, 1,4 butanediol, diethyleneglycolene, triethylene Ethylene glycol, 3-methyl-3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl 3-methoxypropionate, 3- Methyl-3-methoxybutyl acetate, ethyl ethoxypropionate, cetyl oxalate, methyl malonate, jetyl ether, tetrahydrofuran, ethylene glycol methyl ether, ethylene glycol eno eno oleate Les, ethylene glycol Honoré eta - Puropinoreete le, ethylene glycol isopropyl ether, ethylene glycol eta - Buchirue Tenore ethyleneglycidyl Kono regime Chino les ether Honoré ethyleneglycidyl Kono Ree Chino les ether Bruno rare Seteto, diethylene glycol Honoré mono- methylol Honoré ether, diethylene Glycole Monomethinore Ethenore, Diethylene Glycono Resin Metinore Ethenore, Diethylene Glyco Gnore Gécinore Iter, Diethylene Glycol Monomethyl Ether Acetate, Diethylene Glyco Gnore Monoetinoreethenoreacetate, Propylene glycolenoremonoetinoreate acetate
、ジクロロメタン、 1, 2 ジクロ口エタン、 1, 4ージクロロブタン、トリクロ口エタン、クロ口 ベンゼン、 o ジクロ口ベンゼン、へキサン、ヘプタン、オクタン、ベンゼン、トノレェン、 キシレンを挙げることができる。 , Dichloromethane, 1,2 dichloroentane, 1,4-dichlorobutane, trichloro ethane, black benzene, o dichroic benzene, hexane, heptane, octane, benzene, tolylene, and xylene.
[0084] 位相差薄膜用榭脂組成物はポリイミド前駆体またはその溶液に、有機溶剤を加え、 常法により均一に混合することにより製造することができる。榭脂組成物を調製する 際の温度は、好ましくは 0°C〜200°C、より好ましくは 20°C〜60°Cである。有機溶剤 としては、ポリアミック酸の合成反応に用いられるものとして例示した溶媒を挙げること ができる。また、ポリアミック酸の合成反応の際に併用することができるものとして例示 した貧溶媒も適宜選択して併用することができる。  [0084] The resin composition for retardation film can be produced by adding an organic solvent to a polyimide precursor or a solution thereof and mixing them uniformly by a conventional method. The temperature at which the rosin composition is prepared is preferably 0 ° C to 200 ° C, more preferably 20 ° C to 60 ° C. Examples of the organic solvent include those exemplified as those used in the polyamic acid synthesis reaction. In addition, the poor solvents exemplified as those that can be used together in the synthesis reaction of the polyamic acid can be appropriately selected and used together.
[0085] 榭脂組成物における固形分濃度は、粘性、揮発性などを考慮して選択されるが、 好ましくは 1〜10重量%の範囲である。すなわち、榭脂組成物は、基板表面に塗布 され、位相差薄膜となる塗膜が形成されるが、固形分濃度が 1重量%未満である場 合には、この塗膜の膜厚が過小となって良好な位相差薄膜を得ることができず、固形 分濃度が 10重量%を超える場合には、塗膜の膜厚が過大となって良好な位相差薄 膜を得ることができず、また、榭脂組成物の粘性が増大して塗布特性が劣るものとな る。  [0085] The solid content concentration in the rosin composition is selected in consideration of viscosity, volatility, etc., but is preferably in the range of 1 to 10% by weight. That is, the resin composition is applied to the substrate surface to form a coating film that becomes a retardation film, but when the solid content concentration is less than 1% by weight, the coating film thickness is too small. Thus, a good retardation film cannot be obtained, and if the solid concentration exceeds 10% by weight, the film thickness of the coating becomes excessive and a good retardation film cannot be obtained. In addition, the viscosity of the rosin composition is increased and the coating properties are inferior.
[0086] 榭脂組成物には、基板表面に対する接着性を向上させる観点から、 3 ァミノプロ ピルトリメトキシシラン、 3— (2—アミノエチル)ァミノプロピルトリメトキシシラン、 N—フ ェニル 3—ァミノプロピルトリメトキシシラン、 3—メルカプトプロピルトリメトキシシラン 、 3 グリシドキシプロピノレトリメトキシシラン、 2- (3, 4 エポキシシクロへキシノレ)ェ チルトリメトキシシラン、 3—イソシァネ一トプロピルトリメトキシシラン、 3—ァミノプロピ ルトリエトキシシラン等の官能性シラン含有ィ匕合物及び Z又はビスフエノール型ェポ キシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、ビフエニル型エポキシ榭脂、 フエノールノボラック型エポキシ榭脂、アルキルフエノールノボラック型エポキシ榭脂、 ポリダリコール型エポキシ榭脂、環状脂肪族エポキシ榭脂、クレゾ一ルノボラック型ェ ポキシ榭 S旨、グリシジノレアミン型エポキシ榭 S旨、ナフタレン型エポキシ榭脂、ウレタン 変'性エポキシ榭脂、ゴム変'性エポキシ榭脂、エポキシ変'性ポリシロキサン等のェポキ シ榭脂類等のエポキシ基含有ィ匕合物が含有されていてもよい。また、塗膜の膜厚均 一性や表面平滑性を向上させる観点から、ポリオキシエチレンラウリルエーテル、ポリ ォキシエチレンジラウレートなどのノ-オン系界面活性剤、フッ素系界面活性剤、シラ ン系界面活性剤、アクリル酸共重合体系界面活性剤等の界面活性剤が含有されて いてもよい。これらの添加剤の含量は、本発明の効果に悪影響を与えない程度であ り、通常、全組成物中、 20重量%以下、好ましくは 10重量%以下である。 [0086] From the viewpoint of improving the adhesion to the substrate surface, the resin composition includes 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and N-phenyl-3-amide. Minopropyltrimethoxysilane, 3-Mercaptopropyltrimethoxysilane, 3 Glycidoxypropinoletrimethoxysilane, 2- (3,4 Epoxycyclohexenole) tiltrimethoxysilane, 3-Isocyanatopropyltrimethoxysilane , Compounds containing functional silanes such as 3-aminopropyltriethoxysilane and Z or bisphenol type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin , Alkylphenol novolac type epoxy resin, Polydaricol type Poxy resin, cycloaliphatic epoxy resin, cresol novolac type epoxy resin S, glycidinoreamine type epoxy resin S, naphthalene type epoxy resin, urethane-modified epoxy resin, rubber-modified epoxy Epoxy such as resin, epoxy-modified polysiloxane Epoxy group-containing compounds such as sebum may be contained. In addition, from the viewpoint of improving the film thickness uniformity and surface smoothness of the coating film, non-ionic surfactants such as polyoxyethylene lauryl ether and polyoxyethylene dilaurate, fluorine-based surfactants, and silane-based surfactants. A surfactant such as a surfactant and an acrylic acid copolymer-based surfactant may be contained. The content of these additives is such that the effects of the present invention are not adversely affected, and is usually 20% by weight or less, preferably 10% by weight or less, based on the total composition.
[0087] 榭脂組成物は、ディップ法、ロールコータ法、スピナ一法、ダイコーティング法、ワイ ヤーバーによる方法などによって基板上に塗布された後、風乾、真空乾燥、オーブ ンゃホットプレートを用いた加熱乾燥などにより塗膜を形成する。加熱条件は、使用 する榭脂、溶媒、塗布量により異なる力 通常 50〜400°Cで、 1〜300分間加熱する ことが好ましい。 [0087] The resin composition is applied on a substrate by a dipping method, a roll coater method, a spinner method, a die coating method, a method using a wire bar, etc., and then air-dried, vacuum-dried, or oven hot plate is used. A coating film is formed by heating and drying. The heating conditions vary depending on the resin, solvent, and coating amount used. It is preferable to heat at 50 to 400 ° C for 1 to 300 minutes.
[0088] 塗布する基板は液晶表示装置用基板、すなわちカラーフィルター基板あるいは TF T基板自身であってもよい。また、一度ベースフィルムに榭脂組成物を塗布した後、 接着層を介して液晶表示基板上に貼り付けてもよい。これらは液晶層とは反対側の 基板面に形成される。また、液晶表示装置用基板の液晶層に接する側の面に形成し てもよい。例えば、上記の榭脂組成物を、透明基板上に赤、青、緑の各色の画素が 二次元的に配列された液晶表示装置用カラーフィルター基板上の画素が形成され た側の面に画素を被覆するように塗布することも可能である。ここで、画素を被覆する とは、画素よりも液晶層側に形成されていることであり、画素と上記の榭脂組成物から なる位相差薄膜が直接的に接していてもよぐ接していなくともよい。例えば、カラー フィルター基板に平坦ィ匕のためのオーバーコート層がある場合には、上記の榭脂組 成物からなる位相差薄膜は、オーバーコート層よりも液晶層側に形成することが可能 であり、オーバーコート層よりも基板側に形成することも可能である。また、上記の榭 脂組成物からなる位相差薄膜を基板上に形成し、さらにその上に赤、青、緑の各色 の画素が二次元的に配列された液晶表示装置用カラーフィルターを形成することも 可能である。  The substrate to be coated may be a liquid crystal display substrate, that is, a color filter substrate or a TFT substrate itself. Alternatively, the resin composition may be applied to the base film and then pasted on the liquid crystal display substrate through an adhesive layer. These are formed on the substrate surface opposite to the liquid crystal layer. Alternatively, it may be formed on the surface of the substrate for a liquid crystal display device that is in contact with the liquid crystal layer. For example, the above-mentioned resin composition may be applied to the surface on the side where pixels are formed on a color filter substrate for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged on a transparent substrate. It is also possible to apply so as to cover the surface. Here, covering the pixel means that the pixel is formed closer to the liquid crystal layer than the pixel, and the pixel and the retardation film made of the above resin composition may be in direct contact with each other. Not necessary. For example, when the color filter substrate has an overcoat layer for flatness, the retardation film made of the above resin composition can be formed on the liquid crystal layer side of the overcoat layer. Yes, it can be formed on the substrate side of the overcoat layer. In addition, a retardation film made of the above resin composition is formed on a substrate, and a color filter for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged thereon is formed. It is also possible.
[0089] さらに、上記の榭脂組成物に顔料、染料等の着色成分を含有し、これをカラーフィ ルターの各色画素用のワニスとして使用し、各色画素自体に位相差補償機能を付与 することも可能である。色画素に使用する場合には、各色画素、すなわち、赤、緑、 青の画素においてリタ一デーシヨン Rは主波長 λに対して位相差 RZ λがほぼ同一 になるように調節することが、各色での位相差補償効果をそろえるうえで好ましい。 [0089] In addition, the above-mentioned resin composition contains coloring components such as pigments and dyes, which are used as varnishes for each color pixel of the color filter, and provide a retardation compensation function to each color pixel itself. It is also possible to do. When used for color pixels, the retardation R is adjusted so that the phase difference RZ λ is approximately the same as the main wavelength λ for each color pixel, that is, the red, green, and blue pixels. It is preferable for aligning the phase difference compensation effect in
[0090] 本発明の液晶表示装置用位相差薄膜は、榭脂組成物を基板上に塗布し、熱処理 を行うことで形成する。位相差薄膜は位相差を有し、液晶表示装置において光が液 晶層を透過する過程で発生する複屈折を補正する機能を有する。ポリイミド系榭脂の 分子鎖は基板面に平行に配向しやすいため膜厚方向と膜面に平行な方向とで屈折 率差 (膜としての複屈折率)が生じる。また、膜面内での分子の配向はランダムである ので、膜面に平行な方向での屈折率の異方性はない。すなわち、本発明の位相差 薄膜は、膜面内方向に X軸、 y軸を取り、膜面に垂直方向に z軸を取ると、ポリイミド系 榭脂を含む薄膜の各方向での屈折率は nx≥ny>nzとなり、光学的に負の一軸異方 性を有し、かつ、光軸が膜面に対して略垂直な位相差薄膜 (負の Cプレート)である。 ここで、光学的に負の一軸異方性を示すとは、互いに等しい 2つの軸の屈折率に対 し、残りの 1つの軸の屈折率が小さいことをいい、光軸が膜面に対して略垂直である とは、 nx=ny>nzであることをいう。具体的には、 0≤nx-ny≤0. 005、 ny>nz力 つであれば良い。 [0090] The retardation film for a liquid crystal display device of the present invention is formed by applying a resin composition on a substrate and performing a heat treatment. The retardation film has a retardation, and has a function of correcting birefringence generated in the process of light passing through the liquid crystal layer in the liquid crystal display device. Since the molecular chain of polyimide resin is easily oriented parallel to the substrate surface, a difference in refractive index (birefringence as a film) occurs between the film thickness direction and the direction parallel to the film surface. In addition, since the molecular orientation in the film plane is random, there is no anisotropy of the refractive index in the direction parallel to the film plane. That is, when the retardation thin film of the present invention has the X-axis and y-axis in the in-plane direction and the z-axis in the direction perpendicular to the film surface, the refractive index in each direction of the thin film containing the polyimide-based resin is nx≥ny> nz, which is a retardation thin film (negative C plate) that has optically negative uniaxial anisotropy and whose optical axis is substantially perpendicular to the film surface. Here, optically negative uniaxial anisotropy means that the refractive index of the remaining one axis is small compared to the refractive index of the two axes that are equal to each other, and the optical axis is relative to the film surface. The term “substantially vertical” means that nx = ny> nz. Specifically, 0≤nx-ny≤0.005, ny> nz is sufficient.
[0091] 位相差薄膜の厚み方向の複屈折 Δ η(=ηχ—ηζ)は 0. 01〜0. 3であることが好ま しい。より好ましくは、 0. 03以上であり、さらに好ましくは 0. 05以上である。複屈折が 0. 01よりも小さいと、液晶の位相差を補償するために必要な位相差薄膜の膜厚が 過大となり、膜形成が困難になる。  [0091] The birefringence Δη (= ηχ-ηζ) in the thickness direction of the retardation film is preferably 0.01 to 0.3. More preferably, it is 0.03 or more, and further preferably 0.05 or more. If the birefringence is less than 0.01, the thickness of the retardation film necessary to compensate for the phase difference of the liquid crystal becomes excessive, and film formation becomes difficult.
[0092] 位相差薄膜の膜厚は 0. 5〜20 μ mであることが好まし!/、。  [0092] The thickness of the retardation film is preferably 0.5 to 20 μm! /.
