WO2020001121A1 - 一种封装结构、显示面板、显示装置及其制作方法 - Google Patents

一种封装结构、显示面板、显示装置及其制作方法 Download PDF

Info

Publication number
WO2020001121A1
WO2020001121A1 PCT/CN2019/081510 CN2019081510W WO2020001121A1 WO 2020001121 A1 WO2020001121 A1 WO 2020001121A1 CN 2019081510 W CN2019081510 W CN 2019081510W WO 2020001121 A1 WO2020001121 A1 WO 2020001121A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalytic
display panel
substrate
absorbing layer
Prior art date
Application number
PCT/CN2019/081510
Other languages
English (en)
French (fr)
Inventor
陈运金
冯玉春
杨姗姗
孙茉莉
崔婷
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/613,333 priority Critical patent/US11502275B2/en
Publication of WO2020001121A1 publication Critical patent/WO2020001121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the field of display technology, and particularly to a packaging structure, a display panel, a display device, and a manufacturing method thereof.
  • OLEDs Organic electroluminescence devices
  • OLEDs are widely used because they have the advantages of self-luminous, high contrast, and can be used in flexible panels. Because the materials used to make OLEDs are particularly sensitive to oxygen and water vapor, they are easily eroded by oxygen and water vapor and lose their normal performance. Therefore, before using OLEDs, the OLEDs need to be packaged.
  • the following methods are mainly used to package the OLED: glass is selected as the substrate, and glass or metal is selected as the cover plate, and the substrate and the cover plate after the box are sealed with an adhesive such as epoxy resin, so Packaging of OLEDs on a substrate.
  • an adhesive such as epoxy resin
  • the present disclosure provides a display panel to solve the problems of poor barrier properties of an adhesive such as epoxy resin to oxygen and water vapor in the background art, resulting in poor packaging effect of the OLED and short service life of the OLED.
  • a display panel which includes a substrate, an organic electroluminescent device, and an absorption layer;
  • the organic electroluminescent device is disposed on the substrate;
  • the absorption layer covers the organic electroluminescence device and the substrate, and the organic electroluminescence device is packaged in a space formed by the absorption layer and the substrate.
  • the absorption layer includes an oxygen absorption layer and a photocatalytic layer for catalyzing water decomposition
  • the photocatalytic layer covers the organic electroluminescent device and the substrate around it, and the oxygen absorbing layer covers the photocatalytic layer and the substrate around it.
  • the absorption layer further includes a hydrogen absorption layer, the hydrogen absorption layer covers the organic electroluminescence device and the surrounding substrate, and the photocatalytic layer covers the hydrogen absorption layer and On the substrate around it, the oxygen absorbing layer covers the photocatalytic layer and the substrate around it.
  • the absorption layer includes at least two layers of the photocatalytic layer and at least two layers of the oxygen absorbing layer;
  • the photocatalytic layer and the oxygen absorbing layer are alternately stacked.
  • a material of the photocatalytic layer is a semiconductor photocatalytic material, and a band gap of the semiconductor photocatalytic material is greater than 1.23eV.
  • the semiconductor photocatalytic material includes at least one of a titanium dioxide composite material, a zinc oxide composite material, and a carbon nitride composite material.
  • the material of the hydrogen absorbing layer is a hydrogen storage material.
  • the hydrogen storage material includes metal-organic frameworks (MOFs).
  • MOFs metal-organic frameworks
  • the metal-organic framework is a MOFs material centered on ZnO 4 .
  • the metal-organic framework is MOF-5 (Zn 4 O (BDC) 3 , wherein BDC is 1,4 terephthalate.
  • the metal-organic framework is MOF-177 (Zn 4 O (BTB) 2 , wherein BTB is 1,3,5-benzenetribenzoate.
  • the thickness of the photocatalytic layer is about 0.3-0.5 ⁇ m.
  • the material of the oxygen absorbing layer includes at least one of an organic polyester-based material and iron powder.
  • the thickness of the oxygen absorbing layer is about 0.6-1 ⁇ m.
  • a display device which includes the display panel described above.
  • a method for manufacturing a display panel as described above includes:
  • the absorption layer includes an oxygen absorption layer and a photocatalytic layer for catalyzing water decomposition, and the step of forming an absorption layer on the organic electroluminescent device and the substrate for absorbing external substances includes:
  • the oxygen absorbing layer is formed, and the oxygen absorbing layer covers the photocatalytic layer and the substrate around it.
  • the step of forming the photocatalytic layer further includes:
  • a hydrogen absorbing layer is formed, the hydrogen absorbing layer is located on a surface of the photocatalytic layer away from the oxygen absorbing layer, and the hydrogen absorbing layer covers the organic electroluminescent device and the surrounding substrate, and the light A catalytic layer covers the hydrogen absorbing layer and the substrate around it.
  • the forming the photocatalytic layer includes:
  • the forming the oxygen absorbing layer includes:
  • the vapor absorption method or the magnetron sputtering method is used to form the oxygen absorbing layer.
  • a material of the photocatalytic layer is a semiconductor photocatalytic material
  • a band gap width of the semiconductor photocatalytic material is greater than 1.23eV
  • a material of the oxygen absorbing layer includes at least one of an organic polyester material and iron powder.
  • the thickness of the photocatalytic layer is about 0.3-0.5 ⁇ m, and the thickness of the oxygen-absorbing layer is about 0.6-1 ⁇ m.
  • FIG. 1 is a schematic structural diagram of a first display panel according to an embodiment of the present disclosure
  • FIG. 2 is a working schematic diagram of a display panel provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a second display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a third display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a fourth display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a method flowchart of a method for manufacturing a first display panel according to an embodiment of the present disclosure
  • FIG. 7 is a method flowchart of a method for manufacturing a second display panel according to an embodiment of the present disclosure.
  • Substrate 1.
  • Organic light emitting device 3.
  • Photocatalytic layer 4.
  • Oxygen-absorbing layer 5.
  • Hydrogen-absorbing layer
  • An embodiment of the present disclosure provides a display panel including a substrate, an organic electroluminescent device, and an absorption layer, wherein the organic electroluminescent device is disposed on the substrate, and the absorption layer covers the organic electroluminescent device and the substrate. , The organic electroluminescence device is packaged in the absorption layer and the substrate forming space.
  • the embodiment of the present disclosure proposes a packaging design concept of actively consuming foreign substances.
  • An absorption layer is introduced into a display panel.
  • the absorption layer actively absorbs foreign substances, eliminates foreign substances from the source, and effectively isolates the foreign substances from contact with the organic electroluminescent device.
