WO2020000267A1 - 电机、雷达组件、动力装置、云台及无人机 - Google Patents

电机、雷达组件、动力装置、云台及无人机 Download PDF

Info

Publication number
WO2020000267A1
WO2020000267A1 PCT/CN2018/093163 CN2018093163W WO2020000267A1 WO 2020000267 A1 WO2020000267 A1 WO 2020000267A1 CN 2018093163 W CN2018093163 W CN 2018093163W WO 2020000267 A1 WO2020000267 A1 WO 2020000267A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
motor according
motor
rotating shaft
radar
Prior art date
Application number
PCT/CN2018/093163
Other languages
English (en)
French (fr)
Inventor
王佳迪
万道玉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/093163 priority Critical patent/WO2020000267A1/zh
Priority to CN201880012708.5A priority patent/CN110337774B/zh
Publication of WO2020000267A1 publication Critical patent/WO2020000267A1/zh
Priority to US17/133,862 priority patent/US20210119509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/23Transmission of mechanical power to rotors or propellers with each propulsion means having an individual motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • G01S13/935Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft for terrain-avoidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the technical field of power driving, in particular to a motor, a radar component, a power device, a gimbal and an unmanned aerial vehicle.
  • the rotor of the motor Under the action of electric energy, the rotor of the motor can rotate and transmit torque outwards.
  • the rotor and stator of the motor can be connected by rotation through bearings.
  • the bearing clearance has a lot of influence on the accuracy and service life of the entire motor. At this time, the clearance can be eliminated by positioning and pre-tensioning.
  • this method requires manual adjustment of the pre-tensioning force according to experience during production, which is not convenient for large-scale production of motors.
  • Embodiments of the present invention provide a motor, a radar component, a power unit, a gimbal and an unmanned aerial vehicle.
  • a base comprising a body and a support portion, the body being provided with a shaft hole, and the support portion is provided on an inner wall of the shaft hole;
  • a rotor assembly including a rotating shaft
  • a first bearing is sleeved on the rotating shaft, the first bearing is at least partially installed in the shaft hole, the rotating shaft is combined with an inner ring of the first bearing and can be opposite to the first bearing Rotation of the outer ring;
  • An elastic member provided between the support portion and the first bearing, the elastic member being configured to apply pressure to an outer ring of the first bearing;
  • a support member is provided on the rotation shaft, and the support member is in contact with the inner ring of the first bearing, and is configured to provide a supporting force to the inner ring of the first bearing;
  • the support member follows the rotation The shaft rotates together, and prevents the inner ring of the first bearing from sliding relative to the rotation shaft in the axial direction of the rotation shaft; the elastic member and the base remain relatively stationary, and provide elastic force to the first An outer ring of a bearing to eliminate the play of the first bearing.
  • a radar comprising a radar body and a radar base, the radar body being mounted on the radar base, the radar base being mounted on the rotor assembly, and the rotor assembly being rotatable to drive the radar base to rotate,
  • the radar base is used to drive the radar body to rotate.
  • the radar module according to the above embodiment is mounted on the fuselage.
  • a paddle which is mounted on the rotor assembly, and the rotor assembly can be rotated to drive the paddle to rotate.
  • the power unit is mounted on the airframe.
  • the pan / tilt according to the embodiment of the present invention includes:
  • the motor is connected to the connecting arm and is configured to drive the connecting arm to rotate.
  • the pan / tilt head according to the above embodiment is mounted on the fuselage.
  • the inner ring of the first bearing rotates together with the rotation axis, and the elastic member and the base are kept relatively stationary and outward toward the first bearing.
  • the pressure is applied to the ring to eliminate the clearance of the first bearing.
  • the elastic member After the elastic member is installed, it can apply pressure to the outer ring of the first bearing without manual adjustment of the pre-tightening force, which facilitates the automatic production of motors and large Scale production.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a radar component according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a motor according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of the motor according to the embodiment of the present invention.
  • FIG. 5 is a schematic exploded perspective view of the motor according to the embodiment of the present invention from another perspective;
  • FIG. 6 is another schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or it only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • an unmanned aerial vehicle 1000 includes a fuselage 200 and a radar assembly 300.
  • the drone 1000 may be an unmanned aerial vehicle, an unmanned ship, an unmanned vehicle, etc.
  • the unmanned aerial vehicle 1000 is used as an example for description. It can be understood that the specific form of the unmanned aerial vehicle 1000 Can be other.
  • the unmanned aerial vehicle may be a quad-rotor, a six-rotor, an eight-rotor, a sixteen-rotor, or the like.
  • the main body 200 includes a frame 201, a tripod 202 and a machine arm 203, and the tripod 202 and the machine arm 203 are mounted on the frame 201.
  • the rack 201 can be used as an installation carrier for a flight control system, a processor, a gimbal, and the like of the drone 1000.
  • the tripod 202 is installed below the rack 201.
  • the tripod 202 can be used to provide support for the rack 201 after the drone 1000 descends.
  • the tripod 202 can be removed from the rack 201, or the tripod 202 can be folded to make the tripod 202 convenient for storage.
  • the tripod 202 can also be used for carrying a water tank, and used for spraying pesticides and nutrient solutions on plants through a spray head.
  • the arm 203 can also be folded or disassembled, and the power unit 400 can be installed on the arm 203.
  • the radar assembly 300 is mounted on the fuselage 200.
  • the radar component 300 may be installed on the tripod 202 of the fuselage 200, and the radar component 300 may also be installed on the frame 201 of the fuselage 200.
  • the radar component 300 may be detachably mounted on the fuselage 200, and the number of the radar components 300 may be single or multiple.
  • the number of the radar components 300 is two, three, four, and so on. 300 may be one or more sides mounted on the front side, rear side, left side, right side, upper side, lower side of the fuselage 200.
  • the radar assembly 300 includes a motor 100 and a radar 301.
  • the motor 100 includes a base 10, a rotor assembly 20, a first bearing 30, an elastic member 40 and a support member 50.
  • the base 10 includes a main body 11, a support portion 13, and a carrier plate 14.
  • the base 10 can serve as a mounting carrier for components of the motor 100 such as the rotor assembly 20, the first bearing 30, the elastic member 40, and the support member 50.
  • the main body 11 of the base 10 may be column-shaped as a whole, for example, it is cylindrical in shape.
  • the base 10 is provided with a shaft hole 12.
  • the shaft hole 12 may pass through the body 11.
  • the axis of the shaft hole 12 may coincide with the axis of the body 11.
  • the support portion 13 is provided on the inner wall of the shaft hole 12. Specifically, the support portion 13 extends from the inner wall of the shaft hole 12 to the center of the shaft hole 12 without closing the shaft hole 12.
  • the support portion 13 is located in the middle of the shaft hole 12, or the support portion 13 is located near the middle position in the axial direction of the shaft hole 12, and the support portions 13 are not located at both ends of the shaft hole 12.
  • the supporting portion 13 and the main body 11 are integrally formed, for example, they can be integrally formed by injection molding. Of course, in other embodiments, the support portion 13 and the main body 11 may be formed separately, and the support portion 13 may be welded to the inner wall of the shaft hole 12.
  • the carrying plate 14 extends outward from the body 11, and the carrying plate 14 can be used to carry the motor control device 101.
  • the carrying plate 14 may extend from the outer periphery of the body 11 to the surroundings. Specifically, the carrying plate 14 may extend vertically outward from the outer periphery of the body 11.
  • the motor control device 101 may include a control circuit board, and the control circuit board may be provided with functional modules including the ESC of the motor 100 and a temperature detection module of the motor 100 to control the normal operation of the motor 100.
  • the rotor assembly 20 is mounted on the base 10. Specifically, the rotor assembly 20 can be rotatably connected to the base 10 through the first bearing 30, and the rotor assembly 20 can rotate relative to the base 10.
  • the motor 100 is an external rotor brushless motor.
  • the rotor assembly 20 includes a rotation shaft 21 and a rotor case 22.
  • the first bearing 30 is at least partially installed in the shaft hole 12, that is, the first bearing 30 may be entirely located in the shaft hole 12; it may also be partially located in the shaft hole 12 and the other part is located outside the shaft hole 12.
  • the first bearing 30 may be disposed near the open end of the shaft hole 12.
  • the outer ring 32 of the first bearing may be in contact with the inner wall of the shaft hole 12. When an axial pressure is applied to the outer ring 32 of the first bearing, the outer ring 32 of the first bearing may slide relative to the inner wall of the shaft hole 12.
