WO2020003895A1 - 成膜方法および成膜装置 - Google Patents

成膜方法および成膜装置 Download PDF

Info

Publication number
WO2020003895A1
WO2020003895A1 PCT/JP2019/021844 JP2019021844W WO2020003895A1 WO 2020003895 A1 WO2020003895 A1 WO 2020003895A1 JP 2019021844 W JP2019021844 W JP 2019021844W WO 2020003895 A1 WO2020003895 A1 WO 2020003895A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
film forming
ring
magnetic field
magnetic circuit
Prior art date
Application number
PCT/JP2019/021844
Other languages
English (en)
French (fr)
Inventor
具和 須田
高橋 明久
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980002549.5A priority Critical patent/CN110859041B/zh
Priority to KR1020197029771A priority patent/KR102257920B1/ko
Priority to JP2019553136A priority patent/JP6746011B2/ja
Publication of WO2020003895A1 publication Critical patent/WO2020003895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a film forming method and a film forming apparatus that contribute to extending the life of a target.
  • Priority is claimed on Japanese Patent Application No. 2018-121131, filed on June 26, 2018, the content of which is incorporated herein by reference.
  • a transparent electrode is used in a flat panel display represented by a liquid crystal display (LCD) or an organic EL display (OELD), a thin film solar cell, and the like.
  • a transparent electrode an oxide-based transparent conductive film (TCO film: transparent conductive film) represented by an ITO film (Indium Tin Oxide film) is used.
  • TCO film transparent conductive film
  • ITO film Indium Tin Oxide film
  • This sputtering apparatus includes a plurality of magnetic circuits arranged on the back side of the target, arranges a substrate on the front side of the target, and generates plasma near the target surface by a magnetic field generated from the magnetic circuit to form a film. I do.
  • the problem B means, for example, a phenomenon in which, as shown in FIG. 5, portions ⁇ 1 and ⁇ 2 where the dug amount is large locally occur in the erosion region.
  • the horizontal axis represents the position of the target in the lateral direction
  • the vertical axis represents the amount of excavation [%] of the target.
  • the initial surface of the target is indicated with a digging amount of 0 [%]
  • the location ⁇ 2 where the digging amount is the maximum is set to -100 [%].
  • This locally digged portion determines the target life. That is, except for a portion where the amount of excavation is locally large, it is necessary to replace the target with a new target even in a situation where the constituent materials of the target still remain sufficiently. This leads to a decrease in the use efficiency of the target and an increase in the number of maintenances that require opening of the inside of the film forming chamber to the atmosphere due to the replacement of the target, which is one of the causes of an increase in manufacturing cost. Therefore, development of a film forming method and a film forming apparatus capable of suppressing the amount of digging in a portion where the digging amount is locally large has been expected.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a film forming method and a film forming apparatus capable of suppressing a digging amount at a locally large digging amount. .
  • a plurality of magnetic circuits configured to be movable in a first direction parallel to the back surface of the target are arranged on the back surface side of the target, and the front surface side of the target is arranged.
  • a method of forming a film by magnetron sputtering by disposing a substrate on a substrate, wherein each magnetic circuit has a ring-shaped magnet and a surface facing the rear surface of the target which is disposed inside the ring-shaped magnet.
  • a central magnet having a polarity different from that of the ring-shaped magnet, and on the surface side of the target, between the ring-shaped magnet and the central magnet, of a magnetic field generated from the magnetic circuit.
  • a magnetic field whose vertical component to the surface of the substrate is 0 is formed in a ring shape, and in the first direction, the magnetic circuit includes a first moving distance L1 and a first moving distance L1 different from the first moving distance L1. Swings between the moving distance L2, the magnetic circuit to control the ratio of the L1 and the L2 occupied per unit moves time.
  • the target is a square plate, and has a rectangular shape having a short side in the first direction and a long side in a direction orthogonal to the first direction.
  • the size of L1 may be selected such that the straight portions of the erosion regions have at least overlapping portions in the width direction of the erosion regions located at adjacent positions.
  • the target is a square plate, and has a rectangular shape having a short side in the first direction and a long side in a direction orthogonal to the first direction.
  • the size of the L2 may be selected so that the straight portions of the erosion region do not have at least overlapping portions in the width direction of the erosion region at an adjacent position.
  • the relational expression represented by ⁇ L2 / (L1 + L2) ⁇ ⁇ 100 may be in a range of 2.5 or more and 20 or less.
  • the magnetic circuit may be configured to be movable in a second direction intersecting the first direction.
  • each magnetic circuit includes a ring-shaped magnet and an inner surface of the ring-shaped magnet, the surface being opposed to the back surface of the target.
  • Polarity comprises a center magnet having a different polarity from the ring-shaped magnet, on the surface side of the target, between the ring-shaped magnet and the center magnet, the magnetic field generated from the magnetic circuit, A magnetic field whose vertical component to the surface of the substrate is 0 is formed in a ring shape, and in the first direction, the magnetic circuit has a difference between the first movement distance L1 and the first movement distance L1. Swings in the second moving distance L2 that includes a control device in which the magnetic circuit for controlling the ratio of the said L1 occupied per unit moves time L2.
  • the magnetic circuit oscillates by the first moving distance L1 and the second moving distance L2 different from the first moving distance L1, Controls the ratio of L1 and L2 occupied per unit time in which.
  • This makes it possible to obtain a film forming method in which the amount of excavation is suppressed locally in the erosion region where the amount of excavation is large. Therefore, the film forming method according to the first aspect of the present invention can extend the life of the target (improve utilization efficiency) and reduce the number of maintenances, thereby contributing to a reduction in the film forming cost.
  • the magnetic circuit swings by the first movement distance L1 and the second movement distance L2 different from the first movement distance L1, Is provided with a control device for controlling the ratio of L1 and L2 occupied per unit time in which.
  • a film forming apparatus that can realize the above-described film forming method is obtained. That is, according to the film forming apparatus of the second aspect of the present invention, the amount of excavation can be suppressed in a portion where the amount of excavation is locally large in the erosion region. Therefore, the present invention contributes to the provision of a film forming apparatus capable of suppressing the film forming cost by extending the life of the target (improving the use efficiency) and reducing the number of times of maintenance.
  • FIG. 1 is a schematic configuration diagram of a magnetron sputtering device according to an embodiment of the present invention. It is sectional drawing which shows the principal part of a sputtering apparatus. It is a top view of a magnetic field application device.
  • FIG. 9 is a diagram illustrating a relationship between a target surface position and a B ⁇ 0 position, and is an explanatory diagram illustrating positions PC1 to PC4 at which the target surface position and the B ⁇ 0 position overlap.
  • FIG. 7 is an explanatory diagram showing a relationship between positions PC1 to PC4 shown in FIG. 6 and positions where plasma is generated on a target (ITO) surface.
  • FIG. 9 is an explanatory diagram showing a relationship between a position in the width direction of the target and a dug amount measured at a position (straight portion) indicated by a line AA shown in FIG. 8B in Experimental Example 1.
  • FIG. 8B is an explanatory diagram showing a relationship between positions PC1 to PC4 shown in FIG. 8A and positions where plasma is generated on a target (ITO) surface.
  • FIG. 9 is an explanatory diagram showing a relationship between positions PC1 to PC4 shown in FIG. 8A and positions where plasma is generated on a target (ITO) surface.
  • FIG. 10 is an explanatory diagram showing a relationship between a position in a width direction of a target and a dug amount measured at a position (straight portion) indicated by a line BB shown in FIG. 9B in Experimental Example 2.
  • FIG. 9B is an explanatory diagram showing a relationship between positions PC1 to PC4 shown in FIG. 9A and positions where plasma is generated on the target (ITO) surface.
  • FIG. 11 is an explanatory diagram showing a relationship between a position in a width direction of a target and a dug amount measured at a position (corner portion) indicated by a line CC shown in FIG. 10B in Experimental Example 3.
  • FIG. 10B is an explanatory diagram showing a relationship between positions PC1 to PC4 shown in FIG.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus (magnetron sputtering apparatus) according to an embodiment of the present invention.
  • the film forming apparatus 10 shown in FIG. 1 is an in-line type sputtering apparatus.
  • the film forming apparatus 10 includes a charging chamber 11 into which a substrate W is charged from an atmospheric atmosphere and having an internal space capable of reducing pressure, and a film forming chamber 12 having an internal space for performing desired sputtering film formation on the substrate W in a reduced pressure atmosphere.
  • An unloading chamber 13 having an internal space for unloading the sputtered substrate W into the atmosphere is provided.
  • Rough evacuation devices 41 and 43 such as a rotary pump are connected to the preparation chamber 11 and the extraction chamber 13, and a high vacuum evacuation device 42 such as a turbo molecular pump is connected to the film formation chamber 12.
  • the substrate W is supported in a vertical shape, carried into the charging chamber 11, and evacuated by the rough evacuation device 41 so that the internal space of the charging chamber 11 becomes a vacuum atmosphere.
  • the substrate W is transported to the internal space of the film formation chamber 12 which has been evacuated to a high vacuum by the high vacuum evacuation device 42, and a film formation process is performed.
  • the substrate W after the film formation is carried out to the outside via the extraction chamber 13 evacuated by the rough evacuation device 43.
  • a gas supply device 44 that supplies a sputtering gas made of an inert gas such as Ar is connected to the film forming chamber 12. Note that a reactive gas such as O 2 can be supplied from the gas supply device 44.
  • the film forming apparatus 10 includes a control unit CONT.
  • the control device CONT constitutes the film forming apparatus 10 such as rough evacuation devices 41 and 43, a high vacuum evacuation device 42, a gas supply device 44, a motor 45 described later, a power source for generating plasma (high-frequency power source), and various valves. Control the drive of the device.
  • FIG. 2 is a cross-sectional view showing a main part of the film forming apparatus 10 shown in FIG.
  • a substrate W held by a substrate holding device (not shown) is vertically arranged on one wall surface 37 side in the width direction of the film formation chamber 12 in the internal space of the film formation chamber 12.
  • the arrow F indicates the direction in which the substrate W is transported.
  • the sputter cathode mechanism 20 is arranged in a vertical direction substantially in parallel with the surface W1 of the substrate W. Thereby, as described later, the surface W1 of the substrate W and the surface (sputtering surface) 22a of the target 22 are arranged to face each other.
  • the substrate W for example, a substrate having a substantially rectangular shape in plan view made of quartz, resin (plastic, plastic film), glass, or the like is suitably used.