  • the arrangement of the visible absorption layer ensures the stable performance of the organic electroluminescent device, so that the organic electroluminescent device has a longer service life.
  • the absorbing layer has a function of absorbing external substances, and the type of the absorbing layer can be provided according to the type of external substances that need to be absorbed.
  • the absorbing layer may include an oxygen absorbing layer and a photocatalytic layer, wherein the oxygen absorbing layer has a function of absorbing oxygen, and the photocatalytic layer has a function of catalyzing water decomposition.
  • the display panel includes a substrate 1 and an organic electrolyte.
  • Light-emitting device 2, photocatalytic layer 3, and oxygen-absorbing layer 4 organic electroluminescent device 2 is disposed on substrate 1; photocatalytic layer 3 covers organic electroluminescent device 2 and a liner adjacent to organic electroluminescent device 2.
  • the organic electroluminescent device 2 is enclosed in a space formed by the photocatalytic layer 3 and the substrate 1.
  • the oxygen absorbing layer 4 covers the photocatalytic layer 3 and the substrate 1 adjacent to the photocatalytic layer 3.
  • the electroluminescent device 2 and the photocatalytic layer 3 are encapsulated in a space formed by the oxygen absorbing layer 4 and the substrate 1.
  • the visible light emitted by the organic electroluminescent device 2 is irradiated to the photocatalytic layer 3.
  • the oxygen and water vapor outside the display panel reach the display panel shown in FIG. 1, the oxygen and water vapor First contact the oxygen absorbing layer 4, the oxygen absorbing layer 4 absorbs oxygen, water vapor passes through the oxygen absorbing layer 4 to reach the photocatalytic layer 3, and the photocatalytic layer 3 catalyzes the decomposition of water vapor under the irradiation of visible light to generate oxygen and hydrogen.
  • the oxygen absorbing layer 4 absorbs.
  • the photocatalytic layer 3 is composed of a catalyst. Based on the characteristic that the catalyst does not participate in the reaction, there is no problem of catalyst failure.
  • the photocatalytic layer can always protect the organic electroluminescent device from water.
  • the catalyst does not change its chemical properties before and after the reaction, and can be reused. Therefore, the use of a photocatalytic layer to make a display panel conforms to the concept of green environmental protection.
  • the oxygen absorbing layer 4 has an oxygen absorbing function, and can absorb external oxygen and photocatalytic oxygen, and protect the organic electroluminescent device 2 from oxygen.
  • the material of the photocatalytic layer may be a semiconductor photocatalytic material.
  • the band gap of the semiconductor photocatalytic material is limited to be greater than 1.23eV.
  • different metals such as Pt, etc.
  • metal oxides such as RuO 2 etc.
  • active sites promote hydrogen and oxygen to escape from different active sites on the catalyst surface. Because hydrogen and oxygen have a certain overpotential when they are precipitated on different metals or metal oxides, the forbidden band width of the semiconductor photocatalytic material can be selected to be more than 2.0-2.2eV.
  • the titanium dioxide composite material may be a titanium dioxide-based composite material.
  • the composite material of zinc oxide may be a composite material with zinc oxide as the main agent.
  • the semiconductor photocatalytic material may be a composite material using titanium dioxide as a main agent.
  • the thickness of the photocatalytic layer may be 0.3-0.5 ⁇ m.
  • the material type and layer thickness of the photocatalytic layer can be set according to the actual situation.
  • the material of the oxygen absorbing layer can be organic polyester materials.
  • Organic polyester materials contain active groups such as double bonds and hydroxyl groups on the main chain or side chains, or organic polyester materials contain active methylene in the main chain. base.
  • olefin copolymer polyisoprene, polybutadiene, nylon 6 (also known as polyamide-6), polyadipyl metaphenylene diamine (MXD6), (ethylene / vinyl alcohol) copolymer (E / VAL) and so on.
  • the active iron powder can be used as the material of the oxygen absorbing layer.
  • the active iron powder can be used as the main agent, carbon powder, sodium salt, halide and the like as the compound, and the active iron powder and the compound can be used to make the oxygen absorbing layer.
  • the thickness of the oxygen-absorbing layer may be selected from 0.6 to 1 ⁇ m.
  • the material type and layer thickness of the oxygen absorbing layer can be set according to the actual situation.
  • the material can be selected so that the oxygen-absorbing layer has a smaller thickness when meeting the requirements for absorbing oxygen, and the photocatalytic layer has a smaller thickness when meeting the requirements for catalytically decomposed water.
  • the use of a smaller thickness of the absorbing layer and the photocatalytic layer to make the display panel makes the display panel have the advantages of small size and the like, which is beneficial to the light and thin design of the display panel.
  • the photocatalytic layer catalyzes the decomposition of water to generate hydrogen.
  • the present disclosure adds hydrogen absorption to the display panel.
  • Layer for absorbing hydrogen can be set according to the actual location, for example, the hydrogen absorbing layer is arranged on the side of the photocatalytic layer facing away from the oxygen absorbing layer.
  • the material used to make the hydrogen absorbing layer is a hydrogen storage material.
  • hydrogen storage materials such as metal-organic frameworks (MOFs).
  • MOFs metal-organic frameworks
  • This type of hydrogen storage material has low density, large specific surface area, and high porosity.
  • the advantage is that the structure and pore size of the metal-organic framework can be controlled by assembly.
  • metal-organic frameworks For example, the ZnO 4 tetrahedron material is a MOFs material at the center of a metal cluster.
  • MOF-5 Zn 4 O (BDC) 3 material, where BDC is 1,4-terephthalate
  • MOF-177 Zn 4 O (BTB) 2 , where BTB is 1, 3, 5 -Benzotribenzoate, etc.
  • the type of hydrogen storage material can be selected according to the actual situation.
  • the absorption layer provided in the embodiment of the present disclosure may include at least two photocatalytic layers and at least two oxygen absorbing layers, at least two photocatalytic layers and at least two oxygen absorbing layers.
  • the layers are arranged alternately.
  • the arrangement of multiple oxygen absorbing layers improves the absorption performance of oxygen
  • the arrangement of multiple photocatalytic layers improves the catalytic decomposition performance of water vapor, thereby effectively improving the effect of the oxygen absorbing layer and the photocatalytic layer on the organic electroluminescent device.
  • the packaging effect ensures the working performance of the organic electroluminescent device.
  • the material types and thicknesses of the at least two photocatalytic layers may be the same or different.
  • the material types and thicknesses of the at least two oxygen absorbing layers may be the same or different. Based on the packaging design ideas provided by the embodiments of the present disclosure, the material type, thickness, and number of layers of the photocatalytic layer and the absorbing layer can be set according to the actual situation.
