WO2020003855A1 - 表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム - Google Patents

表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム Download PDF

Info

Publication number
WO2020003855A1
WO2020003855A1 PCT/JP2019/021015 JP2019021015W WO2020003855A1 WO 2020003855 A1 WO2020003855 A1 WO 2020003855A1 JP 2019021015 W JP2019021015 W JP 2019021015W WO 2020003855 A1 WO2020003855 A1 WO 2020003855A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
echo data
predicted
period
unit
Prior art date
Application number
PCT/JP2019/021015
Other languages
English (en)
French (fr)
Inventor
陵 中島
敏志 川浪
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2020003855A1 publication Critical patent/WO2020003855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a technology for detecting a surface tidal current, which is a tidal current near the sea surface.
  • Patent Document 1 Conventionally, a marine radar as shown in Patent Document 1 has been proposed.
  • the marine radar disclosed in Patent Literature 1 calculates marine information using measurement signals of waves obtained from a plurality of radars arranged at different positions.
  • an object of the present invention is to estimate a surface tide with a simple configuration.
  • the surface tidal current estimation device of the present invention includes a first echo data acquisition unit, a second echo data acquisition unit, a predicted echo generation unit, a real echo generation unit, and an estimation unit.
  • the first echo data acquisition unit acquires echo data at a plurality of times in the first period from echo data at a plurality of times with respect to the wave.
  • the second echo data acquisition unit acquires, from the echo data at a plurality of times for the wave, echo data at a plurality of times in a second period including a time later than the time in the first period by a predicted time.
  • the predicted echo generation unit generates a predicted echo using the echo data at a plurality of times in the first period, the predicted time, and the wave dispersion relational expression.
  • the real echo generation unit generates a real echo using the echo data at a plurality of times in the second period.
  • the estimating unit estimates the surface current using the comparison result between the predicted echo and the actual echo.
  • the surface current is estimated from echo data of a wave obtained from at least one antenna at a plurality of times.
  • FIG. 2 is a block diagram illustrating a configuration of a surface tidal current estimation unit according to the embodiment of the present invention. It is a block diagram showing composition of a ship radar concerning an embodiment of the present invention. It is a figure which shows simply the concept of the estimation method of the surface tidal flow which concerns on embodiment of this invention.
  • FIG. 3 is a block diagram illustrating a configuration of a prediction echo generation unit.
  • FIG. 3 is a block diagram illustrating a configuration of an actual echo generation unit.
  • FIG. 3 is a block diagram illustrating a configuration of an estimation unit. It is a flowchart which shows the main flow of the estimation process of a surface tidal current. It is a flowchart which shows an example of the process which a surface tidal current estimation part performs.
  • a surface tidal current estimating apparatus, a surface tidal current estimating method, and a surface tidal current estimating program according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a block diagram showing a configuration of a surface tidal current estimation unit according to the embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the marine radar according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a concept of a method for estimating a surface tidal current according to the embodiment of the present invention.
  • the ship radar 90 includes an antenna 91, a transmission unit 92, a transmission / reception switching unit 93, a reception unit 94, an echo data generation unit 95, an echo data storage unit 900, and a surface tidal flow estimation unit 10.
  • the ship radar 90 may further include an indicator. Note that the configuration of the marine radar 90 is similar to a known configuration, and will be briefly described below.
  • the surface tidal current estimating unit 10 can be used as a single surface tidal current estimating device, but is used as a part of the ship radar 90 as shown in FIG.
  • the transmission unit 92 and the reception unit 94 are connected to the antenna 91 via the transmission / reception switching unit 93.
  • the receiving unit 94 is connected to the echo data generating unit 95.
  • the echo data generation unit 95 is connected to the echo data storage unit 900. Further, the echo data generation unit 95 is connected to a display unit and the like (not shown).
  • the echo data storage unit 900 is connected to the surface tidal current estimation unit 10.
  • the surface tidal current estimating unit 10 is connected to a display unit (not shown) or the like.
  • the transmission unit 92 generates and outputs a detection signal.
  • the frequency of the detection signal is, for example, a frequency in a GHz band. That is, the detection signal is the same as a generally used detection signal for detecting a ship or the like.
  • the transmission / reception switching unit 93 includes, for example, a demultiplexing circuit, and transmits a detection signal to the antenna 91.
  • the antenna 91 is attached to a ship or the like, and transmits a detection signal to the outside (detection area) while rotating the transmission / reception plane at a preset cycle, and receives an echo signal (including a wave echo signal). I do.
  • the antenna 91 outputs the echo signal to the transmission / reception switching unit 93.
  • the transmission / reception switching unit 93 transmits the echo signal to the reception unit 94.
  • the reception unit 94 performs amplification processing and the like on the echo signal and outputs the result to the echo data generation unit 95.
  • the echo data generation unit 95 generates echo data defined by a rectangular coordinate system forming a PPI image by using echo signals for one scan (one round of the antenna 91).
  • the echo data generation unit 95 outputs the echo data to the echo data storage unit 900, and the echo data storage unit 900 stores the echo data.
  • the echo data storage unit 900 stores echo data at a plurality of times arranged in time series.
  • the surface tidal current 991 is a tidal current generated in a relatively shallow depth range (Ds range in FIG. 3) from the sea surface in the ocean 990, and is generated under the influence of wind or the like.
  • the depth Ds at which the surface tide 991 occurs is, for example, about several meters to several tens of meters.
  • the waves are affected by this surface current 991. Accordingly, the surface tidal current 991 can be estimated by using the wave echo data.
  • the ship radar 90 is mounted on the ship SV. While the ship SV is moving, the ship radar 90 transmits the detection signal Sd at a predetermined cycle and receives the echo signal Sr. Then, the ship radar 90 generates and stores echo data from the echo signal Sr.
  • the surface tide is estimated by designating the analysis region 991t for estimating the surface tide on the sea surface and using the echo data of the wave obtained from the analysis region 991t.
  • the analysis region 991t has a fixed relative position with respect to the ship SV. Then, by setting the first period PRD1 and the second period PRD2 delayed by the predicted time ⁇ t with respect to the first period PRD1, and using the echo data of the waves at a plurality of times included in each period, the surface current is reduced. ,Presumed.
  • the surface tidal current estimation unit 10 includes an echo data acquisition unit 21, an echo data acquisition unit 22, a predicted echo generation unit 30, a real echo generation unit 40, and an estimation unit 50.
  • the echo data acquisition unit 21 corresponds to the “first echo data acquisition unit” of the present invention
  • the echo data acquisition unit 22 corresponds to the “second echo data acquisition unit” of the present invention.
  • the echo data acquisition unit 21, the echo data acquisition unit 22, the predicted echo generation unit 30, the real echo generation unit 40, and the estimation unit 50 each include a program for executing a process described below and a recording medium for recording the program. And an arithmetic element such as a CPU for executing the processing, and a storage medium for performing the processing.
  • the echo data acquisition unit 21 acquires the echo data of the analysis area 991t corresponding to the first period PRD1 from the echo data storage unit 900.
  • the analysis area 991t is specified by an operation unit or the like (not shown) as a part of an area for one scan, and is defined by an area of a rectangular coordinate system.
  • the analysis area 991t is designated to select wave echo data. That is, for example, it is preferable to specify an area in the echo data where no other target such as a ship exists.
  • the first period PRD1 is specified by an operation unit (not shown) or the like, and is defined, for example, from time t0 to time t1.
  • the echo data acquisition unit 21 acquires the echo data of the analysis area 991t at a plurality of times included in the time t0 to the time t1 from the echo data storage unit 900.
