WO2020000691A1 - 驻极体麦克风、声振检测装置及竞赛遥控车 - Google Patents

驻极体麦克风、声振检测装置及竞赛遥控车 Download PDF

Info

Publication number
WO2020000691A1
WO2020000691A1 PCT/CN2018/106303 CN2018106303W WO2020000691A1 WO 2020000691 A1 WO2020000691 A1 WO 2020000691A1 CN 2018106303 W CN2018106303 W CN 2018106303W WO 2020000691 A1 WO2020000691 A1 WO 2020000691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electret
acoustic
casing
closed end
microphone
Prior art date
Application number
PCT/CN2018/106303
Other languages
English (en)
French (fr)
Inventor
李亮
张志鹏
匡正
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880014075.1A priority Critical patent/CN110896686A/zh
Publication of WO2020000691A1 publication Critical patent/WO2020000691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • A63H17/045Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor shaped as armoured cars, tanks or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • A63H17/26Details; Accessories
    • A63H17/32Acoustical or optical signalling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones

Definitions

  • Embodiments of the present invention relate to the field of acoustics, and in particular, to an electret microphone, a sound vibration detection device, and a racing remote control vehicle.
  • the microphone can convert external sound and vibration signals into electrical signals through the acoustic-electric conversion process, so as to obtain and identify the sound.
  • the microphone is an electret microphone.
  • the housing is provided with a pickup hole that communicates with the inside.
  • the electret diaphragm inside the housing can form a capacitor.
  • the sound wave can pass through the pickup. Hole and hit the electret diaphragm.
  • the electret diaphragm changes, and the electric field across the capacitor will change, resulting in a voltage change with the acoustic wave.
  • the acoustic wave can be read by reading the voltage. Changes are identified.
  • Embodiments of the present invention provide an electret microphone, a sound vibration detection device, and a racing remote control car, which can accurately detect external sounds and vibrations.
  • an embodiment of the present invention provides an electret microphone.
  • the electret microphone includes a housing having a cavity and an acoustic sensing device located in the cavity.
  • the acoustic sensing device includes an electret, and the electret is provided with At the detection surface for collecting sound, the end corresponding to the detection surface of the electret is a closed end.
  • the casing is a metal casing.
  • the casing is an aluminum alloy casing.
  • the electret is in contact with the housing, and the closed end is spaced from the detection surface of the electret.
  • the closed end is provided with an end surface, and the end surface and the detection surface of the electret are parallel to each other.
  • a damping washer is provided between the end surface and the detection surface of the electret.
  • the casing is a sleeve with one end open, and the other end is a closed end.
  • the acoustic sensing device is located in the sleeve, and the closed end is disposed near the electret.
  • the electret is sheet-like.
  • the acoustic induction device further includes an electrode plate, and the electrode plate and the electret are spaced apart to form an induction capacitor between the electrode plate and the electret that can generate a capacitance value change with the deformation of the electret; the electret The body is located between the plate and the closed end.
  • the plates and the housing are insulated.
  • the acoustic induction device further includes an amplifying circuit, and the amplifying circuit is electrically connected to the inductive capacitor for amplifying the capacitance of the inductive capacitor.
  • the amplifier circuit includes a field effect transistor.
  • an embodiment of the present invention provides a sound vibration detection device, which includes a circuit board and an electret microphone as described above.
  • the electret microphone is located on the circuit board.
  • the electret microphone is used to detect Sound vibration.
  • an embodiment of the present invention provides a racing remote-control vehicle, which includes a vehicle body and the above-mentioned acoustic vibration detection device.
  • the detection device is located on the side of the shield plate facing away from the impacted surface, and is used to detect the sound vibration generated when the shield plate is struck by an external projected object.
  • the closed end of the casing in the acoustic vibration detection device is disposed toward the impacted surface.
  • the electret microphone includes a housing having a cavity and an acoustic sensing device located in the cavity.
  • the acoustic sensing device includes an electret and an electret.
  • the body is provided with a detection surface for collecting sound, and the end corresponding to the detection surface of the electret is a closed end.
  • the electret microphone can collect external sound and vibration signals, and the intensity and energy of the sound and vibration are small during the acquisition, which can allow the electret microphone to accurately obtain the linear interval of sound and vibration, and improve the accuracy and sensitivity of sound detection. Sex.
  • FIG. 1 is a schematic structural diagram of an electret microphone according to a first embodiment of the present invention
  • FIG. 2 is a top view of an electret microphone according to the first embodiment of the present invention
  • Embodiment 3 is a side view of an electret microphone provided by Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of an acoustic vibration detection device provided by Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a racing remote control car provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an electret microphone according to a first embodiment of the present invention.
  • FIG. 2 is a top view of an electret microphone according to the first embodiment of the present invention.
  • FIG. 3 is a side view of an electret microphone provided in Embodiment 1 of the present invention.
  • the electret microphone provided in this embodiment includes a housing 1 having a cavity and an acoustic induction device 2 located in the cavity.
  • the acoustic induction device 2 includes an electret 21 and an electret.
  • the body 21 is provided with a detection surface 21 a for collecting sound, and the end of the housing 1 corresponding to the detection surface 21 a of the electret 21 is a closed end 11.
  • a microphone is called a microphone, and is an energy conversion device that converts a sound signal into an electrical signal.
  • Microphones typically use changes in resistance, inductance, or capacitance to sense sound signals.
  • the electret microphone is usually a condenser microphone, and the change in capacitance between the plates of the capacitor can be used to sense sound vibration and complete the pickup and detection of sound signals.
  • the electret microphone in this embodiment includes a housing 1, and the housing 1 is a hollow structure, and the interior of the housing 1 can be used to accommodate the acoustic sensing device 2.
  • the acoustic sensing device 2 can generally adopt a capacitance change method to sense sound and vibration.
  • the acoustic sensing device 2 may include an electret 21, which is also called a permanent electric body, which is polarized under the action of a strong external electric field and can be maintained "permanently". Dielectric state of polarization.
  • the electret 21 is usually made of plastic or other insulating materials.
  • a layer of metal thin film is evaporated on one side of the electret 21, and then after high-voltage electric field electret treatment, the electret 21 respectively resides on both sides of the electret 21 Charges of different polarity.
  • the electret 21 can be used as a part of an induction capacitor for detecting sound vibration, for example, as one pole of a capacitor and spaced apart from the other pole of the capacitor, and between the electret 21 and the other pole of the capacitor.
  • Inductive capacitance can be formed in a short time.
  • the electret 21 When external sound and vibration enter the electret microphone, the electret 21 will deform under the effect of sound pressure and change the distance between itself and the other pole of the induction capacitor, so that the capacitance of the induction capacitor can be Changes that transform sound signals into electrical signals.
  • the electret 21 and the other pole of the induction capacitor are usually opposite and parallel to each other, and the side of the electret 21 far from the other pole can be used to collect external sound.
  • the detection surface 21a of the electret 21 faces the outside of the electret microphone. When external sound waves and vibrations pass through the electret microphone housing 1 and enter the electret microphone, they will act on the electret 21 On the detection surface 21a, and the electret 21 can generate a certain deformation under the effect of the sound pressure at this time, thereby changing the capacitance value of the acoustic induction device 2 to complete the pickup and detection of the sound signal.
  • the detection surface 21a of the electret 10 body 21 is generally a flat surface.
  • the electret microphone When the electret microphone is used to detect everyday sounds, such as human voice or other sounds with a small decibel number, in order to improve the sensitivity of the electret microphone, the electret microphone is usually an open structure to avoid the case 1 The sound pickup process of the sound sensing device 2 is disturbed.
  • an electret microphone when an electret microphone is used to detect strong shocks and vibrations from the outside through sound waves, the vibrations caused by the shocks are generally more intense. At this time, because the energy caused by the impact is too large, after transmitting to the electret microphone, the electret will generate excessive amplitude, which exceeds the original inherent linear interval, resulting in the signal detected by the electret microphone and the original sound intensity.
  • The linear relationship of ⁇ is fuzzy, which causes part of the information to be lost, which reduces the discrimination of the original sound intensity and the degree of sound reduction, making it difficult to accurately restore the original sound and vibration.
  • the side of the housing 1 opposite to the detection surface 21a is closed. ⁇ 11 ⁇ 11.
  • the housing 1 of the electret microphone is not open, but forms a closed cavity.