  • the display panel includes two photocatalytic layers 3 and two oxygen absorbing layers 4.
  • the two photocatalytic layers 3 and two oxygen absorbing layers 4 are alternately stacked to form a photocatalytic layer 3- oxygen absorbing layer.
  • the multilayer protective structure of the 4-photocatalytic layer 3-the oxygen absorbing layer 4 has a better packaging effect than the display panel shown in FIG. 1.
  • the display panel includes two photocatalytic layers 3, two oxygen absorbing layers 4 and one hydrogen absorbing layer 5, and the two photocatalytic layers 3 and two oxygen absorbing layers 4 are alternately stacked on the hydrogen absorbing layer 5.
  • the arrangement constitutes a multilayer protective structure of hydrogen absorbing layer 5-photocatalytic layer 3-oxygen absorbing layer 4-photocatalytic layer 3-oxygen absorbing layer 4, compared with the display panel shown in FIG.
  • the display panel has a better packaging effect.
  • An embodiment of the present disclosure further provides a display panel including the display panel provided above in the embodiments of the present disclosure.
  • An embodiment of the present disclosure further provides a display device, including the display panel provided above in the embodiments of the present disclosure.
  • the display device has the advantages of a display panel, and the advantages of the display device are not described herein again.
  • the embodiment of the present disclosure also provides a method for manufacturing a display panel, which is used for manufacturing the display panel provided by the embodiment of the present disclosure.
  • a method for manufacturing a display panel according to an embodiment of the present disclosure includes:
  • Step 101 Provide a substrate.
  • a substrate When manufacturing a display panel, a substrate is first provided.
  • the substrate may be manufactured in advance, or it may be manufactured according to needs when the display panel is manufactured.
  • the substrate may be a glass substrate based on the kind of manufacturing material.
  • Step 102 forming an organic electroluminescent device on the substrate.
  • An organic electroluminescent device mainly includes an anode, an organic light emitting material layer, and a cathode.
  • the step of forming an organic electroluminescent device on a substrate may include: forming an anode on a substrate, forming an organic light emitting material layer on the anode, and organic light emitting A cathode is formed on the material layer.
  • the specific process of making the anode, the organic light-emitting material layer, and the cathode can be set according to the actual situation.
  • Step 103 An absorption layer including an oxygen absorption layer and a photocatalytic layer is formed on the organic electroluminescence device and the substrate, and the organic electroluminescence device is packaged in a space formed by the absorption layer and the substrate.
  • an absorption layer for decomposing water vapor and absorbing external oxygen and oxygen generated by water vapor decomposition is formed.
  • the absorption layer covers the organic electroluminescence device and the substrate, and the organic electroluminescence
  • the electroluminescent device is packaged in a space formed by the absorption layer and the substrate.
  • the absorption layer has the function of absorbing external oxygen.
  • the arrangement of the absorption layer prevents the invasion of external oxygen and prevents the organic electroluminescent device from being attacked by external oxygen. This ensures that the performance of the organic electroluminescent device is stable and makes the organic electroluminescent device relatively stable. Long service life.
  • the absorbing layer may include an oxygen absorbing layer and a photocatalytic layer for catalyzing water decomposition.
  • the step of forming an absorption layer for absorbing external substances on the organic electroluminescent device and the substrate may include: forming a photocatalytic layer, the photocatalytic layer covering the organic electroluminescent device and the On the surrounding substrate; an oxygen absorbing layer is formed, and the oxygen absorbing layer covers the absorbing layer and the surrounding substrate.
  • a photocatalytic layer such as a vapor deposition process, a magnetron sputtering process (Sputter), and the like.
  • the vapor deposition process may include a variety of processes, such as a plasma enhanced chemical vapor deposition process (PECVD).
  • PECVD plasma enhanced chemical vapor deposition process
  • oxygen absorbing layer such as a vapor deposition process and a magnetron sputtering process.
  • the photocatalytic layer and the oxygen absorbing layer can also be made by other applicable processes.
  • the embodiment of the present disclosure also provides another method for manufacturing a display panel, which is used for manufacturing the display panel provided by the embodiment of the present disclosure.
  • a method for manufacturing a display panel provided by an embodiment of the present disclosure includes:
  • Step 101 Provide a substrate.
  • a substrate When manufacturing a display panel, a substrate is first provided.
  • the substrate may be manufactured in advance, or it may be manufactured according to needs when the display panel is manufactured. Based on the type of manufacturing materials, the substrate can be divided into glass substrates and the like.
  • Step 102 forming an organic electroluminescent device on the substrate.
  • An organic electroluminescent device mainly includes an anode, an organic light emitting material layer, and a cathode.
  • the step of forming an organic electroluminescent device on a substrate may include: forming an anode on a substrate, forming an organic light emitting material layer on the anode, and organic light emitting A cathode is formed on the material layer.
  • the specific process of making the anode, the organic light-emitting material layer, and the cathode can be set according to the actual situation.
  • Step 103 An absorption layer including a hydrogen absorption layer, a photocatalytic layer and an oxygen absorption layer is formed on the organic electroluminescence device and the substrate, and the organic electroluminescence device is encapsulated in a space formed by the absorption layer and the substrate.
  • the present disclosure provides a display panel, a display device, and a manufacturing method thereof.
  • the display panel provided by the present disclosure includes a substrate, an organic electroluminescence device, and an absorption layer for absorbing external substances.
  • the organic electroluminescence device is encapsulated in a space formed by the absorption layer and the substrate. Absorption prevents external substances from coming into contact with organic electroluminescent devices and prevents organic electroluminescent devices from being corroded by external materials. Therefore, the setting of the absorption layer ensures the stable performance of organic electroluminescent devices, which makes organic electroluminescent devices have a Service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示面板,包括衬底、有机电致发光器件以及吸收层,其中,有机电致发光器件设置在衬底上,吸收层覆盖在有机电致发光器件和衬底上,所述吸收层包括吸氧层和用于催化水分解的光催化层,光催化层覆盖在有机电致发光器件及其周围的衬底上,吸氧层覆盖在光催化层及其周围的衬底上。