  • the echo data acquisition unit 21 outputs the echo data of the first period PRD1 to the predicted echo generation unit 30.
  • the echo data acquisition unit 22 acquires the echo data of the analysis area 991t corresponding to the second period PRD2 from the echo data storage unit 900.
  • the second period PRD2 is set by the first period PRD1 and the estimated time ⁇ t.
  • the predicted time ⁇ t is specified by an operation unit (not shown) or the like.
  • the second period PRD2 is defined by a time obtained by delaying the predicted time ⁇ t from the first period PRD1. For example, if the first period PRD1 is from time t0 to time t1, the second period PRD2 is defined from time (t0 + ⁇ t) to time (t1 + ⁇ t).
  • the echo data acquisition unit 22 acquires the echo data of the analysis area 991t at a plurality of times included in the time (t0 + ⁇ t) to the time (t1 + ⁇ t) from the echo data storage unit 900.
  • the echo data acquisition unit 22 outputs the echo data of the second period PRD2 to the real echo generation unit 40.
  • the predicted echo generation unit 30 generates the predicted echo ECtt using the echo data of the first period PRD1, the predicted time ⁇ t, and the wave dispersion relational expression. At this time, the predicted echo generator 30 generates a predicted echo ECtt using the amplitude spectrum and the phase spectrum of the echo data in the first period PRD1. The predicted echo generation unit 30 outputs the predicted echo ECtt to the estimation unit 50. The specific configuration and processing of the prediction echo generation unit 30 will be described later.
  • the real echo generation unit 40 generates a real echo ECt using the echo data of the second period PRD2. At this time, the real echo generation unit 40 generates a real echo ECt using the amplitude spectrum and the phase spectrum of the echo data in the second period PRD2. The real echo generation unit 40 outputs the real echo ECt to the estimation unit 50.
  • the specific configuration and processing of the actual echo generation unit 40 will be described later.
  • the estimation unit 50 compares the predicted echo ECtt with the actual echo ECt, and estimates the surface tide based on the comparison result. At this time, the estimating unit 50 uses a correlation processing result between the predicted echo ECtt and the actual echo ECt. The specific configuration and processing of the estimating unit 50 will be described later.
  • the surface current can be estimated if at least one detection antenna is provided. That is, the surface flow can be estimated with a simple configuration.
  • the surface tidal current can be estimated only by adding the surface tidal current estimating unit 10 to the current ship radar.
  • FIG. 4 is a block diagram illustrating a configuration of the prediction echo generation unit.
  • the predicted echo generator 30 includes a power spectrum calculator 311, a filter 312, an amplitude spectrum calculator 313, a phase spectrum calculator 321, a phase corrector 322, and a predicted echo calculator 331.
  • the power spectrum calculation unit 311 calculates the power spectrum PSp of the echo data in the first period PRD1 by executing a three-dimensional Fourier transform using the N pieces of echo data in the first period PRD1.
  • Power spectrum calculation section 311 outputs power spectrum PSp to filter 312.
  • the number N to be acquired is preferably a power of 2, and is set to, for example, 32. This allows for a fast Fourier transform.
  • the filter 312 filters the power spectrum PSp using the following wave dispersion relational expression.
  • the wave dispersion relation equation used here is represented by the following equation.
  • the ⁇ is the angular frequency of the wave
  • g is the gravitational velocity
  • k is the wave number vector
  • V OGS is the average of the ground ship speed in the first period PRD1. This ground speed corresponds to the “moving speed of the source of the detection signal” of the present invention.
  • the noise component included in the power spectrum PSp is suppressed, and only the component due to the wave is extracted.
  • the filter 312 outputs the power spectrum PSFp after the filter processing to the amplitude spectrum calculation unit 313.
  • the filter 312 is not an essential component and can be omitted.
  • the power spectrum PSp calculated by the power spectrum calculation unit 311 is input to the amplitude spectrum calculation unit 313.
  • the amplitude spectrum calculation unit 313 calculates the amplitude spectrum ASp of the echo data in the first period PRD1 from the power spectrum PSFp after the filtering.
  • the amplitude spectrum calculation unit 313 outputs the amplitude spectrum ASp to the predicted echo calculation unit 331.
  • the phase spectrum calculation unit 321 calculates the phase spectrum of the echo data by executing a two-dimensional Fourier transform using the echo data at the last time of the first period PRD1. Phase spectrum calculation section 321 outputs phase spectrum ⁇ s to phase correction section 322.
  • the phase correction unit 322 corrects the phase spectrum ⁇ s using the prediction time ⁇ t, the average ground speed V OG at the prediction time ⁇ t, and the wave dispersion relation expression.
  • the phase correcting unit 322 by using a ground ship speed V OG, calculates the phase spectrum ⁇ sc after prediction time Delta] t. That is, the phase correction unit 322 calculates the phase spectrum ⁇ sc after the prediction time ⁇ t, assuming that there is no surface current (the speed of the surface current is 0).
  • the phase correction unit 322 outputs the phase spectrum ⁇ sc after the prediction time ⁇ t to the prediction echo calculation unit 331.
  • the ⁇ ⁇ ⁇ prediction echo calculation unit 331 calculates the prediction echo ECtt using the amplitude spectrum ASp and the phase spectrum ⁇ sc after the prediction time ⁇ t.
  • the predicted echo ECtt is a distribution of predicted echo data at the last time of the second period PRD2 with respect to the analysis area 991t.
  • the predicted echo calculation unit 331 outputs the predicted echo ECtt to the estimation unit 50.
  • FIG. 5 is a block diagram illustrating a configuration of the actual echo generation unit.
  • the real echo generation unit 40 includes a power spectrum calculation unit 411, a filter 412, an amplitude spectrum calculation unit 413, a phase spectrum calculation unit 421, and a real echo calculation unit 431.
  • the power spectrum calculation unit 411 calculates the power spectrum of the echo data in the second period PRD2 by executing three-dimensional Fourier transform using the N pieces of echo data in the second period PRD2. Power spectrum calculation section 411 outputs power spectrum PS to filter 412.
  • the filter 412 filters the power spectrum PS using the following wave dispersion relational expression.
  • the wave dispersion relation equation used here is represented by the following equation. ⁇ is the angular frequency of the wave, g is the angular velocity of gravity, k is the wave number vector, and V OGt is the average ground speed in the second period PRD2.
  • noise components included in the power spectrum PS are suppressed, and only components due to waves are extracted.
  • the filter 412 outputs the power spectrum PSF after the filter processing to the amplitude spectrum calculation unit 413.
  • the filter 412 is not an essential component and can be omitted.
  • the power spectrum PS calculated by the power spectrum calculation section 411 is input to the amplitude spectrum calculation section 413.
  • the amplitude spectrum calculation unit 413 calculates the amplitude spectrum AS of the echo data in the second period PRD2 from the power spectrum PSF after the filtering.
  • the amplitude spectrum calculator 413 outputs the amplitude spectrum AS to the actual echo calculator 431.
  • the phase spectrum calculation unit 421 calculates the phase spectrum of the echo data by executing a two-dimensional Fourier transform using the echo data at the last time of the second period PRD2. Phase spectrum calculation section 421 outputs phase spectrum ⁇ t to actual echo calculation section 431.
  • the real echo calculator 431 calculates the real echo ECt using the amplitude spectrum AS and the phase spectrum ⁇ t.
  • the actual echo ECt is the distribution of the echo data at the last time of the second period PRD2 with respect to the analysis area 991t.
  • the real echo calculator 431 outputs the real echo ECt to the estimator 50.