  • the electret 21 is wrapped in the inner cavity of the casing 1, and the side of the casing 1 opposite to the detection surface 21a on the electret 21 is the closed end 11, and there is no sound pickup hole provided thereon. Structures that can tolerate sound waves. In this way, when external sound waves are transmitted to the outside of the housing 1 of the electret microphone, due to the lack of a direct conduction path, it cannot directly enter the inside of the electret microphone, and can only rely on the vibration of the housing wall of the electret microphone to indirectly Into the casing 1.
  • the attenuated sound wave has enough energy to push the electret 21 to deform, ensuring that the sound sensing component can achieve the sound wave.
  • Normal detection of vibration because the acoustic wave detected by the electret 21 is formed by indirect vibration of the housing wall, the acoustic wave transmitted to the detection surface 21a of the electret 21 is compared with the original external acoustic wave.
  • the energy is attenuated to a certain extent, and the amplitude is small, and it will not exceed the linear interval and detection range of the acoustic induction device 2, which can effectively prevent the life of the electret 21 and the entire acoustic induction device 2 from being reduced or even damaged.
  • the housing 1 may generally have various structures and shapes having a hollow cavity.
  • the housing 1 of the electret microphone is a sleeve with an open end, and the other end of the sleeve is a closed end 11, so that the acoustic sensing device 2 can be disposed in the sleeve, and The closed end 11 of the sleeve is disposed near the electret 21.
  • the acoustic sensing device 2 can be disposed inside the sleeve through the opening, and at the same time, the lead wire of the acoustic sensing device 2 can be led out through the opening.
  • the sleeve itself is cylindrical, so one end of the sleeve can be used as the closed end 11, and the electret 21 and the closed end 11 can be adjacent to each other, so that the electret 21 receives the acoustic vibration from the side of the closed end 11.
  • the casing 1 is in the shape of a sleeve with a cavity inside, it can provide an internal space with a certain length and a relatively regular shape, so the acoustic sensing devices 2 can be arranged along the length direction of the casing 1 and accommodated in the casing 1 Inside, and the closed end 11 of the casing 1 is used as an end for collecting sounds, and the open end of the casing 1 is used for passing leads and connecting with other structures, so that the casing 1 has a better accommodating ability and a sealing and protecting ability.
  • the housing 1 of the electret microphone is mainly used to seal and protect the acoustic sensing device 2 to prevent external dust, water vapor or other impurities from entering the housing 1 and affect the normal operation of the acoustic sensing device 2.
  • the casing 1 may be a metal casing.
  • the casing 1 When the casing 1 is a metal casing, the casing 1 itself has a certain hardness, which can better protect and seal the acoustic sensing device 2 inside the casing 1; at the same time, because the metal is a conductor, the casing 1 can be used as a connection medium between the electret 21 and other circuits of the acoustic induction device 2, and the charges or electric signals on the electret 21 are conducted to other parts of the circuit through the metal casing 1.
  • the casing 1 may be an aluminum alloy casing.
  • aluminum alloy has the advantages of lighter weight and better processability. It can be easily processed into an integrated cylindrical or shell shape with a hollow inner cavity, and at the same time, the entire electret microphone can be lighter in weight, which is convenient for the installation and use of the electret microphone.
  • the electret 21 can be in contact with the housing 1 and the closed end 11 is spaced from the detection surface 21a of the electret 21 Settings. In this way, after the electret 21 and the case 1 are in contact with each other, the metal case 1 and the electret 21 can communicate with each other, and can serve as a connection medium for transferring the electric charges or electrical signals on the electret 21.
  • the signal is transmitted to other parts of the acoustic induction device 2 to complete the signal transmission between the electret 21 and other parts of the acoustic induction device 2.
  • the closed end 11 and the detection surface 21 a of the electret 21 are generally kept at an interval. In this way, there is an air interlayer with a certain thickness between the closed end 11 and the detection surface 21 a of the electret 21.
  • the closed end 11 of the housing 1 will transmit these acoustic vibrations to the inside of the housing 1, and then use the air interlayer as a transmission medium to conduct the sound to the station.
  • the electret 21 is deformed accordingly. In this way, the closed end 11 of the housing 1 and the detection surface 21a of the electret 21 are spaced apart.
  • the deformation of the electret 21 is not restricted by the housing 1, and the corresponding deformation can be accurately and sensitively generated according to the sound pressure. , To improve the detection accuracy of sound sensing components for sound vibration.
  • the closed end 11 of the housing 1 is provided with an end surface 11a, and The end surface 11 a and the detection surface 21 a of the electret 21 are parallel to each other.
  • the closed end 11 of the housing 1 is an end close to the electret 21.
  • the closed end 11 generally has a relatively flat end surface 11 a, and a plane where the end surface 11 a is located is parallel to the detection surface 21 a of the electret 21.
  • the closed end 11 of the casing 1 is also a hollow structure composed of a thin wall.
  • both the outer wall and the inner wall of the closed end 11 of the housing 1 have flat end faces 11a, and the wall thickness of the shell wall at the closed end 11 is relatively uniform.
  • the wall thickness at the closed end 11 of the casing 1 is relatively uniform, when the sound waves are transmitted from the outside of the casing 1 to the inside of the casing 1, the transmission speed of the sound waves is relatively uniform, which can avoid the distortion of the sound waves when passing through the inside and outside of the casing 1. .
  • the end surface 11a at the closed end 11 of the housing 1 and the detection surface 21a are parallel to each other. Because the end surface 11a and the detection surface 21a of the electret 21 are generally flat, and the direction of the plane will also affect the transmission of sound waves, the end surface 11a and the detection surface 21a of the electret 21 are arranged opposite and in parallel. It is possible to avoid the orientation of the end surface 11a from affecting the transmission of sound waves. On the other hand, it is also possible to maintain a close or equal distance between the end surface 11a and the detection surface 21a.
  • the sound waves at the end surface 11a of the housing 1 can be uniformly and uniformly transmitted to the detection surface 21a of the electret 21, and the sound waves are prevented from being transmitted inside the housing 1 due to the orientation of the end surface 11a and the detection surface 21a being different Distortion occurs.
  • the end surface 11a parallel to the detection surface 21a of the electret 21 is provided at the closed end 11 of the casing 1, so that external sound waves and vibrations can be conducted when the acoustic wave and vibration are transmitted to the electret 21 through the casing 1. It is relatively uniform and can effectively avoid the distortion caused by the shell 1 affecting the acoustic wave transmission path.
  • an electret microphone is usually provided inside the electret microphone.
  • the electret 21 has a structure that performs positioning and vibration reduction. Among them, optionally, a damping washer 31 may be provided between the end surface 11 a and the detection surface 21 a of the electret 21.
  • a shock-absorbing washer 31 may be further provided between the electret 21 and the casing 1. In this way, the vibration damping washer 31 can form the positioning and support for the electret 21 and avoid the overall vibration or shaking when the electret 21 is subjected to the sound pressure.
  • the damping washer 31 may be generally disposed between the end surface 11 a of the housing 1 at the closed end 11 and the detection surface 21 a of the electret 21. Therefore, the electret 21 is supported by the damping washer 31 and can communicate with the shell.
  • the closed ends 11 of the bodies 1 maintain a proper distance between them, so as to avoid movement to a position where they are in contact with the housing 1 due to shaking.
  • the shock absorbing washer 31 may be a metal washer. Because the metal washer can maintain good contact with the electret 21 and the housing 1, even if direct contact cannot be maintained between the electret 21 and the inner wall of the housing 1, the shock washer 31 can be used as a conductive medium. Continuity.
  • a side of the electret 21 far from the closed end 11 may also be provided with a damping washer 32, so that the two damping washer 31 and 32 may be respectively
  • the electret 21 is fixed and supported from both sides of the electret 21 to avoid shaking and displacement of the electret 21.
  • the damping washer 32 provided on the side of the electret 21 away from the closed end 11 is usually an insulation member, so as to prevent the electret 21 and other parts of the acoustic sensing component from being turned on and short-circuited.
  • the damping washer 32 located on the side of the electret 21 away from the closed end 11 may be a plastic washer.
  • the acoustic sensing device 2 In order to detect the sound transmitted to the interior of the housing 1, the acoustic sensing device 2 also has various structures and implementation forms. The details are described below.
  • the electret 21 may be sheet-shaped. At this time, the sheet-shaped electret 21 has a detection surface 21a having a thinner thickness and a larger area. After the external sound vibration is transmitted into the electret microphone, it will face the detection surface 21a having a larger area. The electret 21 receives most of the energy of the vibration of the sound wave, and the sound pressure generated by the vibration will easily push the electret 21 to deform, so that the induction capacitor has a larger capacitance value change, which improves the acoustic induction device 2 to the outside world. Detection sensitivity of sound vibration.
  • the electret 21 can be a plastic film or a plastic sheet, and at the same time, one side of the plastic film is evaporated or plated with a metal film, and different sides of the plastic film carry different charges, and at this time the plastic The thin film can constitute the electret 21.
  • other materials commonly used by those skilled in the art may also be used to form the electret 21, which will not be repeated here.