Description

一种封装结构、显示面板、显示装置及其制作方法
相关申请的交叉引用
本申请要求于2018年6月29日提交的申请号为201810717210.0,发明名称为“一种封装结构、显示面板、显示装置及其制作方法”的中国专利的优先权,该申请在此以引文方式整体并入本文。
技术领域
本公开涉及显示技术领域,特别是一种封装结构、显示面板、显示装置及其制作方法。
背景技术
有机电致发光器件(简称:OLED)因具有自发光、对比度高、可用于挠曲性面板等优点而被广泛使用。由于制作OLED的材料对氧气和水汽特别敏感,易被氧气和水汽侵蚀而失去正常性能,因此在使用OLED之前,需要对OLED进行封装处理。
已知技术中,主要采用以下方法对OLED进行封装:选择玻璃为基底,同时选择玻璃或金属为盖板,使用粘结剂如环氧树脂对对盒后的基底和盖板进行密封,实现对基底上的OLED的封装。但是,由于粘结剂如环氧树脂对氧气和水汽的阻隔性能较差,导致OLED的封装效果较差,OLED的使用寿命较短。
发明内容
本公开提供一种显示面板,以解决背景技术中粘结剂如环氧树脂对氧气和水汽的阻隔性能较差,导致OLED的封装效果较差,OLED的使用寿命较短的问题。
一方面,提供了一种显示面板,包括衬底、有机电致发光器件以及吸收 层;
所述有机电致发光器件设置在所述衬底上;
所述吸收层覆盖在所述有机电致发光器件和所述衬底上,所述有机电致发光器件封装在所述吸收层和所述衬底形成的空间内。
所述吸收层包括吸氧层和用于催化水分解的光催化层;
所述光催化层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述吸氧层覆盖在所述光催化层及其周围的所述衬底上。
进一步地,所述吸收层还包括吸氢层,所述吸氢层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述光催化层覆盖在所述吸氢层及其周围的所述衬底上,所述吸氧层覆盖在所述光催化层及其周围的所述衬底上。
进一步地,所述吸收层包括至少两层所述光催化层和至少两层所述吸氧层;
所述光催化层和所述吸氧层交替层叠设置。
进一步地,所述光催化层的材料为半导体光催化材料,所述半导体光催化材料的禁带宽度大于1.23eV。
进一步地,所述半导体光催化材料包括二氧化钛的复合材料、氧化锌的复合材料和氮化碳的复合材料中的至少一种。
进一步地,所述吸氢层的材料为储氢材料。
进一步地,所述储氢材料包括金属-有机框架物(MOFs)。
进一步地,所述金属-有机框架物为以ZnO 4为中心的MOFs材料。
进一步地,所述金属-有机框架物为MOF-5(Zn 4O(BDC) 3,其中,BDC为1,4对苯二甲酸盐。
进一步地,所述金属-有机框架物为MOF-177(Zn 4O(BTB) 2,其中,BTB为1,3,5-苯三安息香酸盐。
进一步地,所述光催化层的厚度约为0.3-0.5μm。
进一步地,所述吸氧层的材料包括有机聚酯类材料和铁粉中的至少一种。
进一步地,所述吸氧层的厚度约为0.6-1μm。
另一方面,还提供了一种显示装置,包括上述的显示面板。
另一方面,还提供了一种如上述的显示面板的制作方法,所述方法包括:
提供衬底;
在所述衬底上形成有机电致发光器件;
在所述有机电致发光器件和所述衬底上形成吸收层,
所述吸收层包括吸氧层和用于催化水分解的光催化层,所述在所述有机电致发光器件和所述衬底上形成用于吸收外界物质的吸收层的步骤包括:
形成所述光催化层,所述光催化层覆盖在所述有机电致发光器件及其周围的所述衬底上;
形成所述吸氧层,所述吸氧层覆盖在所述光催化层及其周围的所述衬底上。
进一步地,形成所述光催化层的步骤还包括:
形成吸氢层,所述吸氢层位于所述光催化层远离吸氧层的表面,所述吸氢层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述光催化层覆盖在所述吸氢层及其周围的所述衬底上。
进一步地,所述形成所述光催化层,包括:
采用气相沉积法或磁控溅射法,形成所述光催化层;
所述形成所述吸氧层,包括:
采用气相沉积法或磁控溅射法,形成所述吸氧层。
进一步,所述光催化层的材料为半导体光催化材料,所述半导体光催化材料的禁带宽度大于1.23eV,所述吸氧层的材料包括有机聚酯类材料和铁粉中的至少一种。
进一步,所述光催化层的厚度约为0.3-0.5μm,所述吸氧层的厚度约为0.6-1μm。
附图说明
图1是本公开实施例提供的第一种显示面板的结构示意图;
图2是本公开实施例提供的显示面板的工作示意图;
图3是本公开实施例提供的第二种显示面板的结构示意图;
图4是本公开实施例提供的第三种显示面板的结构示意图;
图5是本公开实施例提供的第四种显示面板的结构示意图;
图6是本公开实施例提供的第一种显示面板的制作方法的方法流程图;
图7是本公开实施例提供的第二种显示面板的制作方法的方法流程图。
附图标记说明
1、衬底 2、有机发光器件 3、光催化层 4、吸氧层 5、吸氢层
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。