本発明の位相差薄膜は液晶表示装置一般に有効であるが、光軸が位相差薄膜面 に略垂直であるので、液晶表示装置の中でも、特に電圧無印加時に液晶分子が液 晶セル面に対して略垂直な方向に配向(ホメオト口ピック配向)し、電圧印加時に液 晶分子が液晶セル面に略平行な方向に配向する表示方式、具体的には MVA(Mul ti- domain Vertical Alignment)方式、 PVA (Patterned Vertical Alignment)方式、 CP A (Continuous Pinwheel Alignment)方式などの垂直配向方式の液晶表示装置にお いてより好ましく用いられる。 [0093] 上述のように本発明の位相差薄膜の光軸は液晶を挟む 2枚の基板の基板面に対し て略垂直方向にあるので、画面を垂直に見た場合には位相差補償効果がないが、 垂直配向方式の場合には電圧無印加時において垂直方向では液晶層の位相差も ほぼゼロであるため位相差の補償は必要ない。すなわち、電圧無印加時、位相差を 補償しなくても良好な黒表示が得られる。しかし、斜め方向では電圧無印加時にお いても液晶層に位相差があるため、この位相差を補償しないと光漏れが起こり、良好 な黒表示が得られず、コントラスト低下の原因となる。したがって、本発明の位相差薄 膜は垂直配向方式において斜め方向でのコントラスト向上、ひいては視野角拡大に 顕著な効果を示す。 The retardation film of the present invention is generally effective for liquid crystal display devices. However, since the optical axis is substantially perpendicular to the retardation film surface, the liquid crystal molecules in the liquid crystal display device, particularly when no voltage is applied, to the liquid crystal cell surface. Display method in which liquid crystal molecules are aligned in a direction substantially parallel to the liquid crystal cell surface when a voltage is applied (specifically, MVA (Multi-domain Vertical Alignment) method). It is more preferably used in a liquid crystal display device of a vertical alignment method such as a PVA (Patterned Vertical Alignment) method or a CPA (Continuous Pinwheel Alignment) method. [0093] As described above, since the optical axis of the retardation film of the present invention is substantially perpendicular to the substrate surfaces of the two substrates sandwiching the liquid crystal, the retardation compensation effect is obtained when the screen is viewed vertically. However, in the case of the vertical alignment method, the phase difference of the liquid crystal layer is almost zero in the vertical direction when no voltage is applied, so that compensation for the phase difference is not necessary. That is, when no voltage is applied, good black display can be obtained without compensating for the phase difference. However, in the oblique direction, there is a phase difference in the liquid crystal layer even when no voltage is applied. Therefore, if this phase difference is not compensated for, light leakage occurs, and a good black display cannot be obtained, resulting in a decrease in contrast. Therefore, the retardation film of the present invention has a remarkable effect in improving the contrast in the oblique direction and thus in widening the viewing angle in the vertical alignment method.
実施例  Example
[0094] <ポリイミド前駆体の還元粘度( η sp/C)の測定 >  [0094] <Measurement of reduced viscosity (η sp / C) of polyimide precursor>
ポリイミド前駆体を 0. 5gZdlの濃度になるように N—メチルピロリドンで溶解、希釈し た溶液を、ウベローデ型粘度計を用いて 30°Cで測定した。  A solution obtained by dissolving and diluting the polyimide precursor with N-methylpyrrolidone to a concentration of 0.5 gZdl was measured at 30 ° C. using an Ubbelohde viscometer.
[0095] <光学軸の測定方法 > [0095] <Optical axis measurement method>
シンテック社製" OPTIPRO"を用いて測定した。  It was measured using “OPTIPRO” manufactured by Shintech.
ガラス基板上に仕上がりの厚みが 2. 0 mになるようにポリイミド前駆体溶液をスピナ 一で塗布した後、 120°Cで 20分間乾燥し、 240°Cで 30分間または 270°Cで 40分間 熱処理することによって、ポリイミド榭脂薄膜を得た。このポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性、ならびに膜面に垂直方向の屈折率異方性を測定した  After applying the polyimide precursor solution on a glass substrate with a spinner so that the finished thickness is 2.0 m, it is dried at 120 ° C for 20 minutes and then at 240 ° C for 30 minutes or 270 ° C for 40 minutes. A polyimide resin thin film was obtained by heat treatment. The refractive index anisotropy in the direction parallel to the film surface of this polyimide resin thin film and the refractive index anisotropy in the direction perpendicular to the film surface were measured.
<複屈折の測定方法 > <Measurement method of birefringence>
メトリコン社製"プリズムカプラー 2010"を用いて測定した。  Measurement was performed using "Prism Coupler 2010" manufactured by Metricon.
ガラス基板上に仕上がりの厚みが 2. 0 mになるようにポリイミド前駆体溶液をスピナ 一で塗布した後、 120°Cで 20分間乾燥し、 240°Cで 30分間または 270°Cで 40分間 熱処理することによって、ポリイミド榭脂薄膜を得た。このポリイミド榭脂薄膜の膜面に 平行な方向の屈折率 nl (=nx)と膜厚方向の屈折率 n2 (=nz)を測定し、これらの 屈折率の差力 複屈折を下式により算出した。光源には 632. 8nmの HeNeレーザ 一光を使用した。 Δ η=η1— n2 After applying the polyimide precursor solution on a glass substrate with a spinner so that the finished thickness is 2.0 m, it is dried at 120 ° C for 20 minutes and then at 240 ° C for 30 minutes or 270 ° C for 40 minutes. A polyimide resin thin film was obtained by heat treatment. The refractive index nl (= nx) in the direction parallel to the film surface of this polyimide resin thin film and the refractive index n2 (= nz) in the film thickness direction are measured, and the differential birefringence of these refractive indexes is calculated by the following equation. did. A 63.8nm HeNe laser was used as the light source. Δ η = η1— n2
[0096] <膜の着色の測定方法 >  [0096] <Measurement Method of Film Coloring>
大塚電子 (株)製の" MCPD— 2000"顕微分光光度計を用いて測定を行った。 ガラス基板上に仕上がりの厚みが 2. 0 mになるようにポリイミド前駆体溶液をスピナ 一で塗布した後、 120°Cで 20分間乾燥し、 240°Cで 30分間または 270°Cで 40分間 熱処理することによって、ポリイミド榭脂薄膜を得た。 XYZ表色系(CIE1931標準表 色系)において、標準 C光源の色座標 (X, y) = (0. 3100, 0. 3162)とポリイミド榭 脂薄膜を透過した後の光の色座標 (xl, yl)との差(Δ χ, Ay)を求めた。ここで、 Δ x=xl— x、 Ay=yl— yである。 Δ χ、 Ayがともに大きい場合には白表示が黄色味 を帯び、表示品位が低下する。 Δ χ、 Ayはともに 0. 005以下となることが好ましぐ 0 . 003以下であることがより好ましい。  Measurements were made using an "MCPD-2000" microspectrophotometer manufactured by Otsuka Electronics Co., Ltd. After applying the polyimide precursor solution on a glass substrate with a spinner so that the finished thickness is 2.0 m, it is dried at 120 ° C for 20 minutes and then at 240 ° C for 30 minutes or 270 ° C for 40 minutes. A polyimide resin thin film was obtained by heat treatment. In the XYZ color system (CIE1931 standard color system), the color coordinates (X, y) = (0.3100, 0.3162) of the standard C light source and the color coordinates of light after passing through the polyimide resin film (xl , yl) and the difference (Δχ, Ay). Here, Δ x = xl—x and Ay = yl—y. When both Δχ and Ay are large, the white display is yellowish and the display quality is degraded. Both Δχ and Ay are preferably 0.005 or less, and more preferably 0.003 or less.
[0097] 合成例(1,2,3,4—シクロブタンテトラカルボン酸二無水物の合成)  [0097] Synthesis Example (Synthesis of 1,2,3,4-cyclobutanetetracarboxylic dianhydride)
ノィレックス (登録商標)ガラス製水冷ランプジャケットをつけた内容積 2リットルの内 部照射型ガラス製反応フラスコに無水マレイン酸 255g (2. 60モル)と酢酸ェチル 1, 445gを仕込み、フラスコ内を窒素で置換した後、室温で攪拌溶解した。引き続き攪 拌しながら、反応溶液を 5°Cに冷却した後、 400W高圧水銀灯の照射を開始し、 96 時間光照射を続けた。照射中、反応溶液温度を 3〜5°Cに保った。反応終了後、ろ 過により結晶とろ液を分離した。粗結晶を酢酸ェチルで洗浄した後、真空乾燥器で 4 0°C、 10時間乾燥し、 1,2,3,4—シクロブタンテトラカルボン酸二無水物の結晶 194g を得た。  A 2 liter internal-irradiation glass reaction flask equipped with a Neurex (registered trademark) glass water-cooled lamp jacket was charged with 255 g (2.60 mol) maleic anhydride and 1,445 g ethyl acetate, and the flask was filled with nitrogen. Then, the solution was stirred and dissolved at room temperature. The reaction solution was cooled to 5 ° C with continuous stirring, and then irradiation with a 400 W high-pressure mercury lamp was started and light irradiation was continued for 96 hours. During the irradiation, the reaction solution temperature was kept at 3-5 ° C. After completion of the reaction, the crystals and the filtrate were separated by filtration. The crude crystals were washed with ethyl acetate and then dried in a vacuum dryer at 40 ° C. for 10 hours to obtain 194 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride crystals.
[0098] 実施例 1  [0098] Example 1
乾燥窒素気流下、トランス— 1, 4—ジアミノシクロへキサン 10. 96g (0. 096モル) とビス(3—ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチ ル— 2—ピロリドン 177. 28gに溶解した。その後、 3, 3,, 4, 4,—ビフエ-ルテトラ力 ルボン酸二無水物 28. 25g (0. 096モル)と N—メチル—2—ピロリドン 40. OOgをカロ え、 60°Cで 3時間攪拌した。さらに、無水フタル酸 1. 18g (0. 008モル)をカ卩えた後、 60°Cで 3時間攪拌し、透明で粘稠なポリアミック酸溶液 A (ポリマー濃度 16重量%)を 得た。 25°Cで測定した溶液 Aの粘度は 830mPa' sであった。還元粘度は 0. 70dl/ gであった。 Trans- 1,4-diaminocyclohexane 10.96 g (0.096 mol) and bis (3-aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) in N-methyl under a dry nitrogen stream 2-Pyrrolidone was dissolved in 177.28 g. Then, 3, 3, 4, 4, 4—biphenyltetra-force 28.25 g (0.096 mol) of rubonic dianhydride and 40. OOg of N-methyl-2-pyrrolidone were added at 60 ° C. Stir for hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution A (polymer concentration: 16% by weight). The viscosity of Solution A measured at 25 ° C. was 830 mPa's. Reduced viscosity is 0.70dl / g.
[0099] ガラス基板上に仕上がりの厚みが 2. 0 mになるようにポリアミック酸溶液 Aをスピ ナ一で塗布した後、 120°Cで 20分間乾燥、さらに熱処理することによって、ポリイミド 榭脂薄膜を得た。 240°Cで 30分間熱処理したときのポリイミド榭脂薄膜の膜面に平 行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異方 性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリイミ ド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直であ つた。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 683、膜厚方向の 屈折率は n2= l. 592であり、複屈折は Δη=0. 091であった。また、透過光の色座 標は(0. 3108, 0. 3172)、 Δχ=0. 0008、 Δγ=0. 0010であり、 Δχ、 Ayともに 0. 003以下であり、着色のない位相差薄膜が得られた。また、 270°Cで 40分間熱処 理したときのポリイミド榭脂薄膜は、膜面に平行な方向の屈折率異方性はなぐ nx=n yであった。膜面に垂直な方向の屈折率異方性を測定したところ、 nx>nzであり、負 の 1軸性を示した。すなわち、得られたポリイミド榭脂薄膜は、光学的に負のー軸異 方性を有し光軸が薄膜面に対して略垂直であった。ポリイミド榭脂薄膜の膜面に平 行な方向の屈折率 nl = l. 745、n2= l. 571カも複屈折 Δη=0. 174であり、透過 光の色座標(0. 3116, 0. 3179)力も Δχ=0. 0016、 Δγ=0. 0017であり、 Δχ、 Ayともに 0. 003以下であり、着色のない位相差薄膜が得られた。  [0099] Polyamic acid solution A was applied on a glass substrate to a thickness of 2.0 m with a spinner, dried at 120 ° C for 20 minutes, and further heat-treated to obtain a polyimide resin film. Got. The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film after heat treatment at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film was nl = l.683, the refractive index in the film thickness direction was n2 = l.592, and the birefringence was Δη = 0.091. The color coordinates of transmitted light are (0.3108, 0.3172), Δχ = 0.0008, Δγ = 0.0010, both Δχ and Ay are 0.003 or less, and there is no phase difference thin film. was gotten. The polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative-axis anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index nl = l. 745 and n2 = l. 571 in the direction parallel to the film surface of the polyimide resin thin film are also birefringent Δη = 0.174, and the transmitted light color coordinates (0.3116, 0. 3179) The forces were also Δχ = 0.0016 and Δγ = 0.0017, both Δχ and Ay were 0.003 or less, and a phase difference thin film without coloring was obtained.
[0100] 実施例 2  [0100] Example 2
乾燥窒素気流下、トランス— 1, 4 ジアミノシクロへキサン 10. 96g (0. 096モル) とビス(3 ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチ ル— 2 ピロリドン 173. 28gに溶解した。その後、 3, 3,, 4, 4,—ビフエ-ルテトラ力 ルボン酸二無水物 25. 30g (0. 086モル)、無水ピロメリット酸 2. 18g (0. 010モル) と N—メチル 2 ピロリドン 40. 00gをカ卩え、 60°Cで 3時間攪拌した。さらに、無水フ タル酸 1. 18g (0. 008モル)を加えた後、 60°Cで 3時間攪拌し、透明で粘稠なポリア ミック酸溶液 B (ポリマー濃度 16重量%)を得た。 25°Cで測定した溶液 Bの粘度は 69 OmPa'sであった。還元粘度は 0. 67dlZgであった。  Trans- 1,4 diaminocyclohexane 10.96 g (0.096 mol) and bis (3aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) in N-methyl-2-pyrrolidone under a dry nitrogen stream 173. Dissolved in 28 g. After that, 3, 3, 4, 4, 4-biphenyltetra-force rubonic acid dianhydride 25.30g (0.086 mole), pyromellitic anhydride 2.18g (0.010 mole) and N-methyl-2-pyrrolidone 40.00 g was added and stirred at 60 ° C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added, followed by stirring at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution B (polymer concentration: 16% by weight). The viscosity of Solution B measured at 25 ° C was 69 OmPa's. The reduced viscosity was 0.67 dlZg.