  • the acoustic sensing device 2 may further include an electrode plate 22, and the electrode plate 22 and the electret 21 are spaced from each other so that An inductive capacitor is formed between the bodies 21 which can change the capacitance value with the deformation of the electret 21; the electret 21 is located between the electrode plate and the closed end 11.
  • the electrode plate 22 may be a metal plate, and because the electret 21 is plated with a metal thin film by evaporation or the like, it can be equivalent to the existence of a metal plate. In this way, the electrode plate 22 and the electret 21 are spaced apart, and the electrode plate 22 and the electret 21 can together form a flat capacitor, that is, an induction capacitor for inducing a sound signal. At this time, air is used as the dielectric between the electrode plate 22 and the electret 21.
  • the acoustic induction component can make the judgment and identification of the acoustic signal according to the change in the capacitance value of the induction capacitor.
  • the electret 21 as the main detection component in the acoustic sensing device 2 is usually located at the forefront of sound vibration propagation, that is, the side near the closed end 11 of the casing 1. At this time, the electret 21 is located between the substrate and the closed end 11.
  • the external acoustic vibration is transmitted to the inside of the housing 1 of the microphone of the electret 21, it can act on the detection surface 21 a of the electret 21 and use it.
  • the deformation of the electret 21 enables detection and recognition of acoustic wave vibration. Because the electret 21 is located on the side close to the closed end 11, when the acoustic wave acts on the electret 21, the attenuation of the acoustic wave energy is less, and the detection and recognition accuracy is higher.
  • the electrode plate 22 and the casing 1 are generally insulated from each other.
  • the electret 21 and the electrode plate 22 are also insulated from each other, and constitute a sensing capacitor for detecting sound, so that the sound sensing component can realize normal detection and recognition of sound and vibration.
  • the change in the capacitance value of the induction capacitor is usually small, resulting in a high output impedance and a weak sound detection signal.
  • a unit or module capable of amplifying a signal needs to be provided in the acoustic sensing device 2 to amplify the electric signal generated by the deformation of the electret 21 to Achieving the appropriate strength and power for easy identification and processing of electrical signals.
  • the acoustic sensing device 2 further includes an amplifying circuit, and the amplifying circuit is electrically connected to the inductive capacitor for amplifying the capacitance of the inductive capacitor.
  • the amplification circuit is usually connected to the electret 21 and the electrode plate 22, so that when the induced capacitance value formed between the electret 21 and the electrode plate 22 changes, the induced capacitance value can be amplified by the amplification circuit, and An electrical signal having a suitable intensity or amplitude is formed for subsequent identification processing.
  • the amplifying circuit can have various forms and compositions.
  • the amplifier circuit may include a field effect transistor 23.
  • the field effect tube 23 has the advantages of extremely high input impedance, low noise figure, and the like, so it can be used as a main component of an amplifier circuit to improve the signal strength output by the induction capacitor.
  • the field-effect transistor 23 usually has three electrodes: source (S), gate (G), and drain (D).
  • the gate G of the field-effect transistor 23 is usually connected to the electrode plate 22 of the induction capacitor, and the field The source S and the drain D of the effect tube 23 can be drawn from the casing 1 to be connected to other circuits.
  • the output line of the electret microphone may generally include three: a source S of the field effect tube 23, a drain D of the field effect tube 23, and a shield line for connecting to the casing 1.
  • the electret microphone can output the gain and amplified capacitance signals through the source S or the drain stage D of the field effect tube 23.
  • the electret microphone includes a housing having a cavity and an acoustic sensing device located in the cavity.
  • the acoustic sensing device includes an electret, and the electret is provided with a detection surface for collecting sound.
  • the end corresponding to the detection surface of the polar body is a closed end.
  • FIG. 4 is a schematic structural diagram of an acoustic vibration detection device according to a second embodiment of the present invention.
  • the acoustic vibration detection device 30 of this embodiment includes a circuit board 20 and an electret microphone 10 according to the foregoing first embodiment.
  • the electret microphone 10 is located on the circuit board 20 and the electret microphone 10 is used to detect sound vibration caused by impact.
  • the specific structure, function, and working principle of the electret microphone 10 have been described in detail in the foregoing first embodiment, and are not repeated here.
  • the acoustic vibration detection device 30 may be provided in an independent device and equipment, and used to detect external impact or vibration received by the device or equipment.
  • the sound vibration detection device 30 includes an electret microphone 10 that can collect sound. When the device is impacted or vibrated by the outside world, a certain sound will be generated accordingly.
  • the acoustic vibration detection device 30 can detect the acoustic wave generated by the impact or vibration through the electret microphone 10 and correspondingly convert it into electricity. The signal will be processed and calculated later.
  • the electret microphone 10 is usually located inside the acoustic vibration detection device 30 and is disposed on the circuit board 20.
  • the circuit board 20 may be provided with a processor or other control and processing circuits to amplify, filter, and identify the sound wave signals detected by the electret microphone 10, so as to obtain status information such as the number of impacts experienced by the device. .
  • the circuit board 20 is usually a printed circuit board (Printed Circuit Board, PCB).
  • the printed circuit board has a certain rigidity and structural strength, and can effectively fix the electret microphone 10. Support to ensure that the electret microphone 10 is fixed in a normal working position.
  • the acoustic vibration detection device includes a circuit board and an electret microphone.
  • the electret microphone is located on the circuit board, and the electret microphone is used to detect sound vibration caused by impact.
  • the electret microphone includes The housing of the cavity and the acoustic sensing device located in the cavity.
  • the acoustic sensing device includes an electret.
  • the electret is provided with a detection surface for collecting sound.
  • the end of the housing corresponding to the detection surface of the electret is a closed end. .
  • FIG. 5 is a schematic structural diagram of a racing remote control car provided by an embodiment of the present invention. Please refer to FIG. 5 together.
  • An embodiment of the present invention further provides a racing remote control car 100 including the sound vibration detection device described in the second embodiment.
  • the racing remote control car includes a vehicle body 101 and the acoustic vibration detection device as described in the foregoing second embodiment.
  • the outer surface of the vehicle body 101 is provided with a guard plate 103, and the outer surface of the guard plate 103 is subject to impact.
  • Surface 103a the sound vibration detection device is located on the side of the shield plate facing away from the hit surface 103a, and is used to detect the sound vibration generated when the shield plate is struck by an external projected object.
  • the specific structure, function, and working principle of the acoustic vibration detection device have been described in detail in the foregoing embodiments, and are not repeated here.
  • the racing remote control car can be used to compete in competitions with other remote control cars, and score and compete by shooting projectiles at each other.
  • a sound vibration detection device can be used to detect the sound vibration caused by the impact or impact of external projectiles, and according to the sound The number of vibration occurrences is counted.
  • the outer surface of the racing remote control car is provided with a protective plate.
  • the outer surface of the protective plate is used to withstand the impact of the projectile.
  • the vibration caused can be transmitted through the shield to the acoustic vibration detection device inside the shield, and the electret microphone in the acoustic vibration detection device is It can pick up and detect the acoustic vibration signal caused by the strike, and send the signal to the subsequent processors and other modules to judge and count the number of strikes.
  • the closed end of the casing in the acoustic vibration detection device is disposed toward the impacted surface.
  • the direction of sound detection of the electret microphone is consistent with the direction of sound wave propagation, which can effectively detect sound wave vibration and improve detection sensitivity and accuracy.
  • the racing remote control car includes a vehicle body and an acoustic vibration detection device.
  • a protective plate is provided on the outer surface of the vehicle body.
  • the external surface of the protective plate is the impacted surface.
  • the acoustic vibration detection device is located on the protective plate facing away from the impacted surface.
  • One side is used to detect the sound vibration generated when the shield is struck by an external projectile.
  • the electret microphone in the sound vibration detection device includes a housing with a cavity and an acoustic sensing device located in the cavity.
  • the sensing device includes an electret, and the electret is provided with a detection surface for collecting sound, and the end corresponding to the detection surface of the electret is a closed end.
  • the electret microphone can collect external sound and vibration signals, and the intensity and energy of sound and vibration are small during collection, and the linear range of sound and vibration can be accurately obtained, and the accuracy and sensitivity of sound detection can be improved.
  • the sound vibration detection device is used to obtain the accurate status of the competition remote control car when it is struck by an external projectile, so as to ensure the accurate scoring of the competition.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本发明实施例提供一种驻极体(21)麦克风、声振检测装置及竞赛遥控车。本发明实施例的驻极体(21)麦克风,包括具有空腔的壳体(1)和位于所述空腔内的声感应器件(2),所述声感应器件(2)包括驻极体(21),所述驻极体(21)设有用于采集声音的检测面(21a),所述壳体(1)与所述驻极体(21)的所述检测面(21a)相对应的一端为封闭端。本发明实施例能够实现对外界声音和振动的准确检测。