在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的部件或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
下面结合附图和实施例对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
本公开实施例提供了一种显示面板,包括衬底、有机电致发光器件以及吸收层,其中,有机电致发光器件设置在衬底上,吸收层覆盖在有机电致发光器件和衬底上,有机电致发光器件封装在吸收层和衬底形成空间内。
本公开实施例提出了主动消耗外界物质的封装设计理念,在显示面板中引入吸收层,吸收层对外界物质进行主动吸收,从源头消除外界物质,有效隔绝外界物质与有机电致发光器件接触,防止外界物质对有机电致发光器件 的腐蚀,可见吸收层的设置保证了有机电致发光器件的性能稳定,使得有机电致发光器件具有较长的使用寿命。
吸收层具有吸收外界物质的功能,可以根据需要吸收的外界物质的种类,设置吸收层的种类。例如,吸收层可以包括吸氧层和光催化层,其中,吸氧层具有吸收氧气的功能,光催化层具有催化水分解的功能,如图1所示,显示面板包括衬底1、有机电致发光器件2、光催化层3以及吸氧层4,有机电致发光器件2设置在衬底1上;光催化层3覆盖在有机电致发光器件2及与有机电致发光器件2邻接的衬底1上,有机电致发光器件2封装在光催化层3和衬底1形成的空间内;吸氧层4覆盖在光催化层3及与光催化层3邻接的衬底1上,有机电致发光器件2和光催化层3封装在吸氧层4和衬底1形成的空间内。
参考图2所示的显示面板的工作示意图可知,有机电致发光器件2发出的可见光照射至光催化层3,位于显示面板外的氧气和水汽到达图1所示的显示面板时,氧气和水汽先接触吸氧层4,吸氧层4对氧气进行吸收,水汽透过吸氧层4到达光催化层3,光催化层3在可见光照射下催化水汽分解,生成氧气和氢气,生成的氧气被吸氧层4吸收。
利用光催化层3在可见光下的光催化效应,使得进入显示面板内的水汽被光催化层3分解成氧气和氢气,达到消除水汽的目的,保护有机电致发光器件2不被水汽侵蚀。光催化层3由催化剂构成,基于催化剂不参加反应的特性,催化剂不存在失效的问题,光催化层能够始终对有机电致发光器进行除水保护。另外,催化剂在反应前后其化学性质不发生改变,可以实现重复使用,因此使用光催化层制作显示面板符合绿色环保理念。利用吸氧层4具有吸氧功能,可以吸收外界氧气和光催化生成的氧气,保护有机电致发光器件2不被氧气侵蚀。
制作用于催化水分解的光催化层的材料有多种,例如,光催化层的材料可以为半导体光催化材料。为使半导体光催化材料具有催化水分解的功能,限定半导体光催化材料的禁带宽度大于1.23eV。在实际的光催化反应中,为提高电子和空穴的分离效率,通常会在催化剂表面负载不同的金属(如Pt等) 或金属氧化物(如RuO 2等),引入还原氢和氧化氧的活性位以促使氢气和氧气在催化剂表面不同活性位上逸出。由于氢和氧在不同金属或金属氧化物上析出时具有一定的过电位,因此,半导体光催化材料的禁带宽度可选为2.0-2.2eV以上。
适用的半导体光催化材料有多种,例如二氧化钛的复合材料、氧化锌的复合材料和氮化碳的复合材料中的至少一种时,其中,二氧化钛的复合材料可以是以二氧化钛为主剂的复合材料,氧化锌的复合材料可以是以氧化锌为主剂的复合材料。半导体光催化材料可选为以二氧化钛为主剂的复合材料。
当半导体光催化材料包括二氧化钛的复合材料、氧化锌的复合材料和氮化碳的复合材料中的至少一种时,光催化层的厚度可选为0.3-0.5μm。可以根据实际设置光催化层的材料种类和层厚度。
制作用于吸收氧气的吸氧层的材料有多种,例如有机聚酯类材料和铁粉中的至少一种。吸氧层的材料可选有机聚酯类材料,有机聚酯类材料在主链或侧链上含有双键、羟基等活性基团,或者,有机聚酯类材料在主链内含有活性亚甲基。例如,烯烃共聚物、聚异戊二烯、聚丁二烯、尼龙6(又称聚酰胺-6)、聚己二酰间苯二胺(MXD6)、(乙烯/乙烯醇)共聚物(E/VAL)等。活性铁粉可以作为吸氧层的材料,可以将活性铁粉作为主剂,将碳粉、钠盐以及卤化物等作为复配物,使用活性铁粉和复配物制作吸氧层。
当制作吸氧层的材料为有机聚酯类材料、铁粉、有机聚氨酯类材料和铁粉的组合时,吸氧层的厚度可选为0.6-1μm。可以根据实际设置吸氧层的材料种类以及层厚度。
可以通过材料选择,使吸氧层在满足吸收氧气的要求下具有较小厚度,使光催化层在满足催化分解水的要求下具有较小厚度。使用较小厚度的吸收层和光催化层制作显示面板,使得显示面板具有尺寸小等优点,有利于显示面板的轻薄化设计。
本公开实施例提供的显示面板中,光催化层催化分解水后生成氢气,为避免生成的氢气对有机电致发光器件产生不良影响,如图3所示,本公开在显示面板中增设吸氢层,用于对氢气进行吸收。可以根据实际设置吸氢层的 位置,如吸氢层设置在光催化层背离吸氧层的一侧等。
制作吸氢层的材料为储氢材料,储氢材料可以有多种,如金属-有机框架物(Metal-Organic Framework,MOFs),该类储氢材料具有密度小、比表面积大、气孔率高等优点,可以通过组装来控制金属-有机框架物的结构大小和孔径大小。金属-有机框架物的种类有多种,例如ZnO 4四面体材料为金属簇中心的MOFs材料。比如MOF-5(Zn 4O(BDC) 3材料,其中BDC为1,4-对苯二甲酸盐;再如MOF-177(Zn 4O(BTB) 2,其中BTB为1,3,5-苯三安息香酸盐等。可以根据实际选择储氢材料的种类。
