WO2020004168A1 - 可変容量圧縮機 - Google Patents

可変容量圧縮機 Download PDF

Info

Publication number
WO2020004168A1
WO2020004168A1 PCT/JP2019/024243 JP2019024243W WO2020004168A1 WO 2020004168 A1 WO2020004168 A1 WO 2020004168A1 JP 2019024243 W JP2019024243 W JP 2019024243W WO 2020004168 A1 WO2020004168 A1 WO 2020004168A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
discharge passage
passage
bimetal
Prior art date
Application number
PCT/JP2019/024243
Other languages
English (en)
French (fr)
Inventor
田口 幸彦
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to CN201980040454.2A priority Critical patent/CN112334653B/zh
Publication of WO2020004168A1 publication Critical patent/WO2020004168A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members

Definitions

  • the present invention relates to a variable displacement compressor used for, for example, an air conditioner for a vehicle.
  • variable displacement type variable displacement compressor that changes the discharge displacement in accordance with the pressure fluctuation of the crank chamber
  • the variable displacement compressor described in Patent Literature 1 includes a crank chamber that houses a swash plate that rotates together with a rotating shaft, an air supply passage that connects the crank chamber and the discharge chamber, and a bleed air that connects the suction chamber and the crank chamber. And a passage.
  • the bleed passage is a first passage that communicates with the crank chamber, and a second passage that communicates with the crank chamber through a different path from the first passage and that is formed on the outer peripheral side of the first passage in the radial direction of the rotation shaft. including.
  • the bleed passage includes a junction where the first passage and the second passage merge with each other, and a throttle passage formed between the junction and the suction chamber.
  • the variable displacement compressor includes an opening / closing means for opening / closing at least one of the first passage and the second passage. The second passage is opened when the temperature in the crank chamber is equal to or higher than a predetermined temperature.
  • variable displacement compressors including the variable displacement compressor described in Patent Document 1
  • the mounting angle of the variable displacement compressor about the axis of the drive shaft often differs depending on the engine.
  • the present invention has been made in view of the above problems, and has as its object to provide a variable displacement compressor in which means for opening and closing a discharge passage can be easily arranged.
  • a pressure in a crank chamber changes due to a change in an opening degree of a capacity control valve that changes an opening degree of a supply passage that supplies a refrigerant in a discharge chamber to a crank chamber.
  • This is a variable displacement compressor in which the stroke of the piston changes.
  • the variable displacement compressor includes a discharge passage for discharging the refrigerant in the crank chamber to the suction chamber.
  • the discharge passage is provided in the cylinder block separately from the first discharge passage having a storage chamber that is a space in the center bore formed between the other end surface of the drive shaft and the valve plate, and a first discharge passage. And a second discharge passage.
  • variable displacement compressor includes an opening / closing mechanism disposed in the accommodation room.
  • the opening / closing mechanism opens the first discharge passage when the temperature of the storage chamber is equal to or higher than the preset first threshold temperature to discharge the oil present in the crank chamber, and the temperature of the storage chamber is lower than the first threshold temperature.
  • the first discharge passage is closed.
  • the opening / closing mechanism that opens and closes the first discharge passage that discharges the oil present in the crank chamber is housed in the housing chamber that is arranged on an extension of the center axis of the drive shaft. Therefore, even if the mounting angle of the variable displacement compressor centered on the axis of the drive shaft differs depending on the engine, there is no need to change the position of the opening and closing mechanism, and the assemblability of the opening and closing mechanism in the variable displacement compressor is improved. It is possible to provide a variable displacement compressor that can be operated.
  • FIG. 2 is an enlarged view of a range surrounded by a line II in FIG. 1.
  • FIG. 3 is an enlarged view of a range surrounded by a line III in FIG. 2. It is a figure showing the structure of an opening / closing mechanism.
  • FIG. 5 is an enlarged view of a range surrounded by a line V in FIG. 4. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment. It is a figure showing the modification of a 1st embodiment.
  • the first embodiment described below exemplifies a configuration for embodying the technical idea of the present invention
  • the technical idea of the present invention is based on the materials of components, their shapes, The structure, arrangement, etc. are not specified as follows.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • the directions “left and right” and “up and down” in the following description are simply definitions for convenience of description, and do not limit the technical idea of the present invention. Therefore, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course.
  • variable displacement compressor 1 shown in FIG. 1 is mainly configured as a clutchless variable displacement compressor applied to an air conditioner system (air conditioner system) for a vehicle (vehicle).
  • air conditioner system air conditioner system
  • vehicle vehicle
  • the upper side in FIG. 1 is the upper side in the vertical direction.
  • the lower part in FIG. 1 is the lower part in the vertical direction.
  • the variable displacement compressor 1 includes a cylinder block 2 having a plurality of cylinder bores 21 arranged in a ring, a front housing 3 provided at one end of the cylinder block 2, and a cylinder block 2.
  • a cylinder head 5 provided at an end via a valve plate 4 is provided.
  • the front housing 3, the center gasket (not shown), the cylinder block 2, the cylinder gasket 83, the suction valve forming plate 84, the valve plate 4, the discharge valve forming plate 87, the head gasket (not shown), and the cylinder head 5 are sequentially connected and fastened by a plurality of through bolts 11 to form a housing of the variable displacement compressor 1. Further, a crank chamber 30 is formed by the cylinder block 2 and the front housing 3, and a drive shaft 6 extending in the horizontal direction is provided across the crank chamber 30. A piston 23 that reciprocates in the cylinder bore 21 is accommodated in each cylinder bore 21.
  • a swash plate 31 which is formed in an annular shape and surrounds the drive shaft 6 from the radial direction is arranged around an intermediate portion of the drive shaft 6 in the axial direction.
  • the swash plate 31 is connected to a rotor 32 fixed to the drive shaft 6 via a link mechanism 33, and rotates together with the drive shaft 6.
  • the swash plate 31 is configured such that an angle with respect to a plane orthogonal to the center axis of the drive shaft 6 (the tilt angle of the swash plate 31) can be changed.
  • the swash plate 31 can change the inclination angle (inclination angle) with respect to the axis of the drive shaft 6 by changing the pressure (internal pressure) of the crank chamber 30.
  • the link mechanism 33 includes a first arm 33a projecting from a surface of the rotor 32 facing the swash plate 31, a second arm 33b projecting from a surface of the swash plate 31 facing the rotor 32, and one end connected to the first arm 33b.
  • a link arm 33c is rotatably connected to the first arm 33a via the pin 33d, and the other end is rotatably connected to the second arm 33b via the second connection pin 33e.
  • the swash plate 31 is formed with a through hole 34 in such a shape that the swash plate 31 can be tilted within a range of the maximum tilt angle and the minimum tilt angle.
  • the through-hole 34 is formed with a minimum inclination restricting portion (not shown) that contacts the drive shaft 6.
  • the minimum inclination restricting unit can displace the swash plate 31 by approximately 0 [°]. It is formed to be possible. Further, when the inclination angle of the swash plate 31 is maximized, the swash plate 31 comes into contact with the rotor 32 and the increase of the inclination angle is restricted.
  • an inclination-reducing spring 35 that urges the swash plate 31 in the direction of decreasing the inclination until the swash plate 31 has the minimum inclination.
  • a tilt-increase spring 37 that urges the swash plate 31 in a direction to increase the tilt angle is mounted.
  • the urging force of the inclination increasing spring 37 at the minimum inclination is set to be larger than the urging force of the inclination decreasing spring 35. Therefore, when the drive shaft 6 is not rotating, the inclination angle of the swash plate 31 is an angle at which the urging force of the inclination decreasing spring 35 and the urging force of the inclination increasing spring 37 are balanced.
  • the outer peripheral portion of the swash plate 31 is accommodated in an inner space formed at an end of the piston 23 protruding toward the crank chamber 30.
  • the swash plate 31 is configured to interlock with the piston 23 via the pair of shoes 38. Accordingly, the rotation of the swash plate 31 accompanying the rotation of the drive shaft 6 causes each piston 23 to reciprocate inside the accommodated cylinder bore 21. That is, the swash plate 31 and the shoe 38 form a reciprocating motion converting unit that converts the rotation of the drive shaft 6 into the reciprocating motion of the piston 23.
  • the center bore 22 is provided at the center on the radial inside of the plurality of cylinder bores 21 arranged in an annular shape, and is a space penetrating the cylinder block 2.
  • a first slide bearing 61 is arranged between the drive shaft 6 and the center bore 22. Therefore, one end of the drive shaft 6 is rotatably supported by the cylinder block.
  • a connected body formed by the drive shaft 6 and the rotor 32 is rotatably supported in a radial direction by a first sliding bearing 61 and a second sliding bearing 64, and is supported by a thrust plate 62 and a thrust bearing 66 in a thrust direction. It is rotatably supported.
  • the other end of the drive shaft 6 (the left end in FIG. 1) partially projects outside the front housing 3 and is connected to a power transmission device (not shown).
  • the power transmission device is connected to a driving force generating source (not shown) such as an engine via a belt. That is, the other end of the drive shaft 6 is rotatably supported by the front housing 3.
  • the inside of the crank chamber 30 is shut off from the external space by the shaft sealing device 65. Therefore, when the driving force generated by the driving force generation source is transmitted to the power transmission device, the drive shaft 6 can rotate in synchronization with the rotation of the power transmission device.
  • the adjusting screw 63 is formed in an annular shape, and has a male screw (not shown) formed on an outer diameter surface.
  • a female screw (not shown) that fits with a male screw formed on the adjustment screw 63 is formed. Therefore, the adjusting screw 63 is disposed inside the center bore 22 at a position closer to the valve plate 4 than the drive shaft 6 by fitting a male screw to the female screw of the center bore 22.
  • the gap portion of the adjustment screw 63 is formed in, for example, a hexagon when viewed from the axial direction of the drive shaft 6.
  • variable displacement compressor 1 lubricating oil (not shown) is sealed inside the variable capacity compressor 1 and the oil is stirred when the drive shaft 6 rotates.
  • oil moves together with the refrigerant, and the inside of the variable displacement compressor 1 is lubricated.
  • a region where the amount of oil present is large is a region below in the vertical direction.
  • a region where the amount of the existing oil is small is a region above in the vertical direction.
  • the cylinder head 5 is arranged to face the cylinder block 2 with the valve plate 4 interposed therebetween. That is, the cylinder head 5 is provided on the other end side of the cylinder block 2 via the valve plate 4.
  • the cylinder head 5 is formed with a suction chamber 51 and a discharge chamber 52 partitioned inside the cylinder head 5.
  • the suction chamber 51 and the discharge chamber 52 are closed by the other surface of the valve plate 4.
  • the suction chamber 51 is disposed at the center of the cylinder head 5 when viewed from the axial direction of the drive shaft 6.
  • the suction chamber 51 is connected to a suction side external refrigerant circuit of the air conditioner system via a suction port 53 and a suction passage 54, and a low pressure side refrigerant (refrigerant gas) from the suction side external refrigerant circuit. Inhalation.
  • the suction chamber 51 communicates with each cylinder bore 21 via a suction hole 42 provided in the valve plate 4 and a suction valve (not shown).
  • the discharge chamber 52 is disposed at a position surrounding the suction chamber 51 in a ring shape when viewed from the axial direction of the drive shaft 6.
  • the discharge chamber 52 communicates with each cylinder bore 21 via a discharge valve (not shown) and a discharge hole 41 provided in the valve plate 4.
  • the low-pressure side refrigerant sucked into the suction chamber 51 from the suction side external refrigerant circuit is sucked into the cylinder bore 21 containing the piston 23 by the reciprocating motion of the piston 23.
  • the reciprocating motion of the piston 23 causes the piston 23 to be compressed to a high pressure and discharged to the discharge chamber 52. That is, the cylinder bore 21 and the piston 23 form a compression unit that compresses the refrigerant drawn into the suction chamber 51.
  • the discharge chamber 52 is connected to a discharge-side external refrigerant circuit of the air conditioning system via a discharge passage 55 and a discharge port 56.
  • the refrigerant discharged into the discharge chamber 52 and compressed by the compression unit is discharged as a high-pressure refrigerant (refrigerant gas) to the external refrigerant circuit on the discharge side via the discharge passage 55 and the discharge port 56.
  • a discharge check valve 57 is arranged between the discharge chamber 52 and the discharge passage 55.
  • the discharge check valve 57 operates in response to a pressure difference between the discharge chamber 52 (upstream) and the discharge passage 55 (downstream).
  • the pressure difference is smaller than a preset threshold pressure
  • the discharge check valve 57 shuts off the space between the discharge chamber 52 and the discharge passage 55, and the refrigerant flows from the discharge chamber 52 to the discharge passage 55. Prevent movement.
  • the discharge check valve 57 makes the discharge chamber 52 and the discharge passage 55 communicate with each other.
  • variable displacement compressor 1 includes a supply passage 7 for supplying the refrigerant in the discharge chamber 52 to the crank chamber 30, a discharge passage 8 for discharging the refrigerant in the crank chamber 30 to the suction chamber 51, and a displacement control valve. 9 and an opening / closing mechanism 10.
  • the supply passage 7 is a passage formed in a region between the cylinder bore 21 and the center bore 22 in the cylinder block 2.
  • the supply passage 7 is a passage for supplying the refrigerant in the discharge chamber 52 to the crank chamber 30, and communicates the part of the capacity control valve 9 that discharges the refrigerant supplied from the discharge chamber 52 with the crank chamber 30. ing. That is, the supply passage 7 communicates with the discharge chamber 52 and the crank chamber 30, and supplies the refrigerant in the discharge chamber 52 to the crank chamber 30.
  • the discharge passage 8 is a passage for discharging the refrigerant in the crank chamber 30 to the suction chamber 51. That is, the discharge passage 8 communicates with the crank chamber 30 and the suction chamber 51, and discharges the refrigerant in the crank chamber 30 to the suction chamber 51.
  • the discharge passage 8 has a first discharge passage 8a, a second discharge passage 8b, a junction 8c, and a throttle passage 8d.
  • the first discharge passage 8 a has an in-shaft passage 81 and a storage chamber 82.
  • the in-shaft passage 81 is a passage formed in the drive shaft 6 in the discharge passage 8.
  • One end of the in-shaft passage 81 is open to the side surface of the drive shaft 6, and communicates with the crank chamber 30 via the oil introduction passage 39.
  • the other end of the in-shaft passage 81 is open at the end face of the drive shaft 6 on the side facing the valve plate 4.
  • the shaft passage 81 communicates the crank chamber 30 with the center bore 22.
  • one end of the in-shaft passage 81 communicates with a region in the crank chamber 30 where a large amount of oil exists.
  • the accommodation chamber 82 is provided in the cylinder block 2 and is formed by a part of the center bore 22 on the side close to the valve plate 4. That is, the housing chamber 82 is a space in the center bore 22 formed between the valve plate 4 and the other end (rear side) of the drive shaft 6 in the cylinder block 2.
  • the accommodation room 82 is a space formed between the valve plate 4 and the other end surface of the drive shaft 6 inside the center bore 22.
  • the other end face of the drive shaft 6 is an end face on the side facing the valve plate 4.
  • the housing chamber 82 has a large diameter portion 82a and a small diameter portion 82b, and communicates with the other end of the in-shaft passage 81.
  • a passage is formed between the accommodation chamber 82 and the in-shaft passage 81 by a gap part of the thrust plate 62 and a gap part of the adjustment screw 63.
  • the inner diameter of the gap portion of the thrust plate 62 is larger than the inner diameter of the axial passage 81.
  • the inner diameter of the gap of the adjusting screw 63 is larger than the inner diameter of the gap of the thrust plate 62.