Description

驻极体麦克风、声振检测装置及竞赛遥控车 技术领域
本发明实施例涉及声学领域,尤其涉及一种驻极体麦克风、声振检测装置及竞赛遥控车。
背景技术
麦克风通过声电转化过程,能够将外界的声音和振动信号转化为电信号,从而对声音进行获取和识别。
目前,在一些车辆或者其它自控设备上,为了感应外界带来的振动和撞击,通常可以通过设置麦克风来进行检测。当外界有物体撞击在车辆上时,声波的振动会传递至麦克风,并由麦克风进行检测和识别。通常的,麦克风一般为驻极体麦克风,其外壳上设置有和内部连通的拾音孔,而外壳内部的驻极体膜片可以形成电容,当外界有声波振动时,声波即可通过拾音孔而碰到驻极体膜片,此时驻极体膜片产生变化,电容两端的电场就会发生变化,从而产生了随声波变化的电压改变,此时即可通过读取电压而对声波变化进行识别。
然而,因外界撞击而产生的声波振动通常较大,这些高分贝的声波振动可能会超过麦克风的线性量程,从而丢失原先的信息,造成声音无法被准确检测和还原。
发明内容
本发明实施例提供一种驻极体麦克风、声振检测装置及竞赛遥控车,能够实现对外界声音和振动的准确检测。
第一方面,本发明实施例提供一种驻极体麦克风,驻极体麦克风包括具有空腔的壳体和位于空腔内的声感应器件,声感应器件包括驻极体,驻极体设有用于采集声音的检测面,壳体与驻极体的检测面相对应的一端为封闭端。
可选的,壳体为金属壳体。
可选的,壳体为铝合金壳体。
可选的,驻极体与壳体相接触,并且封闭端与驻极体的检测面间隔设置。
可选的,封闭端设有端面,端面与驻极体的检测面相互平行。
可选的,端面和驻极体的检测面之间设有减震垫圈。
可选的,壳体为一端开口的套筒,另外一端为封闭端,声感应器件位于套筒内,封闭端靠近驻极体设置。
可选的,驻极体为片状。
可选的,声感应器件还包括极板,极板和驻极体间隔设置,以在极板和驻极体之间形成可随驻极体的形变而产生电容值变化的感应电容;驻极体位于极板和封闭端之间。
可选的,极板和壳体之间绝缘。
可选的,声感应器件还包括放大电路,放大电路与感应电容电连接,用于放大感应电容的电容值。
可选的,放大电路包括场效应管。
第二方面,本发明实施例提供一种声振检测装置,包括电路板和如上所述的驻极体麦克风,驻极体麦克风位于电路板上,驻极体麦克风用于检测因撞击而产生的声音振动。
第三方面,本发明实施例提供一种竞赛遥控车,包括车体和如上所述的声振检测装置,车体的外表面设置有护板,护板的外表面为受打击面,声振检测装置位于护板的背离受打击面的一侧,用于检测护板受外部投射物打击时所产生的声音振动。
可选的,声振检测装置中壳体的封闭端朝向受打击面设置。
本发明实施例的驻极体麦克风、声振检测装置及竞赛遥控车,驻极体麦克风包括具有空腔的壳体和位于空腔内的声感应器件,声感应器件包括驻极体,驻极体设有用于采集声音的检测面,壳体与驻极体的检测面相对应的一端为封闭端。这样驻极体麦克风能够采集外界的声音和振动信号,且采集时声音和振动的强度和能量较小,能够让驻极体麦克风准确获取声音和振动的线性区间,提高声音检测的准确性和灵敏性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的驻极体麦克风的结构示意图;
图2是本发明实施例一提供的驻极体麦克风的俯视图;
图3是本发明实施例一提供的驻极体麦克风的侧视图;
图4是本发明实施例二提供的声振检测装置的结构示意图;
图5是本发明实施例提供的竞赛遥控车的结构示意图。
附图标记说明:
1-壳体;2-声感应器件;11-封闭端;21-驻极体;22-极板;23-场效应管;31、32-减震垫圈;11a-端面;21a-检测面;10-驻极体麦克风;20-电路板;30-声振检测装置;100-竞赛遥控车;101-车体;103-护板;103a-受打击面;G-栅极;S-源极;D-漏极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
图1是本发明实施例一提供的驻极体麦克风的结构示意图。图2是本发明实施例一提供的驻极体麦克风的俯视图。图3是本发明实施例一提供的驻极体麦克风的侧视图。如图1至图3所示,本实施例提供的驻极体麦克风,包括具有空腔的壳体1和位于空腔内的声感应器件2,声感应器件2包括驻极体21,驻极体21设有用于采集声音的检测面21a,壳体1与驻极体21的检测面21a相对应的一端为封闭端11。
具体的,麦克风学名为传声器,是将声音信号转换为电信号的能量转换器件。麦克风通常利用电阻、电感或电容的变化来感测声音信号。其中,驻 极体麦克风通常为电容式麦克风,可以利用电容器的极板之间的电容变化来感测声音振动,完成声音信号的拾取和检测。
具体的,为了采集声音信号,本实施例中的驻极体麦克风包括有壳体1,壳体1为中空结构,其内部可以用于容纳声感应器件2。声感应器件2一般可以采用电容变化方式来感应声音和振动。具体的,为了构成感应电容,声感应器件2中可以包括有驻极体21,驻极体21又叫永电体,是一种在强外电场等因素作用下极化并能“永久”保持极化状态的电介质。一般的,驻极体21通常为塑料或者其它绝缘材料制成,在驻极体21的一面蒸发一层金属薄膜,然后再经过高压电场驻极处理后,在驻极体21的两面分别驻有极性相异的电荷。此时,驻极体21可以作为用于检测声音振动的感应电容的一部分,例如是作为电容的一极,并和电容的另一极间隔设置,而驻极体21和电容的另一极之间即可形成感应电容。当外界的声音和振动进入驻极体麦克风内部时,驻极体21在声压的作用下会产生形变,并改变自身与感应电容另一极之间的间距,这样感应电容的电容值即可发生变化,从而将声音信号转化为电学信号。
一般的,在声感应器件2中,驻极体21和感应电容的另一极通常会相对且相互平行设置,而驻极体21的远离另一极的一面,即可作为用于采集外部声音的检测面21a。通常的,驻极体21的检测面21a朝向驻极体麦克风的外侧,当外界的声波和振动透过驻极体麦克风的壳体1进入驻极体麦克风内部后,会作用在驻极体21的检测面21a上,而驻极体21此时即可在声压作用下产生一定的形变,从而改变声感应器件2的电容值大小,完成对声音信号的拾取和检测。一般的,驻极10体21的检测面21a通常为平面。
当驻极体麦克风用于检测日常声音,例如人的语音或者其它分贝数较小的声音时,为了提高驻极体麦克风的灵敏性,驻极体麦克风通常为敞开式结构,以避免壳体1干扰到声感应器件2的声音拾取过程。然而,当驻极体麦克风用于通过声波检测来自外界的强烈冲击和振动时,冲击所引发的振动一般较为强烈。此时,由于冲击带来的能量过大,传递至驻极体麦克风后,驻极体会产生过大的振幅,超过原来固有的线性区间,导致驻极体麦克风所检测到的信号与原始声强的线性关系模糊,进而致使一部分信息丢失,降低了对原始声强的区分度和声音还原度,使得原始声音和振动难以得到准确的还 原。为了避免高分贝的声波振动超出驻极体麦克风的原有线性区间,对驻极体21等部件造成损坏和寿命降低,本实施例中,壳体1的与检测面21a相对的一侧为封闭端11。
具体的,为了避免外界冲击和振动所引发的声波直接接触到驻极体21,驻极体麦克风的壳体1并不是敞开式,而是形成一封闭的腔体。这样驻极体21就会被包裹在壳体1的内腔之中,且壳体1的与驻极体21上检测面21a相对的一侧为封闭端11,其上并未设置拾音孔等可容声波透过的结构。这样,当外界声波传递至驻极体麦克风的壳体1外侧时,由于缺乏直接传导路径,所以无法直接进入驻极体麦克风内部,而只能依靠驻极体麦克风的壳体壁的振动而间接的传入壳体1中。此时,因为声波振动来源于外界的强烈冲击,所以即使壳体1阻挡了声波的直接传递,衰减后的声波也具有足够的能量推动驻极体21发生形变,保证声感应部件能够实现对声波振动的正常检测;同时由于驻极体21所检测到的声波是由壳体壁间接振动而形成的,因而传递至驻极体21检测面21a上的声波相较原来的外部声波而言,其能量得到了一定衰减,振幅较小,不会超过声感应器件2的线性区间和检测量程,可以有效避免驻极体21以及整个声感应器件2的寿命减少甚至损坏现象。