为了提高显示面板的封装性能,如图4所示,本公开实施例提供的吸收层可以包括至少两层光催化层和至少两层吸氧层,至少两层光催化层和至少两层吸氧层交替层叠设置。多个吸氧层的设置,提高了对氧气的吸收性能,多个光催化层的设置,提高了对水汽的催化分解性能,从而有效提高了吸氧层和光催化层对有机电致发光器件的封装效果,保证了有机电致发光器件的工作性能。
至少两层光催化层的材料种类及厚度可以相同,也可以不同。至少两层吸氧层的材料种类及厚度可以相同,也可以不同。基于本公开实施例提供的封装设计思路,可以根据实际设置光催化层和吸收层的材料种类、厚度以及层数。
如图4所示,显示面板包括两个光催化层3和两个吸氧层4,两个光催化层3和两个吸氧层4交替层叠设置,构成了光催化层3-吸氧层4-光催化层3-吸氧层4的多层保护结构,相比于图1所示的显示面板,图4所示的显示面板具有更好的封装效果。
为了进一步避免水汽分解产生的氢气对有机电致发光器件的不良影响,如图5所示,在显示面板中增加一个吸氢层。在该实施例中,显示面板包括两个光催化层3、两个吸氧层4和一个吸氢层5,两个光催化层3和两个吸氧层4在吸氢层5上交替层叠设置,构成了吸氢层5-光催化层3-吸氧层4-光催化层3-吸氧层4的多层保护结构,相比于图4所示的显示面板,图5所示的显示面板具有更好的封装效果。
本公开实施例还提供了一种显示面板,包括本公开实施例上述提供的显示面板。
本公开实施例还提供了一种显示装置,包括本公开实施例上述提供的显示面板。显示装置具有显示面板的优点,对于显示装置的优点本公开实施例在此不再赘述。
本公开实施例还提供了一种显示面板的制作方法,用于制作本公开实施例提供的显示面板。参照图6所示,本公开实施例提供的显示面板的制作方法包括:
步骤101、提供衬底。
制作显示面板时,首先提供衬底,衬底可以是预先制作成型的,也可以是根据需要在制作显示面板时现制作的。基于制作材料的种类,衬底可以为玻璃衬底。
步骤102、在衬底上形成有机电致发光器件。
提供衬底后,在衬底上形成有机电致发光器件。有机电致发光器件主要包括阳极、有机发光材料层和阴极,在衬底上形成有机电致发光器件的步骤可以包括:在衬底上形成阳极,在阳极上形成有机发光材料层,在有机发光材料层上形成阴极。制作阳极、有机发光材料层和阴极的具体工艺,可以根据实际进行设置。
步骤103、在有机电致发光器件和衬底上形成包括吸氧层和光催化层的吸收层,将有机电致发光器件封装在吸收层和衬底形成的空间内。
在衬底上形成有机电致发光器件后,形成用于分解水汽和吸收外界的氧气以及水汽分解生成的氧气的吸收层,该吸收层覆盖在有机电致发光器件和衬底上,将有机电致发光器件封装在吸收层和衬底形成的空间内。
吸收层具有吸收外界氧气的功能,吸收层的设置,阻止外界氧气的侵入,防止有机电致发光器件被外界氧气侵蚀,保证了有机电致发光器件的性能稳定,使得有机电致发光器件具有较长的使用寿命。
吸收层可以包括吸氧层和用于催化水分解的光催化层。当吸收层包括上述功能层时,在有机电致发光器件和衬底上形成用于吸收外界物质的吸收层 的步骤可以包括:形成光催化层,光催化层覆盖在有机电致发光器件及其周围的衬底上;形成吸氧层,吸氧层覆盖在吸收层及其周围的衬底上。
形成光催化层的工艺有多种,如气相沉积工艺、磁控溅射工艺(Sputter)等,气相沉积工艺可以包括多种,如等离子体增强化学气相沉积工艺(PECVD)等。形成吸氧层的工艺有多种,如气相沉积工艺、磁控溅射工艺等。除上述工艺外,光催化层和吸氧层还可以采用其他适用工艺制作而成。
本公开实施例还提供了另一种显示面板的制作方法,用于制作本公开实施例提供的显示面板。参照图7所示,本公开实施例提供的显示面板的制作方法包括:
步骤101、提供衬底。
制作显示面板时,首先提供衬底,衬底可以是预先制作成型的,也可以是根据需要在制作显示面板时现制作的。基于制作材料的种类,衬底可以分为玻璃衬底等。
步骤102、在衬底上形成有机电致发光器件。
提供衬底后,在衬底上形成有机电致发光器件。有机电致发光器件主要包括阳极、有机发光材料层和阴极,在衬底上形成有机电致发光器件的步骤可以包括:在衬底上形成阳极,在阳极上形成有机发光材料层,在有机发光材料层上形成阴极。制作阳极、有机发光材料层和阴极的具体工艺,可以根据实际进行设置。
步骤103、在有机电致发光器件和衬底上形成包括吸氢层、光催化层和吸氧层的吸收层,将有机电致发光器件封装在吸收层和衬底形成的空间内。
本公开提供了一种显示面板、显示装置及其制作方法。本公开提供的显示面板包括衬底、有机电致发光器件以及用于吸收外界物质的吸收层,有机电致发光器件封装在吸收层和衬底形成的空间内,由于吸收层对外界物质进行主动吸收,阻止外界物质与有机电致发光器件接触,防止有机电致发光器件被外界物质腐蚀,因此吸收层的设置保证了有机电致发光器件的性能稳定,使得有机电致发光器件具有较长的使用寿命。
以上对本公开所提供的显示面板、显示装置及其制作方法进行了详细介 绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (19)