  • the inner ring 31 of the first bearing is fixedly connected to the rotating shaft 21, that is, the inner ring 31 of the first bearing and the rotating shaft 21 are relatively stationary, and the two will not rotate or slide relative to each other.
  • the rotating shaft 21 passes through the inner ring 31 of the first bearing and is combined with the inner ring 31 of the first bearing so that the inner ring 31 of the first bearing is sleeved on the rotating shaft 21. It can be understood that when the rotating shaft 21 rotates, The rotating shaft 21 can drive the inner ring 31 of the first bearing to rotate relative to the outer ring 32 of the first bearing.
  • the rotor case 22 is fixedly connected to the rotation shaft 21, and the rotor case 22 rotates in synchronization with the rotation shaft 21.
  • the rotor case 22 is fixed to an end of the rotor shaft far from the first bearing 30.
  • the rotor case 22 may be integrally formed with the rotating shaft 21, for example, integrally formed by injection molding.
  • the rotor case 22 and the rotating shaft 21 may also be formed as separate structures, and the rotor case 22 and the rotating shaft 21 are assembled together, for example, the rotor case 22 and the rotating shaft 21 are engaged or welded. Way assembled together.
  • the rotor case 22 and the rotating shaft 21 may be made of different materials.
  • the rotor case 22 may be made of a magnetically permeable material to be part of the yoke of the motor 100, and the rotating shaft 21 may be made of non-magnetically permeable Support rod made of material.
  • the rotor case 22 is substantially L-shaped.
  • the rotor case 22 is generally L-shaped. It can be understood that the shape of the rotor case 22 can be regarded as a substantially L-shaped casing around the rotation axis 21. Get it.
  • a magnet 23 may be provided on an inner side wall of one end of the rotor case 22, and the magnet 23 may be fixed in the rotor case 22 and is invisible on the external appearance of the motor 100.
  • the magnet 23 is spaced from the coil 15 of the stator of the motor 100.
  • the coil 15 generates a magnetic field after being energized and interacts with the magnetic field of the magnet 23.
  • the magnet 23 receives the interaction force to drive the rotor case 22 and the rotating shaft 21 to rotate .
  • a bearing portion 25 is also provided on the outer side of the rotor case 22.
  • the bearing portion 25 is used to carry external components other than the motor 100.
  • the external component may be fixedly connected to the rotor case 22 through the bearing portion 25.
  • the external component may be fixedly connected to the rotor case 22 by means of screwing or engaging.
  • the bearing portion 25 may Drive the external parts together.
  • the elastic member 40 is disposed between the support portion 13 and the first bearing 30.
  • the elastic member 40 is disposed between the support portion 13 and the outer ring 32 of the first bearing.
  • the outer ring 32 of the first bearing applies pressure.
  • the elastic member 40 can be in a compressed state, and both sides of the elastic member 40 can apply elastic force to the support portion 13 and the outer ring 32 of the first bearing, respectively.
  • the elastic member 40 may include at least one of a wave spring and a disc spring.
  • the elastic member 40 may be a wave spring; or the elastic member 40 may be a disc spring; or the elastic member 40 is a combination of a wave spring and a disc spring. Made.
  • the elastic member 40 is ring-shaped as a whole and is provided with a rotating shaft 21 to prevent the elastic member 40 from falling off easily, and the elastic force exerted by the elastic member 40 on the outer ring 32 of the first bearing is more uniform in the circumferential direction of the first bearing 30. It can be understood that the elastic member 40 may be disposed in the shaft hole 12, and the elastic member 40 and the bearing plate 14 are disposed facing away from the main body 11, or the elastic member 40 and the bearing plate 14 are located opposite to each other on the outer peripheral edge of the body 11. On both sides.
  • the support member 50 is disposed on the rotating shaft 21.
  • the support member 50 is in contact with the inner ring 31 of the first bearing.
  • the support member 50 is used to provide a supporting force to the inner ring 31 of the first bearing.
  • the support member 50 and the inner ring 31 of the first bearing, the support member 50 and the rotation shaft 21 all rotate together.
  • the support member 50 may be in the shape of an annular sleeve as a whole, and the support member 50 may be sleeved on the rotation shaft 21.
  • the support member 50 may be disposed at a middle portion of the rotation shaft 21, or the support member 50 may be spaced a certain distance from both ends of the rotation shaft 21.
  • the support member 50 is accommodated in the shaft hole 12.
  • the support member 50 may be located between the elastic member 40 and the rotating shaft 21, or the elastic member 40 is sleeved on the support member 50, and there may be between the elastic member 40 and the support member 50. Clearance so that the support member 50 does not rub against the elastic member 40 when the support member 50 is rotated by the rotation shaft 21.
  • the positions of the support member 50 and the support portion 13 may be opposite to each other and a predetermined gap is set between the support member 50 and the support portion 13 so that the support member 50 does not rub against the support portion 13 when the support member 50 is rotated by the rotation shaft 21.
  • the rotating shaft 21 rotates, the outer ring 32 of the first bearing and the base 10 remain relatively stationary, and the inner ring 31 of the first bearing rotates together with the rotating shaft 21.
  • the support member 50 rotates together with the rotation shaft 21, and the support member 50 prevents the inner ring 31 of the first bearing from sliding relative to the rotation shaft 21 in the axial direction of the rotation shaft 21.
  • the elastic member 40 is relatively stationary with the base 10 and provides elastic force to the outer ring 32 of the first bearing to eliminate the play of the first bearing 30.
  • the radar 301 is mounted on the rotor assembly 20. Specifically, the radar 301 may be mounted on the rotor housing 22 of the rotor assembly 20. More specifically, the radar 301 may be mounted on the rotor housing 22 through the bearing portion 25. on.
  • the radar 301 includes a radar body 302 and a radar base 303.
  • the radar body 302 is mounted on a radar base 303, and the radar base 303 can be mounted on the rotor case 22 through a bearing portion 25.
  • the rotor assembly 20 rotates, the rotor assembly 20 can drive the radar base 303 to rotate, and the radar base 303 drives the radar body 302 to rotate.
  • the radar body 302 can emit electromagnetic wave signals (such as microwave signals) and receive electromagnetic wave signals reflected by external objects. Since the radar body 302 can be driven to rotate by the radar base 303, the radar body 302 can emit electromagnetic waves in multiple directions. Signals, and receive electromagnetic wave signals reflected in multiple directions to detect obstacles in multiple directions without the need to set multiple unidirectionally emitting radars.
  • the radar assembly 300 further includes a radome 304, which is provided with the radar 301 and the motor 100.
  • the base 10 of the motor 100 is separately provided from the radar base 303. When the base 10 is damaged, the base 10 can be repaired or replaced separately. When the radar base 303 is damaged, the radar base 303 can be repaired or replaced separately to facilitate later maintenance. Moreover, since the base 10 of the motor 100 and the radar base 303 are separately provided, the size of the motor 100 can be set larger under the radar component 300 of the same radial size, so the selection of the first bearing 30 and the second bearing 80 can be made. By selecting a larger type of bearing, the reliability of the first bearing 30 and the second bearing 80 is improved.
  • the inner ring 31 of the first bearing of the motor 100 rotates together with the rotating shaft 21, and the elastic member 40 and the base 10 remain relatively stationary and move toward the outer ring 32 of the first bearing. Apply pressure to eliminate the clearance of the first bearing 30. After the elastic member 40 is installed, it can apply pressure to the outer ring 32 of the first bearing without the need to manually adjust the pre-tightening force, which facilitates the automation of the motor 100. Production and mass production.
  • the rotating shaft 21 and the inner ring 31 of the first bearing are combined by an interference fit.
  • glue it is not necessary to apply glue on the inner wall of the inner ring 31 of the first bearing to prevent glue from entering the balls and the cage of the first bearing 30, which is convenient for assembly and the efficiency of assembly is relatively low. high.
  • the ratio of the pressure applied by the elastic member 40 to the outer ring 32 of the first bearing to the dynamic load of the first bearing 30 is [0.01, 0.03].
  • the ratio may be any value within the above range such as 0.01, 0.015, 0.02, 0.023, 0.03.
  • the outer ring 32 of the first bearing and the inner ring 31 of the first bearing may be Good contact with the balls of the first bearing 30, and the pre-tension between the outer ring 32 of the first bearing and the balls of the first bearing 30, the inner ring of the first bearing 31, and the balls of the first bearing 30 will not be too much Large, causing excessive wear.
  • the dynamic load of the first bearing 30 may refer to a basic dynamic load rating of the first bearing 30 in the axial direction.
  • the motor 100 further includes a gasket 70 disposed between the elastic member 40 and the first bearing 30.
  • the opposite sides of the gasket 70 abut against the elastic member 40 and the outer ring 32 of the first bearing, respectively.
  • the elastic force of the elastic member 40 can directly act on the gasket 70, and the gasket 70 then transmits the elastic force to the outer ring 32 of the first bearing.