  • the substrate W is held vertically by a substrate holding device (not shown).
  • a transport device (not shown) is connected to the substrate holding device, and the transport device transports the substrate W in a direction along the long side direction of the substrate W (X direction: see arrow F).
  • the sputtering cathode mechanism 20 includes a target 22 and a magnetic field applying device 26.
  • the target 22 has a rectangular shape in plan view, and is arranged such that the short direction (X direction) of the target 22 matches the transport direction (long side direction) of the substrate W. Further, the target 22 is opposed to the substrate W with a predetermined space between the surface 22a of the target 22 and the surface W1 of the substrate W.
  • the base material of the target 22 is not particularly limited as long as it is made of a desired material for forming an oxide-based transparent conductive film (TCO film).
  • TCO film oxide-based transparent conductive film
  • the target 22 is constituted by the added material a predetermined material into In 2 O 3 only or In 2 O 3,.
  • ZnO based in the case of forming a transparent conductive film made of SnO 2 system, the base material of the target 22, ZnO or SnO 2 alone, or ZnO or SnO 2 may be made of a material obtained by adding a predetermined material .
  • the back surface of the target 22 is bonded to the backing plate 30 with a brazing material such as indium.
  • the target 22 is attached to a wall surface 39 of the film forming chamber 12 via an insulating plate 38 at an outer peripheral portion on the back surface of the backing plate 30.
  • the target 22 is connected to an external power supply (not shown) via the backing plate 30 and is held at a negative potential (cathode).
  • FIG. 3 is a plan view of the magnetic field application device. As shown in FIGS. 2 and 3, a magnetic field applying device 26 is disposed outside the film forming chamber 12 and on the back side of the backing plate 30.
  • the magnetic field application device 26 is a device that applies a magnetic field toward the surface 22a of the target 22, and includes a plurality of magnetic circuits 32a and 32b and a connecting member 27 that connects the magnetic circuits 32a and 32b. .
  • Each magnetic circuit 32a, 32b has a plurality of yokes 36a, 36b.
  • Each of the yokes 36 a and 36 b is a plate-shaped member having high magnetic permeability, and is arranged so that the surface of the yoke is parallel to the back surface of the backing plate 30.
  • ring-shaped magnets 33a and 33b made of permanent magnets and central magnets 34a and 34b made of permanent magnets arranged at predetermined intervals inside the ring-shaped magnets 33a and 33b.
  • the ring-shaped magnets 33a and 33b have an oval shape in a plan view, and the short axis direction (X direction: first direction) of the ring-shaped magnets 33a and 33b is in the transport direction of the substrate W (the direction of arrow F). They are arranged to match.
  • the center magnets 34a, 34b are rod-shaped, and the longitudinal direction of the center magnets 34a, 34b coincides with the long axis direction of the ring magnets 33a, 33b at the central portion in the short axis direction of the ring magnets 33a, 33b.
  • the ring-shaped magnets 33a and 33b and the center magnets 34a and 34b are configured such that the polarities of the surfaces on the backing plate 30 side are different from each other. That is, when the surface polarities of the ring-shaped magnets 33a and 33b are N poles, the surface polarities of the center magnets 34a and 34b are set to S poles. When the surface polarities of the ring-shaped magnets 33a and 33b are S poles, the surface polarities of the center magnets 34a and 34b are set to N poles. In the present embodiment, the surface polarity of the ring-shaped magnets 33a and 33b is set to the N pole, and the surface polarity of the center magnets 34a and 34b is set to the S pole.
  • the ring-shaped magnets 33a and 33b and the center magnets 34a and 34b generate a mountain-shaped magnetic field represented by the magnetic force lines g shown in FIG. Specifically, the lines of magnetic force g extending from the surfaces of the ring-shaped magnets 33a and 33b leak to the surface 22a of the target 22 and enter the surfaces of the center magnets 34a and 34b. Then, plasma is generated around the magnetic field lines g, and ions of the sputtering gas excited by the plasma collide with the surface 22 a of the target 22, thereby causing particles of the film forming material to fly from the surface 22 a of the target 22.
  • the perpendicular component to the surface W1 of the substrate W in the magnetic field generated from each of the magnetic circuits 32a, 32b is zero.
  • a ring-shaped magnetic field p having a maximum (horizontal component) is generated.
  • the plasma generated by the magnetic field p is the highest density plasma among the plasmas generated inside the magnetic field lines g.
  • the surface 22a of the target 22 is sputtered by the plasma. In particular, the surface 22a of the target 22 is sputtered with the largest amount of digging by the above-described highest density plasma.
  • a connecting member 27 for connecting the magnetic circuits 32a, 32b is attached to the back surfaces of the yokes 36a, 36b.
  • the connecting member 27 is connected to the motor 45, and the control device CONT controls the operation of the motor 45, so that the magnetic field applying device 26 can move relative to the target 22.
  • the magnetic field applying device 26 is configured to be swingable in the X direction (first direction) parallel to the back surface of the target 22, that is, in the minor axis direction of the ring-shaped magnetic field p.
  • the magnetic field applying device 26 is configured to be able to swing even in the Y direction (second direction) orthogonal to the X direction, that is, along the long axis direction of the ring-shaped magnetic field p.
  • the width of the magnetic field applying device 26 is configured to be smaller than the width of the target 22, so that components other than the target 22 are not sputtered.
  • the control device CONT controls the motor 45
  • the motor 45 moves the magnetic circuits 32a and 32b in the X direction with the first movement distance L1 and the second movement distance L2 different from the first movement distance L1. (Described later).
  • the controller CONT drives the motor 45 so as to control the ratio of L1 and L2 per unit time in which the magnetic circuits 32a and 32b move.
  • the diameter of the magnetic field p generated in each of the magnetic circuits 32a and 32b in the short axis direction is A
  • the distance in the X direction between the magnetic fields p generated from the adjacent magnetic circuits 32a and 32b in the X direction is B
  • the magnetic field p is generated by the magnetic field p.
  • the width (erosion area) in the X direction in which the target 22 is sputtered by the plasma is ⁇ (see FIG. 2)
  • the “one-way moving distance L” refers to the swing width, and means the moving distance in only one direction, that is, the moving distance in only one way, among the moving paths of the magnetic field applying device 26 reciprocated by the motor 45. .
  • the “one-way moving distance L” means a moving distance from a start point at which the rightward movement in FIG. 2 starts to an end point at which the rightward movement in FIG. 2 stops. Accordingly, when the magnetic field application device 26 moves one way from the start point to the end point in the X direction, the magnetic field p passes through the central portion 22c of the target 22 at least twice.
  • the magnetic circuits 32a and 32b generate a magnetic field of 600 gauss or more on the surface 22a of the target 22, and the base material (film forming material) of the target 22 forms an oxide-based transparent conductive film (TCO film).
  • the width of the erosion area ⁇ in the X direction is about 40 mm. That is, the width of the erosion area ⁇ is about ⁇ 20 mm in the X direction with the magnetic field p as the center.
  • the upper half (a) of FIG. 4 is a plan view showing a ring-shaped magnetic field p.
  • the lower half (b) of FIG. 4 shows the cross-sectional shape of the erosion caused by the movement of the ring-shaped magnetic field p.
  • the triangle drawn in the lower half (b) of FIG. 4 shows the cross-sectional shape of the erosion generated by the magnetic field p when the magnetic field application device 26 is stopped.
  • the cross-sectional shape of the erosion is deepest at the center position of the magnetic field p, and becomes shallower as the distance from the center position increases.
  • the width ⁇ of the triangle in the X direction represents the erosion area where the target is sputtered by the plasma generated from the magnetic field p where the vertical component becomes zero.
  • a region on the surface 22 a of the target 22 where the locus of the magnetic field p or the erosion area ⁇ has passed is sputtered.
  • the magnetic field p is at least once or more (once at both ends in the X direction) on the surface 22a of the target 22.
  • both ends (two ends) in the X direction on the surface 22a of the target 22 correspond to a start point and an end point in the one-way movement of the magnetic field applying device 26.
  • sputtering is performed up to the depth D1.
  • sputtering is performed to a depth D2 (D2 ⁇ D1).
  • FIG. 5 is a graph showing a state in which portions ⁇ 1 and ⁇ 2 where the dug amount is large locally occur.
  • the horizontal axis represents the position of the target in the lateral direction
  • the vertical axis represents the amount of excavation of the target. From FIG. 5, while the average value of the excavation amount is in the range of -3.5 to -4.0, two places ( ⁇ 1, ⁇ 2) where the excavation amount is locally large were observed.
  • FIG. 6 is a diagram showing the relationship between the target surface position (TG surface position) and the B ⁇ 0 position (B ⁇ 0 Line), showing positions PC1 to PC4 where the target surface position and the B ⁇ 0 position overlap.
  • FIG. The “small black triangle” in FIG. 6 indicates the “local magnetic field direction” at the position where the triangle is displayed.
  • “TG surface position” indicates a target surface position
  • “B ⁇ 0 Line” indicates a B ⁇ 0 position.
  • the positions where the "TG surface position” and “B @ 0 Line” overlap (intersect) are PC1 to PC4, and the "ring-shaped magnetic field p" shown in the upper half (a) of FIG. 4 is generated. Corresponds to the position.
  • FIG. 7 is an explanatory diagram showing the relationship between the positions PC1 to PC4 shown in FIG. 6 and the position where plasma is generated on the target (ITO) plane, and is a plan view of the surface 22a of the target 22 in plan view.
  • the erosion area where the target (denoted by ITO) is sputtered by the plasma (denoted by Plasma) generated from the “ring-shaped magnetic field p” has a shape similar to that of the plasma. And a corner.
  • the positions corresponding to the straight portions are the positions PC1 to PC4 shown in FIG. 6, respectively.
  • the present inventors focused on the positions PC1 to PC4 shown in FIGS. 6 and 7, and evaluated the digging amount of the target by changing the swing width of the magnetic circuit.
  • Experimental Example 1 and Experimental Example 2 the evaluation in the straight portion was performed.
  • Experimental Example 3 evaluation was performed at the corners.
  • FIG. 8A is an explanatory diagram showing the relationship between the position in the width direction of the target and the digging amount measured at the position (straight portion) indicated by the line AA shown in FIG. 8B in Experimental Example 1.
  • FIG. 8A shows a case where, when the erosion areas at the positions PC1 to PC4 are defined as PW1, PW2, PW3 and PW4, two adjacent erosion areas overlap each other.
  • the swing width of the magnetic circuit is set to 70 mm.
  • FIG. 8B is a diagram corresponding to FIG. 7, and is an explanatory diagram showing the relationship between the positions PC1 to PC4 shown in FIG. 8A and the position where plasma is generated on the target (ITO) surface.
  • the digging amount [%] on the vertical axis of FIG. 8A indicates that the digging amount on the initial surface of the target is displayed as 0 [%], and the digging amount at the point ⁇ 2 where the digging amount is the maximum is displayed as -100 [%]. Indicates the ratio.