  1. 一种显示面板,包括衬底、有机电致发光器件以及吸收层;
    所述有机电致发光器件设置在所述衬底上;
    所述吸收层覆盖在所述有机电致发光器件和所述衬底上;
    其中,所述吸收层包括吸氧层和用于催化水分解的光催化层;
    所述光催化层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述吸氧层覆盖在所述光催化层及其周围的所述衬底上。
  2. 根据权利要求1所述的显示面板,其中,所述吸收层还包括吸氢层,所述吸氢层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述光催化层覆盖在所述吸氢层及其周围的所述衬底上。
  3. 根据权利要求1或2所述的显示面板,其中,所述吸收层包括至少两层所述光催化层和至少两层所述吸氧层;
    所述光催化层和所述吸氧层交替层叠设置。
  4. 根据权利要求1-3任一项所述的显示面板,其中,所述光催化层的材料为半导体光催化材料,所述半导体光催化材料的禁带宽度大于1.23eV。
  5. 根据权利要求4所述的显示面板,其中,所述半导体光催化材料包括二氧化钛的复合材料、氧化锌的复合材料和氮化碳的复合材料中的至少一种。
  6. 根据权利要求2所述的显示面板,其中,所述吸氢层的材料为储氢材料。
  7. 根据权利要求6所述的显示面板,其中,所述储氢材料包括金属-有机框架物(MOFs)。
  8. 根据权利要求7所述的显示面板,其中,金属-有机框架物为以ZnO 4为中心的MOFs材料。
  9. 根据权利要求8所述的显示面板,其中,所述金属-有机框架物为MOF-5(Zn 4O(BDC) 3,其中,BDC为1,4对苯二甲酸盐。
  10. 根据权利要求8所述的显示面板,其中,所述金属-有机框架物为MOF-177(Zn 4O(BTB) 2,其中,BTB为1,3,5-苯三安息香酸盐。
  11. 根据权利要求5所述的显示面板,其中,所述光催化层的厚度约为 0.3-0.5μm。
  12. 根据权利要求1所述的显示面板,其中,所述吸氧层的材料包括有机聚酯类材料和铁粉中的至少一种。
  13. 根据权利要求12所述的显示面板,其中,所述吸氧层的厚度约为0.6-1μm。
  14. 一种显示装置,包括权利要求13所述的显示面板。
  15. 一种如权利要求1-13任一项所述的显示面板的制作方法,所述方法包括:
    提供衬底;
    在所述衬底上形成有机电致发光器件;
    在所述有机电致发光器件和所述衬底上形成吸收层;
    其中,所述吸收层包括吸氧层和用于催化水分解的光催化层,所述在所述有机电致发光器件和所述衬底上形成吸收层的步骤包括:
    形成所述光催化层,所述光催化层覆盖在所述有机电致发光器件及其周围的所述衬底上;
    形成所述吸氧层,所述吸氧层覆盖在所述光催化层及其周围的所述衬底上。
  16. 根据权利要求15所述的显示面板的制作方法,其中,形成所述光催化层的步骤还包括:
    形成吸氢层,所述吸氢层位于所述光催化层远离吸氧层的表面,所述吸氢层覆盖在所述有机电致发光器件及其周围的所述衬底上,所述光催化层覆盖在所述吸氢层及其周围的所述衬底上。
  17. 根据权利要求16所述的显示面板的制作方法,其中,所述形成所述光催化层,包括:
    采用气相沉积法或磁控溅射法,形成所述光催化层;
    所述形成所述吸氧层,包括:
    采用气相沉积法或磁控溅射法,形成所述吸氧层。
  18. 根据权利要求17所述的显示面板的制作方法,其中,所述光催化 层的材料为半导体光催化材料,所述半导体光催化材料的禁带宽度大于1.23eV,所述吸氧层的材料包括有机聚酯类材料和铁粉中的至少一种。
  19. 根据权利要求18所述的显示面板的制作方法,其中,所述光催化层的厚度约为0.3-0.5μm,所述吸氧层的厚度约为0.6-1μm。
PCT/CN2019/081510 2018-06-29 2019-04-04 一种封装结构、显示面板、显示装置及其制作方法 WO2020001121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/613,333 US11502275B2 (en) 2018-06-29 2019-04-04 Display panel, display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810717210.0A CN108899436B (zh) 2018-06-29 2018-06-29 一种封装结构、显示面板、显示装置及其制作方法
CN201810717210.0 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001121A1 true WO2020001121A1 (zh) 2020-01-02

