WO2020001248A1 - 胎压传感器的识别方法、装置及设备 - Google Patents

胎压传感器的识别方法、装置及设备 Download PDF

Info

Publication number
WO2020001248A1
WO2020001248A1 PCT/CN2019/090102 CN2019090102W WO2020001248A1 WO 2020001248 A1 WO2020001248 A1 WO 2020001248A1 CN 2019090102 W CN2019090102 W CN 2019090102W WO 2020001248 A1 WO2020001248 A1 WO 2020001248A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire pressure
pressure sensor
information
tested
activation signal
Prior art date
Application number
PCT/CN2019/090102
Other languages
English (en)
French (fr)
Inventor
罗永良
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2020001248A1 publication Critical patent/WO2020001248A1/zh
Priority to US17/122,691 priority Critical patent/US11787241B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0461Transmission control of wireless signals externally triggered, e.g. by wireless request signal, magnet or manual switch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0471System initialisation, e.g. upload or calibration of operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0479Communicating with external units being not part of the vehicle, e.g. tools for diagnostic, mobile phones, electronic keys or service stations

Definitions

  • the present application relates to the technical field of tire monitoring, and in particular, to a method, a device, and a device for identifying a tire pressure sensor.
  • the invention provides a method, a device and a device for identifying a tire pressure sensor, so as to realize automatic scanning of the tire pressure sensor and accurately identify the tire pressure sensor, thereby facilitating the selection of a suitable activation tool to complete the detection of the tire pressure sensor and detection efficiency high.
  • an embodiment of the present invention provides a method for identifying a tire pressure sensor, including:
  • the activation signal has a waveform corresponding to a tire pressure sensor.
  • the sending an activation signal to the tire pressure sensor to be tested includes:
  • An activation signal corresponding to the tire pressure sensor with a high market share ratio is sequentially sent to the tire pressure sensor to be tested.
  • the method before sending the activation signal to the tire pressure sensor to be tested, the method further includes:
  • An activation signal corresponding to the identification information is determined according to the identification information.
  • the identification information includes vehicle information and / or manufacturer information of the tire pressure sensor to be tested.
  • the sending an activation signal to the tire pressure sensor to be tested includes:
  • An activation signal corresponding to the tire pressure sensor with a high market share ratio is sequentially sent to the tire pressure sensor to be tested.
  • the identifying the tire pressure sensor to be tested according to the characteristic information includes:
  • the tire pressure sensor to be tested is identified according to the identification information of the tire pressure sensor corresponding to the reference characteristic information.
  • the characteristic information includes: data characteristic information and sensor status information;
  • matching the feature information with the pre-stored reference feature information includes:
  • the data feature information is matched with the reference data feature information in the pre-stored reference feature information.
  • the data characteristic information includes at least one of the following:
  • Baud rate, modulation method packet length, frame length, frame header, frame tail, frame interval, frame count
  • the status information of the tire pressure sensor includes at least one of the following:
  • Storage mode parking mode, pause mode.
  • the identifying the tire pressure sensor to be tested includes:
  • an embodiment of the present invention provides a device for identifying a tire pressure sensor, including:
  • a sending module configured to send an activation signal to the tire pressure sensor under test until a feedback signal for the activation signal sent by the tire pressure sensor under test is received, wherein the feedback signal includes characteristics of the tire pressure sensor under test information;
  • An identification module is configured to identify the tire pressure sensor to be tested according to the characteristic information.
  • the activation signal has a waveform corresponding to a tire pressure sensor.
  • the sending module is specifically configured to:
  • An activation signal corresponding to the tire pressure sensor with a high market share ratio is sequentially sent to the tire pressure sensor to be tested.
  • it further includes:
  • a receiving module configured to receive identification information of a tire pressure sensor to be tested input by a user before sending an activation signal to the tire pressure sensor to be tested;
  • An activation signal corresponding to the identification information is determined according to the identification information.
  • the identification information includes vehicle information and / or manufacturer information of the tire pressure sensor to be tested.
  • the sending module is further configured to: when the determined number of activation signals corresponding to the identification information is greater than 1, sequentially sending tires with a high market share to the tire pressure sensor to be tested. Activation signal corresponding to the pressure sensor.
  • the identification module is specifically configured to:
  • the tire pressure sensor to be tested is identified according to the identification information of the tire pressure sensor corresponding to the reference characteristic information.
  • the characteristic information includes: data characteristic information and sensor status information;
  • the identification module is specifically configured to:
  • the data feature information is matched with the reference data feature information in the pre-stored reference feature information.
  • the data characteristic information includes at least one of the following:
  • Baud rate, modulation method packet length, frame length, frame header, frame tail, frame interval, frame count
  • the status information of the tire pressure sensor includes at least one of the following:
  • Storage mode parking mode, pause mode.
  • the identification module is specifically configured to:
  • an embodiment of the present invention provides a device for identifying a tire pressure sensor, including:
  • a processor configured to execute the program stored in the memory, and when the program is executed, the processor is configured to execute the method according to any one of the first aspects.
  • an embodiment of the present invention provides a computer-readable storage medium, including: a computer program that, when run on a computer, causes the computer to execute the method according to any one of the first aspects.
  • the method, device and device for identifying a tire pressure sensor send an activation signal to a tire pressure sensor to be tested until a feedback signal for the activation signal sent by the tire pressure sensor to be tested is received, wherein the feedback
  • the signal includes characteristic information of the tire pressure sensor to be tested; and according to the characteristic information, the tire pressure sensor to be tested is identified.
  • the invention realizes automatic scanning of the tire pressure sensor, and can accurately identify the tire pressure sensor according to the scanning result, thereby improving the activation efficiency of the tire pressure sensor.
  • FIG. 1 is a schematic structural diagram of a tire pressure sensor identification device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for identifying a tire pressure sensor according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a tire pressure sensor identification device provided in Embodiment 2 of the present invention.
  • TPMS Tire Pressure Monitoring System
  • Microcontroller Unit also known as Single Chip Microcomputer or Single Chip Microcomputer, is to reduce the frequency and specifications of the Central Processing Unit (CPU) appropriately and reduce the memory ( memory), counter (Timer), universal serial bus (USB), analog to digital converter (A / D), universal asynchronous transceiver (Universal Receiver / Transmitter), programmable logic Peripheral interfaces such as controller (Programmable Logic Controller, PLC), and even the driving circuit of Liquid Crystal Display (LCD) are integrated on a single chip to form a chip-level computer for different combinations of control for different applications.
  • CPU Central Processing Unit
  • memory memory
  • counter timer
  • USB universal serial bus
  • a / D analog to digital converter
  • a / D Universal Receiver / Transmitter
  • programmable logic Peripheral interfaces such as controller (Programmable Logic Controller, PLC), and even the driving circuit of Liquid Crystal Display (LCD) are integrated on a single chip to form a chip-level computer for different combinations of control for different applications
  • FIG. 1 is a schematic structural diagram of a tire pressure sensor identification device according to an embodiment of the present application.
  • the identification device includes an MCU micro-control unit 1 electrically connected to a high-frequency receiving module 2, a tire pressure sensor 3, a low-frequency transmitting module 4, a power module 5, and a display module 6.
  • the power module 5 is used to supply power to the MCU micro-control unit 1
  • the low-frequency transmitting module 4 is used to send a low-frequency activation signal to the tire pressure sensor 3 according to a control signal of the MCU micro-control unit 1.
  • the high-frequency receiving module 2 is configured to receive high-frequency data from the tire pressure sensor and transmit the high-frequency data to the MCU micro-control unit 1.
  • the display module is configured to display the tire pressure from the tire pressure after the tire pressure sensor is activated. Information read by the sensor.