为了收容包括驻极体21在内的声感应器件2,壳体1通常可以为具有中空腔体的多种结构和形状。作为其中一种可选的实施方式,驻极体麦克风的壳体1为一端开口的套筒,而套筒的另外一端为封闭端11,这样可以将声感应器件2设置在套筒内,且套筒的封闭端11靠近驻极体21设置。
具体的,由于壳体1为一端开口的套筒,因而可以通过该开口将声感应器件2设置在套筒内部,同时声感应器件2的引线也可以从该开口引出。而套筒本身为柱状,因而套筒的其中一端可以作为封闭端11,并让驻极体21和封闭端11相互临近,以使驻极体21接收来自于封闭端11一侧的声波振动。由于壳体1为内部具有空腔的套筒形状,能够提供具有一定长度,且形状较为规整的内部空间,因而可以将声感应器件2沿壳体1的长度方向排列并容置在壳体1内部,而壳体1的封闭端11作为采集声音的一端,壳体1的开口端用于穿设引线以及和其它结构连接,这样壳体1具有较好的容纳能力以及密封和保护能力。
其中,驻极体麦克风的壳体1主要用于对声感应器件2实现密封和保护, 避免外界的灰尘、水汽或者其它杂质进入壳体1内部,影响到声感应器件2的正常工作。为了让壳体1实现对声感应器件2的密封与保护,作为其中一种可选的实施方式,壳体1可以为金属壳体。当壳体1为金属壳体时,壳体1自身具有一定的硬度,能够对壳体1内部的声感应器件2起到较好的保护和密封效果;同时,由于金属为导体,所以壳体1可以作为驻极体21和声感应器件2的其它电路之间的连接媒介,将驻极体21上的电荷或者电信号通过金属构成的壳体1而传导至电路的其它部分。
进一步的,壳体1可以为铝合金壳体。其中,铝合金具有质量较轻、加工性能较好等有点。可以较为容易的被加工成具有中空内腔的一体式筒状或壳状外形,同时能够让整个驻极体麦克风具有较轻的质量,方便驻极体麦克风的安装与使用。
当驻极体麦克风的壳体1为金属壳体时,作为其中一种可选的方式,驻极体21可以与壳体1相接触,并且封闭端11与驻极体21的检测面21a间隔设置。这样,驻极体21和壳体1相互接触后,金属材质的壳体1即可和驻极体21之间导通,并能够作为连接媒介,将驻极体21上的电荷或者电信号的改变发送至声感应器件2的其它部分,完成驻极体21与声感应器件2其它部分之间的信号传输。
同时,封闭端11和驻极体21的检测面21a之间一般保持间隔设置。这样,封闭端11和驻极体21的检测面21a之间具有一定厚度的空气夹层。当外界的振动和冲击传递至驻极体麦克风的壳体1上时,壳体1的封闭端11就会将这些声波振动传递至壳体1内部,并利用空气夹层作为传递媒介再传导至驻极体21上,让驻极体21产生相应的形变。这样将壳体1的封闭端11与驻极体21的检测面21a之间间隔设置,驻极体21的形变不会受到壳体1的约束,能够准确灵敏的根据声压而产生相应的形变,提高声感应部件对于声音振动的检测准确性。
为了让声音振动全面而均衡的作用于驻极体21的检测面21a上,提高驻极体麦克风的检测准确性以及灵敏性,可选的,壳体1的封闭端11设置有端面11a,且该端面11a与驻极体21的检测面21a相互平行。
具体的,壳体1的封闭端11为靠近驻极体21的一端,该封闭端11一般具有较为平整的端面11a,该端面11a所在的平面与驻极体21的检测面21a 相互平行。此时,由于壳体1为中空结构,因而壳体1的封闭端11同样为由薄壁构成的中空结构。此时,壳体1的封闭端11处的外壁和内壁均具有呈平面的端面11a,且封闭端11处的壳壁壁厚较为均匀。由于壳体1封闭端11处的壁厚较为均匀,因而声波在从壳体1外侧传递至壳体1内部时,声波的传递速度较为统一,能够避免声波在经由壳体1内外时出现失真现象。
此外,壳体1封闭端11处的端面11a会与检测面21a相互平行。由于端面11a和驻极体21的检测面21a一般均为平面,而平面的方向也会对声波的传递造成影响,因而让端面11a和驻极体21的检测面21a相对且平行设置,一方面能够避免端面11a的朝向影响到声波的传递,另一方面也可以是端面11a和检测面21a之间处处保持相近或相等的间距。这样可以让壳体1的端面11a处的声波能够均匀一致的传导至驻极体21的检测面21a上,防止因端面11a的朝向和检测面21a朝向不一而导致声波在壳体1内部传输时出现失真现象。
这样通过在壳体1封闭端11处设置与驻极体21检测面21a相互平行的端面11a,能够让外界的声波和振动在经过壳体1传导至驻极体21上时,使声波的传导较为均匀一致,有效避免壳体1影响到声波传导路径而导致的失真现象。
而当驻极体21随壳体1内部声压的变化出现形变时,为了避免驻极体21在变形时产生损坏或者与其它部件产生干涉,在驻极体麦克风的内部通常还设置有用于对驻极体21进行定位减振的结构。其中,可选的,端面11a和驻极体21的检测面21a之间可以设置有减震垫圈31。
其中,由于驻极体21的边缘一般会和壳体1接触,而当驻极体21固定不牢时,不仅驻极体21自身会在声压作用下产生形变,同时整个驻极体21也可能因为受到声波振动的影响而产生整体位移和晃动等现象。此时,驻极体21的整体位移以及晃动分散了声波的能量,会造成声感应器件2的检测不准现象。为了避免驻极体21在产生形变时产生整体位移和晃动等,影响声音的正常检测和采集,在驻极体21和壳体1之间还可以设置有减震垫圈31。这样减振垫圈31可以对驻极体21形成定位和支撑,避免驻极体21受到声压作用时,出现整体振动或者晃动。
具体的,减震垫圈31通常可以设置在壳体1封闭端11处的端面11a以 及驻极体21的检测面21a之间,因而驻极体21得到了减震垫圈31的支撑,能够和壳体1的封闭端11之间保持合适的间距,而避免出现因晃动而移动至与壳体1相互贴合的位置。
一般的,为了让驻极体21和金属壳体之间具有良好的接触与传导,减震垫圈31可以为金属垫圈。因为金属垫圈和驻极体21以及壳体1之间均能够保持良好的接触,所以即使驻极体21和壳体1内壁之间无法保持直接接触,也能够通过减震垫圈31作为传导媒介实现导通。
此外,为了进一步对驻极体21进行固定和支撑,可选的,在驻极体21的远离封闭端11的一面也可以设置有减震垫圈32,这样两个减震垫圈31和32可以分别从驻极体21的两侧对驻极体21进行固定和支撑,以避免驻极体21产生晃动和位移。具体的,设置在驻极体21的远离封闭端11的一面的减震垫圈32通常为绝缘件,以避免驻极体21和声感应部件的其它部分导通短路。一般的,位于驻极体21的远离封闭端11一面的减震垫圈32可以为塑料垫圈。
为了检测传递至壳体1内部的声音,声感应器件2也会具有多种结构和实现形式。以下进行详细说明。
其中,作为一种可选的实施方式,为了提高声感应器件2对声波的感应效果,驻极体21可以为片状。此时,片状的驻极体21具有较薄的厚度以及面积较大的检测面21a,当外界的声音振动传入驻极体麦克风内部之后,会面对具有较大面积的检测面21a,从而让驻极体21接收声波振动的大部分能量,且振动所产生的声压较为容易的推动驻极体21产生形变,从而使得感应电容具有较大的电容值变化,提高声感应器件2对外界声音振动的检测灵敏性。
其中,在具体实现时,可以使驻极体21为塑料薄膜或者塑料薄片,同时在塑料薄膜的一面蒸发或者镀上金属薄膜,而塑料薄膜的不同侧携带上极性不同的电荷,此时塑料薄膜即可构成驻极体21。此外,也可以采用其它本领域技术人员常用的材料形成驻极体21,此处不再赘述。
为了和驻极体21共同形成用于感应声音振动的感应电容,可选的,声感应器件2还可以包括极板22,极板22和驻极体21间隔设置,以在极板和驻极体21之间形成可随驻极体21的形变而产生电容值变化的感应电容;驻极体21位于极板和封闭端11之间。