Family

ID=64348050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081510 WO2020001121A1 (zh) 2018-06-29 2019-04-04 一种封装结构、显示面板、显示装置及其制作方法

Country Status (3)

Country Link
US (1) US11502275B2 (zh)
CN (1) CN108899436B (zh)
WO (1) WO2020001121A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899436B (zh) * 2018-06-29 2020-03-06 京东方科技集团股份有限公司 一种封装结构、显示面板、显示装置及其制作方法
CN109346622A (zh) * 2018-10-19 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled阵列基板及其制作方法
CN109950419B (zh) * 2019-03-25 2021-02-26 京东方科技集团股份有限公司 一种oled器件封装结构、显示装置及封装方法
CN114520198B (zh) * 2022-04-20 2022-06-28 南京盖特尔电子科技有限公司 用于氢敏感混合集成电路的吸氢器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559075A (zh) * 2001-09-27 2004-12-29 在电子器件中用于将水转化为氢和吸附氢的系统及其制造方法
CN1653852A (zh) * 2002-05-10 2005-08-10 皇家飞利浦电子股份有限公司 电致发光控制板
CN102057750A (zh) * 2008-04-09 2011-05-11 新加坡科技研究局 用于封装对氧气和/或湿气敏感的电子器件的多层膜
CN203218330U (zh) * 2013-04-01 2013-09-25 中国科学院福建物质结构研究所 一种led光解水器件
CN108899436A (zh) * 2018-06-29 2018-11-27 京东方科技集团股份有限公司 一种封装结构、显示面板、显示装置及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
CN108155302B (zh) * 2018-01-31 2020-05-08 京东方科技集团股份有限公司 一种有机发光显示面板、其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559075A (zh) * 2001-09-27 2004-12-29 在电子器件中用于将水转化为氢和吸附氢的系统及其制造方法
CN1653852A (zh) * 2002-05-10 2005-08-10 皇家飞利浦电子股份有限公司 电致发光控制板
CN102057750A (zh) * 2008-04-09 2011-05-11 新加坡科技研究局 用于封装对氧气和/或湿气敏感的电子器件的多层膜
CN203218330U (zh) * 2013-04-01 2013-09-25 中国科学院福建物质结构研究所 一种led光解水器件
CN108899436A (zh) * 2018-06-29 2018-11-27 京东方科技集团股份有限公司 一种封装结构、显示面板、显示装置及其制作方法

Also Published As

Publication number Publication date
CN108899436A (zh) 2018-11-27
US20210343987A1 (en) 2021-11-04
CN108899436B (zh) 2020-03-06
US11502275B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2020001121A1 (zh) 一种封装结构、显示面板、显示装置及其制作方法
KR102594972B1 (ko) 디스플레이 모듈의 봉지구조 및 봉지구조의 제조방법
KR102025865B1 (ko) 접착 필름
CN110473982B (zh) 一种oled显示面板封装结构及其制备方法
WO2016192246A1 (zh) 有机发光二极管封装方法以及封装结构
US10680203B2 (en) Mask plate, display panel and encapsulating method thereof
CN108428805A (zh) 一种oled封装结构及oled显示面板
KR20130022649A (ko) 플렉서블 표시 장치 및 이의 제조 방법
US20190097172A1 (en) Organic light-emitting display panel and fabrication method thereof, and display apparatus
CN106257702A (zh) 防止湿气、氧对钙钛矿吸收层侵蚀及延长电池寿命的方法
KR102082062B1 (ko) 유기 일렉트로루미네센스 발광 장치
CN105118931A (zh) 一种阵列基板、有机电致发光显示面板及显示装置
US9101006B2 (en) Organic electroluminescent device display and method for manufacturing the same
CN106833304B (zh) 阻隔膜及其制备方法
CN117177632A (zh) 封装结构及其制备方法、显示面板及显示装置
KR20170002985A (ko) 유기 발광 디스플레이 장치 및 이의 제조 방법
JP2007149577A (ja) 発光装置
EP3289622A1 (en) Encapsulation method for oled lighting application
WO2021012319A1 (zh) 封装薄膜及其制备方法、有机发光显示面板及其制备方法
KR20170050847A (ko) 유기 발광 표시 장치
CN117062486A (zh) 封装薄膜及显示面板
CN117279411A (zh) 封装结构及显示面板
KR100812542B1 (ko) 수분제거 및 수소배출 기능을 갖는 유기발광소자
CN109950419B (zh) 一种oled器件封装结构、显示装置及封装方法
CN203038981U (zh) 大尺寸oled 器件的封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824630

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19824630

Country of ref document: EP

Kind code of ref document: A1