  • the contact area between the washer 70 and the outer ring 32 of the first bearing is smaller than the contact area between the washer 70 and the elastic member 40.
  • the washer 70 may only abut the outer ring 32 of the first bearing, and The ball and the cage of the first bearing 30 will not be touched.
  • the gasket 70 is accommodated in the shaft hole 12, and the gasket 70 may have a ring shape as a whole.
  • the gasket 70 is sleeved on the support member 50.
  • the spacer 70 and the support member 50 are spaced from each other. During the rotation of the support member 50, the gasket 70 and the base 10 remain relatively stationary.
  • the motor 100 further includes a locking component 60.
  • the locking component 60 is fixedly mounted on the rotating shaft 21.
  • the locking component 60 and the supporting member 50 respectively bear against the first bearing. ⁇ ⁇ 31 ⁇ Both sides of the inner ring 31 in the axial direction.
  • the locking assembly 60 and the supporting member 50 can jointly fix the inner ring 31 of the first bearing relative to the rotation shaft 21.
  • the locking assembly 60 includes a washer 61 and a lock nut 62.
  • the washer 61 is sleeved on the rotating shaft 21, and one side of the washer 61 is against the inner ring of the first bearing. 31.
  • a lock nut 62 is mounted on the rotating shaft 21, and the lock nut 62 abuts the other side of the washer 61.
  • the washer 61 is ring-shaped.
  • the washer 61 abuts against the inner ring 31 of the first bearing and does not cover the balls of the first bearing 30. Therefore, it does not affect the rotation of the balls of the first bearing 30 and is beneficial to the heat dissipation of the first bearing 30.
  • the lock nut 62 and the rotating shaft 21 may be connected by threads.
  • a specific type of the lock nut 62 may be a nut with a hole in a sidewall.
  • the lock nut 62 and the washer 61 can also be manufactured integrally.
  • the lock assembly 60 may not include a washer 61.
  • the lock assembly 60 includes a lock nut 62. After the lock nut 62 is mounted on the rotating shaft 21, the lock nut 62 abuts against the first bearing The inner ring 31 fixes the inner ring 31 of the first bearing with respect to the rotation shaft 21 together with the support member 50.
  • the motor 100 further includes a second bearing 80.
  • the inner ring 81 of the second bearing is sleeved on the rotation shaft 21 and is fixedly connected to the rotation shaft 21.
  • the support member 50 is in contact with the inner ring 81 of the second bearing, and the support member 50 is used to provide a supporting force to the inner ring 81 of the second bearing.
  • the outer ring 82 of the second bearing abuts on the support portion 13.
  • the rotation shaft 21 is provided with the first bearing 30 and the second bearing 80, and the stability when the rotation shaft 21 rotates is better.
  • the inner ring 81 of the second bearing is fixedly connected to the rotating shaft 21 and can rotate synchronously with the rotating shaft 21.
  • the rotating shaft 21 and the inner ring 81 of the second bearing can be combined by an interference fit to assemble the rotating shaft 21 and the second shaft In the case of the bearing 80, it is not necessary to dispense glue on the inner wall of the inner ring 81 of the second bearing to prevent glue from entering the balls of the second bearing 80, which is convenient for assembly and has high assembly efficiency.
  • the outer ring 82 of the second bearing is in contact with the inner wall of the shaft hole 12, and the outer ring 82 of the second bearing is stationary with respect to the base 10.
  • a shoulder portion 24 is formed at a connection between the rotor case 22 and the rotating shaft 21, and the shoulder portion 24 and the support member 50 abut against the axial direction of the inner ring 81 of the second bearing, respectively. On both sides. In this way, the inner ring 81 of the second bearing does not slide in the axial direction with respect to the rotation shaft 21.
  • the motor 100 further includes a pressing assembly 90.
  • the pressing assembly 90 is fixedly mounted on the body 11.
  • the pressing assembly 90 abuts one of the outer rings 82 of the second bearing.
  • the support portion 13 abuts the other side of the outer ring 82 of the second bearing to position the outer ring 82 of the second bearing.
  • the pressing assembly 90 and the supporting portion 13 clamp the outer ring 82 of the second bearing.
  • the outer ring 82 of the second bearing does not bounce along the axial direction of the shaft hole 12, and the noise of the motor 100 during operation is small.
  • the clearance of the second bearing 80 can be eliminated in the following manner: the elastic member 40 applies elastic force to the outer ring 32 of the first bearing through the gasket 70, and the outer ring 32 of the first bearing faces A downward force acts on the inner ring 31 of the first bearing.
  • the downward force acting on the inner ring 31 of the first bearing is transmitted to the inner ring 81 of the second bearing through the rotation shaft 21, that is, the inner ring 81 of the second bearing also moves downward. Since the outer ring 82 of the second bearing is fixed, the inner ring 81 of the second bearing moves downward relative to the outer ring 82 of the second bearing, and the play of the second bearing 80 is eliminated.
  • the pressing assembly 90 includes a pressing member 92 and a fastener 91.
  • the fastener 91 is fixedly connected to the main body 11 to fix the pressing member 92 on the main body 11.
  • the pressing member 92 abuts against the outer ring 82 of the second bearing.
  • the pressing member 92 has a ring shape, the pressing member 92 is sleeved on the rotating shaft 21, and a predetermined gap exists between the inner peripheral edge of the pressing member 92 and the rotating shaft 21, so that the pressing member 92 92 does not hinder the rotation of the rotation shaft 21.
  • the pressing member 92 may be fixed on an end surface of the open end of the shaft hole 12 of the body 11. Specifically, on the end surface, a plurality of screw holes may be provided around the shaft hole 12, a plurality of through holes may be provided on the pressing member 92 at positions corresponding to the plurality of screw holes, and the fastener 91 may be a screw. The fastener 91 cooperates with the screw hole and fixes the pressing member 92 on the body 11.
  • the plurality of screw holes may be evenly spaced along the circumferential direction of the shaft hole 12. A part of the pressing member 92 is pressed against the above-mentioned end surface, and another part is in contact with the outer ring 82 of the second bearing.
  • the pressing member 92 is a sheet-like structure to reduce the overall thickness of the pressing assembly 90.
  • the pressing assembly 90 may not include a pressing member 92, the pressing assembly 90 includes a fastener 91, the fastener 91 is fixedly installed on the body 11, and the fastener 91 directly communicates with the first The outer rings 82 of the two bearings are in contact with each other.
  • the outer diameter of the first bearing 30 may be equal to the outer diameter of the second bearing 80. In this way, the size of the shaft hole 12 is relatively uniform, and it is easy to open it with one mold.
  • the inner diameter of the first bearing 30 may be equal to the inner diameter of the second bearing 80. In this way, the dimensions of the outer diameter of the rotation shaft 21 are relatively uniform, and the rotation shaft 21 can be easily processed.
  • the types of the first bearing 30 and the second bearing 80 may be the same. In this way, the first bearing 30 and the second bearing 80 can be used in common, and the service life of the first bearing 30 and the second bearing 80 is relatively consistent.
  • the second bearing 80 is installed into the shaft hole 12 from one end of the shaft hole 12, and the outer ring 82 of the second bearing The abutting part 13 is in contact with the support part 13, and then the pressing assembly 90 is installed to fix the outer ring 82 of the second bearing. Then, the rotating shaft 21 and the second bearing 80 can be combined by an interference fit. Then, the supporting member 50, the elastic member 40 and the washer 70 are sleeved on the rotating shaft 21 from the other end of the bearing.
  • the first bearing 30 is sleeved on the rotating shaft 21 so that the inner ring 31 of the first bearing and the rotating shaft 21 are in interference fit, and the outer ring 32 of the first bearing is in contact with the washer 70.
  • the locking assembly 60 is fixed to the rotating shaft 21 so that the locking assembly 60 and the supporting member 50 abut against both sides of the inner ring 31 of the first bearing.
  • the motor 100 of any one of the above embodiments can also be applied to the power device 400.
  • the power device 400 includes a motor 100 and a paddle 401.
  • the paddle 401 is mounted on the rotor assembly 20, and the rotor assembly 20 can rotate to drive the paddle 401 to rotate.
  • the power unit 400 may be mounted on the body 200. Specifically, the power unit 400 may be installed on the arm 203 of the fuselage 200, and the paddle 401 may be installed on the bearing portion 25 of the rotor assembly 20.
  • the paddle 401 is driven to provide power for the drone 1000 after being driven to rotate.
  • the motor 100 can also be applied to the gimbal 500.
  • the gimbal 500 includes a connecting arm 501, and the number of the connecting arms 501 can be multiple.
  • the motor 100 is connected to the connecting arm 501 and can be used to drive the connecting arm 501 to rotate.
  • the base 10 of the motor 100 may be connected to one connection arm 501, and the rotor assembly 20 of the motor 100 may be connected to another connection arm 501.
  • the two connection arms 501 may be driven to rotate with each other.
  • the gimbal 500 can be a handheld gimbal 500 or a gimbal 500 mounted on a machine, such as a gimbal 500 mounted on a drone 1000. At this time, the gimbal 500 can be installed on the drone 1000. On the fuselage 200.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality” is at least two, for example, two, three, unless it is specifically and specifically defined otherwise.