  • FIG. 6 is a block diagram illustrating a configuration of the estimation unit. As shown in FIG. 6, the estimating unit 50 includes a shift detecting unit 501 and a speed calculating unit 502.
  • the shift detection unit 501 detects the position of the predicted echo ECtt, the position of the actual echo ECt, the shift amount, and the shift direction. For example, the shift detecting unit 501 compares the position of the predicted echo ECtt with the position of the actual echo ECt, and detects the shift amount and the shift direction of the position. At this time, the position shift amount is calculated based on the PPI coordinate system, and the actual distance is calculated by converting the calculated value based on the azimuth resolution and the distance resolution of the echo data.
  • the comparison between the position of the predicted echo ECtt and the position of the actual echo ECt can be realized using, for example, the positional relationship between the wave peak line of the predicted echo ECtt and the wave peak line of the real echo ECt.
  • the positional relationship between the wave peak line of the predicted echo ECtt and the wave peak line of the actual echo ECt can be calculated, for example, based on the result of correlation processing between the predicted echo ECtt and the real echo ECt.
  • the shift detection unit 501 outputs the shift amount and the shift direction to the speed calculation unit 502.
  • the speed calculating unit 502 calculates the surface tidal current speed u by dividing the shift amount by the predicted time ⁇ t. At this time, by adding the shift direction, the surface tidal flow velocity u can be calculated as a vector. In addition, the speed calculation unit 502 detects that there is a surface tide by detecting that the speed u is not 0. Conversely, the speed calculating unit 502 detects that the surface tide is 0 by detecting that the speed u is 0.
  • the surface tidal current can be estimated with a simple configuration.
  • the surface tide estimation process may be executed by an arithmetic processing device such as a personal computer having a recording medium that programs and records the above-described surface tide estimation process and an arithmetic element such as a CPU.
  • the arithmetic processing unit may execute the following processing. Since the specific contents of the following processes have been described above, a specific description thereof will be omitted.
  • FIG. 7 is a flowchart showing the main flow of the surface tidal current estimation process.
  • the arithmetic processing device receives the designation of the analysis area and sets the analysis area (S11).
  • the arithmetic processing device receives the designation of the prediction time ⁇ t, and sets the prediction time ⁇ t (S12).
  • the arithmetic processing device acquires the echo data of the designated first period PRD1, and generates the predicted echo ECtt from the echo data of the first period PRD1 (S13). At this time, the arithmetic processing device generates the predicted echo ECtt by performing the process of advancing the phase using the dispersion relation of the wave as described above.
  • the arithmetic processing device acquires echo data of the second period PRD2 obtained from the first period PRD1 and the predicted time ⁇ t, and generates an actual echo ECt from the echo data of the second period PRD2 using the above-described method. (S14).
  • the arithmetic processing unit compares the predicted echo ECtt with the actual echo ECt to estimate the surface current (S15).
  • FIG. 8 is a flowchart illustrating an example of a process executed by the surface tidal current estimation unit.
  • the surface tidal flow estimating unit 10 calculates the surface tidal flow velocity using the ground ship speed as described above (S51). At this time, by using the echo signal of the sea surface reflection near the ship SV, the surface tidal flow velocity near the ship SV can be obtained with higher accuracy.
  • the surface tidal current estimating unit 10 calculates the ship hull speed using the ship hull speed and the surface tidal flow speed (S52). Specifically, the surface tidal current estimating unit 10 calculates the watercraft speed by calculating a vector obtained by subtracting the surface tidal current vector from the groundcraft speed vector.
  • the surface tidal current estimating unit 10 re-calculates the surface tidal current speed using the watercraft speed (S53). Specifically, when calculating the power spectrum of the echo data in the first period PRD1 and the power spectrum of the echo data in the second period PRD2, the surface tidal flow estimating unit 10 uses the ship speed with respect to water. At this time, the speed of the ground is used for correcting the phase spectrum.
  • the surface tidal current velocity can be calculated with higher accuracy.
  • the ship radar 90 of the ship is used, but a radar disposed on land may be used.
  • the ship's ground speed becomes 0, and the estimation process of the surface tidal current can be realized by a simpler calculation.
  • Echo data acquisition unit 30 Predicted echo generation unit 40: Real echo generation unit 50: Estimation unit 90: Ship radar 91: Antenna 92: Transmission unit 93: Transmission / reception switching unit 94: Receiving unit 95: echo data generation unit 311: power spectrum calculation unit 312: filter 313: amplitude spectrum calculation unit 321: phase spectrum calculation unit 322: phase correction unit 331: predicted echo calculation unit 411: power spectrum calculation unit 412: filter 413: amplitude Spectrum calculator 421: Phase spectrum calculator 431: Actual echo calculator 501: Shift detector 502: Speed calculator 900: Echo data storage 990: Ocean 991: Surface tide 991t: Analysis area SV: Ship
  • All of the processes described herein can be embodied and fully automated by software code modules executed by a computing system including one or more computers or processors.
  • the code modules may be stored on any type of non-transitory computer readable media or other computer storage. Some or all of the methods may be embodied in dedicated computer hardware.
  • any particular operation, event, or function of the algorithms described herein can be performed in a different sequence, added, merged, or omitted altogether. (Eg, not all actions or events described are required to execute the algorithm). Further, in certain embodiments, the operations or events are performed in parallel rather than serially, for example, through multi-threading, interrupt processing, or over multiple processors or processor cores or on other parallel architectures. Can be. Further, different tasks or processes may be performed by different machines and / or computing systems that can function together.
  • the various illustrative logic blocks and modules described in connection with the embodiments disclosed herein may be implemented or performed by a machine such as a processor.
  • the processor may be a microprocessor, but, alternatively, the processor may be a controller, a microcontroller, or a state machine, or a combination thereof.
  • the processor may include an electrical circuit configured to process the computer-executable instructions.
  • the processor includes an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer-executable instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a processor may also be a combination of computing devices, such as a combination of a digital signal processor (digital signal processor) and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other such device. Such a configuration can be implemented. Although described herein primarily in terms of digital technology, a processor may include primarily analog components. For example, some or all of the signal processing algorithms described herein can be implemented with analog circuits or mixed analog and digital circuits.
  • the computing environment includes any type of computer system including, but not limited to, a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computer system based on a computing engine in the apparatus. be able to.
  • conditional languages such as “could”, “could”, “will” or “possibly” refer to certain embodiments including certain features, elements and / or steps, Embodiments are understood in the context generally used to convey that they do not. Accordingly, such a conditional language is generally general that any feature, element, and / or step is required in one or more embodiments, or that one or more embodiments , Elements and / or steps are not necessarily meant to include the logic to determine whether they are included or performed in any particular embodiment.
  • a disjunctive language such as the phrase "at least one of X, Y, and Z" is used when the item, term, or the like is X, Y, Z, or any combination thereof, unless otherwise specified. It is understood in the context commonly used to indicate that it can be (eg: X, Y, Z). Thus, such disjunctive languages generally require each of at least one of X, at least one of Y, or at least one of Z for which a particular embodiment exists. It does not mean.
  • a processor configured to execute A, B and C below '' includes a first processor configured to execute A and a second processor configured to execute B and C. Processor.
  • a specific number of enumerations of an introduced example is explicitly recited, one of ordinary skill in the art will appreciate that such enumeration is typically at least the number enumerated (e.g., other modifiers). The mere enumeration of "with two enumerations" without (usually) usually means at least two enumerations, or two or more enumerations).
  • the term “floor” can be interchanged with the terms “ground” or “water surface”.