具体的,极板22可以为一块金属板,而驻极体21上由于通过蒸发等方式镀敷有一层金属薄膜,因而可以等效于金属板存在。这样将极板22和驻极体21间隔设置,极板22和驻极体21即可共同组成一个平板式电容器,也就是用于感应声音信号的感应电容。此时,极板22和驻极体21之间依靠空气作为电介质,当驻极体21因为声压作用而产生形变时,驻极体21会被压向靠近极板22或者远离极板22一侧,此时,极板22和驻极体21之间的距离发生改变,感应电容的电容值也就随之变化。而将极板22和驻极体21分别与声检测部件的电路相连接后,即可让声感应部件根据感应电容的电容值变化而进行声音信号的判断与识别。
其中,驻极体21作为声感应器件2中的主要检测部件,通常会位于声音振动传播的最前端,也就是靠近壳体1的封闭端11的一侧。此时,驻极体21位于基板和封闭端11之间,当外界的声波振动传入驻极体21麦克风的壳体1内部后,即可作用在驻极体21的检测面21a上,并利用驻极体21的形变实现对声波振动的检测与识别。由于驻极体21位于靠近封闭端11的一侧,因而声波作用于驻极体21上时,声波能量的衰减较少,检测识别准确度较高。
可选的,由于驻极体21可能会接触到壳体1,这样为了保证感应电容的正确工作,极板22和壳体1之间一般会相互绝缘。此时,驻极体21和极板22之间也会保持相互绝缘,并构成用于检测声音的感应电容,使声感应部件能够实现声音和振动的正常检测识别。
通常的,驻极体21在声波的声压作用下产生形变时,感应电容的电容值变化量通常较小,造成输出阻抗较高,所产生的声音检测信号也会较为微弱。为了保证驻极体21麦克风对声音振动进行检测的灵敏性和准确性,声感应器件2中需要设置能够放大信号的单元或者模块,以将驻极体21形变所产生的电信号进行放大,以达到合适的强度及功率,方便对电信号进行识别和处理。
可选的,为了放大电信号,声感应器件2还包括放大电路,放大电路与感应电容电连接,用于放大感应电容的电容值。其中,放大电路通常连接在驻极体21以及极板22上,这样驻极体21和极板22之间所形成的感应电容值变化时,该感应电容值即可得到放大电路的放大,而形成具有合适的强度或者幅值的电信号以供后续识别处理。
其中,放大电路可以为多种形式和组成。作为其中一种可选的实施方式, 放大电路可以包括场效应管23。场效应管23具有输入阻抗极高、噪声系数低等优点,因而可以作为放大电路的主要组成部分,提高感应电容所输出的信号强度。具体的,场效应管23通常有源极(S)、栅极(G)和漏极(D)三个极,场效应管23的栅极G通常和感应电容的极板22连接,而场效应管23的源极S和漏极D可以从壳体1中引出,以和其它电路连接。这样,驻极体麦克风的输出线一般可包括三根:场效应管23的源极S、场效应管23的漏极D以及用于和壳体1连接的屏蔽线。这样驻极体麦克风就可以通过场效应管23的源极S或者漏级D输出经过增益和放大的电容信号。
本实施例中,驻极体麦克风包括具有空腔的壳体和位于空腔内的声感应器件,声感应器件包括驻极体,驻极体设有用于采集声音的检测面,壳体与驻极体的检测面相对应的一端为封闭端。这样驻极体麦克风能够采集外界的声音和振动信号,且采集时声音和振动的强度和能量较小,能够让驻极体麦克风准确获取声音和振动的线性区间,提高声音检测的准确性和灵敏性。
本发明实施例还提供一种声振检测装置。图4是本发明实施例二提供的声振检测装置的结构示意图。如图4所示,本实施例的声振检测装置30,包括电路板20和如前述实施例一所述的驻极体麦克风10,驻极体麦克风10位于电路板20上,驻极体麦克风10用于检测因撞击而产生的声音振动。其中,驻极体麦克风10的具体结构、功能以及工作原理均已在前述实施例一中进行了详细说明,此处不再赘述。
具体的,声振检测装置30可以设置在独立的装置和设备中,并用于检测装置或设备所受到的外界撞击或者是振动。为了检测来自外界的声音和振动,声振检测装置30中包括有可以采集声音的驻极体麦克风10。当装置受到外界的撞击或者振动时,会相应的产生一定的声音,此时,声振检测装置30可以通过驻极体麦克风10检测到由于撞击或振动而产生的声波,并相应的转化为电学信号,以后后续进行处理和计算。
其中,驻极体麦克风10通常位于声振检测装置30内部,且设置在电路板20上。这样电路板20上可以设置有处理器或者其它控制和处理电路,以对驻极体麦克风10所检测到的声波信号进行放大、过滤和识别等处理,从而获知装置所经受的撞击次数等状态信息。
其中,为了固定驻极体麦克风10,电路板20通常为印制电路板(Printed  Circuit Board,PCB),印制电路板具有一定的刚度和结构强度,能够有效对驻极体麦克风10进行固定与支撑,保证驻极体麦克风10被固定在正常的工作位置。
本实施例中,声振检测装置包括电路板和驻极体麦克风,驻极体麦克风位于电路板上,驻极体麦克风用于检测因撞击而产生的声音振动;其中,驻极体麦克风包括具有空腔的壳体和位于空腔内的声感应器件,声感应器件包括驻极体,驻极体设有用于采集声音的检测面,壳体与驻极体的检测面相对应的一端为封闭端。这样声振检测装置能够采集外界的声音和振动信号,且采集时声音和振动的强度和能量较小,能够准确获取声音和振动的线性区间,提高声音检测的准确性和灵敏性。
图5是本发明实施例提供的竞赛遥控车的结构示意图。请一并参阅图5,本发明实施例还提供一种竞赛遥控车100,包括前述实施例二中所述的声振检测装置。具体的,本实施例中,竞赛遥控车包括车体101和如前述实施例二所述的声振检测装置,车体101的外表面设置有护板103,护板103的外表面为受打击面103a,声振检测装置位于护板的背离受打击面103a的一侧,用于检测护板受外部投射物打击时所产生的声音振动。其中,声振检测装置的具体结构、功能以及工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
具体的,竞赛遥控车可以用于和其它遥控车进行竞技比赛,并通过相互射击弹丸达到得分与竞技效果。当竞赛遥控车受到弹丸的打击时,为了对弹丸在竞赛遥控车上的打击次数进行检测和统计,可以通过声振检测装置检测因为外界的投射物打击或撞击而产生的声音振动,并根据声音振动出现的次数进行打击次数计算。
其中,为了承受外界的弹丸或者其它投射物的打击,竞赛遥控车的车体外表面设置有护板,护板的外表面用于承受投射物的打击,为受打击面,而声振检测装置即可设置在护板内侧。此时,当护板的受打击面遭到了外部投射物的打击,所引起的振动即可通过护板传递至护板内侧的声振检测装置,而声振检测装置中的驻极体麦克风即可拾取和检测打击引起的声波振动信号,并将该信号发送给后续的处理器等模块以进行打击次数的判断和统计。
其中,可选的,声振检测装置中壳体的封闭端朝向受打击面设置。这样 驻极体麦克风的声音检测方向与声波的传播方向保持一致,可以有效检测声波振动,提高检测的灵敏度和准确性。
本实施例中,竞赛遥控车包括车体和声振检测装置,车体的外表面设置有护板,护板的外表面为受打击面,声振检测装置位于护板的背离受打击面的一侧,用于检测护板受外部投射物打击时所产生的声音振动;其中,声振检测装置中的驻极体麦克风包括具有空腔的壳体和位于空腔内的声感应器件,声感应器件包括驻极体,驻极体设有用于采集声音的检测面,壳体与驻极体的检测面相对应的一端为封闭端。这样驻极体麦克风能够采集外界的声音和振动信号,且采集时声音和振动的强度和能量较小,能够准确获取声音和振动的线性区间,提高声音检测的准确性和灵敏性,从而准确的利用声振检测装置获取竞赛遥控车被外部投射物打击时的准确状况,保证竞赛的准确计分。
最后应说明的是:以上各实施例仅用以说明本发明实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例各实施例技术方案的范围。

Claims (37)

  1. 一种驻极体麦克风,其特征在于,所述驻极体麦克风包括具有空腔的壳体和位于所述空腔内的声感应器件,所述声感应器件包括驻极体,所述驻极体设有用于采集声音的检测面,所述壳体与所述驻极体的所述检测面相对应的一端为封闭端。
  2. 根据权利要求1所述的驻极体麦克风,其特征在于,所述壳体为金属壳体。
  3. 根据权利要求2所述的驻极体麦克风,其特征在于,所述壳体为铝合金壳体。
  4. 根据权利要求2所述的驻极体麦克风,其特征在于,所述驻极体与所述壳体相接触,并且所述封闭端与所述驻极体的所述检测面间隔设置。
  5. 根据权利要求1-4任一项所述的驻极体麦克风,其特征在于,所述封闭端设有端面,所述端面与所述驻极体的检测面相互平行。
  6. 根据权利要求5所述的驻极体麦克风,其特征在于,所述端面和所述驻极体的检测面之间设有减震垫圈。
  7. 根据权利要求1-4任一项所述的驻极体麦克风,其特征在于,所述壳体为一端开口的套筒,另外一端为所述封闭端,所述声感应器件位于所述套筒内,所述封闭端靠近所述驻极体设置。
  8. 根据权利要求1-4任一项所述的驻极体麦克风,其特征在于,所述驻极体为片状。
  9. 根据权利要求1-4任一项所述的驻极体麦克风,其特征在于,所述声感应器件还包括极板,所述极板和所述驻极体间隔设置,以在所述极板和所述驻极体之间形成可随所述驻极体的形变而产生电容值变化的感应电容;所述驻极体位于所述极板和所述封闭端之间。
  10. 根据权利要求9所述的驻极体麦克风,其特征在于,所述极板和所述壳体之间绝缘。
  11. 根据权利要求9所述的驻极体麦克风,其特征在于,所述声感应器件还包括放大电路,所述放大电路与所述感应电容电连接,用于放大所述感应电容的电容值。
  12. 根据权利要求11所述的驻极体麦克风,其特征在于,所述放大电路 包括场效应管。
  13. 一种声振检测装置,其特征在于,包括电路板和驻极体麦克风,所述驻极体麦克风包括具有空腔的壳体和位于所述空腔内的声感应器件,所述声感应器件包括驻极体,所述驻极体设有用于采集声音的检测面,所述壳体与所述驻极体的所述检测面相对应的一端为封闭端,所述驻极体麦克风位于所述电路板上,所述驻极体麦克风用于检测因撞击而产生的声音振动。
  14. 根据权利要求13所述的声振检测装置,其特征在于,所述壳体为金属壳体。
  15. 根据权利要求14所述的声振检测装置,其特征在于,所述壳体为铝合金壳体。
  16. 根据权利要求14所述的声振检测装置,其特征在于,所述驻极体与所述壳体相接触,并且所述封闭端与所述驻极体的所述检测面间隔设置。
  17. 根据权利要求13至16任意一项所述的声振检测装置,其特征在于,所述封闭端设有端面,所述端面与所述驻极体的检测面相互平行。
  18. 根据权利要求17所述的声振检测装置,其特征在于,所述端面和所述驻极体的检测面之间设有减震垫圈。
  19. 根据权利要求13至16任意一项所述的声振检测装置,其特征在于,所述壳体为一端开口的套筒,另外一端为所述封闭端,所述声感应器件位于所述套筒内,所述封闭端靠近所述驻极体设置。
  20. 根据权利要求13至16任意一项所述的声振检测装置,其特征在于,所述驻极体为片状。
  21. 根据权利要求13至16任意一项所述的声振检测装置,其特征在于,所述声感应器件还包括极板,所述极板和所述驻极体间隔设置,以在所述极板和所述驻极体之间形成可随所述驻极体的形变而产生电容值变化的感应电容;所述驻极体位于所述极板和所述封闭端之间。
  22. 根据权利要求21所述的声振检测装置,其特征在于,所述极板和所述壳体之间绝缘。
  23. 根据权利要求21所述的声振检测装置,其特征在于,所述声感应器件还包括放大电路,所述放大电路与所述感应电容电连接,用于放大所述感应电容的电容值。
  24. 根据权利要求23所述的声振检测装置,其特征在于,所述放大电路包括场效应管。
  25. 一种竞赛遥控车,其特征在于,包括车体和声振检测装置,所述的声振检测装置包括电路板和驻极体麦克风,所述驻极体麦克风包括具有空腔的壳体和位于所述空腔内的声感应器件,所述声感应器件包括驻极体,所述驻极体设有用于采集声音的检测面,所述壳体与所述驻极体的所述检测面相对应的一端为封闭端,所述驻极体麦克风位于所述电路板上,所述驻极体麦克风用于检测因撞击而产生的声音振动,所述车体的外表面设置有护板,所述护板的外表面为受打击面,所述声振检测装置位于所述护板的背离所述受打击面的一侧,用于检测所述护板受外部投射物打击时所产生的声音振动。
  26. 根据权利要求25所述的竞赛遥控车,其特征在于,所述壳体为金属壳体。
  27. 根据权利要求26所述的竞赛遥控车,其特征在于,所述壳体为铝合金壳体。
  28. 根据权利要求26所述的竞赛遥控车,其特征在于,所述驻极体与所述壳体相接触,并且所述封闭端与所述驻极体的所述检测面间隔设置。
  29. 根据权利要求25至28任意一项所述的竞赛遥控车,其特征在于,所述封闭端设有端面,所述端面与所述驻极体的检测面相互平行。
  30. 根据权利要求29所述的竞赛遥控车,其特征在于,所述端面和所述驻极体的检测面之间设有减震垫圈。
  31. 根据权利要求25至28任意一项所述的竞赛遥控车,其特征在于,所述声感应器件还包括极板,所述极板和所述驻极体间隔设置,以在所述极板和所述驻极体之间形成可随所述驻极体的形变而产生电容值变化的感应电容;所述驻极体位于所述极板和所述封闭端之间。
  32. 根据权利要求25至28任意一项所述的竞赛遥控车,其特征在于,所述极板和所述壳体之间绝缘。
  33. 根据权利要求25至28任意一项所述的竞赛遥控车,其特征在于,所述壳体为一端开口的套筒,另外一端为所述封闭端,所述声感应器件位于所述套筒内,所述封闭端靠近所述驻极体设置。
  34. 根据权利要求33所述的竞赛遥控车,其特征在于,所述驻极体为片 状。
  35. 根据权利要求33所述的竞赛遥控车,其特征在于,所述声感应器件还包括放大电路,所述放大电路与所述感应电容电连接,用于放大所述感应电容的电容值。
  36. 根据权利要求35所述的竞赛遥控车,其特征在于,所述放大电路包括场效应管。
  37. 根据权利要求25至36任意一项所述的竞赛遥控车,其特征在于,所述声振检测装置中壳体的封闭端朝向所述受打击面设置。
PCT/CN2018/106303 2018-06-29 2018-09-18 驻极体麦克风、声振检测装置及竞赛遥控车 WO2020000691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014075.1A CN110896686A (zh) 2018-06-29 2018-09-18 驻极体麦克风、声振检测装置及竞赛遥控车