  • the tire pressure sensor 3 will emit corresponding high-frequency data, which is received by the high-frequency receiving module 2 and is Transfer to MCU Microcontrol Unit 1 for analysis.
  • the MCU micro-control unit 1 can obtain characteristic information corresponding to the tire pressure sensor 3 according to the received high-frequency data, and identify the tire pressure sensor to be tested based on the characteristic information.
  • the tire pressure sensor identification device after the tire pressure sensor identification device recognizes the tire pressure sensor, it can further implement the activation function and programming function of the tire pressure sensor, which is not limited herein.
  • the identification device of the tire pressure sensor may also be called an activation tool or a programming tool, or the identification device of the tire pressure sensor may be integrated into the activation tool or a programming tool, which is not limited herein.
  • FIG. 2 is a flowchart of a method for identifying a tire pressure sensor provided in Embodiment 1 of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the micro control unit MCU may be used to send an activation signal to the tire pressure sensor to be tested according to a preset strategy.
  • the tire pressure sensor is only activated by the activation signal corresponding to the waveform, and a feedback signal is sent in response to the activation signal.
  • the number of waveforms corresponding to the tire pressure sensor is not limited in this embodiment.
  • a tire pressure sensor can correspond to one or more waveforms. Generally, the activation waveforms of different tire pressure sensor manufacturers are different, so there will be a corresponding relationship between the activation waveform and the tire pressure sensor manufacturer.
  • the micro control unit MCU can obtain the activation waveforms corresponding to different tire pressure sensors that are stored in advance from the local memory, or can obtain the activation waveforms corresponding to different tire pressure sensors from the cloud after networking; and then generate according to the activation waveform A corresponding activation signal is used to activate the tire pressure sensor to be tested.
  • the activation signal sent by the MCU is consistent with the waveform of the target activation signal of the tire pressure sensor under test, the tire pressure sensor under test sends a feedback signal to the MCU.
  • the activation signal may be a low-frequency signal
  • the micro control unit may send an activation signal, that is, a low-frequency signal, to the tire pressure sensor to be tested by controlling the low-frequency transmitting module.
  • the micro control unit sends an activation signal to the tire pressure sensor to be tested, and the activation signal can be broadcasted through the low-frequency transmitting module, so that the tire pressure sensor to be tested can receive the activation signal;
  • the pressure sensor sends an activation signal.
  • the MCU sequentially sends to the tire pressure sensor to be tested an activation signal corresponding to a tire pressure sensor with a high market share.
  • the micro control unit MCU obtains activation waveforms corresponding to different tire pressure sensors on the market; generates activation signals corresponding to the activation waveforms; and then sequentially sends the signals according to the order of the market share of the different tire pressure sensors.
  • the tire pressure sensor under test sends the activation signal until a feedback signal sent by the tire pressure sensor under test is received.
  • the micro control unit MCU generates an activation signal corresponding to the activation waveform through a low-frequency transmitting module.
  • the corresponding activation signals are sequentially generated according to the market share ratio of different tire pressure sensors.
  • a car has the highest probability of using a tire pressure sensor with a higher market share. Therefore, in order to shorten the scanning time of the tire pressure sensor to be tested, an activation signal is generated according to the activation waveform corresponding to the tire pressure sensor with the highest market share, and Sending the activation signal to the tire pressure sensor to be tested can improve the recognition efficiency of the tire pressure sensor.
  • the identification information of the tire pressure sensor to be tested may be received by the user; and then the activation corresponding to the identification information is determined according to the identification information. signal.
  • the micro control unit MCU sequentially sends the activation signal to the tire pressure sensor to be tested according to the order of the market share of the different tire pressure sensors, and does not receive a feedback signal, or Before sending the activation signal, the user may be prompted to enter the identification information of the tire pressure sensor to be tested, for example, the display module is used to prompt the user to enter identification information to reduce the range of matching or increase the matching speed.
  • the MCU can receive the identification information input by the user through the input module. After the MCU receives the identification information of the tire pressure sensor to be tested entered by the user, the following two situations may occur:
  • the identification information of the tire pressure sensor to be tested corresponds to a unique activation signal, and at this time, the activation signal is sent to the tire pressure sensor to be tested.
  • the number of activation signals corresponding to the identification information of the tire pressure sensor to be tested is greater than 1, and at this time, activations corresponding to the market pressure ratio of the tire pressure sensor from high to low in the tire pressure sensor to be tested may be sequentially sent to the tire pressure sensor under test. signal.
  • the identification information may be vehicle information and / or manufacturer information of the tire pressure sensor to be tested.
  • the vehicle information may include information such as a model and a vehicle model.
  • the tire pressure sensor can be installed before the vehicle leaves the factory, such tire pressure sensor can also be called the original sensor, so the micro-control sensor can determine the model or specification of the tire pressure sensor or the model of the limited tire pressure sensor through vehicle information.
  • the range can further determine the activation information for the tire pressure sensor, which can further improve the accuracy of sending the activation signal, and further improve the recognition efficiency of the tire pressure sensor.
  • the manufacturer information of the tire pressure sensor may include the manufacturer identification, batch number and other information. Similarly, through the manufacturer information, determine the model (or type) or specification of the tire pressure sensor or limit the model range of the tire pressure sensor, and then determine the activation information for the tire pressure sensor, which can improve the accuracy of the activation signal transmission. To further improve the recognition efficiency of the tire pressure sensor.
  • the scanning range can be reduced by setting scanning conditions, thereby speeding up the scanning process of the tire pressure sensor to be tested.
  • the number of activated waveforms is limited by vehicle information input by the user and / or manufacturer information of the tire pressure sensor to be measured.
  • the micro control unit MCU receives the part number of the tire pressure sensor to be tested by the user through an electrically connected user interaction module; and obtains the part number from the tire pressure sensor to be tested according to the part number of the tire pressure sensor to be tested.
  • the MCU can directly According to the part number of the tire pressure sensor to be tested input by the user, a corresponding activation signal is generated to scan the tire pressure sensor to be tested.
  • the characteristic information may be matched with the pre-stored reference characteristic information; if the matching is successful, the tire pressure to be measured is identified according to the identification information of the tire pressure sensor corresponding to the reference characteristic information. sensor.
  • the characteristic information may include: data characteristic information and sensor state information.
  • the sensor state information may be matched with the reference sensor state information in the pre-stored reference feature information; if the matching is successful, the data feature information is further matched with the reference data feature information in the pre-stored reference feature information. match.
  • the data characteristic information may include at least one of a baud rate, a modulation method, a packet length, a frame length, a frame header, a frame tail, a frame interval, and a frame count.
  • the status information of the tire pressure sensor includes at least one of a storage mode, a parking mode, and a pause mode.
  • the baud rate is also referred to as a modulation rate.
  • the baud rate refers to a modulation rate of a data signal on a carrier wave. It is expressed by the number of times a carrier modulation state changes in a unit time, and a unit thereof is baud. Modulation methods include: frequency modulation, amplitude modulation, and phase modulation.
  • Packet length refers to the number of bytes contained in a data packet and is used to characterize the size of the data packet.
  • Frame length refers to the length of the data frame, which is the protocol data unit of the data link layer.
  • the data frame includes: a frame header, a data portion, and a frame tail.
  • the frame header and the frame tail contain some necessary control information, such as synchronization information, address information, and error control information.