Abstract

一种电机(100)及具有该电机的雷达组件、无人机、动力装置及云台。电机(100)包括基座(10)、转子组件(20)、第一轴承(30)、弹性件(40)及支撑件(50)。基座(10)包括本体(11)及支承部(13),本体(11)开设有轴孔(12),支承部(13)设于轴孔(12)的内壁上。转子组件(20)包括转动轴(21)。第一轴承(30)至少部分安装在轴孔(12)内,转动轴(21)与第一轴承的内圈(31)结合且可相对于第一轴承的外圈(32)转动。弹性件(40)设置于支承部(13)及第一轴承(30)之间,弹性件(40)用于对第一轴承的外圈(32)施加压力。支撑件(50)设于转动轴(21)上,支撑件(50)与第一轴承的内圈(31)抵接,用于对第一轴承的内圈(31)提供支撑力。

Description

电机、雷达组件、动力装置、云台及无人机 技术领域
本发明涉及动力驱动技术领域,特别涉及一种电机、雷达组件、动力装置、云台及无人机。
背景技术
在电能的作用下,电机的转子能够发生转动并向外传递扭矩,电机的转子与定子可通过轴承转动连接,轴承的游隙对整个电机传动的精度和使用寿命等有很多影响,在组装电机时,可以通过定位预紧的方式消除游隙,然而,该方式在生产时需要靠人工依照经验来调节预紧力,不便于大规模生产电机。
发明内容
本发明的实施方式提供了一种电机、雷达组件、动力装置、云台及无人机。
本发明实施方式的电机包括:
基座,所述基座包括本体及支承部,所述本体开设有轴孔,所述支承部设于所述轴孔的内壁上;
转子组件,所述转子组件包括转动轴;
第一轴承,套设在所述转动轴上,所述第一轴承至少部分安装在所述轴孔内,所述转动轴与所述第一轴承的内圈结合且可相对所述第一轴承的外圈转动;
弹性件,设置于所述支承部及所述第一轴承之间,所述弹性件用于对所述第一轴承的外圈施加压力;以及
支撑件,设于所述转动轴上,所述支撑件与所述第一轴承的内圈抵接,用于对所述第一轴承的内圈提供支撑力;
其中,当所述电机工作时,所述第一轴承的外圈与所述基座保持相对静止,所述第一轴承的内圈跟随所述转动轴一起转动;所述支撑件跟随所述转动轴一起转动,并且阻止所述第一轴承的内圈相对于所述转动轴沿所述转动轴的轴向滑动;所述弹性件与所述基座保持相对静止,并且提供弹力于所述第一轴承的外圈,以消除所述第一轴承的游隙。
本发明实施方式的雷达组件包括:
上述实施方式的电机;及
雷达,所述雷达包括雷达本体及雷达底座,所述雷达本体安装在所述雷达底座上,所述雷达底座安装在所述转子组件上,所述转子组件能够转动以带动所述雷达底座转动,并 使所述雷达底座带动所述雷达本体转动。
本发明实施方式的无人机包括:
机身;及
上述实施方式所述的雷达组件,所述雷达组件安装在所述机身上。
本发明实施方式的动力装置包括:
上述实施方式所述的电机;及
桨叶,所述桨叶安装在所述转子组件上,所述转子组件能够转动以带动所述桨叶转动。
本发明实施方式的无人机包括:
机身;及
上述实施方式所述的动力装置,所述动力装置安装在所述机身上。
本发明实施方式的云台包括:
连接臂;及
上述实施方式所述的电机,所述电机连接所述连接臂且用于驱动所述连接臂转动。
本发明实施方式的无人机包括:
机身;及
上述实施方式所述的云台,所述云台安装在所述机身上。
本发明实施方式所述的电机、雷达组件、动力装置、云台及无人机中,第一轴承的内圈跟随转动轴一起转动,弹性件与基座保持相对静止并向第一轴承的外圈施加压力,以消除第一轴承的游隙,弹性件在安装好后就可向第一轴承的外圈施加压力,而不需要通过人工来调整预紧力,便于实现电机的自动化生产及大规模生产。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的无人机的结构示意图;
图2是本发明实施方式的雷达组件的结构示意图;
图3是本发明实施方式的电机的截面示意图;
图4是本发明实施方式的电机的立体分解示意图;
图5是本发明实施方式的电机的另一视角的立体分解示意图;
图6是本发明实施方式的无人机的另一结构示意图。
具体实施方式
以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,本发明实施方式的无人机1000包括机身200及雷达组件300。无人机1000可以是无人飞行器、无人船、无人车等,在本发明实施例中,以无人机1000为无人飞行器为例进行说明,可以理解,无人机1000的具体形式可以是其他。无人飞行器可以是四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十六旋翼飞行器等。
机身200包括机架201、脚架202及机臂203,脚架202及机臂203安装在机架201上。机架201可以作为无人机1000的飞行控制系统、处理器、云台等的安装载体。脚架202安装在机架201的下方,脚架202可用于在无人机1000降落后为机架201提供支撑,在一个例子中,脚架202可以从机架201中拆卸下来,或者脚架202可以进行折叠而使脚架202便于收纳。脚架202上还可以用于搭载水箱,并用于通过喷头对植物喷洒农药和营养液等。机臂203也可以折叠或拆卸,机臂203上可以安装有动力装置400。
雷达组件300安装在机身200上。具体地,雷达组件300可以安装在机身200的脚架202上,雷达组件300也可以安装在机身200的机架201上。雷达组件300可以是可拆卸地安装在机身200上,雷达组件300的数量可以是单个也可以是多个,例如雷达组件300的数量为两个、三个、四个等,多个雷达组件300可以是安装在机身200的前侧、后侧、左侧、右侧、上侧、下侧中的一侧或多侧。请结合图2,雷达组件300包括电机100和雷达301。
请参阅图3至图5,电机100包括基座10、转子组件20、第一轴承30、弹性件40及支撑件50。
基座10包括本体11、支承部13和承载板14。基座10可以作为转子组件20、第一轴承30、弹性件40及支撑件50等电机100的元件的安装载体。基座10的本体11整体可以呈柱状,例如整体呈圆柱状,基座10上开设有轴孔12,轴孔12可以贯穿本体11,轴孔12的轴线可以与本体11的轴线重合。
支承部13设于轴孔12的内壁上,具体地,支承部13从轴孔12的内壁向轴孔12的中心延伸且未封闭轴孔12。支承部13位于轴孔12的中部,或者说,支承部13位于轴孔12的轴向上靠近中间位置,支承部13不处于轴孔12的两端。在本发明实施例中,支承部13与本体11一体成型,例如可以通过注塑的方式一体成型。当然,在其他实施方式中,支承部13与本体11也可以分体成型,支承部13可以焊接在轴孔12的内壁上。
承载板14从本体11向外延伸,承载板14上可以用于承载电机控制装置101。承载板14可以从本体11的外周缘向四周延伸,具体地,承载板14可以从本体11的外周缘垂直向外延伸。在一个例子中,电机控制装置101可以包括控制电路板,控制电路板可以设置有包括电机100的电调及电机100的温度检测模块等的功能模块,以控制电机100正常工作。