[0101] 実施例 1と同様に作製し、 270°Cで 40分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 698、膜厚方向 の屈折率は n2= l. 586であり、複屈折は Δη=0. 112、透過光の色座標は(0. 31 11, 0. 3174)、 Δχ=0. 0011、 Δγ=0. 0012であり、 Δχ、 Ayともに 0. 003以下 であり、着色のない位相差薄膜が得られた。 [0101] Fabricated in the same manner as in Example 1, and heat-treated at 270 ° C for 40 minutes on the polyimide resin thin film surface The refractive index anisotropy in the parallel direction was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 698, the refractive index in the film thickness direction is n2 = l. 586, the birefringence is Δη = 0.112, and the color coordinates of the transmitted light (0. 31 11, 0. 3174), Δχ = 0.0011, Δγ = 0.0012, and Δχ and Ay were both 0.003 or less, and a phase difference thin film without coloring was obtained.
[0102] 実施例 3 [0102] Example 3
乾燥窒素気流下、トランス— 1, 4—ジアミノシクロへキサン 10. 96g (0. 096モル) とビス(3—ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチ ル— 2—ピロリドン 171. 06gに溶解した。その後、 3, 3,, 4, 4,—ビフエ-ルテトラ力 ルボン酸二無水物 28. 25g (0. 096モル)と N—メチル—2—ピロリドン 40. OOgをカロ え、 60°Cで 5時間攪拌し、透明で粘稠なポリアミック酸溶液 C (ポリマー濃度 16重量 %)を得た。 25°Cで測定した溶液 Cの粘度は 5, 222mPa'sであった。還元粘度は 0 . 81dlZgであった。  Trans- 1,4-diaminocyclohexane 10.96 g (0.096 mol) and bis (3-aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) in N-methyl under a dry nitrogen stream 2-pyrrolidone was dissolved in 171.06 g. Then, 3, 3 ,, 4, 4, -biphenyltetra-force rubonic acid dianhydride 28.25g (0.096 mol) and N-methyl-2-pyrrolidone 40.OOg were calored and heated at 60 ° C. The mixture was stirred for a time to obtain a transparent and viscous polyamic acid solution C (polymer concentration: 16% by weight). The viscosity of Solution C measured at 25 ° C was 5,222 mPa's. The reduced viscosity was 0.81 dlZg.
[0103] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率は nl = l. 706、膜厚方向の屈折率は n2= l. 592であり、複 屈折 ίま Δη=0. 114、透過光の色座標 ίま(0. 3109, 0. 3171)、 Δχ=0. 0009、 Δγ=0. 0009であり、 Δχ、 Ayともに 0. 003以下であり、着色のな!/、位ネ目差薄膜力 S 得られた。また、 270°Cで 40分間熱処理したときのポリイミド榭脂薄膜は、膜面に平 行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異方 性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリイミ ド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直であ つた。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率 nl = l. 735、n2 = l. 572 力ら複屈折 Δη=0. 163であり、透過光の色座標(0. 3116, 0. 3180)力ら Δχ=0 . 0016、 Δγ=0. 0018であり、 Δχ、 Ayともに 0. 003以下であり、着色のな!/、位ネ目 差薄膜が得られた。  [0103] The refractive index in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes is nl = l. 706, and the refractive index in the film thickness direction is n2 = l. 592, birefringence up to Δη = 0.114, color coordinates of transmitted light up to ί (0 3109, 0. 3171), Δχ = 0. 0009, Δγ = 0. 0009, Δχ, Ay Both were 0.003 or less, and there was no coloration! In addition, the polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. Refractive index in the direction parallel to the film surface of polyimide resin thin film nl = l. 735, n2 = l. 572 Force birefringence Δη = 0.163, and transmitted light color coordinates (0.33116, 0.33180) ) Force et al. Δχ = 0.0016, Δγ = 0.0018, and Δχ and Ay were both 0.003 or less, and there was no coloring!
[0104] 実施例 4 乾燥窒素気流下、トランス— 1, 4 ジアミノシクロへキサン 11. 42g (0. 100モル) を N—メチノレ一 2 ピロリドン 174. 42gに溶解した。その後、 3, 3' , 4, 4,一ビフエ- ルテトラカルボン酸二無水物 29. 42g (0. 100モル)と N—メチルー 2 ピロリドン 40 . 00gを加え、 60°Cで 5時間攪拌した。室温に冷却した後、 N—メチル—2 ピロリド ン 85. 07gを加え、透明で粘稠なポリアミック酸溶液 D (ポリマー濃度 12重量%)を得 た。 25°Cで測定した溶液 Dの粘度は 5, 878mPa' sであった。還元粘度は 1. 68dl / gであつ 7こ。 [0104] Example 4 Under a dry nitrogen stream, 11.42 g (0.100 mol) of trans-1,4 diaminocyclohexane was dissolved in 174.42 g of N-methylol-2-pyrrolidone. Then, 3, 3 ', 4, 4, 1-biphenyltetracarboxylic dianhydride 29.42g (0.100mol) and N-methyl-2-pyrrolidone 40.00g were added and stirred at 60 ° C for 5 hours. . After cooling to room temperature, 85.07 g of N-methyl-2 pyrrolidone was added to obtain a transparent and viscous polyamic acid solution D (polymer concentration: 12% by weight). The viscosity of Solution D measured at 25 ° C was 5,878 mPa's. Reduced viscosity is 1.68dl / g, 7 pieces.
[0105] 実施例 1と同様に作製し、 270°Cで 40分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 745、膜厚方向 の屈折率は n2= l. 571であり、複屈折は Δ η=0. 174、透過光の色座標は(0. 31 20, 0. 3187)、 Δ χ=0. 0020、 Δγ=0. 0025であり、 Δ χ、 Ayともに 0. 003以下 であり、着色のない位相差薄膜が得られた。  [0105] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 270 ° C for 40 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l.745, the refractive index in the film thickness direction is n2 = l.571, the birefringence is Δη = 0.174, the color of the transmitted light The coordinates are (0.31 20, 0. 3187), Δχ = 0.0020, Δγ = 0.0025, both Δχ, Ay are 0.003 or less, and a phase difference thin film without coloring was obtained. .
[0106] 実施例 5  [0106] Example 5
乾燥窒素気流下、トランス— 1, 4 ジアミノシクロへキサン 11. 42g (0. 100モル) を N—メチル 2 ピロリドン 176. 30gに溶解した。その後、 4, 4'—ォキシジフタル 酸二無水物 29. 78g (0. 096モル)と N—メチル—2 ピロリドン 40. 00gを加え、 60 °Cで 5時間攪拌した。室温に冷却した後、 N—メチル—2 ピロリドン 85. 83gをカロえ 、透明で粘稠なポリアミック酸溶液 E (ポリマー濃度 12重量%)を得た。 25°Cで測定し た溶液 Eの粘度は 1, 139mPa' sであった。還元粘度は 0. 96dlZgであった。  Under a stream of dry nitrogen, 11.42 g (0.100 mol) of trans-1,4 diaminocyclohexane was dissolved in 176.30 g of N-methyl-2-pyrrolidone. Thereafter, 29.78 g (0.096 mol) of 4,4′-oxydiphthalic dianhydride and 40.00 g of N-methyl-2-pyrrolidone were added and stirred at 60 ° C. for 5 hours. After cooling to room temperature, 85.83 g of N-methyl-2 pyrrolidone was obtained to obtain a transparent and viscous polyamic acid solution E (polymer concentration: 12% by weight). The viscosity of Solution E measured at 25 ° C was 1,139 mPa's. The reduced viscosity was 0.96 dlZg.
[0107] 実施例 1と同様に作製し、 270°Cで 40分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 631、膜厚方向 の屈折率は n2= l. 616であり、複屈折は Δ η=0. 015、透過光の色座標は(0. 31 22, 0. 3190)、 Δχ=0. 0022、 Δγ=0. 0028であり、 Δχ、 Ayともに 0. 003以下 であり、着色のない位相差薄膜が得られた。 [0107] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film produced in the same manner as in Example 1 and heat-treated at 270 ° C for 40 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 631, the refractive index in the film thickness direction is n2 = l. 616, the birefringence is Δη = 0.015, the color of the transmitted light The coordinates are (0.31 22, 0.3190), Δχ = 0.0022, Δγ = 0.0028, and Δχ and Ay were both 0.003 or less, and a phase difference thin film without coloring was obtained.
[0108] 実施例 6 [0108] Example 6
乾燥窒素気流下、 P フエ-レンジァミン 10. 38g (0. 096モル)とビス(3 アミノプ 口ピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチル 2 ピロリドン 1 24. 79gに溶解した。その後、 1, 2, 3, 4ーシクロブタンテトラカルボン酸二無水物 1 8. 83g (0. 096モル)と N—メチル—2 ピロリドン 40. 00gを加え、 60。Cで 3時間攪 拌した。さらに、無水フタル酸 1. 18g (0. 008モル)をカ卩えた後、 60°Cで 3時間攪拌 し、透明で粘稠なポリアミック酸溶液 F (ポリマー濃度 16重量%)を得た。 25°Cで測定 した溶液 Fの粘度は 384mPa'sであった。還元粘度は 0. 56dlZgであった。  P-Phenylenediamine 10.38 g (0.096 mol) and bis (3 aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) to 24.79 g of N-methyl-2-pyrrolidone 1 under dry nitrogen flow Dissolved. Then, 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride 1 8.83 g (0.096 mol) and N-methyl-2 pyrrolidone 40.00 g were added. Stir at C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution F (polymer concentration: 16% by weight). The viscosity of Solution F measured at 25 ° C was 384 mPa's. The reduced viscosity was 0.56 dlZg.
[0109] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率は nl = l. 621、膜厚方向の屈折率は n2= l. 586であり、複 屈折 ίま Δη=0. 035であった。また、透過光の色座標 ίま(0. 3109, 0. 3173)、 Δχ =0. 0009、 Δγ=0. 0011であり、 Δχ、 Ayともに 0. 005以下であり、着色の/ J、さ い位相差薄膜が得られた。また、 270°Cで 40分間熱処理したときのポリイミド榭脂薄 膜は、膜面に平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方 向の屈折率異方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち 、得られたポリイミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に 対して略垂直であった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率 nl = l. 6 31、n2= l. 586カも複屈折 Δη=0. 045であり、透過光の色座標(0. 3127, 0. 3 197)力ら Δχ=0. 0027、 Δγ=0. 0035であり、 Δχ、 Ayともに 0. 005以下であり 、着色の小さい位相差薄膜が得られた。  [0109] The refractive index in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes is nl = l. 621, and the refractive index in the film thickness direction is n2 = l. 586, birefringence ί or Δη = 0.035. Also, the color coordinates of transmitted light are ί (0.3109, 0.3173), Δχ = 0.0009, Δγ = 0.0011, Δχ, Ay are both 0.005 or less, A thin retardation film was obtained. In addition, the polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film nl = l. 631, n2 = l. 586 also has birefringence Δη = 0.045, and the transmitted light color coordinates (0.3127, 0. 3 197) Force et al. Δχ = 0.0027, Δγ = 0.0035, Δχ and Ay were both 0.005 or less, and a retardation film with small coloring was obtained.
[0110] 実施例 7  [0110] Example 7
乾燥窒素気流下、 4, 4,—ジァミノべンズァニリド 21. 82g (0. 096モノレ)とビス(3 —ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を γ ブチロラクト ン 112. 41gに溶解した。次に、 N—メチル—2 ピロリドン 72. 41gを加えた。その後 、 1, 2, 3, 4 シクロブタンテトラカルボン酸二無水物 18. 83g (0. 096モル)と N— メチル 2 ピロリドン 40. 00gをカ卩え、 60°Cで 3時間攪拌した。さらに、無水フタル 酸 1. 18g (0. 008モル)を加えた後、 60°Cで 3時間攪拌し、透明で粘稠なポリアミツ ク酸溶液 G (ポリマー濃度 16重量%)を得た。 25°Cで測定した溶液 Gの粘度は 1, 08 OmPa'sであった。還元粘度は 0. 71dlZgであった。 Under a nitrogen stream, 4,82-diaminobenzanilide 21.82g (0.096 monole) and bis (3-aminopropyl) tetramethyldisiloxane 0.99g (0.004mol) into γ-butyrolacton 112.41g Dissolved. Next, 72.41 g of N-methyl-2 pyrrolidone was added. Thereafter, 18.83 g (0.096 mol) of 1,2,3,4 tetracyclobutanetetracarboxylic dianhydride and 40.00 g of N-methyl-2-pyrrolidone were added and stirred at 60 ° C. for 3 hours. In addition, anhydrous phthalate After adding 1.18 g (0.008 mol) of acid, the mixture was stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution G (polymer concentration: 16% by weight). The viscosity of Solution G measured at 25 ° C was 1,08 OmPa's. The reduced viscosity was 0.71 dlZg.
[0111] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 669、膜厚方向 の屈折率 ίま n2= l. 604であり、複屈折 ίま Δη=0. 065、透過光の色座標 ίま(0. 31 15, 0. 3180)、 Δχ=0. 0015、 Δγ=0. 0018であり、 Δχ、 Ayともに 0. 003以下 であり、着色のない位相差薄膜が得られた。また、 270°Cで 40分間熱処理したときの ポリイミド榭脂薄膜は、膜面に平行な方向の屈折率異方性はなぐ nx=nyであった。 膜面に垂直な方向の屈折率異方性を測定したところ、 nx>nzであり、負の 1軸性を 示した。すなわち、得られたポリイミド榭脂薄膜は、光学的に負の一軸異方性を有し 光軸が薄膜面に対して略垂直であった。ポリイミド榭脂薄膜の膜面に平行な方向の 屈折率 nl = l. 688、n2 = l. 601カも複屈折 Δη=0. 087であり、透過光の色座 標(0. 3142, 0. 3212)力ら Δχ=0. 0042、 Δγ=0. 0050であり、 Δχ、 Ayともに 0. 005以下であり、着色の小さい位相差薄膜が得られた。  [0111] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film produced in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 669, the refractive index in the film thickness direction is n2 = l. 604, and the birefringence is about Δη = 0.065, the transmitted light Color coordinates ί (0. 31 15, 0. 3180), Δχ = 0.0015, Δγ = 0.0018, and Δχ and Ay are both 0.003 or less, and a phase difference thin film without coloring was obtained. . Further, the polyimide resin thin film when heat-treated at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index nl = l. 688 and n2 = l. 601 in the direction parallel to the film surface of the polyimide resin thin film are also birefringent Δη = 0.087, and the transmitted light color coordinates (0.3142, 0. 3212) Force et al. Δχ = 0.0042, Δγ = 0.0050, and Δχ and Ay were both 0.005 or less, and a retardation film with small coloring was obtained.