  • the frame interval can be expressed by the transmission time difference between adjacent data frames, and can also be expressed by the number of P frames spaced between adjacent data frames.
  • the frame count can count the number of frames output in one second.
  • the type of the tire pressure sensor to be tested may be identified; or a communication protocol of the tire pressure sensor to be tested may be identified.
  • the corresponding activation signal can be determined.
  • the feature information is compared with reference feature information of different tire pressure sensors stored in advance until a type of tire pressure sensor corresponding to the reference feature information that completely matches the feature information or letter of agreement.
  • the status information of the tire pressure sensor is characterized by its corresponding status word, for example:
  • the status word of the tire pressure sensor can be used to characterize the current status of the tire pressure sensor.
  • the character strings AA, BB, and CC respectively indicate that the tire pressure sensor is in a storage mode, a parking mode, or a pause mode.
  • Different tire pressure sensors use different status words to characterize these three modes. Therefore, different tire pressure sensors can be distinguished according to the corresponding status word when the tire pressure sensor to be tested is in a storage mode, a parking mode, or a pause mode.
  • the storage mode means that the tire pressure sensor has established a communication connection with the MCU through a data cable.
  • the tire pressure sensor is similar to an external memory, and the MCU can read the data in the tire pressure sensor.
  • the parking mode refers to the working mode of the tire pressure sensor when the vehicle is stopped, and the pause mode refers to the working mode when the tire pressure sensor is suspended.
  • the status information of the tire pressure sensor may also include other modes, such as a driving mode and a sports mode.
  • the status of the tire pressure sensor may be confirmed first according to the status information of the tire pressure sensor.
  • the tire pressure sensor may further be The characteristic information identifies the tire pressure sensor. If it is determined that the tire pressure sensor is not in any one of the above states, the tire pressure sensor is not identified, and further, the user may be prompted that the tire pressure cannot be identified or the identification fails.
  • the data characteristic information is matched with the preset reference characteristic information. If the matching is successful, information such as the type, specification, and identification of the tire pressure sensor can be determined. After identifying the tire pressure sensor, it can further analyze other data sent by the tire pressure sensor, such as tire pressure information, temperature information, tire battery power information, and matching vehicle model information.
  • the type of the tire pressure sensor to be tested may also be identified according to the unique identification number ID information of the tire pressure sensor.
  • the unique identification number ID information of the tire pressure sensor includes: starting position and length information of the ID. When the ID information of the tire pressure sensor is known, the type and communication protocol of the tire pressure sensor to be measured can be determined.
  • the feature information includes N features, and N is a natural number greater than or equal to 1.
  • the reference feature information of different tire pressure sensors stored in advance includes M features, and the value of M is greater than or equal to N. If N features are found from the M features of the reference feature information and all the N features of the feature information match, the type of the tire pressure sensor corresponding to the reference feature information is used as the scan of the tire pressure sensor to be tested result.
  • an activation signal is sent to the tire pressure sensor under test until a feedback signal for the activation signal sent by the tire pressure sensor under test is received, where the feedback signal includes the Characteristic information; identifying the tire pressure sensor to be tested according to the characteristic information.
  • the invention realizes automatic scanning of the tire pressure sensor, and can accurately identify the tire pressure sensor according to the scanning result, thereby improving the activation efficiency of the tire pressure sensor.
  • FIG. 3 is a schematic structural diagram of a tire pressure sensor identification device provided in Embodiment 2 of the present invention. As shown in FIG. 3, the device in this embodiment may include:
  • the sending module 10 is configured to send an activation signal to the tire pressure sensor under test until a feedback signal for the activation signal sent by the tire pressure sensor under test is received, wherein the feedback signal includes the Characteristic information
  • the identification module 20 is configured to identify the tire pressure sensor to be tested according to the characteristic information.
  • the activation signal has a waveform corresponding to a tire pressure sensor.
  • the sending module is specifically configured to:
  • An activation signal corresponding to the tire pressure sensor with a high market share ratio is sequentially sent to the tire pressure sensor to be tested.
  • it further includes:
  • the receiving module 30 is configured to receive identification information of a tire pressure sensor to be tested input by a user before sending an activation signal to the tire pressure sensor to be tested;
  • An activation signal corresponding to the identification information is determined according to the identification information.
  • the identification information includes vehicle information and / or manufacturer information of the tire pressure sensor to be tested.
  • the sending module 10 is further configured to: when the determined number of activation signals corresponding to the identification information is greater than one, sequentially sending high to low market share ratios to the tire pressure sensor to be tested. Activation signal corresponding to the tire pressure sensor.
  • the identification module 20 is specifically configured to:
  • the tire pressure sensor to be tested is identified according to the identification information of the tire pressure sensor corresponding to the reference characteristic information.
  • the characteristic information includes: data characteristic information and sensor status information;
  • the identification module 20 is specifically configured to:
  • the data feature information is matched with the reference data feature information in the pre-stored reference feature information.
  • the data characteristic information includes at least one of the following:
  • Baud rate, modulation method packet length, frame length, frame header, frame tail, frame interval, frame count
  • the status information of the tire pressure sensor includes at least one of the following:
  • Storage mode parking mode, pause mode.
  • the identification module 20 is specifically configured to:
  • This embodiment may implement the technical solution in the method shown in FIG. 2 described above, and the implementation process and technical effect thereof are similar to the above method, and details are not described herein again.
  • the MCU micro-control unit 1 may also be another processor having a calculation and analysis function (for example, a single-chip microcomputer, a programmable logic controller, and a central processing unit). Etc.), the processor is communicatively connected with the memory, and the computer program, instructions, data, etc. are stored in the memory; the processor can call the computer programs, instructions, data, etc. in the memory.
  • the processor is electrically connected to a high-frequency receiving module, a tire pressure sensor, a low-frequency transmitting module, a power module, and a display module.
  • the power module is configured to provide power to a processor, and the low frequency transmitting module is configured to send a low frequency activation signal to the tire pressure sensor according to a control signal of the processor; the high frequency receiving module is configured to receive the tire The high-frequency data sent from the pressure sensor is transmitted to the processor; the display module is used to display the information read from the tire pressure sensor after the tire pressure sensor is activated.
  • the tire pressure sensor when the low-frequency signal sent by the low-frequency transmitting module matches the activation waveform of the tire pressure sensor, the tire pressure sensor will emit corresponding high-frequency data, which is received by the high-frequency receiving module and transmitted to the processor. Perform analysis.
  • the processor may obtain characteristic information of the corresponding tire pressure sensor according to the received high-frequency data, and identify the tire pressure sensor to be tested according to the characteristic information.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer execution instructions.
  • the user equipment executes the foregoing various possibilities. Methods.
  • the computer-readable medium includes a computer storage medium and a communication medium, and the communication medium includes any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user equipment.
  • the processor and the storage medium may also exist as discrete components in a communication device.
  • a person of ordinary skill in the art may understand that all or part of the steps of implementing the foregoing method embodiments may be implemented by a program instructing related hardware.
  • the aforementioned program may be stored in a computer-readable storage medium.
  • the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种胎压传感器(3)的识别方法、装置及设备,该方法包括:向待测胎压传感器(3)发送激活信号,直到接收到待测胎压传感器(3)发送的针对激活信号的反馈信号,其中,反馈信号中包括待测胎压传感器(3)的特征信息;根据特征信息,识别待测胎压传感器(3)。该装置包括发送模块(10)和识别模块(20)。该设备包括存储器和处理器。