  • FIG. 8A four hatched areas are shown. Each of the centers (dashed lines) of the four hatched areas corresponds to positions PC1 to PC4.
  • the four hatched areas are generated by the magnetic field applying device 26 oscillating along the X direction (first direction) parallel to the back surface of the target 22, that is, along the short axis direction of the ring-shaped magnetic field p.
  • a symbol ⁇ 12 indicates an area where the erosion areas PW1 and PW2 overlap.
  • the symbol ⁇ 23 indicates an area where the erosion areas PW2 and PW3 overlap.
  • the symbol ⁇ 34 represents an area where the erosion areas PW3 and PW4 overlap.
  • FIG. 9A is an explanatory diagram showing the relationship between the position in the width direction of the target and the digging amount measured at the position (straight portion) shown by line BB shown in FIG. 9B in Experimental Example 2.
  • FIG. 9A shows a case where, when the erosion areas at the positions PC1 to PC4 are defined as PW1, PW2, PW3, and PW4, an area where two adjacent erosion areas do not overlap is provided.
  • the swing width of the magnetic circuit is set to 40 mm.
  • FIG. 9B is a diagram corresponding to FIG. 7, and is an explanatory diagram showing the relationship between the positions PC1 to PC4 shown in FIG. 9A and the position where plasma is generated on the target (ITO) surface.
  • the digging amount [%] on the vertical axis of FIG. 9A indicates that the digging amount on the initial surface of the target is 0 [%], and the digging amount at the point ⁇ 2 where the digging amount is the maximum is -100 [%]. Indicates the ratio.
  • FIG. 9A four hatched areas are shown. Each of the centers (dashed lines) of the four hatched areas corresponds to positions PC1 to PC4.
  • the four hatched areas are generated by the magnetic field applying device 26 oscillating along the X direction (first direction) parallel to the back surface of the target 22, that is, along the short axis direction of the ring-shaped magnetic field p. Areas PW1 to PW4.
  • a symbol ⁇ 12 indicates a position where the erosion areas PW1 and PW2 are in contact with each other.
  • Reference numeral D23 indicates an area where the erosion areas PW2 and PW3 are separated from each other.
  • the symbol ⁇ 34 indicates a position where the erosion areas PW3 and PW4 are in contact with each other.
  • Experimental Example 2 similarly to Experimental Example 1, as shown in FIGS. 1 and 2, a target 22 for an ITO film having a width in the short direction of 300 mm was attached to a backing plate 30, and a film forming chamber 12 and a charging chamber were prepared. 11. The inside of the take-out chamber 13 was evacuated. Then, 5 mTorr of Ar gas is introduced into the film forming chamber 12 (see FIG. 1), and a film is formed by applying a voltage having a power density of 4 W / m 2 using a DC power supply while oscillating the magnetic field applying device.
  • a voltage having a power density of 4 W / m 2 using a DC power supply while oscillating the magnetic field applying device.
  • FIG. 10A is an explanatory diagram showing the relationship between the position in the width direction of the target and the digging amount measured at the position (corner portion) indicated by the line CC shown in FIG. 10B in Experimental Example 3.
  • FIG. 10A shows a case where, when the erosion areas at the positions PC5 and PC6 are defined as PW5 and PW6, an area where two adjacent erosion areas are not overlapped is provided.
  • the swing width of the magnetic circuit is set to 70 mm.
  • FIG. 10B is a diagram corresponding to FIG. 7 and is an explanatory diagram showing the relationship between the positions PC5 and PC6 shown in FIG. 10A and the position where plasma is generated on the target (ITO) surface.
  • the digging amount [%] on the vertical axis in FIG. 10A indicates a ratio when the digging amount on the initial surface of the target is displayed as 0 [%], and a portion where the digging amount is the maximum is displayed as -100 [%]. ing.
  • FIG. 10A two hatched areas are shown. Each of the centers (dashed lines) of the two hatched areas corresponds to positions PC5 and PC6.
  • the two hatched areas are formed by erosion caused by the magnetic field applying device 26 swinging in the X direction (first direction) parallel to the back surface of the target 22, that is, in the short axis direction of the ring-shaped magnetic field p. Areas PW5 and PW6.
  • reference numeral D56 denotes an area where the erosion areas PW5 and PW6 are separated.
  • the swing width was not changed, that is, the ratio of the plurality of swing widths per unit time in which the magnetic circuit moves (hereinafter, referred to as the swing ratio) was changed. Not. That is, the digging amount of the target was evaluated with the swing width being a desired constant value.
  • the results shown in FIG. 8A are obtained by setting the swing width of the magnetic circuit to a constant value of 70 mm.
  • the results shown in FIG. 9A are obtained by setting the swing width of the magnetic circuit to a constant value of 40 mm.
  • the results shown in FIG. 10A were obtained by setting the swing width of the magnetic circuit to a constant value of 70 mm.
  • Example 4 Based on the evaluation results of Experimental Examples 1 to 3, in Experimental Example 4, the ratio (swing ratio, 40 mm swing ratio) of the 40 mm swing width (first movement distance L1) occupied per unit time in which the magnetic circuit moves was determined.
  • the remaining thickness [mm] of the target was evaluated by changing the thickness in the range of 0% to 30%.
  • the remaining 100% to 70% corresponds to the swing width (second movement distance L2) of the magnetic circuit of 70 mm, which is 70 mm, with respect to the swing ratio of 40 mm of 0% to 30%. It is a ratio.
  • the magnetic circuits 32a and 32b are oscillated at 70 mm (first moving distance L1) and 40 mm (second moving distance L2).
  • the swing ratio of 70 mm and the swing ratio of 40 mm occupying per unit time when 32b moves is controlled.
  • the remaining thickness of the target is a numerical value obtained by dividing the dug amount (after sputtering for a predetermined time) from the target (initial thickness before sputtering).
  • the digging amount of the corner portion is about 50% larger than that of the straight portion.
  • the above residual thickness was evaluated using a target having a locally different target plate thickness, that is, a target having a larger corner thickness than a straight portion.
  • a target having a straight portion having a thickness of 6 mm and a corner portion having a thickness of 12 mm was used.
  • the film formation was performed under the same conditions as those of Experimental Example 1 except for the swing ratio. That is, as shown in FIGS. 1 and 2, the target 22 for the ITO film having a width of 300 mm in the short direction is attached to the backing plate 30, and the evacuation of the film formation chamber 12, the preparation chamber 11, and the extraction chamber 13 is performed. went. Then, 5 mTorr of Ar gas is introduced into the film forming chamber 12 (see FIG. 1), and a film is formed by applying a voltage having a power density of 4 W / m 2 using a DC power supply while oscillating the magnetic field applying device. Was.
  • FIG. 11 is a graph showing the relationship between the swing ratio and the residual thickness at the straight portion and the corner portion.
  • the square marks indicate the evaluation results of the straight portions
  • the triangle marks indicate the evaluation results of the corner portions. From FIG. 11, the following points became clear.
  • (A1) As the swing ratio (40 mm swing ratio) [%] increases, the remaining thickness of the straight portion tends to increase monotonically, whereas the remaining thickness of the corner portion tends to decrease monotonically. Indicated.
  • A2 When the swing ratio (40 mm swing ratio) [%] is in the range of 0 to 20, the remaining thickness [mm] can be in the range of 0 to 2.
  • the swing ratio [%] when the swing ratio [%] is within the range of 5 or more and 15 or less, the residual pressure falls within the range of 0.5 or more and 1.5 or less, and the use efficiency of the target is improved, which is more preferable.
  • the swing ratio (40 mm swing ratio) [%] exceeds 20, the remaining thickness at the corner becomes negative.
  • the remaining thickness being minus means that the backing plate supporting the target can be dug.
  • the present invention contributes to the provision of a film forming method and a film forming apparatus capable of suppressing the amount of digging in a locally large digging amount.
  • FIG. 12 is a graph showing the relationship between the swing ratio and the dug amount in the straight portion.
  • FIG. 13 is a graph showing the relationship between the swing ratio and the excavation amount at the corner. 12 and 13 show the “digging amount” corresponding to the “remaining thickness” in FIG. 11 described above.
  • the “digging amount” shown in FIGS. 12 and 13 has a tendency opposite to the “remaining thickness” in FIG. That is, in the straight portion, as the swing ratio increases, the remaining thickness monotonically increases (FIG. 11), whereas the digging amount monotonically decreases (FIG. 12). At the corners, as the swing ratio increases, the remaining thickness monotonically decreases (FIG. 11), while the digging amount monotonically increases (FIG. 13).
  • the graphs of FIGS. 12 and 13 show that it is important to use a target having a locally different target plate thickness, that is, to use a target whose plate thickness at the corner portion is larger than that at the straight portion. ing.
  • FIG. 14 is an explanatory diagram showing the relationship between the position in the width direction of the target and the dug amount before and after applying the present invention.
  • “before application” is a case where the swing ratio is 0 [%] in FIG. 11 (the state of FIG. 5)
  • “after application” is a case where the swing ratio is 10 [%] in FIG. Means the case.
  • the curve shown by the dotted line is the result of evaluating the dug amount “before application”.
  • the curves shown by a plurality of solid lines are the results of evaluating the digging amount “after application”.
  • the dotted line parallel to the horizontal axis is the “minimum value” in the curve indicating the dug amount “before application”.
  • the solid line parallel to the horizontal axis is the “minimum value” in the curve indicating the digging amount “after application”. From FIG. 14, it was confirmed that by applying the present invention, a portion having a large excavation amount was locally suppressed (before application: ⁇ 4.90, after application: ⁇ 4.05).
  • the present invention it is possible to obtain a film forming method in which the digging amount is suppressed in a portion where the digging amount is locally large.
  • the film forming method according to the embodiment of the present invention can improve the use efficiency of the target and reduce the number of maintenance operations, thereby contributing to the suppression of the film forming cost.
  • the present invention provides a film forming apparatus capable of suppressing a film forming cost by improving the use efficiency of a target and reducing the number of times of maintenance.
  • A the diameter of the magnetic field p in the minor axis direction
  • B the distance in the X direction between the magnetic fields p
  • F the transport direction of the substrate (X direction, first direction), g magnetic field line, L one-way moving distance, p ring-shaped magnetic field, Y X Y direction orthogonal to the direction (second direction), W substrate, W1 substrate surface, ⁇ erosion area, 10 film forming apparatus, 12 film forming chamber, 20 sputter cathode mechanism, 22 target, 22a target surface (sputter surface) , 26 magnetic field applying device, 27 connecting member, 30 backing plate, 32a, 32b magnetic circuit, 33a, 33b ring magnet, 34a, 34b center magnet, 36a, 36b yoke, 37 one wall surface, 39 the other wall surface, 45 motor .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の成膜方法は、ターゲットの裏面側に、前記ターゲットの裏面と平行な第1方向に移動可能に構成された複数の磁気回路を配置するとともに、前記ターゲットの表面側に基板を配置して、マグネトロンスパッタ法により成膜を行う成膜方法であって、各磁気回路は、リング状磁石と、このリング状磁石の内側に配置されて前記ターゲットの裏面との対向面の極性が前記リング状磁石と異なる極性を有する中心磁石とを備え、前記ターゲットの表面側であって、前記リング状磁石と前記中心磁石との間には、前記磁気回路から発生する磁場のうち前記基板の表面に対する垂直成分が0となる磁場がリング状に形成され、前記第1方向において、前記磁気回路は、第一移動距離L1と、前記第一移動距離L1とは異なる第二移動距離L2とで揺動し、前記磁気回路が移動する単位時間あたりに占める前記L1と前記L2の割合を制御する。