请继续参阅图3至图5,转子组件20安装在基座10上,具体地,转子组件20可通过第一轴承30与基座10转动连接,转子组件20可相对于基座10转动。在本发明实施例中,电机100为外转子无刷电机。转子组件20包括转动轴21及转子壳22。
第一轴承30至少部分安装在轴孔12内,也就是说,第一轴承30可以是全部位于轴孔12内;也可以部分位于轴孔12内,另一部分位于轴孔12外。第一轴承30可以靠近轴孔12的开口端设置。第一轴承的外圈32可以与轴孔12的内壁相接触,当对第一轴承的外圈32施加轴向压力时,第一轴承的外圈32可相对于轴孔12的内壁滑动。第一轴承的内圈31与转动轴21固定连接,也就是说,第一轴承的内圈31与转动轴21相对静止,二者不会发生相对转动和滑动。
转动轴21穿过第一轴承的内圈31并与第一轴承的内圈31结合,以使第一轴承的内圈31套设在转动轴21上,可以理解,当转动轴21转动时,转动轴21可带动第一轴承的内圈31相对于第一轴承的外圈32转动。
转子壳22与转动轴21固定连接,转子壳22与转动轴21同步转动。具体地,转子壳22固定在转子轴的远离第一轴承30的一端,更具体地,转子壳22可以与转动轴21一体成型,例如通过模具注塑一体成型。当然,在其他实施方式中,转子壳22与转动轴21也可以是分体成型结构,再将转子壳22与转动轴21组装在一起,例如转子壳22与转动轴21通过卡接或焊接等的方式组装在一起。且此时,转子壳22与转动轴21可采用不同的材料制成,例如转子壳22可采用导磁材料制成以作为电机100的磁轭的一部分,而转动轴21可以是采用非导磁材质制成的支撑杆。
在本发明实施例中,转子壳22大致为L型,此处的转子壳22大致呈L型可以理解为:转子壳22的形状可以看成是由大致呈L型的壳体绕转动轴21转动得到。转子壳22的一端的内侧壁可以设置有磁铁23,磁铁23可以固定在转子壳22内且在电机100的外观上不可见。磁铁23与电机100的定子的线圈15相对间隔设置,其中线圈15在通电后会产生磁场, 并与磁铁23的磁场相互作用,磁铁23受到该相互作用力后带动转子壳22和转动轴21转动。
转子壳22的外侧还设有承载部25,承载部25用于承载电机100之外的外部部件。在一个例子中,外部部件可以通过承载部25固定连接在转子壳22上,例如外部部件通过螺合、卡合等方式固定连接在转子壳22上,当转子壳22转动时,承载部25可带动外部部件一起转动。
请继续参阅图3至图5,弹性件40设置在支承部13及第一轴承30之间,弹性件40设置在支承部13与第一轴承的外圈32之间,弹性件40用于对第一轴承的外圈32施加压力。具体地,电机100组装好后,可以使弹性件40处于被压缩的状态,弹性件40的两侧可分别向支承部13及第一轴承的外圈32施加弹力。其中,弹性件40可以包括波形弹簧、碟形弹簧中的至少一种,例如弹性件40可以是波形弹簧;或者弹性件40可以是碟形弹簧;或者弹性件40由波形弹簧及碟形弹簧组合而成。弹性件40整体呈环状并套设转动轴21设置,以使弹性件40不易脱落,且弹性件40对第一轴承的外圈32施加的弹力在第一轴承30的周向上较均匀。可以理解,弹性件40可以设置在轴孔12内,弹性件40与承载板14相较于本体11背对设置,或者说,弹性件40与承载板14分别位于本体11的外周缘的相背的两侧。
支撑件50设于转动轴21上,支撑件50与第一轴承的内圈31抵接,支撑件50用于对第一轴承的内圈31提供支撑力。其中,支撑件50与第一轴承的内圈31、支撑件50与转动轴21均一同转动。在本发明实施例中,支撑件50整体可以呈环形的套筒状,支撑件50可以套设在转动轴21上。支撑件50可以设置在转动轴21的中部,或者说,支撑件50与转动轴21的两端均间隔一定的距离。支撑件50收容在轴孔12内,支撑件50可以位于弹性件40与转动轴21之间,或者说,弹性件40套设在支撑件50上,弹性件40与支撑件50之间可以存在间隙,以使支撑件50被转动轴21带动转动时不会与弹性件40发生摩擦。支撑件50与支承部13的位置可以是相对设置且支撑件50与支承部13之间间隔预设的间隙,以使支撑件50被转动轴21带动转动时不会与支承部13发生摩擦。
在电机100工作时,转动轴21转动,第一轴承的外圈32与基座10保持相对静止,第一轴承的内圈31跟随转动轴21一起转动。同时支撑件50跟随转动轴21一起转动,且支撑件50阻止第一轴承的内圈31相对于转动轴21沿转动轴21的轴向滑动。弹性件40与基座10保持相对静止,并且提供弹力于第一轴承的外圈32,以消除第一轴承30的游隙。
请参阅图2和图3,雷达301安装在转子组件20上,具体地,雷达301可以安装在转子组件20的转子壳22上,更具体地,雷达301可以通过承载部25安装在转子壳22上。雷达301包括雷达本体302及雷达底座303。雷达本体302安装在雷达底座303上,雷达 底座303可以通过承载部25安装在转子壳22上。当转子组件20转动时,转子组件20能够带动雷达底座303转动,雷达底座303再带动雷达本体302转动。雷达本体302可以向外发射电磁波信号(例如微波信号)及接收被外界物体反射回的电磁波信号,且由于雷达本体302可以被雷达底座303带动转动,因此,雷达本体302可以向多个方向发射电磁波信号,且接收多个方向反射回的电磁波信号以检测多个方向上的障碍物,而不需要设置多个单向发射的雷达。在如图2所示的例子中,雷达组件300还包括雷达罩304,雷达罩304罩设雷达301及电机100。
电机100的基座10与雷达底座303分开设置,当基座10损坏时,可以单独维修或更换基座10,当雷达底座303损坏时,可以单独维修或更换雷达底座303,方便后期维修。且由于电机100的基座10与雷达底座303分开设置,相同径向尺寸的雷达组件300下,电机100的尺寸可以设置得更大,因而第一轴承30和第二轴承80的选型上可以选择更大型号的轴承,第一轴承30和第二轴承80的可靠性得以提高。
综上,本发明实施方式的无人机1000中,电机100的第一轴承的内圈31跟随转动轴21一起转动,弹性件40与基座10保持相对静止并向第一轴承的外圈32施加压力,以消除第一轴承30的游隙,弹性件40在安装好后就可向第一轴承的外圈32施加压力,而不需要通过人工来调整预紧力,便于实现电机100的自动化生产及大规模生产。
请参阅图3,在某些实施方式中,转动轴21与第一轴承的内圈31通过过盈配合的方式结合。在组装转动轴21与第一轴承30时,不需要在第一轴承的内圈31的内壁上点胶,避免胶水进入到第一轴承30的滚珠及保持架内,方便组装且组装的效率较高。
在某些实施方式中,弹性件40向第一轴承的外圈32施加的压力与第一轴承30的动载荷的比值为[0.01,0.03]。具体地,该比值可以是0.01、0.015、0.02、0.023、0.03等任意在上述范围内的数值,当该比值在上述范围内时,第一轴承的外圈32、第一轴承的内圈31可以与第一轴承30的滚珠良好地接触,且第一轴承的外圈32与第一轴承30的滚珠、第一轴承的内圈31与第一轴承30的滚珠之间的预紧力不会太大而导致过快磨损。其中,第一轴承30的动载荷可以是指第一轴承30的轴向基本额定动载荷。