  • the term “vertical / vertical” refers to the direction perpendicular / vertical to the defined horizontal line. Terms such as “upper”, “lower”, “lower”, “upper”, “side”, “higher”, “lower”, “upper”, “beyond” and “below” are defined relative to the horizontal plane. ing.
  • connection As used herein, the terms “attach,” “connect,” “pair,” and other related terms, unless otherwise noted, are removable, movable, fixed, adjustable, And / or shall be construed to include a removable connection or connection. Connections / connections include direct connections and / or connections having an intermediate structure between the two components described.
  • numbers such as “about”, “about”, and “substantially” are inclusive of the recited number and Represents an amount close to the stated amount that performs the desired function or achieves the desired result.
  • “approximately”, “about”, and “substantially” refer to a value that is less than 10% of the stated value, unless otherwise indicated.
  • features of embodiments in which terms such as “approximately”, “about”, and “substantially” have been previously disclosed may further perform the desired function. Or a feature that has some variability to achieve the desired result for that feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】簡素な構成で、表面潮流を推定する。 【解決手段】表層潮流推定部10は、エコーデータ取得部21、22、予測エコー生成部30、実エコー生成部40、および、推定部50を備える。エコーデータ取得部21は、波に対する複数時刻のエコーデータから、第1期間PRD1の複数時刻のエコーデータを取得する。エコーデータ取得部22は、波に対する複数時刻のエコーデータから、第1期間PRD1内の時刻よりも予測時間Δtだけ後の時刻を含む第2期間PRD2の複数時刻のエコーデータを取得する。予測エコー生成部30は、第1期間PRD1の複数時刻のエコーデータと予測時間Δtと波の分散関係式とを用いて、予測エコーECttを生成する。実エコー生成部40は、第2期間PRD2の複数時刻のエコーデータを用いて、実エコーECtを生成する。推定部50は、予測エコーECttと実エコーECtとの比較結果を用いて、表層潮流を推定する。

Description

表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム
 本発明は、海面付近の潮流である表層潮流を検出する技術に関する。
 従来、特許文献1に示すような海洋レーダが提案されている。
 特許文献1に示す海洋レーダは、それぞれ異なる位置に配置された複数台のレーダから得られる波の計測信号を用いて、海洋情報を算出している。
特開平11-237477号公報
 しかしながら、特許文献1に示すような従来の構成では、複数台のレーダが必要である等、装置およびシステムが大型化してしまう。
 したがって、本発明の目的は、簡素な構成で、表面潮流を推定することである。
 この発明の表層潮流推定装置は、第1エコーデータ取得部、第2エコーデータ取得部、予測エコー生成部、実エコー生成部、および、推定部を備える。
 第1エコーデータ取得部は、波に対する複数時刻のエコーデータから、第1期間の複数時刻のエコーデータを取得する。第2エコーデータ取得部は、波に対する複数時刻のエコーデータから、第1期間内の時刻よりも予測時間だけ後の時刻を含む第2期間の複数時刻のエコーデータを取得する。予測エコー生成部は、第1期間の複数時刻のエコーデータと予測時間と波の分散関係式とを用いて、予測エコーを生成する。実エコー生成部は、第2期間の複数時刻のエコーデータを用いて、実エコーを生成する。推定部は、予測エコーと実エコーとの比較結果を用いて、表層潮流を推定する。
 この構成では、少なくとも1台のアンテナから得られる、波に対する複数時刻のエコーデータによって、表層潮流が推定される。
 この構成では、簡素な構成で、表面潮流を推定できる。
本発明の実施形態に係る表層潮流推定部の構成を示すブロック図である。 本発明の実施形態に係る船舶レーダの構成を示すブロック図である。 本発明の実施形態に係る表層潮流の推定方法の概念を、簡略的に示す図である。 予測エコー生成部の構成を示すブロック図である。 実エコー生成部の構成を示すブロック図である。 推定部の構成を示すブロック図である。 表面潮流の推定処理のメインフローを示すフローチャートである。 表層潮流推定部が実行する処理の一例を示すフローチャートである。
 本発明の実施形態に係る表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラムについて、図を参照して説明する。
 図1は、本発明の実施形態に係る表層潮流推定部の構成を示すブロック図である。図2は、本発明の実施形態に係る船舶レーダの構成を示すブロック図である。図3は、本発明の実施形態に係る表層潮流の推定方法の概念を、簡略的に示す図である。
 (船舶レーダの構成)
 図2に示すように、船舶レーダ90は、アンテナ91、送信部92、送受切替部93、受信部94、エコーデータ生成部95、エコーデータ記憶部900、および、表層潮流推定部10を備える。なお、船舶レーダ90は、さらに、表示器を備えていてもよい。なお、船舶レーダ90の構成は、既知の構成と同様であり、以下では簡略的に説明する。
 表層潮流推定部10は、単体の表層潮流推定装置として用いることも可能であるが、このように、図2に示すような船舶レーダ90の一部として用いられる。
 送信部92および受信部94は、送受切替部93を介して、アンテナ91に接続している。受信部94は、エコーデータ生成部95に接続している。エコーデータ生成部95は、エコーデータ記憶部900に接続している。また、エコーデータ生成部95は、図示しない表示部等に接続している。
 エコーデータ記憶部900は、表層潮流推定部10に接続している。また、表層潮流推定部10は、図示しない表示部等に接続している。
 送信部92は、探知信号を生成して出力する。探知信号の周波数は、例えば、GHz帯の周波数である。すなわち、探知信号は、一般的に用いられている船舶等の探知用の探知信号と同じである。送受切替部93は、例えば分波回路等からなり、探知信号をアンテナ91に伝送する。
 アンテナ91は、船舶等に取り付けられており、予め設定された周期で送受波面を回転させながら、探知信号を外部(探知領域)に送信し、そのエコー信号(波のエコー信号を含む)を受信する。
 アンテナ91は、エコー信号を送受切替部93に出力する。送受切替部93は、エコー信号を受信部94に伝送する。
 受信部94は、エコー信号に対して増幅処理等を行って、エコーデータ生成部95に出力する。エコーデータ生成部95は、1スキャン分(アンテナ91の1周分)のエコー信号を用いて、PPI画像を構成する直交座標系によって定義されるエコーデータを生成する。
 エコーデータ生成部95は、エコーデータをエコーデータ記憶部900に出力し、エコーデータ記憶部900は、エコーデータを記憶する。
 このような処理は、1スキャン分のエコー信号が得られる毎に実行される。したがって、エコーデータ記憶部900は、時系列に並ぶ複数時刻のエコーデータを記憶している。
 (表層潮流推定処理の概要)
 図3に示すように、海洋990には、表層潮流991と潮流(海流)992とが存在する。表層潮流991は、海洋990における海面から比較的浅い深度の範囲(図3のDsの範囲)に生じる潮流であり、風等の影響を受けて生じる。表層潮流991の生じる深度Dsは、例えば、数メートルから数十メートル程度である。波はこの表層潮流991の影響を受ける。したがって、波のエコーデータを用いることによって、表層潮流991を推定できる。