Description

成膜方法および成膜装置
 本発明は、ターゲットの長寿命化に寄与する成膜方法および成膜装置に関する。
 本願は、2018年6月26日に日本に出願された特願2018-121131号に基づき優先権を主張し、その内容をここに援用する。
 従来から、液晶ディスプレイ(LCD)や有機ELディスプレイ(OELD)に代表されるフラットパネルディスプレイおよび薄膜太陽電池等においては、透明電極が用いられている。透明電極としては、ITO膜(Indium Tin Oxide film)に代表される酸化物系の透明導電膜(TCO膜:transparent conductive film)が用いられている。特に、ディスプレイの大画面化に伴い、大面積のガラス基板上に透明導電膜を均一な膜厚で、連続的に成膜する装置として、マグネトロンスパッタ装置(以下、スパッタ装置という)が提案されている。
 このスパッタ装置は、ターゲットの裏面側に配置された複数の磁気回路を備え、ターゲットの表面側に基板を配置して、前記磁気回路から発生する磁場によってターゲット表面近傍にプラズマを発生させて成膜を行う。
 ところで、上述したスパッタ装置にあっては、たとえば、以下の課題A、Bがある。
(課題A)ITOのターゲットを用いて成膜する際に、ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生する。
(課題B)ターゲットの表面上でスパッタされる領域、いわゆるエロージョン領域には掘れ量の分布が発生し、局所的に掘れ量が大きい箇所が生じる。
 本発明者らは、既に、課題Aを解消する手法については、特許文献1にて開示している。
 上述した課題Bについては、未だ解決策が見出されていない状況にある。課題Bとは、たとえば、図5に示すように、エロージョン領域において局所的に掘れ量の大きい箇所α1、α2が発生する現象を意味する。図5のグラフにおいて、横軸はターゲットの短手方向の位置を表しており、縦軸はターゲットの掘れ量[%]を表している。図5においては、ターゲットの初期表面を掘れ量が0[%]と表示し、掘れ量が最大となる箇所α2を-100[%]とした。
 この局所的に掘れ量の大きい箇所は、ターゲット寿命を決める。すなわち、局所的に掘れ量の大きい箇所を除けば、ターゲットの構成材料がまだ十分に残存している状況でも、新しいターゲットに交換する必要が生じる。これは、ターゲットの利用効率の低下や、ターゲット交換に伴い、成膜チャンバの内部の大気開放を必要とするメンテナンス回数の増加などを招くため、製造コストが増大する原因の一つとなる。このため、局所的に掘れ量の大きい箇所において、掘れ量を抑制することが可能な、成膜方法および成膜装置の開発が期待されていた。
日本国特許第5145020号公報
 本発明は、上記の事情に鑑みてなされたもので、局所的に掘れ量の大きい箇所において、掘れ量を抑制することが可能な、成膜方法および成膜装置を提供することを目的とする。
 本発明の第1態様に係る成膜方法は、ターゲットの裏面側に、前記ターゲットの裏面と平行な第1方向に移動可能に構成された複数の磁気回路を配置するとともに、前記ターゲットの表面側に基板を配置して、マグネトロンスパッタ法により成膜を行う成膜方法であって、各磁気回路は、リング状磁石と、このリング状磁石の内側に配置されて前記ターゲットの裏面との対向面の極性が前記リング状磁石と異なる極性を有する中心磁石とを備え、前記ターゲットの表面側であって、前記リング状磁石と前記中心磁石との間には、前記磁気回路から発生する磁場のうち前記基板の表面に対する垂直成分が0となる磁場がリング状に形成され、前記第1方向において、前記磁気回路は、第一移動距離L1と、前記第一移動距離L1とは異なる第二移動距離L2とで揺動し、前記磁気回路が移動する単位時間あたりに占める前記L1と前記L2の割合を制御する。
 本発明の第1態様に係る成膜方法においては、前記ターゲットが角板型であって、前記第1方向を短手、該第1方向と直交する方向を長手とする矩形状を成しており、前記ターゲットにおいてスパッタされるエロージョン領域が、前記第1方向と直交する方向に延在する直線状の2本のストレート部と、前記ストレート部の端部どうしを結ぶ半円弧状のコーナー部とから構成され、前記エロージョン領域のストレート部どうしが、隣り合う位置にあるエロージョン領域の幅方向において、少なくとも重なる部位を有するように、前記L1の大きさを選択してもよい。
 本発明の第1態様に係る成膜方法においては、前記ターゲットが角板型であって、前記第1方向を短手、該第1方向と直交する方向を長手とする矩形状を成しており、前記ターゲットにおいてスパッタされるエロージョン領域が、前記第1方向と直交する方向に延在する直線状の2本のストレート部と、前記ストレート部の端部どうしを結ぶ半円弧状のコーナー部とから構成され、前記エロージョン領域のストレート部どうしが、隣り合う位置にあるエロージョン領域の幅方向において、少なくとも重なる部位を有しないように、前記L2の大きさを選択してもよい。
 本発明の第1態様に係る成膜方法においては、前記磁気回路が前記ターゲットの表面において600ガウス以上となる磁場を発生させるとともに、前記ターゲットとして酸化物系透明導電材料を用いた場合、関係式{L2/(L1+L2)}×100によって表記される前記割合を、2.5以上20以下の範囲内としてもよい。
 本発明の第1態様に係る成膜方法においては、前記磁気回路は、前記第1方向に交差する第2方向に移動可能に構成されてもよい。
 本発明の第2態様に係る成膜装置は、ターゲットの裏面側に、前記ターゲットの裏面と平行な第1方向に移動可能に構成された複数の磁気回路が配置されるとともに、前記ターゲットの表面側に基板が配置され、マグネトロンスパッタ法により成膜が行われる成膜装置において、各磁気回路は、リング状磁石と、このリング状磁石の内側に配置されて前記ターゲットの裏面との対向面の極性が前記リング状磁石と異なる極性を有する中心磁石とを備え、前記ターゲットの表面側であって、前記リング状磁石と前記中心磁石との間には、前記磁気回路から発生する磁場のうち前記基板の表面に対する垂直成分が0となる磁場がリング状に形成され、前記第1方向において、前記磁気回路は、第一移動距離L1と、前記第一移動距離L1とは異なる第二移動距離L2とで揺動し、前記磁気回路が移動する単位時間あたりに占める前記L1と前記L2の割合を制御する制御装置を備える。
 本発明の第1態様に係る成膜方法は、第1方向において、磁気回路は、第一移動距離L1と、第一移動距離L1とは異なる第二移動距離L2とで揺動し、磁気回路が移動する単位時間あたりに占めるL1とL2の割合を制御する。これにより、エロージョン領域における、局所的に掘れ量の大きい箇所において、掘れ量が抑制された成膜方法が得られる。ゆえに、本発明の第1態様に係る成膜方法は、ターゲットの長寿命化(利用効率の向上)が図れるとともに、メンテナンス回数も低減されるので、成膜コストの抑制に寄与する。
 本発明の第2態様に係る成膜装置は、第1方向において、磁気回路は、第一移動距離L1と、第一移動距離L1とは異なる第二移動距離L2とで揺動し、磁気回路が移動する単位時間あたりに占めるL1とL2の割合を制御する制御装置を備える。これにより、上述した成膜方法が実現できる成膜装置が得られる。すなわち、本発明の第2態様に係る成膜装置によれば、エロージョン領域における、局所的に掘れ量の大きい箇所において、掘れ量の抑制が図れる。したがって、本発明は、ターゲットの長寿命化(利用効率の向上)、メンテナンス回数の低減により、成膜コストを抑制可能な成膜装置の提供に貢献する。
本発明の実施形態に係るマグネトロンスパッタ装置の概略構成図である。 スパッタ装置の要部を示す断面図である。 磁場印加装置の平面図である。 磁場印加装置の片道移動距離LをL=A+B-γ/2に設定した場合における、エロージョンの断面形状を示す説明図である。 局所的に掘れ量の大きい箇所α1、α2が発生した状態を示すグラフである。 ターゲット表面位置とB⊥0位置との関係を示す図であって、ターゲット表面位置とB⊥0位置とが重なる位置PC1~PC4を示す説明図である。 図6に示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。 実験例1におけるターゲットの幅方向の位置と、図8Bに示した線A-Aに示す位置(ストレート部)にて測定された掘れ量との関係を示す説明図である。 図8Aに示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。 実験例2におけるターゲットの幅方向の位置と、図9Bに示した線B-Bに示す位置(ストレート部)にて測定された掘れ量との関係を示す説明図である。 図9Aに示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。 実験例3におけるターゲットの幅方向の位置と、図10Bに示した線C-Cに示す位置(コーナー部)にて測定された掘れ量との関係を示す説明図である。 図10Aに示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。 ストレート部とコーナー部における揺動比と残厚との関係を示すグラフである。 ストレート部における揺動比と掘れ量との関係を示すグラフである。 コーナー部における揺動比と掘れ量との関係を示すグラフである。 ストレート部における本発明を適用する前後におけるターゲットの幅方向の位置と掘れ量との関係を示す説明図である。