  • the large-diameter portion 82 a is a space formed in a circular shape when viewed from the axial direction of the drive shaft 6, and constitutes a space on the side closer to the valve plate 4 in the housing chamber 82. As shown in FIG. 2, the large-diameter portion 82a is formed to be recessed from the valve plate 4 side of the cylinder block 2. In the first embodiment, as an example, a case will be described in which the large-diameter portion 82a is configured to be covered by a cylinder gasket 83 and a suction valve forming plate 84.
  • the first discharge passage 8 a has the in-shaft passage 81 formed inside the drive shaft 6 and opened at the other end surface of the drive shaft 6 to communicate with the accommodation chamber 82.
  • the cylinder gasket 83 is disposed between the cylinder block 2 and the valve plate 4 together with the suction valve forming plate 84 at a position closer to the cylinder block 2 than the suction valve forming plate 84.
  • the cylinder gasket 83 has a protruding portion 83a, a gasket-side first port 83b, and a gasket-side second port 83c.
  • the protruding portion 83a protrudes from the surface of the cylinder gasket 83 facing the cylinder block 2 toward the large-diameter portion 82a, and is formed in an annular shape when viewed from the axial direction of the drive shaft 6.
  • the gasket-side first port 83b is a hole that penetrates the cylinder gasket 83 in the thickness direction, and is disposed at a position that does not overlap with the axial passage 81 when viewed from the axial direction of the drive shaft 6.
  • the gasket-side second port 83c is a hole that penetrates the cylinder gasket 83 in the thickness direction, and is disposed at a position overlapping the second discharge passage 8b when viewed from the axial direction of the drive shaft 6.
  • the surface of the cylinder gasket 83 facing the cylinder block 2 is covered with a resin (rubber) coat layer.
  • the suction valve forming plate 84 is arranged between the cylinder gasket 83 and the valve plate 4.
  • the suction valve forming plate 84 has a suction-side first port 84a and a suction-side second port 84b.
  • the suction-side first port 84a is a hole that penetrates the suction valve forming plate 84 in the thickness direction, and is disposed at a position overlapping the gasket-side first port 83b when viewed from the axial direction of the drive shaft 6.
  • the suction-side second port 84b is a hole that penetrates the suction valve forming plate 84 in the thickness direction, and is disposed at a position overlapping the gasket-side second port 83c when viewed from the axial direction of the drive shaft 6.
  • the small-diameter portion 82b is a space formed in a circular shape when viewed from the axial direction of the drive shaft 6, and forms a space on the side close to the drive shaft 6 in the accommodation chamber 82.
  • the inside diameter of the small diameter portion 82b is smaller than the inside diameter of the large diameter portion 82a. Therefore, a step is formed at a position where the small diameter portion 82b and the large diameter portion 82a are continuous. Further, a step is formed at a position where the small-diameter portion 82b and the large-diameter portion 82a are continuous with each other on the wall surface forming the housing chamber 82, and the side wall surface 82c which is the surface facing the valve plate 4 is aligned with the central axis of the drive shaft 6. From the valve plate 4.
  • the small-diameter portion 82b has a smaller diameter than the large-diameter portion 82a, and is open to the bottom wall (side wall surface 82c) of the large-diameter portion 82a.
  • the second discharge passage 8b has a block-side discharge passage forming portion 85 and a plate-side discharge passage forming portion 86.
  • the block-side discharge passage forming portion 85 is a passage formed in the cylinder block 2 in the second discharge passage 8b, formed between the cylinder bore 21 and the center bore 22, and formed with the crank chamber 30 and the plate-side discharge passage.
  • the part 86 is communicated.
  • the block-side discharge passage forming portion 85 communicates with a region in the crank chamber 30 where the amount of the existing oil is small.
  • the plate-side discharge passage forming portion 86 is an opening formed in the valve plate 4 of the second discharge passage 8b, and communicates the block-side discharge passage forming portion 85 with the junction 8c.
  • the second discharge passage 8b is a passage provided in the cylinder block 2 separately from the first discharge passage 8a.
  • the junction 8c is an opening formed in the valve plate 4, and communicates with the gasket-side first port 83b and the suction-side first port 84a, and the plate-side discharge passage forming part 86. That is, the merging portion 8c is a space where the first discharge passage 8a and the second discharge passage 8b merge. Therefore, the gasket-side first port 83b and the suction-side first port 84a form an opening communicating with the junction 8c of the storage chamber 82. Further, the merging portion 8c is disposed at a position overlapping with the accommodation chamber 82 when viewed from the axial direction of the drive shaft 6. Further, the merging portion 8 c is disposed at a position closer to the drive shaft 6 than the plurality of cylinder bores 21 when viewed from the axial direction of the drive shaft 6.
  • the throttle passage 8 d is a through hole formed in the discharge valve forming plate 87 disposed between the valve plate 4 and the cylinder head 5, and communicates the junction 8 c with the suction chamber 51. That is, the throttle passage 8 d forms a part of the discharge passage 8, is located downstream of the storage chamber 82 of the first discharge passage 8 a and opens to the suction chamber 51, and is connected to the junction 8 c and the suction chamber 51. And is disposed downstream of the junction 8c.
  • the inner diameter of the throttle passage 8d is smaller than the inner diameters of the gasket-side first port 83b, the suction-side first port 84a, and the plate-side discharge passage forming portion 86. Therefore, the first discharge passage 8a is provided between the storage chamber 82 and the throttle passage 8d, and includes a junction 8c where the second discharge passage 8b joins.
  • the displacement control valve 9 communicates the discharge chamber 52 and the crank chamber 30 inside the cylinder head 5 and is arranged in the middle of the supply passage 7 (between both ends). Further, the capacity control valve 9 can change the opening degree (cross-sectional area) of the supply passage 7. By controlling the opening of the supply passage 7 by the capacity control valve 9, it is possible to control the amount of refrigerant introduced from the discharge chamber 52 to the crank chamber 30. Therefore, by controlling the opening degree of the supply passage 7 by the capacity control valve 9 to change the pressure of the crank chamber 30 and change the inclination angle of the swash plate 31, the stroke of the piston 23 can be changed. Become.
  • variable displacement compressor 1 is a compressor in which the stroke of the piston 23 changes due to a change in the pressure in the crank chamber 30 due to a change in the opening of the displacement control valve 9.
  • the energization amount of a solenoid built in the displacement control valve 9 is adjusted based on a signal received from outside. .
  • the discharge displacement of the variable displacement compressor 1 is variably controlled so that the pressure in the suction chamber 51 becomes a predetermined value.
  • the capacity control valve 9 can control the suction pressure to an optimum value according to the external environment.
  • the solenoid built in the displacement control valve 9 is not energized to forcibly open the supply passage 7. , The discharge capacity of the variable capacity compressor 1 is controlled to a minimum.
  • the opening / closing mechanism 10 includes a bimetal valve 100 disposed in the storage chamber 82.
  • the accommodation chamber 82 can be formed using a necessary space, for example, when the drive shaft 6 and the thrust plate 62 are arranged in the center bore 22 and the adjusting screw 63 is attached to the cylinder block 2. .
  • the accommodation room 82 is not a space formed as a dedicated accommodation room for arranging the opening / closing mechanism 10 inside the variable capacity compressor 1 but using the existing configuration of the variable capacity compressor 1. It is a configuration that can be formed.
  • the bimetal valve 100 is formed in a disc shape by bonding a plurality of metal plates having different coefficients of thermal expansion.
  • the bimetal valve 100 is housed inside the large-diameter portion 82 a in the housing chamber 82.
  • a circular valve hole 100a penetrating the bimetal valve 100 in the thickness direction is formed at the center (center) when the bimetal valve 100 is viewed from the thickness direction. Therefore, the opening of the storage chamber 82 formed by the gasket-side first port 83b and the suction-side first port 84a is arranged at a position that does not face the valve hole 100a.
  • the plurality of metal plates constituting the bimetal valve 100 are stacked along the axial direction of the drive shaft 6.
  • the plurality of metal plates constituting the bimetal valve 100 are surfaces on the drive shaft 6 side as shown in FIGS. 4 and 5. The combination is such that the first surface 101 becomes a protruding curved surface.
  • the plurality of metal plates constituting the bimetal valve 100 are disposed on the valve plate 4 side as shown in FIGS.
  • the combination is such that the second surface 102, which is a surface, becomes a protruding curved surface.
  • the first threshold temperature is set, for example, within a range of 130 ° C. or more and 150 ° C. or less based on the temperature at the peripheral wall of the crankcase 30.
  • the second threshold temperature is set to a lower temperature within a range of 15 ° C. or more and 25 ° C. or less than the first threshold temperature, for example. Therefore, the bimetal valve 100 is displaced along the axial direction of the drive shaft 6 according to a change in the temperature of the storage chamber 82.
  • the bimetal valve 100 is formed in a disk shape whose outer peripheral edge is supported in the housing chamber 82 and is displaced in the axial direction of the drive shaft 6.
  • the outer diameter of the bimetal valve 100 is equal to the outer diameter of the large diameter portion 82a when the first surface 101 and the second surface 102 are curved surfaces.
  • the outer diameter of the bimetal valve 100 in a state where the bimetal valve 100 is not curved is larger than the outer diameter of the large diameter portion 82a.
  • the outer diameter of the bimetal valve 100 in a state in which the bimetal valve 100 is not curved is determined when the temperature of the storage chamber 82 becomes equal to or lower than the second threshold temperature and the second surface 102 of the bimetal valve 100 projects.
  • the value is set to a value at which the two surfaces 102 contact the cylinder gasket 83.
  • the periphery of the valve hole 100a of the bimetal valve 100 comes into contact with the cylinder gasket 83, and the space between the axial passage 81 and the junction 8c is cut off.
  • One discharge passage 8a is shut off. Thereby, the discharge passage 8 becomes a passage for discharging the refrigerant in the crank chamber 30 to the suction chamber 51 via the second discharge passage 8b, the junction 8c, and the throttle passage 8d.
  • the discharge passage 8 is divided into two paths, that is, a path from the first discharge passage 8a through the junction 8c and the throttle passage 8d and a path from the second discharge passage 8b through the junction 8c and the throttle passage 8d.
  • a passage for discharging the refrigerant in the crank chamber 30 to the suction chamber 51 is provided.
  • the cylinder gasket 83 is disposed downstream of the bimetal valve 100 in the storage chamber 82, and forms a bimetal valve contact member to which the bimetal valve 100 comes and goes.
  • the outer peripheral edge of the bimetal valve 100 is disposed between the bottom wall of the large diameter portion 82a and the bimetal valve contact member (cylinder gasket 83), and the bottom wall of the large diameter portion 82a and the bimetal valve contact member (cylinder gasket 83). 83).
  • the bottom wall (side wall surface 82c) of the large-diameter portion 82a on which the outer peripheral edge of the bimetal valve 100 is supported moves away from the bimetal valve contact member (cylinder gasket 83) toward the radially outer side of the bimetal valve 100. It is inclined.
  • the accommodation chamber 82 and the cylinder gasket 83 form an annular groove that supports the bimetal valve 100 from the outer peripheral side.
  • the bimetal valve 100 separates the valve hole 100a from the valve plate 4 and connects the first discharge passage 8a and the junction 8c with the valve hole 100a.
  • the bimetal valve 100 closes the valve hole 100a with the valve plate 4 and shuts off the space between the first discharge passage 8a and the junction 8c.
  • the opening / closing mechanism 10 is disposed in the storage chamber 82, and when the temperature of the storage chamber 82 is equal to or higher than the first threshold temperature, the opening and closing mechanism 10 communicates between the first discharge passage 8a and the junction 8c.
  • the space between the first discharge passage 8a and the junction 8c is shut off. Accordingly, when the temperature of the storage chamber 82 is equal to or higher than the first threshold temperature, the opening / closing mechanism 10 opens the first discharge passage 8a to discharge the oil present in the crank chamber 30, and the temperature of the storage chamber 82 becomes the second temperature. If the temperature is equal to or lower than the two threshold temperature, the first discharge passage is closed.
  • the opening / closing mechanism 10 (bimetal valve 100) arranged in the storage chamber 82 opens and closes between the first discharge passage 8a and the junction 8c in accordance with a change in the temperature of the storage chamber 82.
  • the opening / closing mechanism 10 (bimetal valve 100) arranged in the storage chamber 82 is prevented from falling out of the storage chamber 82 by at least one of the suction valve forming plate 84, the cylinder gasket 83, and the valve plate 4.
  • the opening / closing mechanism 10 includes the valve seat (cylinder gasket 83) formed at a position where the valve hole 100a formed at the center of the bimetal valve 100 and the valve hole 100a of the bimetal valve contact member (cylinder gasket 83) face each other. )including.
  • the discharge passage 8 includes a first discharge passage 8a, a second discharge passage 8b, and a junction 8c.
  • the opening / closing mechanism 10 disposed in the storage chamber 82 opens and closes between the first discharge passage 8a and the junction 8c according to a change in the temperature of the storage chamber 82.
  • the opening / closing mechanism 10 communicates between the first discharge passage 8a and the junction 8c.
  • the temperature of the storage chamber 82 is equal to or lower than the second threshold temperature lower than the first threshold temperature, the space between the first discharge passage 8a and the junction 8c is shut off.
  • One surface 101 is a curved surface protruding toward the drive shaft 6 side.
  • the first surface 101 of the bimetal valve 100 becomes a curved surface protruding toward the drive shaft 6, the second surface 102 is separated from the valve plate 4 and the valve hole 100a is opened, so that the first discharge passage 8a is opened. Then, the passage 81 in the shaft and the junction 8c communicate with each other via the accommodation chamber 82.
  • the refrigerant that has moved from the crank chamber 30 to the storage chamber 82 via the in-shaft passage 81 passes through the valve hole 100a and moves to the junction 8c. Then, the refrigerant moves from the crank chamber 30 to the junction 8c via the second discharge passage 8b. Therefore, at the junction 8c, the refrigerant that has moved from the crank chamber 30 via the first discharge passage 8a and the refrigerant that has moved from the crank chamber 30 via the second discharge passage 8b join. Then, the refrigerant that has joined at the joining portion 8c moves to the suction chamber 51 via the throttle passage 8d.
  • the flow of the refrigerant is indicated by broken arrows.
  • the first discharge passage 8a is opened.
  • the discharge passage 8 is divided into two paths: a path from the first discharge passage 8a through the junction 8c and the throttle passage 8d, and a path from the second discharge passage 8b through the junction 8c and the throttle passage 8d.
  • the cylinder gasket 83 has a protruding portion 83a that protrudes toward the large-diameter portion 82a and is formed in an annular shape when viewed from the axial direction of the drive shaft 6.
  • the side wall surface 82c of the storage chamber 82 is inclined away from the valve plate 4 as the distance from the center axis of the drive shaft 6 increases. Therefore, when the first surface 101 of the bimetal valve 100 becomes a curved surface protruding toward the drive shaft 6, as shown in FIG. 5, the first surface 101 is pressed by the protruding portion 83a and the second surface 102 is pressed.
  • valve hole 100a is formed in one of the bimetal valve 100 and the bimetal valve contact member (cylinder gasket 83), the cylinder gasket 83 forms a valve seat formed in the other. are doing. That is, when the temperature of the housing chamber 82 is equal to or higher than the first threshold temperature, the valve hole 100a is separated from the valve seat (cylinder gasket 83) by the displacement of the bimetal valve 100 to be a convex curved surface on the other end surface side of the drive shaft 6. The valve hole 100a is opened.
  • the displacement of the bimetal valve 100 to be a convex curved surface toward the bimetal valve contact member (cylinder gasket 83) causes the valve hole 100a to move to the valve seat (cylinder gasket 83). Upon contact, the valve hole 100a is closed.
  • the discharge passage 8 becomes a passage for discharging the refrigerant in the crank chamber 30 to the suction chamber 51 via the second discharge passage 8b, the junction 8c, and the throttle passage 8d, and the opening degree of the discharge passage 8 is reduced.