Description

胎压传感器的识别方法、装置及设备
本申请要求于2018年6月28日提交中国专利局、申请号为201810691167.5、申请名称为“胎压传感器的识别方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轮胎监测技术领域,尤其涉及一种胎压传感器的识别方法、装置及设备。
背景技术
随着人们对汽车安全性能要求的提高,汽车胎压监测技术也得到迅速发展。
目前,越来越多的汽车上配置了胎压传感器,然而这些胎压传感器种类繁多,没有统一的生产标准,因此给胎压传感器的识别增加了难度。虽然针对不同的胎压传感器开发了许多激活工具,但是这些激活工具都不能实现对胎压传感器的自动识别,即激活工具需在胎压传感器的类型或获知胎压传感器的通信协议的情况下,实现对胎压传感器的激活。例如,在检测时都必须由用户选择车型年款之后才能够确定胎压传感器的类型,进而实现对胎压传感器的激活。当前的实现方式,导致激活工具对胎压传感器的激活效率低。
发明内容
本发明提供一种胎压传感器的识别方法、装置及设备,以实现对胎压传感器的自动扫描,并准确识别出胎压传感器,从而便于选择适合的激活工具完成胎压传感器的检测,检测效率高。
第一方面,本发明实施例提供一种胎压传感器的识别方法,包括:
向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号包括所述待测胎压传感器的特征信息;
根据所述特征信息,识别所述待测胎压传感器。
可选地,所述激活信号具有与胎压传感器对应的波形。
可选地,所述向待测胎压传感器发送激活信号,包括:
依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,所述向待测胎压传感器发送激活信号之前,所述方法还包括:
接收用户输入的待测胎压传感器的标识信息;
根据所述标识信息确定与所述标识信息对应的激活信号。
可选地,所述标识信息包括:车辆信息和/或所述待测胎压传感器的生产厂商信息。
可选地,当确定的与所述标识信息对应的激活信号的数量大于1时,所述向待测胎压传感器发送激活信号,包括:
依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,所述根据所述特征信息,识别所述待测胎压传感器,包括:
将所述特征信息与预存的参考特征信息进行匹配;
若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
可选地,所述特征信息包括:数据特征信息和传感器状态信息;
其中,所述将所述特征信息与预存的参考特征信息进行匹配,包括:
将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;
若匹配成功,则将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
可选地,所述数据特征信息包括以下至少一个:
波特率、调制方式、包长、帧长、帧头、帧尾、帧间隔、帧计数;
所述胎压传感器的状态信息包括以下至少一个:
存储模式、停车模式、暂停模式。
可选地,所述识别所述待测胎压传感器,包括:
识别所述待测胎压传感器的类型;或者,
识别所述待测胎压传感器的通信协议。
第二方面,本发明实施例提供一种胎压传感器的识别装置,包括:
发送模块,用于向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号包括所述待测胎压传感器的特征信息;
识别模块,用于根据所述特征信息,识别所述待测胎压传感器。
可选地,所述激活信号具有与胎压传感器对应的波形。
可选地,所述发送模块,具体用于:
依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,还包括:
接收模块,用于在向待测胎压传感器发送激活信号之前,接收用户输入的待测胎压传感器的标识信息;
根据所述标识信息确定与所述标识信息对应的激活信号。
可选地,所述标识信息包括:车辆信息和/或所述待测胎压传感器的生产厂商信息。
可选地,所述发送模块,还用于:在确定的与所述标识信息对应的激活信号的数量大于1时,依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,所述识别模块,具体用于:
将所述特征信息与预存的参考特征信息进行匹配;
若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
可选地,所述特征信息包括:数据特征信息和传感器状态信息;
所述识别模块,具体用于:
将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;
若匹配成功,则将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
可选地,所述数据特征信息包括以下至少一个:
波特率、调制方式、包长、帧长、帧头、帧尾、帧间隔、帧计数;
所述胎压传感器的状态信息包括以下至少一个:
存储模式、停车模式、暂停模式。
可选地,所述识别模块,具体用于:
识别所述待测胎压传感器的类型;或者,
识别所述待测胎压传感器的通信协议。
第三方面,本发明实施例提供一种胎压传感器的识别设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如第一方面中任一所述的方法。
第四方面,本发明实施例提供一种计算机可读存储介质,包括:计算机程序,当其在计算机上运行时,使得计算机执行第一方面中任一所述的方法。
本发明提供的胎压传感器的识别方法、装置及设备,通过向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号中包括所述待测胎压传感器的特征信息;根据所述特征信息,识别所述待测胎压传感器。本发明实现了对胎压传感器的自动扫描,并能够根据扫描结果准确识别出胎压传感器,进而提升对胎压传感器的激活效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例涉及的一种胎压传感器的识别设备的结构示意图;
图2为本发明实施例一提供的胎压传感器的识别方法的流程图;
图3为本发明实施例二提供的胎压传感器的识别装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。例如:能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解:
1)胎压检测系统(Tire Pressure Monitoring System,TPMS),可以通过记录轮胎转速或安装在轮胎中的电子传感器,对轮胎的各种状况进行实时自动监测,从而为行驶提供有效的安全保障。
2)原始设备制造商号(OEM Part NO.),是指原装零件编号。