 船舶SVには、上述の船舶レーダ90が装着されている。船舶SVの移動中、船舶レーダ90は、所定周期で探知信号Sdを送信し、そのエコー信号Srを受信する。そして、船舶レーダ90は、エコー信号Srからエコーデータを生成し、記憶する。
 ここで、海面における表層潮流を推定したい解析領域991tを指定し、解析領域991tから得られる波のエコーデータを用いることで、表層潮流は、推定される。解析領域991tは、図3に示すように、船舶SVに対して相対位置が固定である。そして、第1期間PRD1と、第1期間PRD1に対して予測時間Δtで遅れる第2期間PRD2とを設定し、それぞれの期間に含まれる複数時刻の波のエコーデータを用いることで、表層潮流は、推定される。
 (表層潮流推定部10の構成)
 図1に示すように、表層潮流推定部10は、エコーデータ取得部21、エコーデータ取得部22、予測エコー生成部30、実エコー生成部40、および、推定部50を備える。エコーデータ取得部21が、本発明の「第1エコーデータ取得部」に対応し、エコーデータ取得部22が、本発明の「第2エコーデータ取得部」に対応する。
 エコーデータ取得部21、エコーデータ取得部22、予測エコー生成部30、実エコー生成部40、および、推定部50は、それぞれに、後述する処理を実行するプログラムと、当該プログラムを記録する記録媒体と、処理を実行するCPU等の演算素子と、処理を行うための記憶媒体とによって実現されている。
 エコーデータ取得部21は、第1期間PRD1に対応する解析領域991tのエコーデータを、エコーデータ記憶部900から取得する。解析領域991tは、図3に示すように、1スキャン分の領域の一部として、図示しない操作部等によって指定されており、直交座標系の領域で規定されている。解析領域991tは、波のエコーデータを選択するように指定されている。すなわち、例えば、エコーデータにおける、船舶等の他の物標が存在しない領域が指定されることが好ましい。
 第1期間PRD1は、図示しない操作部等によって指定されており、例えば、時刻t0から時刻t1によって規定されている。
 すなわち、エコーデータ取得部21は、時刻t0から時刻t1に含まれる複数時刻における解析領域991tのエコーデータを、エコーデータ記憶部900から取得する。
 エコーデータ取得部21は、第1期間PRD1のエコーデータを、予測エコー生成部30に出力する。
 エコーデータ取得部22は、第2期間PRD2に対応する解析領域991tのエコーデータを、エコーデータ記憶部900から取得する。
 第2期間PRD2は、第1期間PRD1と予測時間Δtとによって設定されている。予測時間Δtは、図示しない操作部等によって指定されている。第2期間PRD2は、第1期間PRD1に対して、予測時間Δtを遅らせた時刻で規定される。例えば、第1期間PRD1が時刻t0から時刻t1であれば、第2期間PRD2は、時刻(t0+Δt)から時刻(t1+Δt)で規定される。
 すなわち、エコーデータ取得部22は、時刻(t0+Δt)から時刻(t1+Δt)に含まれる複数時刻における解析領域991tのエコーデータを、エコーデータ記憶部900から取得する。
 エコーデータ取得部22は、第2期間PRD2のエコーデータを、実エコー生成部40に出力する。
 予測エコー生成部30は、第1期間PRD1のエコーデータ、予測時間Δt、波の分散関係式を用いて、予測エコーECttを生成する。この際、予測エコー生成部30は、第1期間PRD1のエコーデータの振幅スペクトルと位相スペクトルとを用いて、予測エコーECttを生成する。予測エコー生成部30は、予測エコーECttを、推定部50に出力する。予測エコー生成部30の具体的な構成および処理は、後述する。
 実エコー生成部40は、第2期間PRD2のエコーデータを用いて、実エコーECtを生成する。この際、実エコー生成部40は、第2期間PRD2のエコーデータの振幅スペクトルと位相スペクトルとを用いて、実エコーECtを生成する。実エコー生成部40は、実エコーECtを、推定部50に出力する。実エコー生成部40の具体的な構成および処理は、後述する。
 推定部50は、予測エコーECttと実エコーECtとを比較して、その比較結果から、表層潮流を推定する。この際、推定部50は、予測エコーECttと実エコーECtとの相関処理結果を用いる。推定部50の具体的な構成および処理は、後述する。
 このような構成とすることで、探知用のアンテナを少なくとも1台備えていれば、表層潮流を推定できる。すなわち、簡素な構成で、表面潮流を推定できる。例えば、現状の船舶レーダに対して、表層潮流推定部10を付加するだけで、表面潮流を推定できる。
 (予測エコー生成部30の構成および処理)
 予測エコー生成部30の構成および処理について、図4を用いて説明する。図4は、予測エコー生成部の構成を示すブロック図である。
 図4に示すように、予測エコー生成部30は、パワースペクトル算出部311、フィルタ312、振幅スペクトル算出部313、位相スペクトル算出部321、位相補正部322、および、予測エコー算出部331を備える。
 パワースペクトル算出部311は、第1期間PRD1のN個のエコーデータを用いて、3次元フーリエ変換を実行することで、第1期間PRD1のエコーデータのパワースペクトルPSpを算出する。パワースペクトル算出部311は、パワースペクトルPSpを、フィルタ312に出力する。なお、取得する個数Nは、2のべき乗が望ましく、例えば、32個等に設定されている。これにより、高速フーリエ変換が可能になる。
 フィルタ312は、次に示す波の分散関係式を用いて、パワースペクトルPSpを、フィルタ処理する。ここで用いる波の分散関係式は、次式で表される。ωは波の角周波数であり、gは重力角速度、kは波数ベクトル、VOGSは第1期間PRD1での平均の対地船速である。この対地船速が、本発明の「探知信号の送信元の移動速度」に対応する。
Figure JPOXMLDOC01-appb-M000001
 この処理を行うことによって、パワースペクトルPSpに含まれるノイズ成分が抑圧され、波に起因する成分のみが抽出される。
 フィルタ312は、フィルタ処理後のパワースペクトルPSFpを、振幅スペクトル算出部313に出力する。
 なお、フィルタ312は、必須の構成ではなく、省略することもできる。この場合、パワースペクトル算出部311で算出されたパワースペクトルPSpが振幅スペクトル算出部313に入力される。
 振幅スペクトル算出部313は、フィルタ処理後のパワースペクトルPSFpから第1期間PRD1のエコーデータの振幅スペクトルASpを算出する。振幅スペクトル算出部313は、振幅スペクトルASpを、予測エコー算出部331に出力する。
 位相スペクトル算出部321は、第1期間PRD1の最後の時刻のエコーデータを用いて、2次元フーリエ変換を実行することで、エコーデータの位相スペクトルを算出する。位相スペクトル算出部321は、位相スペクトルφsを、位相補正部322に出力する。
 位相補正部322は、予測時間Δtと、予測時間Δtにおける平均の対地船速VOGと、波の分散関係式とを用いて、位相スペクトルφsの補正を行う。
Figure JPOXMLDOC01-appb-M000002
 このように、位相補正部322は、対地船速VOGを用いて、予測時間Δt後の位相スペクトルφscを算出する。すなわち、位相補正部322は、表層潮流がない(表層潮流の速度が0である)と仮定して、予測時間Δt後の位相スペクトルφscを算出する。
 位相補正部322は、予測時間Δt後の位相スペクトルφscを、予測エコー算出部331に出力する。
 予測エコー算出部331は、振幅スペクトルASpと、予測時間Δt後の位相スペクトルφscとを用いて、予測エコーECttを算出する。予測エコーECttは、解析領域991tに対する第2期間PRD2の最後の時刻における予測のエコーデータの分布となる。
 予測エコー算出部331は、予測エコーECttを、推定部50に出力する。
 (実エコー生成部40の構成および処理) 実エコー生成部40の構成および処理について、図5を用いて説明する。図5は、実エ
コー生成部の構成を示すブロック図である。
 図5に示すように、実エコー生成部40は、パワースペクトル算出部411、フィルタ412、振幅スペクトル算出部413、位相スペクトル算出部421、および、実エコー算出部431を備える。
 パワースペクトル算出部411は、第2期間PRD2のN個のエコーデータを用いて、3次元フーリエ変換を実行することで、第2期間PRD2のエコーデータのパワースペクトルを算出する。パワースペクトル算出部411は、パワースペクトルPSを、フィルタ412に出力する。
 フィルタ412は、次に示す波の分散関係式を用いて、パワースペクトルPSを、フィルタ処理する。ここで用いる波の分散関係式は、次式で表される。ωは波の角周波数であり、gは重力角速度、kは波数ベクトル、VOGtは第2期間PRD2での平均の対地船速である。
Figure JPOXMLDOC01-appb-M000003