  • the minimum opening greater than zero Therefore, when the temperature of the refrigerant moving from the crank chamber 30 to the storage chamber 82 decreases and the temperature of the storage chamber 82 becomes equal to or lower than the second threshold temperature, the first discharge passage 8a is shut off, so that the suction from the crank chamber 30 is performed. It is possible to reduce the discharge amount of the refrigerant discharged to the chamber 51.
  • the side wall surface 82 c of the storage chamber 82 is inclined so as to move away from the valve plate 4 as the distance from the center axis of the drive shaft 6 increases. Therefore, when the second surface 102 becomes a curved surface protruding toward the valve plate 4, the first surface 101 is pressed by the flow of the refrigerant moving from the in-shaft passage 81 to the storage chamber 82, and the outer peripheral portion of the first surface 101 Is pressed against the side wall surface 82c of the storage chamber 82. Thereby, the bimetal valve 100 is stably supported by the flow of the refrigerant flowing through the first discharge passage 8a.
  • the second surface 102 of the housing chamber 82 is formed from the region where the first surface 101 is disposed. It is possible to suppress the leakage of the refrigerant to the region on the side where the refrigerant is arranged.
  • the surface of the cylinder gasket 83 facing the cylinder block 2 is covered with a resin (rubber) coat layer.
  • a resin (rubber) coat layer For this reason, when the bimetal valve 100 comes into contact with the cylinder gasket 83, the impact when the bimetal valve 100 comes into contact with the cylinder gasket 83 is formed by the coating layer when the bimetal valve 100 comes into contact with the cylinder gasket 83. It can be reduced. Further, since the merging portion 8c is formed in the valve plate 4, the discharge passage 8 from the crank chamber 30 to the suction chamber 51 can be easily formed. Note that the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment. Various changes can be made according to the design and the like within a range not departing from the technical idea.
  • the discharge passage 8 is configured to include a first discharge passage 8a having a storage chamber 82 and a second discharge passage 8b provided in the cylinder block 2 separately from the first discharge passage 8a.
  • the first discharge passage 8a is opened to discharge the oil existing in the crank chamber 30, and the temperature of the storage chamber 82 is equal to or lower than the second threshold temperature.
  • an opening / closing mechanism 10 for closing the first discharge passage 8a is provided.
  • the opening / closing mechanism 10 that opens and closes the first discharge passage 8 a that discharges the oil present in the crank chamber 30 is housed in the housing chamber 82 that is arranged on an extension of the center axis of the drive shaft 6.
  • the opening and closing mechanism 10 is housed in the housing chamber 82 formed closer to the valve plate 4 than the drive shaft 6 inside the cylinder block 2, the opening and closing mechanism 10 is generated by rotation of the drive shaft 6. There is no lateral force due to centrifugal force. For this reason, it is possible to prevent operation failure due to rotation of the drive shaft 6. Further, by setting the first threshold temperature and the second threshold temperature to a temperature corresponding to the characteristics of the variable displacement compressor 1, the operating condition of the opening and closing mechanism 10 is set to a condition corresponding to the characteristics of the variable displacement compressor 1. It can be set.
  • the throttle passage 8d provided in the discharge passage 8 is opened to the suction chamber 51 on the downstream side of the storage chamber 82 of the first discharge passage 8a.
  • the first discharge passage 8a is disposed between the storage chamber 82 and the throttle passage 8d, and includes a junction 8c where the second discharge passage 8b joins.
  • the first discharge passage 8 a is formed inside the drive shaft 6, and has an in-shaft passage 81 that opens to the other end surface of the drive shaft 6 and communicates with the storage chamber 82. As a result, the housing chamber 82 and the crank chamber 30 can be easily communicated.
  • the opening / closing mechanism 10 has a bimetal valve 100, a bimetal valve contact member, a valve hole 100a, and a valve seat. Further, when the temperature of the housing chamber 82 is equal to or higher than the first threshold temperature, the displacement of the bimetal valve 100 to be a convex curved surface on the other end surface side of the drive shaft 6 causes the valve hole 100a to be separated from the valve seat to open the valve hole 100a. . When the temperature of the storage chamber 82 becomes equal to or lower than the second threshold temperature, the displacement of the bimetal valve 100 to be a convex curved surface toward the bimetal valve contact member causes the valve hole 100a to abut on the valve seat and close the valve hole 100a. As a result, the valve hole 100a can be opened and closed without the need for an actuator or the like.
  • the opening / closing mechanism 100 includes a valve hole 100a formed at the center of the bimetal valve 100 and a valve seat formed at a position where the valve hole 100a of the bimetal valve contact member is opposed. As a result, it is possible to suppress an increase in the height (length) of the opening / closing mechanism 10 along the axial direction of the drive shaft 6 and to easily arrange the opening / closing mechanism 10 in the storage chamber 82.
  • the first discharge passage 8a is disposed between the storage chamber 82 and the throttle passage 8d, and includes a junction 8c where the second discharge passage 8b joins.
  • the accommodation chamber 82 has an opening communicating with the junction 8c and arranged at a position not facing the valve hole 100a. As a result, the valve hole 100a can be opened and closed by the deformation of the bimetal valve 100 according to the temperature of the storage chamber 82.
  • the accommodation chamber 82 includes a large diameter portion 82a and a small diameter portion 82b.
  • the outer peripheral edge of the bimetal valve 100 is disposed between the bottom wall of the large diameter portion 82a and the bimetal valve contact member, and is supported by the bottom wall of the large diameter portion 82a and the bimetal valve contact member.
  • the bottom wall of the large-diameter portion 82a on which the outer peripheral edge of the bimetal valve 100 is supported is inclined so as to move away from the bimetal valve contact member as it goes radially outward of the bimetal valve 100. As a result, the bimetal valve 100 can be stably supported.
  • the bimetal valve 100 is formed in a disk shape and has a circular valve hole 100a penetrating the bimetal valve 100 in the thickness direction. In addition, a valve hole 100a is formed at the center of the bimetal valve 100. As a result, it is possible to form the opening / closing mechanism 10 using a washer-type bimetal that is a highly versatile bimetal.
  • the bimetal valve 100 separates 100a from the valve plate 4 according to the temperature change of the storage chamber 82, and connects the first discharge passage 8a and the junction 8c with each other through the valve hole 100a.
  • the valve hole 100a is closed by the valve plate 4 to shut off the space between the first discharge passage 8a and the junction 8c.
  • An annular groove for supporting the bimetal valve 100 from the outer peripheral side is formed by the housing chamber 82 and the cylinder gasket 83.
  • the bimetal valve 100 can be stably supported without being fixed, and the mechanism for supporting the bimetal valve 100 from the outer peripheral side can be simplified.
  • the opening / closing mechanism 10 (bimetal valve 100) disposed in the storage chamber 82 is prevented from falling out of the storage chamber 82 by at least one of the suction valve forming plate 84, the cylinder gasket 83, and the valve plate 4.
  • a fixing means for fixing the opening / closing mechanism 10 to the accommodation room 82 becomes unnecessary, and the configuration can be simplified.
  • the accommodation chamber 82 is configured to include a large diameter portion 82a and a small diameter portion 82b, and the bimetal valve 100 is formed by a step formed at a position where the small diameter portion 82b and the large diameter portion 82a are continuous.
  • the configuration is not limited to this. That is, for example, as shown in FIGS. 6 to 8, a valve casing 110 for supporting the bimetal valve 100 may be disposed in the storage chamber 82.
  • the valve casing 110 includes a case 111, a retainer 112, and a seal member 113, and is prevented from falling out of the storage chamber 82 by any one of the cylinder gasket 83, the suction valve forming plate 84, and the valve plate 4. .
  • the case portion 111 is formed in a cylindrical shape, and is accommodated in the accommodation room 82 with its outer peripheral surface in contact with the inner peripheral surface of the accommodation room 82.
  • the case portion 111 includes an annular flange portion 111a protruding from the inner peripheral surface of the case portion 111 toward the central axis.
  • the retainer 112 is formed in a disc shape, and holds the bimetal valve 100 with the flange portion 111a by fitting the outer peripheral surface of the retainer 112 to the inner peripheral surface of the case portion 111. That is, the case portion 111 and the retainer 112 form an annular groove that supports the bimetal valve 100 from the outer peripheral side.
  • the retainer 112 includes a retainer-side port 112a that penetrates the retainer 112 in the thickness direction (the axial direction of the drive shaft 6).
  • the retainer-side port 112a is formed at a position that does not overlap with the valve hole 100a of the bimetal valve 100 when viewed from the axial direction of the drive shaft 6.
  • the retainer-side port 112a is formed at a position overlapping with the junction 8c when viewed from the axial direction of the drive shaft 6.
  • the seal member 113 is, for example, an O-ring formed using a resin material, and is disposed between the outer peripheral surface of the case portion 111 and the inner peripheral surface of the storage chamber 82, and the outer peripheral surface of the case portion 111 and the storage chamber. 82 is in contact with the inner peripheral surface.
  • valve casing 110 may not include the seal member 113, and the outer peripheral surface of the case portion 111 may be press-fitted into the inner peripheral surface of the housing chamber 82. Further, the valve casing 110 may be held in the storage chamber 82 by pressing the valve casing 110 using a spring or the like.
  • the valve casing 110 provided in the storage chamber 82 is formed in a tubular shape in which the outer peripheral surface is tightly fitted to the inner peripheral surface of the storage chamber 82 and is disposed in the storage chamber 82.
  • a large diameter portion 82a and a small diameter portion 82b are formed on the inner peripheral surface of the valve casing 110.
  • the operation of the bimetal valve 100 which is performed before the bimetal valve 100 is mounted on the variable capacity compressor 1, is performed by, for example, heating the valve casing 110 supporting the bimetal valve 100 using a high-temperature bath or the like. Do with.
  • the configuration of the storage chamber 82 is not limited to the configuration in which the large-diameter portion 82a and the small-diameter portion 82b are formed directly on the peripheral wall of the storage chamber 82 as shown in FIG. That is, the configuration of the storage chamber 82 includes, for example, a configuration in which the valve casing 110 having the large-diameter portion 82a and the small-diameter portion 82b is provided in the storage chamber 82 as illustrated in FIG.
  • the configuration of the retainer 112 may be, for example, a configuration including a retainer-side throttle passage 112b as shown in FIG. .
  • the retainer-side throttle passage 112b is a through hole that penetrates the retainer 112 in the thickness direction (axial direction of the drive shaft 6), and is arranged at a position different from the retainer-side port 112a. Specifically, the retainer-side throttle passage 112b is formed at a position overlapping the valve hole 100a of the bimetal valve 100 when viewed from the axial direction of the drive shaft 6. The inner diameter of the retainer-side throttle passage 112b is smaller than the inner diameters of the retainer-side port 112a and the valve hole 100a.
  • the configuration of the retainer 112 includes the retainer-side throttle passage 112b, even when the bimetal valve 100 is in contact with the retainer 112, the storage chamber 82 and the suction chamber 51 are formed by the retainer-side throttle passage 112b. It will communicate. For this reason, oil is supplied between the drive shaft 6 and the support portion (for example, the first sliding bearing 61) of the drive shaft 6 while suppressing the outflow of oil to the suction chamber 51, and lubrication of the drive shaft 6 is performed. Becomes possible.
  • the bimetal valve 100 may include a valve body 103 as shown in FIG.
  • the valve element 103 has a valve element-side port 103a that is attached to the inner peripheral surface of the bimetal valve 100 to close the valve hole 100a and penetrates the valve element 103 in the thickness direction of the bimetal valve 100.
  • the material of the valve body 103 may be a metal material or a resin material, but by using a resin material, it is possible to reduce noise when the valve body 103 comes into contact with the retainer 112. It becomes.
  • the bimetal valve 100 includes the valve element 103, the bimetal valve 100 does not directly contact the retainer 112, so that a decrease in the durability of the bimetal valve 100 is suppressed, and the reliability of the bimetal valve 100 is reduced. It is possible to improve the performance.
  • the valve body 103 is formed on the other (bimetal valve 100) when the valve body side port 103a is formed on one (retainer 112) of the bimetal valve 100 and the bimetal valve contact member (retainer 112). The valve seat is formed.
  • a retainer-side valve hole 112c is formed in the retainer 112, and the bimetal valve 100 is It is good also as composition provided with side port 100b.
  • the retainer-side valve hole 112c is a through-hole that is disposed at the center of the retainer 112 as viewed in the axial direction of the drive shaft 6 and that penetrates the retainer 112 in the thickness direction.
  • the bimetal-side port 100b is a through-hole having a smaller inner diameter than the retainer-side valve hole 112c, and penetrates the bimetal valve 100 in the thickness direction.
  • the bimetal-side port 100b is located at a position that does not overlap the retainer-side valve hole 112c when viewed from the axial direction of the drive shaft 6.
  • the merging portion 8c is formed at a position in the valve plate 4 that overlaps with the storage chamber 82 when viewed from the axial direction of the drive shaft 6, but is not limited thereto. That is, for example, as shown in FIG. 12, the merging portion 8c may be formed in the cylinder block 2 at a position that does not overlap with the storage chamber 82 when viewed from the axial direction of the drive shaft 6.
  • the configuration of the second discharge passage 8 b is configured to include only the block-side discharge passage forming portion 85, and the throttle passage 8 d is formed on the block side of the suction valve forming plate 84 when viewed from the axial direction of the drive shaft 6. It is formed at a position overlapping the discharge passage forming portion 85 and the merging portion 8c.
  • the bimetal valve 100 is formed in a disk shape, but the invention is not limited to this. That is, for example, as shown in FIG. 13, the bimetal valve 100 may be formed in a lead shape. In this case, the structure of the opening / closing mechanism 10 can be simplified by fixing the bimetal valve 100 to the valve plate 4 using bolts, nuts, or the like.
  • one end of the in-shaft passage 81 is configured to communicate with the crank chamber 30 via the oil introduction passage 39.
  • One end may be in direct communication with the crank chamber 30.
  • the first discharge passage 8a is configured to have the shaft passage 81 formed inside the drive shaft 6 and the accommodation chamber 82, but the present invention is not limited to this. That is, for example, as shown in FIG. 14, an in-cylinder passage 88 which is a passage for communicating the crank chamber 30 and the center bore 22 is formed in the cylinder block 2.
  • the first discharge passage 8a may be configured to include the in-cylinder passage 88 formed inside the cylinder block 2 and the storage chamber 82.
  • the configuration of the discharge passage 8 includes the junction 8c that joins the first discharge passage 8a and the second discharge passage 8b.
  • the configuration is not limited to this. That is, the configuration of the discharge passage 8 is, for example, a configuration in which the first discharge passage 8a and the second discharge passage 8b are provided with the throttle passages without forming the confluence, and each of the throttle passages communicates with the suction chamber 51. Is also good.
  • SYMBOLS 1 Variable capacity compressor, 2 ... Cylinder block, 3 ... Front housing, 4 ... Valve plate, 5 ... Cylinder head, 6 ... Drive shaft, 7 ... Supply passage, 8 ... Discharge passage, 8a ... First discharge passage, 8b ... Second discharge passage, 8c ... Junction, 8d ... Throttle passage, 9 ... Capacity control valve, 10 ... Open / close mechanism, 11 ... Through bolt, 21 ... Cylinder bore, 22 ... Center bore, 23 ... Piston, 30 ... Crank chamber, 31 ... Swash plate, 32 ... Rotor, 33 ... Link mechanism, 33a ... First arm, 33b ... Second arm, 33c ... Link arm, 33d ...
  • suction passage 55 discharge passage
  • 56 discharge port
  • 57 discharge check valve
  • 61 first sliding bearing
  • 62 thrust plate
  • 63 adjusting screw
  • 64 second sliding bearing
  • 65 shaft sealing device
  • 66 thrust Bearing:
  • 81 shaft passage
  • 82 accommodation chamber
  • 82a large diameter portion
  • 82b small diameter portion
  • 82c side wall surface
  • 83 cylinder gasket
  • 83a protruding portion
  • 83b gasket side first port
  • 83c gasket Side second port
  • 84 suction valve forming plate
  • 84a suction side first port
  • 84b suction side second port
  • 85 block side discharge passage forming part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