[0112] 実施例 8  [0112] Example 8
乾燥窒素気流下、 2, 2,—ジメチルベンジジン 20. 38g (0. 096モル)とビス(3 ァ ミノプロピル)テトラメチルジシロキサン 0. 99g(0. 004モル)を N—メチル 2 ピロリ ドン 177. 28gに溶解した。その後、 1, 2, 3, 4 シクロブタンテトラカルボン酸二無 水物 18. 83g (0. 096モル)と N—メチル—2 ピロリドン 40. OOgを加え、 60。Cで 3 時間攪拌した。さらに、無水フタル酸 1. 18g (0. 008モル)をカ卩えた後、 60°Cで 3時 間攪拌し、透明で粘稠なポリアミック酸溶液 H (ポリマー濃度 16重量%)を得た。 25 °Cで測定した溶液 Hの粘度は 1, 055mPa'sであった。還元粘度は 0. 78dlZgであ つた o  In a dry nitrogen stream, 2,38-dimethylbenzidine (20.38 g, 0.096 mol) and bis (3-aminopropyl) tetramethyldisiloxane (0.99 g, 0.004 mol) were added to N-methyl-2-pyrrolidone. Dissolved in 28 g. Then, add 1,83,83 g (0.096 mol) of 1,2,3,4 tetracyclobutanetetracarboxylic acid dianhydride and 40.OOg of N-methyl-2-pyrrolidone. Stir at C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution H (polymer concentration: 16% by weight). The viscosity of solution H measured at 25 ° C. was 1, 055 mPa's. Reduced viscosity was 0.78 dlZg o
[0113] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率は nl = l. 625、膜厚方向の屈折率は n2= l. 587であり、複 屈折 ίま Δη=0. 038、透過光の色座標 ίま(0. 3114, 0. 3180)、 Δχ=0. 0014、 Δγ=0. 0018であり、 Δχ、 Ayともに 0. 003以下であり、着色のな!/、位ネ目差薄膜力 S 得られた。また、 270°Cで 40分間熱処理したときのポリイミド榭脂薄膜は、膜面に平 行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異方 性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリイミ ド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直であ つた。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率 nl = l. 625、n2 = l. 586 力ら複屈折 Δη=0. 039であり、透過光の色座標(0. 3134, 0. 3210)力ら Δχ=0 . 0034、 Δγ=0. 0048であり、 Δχ、 Ayともに 0. 005以下であり、着色の/ J、さい位 相差薄膜が得られた。 [0113] On the film surface of a polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes. The refractive index in the parallel direction is nl = l. 625, the refractive index in the film thickness direction is n2 = l. 587, birefringence is up to Δη = 0.038, and the color coordinate of transmitted light is up to 0.33, 0.3180), Δχ = 0.0014, Δγ = 0.0018, Δχ and Ay were both 0.003 or less, and no coloring was observed! In addition, the polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. Refractive index nl = l. 625, n2 = l. 586 Force birefringence Δη = 0.039, and the color coordinates of transmitted light (0.33134, 0.33210) ) Force et al. Δχ = 0.0034, Δγ = 0.0048, and Δχ and Ay were both 0.005 or less, and a colored / J, dilute phase difference thin film was obtained.
[0114] 実施例 9 [0114] Example 9
乾燥窒素気流下、 2, 2,—ビス (トリフルォロメチル)ベンジジン 30. 74g (0. 096モ ル)とビス(3—ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メ チルー 2—ピロリドン 231. 69gに溶解した。その後、 1, 2, 3, 4—シクロブタンテトラ カルボン酸二無水物 18. 83g (0. 096モル)と N—メチル—2—ピロリドン 40. OOgを 加え、 60°Cで 3時間攪拌した。さらに、無水フタル酸 1. 18g (0. 008モル)をカ卩えた 後、 60°Cで 3時間攪拌し、透明で粘稠なポリアミック酸溶液 1 (ポリマー濃度 16重量% )を得た。 25°Cで測定した溶液 Iの粘度は 275mPa'sであった。還元粘度は 0. 58dl / gであつ 7こ。  In a dry nitrogen stream, 2,74-bis (trifluoromethyl) benzidine (30.74 g, 0.096 mole) and bis (3-aminopropyl) tetramethyldisiloxane (0.99 g, 0.004 mole) were mixed with N. —Methyl-2-pyrrolidone 231. Dissolved in 69 g. Then, 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride 18.83 g (0.096 mol) and N-methyl-2-pyrrolidone 40.OOg were added and stirred at 60 ° C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution 1 (polymer concentration: 16% by weight). The viscosity of Solution I measured at 25 ° C was 275 mPa's. The reduced viscosity is 0.58 dl / g.
[0115] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率は nl = l. 560、膜厚方向の屈折率は n2= l. 540であり、複 屈折 ίま Δη=0. 020、透過光の色座標 ίま(0. 3103, 0. 3164)、 Δχ=0. 0003、 Δγ=0. 0002であり、 Δχ、 Ayともに 0. 003以下であり、着色のな!/、位ネ目差薄膜力 S 得られた。また、 270°Cで 40分間熱処理したときのポリイミド榭脂薄膜は、膜面に平 行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異方 性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリイミ ド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直であ つた。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率 nl = l. 559、n2 = l. 541 力ら複屈折 Δη=0. 018であり、透過光の色座標(0. 3108, 0. 3171)力ら Δχ=0 . 0008、 Δγ=0. 0009であり、 Δχ、 Ayともに 0. 003以下であり、着色のな!/、位ネ目 差薄膜が得られた。 [0115] The refractive index in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes is nl = l. 560, and the refractive index in the film thickness direction is n2 = l. 540, birefringence up to Δη = 0.020, transmitted light color coordinates up to 0 (0.3103, 0.33164), Δχ = 0.0003, Δγ = 0.0002, Δχ, Ay Both were 0.003 or less, and there was no coloration! In addition, the polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film has optically negative uniaxial anisotropy and the optical axis is substantially perpendicular to the thin film surface. I got it. Refractive index in the direction parallel to the film surface of polyimide resin thin film nl = l. 559, n2 = l. 541 Force birefringence Δη = 0.018, and transmitted light color coordinates (0.3108, 0.371) ) Force et al. Δχ = 0.0008, Δγ = 0.0009, and Δχ and Ay were both 0.003 or less, and there was no coloring!
[0116] 実施例 10 [0116] Example 10
乾燥窒素気流下、 4, 4,—ジアミノジフエ-ルェ—テル 19. 22g (0. 096モル)とビ ス(3—ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチルー 2—ピロリドン 171. 21gに溶解した。その後、 1, 2, 3, 4ーシクロブタンテトラカルボ ン酸ニ無水物 18. 83g (0. 096モル)と N—メチル—2—ピロリドン 40. OOgを加え、 60°Cで 3時間攪拌した。さらに、無水フタル酸 1. 18g(0. 008モル)をカ卩えた後、 60 °Cで 3時間攪拌し、透明で粘稠なポリアミック酸溶銜 (ポリマー濃度 16重量%)を得 た。 25°Cで測定した溶 ¾Jの粘度は 258mPa'sであった。還元粘度は 0. 56dlZgで めつに。  In a dry nitrogen stream, 4,22-diaminodiphenyl 19.22 g (0.096 mol) and bis (3-aminopropyl) tetramethyldisiloxane 0.99 g (0.004 mol) were mixed with N-methyl-2. —Pyrrolidone 171. Dissolved in 21 g. Thereafter, 18.83 g (0.096 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 40.OO g of N-methyl-2-pyrrolidone were added, and the mixture was stirred at 60 ° C. for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution (polymer concentration: 16% by weight). The viscosity of Solution J measured at 25 ° C. was 258 mPa's. Reduced viscosity is 0.556dlZg.
[0117] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の nl = l. 620、膜厚方向の屈折率 ίま n2= l. 608であり、複屈折 ίま Δη=0. 013、透過光の色座標 ίま(0. 3111, 0. 3 178)、 Δχ=0. 0011、 Δγ=0. 0016であり、 Δχ、 Ayともに 0. 003以下であり、 着色のない位相差薄膜が得られた。また、 270°Cで 40分間熱処理したときのポリイミ ド榭脂薄膜は、膜面に平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に 垂直な方向の屈折率異方性を測定したところ、 nx>nzであり、負の 1軸性を示した。 すなわち、得られたポリイミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄 膜面に対して略垂直であった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率 nl = 1. 622、 n2= l. 607カも複屈折 Δη=0. 015であり、透過光の色座標(0. 312 7, 0. 3197)力ら Δχ=0. 0027、 Δγ=0. 0035であり、 Δχ、 Ayともに 0. 005以 下であり、着色の小さい位相差薄膜が得られた。 [0118] 実施例 11 [0117] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film produced in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. Nl = l. 620 in the direction parallel to the film surface of the polyimide resin thin film, the refractive index in the film thickness direction is up to n2 = l. 608, birefringence up to Δη = 0.013, color coordinates of transmitted light (0.3111, 0.3178), Δχ = 0.0011, Δγ = 0.0016, and Δχ and Ay were both 0.003 or less, and a phase difference thin film without coloring was obtained. The polyimide resin thin film after heat treatment at 270 ° C. for 40 minutes had a refractive index anisotropy in the direction parallel to the film surface of nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, it was nx> nz and showed negative uniaxiality. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film nl = 1. 622, n2 = l. 607 is also birefringence Δη = 0.015, and the transmitted light color coordinates (0.312 7, 0. 3197) Force et al. Δχ = 0.0027, Δγ = 0.0035, Δχ and Ay were both 0.005 or less, and a retardation film with small coloring was obtained. [0118] Example 11
乾燥窒素気流下、 p—フエ-レンジァミン 10. 81g (0. 100モル)を N—メチルー 2 —ピロリドン 132. 41gに溶解した。その後、 1, 2, 3, 4 シクロブタンテトラカルボン 酸二無水物 19. 61g (0. 100モル)と N—メチル—2—ピロリドン 40. 00gを加え、 60 °Cで 4時間攪拌した。透明で粘稠なポリアミック酸溶液 K (ポリマー濃度 15重量%)を 得た。 25°Cで測定した溶液 Kの粘度は 9, 257mPa'sであった。還元粘度は 1. 36d lZgであった。  Under a stream of dry nitrogen, 10.81 g (0.100 mol) of p-phenylenediamine was dissolved in 132.41 g of N-methyl-2-pyrrolidone. Thereafter, 19.61 g (0.100 mol) of 1, 2, 3, 4 cyclobutanetetracarboxylic dianhydride and 40.00 g of N-methyl-2-pyrrolidone were added, and the mixture was stirred at 60 ° C. for 4 hours. A transparent and viscous polyamic acid solution K (polymer concentration 15% by weight) was obtained. The viscosity of solution K measured at 25 ° C was 9,257 mPa's. The reduced viscosity was 1.36 dlZg.
[0119] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 635、膜厚方向 の屈折率は n2= l. 584であり、複屈折は Δη=0. 051であった。また、透過光の色 座標は(0. 3116, 0. 3182)、 Δχ=0. 0016、 Δγ=0. 0020であり、 Δχ、 Ayとも に 0. 003以下であり、着色のない位相差薄膜が得られた。  [0119] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film was nl = l.635, the refractive index in the film thickness direction was n2 = l.584, and the birefringence was Δη = 0.051. In addition, the color coordinates of transmitted light are (0.3116, 0.3182), Δχ = 0.0016, Δγ = 0.0020, and Δχ and Ay are both 0.003 or less, and there is no coloring retardation film. was gotten.
[0120] 実施例 12  [0120] Example 12
乾燥窒素気流下、 4, 4'ージァミノべンズァ -リド 22. 73g (0. 100モル)を γ—ブ チロラタトン 111. 14gに溶解した。次に、 Ν—メチル 2 ピロリドン 71. 14gを加え た。その後、 1, 2, 3, 4 シクロブタンテトラカルボン酸二無水物 19. 61g (0. 100モ ル)と N—メチル—2 ピロリドン 40. 00gを加え、 60°Cで 4時間攪拌した。透明で粘 稠なポリアミック酸溶液 L (ポリマー濃度 16重量%)を得た。 25°Cで測定した溶液 Lの 粘度は 31, 400mPa'sであった。還元粘度は 1. 81dlZgであった。  Under a nitrogen stream, 22.73 g (0.100 mol) of 4,4′-diaminobenza-lide was dissolved in 111.14 g of γ-butyroratatone. Next, 71.14 g of Ν-methyl 2 pyrrolidone was added. Thereafter, 19.61 g (0.100 mol) of 1, 2, 3, 4 cyclobutanetetracarboxylic dianhydride and 40.00 g of N-methyl-2-pyrrolidone were added, and the mixture was stirred at 60 ° C. for 4 hours. A transparent and viscous polyamic acid solution L (polymer concentration 16% by weight) was obtained. The viscosity of Solution L measured at 25 ° C was 31,400 mPa's. The reduced viscosity was 1.81 dlZg.
[0121] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 685、膜厚方向 の屈折率は n2= l. 598であり、複屈折は Δη=0. 087、透過光の色座標は(0. 31 31, 0. 3204)、 Δχ=0. 0031、 Δγ=0. 0042であり、 Δχ、 Ayともに 0. 005以下 であり、着色の小さい位相差薄膜が得られた。 [0121] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film produced in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 685, the refractive index in the film thickness direction is n2 = l. 598, the birefringence is Δη = 0.087, and the color coordinates of the transmitted light Is (0.31 31, 0.3204), Δχ = 0.0031, Δγ = 0.0042, and Δχ and Ay were both 0.005 or less, and a retardation film with small coloring was obtained.
[0122] 比較例 1 [0122] Comparative Example 1
乾燥窒素気流下、 3, 3'—ジアミノジフエ-ルスルホン 11. 92g (0. 048モル)、 p— フエ-レンジァミン 5. 19g (0. 048モル)とビス(3 ァミノプロピル)テトラメチルジシロ キサン 0. 99g (0. 004モル)を N—メチル—2 ピロリドン 209. 55gに溶解した。そ の後、 3, 3' , 4, 4,—ビフエ-ルテトラカルボン酸二無水物 28. 25g (0. 096モル)と N—メチル 2 ピロリドン 40. 00gをカ卩え、 60°Cで 3時間攪拌した。さらに、無水フタ ル酸 1. 18g (0. 008モル)をカ卩えた後、 60°Cで 3時間攪拌し、透明で粘稠なポリアミ ック酸溶液 M (ポリマー濃度 16重量%)を得た。 25°Cで測定した溶液 Mの粘度は 94 OmPa'sであった。還元粘度は 0. 64dlZgであった。  Under a dry nitrogen stream, 3,92'-diaminodiphenylsulfone 11.92 g (0.048 mol), p-phenoldiamine 5.19 g (0.048 mol) and bis (3-aminopropyl) tetramethyldisiloxane 99 g (0.004 mol) was dissolved in 209.55 g of N-methyl-2 pyrrolidone. After that, 3, 3 ', 4, 4,-biphenyltetracarboxylic dianhydride 28.25g (0.096 mol) and N-methyl 2 pyrrolidone 40.00g were added at 60 ° C. Stir for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution M (polymer concentration: 16% by weight). It was. The viscosity of Solution M measured at 25 ° C. was 94 OmPa's. The reduced viscosity was 0.64 dlZg.