 以下、図面を用いて本発明の実施形態に係る成膜装置および成膜方法について説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。
(成膜装置)
 図1は、本発明の実施形態に係る成膜装置(マグネトロンスパッタ装置)の概略構成図である。
 図1に示した成膜装置10は、インライン式のスパッタ装置である。成膜装置10は、大気雰囲気から基板Wが投入され、減圧可能な内部空間を有する仕込室11と、減圧雰囲気において基板Wに所望のスパッタ成膜を行う内部空間を有する成膜室12と、スパッタ成膜された基板Wを大気雰囲気へ取り出すための内部空間を有する取出室13を備えている。
 仕込室11及び取出室13には、ロータリーポンプなどの粗引き排気装置41,43が接続され、成膜室12には、ターボ分子ポンプなどの高真空排気装置42が接続されている。
 成膜装置10では、基板Wを縦型に支持して仕込み室11に搬入し、粗引き排気装置41で仕込み室11の内部空間が真空雰囲気となるように排気する。次に、高真空排気装置42で高真空排気されている成膜室12の内部空間に基板Wを搬送し、成膜処理を行う。成膜後の基板Wは、粗引き排気装置43により排気された取出し室13を介して外部へ搬出される。
 成膜室12には、Arなどの不活性ガスからなるスパッタガスを供給するガス供給装置44が接続されている。なお、ガス供給装置44からは、Oなどの反応性ガスを供給することも可能である。
 さらに、成膜装置10は、制御装置CONTを備える。制御装置CONTは、粗引き排気装置41、43、高真空排気装置42、ガス供給装置44、後述するモータ45、プラズマを生成する電源(高周波電源)、各種バルブ等、成膜装置10を構成する装置の駆動を制御する。
 図2は、図1に示した成膜装置10の要部を示す断面図である。
 図2に示すように、成膜室12の内部空間には、成膜室12の幅方向における一方の壁面37側に、図示しない基板保持装置により保持された基板Wが縦型に配置されている。
 図2において、矢印Fは、基板Wが搬送される方向を示す。また、他方の壁面39側に、基板Wの表面W1と略平行にスパッタカソード機構20が縦型に配置されている。これにより、後述するように、基板Wの表面W1とターゲット22の表面(スパッタ面)22aとは、対向して配置される。
 基板Wとしては、たとえば、石英、樹脂(プラスチック、プラスチックフィルム)、ガラス等からなる平面視略矩形状の基板が好適に用いられる。基板Wは、基板保持装置(不図示)に縦型保持されている。基板保持装置には、図示しない搬送装置が連結されており、この搬送装置により基板Wは、基板Wの長辺方向(X方向:矢印F参照)に沿う方向に搬送される。
 スパッタカソード機構20は、ターゲット22と磁場印加装置26とを備えている。
 ターゲット22は、平面視において矩形の形状を有し、ターゲット22の短手方向(X方向)を基板Wの搬送方向(長辺方向)に一致させて配置されている。また、ターゲット22は、ターゲット22の表面22aと基板Wの表面W1との間に所定の間隔を空けて、基板Wに対向配置されている。
 ターゲット22の母材は、酸化物系の透明導電膜(TCO膜)を形成する所望の材料から構成されるなら、特に制限されない。ITO系の透明導電膜を基板上に形成する場合は、Inのみ、あるいはInに所定材料を添加した材料によってターゲット22が構成されている。また、ZnO系、SnO系からなる透明導電膜を形成する場合は、ターゲット22の母材を、ZnOまたはSnOのみ、あるいはZnOまたはSnOに所定材料を添加した材料で構成してもよい。
 ターゲット22の裏面は、バッキングプレート30にインジウム等のロウ材でボンディングされている。ターゲット22は、バッキングプレート30の裏面における外周部分で、絶縁プレート38を介して成膜室12の壁面39に取り付けられている。そして、ターゲット22は、バッキングプレート30を介して図示しない外部電源に接続され、負電位(カソード)に保持されている。
(磁場印加装置)
 図3は、磁場印加装置の平面図である。
 図2と図3に示すように、成膜室12の外方であって、バッキングプレート30の裏面側には磁場印加装置26が配置されている。磁場印加装置26は、ターゲット22の表面22a側に向けて磁場を印加する装置であり、複数の磁気回路32a、32bと、各磁気回路32a、32bを連結する連結部材27と、を備えている。
 各磁気回路32a、32bは、複数のヨーク36a,36bを備えている。各ヨーク36a、36bは、高透磁率を有する板状の部材であり、ヨークの表面がバッキングプレート30の裏面と平行になるように配置されている。
 ヨーク36a、36bの表面には、永久磁石からなるリング状磁石33a、33bと、このリング状磁石33a、33bの内側に所定間隔を空けて配置された永久磁石からなる中心磁石34a、34bとが配置されている。リング状磁石33a、33bは、平面視において長円の形状を有し、リング状磁石33a、33bの短軸方向(X方向:第1方向)が基板Wの搬送方向(矢印Fの方向)に一致するように配置されている。中心磁石34a、34bは、棒状のものであり、リング状磁石33a、33bの短軸方向の中央部において、中心磁石34a、34bの長手方向がリング状磁石33a、33bの長軸方向に一致するように配置されている。
 リング状磁石33a、33bと中心磁石34a、34bとは、バッキングプレート30側の表面の極性が相互に異なるように構成されている。つまり、リング状磁石33a、33bの表面極性がN極の場合には、中心磁石34a,34bの表面極性はS極に設定されている。リング状磁石33a、33bの表面極性がS極の場合には、中心磁石34a、34bの表面極性はN極に設定されている。なお、本実施形態では、リング状磁石33a、33bの表面極性がN極に、中心磁石34a、34bの表面極性がS極に設定されている。
 各リング状磁石33a、33b及び中心磁石34a、34bにより、図2に示す磁力線gで表される山型の磁界が発生する。具体的には、リング状磁石33a、33bの表面から延びる磁力線gは、ターゲット22の表面22aに漏洩し、中心磁石34a、34bの表面に入射する。そして、磁力線gを中心にプラズマが生成され、このプラズマにより励起されたスパッタガスのイオンがターゲット22の表面22aに衝突することにより、ターゲット22の表面22aから成膜材料の粒子を飛翔させる。
 その際に、リング状磁石33a、33bと中心磁石34a、34bとの間におけるターゲット22の表面22a上において、各磁気回路32a、32bから発生する磁場のうち基板Wの表面W1に対する垂直成分が0(水平成分が最大)となるリング状の磁場pが発生する。この磁場pで生成されるプラズマは、磁力線gの内側で生成されるプラズマのうち最も高密度なプラズマである。プラズマによってターゲット22の表面22aはスパッタされるが、特に、上述した最も高密度なプラズマにより、最も多い掘れ量で、ターゲット22の表面22aがスパッタされる。
 一方、ヨーク36a、36bの裏面には、各磁気回路32a、32bを連結する連結部材27が取り付けられている。連結部材27は、モータ45に接続されており、制御装置CONTがモータ45の動作を制御することで、磁場印加装置26がターゲット22に対して相対移動可能に構成されている。具体的には、磁場印加装置26は、ターゲット22の裏面と平行なX方向(第1方向)、つまり、リング状の磁場pの短軸方向に沿って揺動可能に構成されている。さらに、磁場印加装置26は、X方向に直交するY方向(第2方向)、つまり、リング状の磁場pの長軸方向に沿っても揺動可能に構成されている。なお、X方向及びY方向において、磁場印加装置26の幅はターゲット22の幅より小さく構成されており、ターゲット22以外がスパッタされないように構成されている。
 特に、制御装置CONTがモータ45を制御することで、モータ45は、X方向において、磁気回路32a、32bを、第一移動距離L1と、第一移動距離L1とは異なる第二移動距離L2とで揺動させる(後述)。さらに、制御装置CONTは、磁気回路32a、32bが移動する単位時間あたりに占めるL1とL2の割合を制御するようにモータ45を駆動する。
 ここで、各磁気回路32a、32bで発生する磁場pの短軸方向の径をA、隣接する磁気回路32a、32bからそれぞれ発生する磁場p間のX方向における距離をB、磁場pにより生成されるプラズマによってターゲット22がスパッタされるX方向の幅(エロージョンエリア)をγ(図2参照)とすると、磁場印加装置26のX方向における片道移動距離Lは、L=A+B±γ/2に設定に設定されている。「片道移動距離L」とは、揺動幅のことであり、モータ45によって往復移動する磁場印加装置26の移動経路のうち、一方向のみにおける移動距離、すなわち、片道のみにおける移動距離を意味する。換言すると、磁場印加装置26の往復移動の経路において、例えば、図2の左方向に向かう移動が開始する始点から、図2の左方向に向かう移動が停止する終点までの移動距離を意味する。同様に、「片道移動距離L」とは、図2の右方向に向かう移動が開始する始点から、図2の右方向に向かう移動が停止する終点までの移動距離を意味する。
 これにより、X方向における始点から終点まで磁場印加装置26が片道移動すると、ターゲット22の中央部22cは、磁場pが少なくとも2回以上通過することになる。
 なお、磁気回路32a、32bがターゲット22の表面22aにおいて600ガウス以上となる磁場を発生させるとともに、ターゲット22の母材(成膜材料)が酸化物系の透明導電膜(TCO膜)を形成する所望の材料である場合には、上述したエロージョンエリアγのX方向における幅は、40mm程度である。つまり、エロージョンエリアγの幅は、磁場pを中心としてX方向に±20mm程度である。