请参阅图3至图5,在某些实施方式中,电机100还包括垫片70,垫片70设置在弹性件40与第一轴承30之间。垫片70的相背的两侧分别抵持弹性件40及第一轴承的外圈32。弹性件40的弹力可以直接作用在垫片70上,垫片70再将该弹力传递到第一轴承的外圈32上。在本发明实施例中,垫片70与第一轴承的外圈32的接触面积小于垫片70与弹性件40的接触面积,垫片70可以仅与第一轴承的外圈32抵接,而不会接触到第一轴承30的滚珠及保持架。
具体地,垫片70收容在轴孔12内,垫片70整体可以呈环状,垫片70套设在支撑件 50上,垫片70与支撑件50之间间隔设置,在转子组件20及支撑件50转动的过程中,垫片70与基座10保持相对静止。
请参阅图3至图5,在某些实施方式中,电机100还包括锁紧组件60,锁紧组件60固定安装在转动轴21上,锁紧组件60与支撑件50分别抵持第一轴承的内圈31的轴向的两侧。锁紧组件60与支撑件50可以共同将第一轴承的内圈31相对于转动轴21固定住。
在如图3至图5所示的实施例中,锁紧组件60包括垫圈61及锁紧螺母62,垫圈61套设在转动轴21上,垫圈61的一侧抵持第一轴承的内圈31,锁紧螺母62安装在转动轴21上,锁紧螺母62抵持垫圈61的另一侧。垫圈61呈环状,垫圈61与第一轴承的内圈31抵持而不会覆盖到第一轴承30的滚珠,因此不会影响第一轴承30的滚珠转动且利于第一轴承30的散热。锁紧螺母62与转动轴21可以通过螺纹连接,锁紧螺母62的具体类型可以是侧壁带有孔的螺母。锁紧螺母62与垫圈61还可以一体形成制造。
在另一个实施例中,锁紧组件60也可以未包括垫圈61,锁紧组件60包括锁紧螺母62,锁紧螺母62安装在转动轴21上后,锁紧螺母62抵持第一轴承的内圈31以与支撑件50共同将第一轴承的内圈31相对于转动轴21固定住。
请继续参阅图3至图5,在某些实施方式中,电机100还包括第二轴承80。第二轴承的内圈81套设在转动轴21上并与转动轴21固定连接。支撑件50与第二轴承的内圈81抵接,支撑件50用于对第二轴承的内圈81提供支撑力。第二轴承的外圈82抵接在支承部13上。
转动轴21穿设第一轴承30及第二轴承80,转动轴21转动时的稳定性更佳。第二轴承的内圈81与转动轴21固定连接并可跟随转动轴21同步转动,转动轴21与第二轴承的内圈81可以通过过盈配合的方式结合,在组装转动轴21与第二轴承80时,不需要在第二轴承的内圈81的内壁上点胶,避免胶水进入到第二轴承80的滚珠内,方便组装且组装的效率较高。第二轴承的外圈82与轴孔12的内壁相接触,第二轴承的外圈82相对于基座10静止。
请参阅图3,在某些实施方式中,转子壳22与转动轴21的连接处形成有轴肩部24,轴肩部24与支撑件50分别抵持第二轴承的内圈81的轴向的两侧。如此,第二轴承的内圈81不会相对于转动轴21在轴向滑动。
请参阅图3至图5,在某些实施方式中,电机100还包括压紧组件90,压紧组件90固定安装在本体11上,压紧组件90抵持第二轴承的外圈82的一侧,支承部13抵持第二轴承的外圈82的另一侧,以定位第二轴承的外圈82。压紧组件90与支承部13夹持住第二轴承的外圈82,第二轴承的外圈82不会沿轴孔12的轴向跳动,电机100工作时的噪声较小。
以图3所示的实施例为例,第二轴承80的游隙可以通过以下方式消除:弹性件40通过垫片70向第一轴承的外圈32施加弹力,第一轴承的外圈32向下运动并作用于第一轴承的内圈31一个向下的力。作用在第一轴承的内圈31的向下的力通过转动轴21传递到第二轴承的内圈81,也就是说,第二轴承的内圈81也向下运动。而由于第二轴承的外圈82被固定,因此,第二轴承的内圈81相对于第二轴承的外圈82向下运动,第二轴承80的游隙得以消除。
请参阅图3至图5,在某些实施方式中,压紧组件90包括压紧件92及紧固件91。紧固件91与本体11固定连接,以将压紧件92固定在本体11上,压紧件92抵持第二轴承的外圈82。具体地,在本发明实施例中,压紧件92呈环形,压紧件92套设在转动轴21上,压紧件92的内周缘与转动轴21之间存在预定间隙,使得压紧件92不会阻碍转动轴21的转动。
压紧件92可以被固定在本体11的轴孔12的开口端的端面上。具体地,在该端面上,可以环绕轴孔12开设有多个螺钉孔,压紧件92上与多个螺钉孔对应的位置可以开设有多个通孔,紧固件91可以是螺钉,紧固件91与螺钉孔配合并将压紧件92固定在本体11上。多个螺钉孔可以沿轴孔12的周向均匀间隔分布。压紧件92的一部分与上述端面压紧,另一部分与第二轴承的外圈82抵接。优选地,压紧件92为片状结构,以减小压紧组件90的整体厚度。
当然,在其他实施例中,压紧组件90也可以未包括压紧件92,压紧组件90包括紧固件91,紧固件91固定安装在本体11上,且紧固件91直接与第二轴承的外圈82相抵接。
请参阅图3,在某些实施方式中,第一轴承30的外径可以与第二轴承80的外径相等。如此,轴孔12的尺寸较统一,容易通过一个模具进行开设。
第一轴承30的内径可以与第二轴承80的内径相等。如此,转动轴21的外径的尺寸较统一,容易加工得到转动轴21。
第一轴承30与第二轴承80的型号可以相同。如此,第一轴承30与第二轴承80之间可以通用,且第一轴承30与第二轴承80的使用寿命较一致。
下面结合图3及图4所示的实施例对电机100的其中一种安装方式进行介绍:先将第二轴承80从轴孔12的一端安装到轴孔12内,第二轴承的外圈82与支承部13抵接,再安装压紧组件90以将第二轴承的外圈82固定。然后可将转动轴21与第二轴承80通过过盈配合的方式结合。再将支撑件50、弹性件40及垫片70从轴承的另一端套设到转动轴21上。再将第一轴承30套设在转动轴21上,以使第一轴承的内圈31与转动轴21过盈配合,第一轴承的外圈32与垫片70相抵接。最后再将锁紧组件60固定到转动轴21上,以使锁紧组件60与支撑件50抵持第一轴承的内圈31的两侧。
请参阅图1及图3,在某些实施方式中,上述任一实施方式的电机100还可以运用到动力装置400中。其中,动力装置400包括电机100和桨叶401。桨叶401安装在转子组件20上,转子组件20能够转动以带动桨叶401转动。动力装置400可以安装在机身200上。具体地,动力装置400可以安装在机身200的机臂203上,桨叶401可以安装在转子组件20的承载部25上,桨叶401被带动转动后为无人机1000提供动力。
请参阅图3及图6,在某些实施方式中,上述任一实施方式的电机100还可以运用到云台500中。其中,云台500包括连接臂501,连接臂501的数量可以为多个,电机100连接连接臂501且可用于驱动连接臂501转动。例如电机100的基座10可以与一个连接臂501连接,电机100的转子组件20可以与另一个连接臂501连接,当驱动转子组件20转动时,可带动两个连接臂501之间相互转动。云台500可以是手持的云台500,也可以是搭载在机器上使用的云台500,例如搭载在无人机1000上的云台500,此时云台500可以安装在无人机1000的机身200上。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (41)