[0123] 実施例 1と同様に作製し、 270°Cで 40分間熱処理したポリイミド系榭脂薄膜の膜面 に平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率 異方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポ リイミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直 であった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 754、膜厚方 向の屈折率は n2= l. 663であり、複屈折は Δη=0. 091、透過光の色座標は(0. 3170, 0. 3272)、 Δχ=0. 0070、 Δγ=0. 0110であり、 Δχ、 Ayともに 0. 005よ りも大きぐ黄色に着色した位相差薄膜であった。  [0123] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film prepared in the same manner as in Example 1 and heat-treated at 270 ° C for 40 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l.754, the refractive index in the film thickness direction is n2 = l.663, the birefringence is Δη = 0.091, the color of the transmitted light The coordinates were (0.3170, 0.3272), Δχ = 0.0070, Δγ = 0.0110, and both Δχ and Ay were retardation films colored yellow that was larger than 0.005.
[0124] 比較例 2  [0124] Comparative Example 2
乾燥窒素気流下、 P フエ-レンジァミン 10. 38g (0. 096モル)とビス(3 アミノプ 口ピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を N—メチル 2 ピロリドン 1 74. 23gに溶解した。その後、 3, 3' , 4, 4,ービフエ-ルテトラカルボン酸二無水物 2 8. 25g (0. 096モル)と N—メチル—2 ピロリドン 40. 00gを加え、 60。Cで 3時間攪 拌した。さらに、無水フタル酸 1. 18g (0. 008モル)をカ卩えた後、 60°Cで 3時間攪拌 し、透明で粘稠なポリアミック酸溶液 N (ポリマー濃度 16重量%)を得た。 25°Cで測定 した溶液 Nの粘度は 664mPa'sであった。還元粘度は 0. 66dlZgであった。  Under a dry nitrogen stream, 10.38 g (0.096 mol) of P-phenylenediamine and 0.99 g (0.004 mol) of bis (3 aminopropyl) tetramethyldisiloxane were converted to 74.23 g of N-methyl-2-pyrrolidone. Dissolved. Subsequently, 3,3 ′, 4,4, -biphenyltetracarboxylic dianhydride (28.25 g, 0.096 mol) and N-methyl-2-pyrrolidone (40.00 g) were added. Stir at C for 3 hours. Further, 1.18 g (0.008 mol) of phthalic anhydride was added and stirred at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution N (polymer concentration: 16% by weight). The viscosity of Solution N measured at 25 ° C was 664 mPa's. The reduced viscosity was 0.66 dlZg.
[0125] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 810、膜厚方向 の屈折率は n2= l. 621であり、複屈折は Δη=0. 189、透過光の色座標は(0. 31 95, 0. 3327)、 Δχ=0. 0095、 Δγ=0. 0165であり、 Δχ、 Ayともに 0. 005よりも 大きぐ黄色に着色した位相差薄膜であった。また、 270°Cで 40分間熱処理したとき のポリイミド榭脂薄膜は、屈折率 nl = l. 831、n2= l. 616から複屈折 Δη=0. 21 5であり、透過光の色座標(0. 3206, 0. 3339)力も Δχ=0. 0106、 Δγ=0. 0177 であり、 Δχ、 Ayともに 0. 005よりも大きぐ黄色に着色した位相差薄膜であった。 [0125] Prepared in the same manner as in Example 1, and heat-treated at 240 ° C for 30 minutes. The refractive index anisotropy in the parallel direction was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 810, the refractive index in the film thickness direction is n2 = l. 621, the birefringence is Δη = 0.189, and the color coordinates of the transmitted light (0.331 95, 0.3327), Δχ = 0.0095, Δγ = 0.0165, and both Δχ and Ay were retardation films colored yellow that was larger than 0.005. In addition, the polyimide resin film after heat treatment at 270 ° C for 40 minutes has a refractive index nl = l. 831, n2 = l. 616 and birefringence Δη = 0.215, and the transmitted light color coordinates (0 3206, 0. 3339) The forces were also Δχ = 0.106 and Δγ = 0.0177, and both Δχ and Ay were retardation films colored yellow that was larger than 0.005.
[0126] 比較例 3 [0126] Comparative Example 3
乾燥窒素気流下、 4, 4,—ジァミノべンズァニリド 21. 82g (0. 096モノレ)とビス(3 —ァミノプロピル)テトラメチルジシロキサン 0. 99g (0. 004モル)を γ ブチロラクト ン 137. 14gに溶解した。次に、 Ν—メチル—2 ピロリドン 97. 14gを加えた。その後 、 3, 3' , 4, 4'—ビフエ-ルテトラカルボン酸二無水物 28. 25g(0. 096モル)と N— メチル 2 ピロリドン 40. OOgをカ卩え、 60°Cで 3時間攪拌した。さらに、無水フタル 酸 1. 18g (0. 008モル)を加えた後、 60°Cで 3時間攪拌し、透明で粘稠なポリアミツ ク酸溶液 0 (ポリマー濃度 16重量%)を得た。 25°Cで測定した溶液 Oの粘度は 5, 87 8mPa'sであった。還元粘度は 1. 03dlZgであった。  Under a dry nitrogen stream, 4,82-diaminobenzanilide (21.82g, 0.096 monole) and bis (3-aminopropyl) tetramethyldisiloxane (0.99g, 0.004mol) were converted to 137.14g of γ-butyrolacton. Dissolved. Next, 97.14 g of Ν-methyl-2 pyrrolidone was added. Then, 3, 3 ', 4, 4'-biphenyltetracarboxylic dianhydride 28.25g (0.096 mol) and N-methyl 2 pyrrolidone 40.OOg were added and kept at 60 ° C for 3 hours. Stir. Further, 1.18 g (0.008 mol) of phthalic anhydride was added, followed by stirring at 60 ° C. for 3 hours to obtain a transparent and viscous polyamic acid solution 0 (polymer concentration: 16% by weight). The viscosity of solution O measured at 25 ° C. was 5,878 mPa's. The reduced viscosity was 1.03 dlZg.
[0127] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド系榭脂薄膜の膜面 に平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率 異方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポ リイミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直 であった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 826、膜厚方 向の屈折率は n2= l. 610であり、複屈折は Δη=0. 216、透過光の色座標は(0. 3260, 0. 3450)、 Δχ=0. 0160、 Δγ=0. 0288であり、 Δχ、 Ayともに 0. 005よ りも大きぐ黄色に着色した位相差薄膜であった。また、 270°Cで 40分間熱処理した ときのポリイミド榭脂薄膜は、屈折率 nl = l. 838、n2= l. 609力ら複屈折 Δη=0. 229であり、透過光の色座標(0. 3255, 0. 3437)力も Δχ=0. 0155、 Δγ=0. 02 75であり、 Δχ、 Ayともに 0. 005よりも大きぐ黄色に着色した位相差薄膜であった。 [0127] The refractive index anisotropy in the direction parallel to the film surface of the polyimide-based resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 826, the refractive index in the film thickness direction is n2 = l. 610, the birefringence is Δη = 0.216, and the color of the transmitted light. The coordinates were (0.3260, 0.3450), Δχ = 0.0160, Δγ = 0.0288, and both Δχ and Ay were retardation films colored yellow that was larger than 0.005. In addition, the polyimide resin film after heat treatment at 270 ° C for 40 minutes has a refractive index nl = l. 838, n2 = l. 229, and the transmitted light color coordinate (0.3255, 0.3437) force is also Δχ = 0.0155, Δγ = 0.02 75, and both Δχ and Ay are colored yellow, which is larger than 0.005. It was a phase difference film.
[0128] 比較例 4 [0128] Comparative Example 4
乾燥窒素気流下、 P—フエ-レンジァミン 10. 81g (0. 100モル)を N—メチルー 2 ピロリドン 92. 92gに溶解した。その後、 1, 2, 4, 5 シクロへキサンテトラカルボン 酸二無水物 22. 42g (0. 100モル)と N—メチル—2 ピロリドン 40. 00gを加え、 60 °Cで 4時間攪拌した。透明で粘稠なポリアミック酸溶液 P (ポリマー濃度 20重量%)を 得た。 25°Cで測定した溶液 Pの粘度は 350mPa'sであった。還元粘度は 0. 30dl/ gであつ 7こ o  Under a nitrogen stream, 10.81 g (0.100 mol) of P-phenylenediamine was dissolved in 92.92 g of N-methyl-2-pyrrolidone. Thereafter, 22.42 g (0.100 mol) of 1,2,4,5 cyclohexanetetracarboxylic dianhydride and 40.00 g of N-methyl-2-pyrrolidone were added and stirred at 60 ° C. for 4 hours. A transparent and viscous polyamic acid solution P (polymer concentration 20% by weight) was obtained. The viscosity of Solution P measured at 25 ° C was 350 mPa's. Reduced viscosity is 0.30dl / g.
[0129] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド榭脂薄膜の膜面に 平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率異 方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポリ イミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直で あった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 600、膜厚方向 の屈折率 ίま n2= l. 598であり、複屈折 ίま Δη=0. 002、透過光の色座標 ίま(0. 31 11, 0. 3173)、 Δχ=0. 0011、 Δγ=0. 0011であり、 Δχ、 Ayともに 0. 003以下 であり、着色のない位相差薄膜であるが、複屈折が十分ではな力つた。  [0129] The refractive index anisotropy in the direction parallel to the film surface of the polyimide resin thin film produced in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was exhibited. That is, the obtained polyimide resin thin film had optically negative uniaxial anisotropy and the optical axis was substantially perpendicular to the thin film surface. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l. 600, the refractive index in the film thickness direction is ί n2 = l. 598, and the birefringence is Δ or η = 0.002 in the transmitted light. The color coordinates are ί (0. 31 11, 0. 3173), Δχ = 0.0011, Δγ = 0.0011, both Δχ, Ay are 0.003 or less, and the phase difference thin film is not colored. Birefringence was not enough.
[0130] 比較例 5  [0130] Comparative Example 5
乾燥窒素気流下、 4, 4'ージァミノべンズァ -リド 22. 73g (0. 100モル)を γ—ブ チロラタトン 90. 29gに溶解した。次に、 Ν—メチル 2 ピロリドン 50. 29gを加えた 。その後、 1, 2, 4, 5 シクロへキサンテ卜ラカルボン酸二無水物 22. 42g (0. 100 モル)と N—メチル—2 ピロリドン 40. 00gをカ卩え、 60°Cで 4時間攪拌した。透明で 粘稠なポリアミック酸溶液 Q (ポリマー濃度 20重量%)を得た。 25°Cで測定した溶液 Oの粘度は 209mPa'sであった。還元粘度は 0. 24dlZgであった。  Under a nitrogen stream, 22.73 g (0.100 mol) of 4,4′-diaminobenza-lide was dissolved in 90.29 g of γ-butyroratatone. Next, 50.29 g of Ν-methyl 2 pyrrolidone was added. Then, 1, 2, 4, 5 cyclohexane tetracarboxylic dianhydride 22.42g (0. 100 mol) and N-methyl-2pyrrolidone 40.00g were added and stirred at 60 ° C for 4 hours. . A clear viscous polyamic acid solution Q (polymer concentration 20% by weight) was obtained. The viscosity of Solution O measured at 25 ° C was 209 mPa's. The reduced viscosity was 0.24 dlZg.
[0131] 実施例 1と同様に作製し、 240°Cで 30分間熱処理したポリイミド系榭脂薄膜の膜面 に平行な方向の屈折率異方性はなぐ nx=nyであった。膜面に垂直な方向の屈折率 異方性を測定したところ、 nx>nzであり、負の 1軸性を示した。すなわち、得られたポ リイミド榭脂薄膜は、光学的に負の一軸異方性を有し光軸が薄膜面に対して略垂直 であった。ポリイミド榭脂薄膜の膜面に平行な方向の屈折率は nl = l. 638、膜厚方 向の屈折率は n2= l. 632であり、複屈折は Δη=0. 006、透過光の色座標は(0. 3114, 0. 3178)、 Δχ=0. 0014、 Δγ=0. 0016であり、 Δχ、 Ayともに 0. 003以 下であり、着色のない位相差薄膜であるが、複屈折が十分ではな力つた。 [0131] The refractive index anisotropy in the direction parallel to the film surface of the polyimide-based resin thin film prepared in the same manner as in Example 1 and heat-treated at 240 ° C for 30 minutes was nx = ny. When the refractive index anisotropy in the direction perpendicular to the film surface was measured, nx> nz and negative uniaxiality was shown. That is, the obtained polyimide resin thin film has optically negative uniaxial anisotropy and the optical axis is substantially perpendicular to the thin film surface. Met. The refractive index in the direction parallel to the film surface of the polyimide resin thin film is nl = l.638, the refractive index in the film thickness direction is n2 = l.632, the birefringence is Δη = 0.006, the color of the transmitted light Coordinates are (0.33114, 0.3178), Δχ = 0.0014, Δγ = 0.0016, both Δχ, Ay are 0.003 or less, and it is a non-colored retardation film, but it is birefringent. There was not enough power.
[0132] 実施例 13 [0132] Example 13
位相差薄膜を有するカラーフィルターの作製方法を以下に示す。  A method for producing a color filter having a retardation film is described below.