 図4は、図2に相当する断面図を示しており、磁場印加装置26の片道移動距離LをL=A+B-γ/2に設定した場合における、エロージョンの断面形状を示す説明図である。
 なお、図4の上半部(a)は、リング状の磁場pを示す平面図を示す。図4の下半部(b)は、リング状の磁場pの移動によって生じるエロージョンの断面形状を示す。図4の下半部(b)に描画した三角形は、磁場印加装置26の停止時における磁場pによって生じるエロージョンの断面形状を示している。つまり、エロージョンの断面形状は、磁場pの中心位置において最も深くなり、中心位置から離れるに従って浅くなる。この三角形のX方向における幅γは、垂直成分が0となる磁場pから発生するプラズマによってターゲットがスパッタされるエロージョンエリアを表している。
 図4に示すように、ターゲット22の表面22aにおいて、磁場pまたはエロージョンエリアγの軌跡が通過した領域がスパッタされる。その際に、磁場印加装置26の片道移動距離LをL=A+B-γ/2に設定することで、ターゲット22の表面22aにおいて、磁場pが少なくとも1回以上(X方向の両端部では1回、中央部22cでは2回)通過することになる。ここで、ターゲット22の表面22aにおけるX方向の両端部(2つの端部)は、磁場印加装置26の片道移動における始点及び終点に対応する。
 具体的には、磁場pが2回通過した領域及び磁場pが1回通過し、かつエロージョンエリアγが2回通過した領域では、深さD1までスパッタされる。また、磁場pが1回通過した領域では深さD2までスパッタされる(D2<D1)。
 ところが、現実には、図4に示すようなエロージョンエリアγとスパッタされる深さ(掘れ量)との関係が必ずしも得られないことが分かった。
 図5は、局所的に掘れ量の大きい箇所α1、α2が発生した状態を示すグラフである。
 図5のグラフにおいて、横軸はターゲットの短手方向の位置を表しており、縦軸はターゲットの掘れ量を表している。図5から、掘れ量の平均値が-3.5~-4.0の範囲にあるのに対して、局所的に掘れ量の大きい箇所が2箇所(α1、α2)観測された。
 図6は、ターゲット表面位置(TG表面位置)とB⊥0位置(B⊥0 Line)との関係を示す図であって、ターゲット表面位置とB⊥0位置とが重なる位置PC1~PC4を示す説明図である。図6における「小さな黒い三角形」は、その三角形が表示された位置における「局所的な磁場の方向」を表している。
 図6において、「TG表面位置」はターゲット表面位置を表しており、「B⊥0 Line」はB⊥0位置を表している。
 図6において、「TG表面位置」と「B⊥0 Line」が重なる(交わる)位置がPC1~PC4であり、図4の上半部(a)に示した「リング状の磁場p」が生じる位置に相当する。
 図7は、図6に示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図であり、ターゲット22の表面22aを平面視した平面図である。図7に示すように、「リング状の磁場p」から発生するプラズマ(Plasmaと表記)によってターゲット(ITOと表記)がスパッタされるエロージョンエリアは、プラズマと同様の形状を有するように、ストレート部とコーナー部とから構成されている。このストレート部に相当する位置が、それぞれ図6に示した位置PC1~PC4である。
 本発明者らは、図6および図7に示した位置PC1~PC4に着目し、磁気回路の揺動幅を変えて、ターゲットの掘れ量について評価した。実験例1と実験例2では、ストレート部における評価を行った。実験例3では、コーナー部における評価を行った。
(実験例1)
 図8Aは、実験例1におけるターゲットの幅方向の位置と、図8Bに示した線A-Aに示す位置(ストレート部)にて測定された掘れ量との関係を示す説明図である。
 図8Aは、位置PC1~PC4における各エロージョンエリアをPW1、PW2、PW3、PW4と定義したとき、互いに隣接する2つエロージョンエリアどうしが重なる領域が生じる場合を示している。ここで、磁気回路の揺動幅は70mmに設定されている。
 図8Bは、図7に相当する図であり、図8Aに示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。
 図8Aの縦軸における掘れ量[%]は、ターゲットの初期表面における掘れ量を0[%]と表示し、掘れ量が最大となる箇所α2における掘れ量を-100[%]と表示した場合の比率を示している。
 図8Aにおいては、4つのハッチング領域が示されている。4つのハッチング領域の中心(一点鎖線)の各々は、位置PC1~PC4に対応する。4つのハッチング領域は、磁場印加装置26が、ターゲット22の裏面と平行なX方向(第1方向)、つまり、リング状の磁場pの短軸方向に沿って揺動したことにより発生した、エロージョンエリアPW1~PW4である。
 また、図8Aにおいて、符号Δ12は、エロージョンエリアPW1とPW2が重なる領域を表している。符号Δ23は、エロージョンエリアPW2とPW3が重なる領域を表している。符号Δ34は、エロージョンエリアPW3とPW4が重なる領域を表している。
 実験例1では、図1および図2に示すように、バッキングプレート30に短手方向の幅が300mmのITO膜用のターゲット22を取り付け、成膜室12及び仕込み室11、取り出し室13内の真空排気を行った。そして、成膜室12(図1参照)内にArガスを5mTorr導入し、磁場印加装置を揺動させながら直流電源を用いて電力密度が4W/mの電圧を印加して成膜を行った。
 図8Aに示す結果より、エロージョンエリアPW1とPW2が重なる領域Δ12、及び、エロージョンエリアPW3とPW4が重なる領域Δ34においては、図5に示すような、局所的に掘れ量の大きい箇所α1、α2が発生していることが分かった。すなわち、上述した課題B(エロージョン領域には掘れ量の分布が発生し、局所的に掘れ量が大きい箇所が生じるという課題)は解消できていないことが分かった。
 ただし、実験例1では、エロージョンエリアPW2とPW3が重なる領域Δ23を設けたことにより、上述した課題A(ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生するという課題)は解消していることが確認された。
(実験例2)
 図9Aは、実験例2におけるターゲットの幅方向の位置と、図9Bに示した線B-Bに示す位置(ストレート部)にて測定された掘れ量との関係を示す説明図である。
 図9Aは、位置PC1~PC4における各エロージョンエリアをPW1、PW2、PW3、PW4と定義したとき、互いに隣接する2つのエロージョンエリアどうしが重なる領域を設けない場合を示している。ここで、磁気回路の揺動幅は40mmに設定されている。
 図9Bは、図7に相当する図であり、図9Aに示した位置PC1~PC4とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。
 図9Aの縦軸における掘れ量[%]は、ターゲットの初期表面における掘れ量を0[%]と表示し、掘れ量が最大となる箇所α2における掘れ量を-100[%]と表示した場合の比率を示している。
 図9Aにおいては、4つのハッチング領域が示されている。4つのハッチング領域の中心(一点鎖線)の各々は、位置PC1~PC4に対応する。4つのハッチング領域は、磁場印加装置26が、ターゲット22の裏面と平行なX方向(第1方向)、つまり、リング状の磁場pの短軸方向に沿って揺動したことにより発生した、エロージョンエリアPW1~PW4である。
 また、図9Aにおいて、符号Δ12は、エロージョンエリアPW1とPW2が接する位置を表している。符号D23は、エロージョンエリアPW2とPW3が離間している領域を表している。符号Δ34は、エロージョンエリアPW3とPW4が接する位置を表している。
 実験例2では、実験例1と同様に、図1および図2に示すように、バッキングプレート30に短手方向の幅が300mmのITO膜用のターゲット22を取り付け、成膜室12及び仕込み室11、取り出し室13内の真空排気を行った。そして、成膜室12(図1参照)内にArガスを5mTorr導入し、磁場印加装置を揺動させながら直流電源を用いて電力密度が4W/mの電圧を印加して成膜を行った。
 図9Aに示す結果より、エロージョンエリアPW1とPW2が接する位置Δ12の近傍、及び、エロージョンエリアPW3とPW4が接する位置Δ34の近傍において、上述した課題A(ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生するという課題)が発生していることが確認された。
 また、実験例2では、エロージョンエリアPW2とPW3が離間している領域D23を設けたことにより、上述した課題A(ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生するという課題)については解消できていないことが確認された。
(実験例3)
 図10Aは、実験例3におけるターゲットの幅方向の位置と、図10Bに示した線C-Cに示す位置(コーナー部)にて測定された掘れ量との関係を示す説明図である。
 図10Aは、位置PC5、PC6における各エロージョンエリアをPW5、PW6と定義したとき、互いに隣接する2つのエロージョンエリアどうしが重なる領域を設けない場合を示している。ここで、磁気回路の揺動幅は70mmに設定されている。