  1. 一种电机,其特征在于,包括:
    基座,所述基座包括本体及支承部,所述本体开设有轴孔,所述支承部设于所述轴孔的内壁上;
    转子组件,所述转子组件包括转动轴;
    第一轴承,套设在所述转动轴上,所述第一轴承至少部分安装在所述轴孔内,所述转动轴与所述第一轴承的内圈结合且可相对所述第一轴承的外圈转动;
    弹性件,设置于所述支承部及所述第一轴承之间,所述弹性件用于对所述第一轴承的外圈施加压力;以及
    支撑件,设于所述转动轴上,所述支撑件与所述第一轴承的内圈抵接,用于对所述第一轴承的内圈提供支撑力;
    其中,当所述电机工作时,所述第一轴承的外圈与所述基座保持相对静止,所述第一轴承的内圈跟随所述转动轴一起转动;所述支撑件跟随所述转动轴一起转动,并且阻止所述第一轴承的内圈相对于所述转动轴沿所述转动轴的轴向滑动;所述弹性件与所述基座保持相对静止,并且提供弹力于所述第一轴承的外圈,以消除所述第一轴承的游隙。
  2. 根据权利要求1所述的电机,其特征在于,所述电机为外转子无刷电机。
  3. 根据权利要求1所述的电机,其特征在于,所述支撑件套设在所述转动轴上,所述支撑件跟随所述转动轴一起转动。
  4. 根据权利要求1所述的电机,其特征在于,所述电机还包括锁紧组件,所述锁紧组件固定安装在所述转动轴上,所述锁紧组件与所述支撑件分别抵持所述第一轴承的内圈的轴向的两侧。
  5. 根据权利要求4所述的电机,其特征在于,所述锁紧组件包括锁紧螺母,所述锁紧螺母安装在所述转动轴上且抵持所述第一轴承的内圈。
  6. 根据权利要求4所述的电机,其特征在于,所述锁紧组件包括垫圈及锁紧螺母,所述垫圈套设在所述转动轴上且一侧抵持所述第一轴承的内圈,所述锁紧螺母安装在所述转动轴上且抵持所述垫圈的另一侧。
  7. 根据权利要求1所述的电机,其特征在于,所述电机还包括垫片,所述垫片设置在所述弹性件与所述第一轴承之间,所述垫片的相背的两侧分别抵持所述弹性件及所述第一轴承的外圈。
  8. 根据权利要求7所述的电机,其特征在于,所述垫片收容在所述轴孔内,所述垫片套设在所述支撑件上。
  9. 根据权利要求1所述的电机,其特征在于,所述转动轴与所述第一轴承的内圈通过过盈配合的方式结合。
  10. 根据权利要求1所述的电机,其特征在于,所述弹性件包括如下至少一种:波形弹簧、碟形弹簧。
  11. 根据权利要求1所述的电机,其特征在于,所述弹性件收容在所述轴孔内,且所述弹性件套设在所述支撑件上。
  12. 根据权利要求1所述的电机,其特征在于,所述支承部位于所述轴孔的中部,所述支承部与所述本体一体成型。
  13. 根据权利要求1所述的电机,其特征在于,所述支撑件设于所述转动轴的中部。
  14. 根据权利要求1所述的电机,其特征在于,所述支撑件与所述支承部相对设置,所述支撑件与所述支承部间隔预设间隙。
  15. 根据权利要求1所述的电机,其特征在于,所述第一轴承靠近所述轴孔的开口端设置。
  16. 根据权利要求1所述的电机,其特征在于,所述基座还包括从所述本体向外延伸的承载板,所述承载板用于承载电机控制装置。
  17. 根据权利要求16所述的电机,其特征在于,所述承载板从所述本体的外周缘垂直 向外延伸。
  18. 根据权利要求16所述的电机,其特征在于,所述承载板与所述弹性件相较于所述本体背对设置。
  19. 根据权利要求16所述的电机,其特征在于,所述电机控制装置包括控制电路板。
  20. 根据权利要求1所述的电机,其特征在于,所述弹性件向所述第一轴承的外圈施加的压力与所述第一轴承的动载荷的比值为[0.01,0.03]。
  21. 根据权利要求1至20任意一项所述的电机,其特征在于,所述电机还包括第二轴承,所述第二轴承的内圈套设在所述转动轴上并与所述转动轴固定连接,所述支撑件与所述第二轴承的内圈抵接,并用于对所述第二轴承的内圈提供支撑力,所述第二轴承的外圈抵接在所述支承部上。
  22. 根据权利要求21所述的电机,其特征在于,所述转子组件还包括与所述转动轴连接的转子壳,所述转子壳与所述转动轴的连接处形成轴肩部,所述轴肩部与所述支撑件分别抵持所述第二轴承的内圈的轴向的两侧。
  23. 根据权利要求21所述的电机,其特征在于,所述转动轴与所述第二轴承的内圈通过过盈配合的方式结合。
  24. 根据权利要求21所述的电机,其特征在于,所述电机还包括压紧组件,所述压紧组件固定安装在所述本体上,所述压紧组件抵持所述第二轴承的外圈的一侧,所述支承部抵持所述第二轴承的外圈的另一侧,以定位所述第二轴承的外圈。
  25. 根据权利要求24所述的电机,其特征在于,所述压紧组件包括紧固件,所述紧固件固定安装在所述本体上且抵持所述第二轴承的外圈。
  26. 根据权利要求24所述的电机,其特征在于,所述压紧组件包括压紧件及紧固件,所述紧固件与所述本体固定连接以将所述压紧件固定在所述本体上,所述压紧件抵持所述第二轴承的外圈。
  27. 根据权利要求26所述的电机,其特征在于,所述压紧件呈环形,所述压紧件套设在所述转动轴上,所述压紧件的内周缘与所述转动轴之间存在预定间隙。
  28. 根据权利要求26所述的电机,其特征在于,所述压紧件被固定在所述本体的所述轴孔的开口端的端面上。
  29. 根据权利要求26所述的电机,其特征在于,所述压紧件为片状结构。
  30. 根据权利要求21所述的电机,其特征在于,所述第一轴承的外径与所述第二轴承的外径相等;及/或所述第一轴承的内径与所述第一轴承的内径相等;及/或所述第一轴承与所述第二轴承的型号相同。
  31. 根据权利要求1所述的电机,其特征在于,所述转子组件还包括转子壳,所述转子壳与所述转动轴远离所述第一轴承的一端固定连接。
  32. 根据权利要求31所述的电机,其特征在于,所述转子壳与所述转动轴一体成型。
  33. 根据权利要求31所述的电机,其特征在于,所述转子壳所述转动轴组装在一起,其中,所述转子壳采用导磁材料制成,所述转动轴采用非导磁材质支撑杆。
  34. 根据权利要求31所述的电机,其特征在于,所述转子壳大致为L型,所述转子壳的一端的内侧壁设有磁铁,所述磁铁与所述电机的定子的线圈相对间隔设置。
  35. 根据权利要求31所述的电机,其特征在于,所述转子壳的外侧设有用于承载外部部件的承载部,所述转子壳转动时可带动所述外部部件一起转动。
  36. 一种雷达组件,其特征在于,包括:
    权利要求1至35任意一项所述的电机;及
    雷达,所述雷达包括雷达本体及雷达底座,所述雷达本体安装在所述雷达底座上,所述雷达底座安装在所述转子组件上,所述转子组件能够转动以带动所述雷达底座转动,并使所述雷达底座带动所述雷达本体转动。
  37. 一种无人机,其特征在于,包括:
    机身;及
    权利要求36所述的雷达组件,所述雷达组件安装在所述机身上。
  38. 一种动力装置,其特征在于,包括:
    权利要求1至35任意一项所述的电机;及
    桨叶,所述桨叶安装在所述转子组件上,所述转子组件能够转动以带动所述桨叶转动。
  39. 一种无人机,其特征在于,包括:
    机身;及
    权利要求38所述的动力装置,所述动力装置安装在所述机身上。
  40. 一种云台,其特征在于,包括:
    连接臂;及
    权利要求1至35任意一项所述的电机,所述电机连接所述连接臂且用于驱动所述连接臂转动。
  41. 一种无人机,其特征在于,包括:
    机身;及
    权利要求40所述的云台,所述云台安装在所述机身上。
PCT/CN2018/093163 2018-06-27 2018-06-27 电机、雷达组件、动力装置、云台及无人机 WO2020000267A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/093163 WO2020000267A1 (zh) 2018-06-27 2018-06-27 电机、雷达组件、动力装置、云台及无人机
CN201880012708.5A CN110337774B (zh) 2018-06-27 2018-06-27 电机、雷达组件、动力装置、云台及无人机
US17/133,862 US20210119509A1 (en) 2018-06-27 2020-12-24 Motor, radar assembly, propulsion device, gimbal, and unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093163 WO2020000267A1 (zh) 2018-06-27 2018-06-27 电机、雷达组件、动力装置、云台及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/133,862 Continuation US20210119509A1 (en) 2018-06-27 2020-12-24 Motor, radar assembly, propulsion device, gimbal, and unmanned vehicle