くブラックマトリックスの作製〉  <Production of black matrix>
γ—ブチ口ラタトン(3825g)溶媒中で、無水ピロメリット酸(149. 6g)、ベンゾフエノン テトラカルボン酸二無水物(225. 5g)、 3, 3,―ジアミノジフエ-ルスルフォン(69. 5 g)、 4, 4,一ジアミノジフエ-ルエーテル(210. 2g)、ビス(3 ァミノプロピル)テトラメ チルジシロキサン(17. 4g)を 60°Cで 3時間反応させた後、無水マレイン酸(2. 25g) を添加し、さらに 60°Cで 1時間反応させ、ポリアミック酸溶液 (ポリマー濃度 15重量% )を得た。  In γ-butyrate ratatone (3825 g) solvent, pyromellitic anhydride (149.6 g), benzophenone tetracarboxylic dianhydride (225. 5 g), 3, 3, -diaminodiphenylsulfone (69.5 g), After reacting 4,4,1-diaminodiphenyl ether (210.2 g) and bis (3aminopropyl) tetramethyldisiloxane (17.4 g) at 60 ° C for 3 hours, maleic anhydride (2.25 g) was added. The mixture was further reacted at 60 ° C for 1 hour to obtain a polyamic acid solution (polymer concentration: 15% by weight).
[0133] カーボンブラック(三菱ィ匕学製 MA— 77) 7. 3g、前記のポリマー濃度 15重量%のポ リアミック酸溶液 44. 8g、N—メチルー 2 ピロリドン 35g、 3—メチル 3—メトキシァ セテート 12. 9gをガラスビーズ 100gとともにホモジナイザーを用い、 7000rpmで 30 分間分散処理後、ガラスビーズを濾過により除去し、顔料濃度 14重量%の顔料分散 液を得た。用いたカーボンブラックの一次粒子径は 23nmであった。この時のカーボ ンブラック Zポリアミック酸ィ匕合物の重量比率は 52Z48であった。  [0133] Carbon black (MA-77 manufactured by Mitsubishi Chemical Co., Ltd.) 7. 3 g, 44.8 g of the above polyamic acid solution with a polymer concentration of 15% by weight, 35 g of N-methyl-2-pyrrolidone, 3-methyl 3-methoxyacetate 12 Using a homogenizer with 9 g of glass beads and 100 g of glass beads, the glass beads were removed by filtration at 7000 rpm for 30 minutes, and a pigment dispersion with a pigment concentration of 14% by weight was obtained. The primary particle size of the carbon black used was 23 nm. At this time, the weight ratio of the carbon black Z polyamic acid compound was 52Z48.
[0134] 顔料分散液 57. 2gに、 N—メチル 2 ピロリドン 36. 4g、 3—メトキシ一 3—メチル —ブチルアセテート 6. 4gを添加混合し、黒色ペーストを作製した。このペーストを無 アルカリガラス基板上に塗布後、 130°Cでプリベータを行い、ポリアミック酸の黒色着 色膜を形成した。次に、ポジ型フォトレジストを塗布して、 90°Cで加熱乾燥してフォト レジスト被膜を形成した。これを紫外線露光機を用いて、フォトマスクを介して露光し た。露光後、アルカリ現像液に浸漬し、フォトレジストの現像、ポリアミック酸黒色着色 膜のエッチングを同時に行い、開口部を形成した。エッチング後、不要となったフォト レジスト層をエチレングリコールモノメチルアセテートで剥離した。エッチングされたポ リアミック酸黒色着色膜を 290°Cに加熱して熱硬化を行 、、ポリイミド榭脂ブラックマト リックスを形成した。 [0134] To 57.2 g of the pigment dispersion, 36.4 g of N-methyl-2-pyrrolidone and 6.4 g of 3-methoxy-1-3-methyl-butyl acetate were added and mixed to prepare a black paste. After applying this paste on an alkali-free glass substrate, pre-beta treatment was performed at 130 ° C. to form a black colored film of polyamic acid. Next, a positive type photoresist was applied and dried by heating at 90 ° C. to form a photoresist film. This was exposed through a photomask using an ultraviolet exposure machine. After exposure, the film was immersed in an alkali developer, and the photoresist was developed and the polyamic acid black colored film was etched simultaneously to form openings. After etching, the unnecessary photoresist layer was peeled off with ethylene glycol monomethyl acetate. The etched polyamic acid black colored film is heated to 290 ° C and cured, and polyimide resin black mat Ricks formed.
[0135] <画素の作製 >  [0135] <Fabrication of pixels>
γ ブチロラタトン中で、無水ピロメリット酸(0. 49モル当量)、ベンゾフエノンテトラ力 ルボン酸二無水物(0. 50モル当量)と、 4, 4,ージアミノジフエ-ルエーテル(0. 75 モル当量)、 3, 3,一ジアミノジフエ-ルスルホン(0. 20モル当量)、ビス一(3 ァミノ プロピル)テトラメチルジシロキサン(0. 05モル当量)を反応させ、さらに無水マレイン 酸 (0. 02モル当量)を反応させて、ポリアミック酸溶液 (ポリマー濃度 20重量%)を得 た。  In γ-butyrolatatone, pyromellitic anhydride (0.49 molar equivalent), benzophenone tetra force rubonic acid dianhydride (0.50 molar equivalent), and 4,4, -diaminodiphenyl ether (0.75 molar equivalent) 3, 3, 1-diaminodiphenyl sulfone (0.20 molar equivalent), bis- (3-aminopropyl) tetramethyldisiloxane (0.05 molar equivalent), and maleic anhydride (0.02 molar equivalent) To obtain a polyamic acid solution (polymer concentration 20% by weight).
[0136] このポリアミック酸の溶液を 200g取り出し、それに γ—ブチ口ラタトン 136g、エチレン グリコールブチルエーテル 64gを添加して、ポリマー濃度 10重量%の画素用ポリアミ ック酸溶液を得た。  [0136] 200 g of this polyamic acid solution was taken out, and 136 g of γ-butyrate rataton and 64 g of ethylene glycol butyl ether were added thereto to obtain a polyamic acid solution for a pixel having a polymer concentration of 10% by weight.
[0137] ビグメントレッド 177 (アントラキノンレッド) 4g、 Ύ—ブチ口ラタトン 40g、エチレングリコ ールブチルエーテル 6gをガラスビーズ 100gとともにホモジナイザーを用い、 7000rp mで 30分間分散処理後、ガラスビーズを濾過により除去し、顔料濃度 8重量%の顔 料分散液を得た。 [0137] Pigment Red 177 (Anthraquinone Red) 4g, Ύ-Butaguchi Rataton 40g, Ethylene glycol butyl ether 6g together with 100g of glass beads and dispersed at 7000rpm for 30 minutes, glass beads are removed by filtration Thus, a pigment dispersion having a pigment concentration of 8% by weight was obtained.
[0138] 顔料分散液 30gに、前記のポリマー濃度 10重量%の画素用ポリアミック酸溶液 30 gを添加混合し、赤色カラーペーストを得た。  [0138] To 30 g of the pigment dispersion, 30 g of the above polyamic acid solution for a pixel having a polymer concentration of 10% by weight was added and mixed to obtain a red color paste.
[0139] 榭脂ブラックマトリックスが形成された基板上に赤色ペーストを塗布し、プリベータを 行い、ポリアミック酸赤色着色膜を形成した。フォトレジストを用い、前記と同様な手段 により、赤色画素を形成し、 290°Cに加熱して熱硬化を行った。  [0139] A red paste was applied on a substrate on which a black resin black matrix was formed, and pre-beta treatment was performed to form a polyamic acid red colored film. Using a photoresist, red pixels were formed by the same means as described above, and heated to 290 ° C. for thermal curing.
[0140] ビグメントグリーン 7 (フタロシアニングリーン) 3. 6g、ビグメントイエロー 83 (ベンジジン イェロー) 0. 4g、 γ ブチロラタトン 32g、エチレングリコーノレブチノレエーテノレ 4gをガ ラスビーズ 120gとともにホモジナイザーを用い、 7000rpmで 30分間分散処理後、ガ ラスビーズを濾過により除去し、顔料濃度 10重量%の顔料分散液を得た。  [0140] Pigment Green 7 (Phthalocyanine Green) 3.6 g, Pigment Yellow 83 (Benzidine Yellow) 0.4 g, γ-Butyl Ratatone 32 g, Ethylene Glyco-Lebutinoleate Tenole 4 g with Glass Beads 120 g at 7000 rpm After 30 minutes of dispersion treatment, the glass beads were removed by filtration to obtain a pigment dispersion having a pigment concentration of 10% by weight.
[0141] 顔料分散液 32gに、前記のポリマー濃度 10重量%の画素用ポリアミック酸溶液 30g を添加混合し、緑色カラーペーストを得た。  [0141] To 32 g of the pigment dispersion, 30 g of the polyamic acid solution for pixels having a polymer concentration of 10% by weight was added and mixed to obtain a green color paste.
[0142] 赤色ペーストを用いた時と同様にして、緑色カラーペーストを使用し、緑色画素を 形成し、 290°Cに加熱して熱硬化を行った。 [0143] 前記のポリマー濃度 10重量0 /0の画素用ポリアミック酸溶液 60gと、ビグメントブルー 1 5 (フタロシア-ンブルー) 2. 8g、 N—メチル 2 ピロリドン 30g、エチレングリコール ブチルエーテル 10gをガラスビーズ 150gとともにホモジナイザーを用い、 7000rpm で 30分間分散処理後、ガラスビーズを濾過により除去し、青色カラーペーストを得た [0142] In the same manner as in the case of using the red paste, a green color paste was used to form a green pixel, which was then heated to 290 ° C and thermally cured. [0143] and the pixel for the polyamic acid solution 60g of the polymer concentration of 10 wt 0/0, Pigment Blue 1 5 (Futaroshia - Nburu) 2. 8 g, N-methyl-2-pyrrolidone 30g, glass beads 150g of ethylene glycol butyl ether 10g And a homogenizer for 30 minutes at 7000 rpm for dispersion treatment, and then the glass beads were removed by filtration to obtain a blue color paste.
[0144] 前記と同様な手順により、青色カラーペーストを使用し、青色画素を形成し、 290°C に加熱して熱硬化を行った。 [0144] According to the same procedure as described above, a blue color paste was used to form a blue pixel, and heat curing was performed by heating to 290 ° C.
[0145] このようにしてカラーフィルターを作製した。  [0145] A color filter was produced in this manner.
次に、実施例 1で作製したポリアミック酸溶液 A (ポリマー濃度 16重量%) 187. 5gに 対して、界面活性剤"ディスパロン" LC951 (楠本ィ匕成製)を 0. 25g、 N—メチル 2 —ピロリドン 218. 3g、 3—メトキシ一 3—メチル 1—ブタノール 94. Ogを加え、ポリ マー濃度 6重量%のコーティング用溶液を作製した。上記のカラーフィルター基板の 画素が形成された面上にスリットダイコーティング法によって塗布し、 120°Cで 10分 間乾燥後、 270°Cで 40分間熱処理することによって膜厚が 1. 2 mのポリイミド薄膜 をカラーフィルター上に形成した。このポリイミド薄膜の複屈折は Δ η=0. 174であり 、したがって、上記の方法によって、リタデーシヨンが 209nmで、光軸が薄膜に垂直 である光学的に負の屈折率異方性をもつ位相差薄膜を有するカラーフィルターを得 ることがでさた。  Next, 0.25 g of the surfactant “Disparon” LC951 (manufactured by Enomoto Ichinari) was added to 187.5 g of the polyamic acid solution A (polymer concentration 16 wt%) prepared in Example 1, N-methyl 2 —Pyrrolidone 218.3 g, 3-methoxy-1-3-methyl 1-butanol 94. Og was added to prepare a coating solution having a polymer concentration of 6% by weight. The film is coated on the surface of the color filter substrate by the slit die coating method, dried at 120 ° C for 10 minutes, and then heat-treated at 270 ° C for 40 minutes. A polyimide thin film was formed on the color filter. The birefringence of this polyimide thin film is Δη = 0.174. Therefore, according to the above method, the retardation is 209 nm, the optical axis is perpendicular to the thin film, and the phase difference has an optically negative refractive index anisotropy. It was possible to obtain a color filter having a thin film.
[0146] 実施例 14  [0146] Example 14
実施例 6で作製したポリアミック酸溶液 F (ポリマー濃度 16重量%)を使用した以外は 実施例 13と同様にして、ポリイミド薄膜をカラーフィルター上に形成した。このポリイミ ド薄膜の膜厚は 4. 4 /ζ πι、複屈折は Δ η=0. 045であり、したがって、リタデーシヨン 力 Sl98nmで、光軸が薄膜に垂直である光学的に負の屈折率異方性をもつ位相差薄 膜を有するカラーフィルターを得ることができた。  A polyimide thin film was formed on the color filter in the same manner as in Example 13 except that the polyamic acid solution F (polymer concentration: 16% by weight) prepared in Example 6 was used. This polyimide thin film has a film thickness of 4.4 / ζ πι and birefringence of Δη = 0.045. Therefore, the retardation is Sl98 nm, and the optical axis is perpendicular to the thin film. A color filter having an anisotropic retardation film could be obtained.
[0147] 実施例 15 [0147] Example 15
実施例 11で作製したポリアミック酸溶液 K (ポリマー濃度 15重量%) 200. Ogに対し て、界面活性剤"ディスパロン" LC951 (楠本ィ匕成製)を 0. 25g、 N—メチル—2 ピ 口リドン 205. 8g、 3—メトキシ一 3—メチル 1—ブタノール 94. Ogを加え、ポリマー 濃度 6重量%のコーティング用溶液を作製した。実施例 13と同様にカラーフィルター 基板の画素が形成された面上にスリットダイコーティング法によって塗布し、 120°Cで 10分間乾燥後、 240°Cで 30分間熱処理することによって膜厚が 4. 0 mのポリイミ ド薄膜をカラーフィルター上に形成した。このポリイミド薄膜の複屈折は Δ η=0. 051 であり、したがって、リタデーシヨンが 204nmで、光軸が薄膜に垂直である光学的に 負の屈折率異方性をもつ位相差薄膜を有するカラーフィルターを得ることができた。 Polyamic acid solution K prepared in Example 11 (polymer concentration 15% by weight) 200. Og, 0.25 g of surfactant “Disparon” LC951 (manufactured by Enomoto Isei), N-methyl-2 pip Lidon 205.8 g, 3-methoxy-1-methyl 1-butanol 94. Add Og, polymer A coating solution having a concentration of 6% by weight was prepared. As in Example 13, the color filter substrate was coated on the surface on which the pixels were formed by the slit die coating method, dried at 120 ° C for 10 minutes, and then heat treated at 240 ° C for 30 minutes to obtain a film thickness of 4. A 0 m polyimide film was formed on the color filter. The birefringence of this polyimide thin film is Δη = 0.051, and therefore, a color filter having a retardation film having an optically negative refractive index anisotropy with a retardation of 204 nm and an optical axis perpendicular to the thin film. Could get.