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821023837.8U CN208369851U (zh) 2018-06-29 2018-06-29 驻极体麦克风、声振检测装置及竞赛遥控车
CN201821023837.8 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020000691A1 true WO2020000691A1 (zh) 2020-01-02

Family

ID=64927649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106303 WO2020000691A1 (zh) 2018-06-29 2018-09-18 驻极体麦克风、声振检测装置及竞赛遥控车

Country Status (2)

Country Link
CN (2) CN208369851U (zh)
WO (1) WO2020000691A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000374A1 (zh) * 2018-06-29 2020-01-02 深圳市大疆创新科技有限公司 声振检测装置及竞赛遥控车
CN109758774A (zh) * 2019-03-13 2019-05-17 哈尔滨若朋机器人有限责任公司 遥控无人撞靶玩具车系统
CN111699368A (zh) * 2019-05-22 2020-09-22 深圳市大疆创新科技有限公司 打击检测方法、设备、可移动平台及计算机可读存储介质
CN116067480A (zh) * 2023-04-06 2023-05-05 山东德普检测技术有限公司 一种噪音检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2814852Y (zh) * 2005-07-28 2006-09-06 陈奚平 骨传导麦克风及具有该骨传导麦克风的手持机
CN201197189Y (zh) * 2008-04-14 2009-02-18 深圳市豪恩电声科技有限公司 一种新型驻极体传声器
CN201839424U (zh) * 2010-11-08 2011-05-18 东莞勤增实业有限公司 一种固体传导传声装置
CN103096196A (zh) * 2011-11-03 2013-05-08 北京美尔斯通科技发展股份有限公司 骨传导麦克风
CN206452543U (zh) * 2016-08-31 2017-08-29 常勇 改进型驻极体式电容传声器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073382B2 (ja) * 2003-09-02 2008-04-09 ホシデン株式会社 振動センサ
JP2006078444A (ja) * 2004-09-13 2006-03-23 Hosiden Corp 加速度センサ
KR20090039376A (ko) * 2007-10-18 2009-04-22 주식회사 비에스이 기생용량을 줄인 콘덴서 마이크로폰 조립체
JP5319424B2 (ja) * 2009-06-30 2013-10-16 株式会社ミツトヨ サーボ型振動検出器
CN202150937U (zh) * 2011-07-13 2012-02-22 美律电子(深圳)有限公司 具有声学调节件的电容式麦克风
CN102724612B (zh) * 2012-06-29 2014-11-12 北京兴科迪科技有限公司 壳体采用双色注塑的车载麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2814852Y (zh) * 2005-07-28 2006-09-06 陈奚平 骨传导麦克风及具有该骨传导麦克风的手持机
CN201197189Y (zh) * 2008-04-14 2009-02-18 深圳市豪恩电声科技有限公司 一种新型驻极体传声器
CN201839424U (zh) * 2010-11-08 2011-05-18 东莞勤增实业有限公司 一种固体传导传声装置
CN103096196A (zh) * 2011-11-03 2013-05-08 北京美尔斯通科技发展股份有限公司 骨传导麦克风
CN206452543U (zh) * 2016-08-31 2017-08-29 常勇 改进型驻极体式电容传声器

Also Published As

Publication number Publication date
CN208369851U (zh) 2019-01-11
CN110896686A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2020000691A1 (zh) 驻极体麦克风、声振检测装置及竞赛遥控车
CN206061094U (zh) 扬声器箱
US4352039A (en) Sonic transducer
CN100424485C (zh) 脉动压力传感器
JP2003527161A (ja) ボディ音を検出する音響‐電気トランスデューサ
US8090125B2 (en) Contact type electret condenser pickup
CN108182932A (zh) 一种用于人员密集区施工的主动降噪装置及方法
EP2876896A1 (en) Audio transducer with electrostatic discharge protection
US20210114228A1 (en) Acoustic vibration detection device and remote control vehicle
CN104066022B (zh) 一种新型单指向麦克风
CN113115148B (zh) 一种耳机及入耳检测方法、装置
CN201114760Y (zh) 一种固体传导传声器
JP2004297765A (ja) マイクロホン
CN201611949U (zh) 一种具有减噪功能的声学传感器
CN105953910B (zh) 一种人影火箭弹高空爆炸亚音采集装置
CN214756909U (zh) 用于传声器的拾音组件和骨传导传声器以及电子产品
CN112449294A (zh) 一种具有吹气保护的mems mic
CN114136344A (zh) 检测传感器和包括该检测传感器的检测装置
CN218941329U (zh) 骨导式极膜驻极体传声器
CN102036153B (zh) 双膜式压电陶瓷扬声器
CN201839424U (zh) 一种固体传导传声装置
CN101713766B (zh) 采用双压电陶瓷片的宽频率响应抗噪声拾音探头
JP2002095092A (ja) マイクロホン
CN219421003U (zh) 骨声纹传感器及电子产品
CN206908853U (zh) 一种yhc型扬声器防护机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924273

Country of ref document: EP

Kind code of ref document: A1