3)微控制单元(Microcontroller Unit,MCU),又称单片微型计算机(Single Chip Microcomputer)或者单片机,是把中央处理器(Central Process Unit,CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、通用串行总线(Universal Serial Bus,USB)、模拟数字转换(analog to digital converter,A/D)、通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)、可编程逻辑控制器(Programmable Logic Controller,PLC)等周边接口,甚至液晶显示器(Liquid Crystal Display,LCD)的驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。
图1为本申请实施例涉及的一种胎压传感器的识别设备的结构示意图。如 图1所示,该识别设备包括:MCU微控制单元1,所述MCU微控制单元1与高频接收模块2、胎压传感器3、低频发射模块4、电源模块5、显示模块6电连接。其中,所述电源模块5用于给MCU微控制单元1供电,所述低频发射模块4用于根据所述MCU微控制单元1的控制信号向所述胎压传感器3发送低频激活信号;所述高频接收模块2用于接收所述胎压传感器发出的高频数据,并将该高频数据传输给MCU微控制单元1;所述显示模块用于显示胎压传感器激活后,从该胎压传感器读取到的信息。
具体地,当低频发射模块4发出的低频信号与胎压传感器3的激活波形相匹配时,胎压传感器3会发出相应的高频数据,该高频数据被高频接收模块2所接收并被传输至MCU微控制单元1进行分析。MCU微控制单元1根据接收到的高频数据可以得到对应胎压传感器3的特征信息,并根据所述特征信息,识别所述待测胎压传感器。
本申请实施例中,胎压传感器的标识设备在识别出胎压传感器后,可以进一步地实现对胎压传感器的激活功能,编程功能等,在此不予限定。胎压传感器的标识设备也可以被称为激活工具或编程工具,或者,胎压传感器的标识设备可以集成在激活工具或编程工具中,在此不予限定。
下面以具体地实施例对本发明的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
图2为本发明实施例一提供的胎压传感器的识别方法的流程图,如图2所示,本实施例中的方法可以包括:
S101、向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号;其中,所述反馈信号中包括所述待测胎压传感器的特征信息。
本实施例中,可以采用微控制单元MCU按照预设的策略向所述待测胎压传感器发送激活信号。其中,胎压传感器仅会被与其对应的波形的激活信号激活,并针对该激活信号发送反馈信号。需要说明的是,本实施例不限定与胎压传感器对应的波形数量。一个胎压传感器可以与一个或多个波形对应。一般情况下,不同胎压传感器厂商的激活波形各不相同,因此激活波形与胎压传感器厂商之间也会存在对应关系。因此,微控制单元MCU可以从本地存储器中获取预先存储的不同胎压传感器所对应的激活波形,也可以联网后从云端获取不同胎压传感器所对应的激活波形;然后根据所述激活波形来生成对应的激活信号,用以激活所述待测胎压传感器。当MCU发送的激活信号与所述待测胎压传感器的目标激活信号的波形一致时,该待测胎压传感器会向MCU发送反馈信号。
一种实施方式中,激活信号可以为低频信号,微控制单元可以通过控制低频发射模块向待测胎压传感器发送激活信号,即低频信号。
在此,微控制单元向待测胎压传感器发送激活信号可以通过低频发射模块 广播激活信号,以使待测胎压传感器可以接收到激活信号;或者,微控制单元可以通过低频发射模块直接向胎压传感器发送激活信号。
在一种实施方式中,MCU依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
具体地,微控制单元MCU获取市场上不同胎压传感器所对应的激活波形;生成与所述激活波形对应的激活信号;然后根据所述不同胎压传感器的市场占比率的大小顺序,依次向所述待测胎压传感器发送所述激活信号,直到接收到所述待测胎压传感器发送的反馈信号。微控制单元MCU通过低频发射模块生成与激活波形对应的激活信号。
在本实施例中,以不同胎压传感器的市场占比率顺序生成对应的激活信号。理论上,汽车使用市场占比率越高的胎压传感器的概率最大,因此,为了缩短对待测胎压传感器的扫描时间,按照市场占比率最高的胎压传感器所对应的激活波形生成激活信号,然后将该激活信号发送给所述待测胎压传感器,可以提升胎压传感器的识别效率。
在另一种实施方式中,在MCU向待测胎压传感器发送激活信号之前,可以接收用户输入的待测胎压传感器的标识信息;然后根据所述标识信息确定与所述标识信息对应的激活信号。
具体地,当微控制单元MCU根据所述不同胎压传感器的市场占比率的大小顺序,依次向所述待测胎压传感器发送所述激活信号,并且没有收到反馈信号时,或者,在MCU发送激活信号之前,可以提示用户输入待测胎压传感器的标识信息,例如,通过显示模块提示用户输入标识信息,以减小匹配的范围或者增加匹配速度。MCU可以通过输入模块来接收用户输入的标识信息。MCU接收到用户输入的待测胎压传感器的标识信息后,可能出现以下两种情况:
第一种情况,待测胎压传感器的标识信息对应唯一的激活信号,此时,将该激活信号发送给所述待测胎压传感器。
第二种情况,待测胎压传感器的标识信息对应的激活信号的数量大于1,此时,可以依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
本实施例中,标识信息可以是车辆信息和/或所述待测胎压传感器的生产厂商信息。
其中,车辆信息可以包括车型、车款等信息。由于车辆在出厂前可以安装有胎压传感器,此类胎压传感器也可以被称为原装传感器,因此,微控制传感器可以通过车辆信息,确定胎压传感器的型号或规格或限定胎压传感器的型号范围,进而可以确定针对胎压传感器的激活信息,进而可以提升激活信号的发送准确性,以进一步提升胎压传感器的识别效率。
其中,胎压传感器的生产厂商信息可以包括生产厂家标识,批次号等信息。同理,通过生产厂商信息,确定胎压传感器的型号(或称为类型)或规格或限定胎压传感器的型号范围,进而可以确定针对胎压传感器的激活信息,进而可 以提升激活信号的发送准确性,以进一步提升胎压传感器的识别效率。
本实施例中,可以通过设置扫描条件,来缩小扫描的范围,从而加快对所述待测胎压传感器的扫描过程。在本实施例中通过用户输入的车辆信息和/或待测胎压传感器的生产厂商信息来限制激活波形的数量。
在又一种实施方式中,微控制单元MCU通过电连接的用户交互模块接收用户输入的所述待测胎压传感器的零件号;根据所述待测胎压传感器的零件号,获取与所述待测胎压传感器的零件号对应的激活波形;生成与所述激活波形对应的激活信号后,将所述激活信号发送给所述待测胎压传感器。
本实施例中,由于胎压传感器的零件号可以直接得到对应的胎压传感器的类型,以及其适用的激活工具,因此,当获知待测胎压传感器的零件号时,微控制单元MCU可以直接根据用户输入的所述待测胎压传感器的零件号,生成相应的激活信号来扫描待测胎压传感器。
S102、根据所述特征信息,识别所述待测胎压传感器。
在一种实施方式中,可以将所述特征信息与预存的参考特征信息进行匹配;若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
在另一种实施方式中,所述特征信息可以包括:数据特征信息和传感器状态信息。此时,可以将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;若匹配成功,则进一步地将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
其中,数据特征信息可以包括:波特率,调制方式,包长,帧长,帧头,帧尾,帧间隔,帧计数中的至少一个。所述胎压传感器的状态信息包括:存储模式、停车模式、暂停模式中的至少一个。
具体地,波特率也称为调制速率,波特率是指数据信号对载波的调制速率,它用单位时间内载波调制状态改变的次数来表示,其单位是波特(Baud)。调制方式包括:调频、调幅、调相三种。包长是指数据包包含的字节数,用于表征数据包的大小。帧长是指数据帧的长度,数据帧是数据链路层的协议数据单元。数据帧包括:帧头、数据部分,以及帧尾,帧头和帧尾包含一些必要的控制信息,比如同步信息、地址信息、差错控制信息等。帧间隔可以用相邻数据帧之间的发送时差来表示,也可以用相邻的数据帧之间间隔的P帧数量来表示。帧计数可以是统计一秒内输出的帧数。
可选地,可以识别所述待测胎压传感器的类型;或者,识别所述待测胎压传感器的通信协议。当知道所述待测胎压传感器的类型或者所述待测胎压传感器的通信协议时,及可以确定其对应的激活信号。
本实施例中,将所述特征信息与预先存储的不同胎压传感器的参考特征信息进行一一比对,直到得到与所述特征信息完全匹配的参考特征信息所对应的胎压传感器的类型或者通信协议。
具体地,胎压传感器的状态信息是通过其对应的状态字来表征的,例如: 胎压传感器的状态字可以用来表征当前胎压传感器所处的状态。具体地,假设用字符串AA、BB、CC分别表示胎压传感器处于存储模式、停车模式、暂停模式。而不同的胎压传感器用不同的状态字来表征这三种模式。因此,可以根据待测胎压传感器处于存储模式、停车模式、暂停模式时对应的状态字来区分不同的胎压传感器。其中,存储模式是指胎压传感器已经通过数据线与MCU建立通信连接,此时胎压传感器类似于外接的存储器,MCU可以读取出胎压传感器中的数据。停车模式是指胎压传感器在车辆处于停车状态时的工作模式,暂停模式是指胎压传感器被暂停使用时的工作模式。
当然,胎压传感器的状态信息还可以包括其他模式,如行车模式、运动模式等。
一种实施方式中,可以首先根据胎压传感器的状态信息确认胎压传感器的状态,当确定胎压传感器处于存储模式、停车模式、暂停模式中的任意一种模式下时,可以进一步地根据数据特征信息对胎压传感器进行识别。若确定胎压传感器不处于上述任意一种状态时,则不对胎压传感器进行识别,进一步地,可以提示用户当前无法识别或者识别失败。
将数据特征信息与预设的参考特征信息进行匹配,若匹配成功,可以确定胎压传感器的类型、规格、标识等信息。在识别出胎压传感器后,可以进一步地解析出胎压传感器发送的其他数据,如胎压传感器反馈的轮胎压力信息、温度信息、胎压传感器的电量信息、匹配车型信息等。
进一步地,还可以根据胎压传感器的唯一识别号ID信息,来识别待测胎压传感器的类型。其中,所述胎压传感器的唯一识别号ID信息包括:ID的起始位置和长度信息。当知道胎压传感器的ID信息时,即可确定胎压传感器待测胎压传感器的类型和通信协议。
具体地,假设所述特征信息包含N项特征,N为大于等于1的自然数;预先存储的不同胎压传感器的参考特征信息包含M项特征,且M的值大于或者等于N。若从参考特征信息的M项特征中找到N项特征与所述特征信息的N项特征全部匹配,则将该参考特征信息所对应的胎压传感器的类型作为所述待测胎压传感器的扫描结果。
本实施例,通过向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号中包括所述待测胎压传感器的特征信息;根据所述特征信息,识别所述待测胎压传感器。本发明实现了对胎压传感器的自动扫描,并能够根据扫描结果准确识别出胎压传感器,进而提升对胎压传感器的激活效率。
图3为本发明实施例二提供的胎压传感器的识别装置的结构示意图,如图3所示,本实施例中的装置可以包括:
发送模块10,用于向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号包括所述待测胎压传感器的特征信息;
识别模块20,用于根据所述特征信息,识别所述待测胎压传感器。
可选地,所述激活信号具有与胎压传感器对应的波形。
可选地,所述发送模块,具体用于:
依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,还包括:
接收模块30,用于在向待测胎压传感器发送激活信号之前,接收用户输入的待测胎压传感器的标识信息;
根据所述标识信息确定与所述标识信息对应的激活信号。
可选地,所述标识信息包括:车辆信息和/或所述待测胎压传感器的生产厂商信息。
可选地,所述发送模块10,还用于:在确定的与所述标识信息对应的激活信号的数量大于1时,依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
可选地,所述识别模块20,具体用于:
将所述特征信息与预存的参考特征信息进行匹配;
若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
可选地,所述特征信息包括:数据特征信息和传感器状态信息;
所述识别模块20,具体用于:
将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;
若匹配成功,则将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
可选地,所述数据特征信息包括以下至少一个:
波特率、调制方式、包长、帧长、帧头、帧尾、帧间隔、帧计数;
所述胎压传感器的状态信息包括以下至少一个:
存储模式、停车模式、暂停模式。
可选地,所述识别模块20,具体用于:
识别所述待测胎压传感器的类型;或者,
识别所述待测胎压传感器的通信协议。
本实施例可以执行上述图2所示的方法中的技术方案,其实现过程和技术效果与上述方法类似,此处不再赘述。
本发明实施例还提供一种胎压传感器的识别设备,参见图1,所述MCU微控制单元1还可以是其他具有计算分析功能的处理器(例如单片机、可编程逻辑控制器、中央处理器等等),该处理器与存储器通信连接,在存储器中存储有计算机程序、指令、数据等等;处理器可以调用该存储器中的计算机程序、指令、数据等。其中,所述处理器与高频接收模块、胎压传感器、低频发射模 块、电源模块、显示模块电连接。所述电源模块用于给处理器提供电能,所述低频发射模块用于根据所述处理器的控制信号向所述胎压传感器发送低频激活信号;所述高频接收模块用于接收所述胎压传感器发出的高频数据,并将该高频数据传输给处理器;所述显示模块用于显示胎压传感器激活后,从该胎压传感器读取到的信息。
具体地,当低频发射模块发出的低频信号与胎压传感器的激活波形相匹配时,胎压传感器会发出相应的高频数据,该高频数据被高频接收模块所接收并被传输至处理器进行分析。处理器根据接收到的高频数据可以得到对应胎压传感器的特征信息,并根据所述特征信息,识别所述待测胎压传感器。
本实施例中,当存储器中的计算机程序和/或指令被处理器调用时,可以执行上述图2所示的方法中的技术方案,其实现过程和技术效果与上述方法类似,此处不再赘述。
此外,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当用户设备的至少一个处理器执行该计算机执行指令时,用户设备执行上述各种可能的方法。
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (21)

  1. 一种胎压传感器的识别方法,其特征在于,包括:
    向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号包括所述待测胎压传感器的特征信息;
    根据所述特征信息,识别所述待测胎压传感器。
  2. 根据权利要求1所述的方法,其特征在于,所述激活信号具有与胎压传感器对应的波形。
  3. 根据权利要求1或2所述的方法,其特征在于,所述向待测胎压传感器发送激活信号,包括:
    依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
  4. 根据权利要求1或2所述的方法,其特征在于,所述向待测胎压传感器发送激活信号之前,所述方法还包括:
    接收用户输入的待测胎压传感器的标识信息;
    根据所述标识信息确定与所述标识信息对应的激活信号。
  5. 根据权利要求4所述的方法,其特征在于,所述标识信息包括:车辆信息和/或所述待测胎压传感器的生产厂商信息。
  6. 根据权利要求4或5所述的方法,其特征在于,当确定的与所述标识信息对应的激活信号的数量大于1时,所述向待测胎压传感器发送激活信号,包括:
    依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述根据所述特征信息,识别所述待测胎压传感器,包括:
    将所述特征信息与预存的参考特征信息进行匹配;
    若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
  8. 根据权利要求7所述的方法,其特征在于,所述特征信息包括:数据特征信息和传感器状态信息;
    其中,所述将所述特征信息与预存的参考特征信息进行匹配,包括:
    将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;
    若匹配成功,则将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
  9. 根据权利要求8所述的方法,其特征在于,
    所述数据特征信息包括以下至少一个:
    波特率、调制方式、包长、帧长、帧头、帧尾、帧间隔、帧计数;
    所述胎压传感器的状态信息包括以下至少一个:
    存储模式、停车模式、暂停模式。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述识别所述待测胎压传感器,包括:
    识别所述待测胎压传感器的类型;或者,
    识别所述待测胎压传感器的通信协议。
  11. 一种胎压传感器的识别装置,其特征在于,包括:
    发送模块,用于向待测胎压传感器发送激活信号,直到接收到所述待测胎压传感器发送的针对激活信号的反馈信号,其中,所述反馈信号包括所述待测胎压传感器的特征信息;
    识别模块,用于根据所述特征信息,识别所述待测胎压传感器。
  12. 根据权利要求11所述的装置,其特征在于,所述激活信号具有与胎压传感器对应的波形。
  13. 根据权利要求11或12所述的装置,其特征在于,所述发送模块,具体用于:
    依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
  14. 根据权利要求11或12所述的装置,其特征在于,还包括:
    接收模块,用于在向待测胎压传感器发送激活信号之前,接收用户输入的待测胎压传感器的标识信息;
    根据所述标识信息确定与所述标识信息对应的激活信号。
  15. 根据权利要求14所述的装置,其特征在于,所述标识信息包括:车辆信息和/或所述待测胎压传感器的生产厂商信息。
  16. 根据权利要求14或15所述的装置,其特征在于,所述发送模块,还用于:在确定的与所述标识信息对应的激活信号的数量大于1时,依次向所述待测胎压传感器发送市场占比率由高至低的胎压传感器对应的激活信号。
  17. 根据权利要求11-16中任一项所述的装置,其特征在于,所述识别模块,具体用于:
    将所述特征信息与预存的参考特征信息进行匹配;
    若匹配成功,则根据与所述参考特征信息对应的胎压传感器的标识信息,识别所述待测胎压传感器。
  18. 根据权利要求17所述的装置,其特征在于,所述特征信息包括:数据特征信息和传感器状态信息;
    所述识别模块,具体用于:
    将所述传感器状态信息与预存的参考特征信息中的参考传感器状态信息进行匹配;
    若匹配成功,则将所述数据特征信息与预存的参考特征信息中的参考数据特征信息匹配。
  19. 根据权利要求18所述的装置,其特征在于,
    所述数据特征信息包括以下至少一个:
    波特率、调制方式、包长、帧长、帧头、帧尾、帧间隔、帧计数;
    所述胎压传感器的状态信息包括以下至少一个:
    存储模式、停车模式、暂停模式。
  20. 根据权利要求11-19中任一项所述的装置,其特征在于,所述识别模块,具体用于:
    识别所述待测胎压传感器的类型;或者,
    识别所述待测胎压传感器的通信协议。
  21. 一种胎压传感器的识别设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1-10中任一所述的方法。
PCT/CN2019/090102 2018-06-28 2019-06-05 胎压传感器的识别方法、装置及设备 WO2020001248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/122,691 US11787241B2 (en) 2018-06-28 2020-12-15 Tire pressure sensor identification method, apparatus and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810691167.5A CN108891210B (zh) 2018-06-28 2018-06-28 胎压传感器的识别方法、装置及设备
CN201810691167.5 2018-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/122,691 Continuation US11787241B2 (en) 2018-06-28 2020-12-15 Tire pressure sensor identification method, apparatus and device

Publications (1)

Publication Number Publication Date
WO2020001248A1 true WO2020001248A1 (zh) 2020-01-02

Family

ID=64346891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090102 WO2020001248A1 (zh) 2018-06-28 2019-06-05 胎压传感器的识别方法、装置及设备

Country Status (3)

Country Link
US (1) US11787241B2 (zh)
CN (1) CN108891210B (zh)
WO (1) WO2020001248A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043827A (zh) * 2021-11-16 2022-02-15 南京英锐创电子科技有限公司 胎压信号的处理方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108099511A (zh) * 2017-12-13 2018-06-01 深圳市道通科技股份有限公司 胎压传感器激活方法、装置、存储介质及前置机
CN108891210B (zh) 2018-06-28 2020-07-17 深圳市道通科技股份有限公司 胎压传感器的识别方法、装置及设备
CN112319146B (zh) * 2020-10-16 2022-10-11 深圳市云伽智能技术有限公司 胎压监测系统的学习方法、装置、传感器、系统及介质
CN113246669A (zh) * 2021-06-09 2021-08-13 宝能(广州)汽车研究院有限公司 胎压监测学习方法、装置、电子设备及存储介质
US20230035256A1 (en) * 2021-07-29 2023-02-02 I Yuan Precision Industrial Co., Ltd. Automobile tire pressure display
CN114801603A (zh) * 2022-04-26 2022-07-29 一汽奔腾轿车有限公司 一种汽车胎压信号丢失故障模拟测试方法
CN114879648A (zh) * 2022-07-08 2022-08-09 深圳市星卡软件技术开发有限公司 一种胎压传感器与汽车匹配的方法、计算机设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963219A (zh) * 2012-10-19 2013-03-13 深圳市元征科技股份有限公司 一种带诊断的tpms装置及控制方法
US20150328943A1 (en) * 2012-07-03 2015-11-19 Orange Electronic Co., Ltd. Setting method for a tire detection data transmission system
CN106827975A (zh) * 2017-01-17 2017-06-13 深圳市道通合创软件开发有限公司 胎压传感器识别方法及相关装置、系统
CN108891210A (zh) * 2018-06-28 2018-11-27 深圳市道通科技股份有限公司 胎压传感器的识别方法、装置及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030745B2 (en) * 2004-05-21 2006-04-18 General Motors Corporation Spare tire usage detection
TWI327534B (en) * 2007-04-11 2010-07-21 Kuender & Co Ltd Tire identification system, tire pressure monitoring system using the same and method for tire identification
KR101670803B1 (ko) * 2010-11-18 2016-10-31 현대모비스 주식회사 타이어 공기압 모니터링 시스템에서의 센서위치 인식장치 및 그 방법
DE112012004481B4 (de) * 2011-10-26 2019-04-18 Ateq Corporation Universelles Werkzeug und Verfahren für ein Reifendrucküberwachungssystem
KR20160104007A (ko) * 2014-01-17 2016-09-02 후프 휼스벡 운트 휘르스트 게엠베하 운트 콤파니 카게 타이어 압력 센서를 구성하는 방법
CN108099511A (zh) * 2017-12-13 2018-06-01 深圳市道通科技股份有限公司 胎压传感器激活方法、装置、存储介质及前置机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150328943A1 (en) * 2012-07-03 2015-11-19 Orange Electronic Co., Ltd. Setting method for a tire detection data transmission system
CN102963219A (zh) * 2012-10-19 2013-03-13 深圳市元征科技股份有限公司 一种带诊断的tpms装置及控制方法
CN106827975A (zh) * 2017-01-17 2017-06-13 深圳市道通合创软件开发有限公司 胎压传感器识别方法及相关装置、系统
CN108891210A (zh) * 2018-06-28 2018-11-27 深圳市道通科技股份有限公司 胎压传感器的识别方法、装置及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043827A (zh) * 2021-11-16 2022-02-15 南京英锐创电子科技有限公司 胎压信号的处理方法和装置
CN114043827B (zh) * 2021-11-16 2023-09-29 南京英锐创电子科技有限公司 胎压信号的处理方法和装置

Also Published As

Publication number Publication date
US11787241B2 (en) 2023-10-17
CN108891210A (zh) 2018-11-27
US20210101421A1 (en) 2021-04-08
CN108891210B (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2020001248A1 (zh) 胎压传感器的识别方法、装置及设备
US10696105B2 (en) Tire pressure sensor identification method and related apparatus and system
US11032300B2 (en) Intrusion detection system based on electrical CAN signal for in-vehicle CAN network
RU2572990C2 (ru) Устройство и способ активации процесса локализации для устройства контроля давления в шине
WO2019114758A1 (zh) 胎压传感器激活方法、装置、存储介质及前置机
TWI389064B (zh) 紅外線遙控控制指令解碼方法與裝置
WO2016205142A1 (en) Test for 50 nanosecond spike filter
JP2017516353A5 (zh)
CN111627200B (zh) 基于红外协议的信号调制方法、电路及遥控终端
WO2019128813A1 (zh) 胎压传感器信息获取方法、装置、存储介质及电子设备
WO2017065923A1 (en) Methods to avoid i2c void message in i3c
TWI458947B (zh) Wireless tire pressure sensor to avoid overlapping data transfer method
CN112829525A (zh) 一种胎压传感器匹配方法、装置、系统及设备
WO2018112242A1 (en) Hard reset over i3c bus
CN105446837A (zh) 检测iic接口器件是否连接的方法、装置以及系统
CN106872983B (zh) 一种测距方法、装置及系统
CN109451095B (zh) 遥控器的检测方法及装置、存储介质、终端
US20190171589A1 (en) Clock line driving for single-cycle data over clock signaling and pre-emption request in a multi-drop bus
WO2016015376A1 (zh) Beacon设备的控制方法和Beacon设备
WO2019112698A1 (en) Protocol-framed clock line driving for device communication over master-originated clock line
WO2015126609A1 (en) Testing powerline communication devices
CN107422716B (zh) Tpms系统的测试装置和测试控制方法
CN111130678A (zh) 数据传输方法、装置、设备及计算机可读存储介质
CN110497745A (zh) 一种用于轮胎压力检测的传感器搜索方法
US11983134B2 (en) Method for recognizing another electronic device by using plurality of interfaces, and electronic device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825289

Country of ref document: EP

Kind code of ref document: A1