[0148] 実施例 16 [0148] Example 16
<カラー液晶表示素子の作製と評価 >  <Production and evaluation of color liquid crystal display elements>
実施例 13で作製した位相差薄膜付きカラーフィルター上に酸化インジウムカゝらなる 透明電極を製膜した。別途、無アルカリガラス上に TFT素子、画素電極、反射板等 を形成した基板を対向基板として用意した。  A transparent electrode made of indium oxide was formed on the color filter with a retardation film produced in Example 13. Separately, a substrate in which TFT elements, pixel electrodes, reflectors, etc. were formed on alkali-free glass was prepared as a counter substrate.
[0149] その後、それぞれ基板の透明電極上に、フォトリソ法によってポリイミドからなるストラ イブ状の突起を形成した後、垂直配向膜を設けた。突起の断面は台形状であり高さ は約 1. 5 mであった。ただし、カラーフィルター基板と TFT基板とを貼り合わせた 時にストライプ状突起が対向のストライプ状突起と交互に配置されるようにストライプ 状突起の位置を定めた。上記 2枚の基板の端部をシール剤で塗布して貼り合わせた 後、セル間に n型の液晶を充填して封じ、セルの前後に偏光板をクロス-コルとなるよ うに配置した。このようにして MVA (Multi- domain Vertical Alignment)方式を模した 試験液晶表示素子 (サンプル A)を作製した。セルの電極間隔はビーズスぺーサー により約 5 mとした。また、ポリイミド位相差薄膜を設けないことだけが異なる試験液 晶表示素子 (サンプル B)を比較品として作製した。  [0149] After that, on each transparent electrode of the substrate, stripe-like projections made of polyimide were formed by photolithography, and then a vertical alignment film was provided. The cross section of the protrusion was trapezoidal and the height was about 1.5 m. However, the positions of the stripe protrusions were determined so that the stripe protrusions were alternately arranged with the opposing stripe protrusions when the color filter substrate and the TFT substrate were bonded together. After applying the end portions of the two substrates with a sealant and bonding them together, the n-type liquid crystal was filled and sealed between the cells, and polarizing plates were placed in front of and behind the cells so as to be cross-cold. In this way, a test liquid crystal display device (sample A) simulating the MVA (Multi-domain Vertical Alignment) method was fabricated. The cell electrode spacing was about 5 m using a bead spacer. In addition, a test liquid crystal display element (sample B) that differs only in that no polyimide retardation film was provided was prepared as a comparative product.
[0150] 突起物のストライプ方向から 90° の方位角で、かつセル面の法線方向から 70° の 極角方向で、印加電圧 5ボルト (on時)と 0ボルト(off時)の透過光強度比(コントラスト )を比較したところ、サンプル Bではコントラストは 8. 3であったのに対し、サンプル A では 18とポリイミド位相差薄膜によるコントラストの向上効果が認められた。また、サン プル Aにお 、て黄色みのな 、良質な白表示が得られた。  [0150] Transmitted light with an applied voltage of 5 volts (on) and 0 volts (off) at an azimuth of 90 ° from the stripe direction of the protrusion and at a polar angle of 70 ° from the normal direction of the cell surface When the intensity ratio (contrast) was compared, the contrast in sample B was 8.3, whereas in sample A, the contrast improvement effect of 18 and the polyimide retardation film was recognized. In Sample A, a high-quality white display with a yellowish color was obtained.
[0151] 実施例 17  [0151] Example 17
実施例 14で作製した位相差薄膜付きカラーフィルターを使用して、実施例 16と同様 にして試験液晶表示素子 (サンプル C)を作製した。サンプル Cの透過光強度比(コン トラスト)は 18であり、ポリイミド位相差薄膜によるコントラストの向上効果が認められた 。また、黄色みのない良質な白表示が得られた。 Similar to Example 16 using the color filter with retardation film prepared in Example 14. Thus, a test liquid crystal display element (sample C) was produced. The transmitted light intensity ratio (contrast) of sample C was 18, and the effect of improving the contrast by the polyimide retardation film was recognized. A good white display without yellowing was also obtained.
[0152] 実施例 18 [0152] Example 18
実施例 15で作製した位相差薄膜付きカラーフィルターを使用して、実施例 16と同様 にして試験液晶表示素子 (サンプル D)を作製した。サンプル Dの透過光強度比(コ ントラスト)は 18であり、ポリイミド位相差薄膜によるコントラストの向上効果が認められ た。また、黄色みのない良質な白表示が得られた。  A test liquid crystal display element (sample D) was produced in the same manner as in Example 16 using the color filter with a retardation film produced in Example 15. Sample D had a transmitted light intensity ratio (contrast) of 18, and the contrast enhancement effect of the polyimide retardation film was confirmed. A good white display without yellowing was also obtained.
[0153] 比較例 6 [0153] Comparative Example 6
比較例 3で作製したポリアミック酸溶液 O (ポリマー濃度 16重量%)を使用した以外は 実施例 13と同様にして、ポリイミド薄膜をカラーフィルター上に形成した。このポリイミ ド薄膜の膜厚は 0. 9 /ζ πι、複屈折は Δ η=0. 229であり、したがって、リタデーシヨン 力 S206nmで、光軸が薄膜に垂直である光学的に負の屈折率異方性をもつ位相差薄 膜を有するカラーフィルターを得た。  A polyimide thin film was formed on the color filter in the same manner as in Example 13 except that the polyamic acid solution O (polymer concentration: 16% by weight) prepared in Comparative Example 3 was used. This polyimide thin film has a thickness of 0.9 / ζ πι and birefringence of Δη = 0.229. Therefore, the retardation is S206 nm, and the optical axis is perpendicular to the thin film. A color filter having an anisotropic retardation film was obtained.
[0154] 作製した位相差薄膜付きカラーフィルターを使用して、実施例 16と同様にして試験 液晶表示素子 (サンプル E)を作製した。サンプル Eの透過光強度比(コントラスト)は 15であった。しかし、白表示が黄色みを帯び、画像表示品位が劣るものであった。  [0154] A test liquid crystal display element (sample E) was produced in the same manner as in Example 16 using the produced color filter with retardation film. Sample E had a transmitted light intensity ratio (contrast) of 15. However, the white display is yellowish and the image display quality is poor.
[0155] 実施例 1〜12および比較例 1〜5の結果を表 1に示す。表 1に記載のとおり、実施例 1〜12では着色が少なぐ複屈折の良好な位相差薄膜が得られていることが判る。な お、表 1において、各略号はそれぞれ以下の化合物を表す。  [0155] Table 1 shows the results of Examples 1 to 12 and Comparative Examples 1 to 5. As shown in Table 1, in Examples 1 to 12, it can be seen that retardation films with little coloring and good birefringence are obtained. In Table 1, each abbreviation represents the following compound.
[0156] BPDA: 3, 3,, 4, 4,ービフエ-ルテトラカルボン酸二無水物  [0156] BPDA: 3, 3, 4, 4, 4-biphenyltetracarboxylic dianhydride
CBDA: 1, 2, 3, 4ーシクロブタンテトラカルボン酸二無水物  CBDA: 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride
H-PMDA: 1, 2, 4, 5 シクロへキサンテトラカルボン酸二無水物  H-PMDA: 1, 2, 4, 5 Cyclohexanetetracarboxylic dianhydride
ODPA:4, 4,ーォキシジフタル酸二無水物  ODPA: 4, 4, oxydiphthalic dianhydride
PMDA:無水ピロメリット酸  PMDA: pyromellitic anhydride
PA:無水フタル酸  PA: phthalic anhydride
DABA:4, 4,ージァミノべンズァニリド  DABA: 4, 4,-Gaminobensanilide
t-DACH :トランス 1, 4ージアミノシクロへキサン DDE :4, 4'ージアミノジフエニルエーテル t-DACH: trans 1,4-diaminocyclohexane DDE: 4,4'-diaminodiphenyl ether
DDS:3, 3,ージアミノジフエニルスルホン DDS: 3, 3, diaminodiphenyl sulfone
PDA: p—フエ二レンジァミン PDA: p-Phenylenediamine
SiDA:ビス一(3—ァミノプロピル)テトラメチルジシロキサン m-TB-HG:2, 2'—ジメチノレべンジジン  SiDA: Bis (3-aminopropyl) tetramethyldisiloxane m-TB-HG: 2, 2'-Dimethenolevenedidine
TFMB :2, 2'-ビス (トリフルォロメチル)ベンジジン TFMB: 2, 2'-bis (trifluoromethyl) benzidine
[表 1] [table 1]
Figure imgf000043_0001
Figure imgf000043_0001
LL0 90/L00ZdT/13d zv £8t0難 00Z OAV LL0 90 / L00ZdT / 13d zv £ 8t0 difficulty 00Z OAV

Claims

請求の範囲 The scope of the claims
[1] 液晶表示装置に用いられ、光学的に負の一軸異方性を有し、光軸が薄膜面に対し て略垂直であり、かつ、厚み方向の複屈折 Δ ηが 0.01〜0.3である位相差薄膜を形成 するための榭脂組成物であって、少なくとも 1種のテトラカルボン酸二無水物と少なく とも 1種のジァミンとを反応させて得られるポリイミド前駆体および有機溶剤を含み、 前記少なくとも 1種のテトラカルボン酸二無水物および前記少なくとも 1種のジァミン の少なくともいずれかが脂環式ィ匕合物である位相差薄膜形成用榭脂組成物。  [1] Used in a liquid crystal display device, has optically negative uniaxial anisotropy, the optical axis is substantially perpendicular to the thin film surface, and the birefringence Δη in the thickness direction is 0.01 to 0.3. A resin composition for forming a retardation film, comprising a polyimide precursor obtained by reacting at least one tetracarboxylic dianhydride and at least one diamine, and an organic solvent, A resin composition for forming a retardation film, wherein at least one of the at least one tetracarboxylic dianhydride and the at least one diamine is an alicyclic compound.
[2] 脂環式ィ匕合物であるジァミンが、下記一般式 (1)  [2] Diamine, an alicyclic compound, has the following general formula (1)
[化 1]
Figure imgf000044_0001
[Chemical 1]
Figure imgf000044_0001
(式中、 R1は 1価の有機基または水素原子を表す。 ) (In the formula, R 1 represents a monovalent organic group or a hydrogen atom.)
で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物である請求項 1記載の組成物。  The composition according to claim 1, which is a trans-1,4-diaminocyclohexane compound represented by the formula:
[3] テトラカルボン酸二無水物が、下記一般式 (2)  [3] Tetracarboxylic dianhydride is represented by the following general formula (2)
[化 2]  [Chemical 2]
Figure imgf000044_0002
Figure imgf000044_0002
)  )
で表される 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物である請求項 2記 載の組成物。  The composition according to claim 2, which is a 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride compound represented by the formula:
[4] 前記ポリイミド前駆体が、少なくとも下記一般式 (3)で示される構成単位を有する請 求項 3記載の組成物。  [4] The composition according to claim 3, wherein the polyimide precursor has at least a structural unit represented by the following general formula (3).
[化 3]
Figure imgf000045_0001
(式中、 R2、 R4および R5は互いに独立して、それぞれ 1価の有機基または水素 原子を表わす。 )
[Chemical 3]
Figure imgf000045_0001
(In the formula, R 2 , R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom.)
[5] 脂環式ィ匕合物であるテトラカルボン酸二無水物力 1,2,3,4-シクロブタンテトラカル ボン酸二無水物である請求項 1記載の組成物。  5. The composition according to claim 1, which is a tetracarboxylic dianhydride strength 1,2,3,4-cyclobutanetetracarboxylic dianhydride which is an alicyclic compound.
[6] ジァミンが、剛直な分子構造を有する芳香族ジァミンである請求項 5記載の組成物 6. The composition according to claim 5, wherein the diamine is an aromatic diamine having a rigid molecular structure.
[7] 剛直な分子構造を有する芳香族ジァミンが、 P-フエ-レンジァミン、 4,4'-ジァミノ ンズァ -リドから選ばれる少なくとも 1種である請求項 6記載の組成物。 7. The composition according to claim 6, wherein the aromatic diamine having a rigid molecular structure is at least one selected from P-phenediamine, 4,4′-diamineamino-lide.
[8] 下記一般式 (1) [8] The following general formula (1)
[化 4]
Figure imgf000045_0002
[Chemical 4]
Figure imgf000045_0002
(式中、 R1は 1価の有機基または水素原子を表す。 ) (In the formula, R 1 represents a monovalent organic group or a hydrogen atom.)
で表されるトランス- 1,4-ジアミノシクロへキサンィ匕合物を含むジァミン成分と、下記- 般式 (2)  A diamine component containing a trans-1,4-diaminocyclohexane compound represented by the formula:
[化 5]  [Chemical 5]
Figure imgf000045_0003
Figure imgf000045_0003
(式中、 R2、および R3は互いに独立にそれぞれ 1価の有機基または水素原子を表す。 ) (In the formula, R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom.)
で表される 3,3',4,4'-ビフエ-ルテトラカルボン酸二無水物化合物を含むテトラカルボ ン酸ニ無水物成分を反応させて得られるポリアミック酸化合物及び有機溶剤を含有 する、液晶表示装置に用いられ、光学的に負の一軸異方性を有し、光軸が薄膜面 対して略垂直である位相差薄膜を形成するための榭脂組成物。 Contains a polyamic acid compound obtained by reacting a tetracarboxylic dianhydride component including a 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride compound represented by A resin composition for use in a liquid crystal display device to form a retardation thin film having optically negative uniaxial anisotropy and an optical axis being substantially perpendicular to the thin film surface.
[9] 前記ポリアミック酸ィ匕合物が、少なくとも下記一般式 (3)で示される構成単位を有す る請求項 8記載の組成物。  [9] The composition according to claim 8, wherein the polyamic acid compound has at least a structural unit represented by the following general formula (3).
[化 6]  [Chemical 6]
Figure imgf000046_0001
Figure imgf000046_0001
(式中、
Figure imgf000046_0002
R4及び R5は互いに独立して、それぞれ 1価の有機基または水素原 子を表わす。 )
(Where
Figure imgf000046_0002
R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom. )
[10] 前記 R1が水素原子又は炭素数 1〜4の直鎖状若しくは分岐鎖状アルキル基であり、 R2、 R4及び R5が水素原子である請求項 9記載の組成物。 10. The composition according to claim 9, wherein R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 , R 4 and R 5 are hydrogen atoms.
[11] 前記ポリアミック酸ィ匕合物が、下記一般式 (4)〜(8)で示される構造単位力 成る群よ り選ばれる少なくとも 1種の構造単位をさらに含む請求項 9又は 10記載の組成物。  [11] The polyamic acid compound according to claim 9 or 10, further comprising at least one structural unit selected from the group consisting of structural unit forces represented by the following general formulas (4) to (8): Composition.