【課題】駆動軸の軸線を中心とする可変容量圧縮機の取付け角度がエンジンによって異なっても、開閉機構の位置を変更する必要が無く、且つ可変容量圧縮機内への開閉機構の組立性を向上させることが可能な可変容量圧縮機を提供する。【解決手段】可変容量圧縮機(1)が、クランク室(30)の冷媒を吸入室(51)へ排出する排出通路(8)が、駆動軸(6)の他端側の面とバルブプレート(4)との間に形成されたセンタボア(22)内の空間である収容室(82)を有する第一排出通路(8a)と、第一排出通路(8a)とは別にシリンダブロック(2)に設けられた第二排出通路(8b)とを含んで構成され、収容室(82)内に配置され、且つ収容室(82)の温度が予め設定した第一閾値温度以上の場合は第一排出通路(8a)を開放させてクランク室(30)内に存在するオイルを排出し、収容室(82)の温度が第一閾値温度よりも低い予め設定した第二閾値温度以下の場合は第一排出通路(8a)を閉鎖する開閉機構(10)を備える。

Description

可変容量圧縮機
 本発明は、例えば、車両用の空調装置等に用いる可変容量圧縮機に関する。
 クランク室の圧力変動に応じて吐出容量を変化させる可変容量型の可変容量圧縮機としては、例えば、特許文献1に記載されている構成のものがある。
 特許文献1に記載されている可変容量圧縮機は、回転軸とともに回転する斜板を収容するクランク室と、クランク室と吐出室を連絡する給気通路と、吸入室とクランク室を連絡する抽気通路とを備えている。抽気通路は、クランク室と連通する第一通路と、第一通路と別の経路でクランク室と連通し、且つ回転軸の径方向において、第一通路よりも外周側に形成される第二通路を含む。さらに、抽気通路は、第一通路と第二通路が互いに合流する合流部と、合流部と吸入室との間に形成された絞り通路を含む。これに加え、可変容量圧縮機は、第一通路及び第二通路の少なくとも一方を開閉する開閉手段を備えており、第二通路は、クランク室内の温度が所定温度以上のときに開かれる。
特開2007-009720号公報
 特許文献1に記載されている可変容量圧縮機を含め、一般的な可変容量圧縮機では、駆動軸の軸線を中心とする可変容量圧縮機の取付け角度がエンジンによって異なる場合が多い。このため、クランク室内に存在するオイルを効果的に排出するためには、クランク室内に存在するオイルを排出する排出通路のクランク室側の開口位置を変更する必要があり、これに伴って排出通路を開閉する手段の位置を、駆動軸の取付け対象となるエンジン毎に、鉛直方向に沿って変更する必要がある。したがって、排出通路を開閉する手段を収容するスペースの確保が困難となる場合がある。さらに、排出通路を開閉する手段の可変容量圧縮機内への組み立てが困難である。
 本発明は、上記のような問題点に着目してなされたもので、排出通路を開閉する手段を容易に配置することが可能な可変容量圧縮機を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、吐出室の冷媒をクランク室へ供給する供給通路の開度を変化させる容量制御弁の開度変化により、クランク室の圧力が変化してピストンのストロークが変化する可変容量圧縮機である。また、可変容量圧縮機は、クランク室の冷媒を吸入室へ排出する排出通路を備える。排出通路は、駆動軸の他端側の面とバルブプレートとの間に形成されたセンタボア内の空間である収容室を有する第一排出通路と、第一排出通路とは別にシリンダブロックに設けられた第二排出通路を含んで構成される。さらに、可変容量圧縮機は、収容室内に配置された開閉機構を備える。開閉機構は、収容室の温度が予め設定した第一閾値温度以上の場合は第一排出通路を開放させてクランク室内に存在するオイルを排出し、収容室の温度が第一閾値温度よりも低い予め設定した第二閾値温度以下の場合は第一排出通路を閉鎖する。
 本発明の一態様によれば、クランク室内に存在するオイルを排出する第一排出通路を開閉する開閉機構が、駆動軸の中心軸の延長線上に配置された収容室に収容される。このため、駆動軸の軸線を中心とする可変容量圧縮機の取付け角度がエンジンによって異なっても、開閉機構の位置を変更する必要が無く、且つ可変容量圧縮機内への開閉機構の組立性を向上させることが可能な可変容量圧縮機を提供することが可能となる。
本発明の第一実施形態における可変容量圧縮機の構成を表す断面図である。 図1中に線IIで囲んだ範囲の拡大図である。 図2中に線IIIで囲んだ範囲の拡大図である。 開閉機構の構成を表す図である。 図4中に線Vで囲んだ範囲の拡大図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。 第一実施形態の変形例を表す図である。
 図面を参照して、本発明の第一実施形態を以下において説明する。以下の説明で参照する図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係や、各層の厚さの比率等は、現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は、以下の説明を参酌して判断すべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 さらに、以下に示す第一実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質や、それらの形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることが可能である。また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」になり、「右」が「左」になることは勿論である。
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(構成)
 図1から図5を用いて、第一実施形態の構成を説明する。
(可変容量圧縮機)
 図1中に表す可変容量圧縮機1は、主に、車両用(車載)のエアコンシステム(エア・コンディショナー・システム)に適用される、クラッチレス可変容量圧縮機として構成されている。なお、図1における上方は、鉛直方向の上方である。同様に、図1における下方は、鉛直方向の下方である。
 図1中に表すように、可変容量圧縮機1は、環状に配列された複数のシリンダボア21を有するシリンダブロック2と、シリンダブロック2の一端に設けられたフロントハウジング3と、シリンダブロック2の他端にバルブプレート4を介して設けられたシリンダヘッド5を備える。
 そして、フロントハウジング3と、センターガスケット(図示せず)、シリンダブロック2、シリンダガスケット83、吸入弁形成板84、バルブプレート4、吐出弁形成板87、ヘッドガスケット(図示せず)、シリンダヘッド5が順次接続され、複数の通しボルト11により締結されることで、可変容量圧縮機1のハウジングを形成している。
 また、シリンダブロック2とフロントハウジング3とによってクランク室30が形成されており、水平方向に延びる駆動軸6が、クランク室30内を横断して設けられている。
 各シリンダボア21の内部には、シリンダボア21内を往復動するピストン23が収容されている。
 駆動軸6の軸方向の中間部の周囲には、円環状に形成されており、駆動軸6を径方向から包囲している斜板31が配置されている。
 斜板31は、駆動軸6に固定されたロータ32に、リンク機構33を介して連結されており、駆動軸6と共に回転する。また、斜板31は、駆動軸6の中心軸線に直交する平面に対する角度(斜板31の傾角)が変更可能に構成されている。
 さらに、斜板31は、クランク室30の圧力(内圧)を変化させることによって、駆動軸6の軸線に対する傾角(傾斜角度)を変化させることが可能である。
 リンク機構33は、ロータ32の斜板31と対向する面から突出している第一アーム33aと、斜板31のロータ32と対向する面から突出している第二アーム33bと、一端側が第一連結ピン33dを介して第一アーム33aと回転可能に連結され、他端側が第二連結ピン33eを介して第二アーム33bと回転可能に連結されたリンクアーム33cを含む。
 また、斜板31には、斜板31が最大傾角と最小傾角の範囲で傾動可能となる形状に、貫通孔34が形成されている。貫通孔34には、駆動軸6と接触する最小傾角規制部(図示せず)が形成されている。最小傾角規制部は、斜板31が駆動軸6に対して直交するときの斜板31の傾角を0[°]とした場合、斜板31を、ほぼ0[°]まで傾角変位させることが可能に形成されている。また、斜板31は、傾角が最大となると、ロータ32に接触して、傾角の増加が規制される。
 ロータ32と斜板31の間には、斜板31が最小傾角となるまで、斜板31の傾角を減少させる方向に付勢する傾角減少バネ35が装着されている。また、斜板31とバネ支持部材36との間には、斜板31の傾角を増大させる方向に付勢する傾角増大バネ37が装着されている。
 最小傾角における傾角増大バネ37の付勢力は、傾角減少バネ35の付勢力よりも大きく設定されている。このため、駆動軸6が回転していないとき、斜板31の傾角は、傾角減少バネ35の付勢力と傾角増大バネ37の付勢力とが釣り合う角度となる。
 斜板31の外周部は、ピストン23のうち、クランク室30側に突出している端部に形成された内側空間に収容されている。これにより、斜板31は、一対のシュー38を介して、ピストン23と連動する構成となっている。したがって、駆動軸6の回転に伴う斜板31の回転により、各ピストン23が、収容されているシリンダボア21の内部を往復動する。すなわち、斜板31とシュー38は、駆動軸6の回転をピストン23の往復動に変換する往復動変換部を形成する。
 駆動軸6の一端(図1における右側の端部)は、センタボア22へ挿入されている。
 センタボア22は、環状に配列された複数のシリンダボア21の径方向内側で中心に設けられており、シリンダブロック2を貫通する空間である。
 駆動軸6とセンタボア22との間には、第一滑り軸受61が配置されている。したがって、駆動軸6の一端は、シリンダブロックに回転可能に支持されている。
 駆動軸6とロータ32で形成される連結体は、第一滑り軸受61と第二滑り軸受64によって、ラジアル方向に回転可能に支持されており、スラストプレート62とスラスト軸受66によって、スラスト方向に回転可能に支持されている。
 駆動軸6の他端(図1における左側の端部)は、一部がフロントハウジング3の外側へ部分的に突出し、動力伝達装置(図示せず)に連結されている。動力伝達装置は、エンジン等の駆動力発生源(図示せず)にベルトを介して連結されている。すなわち、駆動軸6の他端は、フロントハウジング3に回転可能に支持されている。クランク室30の内部は、軸封装置65によって外部空間から遮断されている。
 したがって、駆動力発生源が発生させた駆動力が動力伝達装置に伝達されると、駆動軸6は、動力伝達装置の回転と同期して回転可能となっている。
 また、駆動軸6のバルブプレート4と対向する側の端面は、円環状のスラストプレート62で支持されている。
 駆動軸6とスラストプレート62との接触状態(隙間)は、シリンダブロック2に対する調整ねじ63の取り付け状態によって調整されている。
 調整ねじ63は、円環状に形成されており、外径面に雄ねじ(図示せず)が形成されている。また、センタボア22のうち、調整ねじ63の外径面と対向する面には、調整ねじ63に形成されている雄ねじと嵌合する雌ねじ(図示せず)が形成されている。
 したがって、調整ねじ63は、センタボア22の雌ねじに雄ねじを嵌合させることで、駆動軸6よりもバルブプレート4に近い位置で、センタボア22の内部へ配置されている。
 調整ねじ63が有する空隙部は、例えば、駆動軸6の軸方向から見て、六角形に形成されている。
 なお、可変容量圧縮機1の内部には、潤滑用のオイル(図示せず)が封入されており、駆動軸6が回転すると、オイルが攪拌される。また、可変容量圧縮機1の内部を冷媒が移動すると、冷媒と共にオイルが移動して、可変容量圧縮機1の内部が潤滑される。
 可変容量圧縮機1の内部、特に、クランク室30の内部において、存在するオイルの量が多い領域は、鉛直方向で下方の領域である。また、クランク室30の内部において、存在するオイルの量が少ない領域は、鉛直方向で上方の領域である。
 シリンダヘッド5は、バルブプレート4を間に挟んで、シリンダブロック2と対向して配置されている。すなわち、シリンダヘッド5は、バルブプレート4を介して、シリンダブロック2の他端側に設けられている。
 また、シリンダヘッド5には、吸入室51と吐出室52が、シリンダヘッド5の内部に区画されて形成されている。なお、吸入室51と吐出室52は、バルブプレート4の他方の面により閉塞されている。
 吸入室51は、駆動軸6の軸方向から見て、シリンダヘッド5の中央部に配置されている。
 また、吸入室51は、吸入ポート53と吸入通路54を介して、エアコンシステムが有する吸入側の外部冷媒回路と接続されており、吸入側の外部冷媒回路から、低圧側の冷媒(冷媒ガス)を吸入する。
 さらに、吸入室51は、バルブプレート4に設けられた吸入孔42と、吸入弁(図示せず)を介して、各シリンダボア21と連通している。
 吐出室52は、駆動軸6の軸方向から見て、吸入室51を環状に包囲する位置に配置されている。