Publications (1)

Publication Number Publication Date
WO2020000267A1 true WO2020000267A1 (zh) 2020-01-02

Family

ID=68139093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093163 WO2020000267A1 (zh) 2018-06-27 2018-06-27 电机、雷达组件、动力装置、云台及无人机

Country Status (3)

Country Link
US (1) US20210119509A1 (zh)
CN (1) CN110337774B (zh)
WO (1) WO2020000267A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884464B (zh) * 2019-10-23 2022-08-05 湖北湖科城科技发展有限公司 一种具有升力缓冲功能的飞行器
CN114440067B (zh) * 2021-12-31 2024-05-03 重庆特斯联智慧科技股份有限公司 雷达装置及其物流机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938184A (zh) * 2009-07-01 2011-01-05 江苏远东电机制造有限公司 电机转子复式支承间隙自动补偿结构
CN203027068U (zh) * 2012-12-30 2013-06-26 深圳市颜华守信科技有限公司 防中心转子晃动的电机及泵体
CN203911638U (zh) * 2014-06-27 2014-10-29 深圳市大疆创新科技有限公司 一种电机及云台设备
CN104662780A (zh) * 2014-06-27 2015-05-27 深圳市大疆创新科技有限公司 一种电机及云台设备
CN106688163A (zh) * 2016-10-08 2017-05-17 深圳市大疆灵眸科技有限公司 电机、具有电机的云台及具有云台的无人机
CN206481157U (zh) * 2017-01-04 2017-09-08 袁新武 外转子电机
US20170338713A1 (en) * 2016-05-23 2017-11-23 Denso Corporation Electric motor and electric power steering device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919763A (zh) * 2018-01-04 2018-04-17 北京小米移动软件有限公司 云台电机、云台及无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938184A (zh) * 2009-07-01 2011-01-05 江苏远东电机制造有限公司 电机转子复式支承间隙自动补偿结构
CN203027068U (zh) * 2012-12-30 2013-06-26 深圳市颜华守信科技有限公司 防中心转子晃动的电机及泵体
CN203911638U (zh) * 2014-06-27 2014-10-29 深圳市大疆创新科技有限公司 一种电机及云台设备
CN104662780A (zh) * 2014-06-27 2015-05-27 深圳市大疆创新科技有限公司 一种电机及云台设备
US20170338713A1 (en) * 2016-05-23 2017-11-23 Denso Corporation Electric motor and electric power steering device using same
CN106688163A (zh) * 2016-10-08 2017-05-17 深圳市大疆灵眸科技有限公司 电机、具有电机的云台及具有云台的无人机
CN206481157U (zh) * 2017-01-04 2017-09-08 袁新武 外转子电机

Also Published As

Publication number Publication date
US20210119509A1 (en) 2021-04-22
CN110337774B (zh) 2022-02-18
CN110337774A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
EP3549872B1 (en) Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
WO2020000267A1 (zh) 电机、雷达组件、动力装置、云台及无人机
CN109249751A (zh) 磁性全向轮
CN208299590U (zh) 电机、雷达组件及无人机
US20160072427A1 (en) Steering device for use in solar tracking equipment
US4906881A (en) Nutating motor with automatic engagement and disengagement of hand wheel with output shaft
US10245945B2 (en) Driving device and wheeled robot having the same
CN110901936B (zh) 无人机及其机载航拍稳像云台
US20180186017A1 (en) Joint structure and robot
US9899889B2 (en) Motor structure with frame structure having bearing housing formed integrally therewith
WO2021212324A1 (zh) 电机、动力装置及无人飞行器
CN210218193U (zh) 摇头机构及具有其的送风设备
WO2021212323A1 (zh) 电机、动力装置及无人飞行器
KR102491350B1 (ko) 드론용 모터 및 이를 포함하는 드론
CN117201910A (zh) 一种自动调整角度控制摄像头拍摄区域的机械装置
WO2020133859A1 (zh) 浮动剃须刀
CN104391508B (zh) 自动跟踪装置及天线自动跟踪系统
CN106933258B (zh) 一种小型盘式单轴跟踪平台
CN110609265A (zh) 一种用于激光雷达的轴承安装结构及激光雷达
US20070216239A1 (en) Tray assembly for spindle motor with aerodynamic bearing
US9132520B2 (en) Mounting mechanism for assembling plastic plug
CN211859746U (zh) 电机、动力装置及无人飞行器
JP3215502U (ja) 扇風機の首部の構造
JP7419706B2 (ja) オートバランサ装置、モータ、ドローン
WO2018064802A1 (zh) 电机、具有电机的云台及具有云台的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924963

Country of ref document: EP

Kind code of ref document: A1