 この処理を行うことによって、パワースペクトルPSに含まれるノイズ成分が抑圧され、波に起因する成分のみが抽出される。
 フィルタ412は、フィルタ処理後のパワースペクトルPSFを、振幅スペクトル算出部413に出力する。
 なお、フィルタ412は、必須の構成ではなく、省略することもできる。この場合、パワースペクトル算出部411で算出されたパワースペクトルPSが振幅スペクトル算出部413に入力される。
 振幅スペクトル算出部413は、フィルタ処理後のパワースペクトルPSFから第2期間PRD2のエコーデータの振幅スペクトルASを算出する。振幅スペクトル算出部413は、振幅スペクトルASを、実エコー算出部431に出力する。
 位相スペクトル算出部421は、第2期間PRD2の最後の時刻のエコーデータを用いて、2次元フーリエ変換を実行することで、エコーデータの位相スペクトルを算出する。位相スペクトル算出部421は、位相スペクトルφtを、実エコー算出部431に出力する。
 実エコー算出部431は、振幅スペクトルASと、位相スペクトルφtとを用いて、実エコーECtを算出する。実エコーECtは、解析領域991tに対する第2期間PRD2の最後の時刻におけるエコーデータの分布となる。
 実エコー算出部431は、実エコーECtを、推定部50に出力する。
 (推定部50の構成および処理)
 図6は、推定部の構成を示すブロック図である。図6に示すように、推定部50は、シフト検出部501、および、速度算出部502を備える。
 シフト検出部501は、予測エコーECttの位置と実エコーECtの位置とシフト量およびシフト方向を検出する。例えば、シフト検出部501は、予測エコーECttの位置と実エコーECtの位置とを比較し、位置のシフト量および位置にシフト方向を検出する。この際、位置のシフト量は、PPI座標系に基づいて算出され、この算出値をエコーデータの方位分解能および距離分解能に基づいて変換することによって、実距離が算出される。なお、予測エコーECttの位置と実エコーECtの位置とを比較は、例えば、予測エコーECttの波峰線と実エコーECtの波峰線との位置関係を用いて実現できる。そして、予測エコーECttの波峰線と実エコーECtの波峰線との位置関係は、例えば、予測エコーECttと実エコーECtとの相関処理結果によって算出できる。
 シフト検出部501は、シフト量とシフト方向とを、速度算出部502に出力する。
 速度算出部502は、シフト量を予測時間Δtで除算することによって、表層潮流速度uを算出する。この際、シフト方向を加えることで、ベクトルとして、表層潮流速度uを算出できる。また、速度算出部502は、速度uが0でないことを検出することで、表層潮流があることを検出する。逆に、速度算出部502は、速度uが0であることを検出することで、表層潮流が0であることを検出する。
 このように、本実施形態の構成を用いることによって、簡素な構成で、表面潮流を推定できる。
 さらに、従来の構成では、沿岸域しか表層潮流を検出できなかった。しかしながら、本実施形態の構成を用いることで、表層潮流を検出したい位置まで船舶で移動し、その位置にて表層潮流を検出、推定できる。したがって、海上の位置によることなく、どのような位置でも、表層潮流を検出、推定できる。
 なお、上述の説明では、上述の表層潮流の推定処理をそれぞれの機能部に分けて実行する態様を示した。しかしながら、上述の表層潮流の推定処理をプログラム化して記録する記録媒体とCPU等の演算素子とを有するパーソナルコンピュータ等の演算処理装置によって、表層潮流の推定処理を実行してもよい。この場合、演算処理装置は、次に示す処理を実行すればよい。なお、以下の各処理における具体的な内容は上述しているので、その具体的な説明は省略する。
 図7は、表面潮流の推定処理のメインフローを示すフローチャートである。
 演算処理装置は、解析領域の指定を受け、解析領域を設定する(S11)。演算処理装置は、予測時間Δtの指定を受け、予測時間Δtを設定する(S12)。
 演算処理装置は、指定された第1期間PRD1のエコーデータを取得し、第1期間PRD1のエコーデータから、予測エコーECttを生成する(S13)。この際、演算処理装置は、上述のように、波の分散関係式を用いて、位相を進める処理を行うことで、予測エコーECttを生成する。
 演算処理装置は、第1期間PRD1と予測時間Δtとから得られる第2期間PRD2のエコーデータを取得し、第2期間PRD2のエコーデータから、上述の方法を用いて、実エコーECtを生成する(S14)。
 演算処理装置は、予測エコーECttと実エコーECtとを比較し、表層潮流を推定する(S15)。
 なお、表層潮流推定部10は、次に示す処理を実行すると、よりよい。図8は、表層潮流推定部が実行する処理の一例を示すフローチャートである。
 図8に示すように、表層潮流推定部10は、上述のように、対地船速を用いて、表層潮流速度を算出する(S51)。この際、船舶SVの近傍の海面反射のエコー信号を用いることで、船舶SVの近傍での表層潮流速度を、より精度良く得られる。
 次に、表層潮流推定部10は、対地船速と表層潮流速度とを用いて、対水船速を算出する(S52)。具体的には、表層潮流推定部10は、対地船速のベクトルから表層潮流速度のベクトルを減算したベクトルを算出することで、対水船速を算出する。
 次に、表層潮流推定部10は、対水船速を用いて、表層潮流速度を再算出する(S53)。具体的には、表層潮流推定部10は、第1期間PRD1のエコーデータのパワースペクトルと第2期間PRD2のエコーデータのパワースペクトルを算出する際に、対水船速を用いる。この際、位相スペクトルの補正用には、対地船速を用いる。
 このような処理を行うことによって、表層潮流速度を、さらに精度良く算出できる。
 なお、上述の説明では、船舶の船舶レーダ90を用いているが、陸上に配置されたレーダを用いることが可能である。この場合、対地船速は0となり、表層潮流の推定処理を、より簡素な演算で実現できる。
10:表層潮流推定部
21、22:エコーデータ取得部
30:予測エコー生成部
40:実エコー生成部
50:推定部
90:船舶レーダ
91:アンテナ
92:送信部
93:送受切替部
94:受信部
95:エコーデータ生成部
311:パワースペクトル算出部
312:フィルタ
313:振幅スペクトル算出部
321:位相スペクトル算出部
322:位相補正部
331:予測エコー算出部
411:パワースペクトル算出部
412:フィルタ
413:振幅スペクトル算出部
421:位相スペクトル算出部
431:実エコー算出部
501:シフト検出部
502:速度算出部
900:エコーデータ記憶部
990:海洋
991:表層潮流
991t:解析領域
SV:船舶
用語
 必ずしも全ての目的または効果・利点が、本明細書中に記載される任意の特定の実施形態に則って達成され得るわけではない。従って、例えば当業者であれば、特定の実施形態は、本明細書中で教示または示唆されるような他の目的または効果・利点を必ずしも達成することなく、本明細書中で教示されるような1つまたは複数の効果・利点を達成または最適化するように動作するように構成され得ることを想到するであろう。
 本明細書中に記載される全ての処理は、1つまたは複数のコンピュータまたはプロセッサを含むコンピューティングシステムによって実行されるソフトウェアコードモジュールにより具現化され、完全に自動化され得る。コードモジュールは、任意のタイプの非一時的なコンピュータ可読媒体または他のコンピュータ記憶装置に記憶することができる。一部または全ての方法は、専用のコンピュータハードウェアで具現化され得る。
 本明細書中に記載されるもの以外でも、多くの他の変形例があることは、本開示から明らかである。例えば、実施形態に応じて、本明細書中に記載されるアルゴリズムのいずれかの特定の動作、イベント、または機能は、異なるシーケンスで実行することができ、追加、併合、または完全に除外することができる (例えば、記述された全ての行為または事象がアルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、動作またはイベントは、例えば、マルチスレッド処理、割り込み処理、または複数のプロセッサまたはプロセッサコアを介して、または他の並列アーキテクチャ上で、逐次ではなく、並列に実行することができる。さらに、異なるタスクまたはプロセスは、一緒に機能し得る異なるマシンおよび/またはコンピューティングシステムによっても実行され得る。