[化 7]  [Chemical 7]
Figure imgf000046_0003
Figure imgf000046_0003
[化 8]  [Chemical 8]
Figure imgf000046_0004
Figure imgf000046_0004
[化 9]
Figure imgf000047_0001
[Chemical 9]
Figure imgf000047_0001
[化 10]  [Chemical 10]
Figure imgf000047_0002
Figure imgf000047_0002
(式 (4)、(5)、(6)、(7)及び (8)中、
Figure imgf000047_0003
R4及び R5は互いに独立して、それぞれ 1価 の有機基または水素原子を表わす。 )
(In the formulas (4), (5), (6), (7) and (8),
Figure imgf000047_0003
R 4 and R 5 each independently represent a monovalent organic group or a hydrogen atom. )
[12] 式 (4)、(5)、(6)、(7)及び (8)中、前記 R1が水素原子又は炭素数 1〜4の直鎖状若しく は分岐鎖状アルキル基であり、 R2
Figure imgf000047_0004
R4及び R5が水素原子である請求項 10記載の 組成物。
[12] In the formulas (4), (5), (6), (7) and (8), R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Yes, R 2 ,
Figure imgf000047_0004
The composition according to claim 10, wherein R 4 and R 5 are hydrogen atoms.
[13] 式 (3)、(4)、(5)、(6)、(7)又は(8)で示される構造単位の合計含量が、前記ポリアミック 酸を構成する全構造単位の 50モル%以上である請求項 11又は 12記載の組成物。  [13] The total content of structural units represented by the formula (3), (4), (5), (6), (7) or (8) is 50 mol% of all structural units constituting the polyamic acid. The composition according to claim 11 or 12, which is as described above.
[14] 前記ポリイミド前駆体又は前記ポリアミック酸のアミン末端基の一部または全部が、 ジカルボン酸無水物とのァミック酸形成反応によって末端封止されている請求項 1〜[14] A part or all of amine end groups of the polyimide precursor or the polyamic acid are end-capped by an amic acid forming reaction with a dicarboxylic acid anhydride.
13のいずれか 1項に記載の榭脂組成物。 14. The resin composition according to any one of 13 above.
[15] 前記ジカルボン酸無水物力 無水マレイン酸、無水フタル酸、無水コハク酸および 無水ナジック酸力も選ばれた少なくとも 1種のジカルボン酸無水物である請求項 14記 載の組成物。 15. The composition according to claim 14, wherein the dicarboxylic acid anhydride power is at least one dicarboxylic acid anhydride selected also for maleic anhydride, phthalic anhydride, succinic anhydride, and nadic anhydride power.
[16] 請求項 1〜15のいずれか 1項に記載の組成物の、位相差薄膜形成用榭脂組成物 の製造のための使用。  [16] Use of the composition according to any one of claims 1 to 15 for producing a resin composition for forming a retardation film.
[17] 透明基板上に赤、青、緑の各色の画素が二次元的に配列された液晶表示装置用 カラーフィルター基板であって、請求項 1〜15のいずれか 1項に記載の位相差薄膜 用榭脂組成物から形成された位相差薄膜が形成されている液晶表示装置用カラー フィルター基板。  [17] A color filter substrate for a liquid crystal display device in which pixels of each color of red, blue, and green are two-dimensionally arranged on a transparent substrate, and the phase difference according to any one of claims 1 to 15 A color filter substrate for a liquid crystal display device on which a retardation film formed from a resin composition for a thin film is formed.
[18] 前記位相差薄膜は、下記一般式 (8) [化 11] [18] The retardation film has the following general formula (8) [Chemical 11]
Figure imgf000048_0001
Figure imgf000048_0001
(式中、
Figure imgf000048_0002
R2及び R3は互いに独立して、それぞれ 1価の有機基または水素原子を表 わす。)
(Where
Figure imgf000048_0002
R 2 and R 3 each independently represent a monovalent organic group or a hydrogen atom. )
で示される構造単位を 50モル%以上含むポリイミドを含む請求項 17記載のカラーフ ィルター基板。  The color filter substrate according to claim 17, comprising a polyimide containing 50 mol% or more of a structural unit represented by:
[19] 前記 R1が水素原子又は炭素数 1〜4の直鎖状若しくは分岐鎖状アルキル基であり、 R2及び R3が水素原子である請求項 18記載のカラーフィルター基板。 19. The color filter substrate according to claim 18, wherein R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are hydrogen atoms.
[20] 位相差薄膜用榭脂組成物から形成された位相差薄膜が画素を被覆するように形 成されている請求項 17ないし 19のいずれか 1項に記載の液晶表示装置用カラーフ ィルター基板。  20. The color filter substrate for a liquid crystal display device according to any one of claims 17 to 19, wherein the retardation film formed from the resin composition for retardation film is formed so as to cover a pixel. .
[21] 請求項 17ないし 20のいずれか 1項に記載の液晶表示装置用カラーフィルタ一基 板を用いた液晶表示装置であって、該液晶表示装置の表示方式が、電圧無印加時 に液晶分子が液晶セル面に対し略垂直な方向に配向しており、電圧印加時に液晶 分子が液晶セル面に対し略平行な方向に配向する液晶表示方式である液晶表示装 置。  [21] A liquid crystal display device using the color filter substrate for a liquid crystal display device according to any one of claims 17 to 20, wherein the display method of the liquid crystal display device is liquid crystal when no voltage is applied. A liquid crystal display device that is a liquid crystal display system in which molecules are aligned in a direction substantially perpendicular to the liquid crystal cell surface, and liquid crystal molecules are aligned in a direction substantially parallel to the liquid crystal cell surface when a voltage is applied.
[22] 請求項 1〜15のいずれか 1項に記載の位相差薄膜用榭脂組成物を、透明基板上 に赤、青、緑の各色の画素が二次元的に配列されたカラーフィルター基板の画素が 配列された側の面に塗布し、熱処理することを含む位相差薄膜付き液晶表示装置用 カラーフィルター基板の製造方法。  [22] A color filter substrate in which the resin composition for retardation film according to any one of claims 1 to 15 is arranged on a transparent substrate in which pixels of each color of red, blue, and green are two-dimensionally arranged. A method for producing a color filter substrate for a liquid crystal display device with a retardation film, which comprises applying to a surface on which the pixels are arranged and heat-treating.
PCT/JP2007/064077 2006-07-21 2007-07-17 Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto WO2008010483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800276433A CN101490607B (en) 2006-07-21 2007-07-17 Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid cry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-199051 2006-07-21
JP2006199051 2006-07-21

Publications (1)

Publication Number Publication Date
WO2008010483A1 true WO2008010483A1 (en) 2008-01-24

Family

ID=38956814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064077 WO2008010483A1 (en) 2006-07-21 2007-07-17 Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto

Country Status (3)

Country Link
KR (1) KR20090038911A (en)
CN (1) CN101490607B (en)
WO (1) WO2008010483A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045537A1 (en) * 2007-10-04 2009-04-09 Akron Polymer Systems Poly(aryletherimides) for negative birefringent films for lcds
JP2010116476A (en) * 2008-11-12 2010-05-27 Jsr Corp Polyimide material, polyimide film and method for producing the same
WO2011033751A1 (en) * 2009-09-18 2011-03-24 三井化学株式会社 Transparent thermoplastic polyimide and transparent substrate containing the same
WO2013051213A1 (en) * 2011-10-05 2013-04-11 日立化成デュポンマイクロシステムズ株式会社 Highly transparent polyimide
JP2014084355A (en) * 2012-10-22 2014-05-12 Jnc Corp Thermosetting composition having a photo-aligning characteristic
JP2017049596A (en) * 2016-10-20 2017-03-09 富士フイルム株式会社 Near-infrared cut filter and manufacturing method for near-infrared cut filter
WO2018062190A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Polyimide film, laminate, and display surface material
JP2018059075A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Polyimide film, laminate and display surface material
WO2018117145A1 (en) * 2016-12-22 2018-06-28 大日本印刷株式会社 Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP2018104682A (en) * 2016-12-22 2018-07-05 大日本印刷株式会社 Polyimide film, polyimide, polyimide precursor, laminate, and surface material for displays
JP2019077863A (en) * 2017-10-19 2019-05-23 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and polyimide
CN114149583A (en) * 2020-09-08 2022-03-08 株式会社Lg化学 Polyimide-based polymer film, substrate for display device, and optical device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842859A (en) * 2011-11-10 2014-06-04 吉坤日矿日石能源株式会社 Phase difference film and liquid crystal display device provided with same
JP6254197B2 (en) * 2014-02-14 2017-12-27 旭化成株式会社 Polyimide precursor and resin composition containing the same
JP6631804B2 (en) * 2014-03-31 2020-01-15 日産化学株式会社 Method for producing resin thin film and composition for forming resin thin film
JP6350045B2 (en) * 2014-07-07 2018-07-04 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2017159538A1 (en) * 2016-03-17 2019-01-24 株式会社カネカ Polyamic acid, polyamic acid solution, polyimide, polyimide substrate, and production method thereof
KR20220096105A (en) * 2020-12-30 2022-07-07 엘지디스플레이 주식회사 Organic light emitting display device and method for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208695A (en) * 1996-01-29 1997-08-12 Sumitomo Chem Co Ltd Alignment film, optically anisotropic substance, and liquid crystal display
JP2001183527A (en) * 1999-12-24 2001-07-06 Hitachi Chem Co Ltd Polyimide-based resin for optical parts, and phase contrast plate and wavelength plate each using the same
JP2001235647A (en) * 2000-02-22 2001-08-31 Hitachi Chem Co Ltd Method for manufacturing polyimide optical member and optical device
JP2001290023A (en) * 2000-04-04 2001-10-19 Toray Ind Inc Polyimide optical phase difference thin film for liquid crystal display device, color filter with optical phase difference thin film and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208695A (en) * 1996-01-29 1997-08-12 Sumitomo Chem Co Ltd Alignment film, optically anisotropic substance, and liquid crystal display
JP2001183527A (en) * 1999-12-24 2001-07-06 Hitachi Chem Co Ltd Polyimide-based resin for optical parts, and phase contrast plate and wavelength plate each using the same
JP2001235647A (en) * 2000-02-22 2001-08-31 Hitachi Chem Co Ltd Method for manufacturing polyimide optical member and optical device
JP2001290023A (en) * 2000-04-04 2001-10-19 Toray Ind Inc Polyimide optical phase difference thin film for liquid crystal display device, color filter with optical phase difference thin film and liquid crystal display device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045537A1 (en) * 2007-10-04 2009-04-09 Akron Polymer Systems Poly(aryletherimides) for negative birefringent films for lcds
JP2010116476A (en) * 2008-11-12 2010-05-27 Jsr Corp Polyimide material, polyimide film and method for producing the same
WO2011033751A1 (en) * 2009-09-18 2011-03-24 三井化学株式会社 Transparent thermoplastic polyimide and transparent substrate containing the same
JP2018024886A (en) * 2011-10-05 2018-02-15 日立化成デュポンマイクロシステムズ株式会社 Polyimide of high transparency
WO2013051213A1 (en) * 2011-10-05 2013-04-11 日立化成デュポンマイクロシステムズ株式会社 Highly transparent polyimide
JPWO2013051213A1 (en) * 2011-10-05 2015-03-30 日立化成デュポンマイクロシステムズ株式会社 Highly transparent polyimide
JP2014084355A (en) * 2012-10-22 2014-05-12 Jnc Corp Thermosetting composition having a photo-aligning characteristic
WO2018062190A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Polyimide film, laminate, and display surface material
JP2018059075A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Polyimide film, laminate and display surface material
JP2017049596A (en) * 2016-10-20 2017-03-09 富士フイルム株式会社 Near-infrared cut filter and manufacturing method for near-infrared cut filter
WO2018117145A1 (en) * 2016-12-22 2018-06-28 大日本印刷株式会社 Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP2018104682A (en) * 2016-12-22 2018-07-05 大日本印刷株式会社 Polyimide film, polyimide, polyimide precursor, laminate, and surface material for displays
JP7027867B2 (en) 2016-12-22 2022-03-02 大日本印刷株式会社 Surface material for flexible displays
JP2019077863A (en) * 2017-10-19 2019-05-23 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and polyimide
JP7281887B2 (en) 2017-10-19 2023-05-26 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and polyimide
CN114149583A (en) * 2020-09-08 2022-03-08 株式会社Lg化学 Polyimide-based polymer film, substrate for display device, and optical device
CN114149583B (en) * 2020-09-08 2023-11-17 株式会社Lg化学 Polyimide-based polymer film, substrate for display device, and optical device

Also Published As

Publication number Publication date
KR20090038911A (en) 2009-04-21
CN101490607A (en) 2009-07-22
CN101490607B (en) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2008010483A1 (en) Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film attached thereto
JP5092426B2 (en) RESIN COMPOSITION FOR retardation film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for producing color filter substrate for liquid crystal display device with retardation film
TWI482799B (en) A liquid crystal alignment agent, a liquid crystal alignment film, a method for forming the same, and a liquid crystal display device
JP4930143B2 (en) Composition for protective film, color filter substrate and liquid crystal display device
US8730437B2 (en) Method for making a treated polymer for a liquid crystal alignment agent, the treated polymer made thereby, and liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element containing the treated polymer
JP5496953B2 (en) Liquid crystal aligning agent, liquid crystal aligning film manufactured with this liquid crystal aligning agent, and liquid crystal display element
JP5541454B2 (en) Liquid crystal aligning agent and liquid crystal display element
KR101679234B1 (en) Liquid crystal display device, method of manufacturing the same, and polymer composition
JP5582295B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP2008262170A (en) Liquid crystal aligning agent and liquid crystal display element
JP5041123B2 (en) Vertical liquid crystal alignment agent
JP4985906B2 (en) Vertical liquid crystal aligning agent and vertical liquid crystal display element
JP2009265538A (en) Liquid crystal aligning agent and liquid crystal display element
JP3978329B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2011237483A (en) Liquid crystal alignment agent, liquid crystal alignment membrane and liquid crystal display element
TW201811864A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
TW202037714A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
TWI392935B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5376165B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP4788890B2 (en) Liquid crystal aligning agent and liquid crystal display element
WO2008105564A1 (en) Liquid crystal aligning agent and liquid crystal display
JP4259520B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP5158351B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP7351435B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2011048048A (en) Liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027643.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097003426

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790839

Country of ref document: EP

Kind code of ref document: A1