 また、吐出室52は、吐出弁(図示せず)と、バルブプレート4に設けられた吐出孔41を介して、各シリンダボア21と連通している。
 したがって、吸入側の外部冷媒回路から吸入室51の内部へ吸入された低圧側の冷媒は、ピストン23の往復動によって、ピストン23を収容しているシリンダボア21に吸入される。そして、ピストン23の往復動によって、圧縮されて高圧となり、吐出室52へ吐出される。すなわち、シリンダボア21及びピストン23によって、吸入室51の内部へ吸入された冷媒を圧縮する圧縮部が形成されている。
 さらに、吐出室52は、吐出通路55と吐出ポート56を介して、エアコンシステムが有する吐出側の外部冷媒回路と接続されている。したがって、吐出室52へ吐出された、圧縮部によって圧縮された冷媒は、吐出通路55と吐出ポート56を介して、吐出側の外部冷媒回路へ、高圧側の冷媒(冷媒ガス)が吐出される。
 吐出室52と吐出通路55との間には、吐出逆止弁57が配置されている。
 吐出逆止弁57は、吐出室52(上流側)と吐出通路55(下流側)との圧力差に応答して動作する。そして、吐出逆止弁57は、圧力差が予め設定した閾値の圧力よりも小さい場合には、吐出室52と吐出通路55との間を遮断して、吐出室52から吐出通路55への冷媒の移動を阻止する。一方、吐出逆止弁57は、圧力差が閾値の圧力よりも大きい場合には、吐出室52と吐出通路55との間を連通させる。
 したがって、吐出室52から、吐出通路55と吐出ポート56を介して、吐出側の外部冷媒回路へ吐出される高圧側の冷媒は、吐出逆止弁57によって、逆流を阻止されている。
 第一実施形態において、可変容量圧縮機1は、吐出室52の冷媒をクランク室30へ供給する供給通路7と、クランク室30の冷媒を吸入室51へ排出する排出通路8と、容量制御弁9と、開閉機構10を備える。
(供給通路)
 供給通路7は、シリンダブロック2のうち、シリンダボア21とセンタボア22との間の領域に形成されている通路である。
 また、供給通路7は、吐出室52の冷媒をクランク室30へ供給する通路であり、容量制御弁9のうち吐出室52から供給された冷媒を排出する部分と、クランク室30とを連通させている。すなわち、供給通路7は、吐出室52とクランク室30に連通して、吐出室52の冷媒をクランク室30へ供給する。
(排出通路)
 排出通路8は、クランク室30の冷媒を吸入室51へ排出する通路である。すなわち、排出通路8は、クランク室30と吸入室51に連通して、クランク室30の冷媒を吸入室51へ排出する。
 また、排出通路8は、第一排出通路8aと、第二排出通路8bと、合流部8cと、絞り通路8dを有する。
 第一排出通路8aは、軸内通路81と、収容室82を有する。
 軸内通路81は、排出通路8のうち駆動軸6の内部に形成されている通路である。
 軸内通路81の一端は、駆動軸6の側面に開口しており、オイル導入通路39を介して、クランク室30と連通している。軸内通路81の他端は、駆動軸6のバルブプレート4と対向する側の端面に開口している。
 したがって、軸内通路81は、クランク室30と、センタボア22とを連通させている。
 また、軸内通路81の一端は、クランク室30の内部において、存在するオイルの量が多い領域と連通している。
 収容室82は、シリンダブロック2が備え、センタボア22のうち、バルブプレート4に近い側の一部によって形成されている。すなわち、収容室82は、シリンダブロック2のうち、駆動軸6の他端側(リア側)の面とバルブプレート4との間に形成されたセンタボア22内の空間である。
 また、収容室82は、センタボア22の内部において、駆動軸6の他端側の端面とバルブプレート4との間に形成された空間である。駆動軸6の他端側の端面とは、バルブプレート4と対向する側の端面である。
 さらに、収容室82は、大径部82aと、小径部82bを有しており、軸内通路81の他端と連通している。
 また、収容室82と、軸内通路81との間には、スラストプレート62が有する空隙部と、調整ねじ63が有する空隙部により、通路が形成されている。スラストプレート62が有する空隙部の内径は、軸内通路81の内径よりも大きい。調整ねじ63が有する空隙部の内径は、スラストプレート62が有する空隙部の内径よりも大きい。
 大径部82aは、駆動軸6の軸方向から見て円形に形成された空間であり、収容室82のうち、バルブプレート4に近い側の空間を構成している。
 また、図2中に示すように、大径部82aは、シリンダブロック2のバルブプレート4側から凹設されて形成されている。
 第一実施形態では、一例として、大径部82aが、シリンダガスケット83と、吸入弁形成板84によって覆われている構成とした場合について説明する。
 以上により、第一排出通路8aは、駆動軸6の内部に形成され、且つ駆動軸6の他端面に開口して収容室82に連通する軸内通路81を有する。
 シリンダガスケット83は、吸入弁形成板84よりもシリンダブロック2に近い位置で、吸入弁形成板84と共に、シリンダブロック2とバルブプレート4との間に配置されている。
 また、シリンダガスケット83には、突出部83aと、ガスケット側第一ポート83bと、ガスケット側第二ポート83cが形成されている。
 突出部83aは、シリンダガスケット83のシリンダブロック2と対向する面から大径部82aに向けて突出しており、駆動軸6の軸方向から見て、環状に形成されている。
 ガスケット側第一ポート83bは、シリンダガスケット83を厚さ方向に貫通する孔であり、駆動軸6の軸方向から見て、軸内通路81と重ならない位置に配置されている。
 ガスケット側第二ポート83cは、シリンダガスケット83を厚さ方向に貫通する孔であり、駆動軸6の軸方向から見て、第二排出通路8bと重なる位置に配置されている。
 なお、図示を省略しているが、シリンダガスケット83のシリンダブロック2と対向する面は、樹脂製(ゴム製)のコート層で覆われている。
 吸入弁形成板84は、シリンダガスケット83とバルブプレート4との間に配置されている。
 また、吸入弁形成板84には、吸入側第一ポート84aと、吸入側第二ポート84bが形成されている。
 吸入側第一ポート84aは、吸入弁形成板84を厚さ方向に貫通する孔であり、駆動軸6の軸方向から見て、ガスケット側第一ポート83bと重なる位置に配置されている。
 吸入側第二ポート84bは、吸入弁形成板84を厚さ方向に貫通する孔であり、駆動軸6の軸方向から見て、ガスケット側第二ポート83cと重なる位置に配置されている。
 小径部82bは、駆動軸6の軸方向から見て円形に形成された空間であり、収容室82のうち、駆動軸6に近い側の空間を構成している。
 小径部82bの内径は、大径部82aの内径よりも小さい。したがって、小径部82bと大径部82aが連続する位置には、段差が形成されている。
 また、収容室82を形成する壁面のうち、小径部82bと大径部82aが連続する位置に段差を形成し、バルブプレート4と対向する面である側壁面82cは、駆動軸6の中心軸線から離れるにつれて、バルブプレート4から離れるように傾斜している。
 したがって、小径部82bは、大径部82aの径よりも小径であって、大径部82aの底壁(側壁面82c)に開口している。
 第二排出通路8bは、ブロック側排出通路形成部85と、プレート側排出通路形成部86を有する。
 ブロック側排出通路形成部85は、第二排出通路8bのうちシリンダブロック2に形成されている通路であり、シリンダボア21とセンタボア22との間に形成されて、クランク室30とプレート側排出通路形成部86とを連通させている。
 第一実施形態では、一例として、ブロック側排出通路形成部85の一端が、クランク室30の内部において、駆動軸6よりも鉛直方向で上方に配置されている場合について説明する。したがって、ブロック側排出通路形成部85の一端は、クランク室30の内部において、存在するオイルの量が少ない領域と連通している。
 プレート側排出通路形成部86は、第二排出通路8bのうちバルブプレート4に形成されている開口部であり、ブロック側排出通路形成部85と、合流部8cとを連通させている。
 以上により、第二排出通路8bは、第一排出通路8aとは別にシリンダブロック2に設けられた通路である。
 合流部8cは、バルブプレート4に形成されている開口部であり、ガスケット側第一ポート83b及び吸入側第一ポート84aと、プレート側排出通路形成部86と連通している。すなわち、合流部8cは、第一排出通路8aと第二排出通路8bとを合流させる空間である。
 したがって、ガスケット側第一ポート83b及び吸入側第一ポート84aは、収容室82が有する、合流部8cに連通する開口部を形成している。
 また、合流部8cは、駆動軸6の軸方向から見て、収容室82と重なる位置に配置されている。
 さらに、合流部8cは、駆動軸6の軸方向から見て、複数のシリンダボア21よりも駆動軸6に近い位置に配置されている。
 絞り通路8dは、バルブプレート4とシリンダヘッド5との間に配置された吐出弁形成板87に形成された貫通孔であり、合流部8cと吸入室51とを連通させている。すなわち、絞り通路8dは、排出通路8の一部を形成しており、第一排出通路8aの収容室82よりも下流側であって吸入室51に開口し、合流部8cと吸入室51とを連通させる通路であり、合流部8cの下流側に配置されている。
 また、絞り通路8dの内径は、ガスケット側第一ポート83b、吸入側第一ポート84a及びプレート側排出通路形成部86の内径よりも小さい。
 したがって、第一排出通路8aは、収容室82と絞り通路8dの間に配置され、且つ第二排出通路8bが合流する合流部8cを備える。
(容量制御弁)
 容量制御弁9は、シリンダヘッド5の内部において、吐出室52とクランク室30とを連通させており、供給通路7の途中(両端部間)に配置されている。
 また、容量制御弁9は、供給通路7の開度(断面積)を変化させることが可能である。
 容量制御弁9によって供給通路7の開度を制御することで、吐出室52からクランク室30への冷媒の導入量を制御することが可能である。したがって、容量制御弁9によって供給通路7の開度を制御することによって、クランク室30の圧力を変化させ、斜板31の傾斜角を変化させると、ピストン23のストロークを変化させることが可能となる。そして、ピストン23のストロークを変化させると、可変容量圧縮機1の吐出容量(吐出する冷媒の流量)を、可変制御することが可能となる。すなわち、可変容量圧縮機1は、容量制御弁9の開度変化によりクランク室30の圧力が変化して、ピストン23のストロークが変化する圧縮機である。
 例えば、空調装置の作動時、すなわち、可変容量圧縮機1を作動させている状態では、容量制御弁9に内蔵されるソレノイドの通電量が、外部から入力を受けた信号に基づいて調整される。これにより、吸入室51の圧力が所定値となるように、可変容量圧縮機1の吐出容量が可変制御される。このとき、容量制御弁9は、外部環境に応じて、吸入圧力を最適な値に制御することが可能である。
 また、例えば、空調装置の非作動時、すなわち、可変容量圧縮機1を作動させていない状態では、容量制御弁9に内蔵されるソレノイドを通電させないことにより、供給通路7を強制的に開放し、可変容量圧縮機1の吐出容量を最小に制御する。
(開閉機構)
 開閉機構10は、収容室82内に配置されたバイメタル弁100を備えている。
 なお、収容室82は、例えば、センタボア22に駆動軸6とスラストプレート62を配置し、さらに、シリンダブロック2に調整ねじ63を取り付ける作業において、必要な空間を用いて形成することが可能である。このため、収容室82は、可変容量圧縮機1の内部に、開閉機構10を配置するために、専用の収容室として形成した空間ではなく、可変容量圧縮機1に既存の構成を利用して形成することが可能な構成である。
 バイメタル弁100は、熱膨張率が異なる複数枚の金属板を貼り合わせて、円板状に形成されている。
 また、バイメタル弁100は、収容室82のうち、大径部82aの内部に収容されている。
 バイメタル弁100を厚さ方向から見た中心(中央)には、バイメタル弁100を厚さ方向に貫通する円形の弁孔100aが形成されている。
 したがって、ガスケット側第一ポート83b及び吸入側第一ポート84aによって形成された、収容室82が有する開口部は、弁孔100aと対向しない位置に配置されている。
 バイメタル弁100を構成する複数枚の金属板は、駆動軸6の軸方向に沿って積層されている。
 バイメタル弁100を構成する複数枚の金属板は、収容室82の温度が、予め設定した第一閾値温度以上の場合、図4及び図5中に示すように、駆動軸6側の面である第一面101が突出した曲面となる組み合わせとする。
 これに加え、バイメタル弁100を構成する複数枚の金属板は、収容室82の温度が予め設定した第二閾値温度以下の場合、図2及び図3中に示すように、バルブプレート4側の面である第二面102が突出した曲面となる組み合わせとする。
 第一閾値温度は、例えば、クランク室30の周壁における温度を基準として、130[℃]以上150[℃]以下の範囲内に設定する。
 第二閾値温度は、例えば、第一閾値温度よりも15[℃]以上25[℃]以下の範囲内で、低い温度に設定する。
 したがって、バイメタル弁100は、収容室82の温度変化に応じて、駆動軸6の軸方向に沿って変位する。
 以上により、バイメタル弁100は、収容室82内に外周縁が支持されて駆動軸6の軸線方向に変位する円板状に形成されている。