 図10Bは、図7に相当する図であり、図10Aに示した位置PC5、PC6とターゲット(ITO)面上においてプラズマが発生する位置との関係を示す説明図である。
 図10Aの縦軸における掘れ量[%]は、ターゲットの初期表面における掘れ量を0[%]と表示し、掘れ量が最大となる箇所を-100[%]と表示した場合の比率を示している。
 図10Aにおいては、2つのハッチング領域が示されている。2つのハッチング領域の中心(一点鎖線)の各々は、位置PC5、PC6に対応する。2つのハッチング領域は、磁場印加装置26が、ターゲット22の裏面と平行なX方向(第1方向)、つまり、リング状の磁場pの短軸方向に沿って揺動したことにより発生した、エロージョンエリアPW5、PW6である。
 また、図10Aにおいて、符号D56はエロージョンエリアPW5とPW6が離間している領域を表している。
 実験例3では、実験例1と同様に、図1および図2に示すように、バッキングプレート30に短手方向の幅が300mmのITO膜用のターゲット22を取り付け、成膜室12及び仕込み室11、取り出し室13内の真空排気を行った。そして、成膜室12(図1参照)内にArガスを5mTorr導入し、磁場印加装置を揺動させながら直流電源を用いて電力密度が4W/mの電圧を印加して成膜を行った。
 図10Aに示す結果より、エロージョンエリアPW5とPW6では、各エリアの中心である位置PC5、PC6の近傍において、掘れ量の大きい箇所が発生していることが分かった。
 PC5、PC6の近傍、つまり、コーナー部における掘れ量の大きい箇所(-7.5~-10)は、前述した実験例1や実験例2において観測されたストレート部における局所的な掘れ量(-5.5~-6)より50%程度大きいことも分かった。
 また、実験例3では、エロージョンエリアPW5とPW6が離間している領域D56が存在することにより、上述した課題A(ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生するという課題)が存在していることが確認された。
 上述した実験例1~3では各々、揺動幅を変化させずに、すなわち、磁気回路が移動する単位時間あたりに占める複数の揺動幅の割合(以下、揺動比と称する)を変化させていない。つまり、揺動幅を所望の一定値としてターゲットの掘れ量を評価した。
 換言すると、実験例1に関し、図8Aに示す結果は、磁気回路の揺動幅を70mmの一定値に設定して得られている。実験例2に関し、図9Aに示す結果は、磁気回路の揺動幅を40mmの一定値に設定して得られている。実験例3に関し、図10Aに示す結果は、磁気回路の揺動幅を70mmの一定値に設定して得られている。
(実験例4)
 実験例1~3の評価結果を踏まえ、実験例4では、磁気回路が移動する単位時間あたりに占める40mm揺動幅(第一移動距離L1)の割合(揺動比、40mm揺動割合)を0%~30%の範囲内で変化させて、ターゲットの残厚[mm]を評価した。
 なお、揺動比に関し、0%~30%の40mm揺動割合に対して、残りの100%~70%は、磁気回路の揺動幅(第二移動距離L2)が70mmである70mm揺動割合である。
 つまり、実験例4の成膜方法では、X方向において、磁気回路32a、32bを、70mm(第一移動距離L1)と、40mm(第二移動距離L2)とで揺動させ、磁気回路32a、32bが移動する単位時間あたりに占める70mm揺動割合と40mm揺動割合とを制御する。
 ここで、ターゲットの残厚とは、ターゲットの(スパッタする前の初期)板厚から(所定の時間スパッタした後の)掘れ量を除算した数値である。
 なお、上述した実験例1~3の評価結果から分かるように、ストレート部に比較してコーナー部の掘れ量が50%程度大きい。このため、実験例4ではターゲット板厚が局部的に異なるターゲット、すなわち、ストレート部に比べてコーナー部の板厚が大きいターゲットを用いて、上記の残厚を評価した。具体的には、実験例4では、ストレート部の板厚が6mm、コーナー部の板厚が12mmのターゲットを用いた。
 実験例4の実験条件に関し、揺動比の他は、実験例1と同様の条件を採用し、成膜を行った。すなわち、図1および図2に示すように、バッキングプレート30に短手方向の幅が300mmのITO膜用のターゲット22を取り付け、成膜室12及び仕込み室11、取り出し室13内の真空排気を行った。そして、成膜室12(図1参照)内にArガスを5mTorr導入し、磁場印加装置を揺動させながら直流電源を用いて電力密度が4W/mの電圧を印加して成膜を行った。
 図11は、ストレート部とコーナー部における揺動比と残厚との関係を示すグラフである。図11において、□印はストレート部、◇印はコーナー部の評価結果である。
 図11より、以下の点が明らかとなった。
(A1)揺動比(40mm揺動割合)[%]の増加に伴い、ストレート部の残厚は単調に増加する傾向を示すのに対して、コーナー部の残厚は単調に減少する傾向を示した。
(A2)揺動比(40mm揺動割合)[%]が0以上20以下の範囲内にある場合は、残厚[mm]を0~2の範囲内とすることができる。特に、揺動比[%]が5以上15以下の範囲内にある場合には、残圧が0.5以上1.5以下の範囲内に収まり、ターゲット使用効率が向上するのでより好ましい。
(A3)揺動比(40mm揺動割合)[%]が20を越えると、コーナー部の残厚がマイナスとなる。ここで、残厚がマイナスとは、ターゲットを支持するバッキングプレートが掘れることを意味する。
 以上より、揺動比[%]を0以上20以下の範囲、好ましくは5以上15以下の範囲とすることにより、残厚[mm]を0~2の範囲内となり、ターゲット板厚を十分に利用できることが分かった。すなわち、ターゲット板厚が局部的に異なるターゲットを用い、かつ、揺動比[%]を所定の範囲内で制御することにより、ターゲット使用効率の向上が図れる。ゆえに、本発明は、局所的に掘れ量の大きい箇所において、掘れ量を抑制することが可能な、成膜方法および成膜装置の提供に寄与する。
 図12は、ストレート部における揺動比と掘れ量との関係を示すグラフである。図13は、コーナー部における揺動比と掘れ量との関係を示すグラフである。図12と図13は、前述した図11の「残厚」に対応する「掘れ量」を表している。
 図12と図13に示した「掘れ量」は、図11の「残厚」と逆の傾向となる。すなわち、ストレート部においては、揺動比が増加するに連れて、残厚が単調増加(図11)するのに対して、掘れ量が単調減少(図12)する。コーナー部においては、揺動比が増加するに連れて、残厚が単調減少(図11)するのに対して、掘れ量が単調増加(図13)する。
 また、図12と図13のグラフより、ターゲット板厚が局部的に異なるターゲットを用いること、すなわち、ストレート部に比べてコーナー部の板厚が大きいターゲットを用いることが、重要であることを表している。
 図14は、本発明を適用する前と適用した後におけるターゲットの幅方向の位置と掘れ量との関係を示す説明図である。ここで、「適用する前」とは図11において揺動比が0[%]の場合(図5の状態)であり、「適用した後」とは図11において揺動比が10[%]の場合を意味する。
 図14において、点線で示した曲線が「適用する前」の掘れ量を評価した結果である。
 複数の実線で示した曲線が「適用した後」の掘れ量を評価した結果である。図14において、横軸に平行な点線は、「適用する前」の掘れ量を示す曲線における「極小値」である。横軸に平行な実線は、「適用した後」の掘れ量を示す曲線における「極小値」である。
 図14より、本発明を適用することによって、局所的に掘れ量の大きい箇所が抑制される(適用する前:-4.90、適用した後:-4.05)ことが確認された。
 図14より、エロージョンエリアPW1とPW2が重なる領域Δ12、及び、エロージョンエリアPW3とPW4が重なる領域Δ34においては、図5に示すような、局所的に掘れ量の大きい箇所α1、α2が発生していることが認められる。しかしながら、局所的に掘れ量の大きい箇所α1、α2が抑制されていることが分かった。ゆえに、上述した課題B(エロージョン領域には掘れ量の分布が発生し、局所的に掘れ量が大きい箇所が生じるという課題)は、本発明により改善されたことが明らかとなった。
 また、実験例4では、エロージョンエリアPW2とPW3が重なる領域Δ23を設けたことにより、上述した課題A(ターゲットの表面上でスパッタされずにターゲットの構成材料が残った領域、いわゆるノジュールが発生するという課題)は解消していることも確認された。
 したがって、本発明によれば、局所的に掘れ量の大きい箇所において、掘れ量が抑制された成膜方法が得られる。本発明の実施形態に係る成膜方法は、ターゲットの利用効率の向上が図れるとともに、メンテナンス回数も低減されるので、成膜コストの抑制に寄与する。
 また、本発明は、ターゲットの利用効率の向上、メンテナンス回数の低減により、成膜コストを抑制可能な成膜装置をもたらす。
 A 磁場pの短軸方向の径、B 磁場p間のX方向における距離、F 基板の搬送方向(X方向、第1方向)、g 磁力線、L 片道移動距離、p リング状の磁場、Y X方向に直交するY方向(第2方向)、W 基板、W1 基板の表面、γ エロージョンエリア、10 成膜装置、12 成膜室、20 スパッタカソード機構、22 ターゲット、22a ターゲットの表面(スパッタ面)、26 磁場印加装置、27 連結部材、30 バッキングプレート、32a、32b 磁気回路、33a、33b リング状磁石、34a、34b 中心磁石、36a、36b ヨーク、37 一方の壁面、39 他方の壁面、45 モータ。

Claims (6)

  1.  ターゲットの裏面側に、前記ターゲットの裏面と平行な第1方向に移動可能に構成された複数の磁気回路を配置するとともに、
     前記ターゲットの表面側に基板を配置して、マグネトロンスパッタ法により成膜を行う成膜方法であって、
     各磁気回路は、リング状磁石と、このリング状磁石の内側に配置されて前記ターゲットの裏面との対向面の極性が前記リング状磁石と異なる極性を有する中心磁石とを備え、前記ターゲットの表面側であって、前記リング状磁石と前記中心磁石との間には、前記磁気回路から発生する磁場のうち前記基板の表面に対する垂直成分が0となる磁場がリング状に形成され、
     前記第1方向において、前記磁気回路は、第一移動距離L1と、前記第一移動距離L1とは異なる第二移動距離L2とで揺動し、
     前記磁気回路が移動する単位時間あたりに占める前記L1と前記L2の割合を制御する、
     成膜方法。
  2.  前記ターゲットが角板型であって、前記第1方向を短手、該第1方向と直交する方向を長手とする矩形状を成しており、
     前記ターゲットにおいてスパッタされるエロージョン領域が、前記第1方向と直交する方向に延在する直線状の2本のストレート部と、前記ストレート部の端部どうしを結ぶ半円弧状のコーナー部とから構成され、
     前記エロージョン領域のストレート部どうしが、隣り合う位置にあるエロージョン領域の幅方向において、少なくとも重なる部位を有するように、前記L1の大きさを選択する、
     請求項1に記載の成膜方法。
  3.  前記ターゲットが角板型であって、前記第1方向を短手、該第1方向と直交する方向を長手とする矩形状を成しており、
     前記ターゲットにおいてスパッタされるエロージョン領域が、前記第1方向と直交する方向に延在する直線状の2本のストレート部と、前記ストレート部の端部どうしを結ぶ半円弧状のコーナー部とから構成され、
     前記エロージョン領域のストレート部どうしが、隣り合う位置にあるエロージョン領域の幅方向において、少なくとも重なる部位を有しないように、前記L2の大きさを選択する、
     請求項1に記載の成膜方法。
  4.  前記磁気回路が前記ターゲットの表面において600ガウス以上となる磁場を発生させるとともに、前記ターゲットとして酸化物系透明導電材料を用いた場合、
     関係式{L2/(L1+L2)}×100によって表記される前記割合を、2.5以上20以下の範囲内とする、
     請求項1から請求項3のいずれか一項に記載の成膜方法。
  5.  前記磁気回路は、前記第1方向に交差する第2方向に移動可能に構成されている、
     請求項1から請求項4のいずれか一項に記載の成膜方法。
  6.  ターゲットの裏面側に、前記ターゲットの裏面と平行な第1方向に移動可能に構成された複数の磁気回路が配置されるとともに、
     前記ターゲットの表面側に基板が配置され、マグネトロンスパッタ法により成膜が行われる成膜装置において、
     各磁気回路は、リング状磁石と、このリング状磁石の内側に配置されて前記ターゲットの裏面との対向面の極性が前記リング状磁石と異なる極性を有する中心磁石とを備え、前記ターゲットの表面側であって、前記リング状磁石と前記中心磁石との間には、前記磁気回路から発生する磁場のうち前記基板の表面に対する垂直成分が0となる磁場がリング状に形成され、
     前記第1方向において、前記磁気回路は、第一移動距離L1と、前記第一移動距離L1とは異なる第二移動距離L2とで揺動し、
     前記磁気回路が移動する単位時間あたりに占める前記L1と前記L2の割合を制御する制御装置を備える、
     成膜装置。
PCT/JP2019/021844 2018-06-26 2019-05-31 成膜方法および成膜装置 WO2020003895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002549.5A CN110859041B (zh) 2018-06-26 2019-05-31 成膜方法及成膜装置
KR1020197029771A KR102257920B1 (ko) 2018-06-26 2019-05-31 성막 방법 및 성막 장치
JP2019553136A JP6746011B2 (ja) 2018-06-26 2019-05-31 成膜方法および成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-121131 2018-06-26
JP2018121131 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020003895A1 true WO2020003895A1 (ja) 2020-01-02

Family

ID=68987067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021844 WO2020003895A1 (ja) 2018-06-26 2019-05-31 成膜方法および成膜装置

Country Status (5)

Country Link
JP (1) JP6746011B2 (ja)
KR (1) KR102257920B1 (ja)
CN (1) CN110859041B (ja)
TW (1) TWI712699B (ja)
WO (1) WO2020003895A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116092899B (zh) * 2023-01-16 2024-01-09 深圳市矩阵多元科技有限公司 用于pvd平面靶的扫描磁控管装置与磁控溅射设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046334A (ja) * 1996-04-24 1998-02-17 Anelva Corp スパッタ成膜装置
JP2004315932A (ja) * 2003-04-18 2004-11-11 Dainippon Printing Co Ltd 薄膜の製造方法および薄膜製造装置
JP2007238978A (ja) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd スパッタ装置およびスパッタ方法
JP2009074181A (ja) * 2008-12-15 2009-04-09 Dainippon Printing Co Ltd 薄膜の製造方法および薄膜製造装置
WO2009093598A1 (ja) * 2008-01-21 2009-07-30 Ulvac, Inc. スパッタ成膜方法およびスパッタ成膜装置
WO2014010148A1 (ja) * 2012-07-11 2014-01-16 キヤノンアネルバ株式会社 スパッタリング装置および磁石ユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145020B1 (ja) 1971-04-26 1976-12-01
JP4453850B2 (ja) * 1999-06-01 2010-04-21 キヤノンアネルバ株式会社 スパッタ成膜装置およびスパッタ膜形成方法
JP4796532B2 (ja) * 2007-04-05 2011-10-19 株式会社アルバック 成膜源、スパッタ装置
JP5145020B2 (ja) * 2007-12-18 2013-02-13 株式会社アルバック 成膜装置及び成膜方法
TWI589717B (zh) * 2011-11-03 2017-07-01 海帝斯科技公司 使用濺射裝置的濺射方法
CN105803410B (zh) * 2016-04-29 2018-07-17 京东方科技集团股份有限公司 磁控溅射装置、磁控溅射设备及磁控溅射的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046334A (ja) * 1996-04-24 1998-02-17 Anelva Corp スパッタ成膜装置
JP2004315932A (ja) * 2003-04-18 2004-11-11 Dainippon Printing Co Ltd 薄膜の製造方法および薄膜製造装置
JP2007238978A (ja) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd スパッタ装置およびスパッタ方法
WO2009093598A1 (ja) * 2008-01-21 2009-07-30 Ulvac, Inc. スパッタ成膜方法およびスパッタ成膜装置
JP2009074181A (ja) * 2008-12-15 2009-04-09 Dainippon Printing Co Ltd 薄膜の製造方法および薄膜製造装置
WO2014010148A1 (ja) * 2012-07-11 2014-01-16 キヤノンアネルバ株式会社 スパッタリング装置および磁石ユニット

Also Published As

Publication number Publication date
KR102257920B1 (ko) 2021-05-28
KR20200002813A (ko) 2020-01-08
TW202000962A (zh) 2020-01-01
JPWO2020003895A1 (ja) 2020-07-02
TWI712699B (zh) 2020-12-11
JP6746011B2 (ja) 2020-08-26
CN110859041B (zh) 2022-11-01
CN110859041A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
JP5485077B2 (ja) スパッタリングシステム
JP4922581B2 (ja) スパッタリング装置及びスパッタリング方法
WO2007010798A1 (ja) スパッタリング装置、透明導電膜の製造方法
JP2005298966A (ja) スパッタリング方法及びその装置
KR20130129859A (ko) 스퍼터링 방법
KR102163937B1 (ko) 성막 방법
WO2020003895A1 (ja) 成膜方法および成膜装置
CN107435135B (zh) 溅射装置及使用该溅射装置的溅射方法
TWI401334B (zh) Sputtering apparatus and sputtering method
JP4912980B2 (ja) 成膜方法
JP5145020B2 (ja) 成膜装置及び成膜方法
JP5003667B2 (ja) 薄膜の製造方法および薄膜製造装置
JP4999602B2 (ja) 成膜装置
JP2023069659A (ja) マグネトロンスパッタリング装置及びスパッタリング方法
KR20110122456A (ko) 액정표시장치의 제조장치 및 제조방법
WO2020004619A1 (ja) スパッタ成膜装置
KR101608603B1 (ko) 스퍼터 장치
KR100793356B1 (ko) 스퍼터링 장치
TWI496925B (zh) 一種用於減少ito濺射損傷襯底的濺射設備及其方法
TWI839638B (zh) 磁控管濺鍍裝置用之陰極單元及磁控管濺鍍裝置
KR101683726B1 (ko) 기판 처리 장치
JP2024070140A (ja) スパッタリング装置
KR20080012657A (ko) 대향 타깃형 스퍼터링 장치
JP2013194300A (ja) スパッタリング装置
KR20140126512A (ko) 스퍼터링 장치 및 이를 포함하는 증착장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553136

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029771

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826260

Country of ref document: EP

Kind code of ref document: A1