 本明細書中に開示された実施形態に関連して説明された様々な例示的論理ブロックおよびモジュールは、プロセッサなどのマシンによって実施または実行することができる。プロセッサは、マイクロプロセッサであってもよいが、代替的に、プロセッサは、コントローラ、マイクロコントローラ、またはステートマシン、またはそれらの組み合わせなどであってもよい。プロセッサは、コンピュータ実行可能命令を処理するように構成された電気回路を含むことができる。別の実施形態では、プロセッサは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはコンピュータ実行可能命令を処理することなく論理演算を実行する他のプログラマブルデバイスを含む。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、デジタル信号プロセッサ(デジタル信号処理装置)とマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。本明細書中では、主にデジタル技術に関して説明するが、プロセッサは、主にアナログ素子を含むこともできる。例えば、本明細書中に記載される信号処理アルゴリズムの一部または全部は、アナログ回路またはアナログとデジタルの混合回路により実装することができる。コンピューティング環境は、マイクロプロセッサ、メインフレームコンピュータ、デジタル信号プロセッサ、ポータブルコンピューティングデバイス、デバイスコントローラ、または装置内の計算エンジンに基づくコンピュータシステムを含むが、これらに限定されない任意のタイプのコンピュータシステムを含むことができる。
 特に明記しない限り、「できる」「できた」「だろう」または「可能性がある」などの条件付き言語は、特定の実施形態が特定の特徴、要素および/またはステップを含むが、他の実施形態は含まないことを伝達するために一般に使用される文脈内での意味で理解される。従って、このような条件付き言語は、一般に、特徴、要素および/またはステップが1つ以上の実施形態に必要とされる任意の方法であること、または1つ以上の実施形態が、これらの特徴、要素および/またはステップが任意の特定の実施形態に含まれるか、または実行されるかどうかを決定するための論理を必然的に含むことを意味するという訳ではない。
 語句「X、Y、Zの少なくとも1つ」のような選言的言語は、特に別段の記載がない限り、項目、用語等が X, Y, Z、のいずれか、又はそれらの任意の組み合わせであり得ることを示すために一般的に使用されている文脈で理解される(例: X、Y、Z)。従って、このような選言的言語は、一般的には、特定の実施形態がそれぞれ存在するXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つ、の各々を必要とすることを意味するものではない。
 本明細書中に記載されかつ/または添付の図面に示されたフロー図における任意のプロセス記述、要素またはブロックは、プロセスにおける特定の論理機能または要素を実装するための1つ以上の実行可能命令を含む、潜在的にモジュール、セグメント、またはコードの一部を表すものとして理解されるべきである。代替の実施形態は、本明細書中に記載された実施形態の範囲内に含まれ、ここでは、要素または機能は、当業者に理解されるように、関連する機能性に応じて、実質的に同時にまたは逆の順序で、図示または説明されたものから削除、順不同で実行され得る。
 特に明示されていない限り、「一つ」のような数詞は、一般的に、1つ以上の記述された項目を含むと解釈されるべきである。従って、「~するように設定された一つのデバイス」などの語句は、1つ以上の列挙されたデバイスを含むことを意図している。このような1つまたは複数の列挙されたデバイスは、記載された引用を実行するように集合的に構成することもできる。例えば、「以下のA、BおよびCを実行するように構成されたプロセッサ」は、Aを実行するように構成された第1のプロセッサと、BおよびCを実行するように構成された第2のプロセッサとを含むことができる。加えて、導入された実施例の具体的な数の列挙が明示的に列挙されたとしても、当業者は、このような列挙が典型的には少なくとも列挙された数(例えば、他の修飾語を用いない「2つの列挙と」の単なる列挙は、通常、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきである。
 一般に、本明細書中で使用される用語は、一般に、「非限定」用語(例えば、「~を含む」という用語は「それだけでなく、少なくとも~を含む」と解釈すべきであり、「~を持つ」という用語は「少なくとも~を持っている」と解釈すべきであり、「含む」という用語は「以下を含むが、これらに限定されない。」などと解釈すべきである。) を意図していると、当業者には判断される。
 説明の目的のために、本明細書中で使用される「水平」という用語は、その方向に関係なく、説明されるシステムが使用される領域の床の平面または表面に平行な平面、または説明される方法が実施される平面として定義される。「床」という用語は、「地面」または「水面」という用語と置き換えることができる。「垂直/鉛直」という用語は、定義された水平線に垂直/鉛直な方向を指します。「上側」「下側」「下」「上」「側面」「より高く」「より低く」「上の方に」「~を越えて」「下の」などの用語は水平面に対して定義されている。
 本明細書中で使用される用語の「付着する」、「接続する」、「対になる」及び他の関連用語は、別段の注記がない限り、取り外し可能、移動可能、固定、調節可能、及び/または、取り外し可能な接続または連結を含むと解釈されるべきである。接続/連結は、直接接続及び/または説明した2つの構成要素間の中間構造を有する接続を含む。
 特に明示されていない限り、本明細書中で使用される、「およそ」、「約」、および「実質的に」のような用語が先行する数は、列挙された数を含み、また、さらに所望の機能を実行するか、または所望の結果を達成する、記載された量に近い量を表す。例えば、「およそ」、「約」及び「実質的に」とは、特に明示されていない限り、記載された数値の10%未満の値をいう。本明細書中で使用されているように、「およそ」、「約」、および「実質的に」などの用語が先行して開示されている実施形態の特徴は、さらに所望の機能を実行するか、またはその特徴について所望の結果を達成するいくつかの可変性を有する特徴を表す。
 上述した実施形態には、多くの変形例および修正例を加えることができ、それらの要素は、他の許容可能な例の中にあるものとして理解されるべきである。そのような全ての修正および変形は、本開示の範囲内に含まれることを意図し、以下の特許請求の範囲によって保護される。

Claims (11)

  1.  波に対する複数時刻のエコーデータから、第1期間の複数時刻のエコーデータを取得する第1エコーデータ取得部と、
     前記波に対する複数時刻のエコーデータから、前記第1期間内の時刻よりも予測時間だけ後の時刻を含む第2期間の複数時刻のエコーデータを取得する第2エコーデータ取得部と、
     前記第1期間の複数時刻のエコーデータと前記予測時間と波の分散関係式とを用いて、予測エコーを生成する予測エコー生成部と、
     前記第2期間の複数時刻のエコーデータを用いて、実エコーを生成する実エコー生成部と、
     前記予測エコーと前記実エコーとの比較結果を用いて、表層潮流を推定する推定部と、
     を備えた、表層潮流推定装置。
  2.  請求項1に記載の表層潮流推定装置であって、
     前記推定部は、
     前記表層潮流の速度を算出する、
     表層潮流推定装置。
  3.  請求項1または請求項2に記載の表層潮流推定装置であって、
     前記予測エコー生成部は、
     前記予測時間と、前記エコーデータの元となる探知信号の送信元の移動速度とを用いて、予測エコーを生成する、
     表層潮流推定装置。
  4.  請求項3に記載の表層潮流推定装置であって、
     前記予測エコー生成部は、
     前記第1期間の複数時刻のエコーデータを用いて、振幅スペクトルを算出する振幅スペクトル算出部と、
     前記第1期間のエコーデータを用いて、位相スペクトルを算出する位相スペクトル算出部と、
     前記予測時間と前記移動速度と前記波の分散関係式とを用いて、前記位相スペクトルを補正する位相補正部と、
     前記振幅スペクトルと、補正後の前記位相スペクトルと、を用いて、予測エコーを算出する予測エコー算出部と、
     を備える、表層潮流推定装置。
  5.  請求項4に記載の表層潮流推定装置であって、
     前記第1期間の複数時刻のエコーデータを用いて、パワースペクトルを算出するパワースペクトルと、
     前記移動速度と前記波の分散関係式とを用いて、前記パワースペクトルをフィルタ処理するフィルタと、を備え、
     前記振幅スペクトル算出部は、前記フィルタ処理後のパワースペクトルを用いて、前記振幅スペクトルを算出する、
     表層潮流推定装置。
  6.  請求項3乃至請求項5のいずれかに記載の表層潮流推定装置であって、
     前記探知信号の送信元は、船舶に取り付けられたアンテナであり、
     前記移動速度は、前記船舶の対地船速である、
     表層潮流推定装置。
  7.  請求項6に記載の表層潮流推定装置であって、
     前記探知信号の送信元は、船舶に取り付けられたアンテナであり、
     前記位相補正部で用いる移動速度は、前記船舶の対地船速であり、
     前記パワースペクトル算出部で用いる移動速度は、
      表層潮流が推定される前は、前記船舶の対地船速であり、
      前記表層潮流が少なくとも1回推定された後は、前記表層潮流の速度と前記対地船速から得られる対水船速である、