 バイメタル弁100の外径は、第一面101及び第二面102が曲面となっている状態では、大径部82aの外径と等しい。
 また、バイメタル弁100が湾曲していない状態におけるバイメタル弁100の外径は、大径部82aの外径よりも大きい。
 具体的には、バイメタル弁100が湾曲していない状態におけるバイメタル弁100の外径は、収容室82の温度が第二閾値温度以下となってバイメタル弁100の第二面102が突出すると、第二面102がシリンダガスケット83に接触する値に設定する。
 第二面102がシリンダガスケット83に接触すると、バイメタル弁100のうち、弁孔100aの周囲がシリンダガスケット83に接触して、軸内通路81と合流部8cとの間が遮断されるため、第一排出通路8aが遮断されることとなる。これにより、排出通路8は、第二排出通路8bと、合流部8cと、絞り通路8dを経由して、クランク室30の冷媒を吸入室51へ排出する通路となる。
 一方、図4中に示すように、第二面102がシリンダガスケット83から離間すると、軸内通路81と合流部8cとの間が弁孔100aで連通されるため、第一排出通路8aが連通されることとなる。これにより、排出通路8は、第一排出通路8aから合流部8cと絞り通路8dを経由する経路と、第二排出通路8bから合流部8cと絞り通路8dを経由する経路の、二つの経路を介して、クランク室30の冷媒を吸入室51へ排出する通路となる。
 したがって、シリンダガスケット83は、収容室82内でバイメタル弁100よりも下流側に配置され、バイメタル弁100が接離するバイメタル弁当接部材を形成する。また、バイメタル弁100の外周縁は、大径部82aの底壁とバイメタル弁当接部材(シリンダガスケット83)との間に配置され、且つ大径部82aの底壁とバイメタル弁当接部材(シリンダガスケット83)により支持される。
 また、バイメタル弁100の外周縁が支持される大径部82aの底壁(側壁面82c)は、バイメタル弁100の径方向外側に向かうにつれて、バイメタル弁当接部材(シリンダガスケット83)から遠ざかるように傾斜している。
 以上により、収容室82とシリンダガスケット83とは、バイメタル弁100を外周側から支持する環状溝を形成している。
 また、バイメタル弁100は、収容室82の温度が第一閾値温度以上の場合は弁孔100aをバルブプレート4から離間させて、第一排出通路8aと合流部8cとを弁孔100aで連通させる。一方、バイメタル弁100は、収容室82の温度が第二閾値温度以下の場合は、弁孔100aをバルブプレート4で閉塞して、第一排出通路8aと合流部8cとの間を遮断する。
 したがって、開閉機構10は、収容室82内に配置され、且つ収容室82の温度が第一閾値温度以上の場合は第一排出通路8aと合流部8cとの間を連通させ、収容室82の温度が第二閾値温度以下の場合は第一排出通路8aと合流部8cとの間を遮断する。これにより、開閉機構10は、収容室82の温度が第一閾値温度以上の場合は第一排出通路8aを開放させてクランク室30内に存在するオイルを排出し、収容室82の温度が第二閾値温度以下の場合は第一排出通路を閉鎖する。
 すなわち、収容室82内に配置された開閉機構10(バイメタル弁100)は、収容室82の温度変化に応じて、第一排出通路8aと合流部8cとの間を開閉する。
 また、収容室82に配置された開閉機構10(バイメタル弁100)は、吸入弁形成板84、シリンダガスケット83、バルブプレート4のうち少なくとも一つにより、収容室82から抜け止めされている。
 以上により、開閉機構10は、バイメタル弁100の中央に形成された弁孔100aと、バイメタル弁当接部材(シリンダガスケット83)の弁孔100aが対向する位置に形成されている弁座(シリンダガスケット83)を含む。
(動作・作用)
 図1から図5を参照して、第一実施形態の可変容量圧縮機1で行う動作の一例と、作用を説明する。
 可変容量圧縮機1の使用時には、駆動軸6の回転によりロータ32と斜板31が回転すると、斜板31とシュー38によって、駆動軸6の回転がピストン23の往復動に変換され、シリンダボア21の内部に供給された冷媒を圧縮する。
 シリンダボア21の内部におけるピストン23のストロークは、容量制御弁9によって供給通路7の開度を制御することで変化する。
 供給通路7の開度を制御する際に、容量制御弁9が供給通路7を開くと、クランク室30から軸内通路81を通過して、収容室82へ冷媒が移動する。
 ここで、第一実施形態の構成では、排出通路8が、第一排出通路8aと、第二排出通路8bと、合流部8cを備えている。これに加え、収容室82に配置されている開閉機構10が、収容室82の温度変化に応じて、第一排出通路8aと合流部8cとの間を開閉する。
 さらに、第一実施形態の構成では、開閉機構10が、収容室82の温度が第一閾値温度以上の場合は、第一排出通路8aと合流部8cとの間を連通させる。一方、収容室82の温度が第一閾値温度よりも低い第二閾値温度以下の場合は、第一排出通路8aと合流部8cとの間を遮断する。
 このため、クランク室30から収容室82へ移動する冷媒の温度が上昇し、収容室82の温度が第一閾値温度以上となると、図4及び図5中に示すように、バイメタル弁100の第一面101が、駆動軸6側に突出した曲面となる。
 バイメタル弁100の第一面101が、駆動軸6側に突出した曲面となると、第二面102がバルブプレート4から離間して、弁孔100aが開放されるため、第一排出通路8aが開放されて、収容室82を介して軸内通路81と合流部8cが連通する。
 これにより、図4中に示すように、クランク室30から軸内通路81を経由して収容室82へ移動した冷媒が、弁孔100aを通過して、合流部8cへ移動することとなる。そして、合流部8cには、第二排出通路8bを経由して、クランク室30から冷媒が移動する。
 このため、合流部8cでは、クランク室30から第一排出通路8aを経由して移動した冷媒と、クランク室30から第二排出通路8bを経由して移動した冷媒が合流する。そして、合流部8cで合流した冷媒は、絞り通路8dを経由して吸入室51へ移動する。なお、図4中には、冷媒の流れを、破線の矢印で示す。
 したがって、クランク室30から収容室82へ移動する冷媒の温度が上昇して、収容室82の温度が第一閾値温度以上となると、第一排出通路8aが開放される。このため、排出通路8は、第一排出通路8aから合流部8cと絞り通路8dを経由する経路と、第二排出通路8bから合流部8cと絞り通路8dを経由する経路の、二つの経路を介して、クランク室30の冷媒を吸入室51へ排出する通路となる。これにより、排出通路8の開度が最大となり、クランク室30から吸入室51へ排出する冷媒の排出量を増加させることが可能となる。
 また、シリンダガスケット83は、大径部82aに向けて突出し、駆動軸6の軸方向から見て、環状に形成されている突出部83aを備えている。これに加え、収容室82の側壁面82cは、駆動軸6の中心軸線から離れるにつれて、バルブプレート4から離れるように傾斜している。
 このため、バイメタル弁100の第一面101が、駆動軸6側に突出した曲面となると、図5中に示すように、第一面101が突出部83aに押圧されるとともに、第二面102が側壁面82c(小径部82bと大径部82aが連続する位置の段差)に押圧される。これにより、突出部83aと側壁面82cによって、バイメタル弁100が安定して支持される。
 したがって、シリンダガスケット83は、バイメタル弁100及びバイメタル弁当接部材(シリンダガスケット83)のいずれか一方(バイメタル弁100)に弁孔100aが形成されている場合に、他方に形成された弁座を形成している。
 すなわち、収容室82の温度が第一閾値温度以上のとき、バイメタル弁100が駆動軸6の他端面側に凸曲面となる変位によって、弁孔100aが弁座(シリンダガスケット83)から離間して弁孔100aを開放する。また、収容室82の温度が第二閾値温度以下となると、バイメタル弁100がバイメタル弁当接部材(シリンダガスケット83)側に凸曲面となる変位によって、弁孔100aが弁座(シリンダガスケット83)に当接して弁孔100aが閉鎖する。
 また、バイメタル弁100とシリンダガスケット83との間に、弁孔100aを通過した冷媒を合流部8cへ移動させるために必要十分な空間を確保することが可能となる。
 一方、クランク室30から収容室82へ移動する冷媒の温度が低下して、収容室82の温度が第二閾値温度以下となると、図2及び図3中に示すように、バイメタル弁100の第二面102が、バルブプレート4側に突出した曲面となる。
 バイメタル弁100の第二面102が、バルブプレート4側に突出した曲面となると、バイメタル弁100のうち、弁孔100aの周囲がシリンダガスケット83に接触して、軸内通路81と合流部8cとの間が遮断される。このため、第一排出通路8aが遮断されることとなる。
 これにより、排出通路8は、第二排出通路8bと、合流部8cと、絞り通路8dを経由して、クランク室30の冷媒を吸入室51へ排出する通路となり、排出通路8の開度が、ゼロよりも大きな最小の開度となる。
 したがって、クランク室30から収容室82へ移動する冷媒の温度が低下して、収容室82の温度が第二閾値温度以下となると、第一排出通路8aが遮断されるため、クランク室30から吸入室51へ排出する冷媒の排出量を減少させることが可能となる。
 また、収容室82の側壁面82cは、駆動軸6の中心軸線から離れるにつれて、バルブプレート4から離れるように傾斜している。
 このため、第二面102が、バルブプレート4側に突出した曲面となると、第一面101が軸内通路81から収容室82へ移動する冷媒の流れに押圧され、第一面101の外周部が収容室82の側壁面82cに押圧される。これにより、第一排出通路8aを流れる冷媒の流れによって、バイメタル弁100が安定して支持される。これに加え、バイメタル弁100の第一面101と側壁面82cが面接触に近い状態で接触するため、収容室82のうち、第一面101が配置される側の領域から第二面102が配置される側の領域への、冷媒の漏れを抑制することが可能となる。
 さらに、シリンダガスケット83のシリンダブロック2と対向する面は、樹脂製(ゴム製)のコート層で覆われている。このため、第二面102がバルブプレート4側に突出した曲面となり、バイメタル弁100がシリンダガスケット83に接触した際には、コート層によって、バイメタル弁100がシリンダガスケット83に接触したときの衝撃を低減させることが可能となる。
 また、合流部8cがバルブプレート4に形成されているため、クランク室30から吸入室51に至る排出通路8を、容易に形成することが可能となる。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(第一実施形態の効果)
 第一実施形態の可変容量圧縮機1であれば、以下に記載する効果を奏することが可能となる。
(1)排出通路8が、収容室82を有する第一排出通路8aと、第一排出通路8aとは別にシリンダブロック2に設けられた第二排出通路8bを含んで構成される。これに加え、収容室82の温度が第一閾値温度以上の場合は第一排出通路8aを開放させてクランク室30内に存在するオイルを排出し、収容室82の温度が第二閾値温度以下の場合は第一排出通路8aを閉鎖する開閉機構10を備える。
 このため、クランク室30内に存在するオイルを排出する第一排出通路8aを開閉する開閉機構10が、駆動軸6の中心軸の延長線上に配置された収容室82に収容される。
 その結果、駆動軸6の軸線を中心とする可変容量圧縮機1の取付け角度がエンジンによって異なっても、開閉機構10の位置を変更する必要が無く、且つ可変容量圧縮機1内への開閉機構10の組立性を向上させることが可能な可変容量圧縮機1を提供することが可能となる。
 また、開閉機構10が、シリンダブロック2の内部において、駆動軸6よりもバルブプレート4側に形成された収容室82に収容されているため、開閉機構10が、駆動軸6の回転によって発生する遠心力によって、横力を受けることが無い。このため、駆動軸6の回転によって動作不良となることを、防止することが可能となる。
 さらに、第一閾値温度及び第二閾値温度を、可変容量圧縮機1の特性に応じた温度に設定することで、開閉機構10の動作条件を、可変容量圧縮機1の特性に応じた条件に設定することが可能となる。
(2)排出通路8に設けられた絞り通路8dが、第一排出通路8aの収容室82よりも下流側であって吸入室51に開口する。これに加え、第一排出通路8aが、収容室82と絞り通路8dの間に配置され、且つ第二排出通路8bが合流する合流部8cを備えている。
 その結果、合流部8cの温度が急変動することを抑制することが可能となり、収容室82の温度が安定化するため、開閉機構10の作動を正確に行うことが可能となる。
(3)第一排出通路8aが、駆動軸6の内部に形成され、且つ駆動軸6の他端面に開口して収容室82に連通する軸内通路81を有する。
 その結果、収容室82とクランク室30とを、容易に連通させることが可能となる。
(4)開閉機構10が、バイメタル弁100と、バイメタル弁当接部材と、弁孔100aと、弁座を有する。さらに、収容室82の温度が第一閾値温度以上のとき、バイメタル弁100が駆動軸6の他端面側に凸曲面となる変位によって弁孔100aが弁座から離間して弁孔100aを開放する。また、収容室82の温度が第二閾値温度以下となると、バイメタル弁100がバイメタル弁当接部材側に凸曲面となる変位によって弁孔100aが弁座に当接して弁孔100aが閉鎖する。
 その結果、アクチュエータ等を必要とせずに、弁孔100aを開閉することが可能となる。
(5)開閉機構100が、バイメタル弁100の中央に形成された弁孔100aと、バイメタル弁当接部材の弁孔100aが対向する位置に形成されている弁座を含む。
 その結果、駆動軸6の軸方向に沿った開閉機構10の高さ(長さ)が増加することを抑制するとともに、収容室82に開閉機構10を容易に配置することが可能となる。
(6)第一排出通路8aが、収容室82と絞り通路8dの間に配置され、且つ第二排出通路8bが合流する合流部8cを備える。これに加え、収容室82が、合流部8cに連通し、且つ弁孔100aと対向しない位置に配置されている開口部を有する。
 その結果、収容室82の温度に応じたバイメタル弁100の変形により、弁孔100aを開閉することが可能となる。
(7)収容室82が、大径部82aと小径部82bを備える。これに加え、バイメタル弁100の外周縁が、大径部82aの底壁とバイメタル弁当接部材との間に配置され、且つ大径部82aの底壁とバイメタル弁当接部材により支持される。
 その結果、バイメタル弁100を、収容室82の内部へ安定して保持することが可能となる。
(8)バイメタル弁100の外周縁が支持される大径部82aの底壁は、バイメタル弁100の径方向外側に向かうにつれてバイメタル弁当接部材から遠ざかるように傾斜している。
 その結果、バイメタル弁100が安定して支持することが可能となる。
(9)バイメタル弁100が、円板状に形成されているとともに、バイメタル弁100を厚さ方向に貫通する円形の弁孔100aを有する。これに加え、弁孔100aが、バイメタル弁100の中心に形成されている。
 その結果、汎用性の高いバイメタルであるワッシャータイプのバイメタルを用いて、開閉機構10を形成することが可能となる。
(10)バイメタル弁100が、収容室82の温度変化に応じて、100aをバルブプレート4から離間させて第一排出通路8aと合流部8cとを、弁孔100aで連通させる。または、弁孔100aをバルブプレート4で閉塞させて、第一排出通路8aと合流部8cとの間を遮断する。
 その結果、アクチュエータ等を必要とせずに、収容室82の温度変化に応じてバイメタル弁100を変形させることで、第一排出通路8aと合流部8cとの間を開閉することが可能となる。
(11)バイメタル弁100を外周側から支持する環状溝が、収容室82とシリンダガスケット83によって形成されている。
 その結果、バイメタル弁100を固定せずに安定に支持することが可能となり、バイメタル弁100を外周側から支持する機構を、簡略化することが可能となる。
(12)収容室82に配置された開閉機構10(バイメタル弁100)は、吸入弁形成板84、シリンダガスケット83、バルブプレート4のうち少なくとも一つにより、収容室82から抜け止めされている。
 その結果、開閉機構10を収容室82に固定するための固定手段が不要となり、構成を簡略化することが可能となる。
(第一実施形態の変形例)
(1)第一実施形態では、収容室82の構成を、大径部82aと小径部82bを備える構成とし、小径部82bと大径部82aが連続する位置に形成した段差によって、バイメタル弁100を支持する構成としたが、これに限定するものではない。
 すなわち、例えば、図6から図8中に示すように、収容室82に、バイメタル弁100を支持するための弁ケーシング110を配置してもよい。
 弁ケーシング110は、ケース部111と、リテーナ112と、シール部材113を備えており、シリンダガスケット83、吸入弁形成板84及びバルブプレート4のうちいずれかによって、収容室82から抜け止めされている。
 ケース部111は、円筒状に形成されており、外周面が収容室82の内周面と接触した状態で、収容室82に収容されている。また、ケース部111は、ケース部111の内周面から中心軸へ向けて突出する円環状のフランジ部111aを備えている。
 リテーナ112は、円板状に形成されており、リテーナ112の外周面をケース部111の内周面に嵌め合せることで、フランジ部111aと共に、バイメタル弁100を挟んで保持している。すなわち、ケース部111とリテーナ112とは、バイメタル弁100を外周側から支持する環状溝を形成している。
 また、リテーナ112は、リテーナ112を厚さ方向(駆動軸6の軸方向)に貫通するリテーナ側ポート112aを備えている。
 リテーナ側ポート112aは、駆動軸6の軸方向から見て、バイメタル弁100の弁孔100aと重ならない位置に形成されている。これに加え、リテーナ側ポート112aは、駆動軸6の軸方向から見て、合流部8cと重なる位置に形成されている。
 シール部材113は、例えば、樹脂材料を用いて形成したOリングであり、ケース部111の外周面と収容室82の内周面との間に配置されて、ケース部111の外周面及び収容室82の内周面と接触している。なお、弁ケーシング110の構成を、シール部材113を備えていない構成とし、ケース部111の外周面を収容室82の内周面に圧入して嵌め込んでもよい。また、バネ等を用いて弁ケーシング110を押圧することで、収容室82へ弁ケーシング110を保持してもよい。
 すなわち、収容室82が備える弁ケーシング110は、収容室82の内周面に外周面が密閉嵌合して、収容室82内に配置される筒状に形成されている。この場合、弁ケーシング110の内周面に、大径部82aと小径部82bが形成されている。
 この構成であれば、収容室82の構成を既存の構成から変更せずに、収容室82へバイメタル弁100を収容することが可能となる。
 また、図6から図8中に示すように、弁ケーシング110によってバイメタル弁100を支持する構成であれば、納品前や出荷前等、バイメタル弁100を可変容量圧縮機1に搭載する前に、バイメタル弁100の動作確認を容易に実施することが可能となる。なお、バイメタル弁100を可変容量圧縮機1に搭載する前に行う、バイメタル弁100の動作確認は、例えば、高温槽等を用いて、バイメタル弁100を支持している弁ケーシング110を加熱することで行う。
 したがって、収容室82の構成は、図1等に示されるように、大径部82aと小径部82bが、収容室82の周壁に直接形成された構成に限定されるものではない。すなわち、収容室82の構成は、例えば、図6等のように、大径部82aと小径部82bを備えた弁ケーシング110を収容室82に設けた構成も含まれる。
 また、収容室82に、バイメタル弁100を支持するための弁ケーシング110を配置する場合、リテーナ112の構成を、例えば、図9中に示すように、リテーナ側絞り通路112bを備える構成としてもよい。
 リテーナ側絞り通路112bは、リテーナ112を厚さ方向(駆動軸6の軸方向)に貫通する貫通孔であり、リテーナ側ポート112aとは異なる位置に配置されている。具体的には、リテーナ側絞り通路112bは、駆動軸6の軸方向から見て、バイメタル弁100の弁孔100aと重なる位置に形成されている。また、リテーナ側絞り通路112bの内径は、リテーナ側ポート112a及び弁孔100aの内径よりも小さい。
 リテーナ112の構成が、リテーナ側絞り通路112bを備える構成であれば、バイメタル弁100がリテーナ112と接触している状態であっても、リテーナ側絞り通路112bによって、収容室82と吸入室51が連通することとなる。このため、吸入室51へのオイルの流出を抑制しつつ、駆動軸6と駆動軸6の支持部(例えば、第一滑り軸受61)との間へオイルを供給して、駆動軸6の潤滑が可能となる。
 また、収容室82に、バイメタル弁100を支持するための弁ケーシング110を配置する場合、例えば、図10中に示すように、バイメタル弁100が、弁体103を備える構成としてもよい。
 弁体103は、バイメタル弁100の内周面に取り付けられて弁孔100aを閉塞するとともに、弁体103をバイメタル弁100の厚さ方向に貫通する弁体側ポート103aを備えている。また、弁体103の材料は、金属材料であっても、樹脂材料であってもよいが、樹脂材料を用いることにより、弁体103がリテーナ112に接触したときの騒音を低減させることが可能となる。
 バイメタル弁100が、弁体103を備える構成であれば、バイメタル弁100がリテーナ112に直接接触することが無いため、バイメタル弁100の耐久性が低下することを抑制して、バイメタル弁100の信頼性を向上させることが可能となる。
 この場合、弁体103は、バイメタル弁100及びバイメタル弁当接部材(リテーナ112)のいずれか一方(リテーナ112)に弁体側ポート103aが形成されている場合に、他方(バイメタル弁100)に形成された弁座を形成している。
 また、収容室82に、バイメタル弁100を支持するための弁ケーシング110を配置する場合、例えば、図11中に示すように、リテーナ112にリテーナ側弁孔112cを形成し、バイメタル弁100にバイメタル側ポート100bを備える構成としてもよい。
 リテーナ側弁孔112cは、駆動軸6の軸方向から見たリテーナ112の中心に配置された、リテーナ112を厚さ方向に貫通する貫通孔である。
 バイメタル側ポート100bは、リテーナ側弁孔112cよりも内径が小さい貫通孔であり、バイメタル弁100を厚さ方向に貫通している。また、バイメタル側ポート100bは、駆動軸6の軸方向から見て、リテーナ側弁孔112cと重ならない位置に配置されている。
(2)第一実施形態では、合流部8cを、バルブプレート4のうち、駆動軸6の軸方向から見て収容室82と重なる位置に形成したが、これに限定するものではない。
 すなわち、例えば、図12中に示すように、合流部8cを、シリンダブロック2のうち、駆動軸6の軸方向から見て収容室82と重ならない位置に形成してもよい。この場合、第二排出通路8bの構成を、ブロック側排出通路形成部85のみを有する構成とし、絞り通路8dを、吸入弁形成板84のうち、駆動軸6の軸方向から見て、ブロック側排出通路形成部85及び合流部8cと重なる位置に形成する。
(3)第一実施形態では、バイメタル弁100を円板状に形成したが、これに限定するものではない。
 すなわち、例えば、図13中に示すように、バイメタル弁100をリード状に形成してもよい。この場合、バイメタル弁100を、ボルトやナット等を用いてバルブプレート4に固定することで、開閉機構10の構成を簡略化することが可能となる。
(4)第一実施形態では、軸内通路81の一端が、オイル導入通路39を介してクランク室30と連通している構成としたが、これに限定するものではなく、軸内通路81の一端が、直接、クランク室30と連通している構成としてもよい。
(5)第一実施形態では、第一排出通路8aを、駆動軸6の内部に形成されている軸内通路81と、収容室82を有する構成としたが、これに限定するものではない。
 すなわち、例えば、図14中に示すように、シリンダブロック2に、クランク室30とセンタボア22とを連通させる通路であるシリンダ内通路88を形成する。これにより、第一排出通路8aを、シリンダブロック2の内部に形成されているシリンダ内通路88と、収容室82を有する構成としてもよい。
(6)第一実施形態では、排出通路8の構成を、第一排出通路8aと第二排出通路8bとを合流させる合流部8cを備える構成としたが、これに限定するものではない。
 すなわち、排出通路8の構成を、例えば、合流部を形成せず、第一排出通路8aと第二排出通路8bのそれぞれに絞り通路を設け、それぞれの絞り通路が吸入室51に連通する構成としてもよい。
 1…可変容量圧縮機、2…シリンダブロック、3…フロントハウジング、4…バルブプレート、5…シリンダヘッド、6…駆動軸、7…供給通路、8…排出通路、8a…第一排出通路、8b…第二排出通路、8c…合流部、8d…絞り通路、9…容量制御弁、10…開閉機構、11…通しボルト、21…シリンダボア、22…センタボア、23…ピストン、30…クランク室、31…斜板、32…ロータ、33…リンク機構、33a…第一アーム、33b…第二アーム、33c…リンクアーム、33d…第一連結ピン、33e…第二連結ピン、34…貫通孔、35…傾角減少バネ、36…バネ支持部材、37…傾角増大バネ、38…シュー、41…吐出孔、42…吸入孔、51…吸入室、52…吐出室、53…吸入ポート、54…吸入通路、55…吐出通路、56…吐出ポート、57…吐出逆止弁、61…第一滑り軸受、62…スラストプレート、63…調整ねじ、64…第二滑り軸受、65…軸封装置、66…スラスト軸受、81…軸内通路、82…収容室、82a…大径部、82b…小径部、82c…側壁面、83…シリンダガスケット、83a…突出部、83b…ガスケット側第一ポート、83c…ガスケット側第二ポート、84…吸入弁形成板、84a…吸入側第一ポート、84b…吸入側第二ポート、85…ブロック側排出通路形成部、86…プレート側排出通路形成部、87…吐出弁形成板、88…シリンダ内通路、100…バイメタル弁、100a…弁孔、100b…バイメタル側ポート、101…第一面、102…第二面、103…弁体、103a…弁体側ポート、110…弁ケーシング、111…ケース部、111a…フランジ部、112…リテーナ、112a…リテーナ側ポート、112b…リテーナ側絞り通路、112c…リテーナ側弁孔、113…シール部材

Claims (9)

  1.  吐出室と吸入室が区画されたシリンダヘッドと、
     環状に配列された複数のシリンダボアと、前記環状に配列された複数のシリンダボアの径方向内側に設けられたセンタボアと、が形成されたシリンダブロックと、
     前記シリンダブロックと共にクランク室を形成するフロントハウジングと、
     前記シリンダブロックと前記シリンダヘッドとの間に設けられ、一方の面が前記シリンダボアを閉塞し、他方の面が前記吐出室及び前記吸入室を閉塞するバルブプレートと、
     一端が前記シリンダブロックに回転可能に支持され、且つ他端が前記フロントハウジングに回転可能に支持された駆動軸と、
     前記シリンダボア内を往復動するピストンと、
     前記駆動軸の回転を前記ピストンの往復動に変換する往復動変換部と、
     前記吐出室と前記クランク室に連通して吐出室の冷媒をクランク室へ供給する供給通路と、
     前記クランク室と前記吸入室に連通してクランク室の冷媒を吸入室へ排出する排出通路と、
     前記供給通路の開度を変化させる容量制御弁と、
     前記排出通路に設けられた絞り通路と、を備え、前記容量制御弁の開度変化により前記クランク室の圧力が変化して前記ピストンのストロークが変化する可変容量圧縮機であって、
     前記排出通路は、前記駆動軸の他端側の面と前記バルブプレートとの間に形成された前記センタボア内の空間である収容室を有する第一排出通路と、前記第一排出通路とは別にシリンダブロックに設けられた第二排出通路と、を含んで構成され、
     前記収容室内に配置され、且つ前記収容室の温度が予め設定した第一閾値温度以上の場合は前記第一排出通路を開放させて前記クランク室内に存在するオイルを排出し、前記収容室の温度が前記第一閾値温度よりも低い予め設定した第二閾値温度以下の場合は前記第一排出通路を閉鎖する開閉機構を備えることを特徴とする可変容量圧縮機。
  2.  前記絞り通路は、前記第一排出通路の前記収容室よりも下流側であって前記吸入室に開口し、
     前記第一排出通路は、前記収容室と前記絞り通路の間に配置され、且つ前記第二排出通路が合流する合流部を備えていることを特徴とする請求項1に記載した可変容量圧縮機。
  3.  前記第一排出通路は、前記駆動軸の内部に形成され、且つ前記駆動軸の他端面に開口して前記収容室に連通する軸内通路を有することを特徴とする請求項1または請求項2に記載した可変容量圧縮機。
  4.  前記開閉機構は、前記収容室内に外周縁が支持されて駆動軸の軸線方向に変位する円板状に形成されたバイメタル弁と、前記収容室内で前記バイメタル弁よりも下流側に配置され、前記バイメタル弁が接離するバイメタル弁当接部材と、前記バイメタル弁及び前記バイメタル弁当接部材のいずれか一方に形成された弁孔と、前記バイメタル弁及び前記バイメタル弁当接部材のいずれか他方に形成された弁座と、を有し、さらに、前記収容室の温度が前記第一閾値温度以上のとき、前記バイメタル弁が前記駆動軸の他端面側に凸曲面となる変位によって前記弁孔が前記弁座から離間して前記弁孔を開放し、前記収容室の温度が前記第二閾値温度以下となると、前記バイメタル弁が前記バイメタル弁当接部材側に凸曲面となる変位によって前記弁孔が前記弁座に当接して弁孔が閉鎖することを特徴とする請求項1から請求項3のうちいずれか1項に記載した可変容量圧縮機。
  5.  前記開閉機構は、前記バイメタル弁の中央に形成された前記弁孔と、前記バイメタル弁当接部材の前記弁孔が対向する位置に形成されている前記弁座と、を含むことを特徴とする請求項4に記載の可変容量圧縮機。
  6.  前記第一排出通路は、前記収容室と前記絞り通路の間に配置され、且つ前記第二排出通路が合流する合流部を備え、
     前記収容室は、前記合流部に連通する開口部を有し、
     前記開口部は、前記弁孔と対向しない位置に配置されていることを特徴とする請求項5に記載した可変容量圧縮機。
  7.  前記収容室は、前記シリンダブロックの前記バルブプレート側から凹設された大径部と、前記大径部の径よりも小径であって前記大径部の底壁に開口する小径部と、を備え、
     前記バイメタル弁の外周縁は、前記大径部の底壁と前記バイメタル弁当接部材との間に配置され、且つ前記大径部の底壁と前記バイメタル弁当接部材により支持されることを特徴とする請求項4から請求項6のうちいずれか1項に記載した可変容量圧縮機。
  8.  前記収容室は、前記収容室の内周面に外周面が密閉嵌合して前記収容室内に配置される筒状の弁ケーシングを備え、
     前記弁ケーシングの内周面に、前記大径部と前記小径部が形成されていることを特徴とする請求項7に記載した可変容量圧縮機。
  9.  前記バイメタル弁の外周縁が支持される前記底壁は、前記バイメタル弁の径方向外側に向かうにつれて前記バイメタル弁当接部材から遠ざかるように傾斜していることを特徴とする請求項7または請求項8に記載した可変容量圧縮機。
PCT/JP2019/024243 2018-06-29 2019-06-19 可変容量圧縮機 WO2020004168A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980040454.2A CN112334653B (zh) 2018-06-29 2019-06-19 可变容量压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124676 2018-06-29
JP2018124676A JP6991107B2 (ja) 2018-06-29 2018-06-29 可変容量圧縮機

Publications (1)

Publication Number Publication Date
WO2020004168A1 true WO2020004168A1 (ja) 2020-01-02

Family

ID=68984898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024243 WO2020004168A1 (ja) 2018-06-29 2019-06-19 可変容量圧縮機

Country Status (3)

Country Link
JP (1) JP6991107B2 (ja)
CN (1) CN112334653B (ja)
WO (1) WO2020004168A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288348A (ja) * 1993-04-01 1994-10-11 Toyota Autom Loom Works Ltd 揺動斜板式可変容量圧縮機
JP2008144701A (ja) * 2006-12-12 2008-06-26 Sanden Corp 可変容量型往復動圧縮機
JP2015117596A (ja) * 2013-12-17 2015-06-25 サンデンホールディングス株式会社 可変容量型圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175536B2 (ja) * 1995-06-13 2001-06-11 株式会社豊田自動織機製作所 クラッチレス可変容量型圧縮機における容量制御構造
KR100215157B1 (ko) * 1996-06-19 1999-08-16 이소가이 지세이 가변용량 압축기 및 그 부착방법
JPH1162823A (ja) * 1997-08-08 1999-03-05 Sanden Corp 可変容量圧縮機
JP4345807B2 (ja) * 2006-12-13 2009-10-14 株式会社豊田自動織機 可変容量型圧縮機における容量制御構造
JP5741554B2 (ja) * 2012-11-02 2015-07-01 株式会社豊田自動織機 ピストン型圧縮機
JP6469994B2 (ja) * 2014-09-01 2019-02-13 サンデンホールディングス株式会社 圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288348A (ja) * 1993-04-01 1994-10-11 Toyota Autom Loom Works Ltd 揺動斜板式可変容量圧縮機
JP2008144701A (ja) * 2006-12-12 2008-06-26 Sanden Corp 可変容量型往復動圧縮機
JP2015117596A (ja) * 2013-12-17 2015-06-25 サンデンホールディングス株式会社 可変容量型圧縮機

Also Published As

Publication number Publication date
JP6991107B2 (ja) 2022-01-12
JP2020002901A (ja) 2020-01-09
CN112334653B (zh) 2022-11-15
CN112334653A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US8439652B2 (en) Suction throttle valve for variable displacement type compressor
WO2011013734A1 (ja) 往復動圧縮機
EP2354548B1 (en) Variable displacement type reciprocating compressor
US20150252797A1 (en) Variable-Capacity Compressor
WO2020004168A1 (ja) 可変容量圧縮機
JP7185560B2 (ja) 可変容量圧縮機
JP4728097B2 (ja) 圧縮機
KR102073110B1 (ko) 가변 사판식 압축기용 토출체크밸브
WO2019151191A1 (ja) 可変容量型圧縮機
JP6469994B2 (ja) 圧縮機
JP2008111338A (ja) 圧縮機
JP6618343B2 (ja) 圧縮機
WO2020158344A1 (ja) 圧縮機
CN112313413B (zh) 可变容量压缩机
JP6192369B2 (ja) 往復動式圧縮機
WO2018101094A1 (ja) 可変容量圧縮機
JP7052964B2 (ja) 可変容量圧縮機
JP7185568B2 (ja) 可変容量圧縮機
WO2020162101A1 (ja) 圧縮機
JP2021038703A (ja) 往復動型圧縮機
JP2013117185A (ja) 圧縮機
JP2016169700A (ja) 可変容量圧縮機
JP2014139417A (ja) 可変容量圧縮機
JP2008184959A (ja) 圧縮機
WO2017130843A1 (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825774

Country of ref document: EP

Kind code of ref document: A1