     表層潮流推定装置。
  8.  請求項1乃至請求項7のいずれかに記載の表層潮流推定装置であって、
     前記推定部は、
     前記予測エコーと前記実エコーとの比較に、前記予測エコーの波峰線と前記実エコーの波峰線とを用いる、
     表層潮流推定装置。
  9.  請求項8に記載の表層潮流推定装置であって、
     前記推定部は、
     前記波峰線のシフトから、前記表層潮流を推定する、
     表層潮流推定装置。
  10.  波に対する複数時刻のエコーデータから、第1期間の複数時刻のエコーデータを取得し、
     前記波に対する複数時刻のエコーデータから、前記第1期間内の時刻よりも予測時間だけ後の時刻を含む第2期間の複数時刻のエコーデータを取得し、
     前記第1期間の複数時刻のエコーデータと前記予測時間と波の分散関係式とを用いて、予測エコーを生成し、
     前記第2期間の複数時刻のエコーデータを用いて、実エコーを生成し、
     前記予測エコーと前記実エコーとの比較結果を用いて、表層潮流を推定する、
     表層潮流推定方法。
  11.  波に対する複数時刻のエコーデータから、第1期間の複数時刻のエコーデータを取得し、
     前記波に対する複数時刻のエコーデータから、前記第1期間内の時刻よりも予測時間だけ後の時刻を含む第2期間の複数時刻のエコーデータを取得し、
     前記第1期間の複数時刻のエコーデータと前記予測時間と波の分散関係式とを用いて、予測エコーを生成し、
     前記第2期間の複数時刻のエコーデータを用いて、実エコーを生成し、
     前記予測エコーと前記実エコーとの比較結果を用いて、表層潮流を推定する、
     処理を、演算処理装置に実行させる、表層潮流推定プログラム。
PCT/JP2019/021015 2018-06-29 2019-05-28 表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム WO2020003855A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123806 2018-06-29
JP2018-123806 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003855A1 true WO2020003855A1 (ja) 2020-01-02

Family

ID=68984844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021015 WO2020003855A1 (ja) 2018-06-29 2019-05-28 表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム

Country Status (1)

Country Link
WO (1) WO2020003855A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170315225A1 (en) * 2016-04-28 2017-11-02 Electronics And Telecommunications Research Institute Apparatus and method for extracting ocean wave information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170315225A1 (en) * 2016-04-28 2017-11-02 Electronics And Telecommunications Research Institute Apparatus and method for extracting ocean wave information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEIA, K. ET AL.: "A Minimum Variance Unbiased Estimator for Ocean Surface Currents Based on Multifrequency Microwave Radar Observations", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 23, no. 3, July 1998 (1998-07-01), pages 223, 234, XP011042434 *
YOUNG, I.R. ET AL.: "A Three-Dimensional Analysis of Marine Radar Images for the Determination of Ocean Wave Directionality and Surface Currents", JOURNAL OF GEOPHYS I CAL RESEARCH, vol. 90, no. C1, 20 January 1985 (1985-01-20), pages 1049 - 1059, XP009155015, DOI: 10.1029/JC090iC01p01049 *

Similar Documents

Publication Publication Date Title
JP6677408B2 (ja) 到来方向推定装置、到来方向推定方法、到来方向推定プログラム
US10481248B2 (en) Detection apparatus, underwater detection apparatus and radar apparatus
US20160131759A1 (en) Ctfm detection apparatus and underwater detection apparatus
US11333501B2 (en) Navigation device, method of generating navigation support information, and navigation support information generating program
US10514455B2 (en) Radar apparatus and method of tracking target object
US10673458B2 (en) Method and device for processing signal
US10215849B2 (en) CTFM detection apparatus and underwater detection apparatus
JP7200254B2 (ja) エコーデータ処理装置、レーダ装置、エコーデータ処理方法、および、エコーデータ処理プログラム
US20160131760A1 (en) Ctfm detection apparatus and underwater detection apparatus
US10048364B2 (en) Radar apparatus
JP2013152157A (ja) 信号選別装置、信号選別方法、及びレーダ装置。
JP2010127771A (ja) 合成開口ソーナー、合成開口ソーナーの位相誤差補正方法及びプログラム
JP6095899B2 (ja) 物標運動推定装置、物標運動推定方法、およびレーダ装置
JP5650420B2 (ja) 信号処理装置、レーダ装置、信号処理方法、および信号処理プログラム
US20200408901A1 (en) Radar image processing device and radar image processing method
JP5093616B2 (ja) 目標信号検出装置、方法及びプログラム
WO2020003855A1 (ja) 表層潮流推定装置、表層潮流推定方法、および、表層潮流推定プログラム
JP6043083B2 (ja) 物標運動推定装置、物標運動推定方法、およびレーダ装置
EP3816670A1 (en) Meteorological radar device, meteorological observation method, and meteorological observation program
WO2023186386A1 (en) Detecting and suppressing ambiguities in synthetic aperture radar data and images
JP3786205B2 (ja) レーダ波浪観測装置
Reznicek Doppler CW radar signal processing, implementation and analysis
JP7281472B2 (ja) 追尾対象識別装置、追尾対象識別方法、および、追尾対象識別プログラム
CN107610160A (zh) 一种极化sar船舶速度估计方法及系统
JP6246024B2 (ja) レーダ信号処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP