WO2020000209A1 - 传感器组件及无人飞行器 - Google Patents

传感器组件及无人飞行器 Download PDF

Info

Publication number
WO2020000209A1
WO2020000209A1 PCT/CN2018/092938 CN2018092938W WO2020000209A1 WO 2020000209 A1 WO2020000209 A1 WO 2020000209A1 CN 2018092938 W CN2018092938 W CN 2018092938W WO 2020000209 A1 WO2020000209 A1 WO 2020000209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
unmanned aerial
aerial vehicle
sensor assembly
fixing
Prior art date
Application number
PCT/CN2018/092938
Other languages
English (en)
French (fr)
Inventor
熊荣明
唐尹
熊贤武
王登
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880031611.9A priority Critical patent/CN110770128B/zh
Priority to PCT/CN2018/092938 priority patent/WO2020000209A1/zh
Publication of WO2020000209A1 publication Critical patent/WO2020000209A1/zh
Priority to US17/129,361 priority patent/US20210107681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the invention relates to the field of aircraft, and in particular to a sensor assembly and an unmanned aerial vehicle.
  • the binocular sensor has two horizontally arranged and spaced cameras, so it can use the visual difference between the cameras at different positions to obtain the three-dimensional geometric information of the surrounding environment or the object to be detected through multiple images, such as smart devices The distance to the object, etc., so that a more comprehensive and reliable sensor detection.
  • the detection distance of the binocular sensor is related to the distance between the two cameras. In order to form a longer detection distance, the two cameras should be kept far apart.
  • the invention provides a sensor assembly and an unmanned aerial vehicle, which can realize the normal ranging of a binocular sensor without being blocked by the structure of the unmanned aerial vehicle.
  • the present invention provides a sensor assembly for use in an unmanned aerial vehicle.
  • the sensor assembly includes a binocular sensor, the binocular sensor includes two vision sensors, the two vision sensors are located in the same vertical plane, and the two vision The sensor is set up and down.
  • the present invention provides an unmanned aerial vehicle, including a body and the above-mentioned sensor assembly provided in the body.
  • the sensor assembly and the unmanned aerial vehicle of the present invention are applied to the unmanned aerial vehicle.
  • the sensor assembly includes a binocular sensor, the binocular sensor includes two vision sensors, and the two vision sensors are located in the same vertical plane.
  • the sensor is set up and down. In this way, the distance between the visual sensor and the structure such as the propeller on the side of the UAV is relatively long, which can effectively reduce the obstruction of the visual angle of the visual sensor by the propeller, and ensure the normal shooting and image acquisition of the visual sensor.
  • FIG. 1 is a schematic structural diagram of a sensor component according to a first embodiment of the present invention
  • FIG. 2 is a partially enlarged schematic diagram at A in FIG. 1;
  • FIG. 2 is a partially enlarged schematic diagram at A in FIG. 1;
  • FIG. 3 is an exploded schematic diagram of a sensor component provided in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a support member in a sensor assembly according to the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a flexible sleeve in a sensor assembly according to the first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by Embodiment 2 of the present invention.
  • 1 binocular sensor
  • 2 body
  • 3 sensor
  • 4 arm
  • 5 power set
  • 11, 11a, 11b vision sensor
  • 12 supporting piece
  • 13 fixing piece
  • 14 flexible sleeve
  • 21 Threaded holes
  • 22 first lens hole
  • 23 second lens hole
  • 31 first sensor
  • 32 second sensor
  • 121 first fixing groove
  • 122 fixing part
  • 123 second fixing groove
  • 131 Stopper
  • 132 connecting part
  • 141 second through hole
  • 142 clampping convex part
  • 1221 first through hole
  • 1222 card slot
  • 100 sensor assembly
  • 200 unmanned aerial vehicle.
  • FIG. 1 is a schematic structural diagram of a sensor component according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged schematic diagram at A in FIG. 1.
  • FIG. 3 is an exploded schematic view of a sensor component provided in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a support member in a sensor assembly according to the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a flexible sleeve in a sensor assembly according to the first embodiment of the present invention. As shown in FIG. 1 to FIG. 5, the sensor component provided in this embodiment is applied to an unmanned aerial vehicle.
  • the sensor component includes a binocular sensor 1, and the binocular sensor 1 includes two visual sensors 11 (that is, 11 a And 11b), the two vision sensors 11 are located in the same vertical plane, and the two vision sensors 11a and 11b are spaced up and down, and are respectively close to the upper and lower ends of the UAV.
  • a sensor assembly may be provided on the unmanned aerial vehicle, and the sensors are used for distance measurement and obstacle avoidance operations.
  • sensors There are generally many types of sensors used for distance measurement. For example, vision sensors can usually be used to achieve distance measurement for obstacles.
  • the sensor assembly includes a binocular sensor 1.
  • the binocular sensor can shoot and detect objects through two visual sensors 11a and 11b, which are set a certain distance apart, so as to take pictures of the two visual sensors 11a and 11b according to the distance difference and angle difference between the two visual sensors.
  • the obtained images are comprehensively processed, and then the distance between the photographed object and the unmanned aerial vehicle is calculated.
  • the visual sensor 11 may generally be a sensor such as a camera capable of capturing a screen image.
  • unmanned aerial vehicles In order to achieve unmanned aerial vehicle flight, unmanned aerial vehicles usually have organic arms and power kits, and rely on the propellers in the power kits to generate power to realize the take-off and landing and normal flight of the unmanned aerial vehicle.
  • the arms and power kits are generally located on both sides of the UAV. Therefore, when the vision sensors are also close to both sides of the UAV, the arms and propellers may block and cover the lens angle of the vision sensor 11, so that the vision The incomplete image collected by the sensor will affect the accurate judgment of the spatial characteristics of the object being photographed, resulting in inaccurate ranging.
  • the binocular sensor 1 is not conventionally arranged horizontally, left and right, but two vision sensors 11a and 11b are arranged on the same vertical plane.
  • the two visual sensors 11a and 11b are spaced up and down, and the visual sensors 11a and 11b are close to the upper and lower ends of the UAV, respectively.
  • the two visual sensors are set up and down one by one, so a large distance can be maintained between the visual sensors 11a and 11b to ensure that the binocular sensor 1 has a sufficient detection distance; at the same time, the visual sensors 11 can be arranged at The area away from the central axis of the propeller of the unmanned aerial vehicle is such that the distance between the visual sensor 11 and the propeller is relatively long, which can effectively reduce the obstruction of the visual angle of the lens of the visual sensor 11 by the propeller, and ensure the normal shooting and image acquisition of the visual sensor 11.
  • the two vision sensors 11a and 11b in the binocular sensor 1 have a long distance from the shielding structure such as a propeller, as an optional implementation manner, the two vision sensors 11a and 11b can be located in an unmanned area.
  • the unmanned aerial vehicle has a symmetrical structure to ensure stability during flight.
  • the unmanned aerial vehicle has a plane of symmetry in the longitudinal direction, that is, the forward direction of the unmanned aerial vehicle.
  • the distance between the side arms and the propellers are equal. Therefore, the visual sensor 11a and the visual sensor 11b in the binocular sensor 1 can both be disposed on a longitudinal symmetrical plane of the unmanned aerial vehicle.
  • the visual sensor 11 and the left and right propellers of the unmanned aerial vehicle have equal distances, that is, the visual sensor 11 can maintain an equal distance from the propellers on either side of the unmanned aerial vehicle.
  • this distance is the maximum distance that the visual sensor 11 and the side propeller of the UAV can maintain, and the propeller blocks the view angle of the lens of the visual sensor 11 located here to the minimum. If the visual sensor 11 is located at a position other than the longitudinal symmetry plane, the unmanned aerial vehicle will have a distance between the propeller on one side and the visual sensor 11 smaller than the maximum distance, and the propeller will have a greater obstruction of the lens angle of view.
  • the two vision sensors 11a and 11b are facing in the same direction.
  • the two vision sensors detect approximately the same side of the UAV, and the two vision sensors can detect objects or scenes in the same direction, and use the difference between the images acquired by the two vision sensors to obtain the Orientation of the object and the 3D spatial information of the scene, so as to achieve subsequent ranging and other operations.
  • the optical axis directions of the vision sensor 11a and the vision sensor 11b may be completely the same, or a certain included angle may be maintained.
  • the optical axes of the two vision sensors 11 are parallel to each other. In this way, the image angles obtained by the two vision sensors 11 are the same, and the difference is only that there is a certain distance difference between the two vision sensors 11, which can simplify the subsequent image processing process and help to quickly and reliably obtain unmanned people. Distance information between the aircraft and the object to be measured.
  • the visual sensors 11 in the binocular sensor 1 when the visual sensors 11 in the binocular sensor 1 are located in the same vertical plane, the visual sensors 11 can be made to face different directions in the vertical plane, so that the binocular sensor 1 can detect different heights.
  • an angle between the optical center line between the two vision sensors 11a and 11b and the horizontal plane can be made.
  • the optical center of the vision sensor 11 is generally the geometric center position of the optical lens in the vision sensor 11.
  • the optical centers of the two vision sensors 11a and 11b are not parallel to the horizontal plane, but have a certain angle with the horizontal plane, the directions facing the two vision sensors will not be sensors at this time. Above or below the component, but tilted horizontally. In this way, the binocular sensor 1 can detect and measure objects on the side.
  • the direction that the vision sensor 11 in the binocular sensor 1 faces can be determined by the angle between the optical center line and the horizontal plane.
  • the optical center lines of the visual sensors 11a and 11b and the horizontal plane can maintain mutually perpendicular angles.
  • the visual sensors 11 are not only located in the same vertical plane, but the positions of the two visual sensors in the up-down direction overlap each other.
  • the optical centers of the vision sensors 11a and 11b are connected along the vertical direction, and the directions facing the vision sensor 11 are horizontal.
  • objects located directly in front of the horizontal level of the binocular sensor 1 can be detected, thereby completing the unmanned aerial vehicle. Ranging missions in most flight conditions.
  • the sensor assembly may further include a support member 12, the support member 12 is disposed on the unmanned aerial vehicle, and the support member 12 is used to fix the vision sensor 11.
  • the support member 12 is used to fix the vision sensor 11.
  • the support member 12 may be provided with a first fixing groove 121 for fixing the vision sensor.
  • the first fixing groove 121 may have a shape that matches the shape of the vision sensor 11.
  • the first fixing groove 121 may be formed as an opening on one side and a closed cavity on the other side to receive the visual sensor 11 in the shape. Cavity.
  • the support 12 is usually an independent structure, so that the rigidity of the support 12 can be used to complete the vision.
  • the positioning of the sensor 11 enables a relatively precise relative position and relative angle between the two vision sensors 11a and 11b.
  • the supporting member 12 may generally be made of a material having a relatively high rigidity.
  • the supporting member 12 may be made of a metal material such as an aluminum alloy.
  • a fixing form such as a snap connection or a screw connection may be generally adopted.
  • the piece 12 itself deforms the supporting piece 12 to change the relative position and angle between the two vision sensors 11 on the supporting piece 12.
  • the normal flying vibration generated by the UAV during flight will also be transmitted to the support 12 through the airframe 2, so that the visual sensor 11 on the support 12 will be affected by the vibration.
  • the support 12 in the sensor assembly and the airframe 2 of the unmanned aerial vehicle Flexible connection between. In this way, through the flexible connection method, the assembling stress of the support 12 can be reduced, and the vibration from the body 2 can be filtered, so that the relatively accurate relative position and angle between the visual sensors 11 fixed on the support 12 can be maintained.
  • the support member 12 and the body 2 may be flexibly connected in various ways, for example, a vibration damping member or a vibration damping structure may be provided between the support member 12 and the body 2.
  • the sensor assembly may further include a flexible connection member connected between the support member 12 and the body 2 of the unmanned aerial vehicle.
  • the flexible connecting member itself can generate a certain elastic deformation, so that a part of the assembly stress can be offset and absorbed through the elastic deformation, or the flying vibration from the body 2.
  • the flexible connecting member may have a structure capable of generating elastic deformation, or may be made of a flexible material itself.
  • the support member 12 may generally include a fixing portion 122 for connecting the fuselage 2 with the flexible connecting member.
  • the fixing portion 122 may be a protruding structure protruding from the surface of the support body, or a positioning groove or an accommodation cavity opened on the support. In this way, the flexible connecting member can be mounted on the supporting member through the fixing portion 122 and connected to the body 2.
  • two vision sensors 11 a and 11 b may be respectively disposed at both ends of the supporting member 12, and the fixing portion 122 is located at a middle portion of the supporting member 12.
  • the support member 12 may be in the shape of a fixed beam or a fixed rod with a certain length, and the two vision sensors 11 are respectively disposed at the upper and lower ends of the support member 12, and the fixed portion 122 in the middle of the support member 12 may be connected by flexibility Is connected to the body 2 of the UAV, so that the fixing point between the support 12 and the body 2 is located in the middle of the length of the support 12, and the support 12 itself spans the upper and lower sides of the fixing point from the longitudinal direction of the body 2 . Therefore, the forces on both sides of the fixed point are more balanced, and the support member 12 will not undergo displacement such as swinging.
  • the fixing portion 122 is an even number, and the fixing portion 122 is symmetrically disposed with respect to the support member 12. In this way, the plurality of fixing portions 122 are symmetrically arranged, and the gravity from the support member 12 can be distributed to different fixing portions 122, and the forces between the fixing portions 122 are relatively uniform, so that the support member 12 is reliably supported and positioned.
  • the number of the fixing portions 122 may be two, and the two fixing portions 122 are symmetrically disposed on the left and right sides of the support member 12.
  • the two fixing portions 122 can be connected to the body 2, and since the fixing portions 122 are respectively disposed on both sides of the support 12, the centers of gravity of the two visual sensors 11 vertically arranged on the support 12 are located on the two fixing portions 122. In this way, it is possible to form a reliable support and positioning for the support member 12 and avoid the phenomenon that the support member 12 is unevenly biased and distorted.
  • the sensor assembly may further include a fixing member 13, the fixing portion 122 is provided with a first through hole 1221, and the fixing member 13 passes through the first A through hole 1221 is connected to the body 2 of the unmanned aerial vehicle to fix the support 12 on the body 2.
  • the direction of the first through hole 1221 may generally be in a vertical direction or a horizontal direction
  • the shape of the fixing member 13 may match the shape and aperture of the first through hole 1221 so that the fixing member 13 passes through the first through hole.
  • a detachable connection between the fixing member 13 and the body 2 may be realized by a thread or an engaging structure, so as to facilitate maintenance and replacement of the sensor component.
  • the fixing member 13 may specifically have a stop portion 131 and a connecting portion 132, wherein the connecting portion 132 is passed through the first through hole 1221 and communicates with the body 2 is fixed, and the stopping portion 131 stops on the outer end surface of the first through hole 1221. In this way, when the connecting portion 132 and the body 2 are relatively fixed, the stopping portion 131 will be blocked outside the fixing portion 122 to prevent the fixing member 13 from coming out of the first through hole 1221.
  • the connecting portion 132 is rod-shaped, and the outer surface of the connecting portion 32 is provided with a connecting thread.
  • the connecting portion 32 can penetrate into the first through hole 1221 and is connected to the body 2 by a connecting thread.
  • the body 2 is generally provided with a screw hole 21 matching the connecting portion 132.
  • the stop portion 131 may be generally a cover shape or a pie shape. At this time, the stop portion 131 can form a large contact surface with the outer end surface of the first through hole 1221 and stop at the same time. The protruding size of the blocking portion 131 is relatively compact.
  • the flexible connection piece adapted to the above-mentioned possible fixing manner between the support member 12 and the body 2 will also have a corresponding structure and shape.
  • the flexible connecting member is a flexible sleeve 14, and the flexible sleeve 14 has a second through hole 141, the flexible sleeve 14 is disposed in the first through hole 1221, and the second through hole 141 is disposed coaxially with the first through hole 1221, and the fixing member 13 is fixed inside the flexible sleeve 14 through the second through hole 141 so that the flexible sleeve 14 forms a flexible connection between the support member 12 and the fixing member 13.
  • the flexible sleeve 14 is generally elastic and can be formed of a material that is deformable. Therefore, when external forces and vibrations are applied to the flexible sleeve 14, the flexible sleeve 14 can absorb or filter it by virtue of its own deformation. When the force and vibration are eliminated, the flexible sleeve 14 can revert to its original state by relying on its own elasticity.
  • the flexible sleeve 14 may be sleeved between the fixing member 13 and the hole wall of the first through hole 1221, and the outer wall of the flexible sleeve 14 is connected to the fixing portion 122 of the support member 12, and the second through hole of the flexible sleeve 14
  • the 141 hole wall is connected to the fixing member 13, so that the assembly stress and body vibration from the fixing member 13 can be absorbed by the flexible sleeve 14 sleeved on the outside of the fixing member 13, thereby reducing the impact on the support member 12.
  • the positioning of the flexible sleeve 14 in the axial direction of the first through hole 1221 can usually be achieved by the friction between the flexible sleeve 14 itself and the hole wall of the first through hole 1221. And when the UAV is used for a long time, or when the UAV generates a large vibration, the flexible sleeve 14 may slide out of the first through hole 1221, affecting the normal flexibility between the support member 12 and the fixing member 13 connection. In order to strengthen the positioning of the flexible sleeve 14.
  • the fixing portion 122 is provided with a card slot 1222 radially opened along the first through hole 1221, and an outer wall of the flexible sleeve 14 is provided with a card convex portion 142 that can be matched with the card slot 1222.
  • the card protruding portion 142 is locked in the card slot 1222.
  • the flexible sleeve 14 can generate elastic deformation itself, it can be relatively easily assembled in the first through hole 1221, and the latching portion 142 on the outer wall of the flexible sleeve 14 is engaged in the latching groove 1222. In this way, the fixing portion 122 can complete the fixing of the flexible sleeve 14 in the axial direction through the clamping groove 1222.
  • the number and shape of the card slots 1222 and the card protruding portions 142 may be various.
  • the card slots 1222 may be one or more, and a plurality of card slots 1222 may be provided on opposite sides of the fixing portion 122, or They are arranged at intervals along the axial direction of the first through hole 1221.
  • the latching protrusion 142 may be a protrusion or an elastic latching claw protruding radially along the first through hole 1221.
  • the grooves 1222 and the convex portions 142 may have other numbers and shapes that are well known to those skilled in the art, and are not repeated here.
  • the flexible sleeve 14 or other flexible connecting members may be integrated components supported by a flexible material.
  • the flexible connecting member may be a silicone member. Silicone has good elasticity and recovery ability, and has good chemical stability and corrosion resistance. It can adapt to the working environment of the UAV, and form a reliable flexible connection between the support 12 and the body 2 of the UAV. .
  • the binocular sensor 1 can only perform the ranging task in one direction of the unmanned aerial vehicle.
  • the UAV usually needs to be provided with other sensors.
  • the sensor assembly may further include at least one additional sensor 3, and the additional at least one sensor 3 is also disposed on the support 12.
  • the sensor component may further include other sensors 3 that can be used for ranging tasks or other detection tasks.
  • these sensors 3 may also need to have a relatively accurate and stable relative position. Therefore, these additional sensors 3 may also be provided on the support member 12, and these sensors 3 may be implemented by using the rigid support member 12. The stable support and precise positioning ensure that the sensor 3 can achieve detection tasks such as accurate ranging.
  • these additional sensors 3 include, but are not limited to, performing a ranging task.
  • these additional sensors 3 are used as examples for distance measurement.
  • the detection direction of the binocular sensor 1 is directed in front of the sensor component, and the detection directions of the at least one additional sensor 3 and the binocular sensor 1 are different.
  • the additional sensor 3 can realize the detection tasks in different directions with the binocular sensor 1, thereby completing the ranging and obstacle avoidance operations in multiple directions when the UAV is flying.
  • the support 12 is provided with a second fixing groove 123 and a second fixing groove 123 for fixing at least one additional sensor 3. Corresponds to at least one additional sensor 3.
  • the specific structure and shape of the second fixing groove 123 are matched with the additional sensors to receive and fix the additional sensors 3 therein.
  • the number of the second fixing grooves 123 is generally the same as the number of the additional sensors 3, so that the additional sensors 3 are fixed in the second fixing grooves 123 in a one-to-one correspondence.
  • the additional at least one sensor 3 may include at least one of the following: a first sensor 31 pointing to the side of the sensor assembly and a second sensor 32 pointing above the sensor assembly.
  • the additional sensor 3 can perform detection operations such as distance measurement to the side of the sensor component and above the sensor component, thereby forming a complementary detection area with the binocular sensor 1 pointing in front of the sensor component, effectively expanding the range of distance measurement and obstacle avoidance.
  • the number of the first sensors 31 may be two, and the two first sensors 31 are respectively directed to two opposite sides of the sensor component side.
  • the two first sensors 31 disposed opposite to each other in the detection direction can respectively detect two sides of the sensor assembly to provide a larger distance measurement and obstacle avoidance range.
  • the two first sensors 31 can cooperate with the binocular sensor 1 so as to cover a detection range of about 270 ° in the circumferential direction of the sensor assembly.
  • the two first sensors may be respectively pointed to the left and right sides of the sensor assembly.
  • the first sensor 31 may also be disposed on only one side of the sensor component to perform a unilateral detection task of the sensor component.
  • the additional sensor 3 is a monocular vision sensor, a binocular vision sensor, or a time of flight (TOF) module.
  • both the monocular vision sensor and the binocular vision sensor can obtain the distance between the sensor component and the object to be measured through the collected visual image.
  • the difference is that the monocular vision sensor uses the image change of the object to be measured when the UAV moves, and the binocular vision sensor uses the difference in the angle of view between two different vision sensors for distance measurement.
  • the time-of-flight module usually uses the time-of-flight ranging method to measure distance.
  • the first sensor 31 is generally a monocular vision sensor or a binocular vision sensor
  • the second sensor 32 is usually a time-of-flight module.
  • the sensor assembly is applied to an unmanned aerial vehicle.
  • the sensor assembly includes a binocular sensor, the binocular sensor includes two vision sensors, the two vision sensors are located in the same vertical plane, and the two vision sensors are spaced up and down.
  • the distance between the visual sensor and the structure such as the propeller on the side of the UAV is relatively long, which can effectively reduce the obstruction of the visual angle of the visual sensor by the propeller, and ensure the normal shooting and image acquisition of the visual sensor.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by Embodiment 2 of the present invention.
  • the unmanned aerial vehicle 200 provided in this embodiment specifically includes an airframe 2 and a sensor assembly 100 provided in the airframe 2.
  • the specific structure, function, and working principle of the sensor assembly 100 have been described in detail in the foregoing first embodiment, and are not repeated here.
  • the unmanned aerial vehicle 200 further includes an organic arm 4 and a power set 5 provided on the airframe 4.
  • the airframe 2 is provided with a sensor assembly 100, and binocular sensors in the sensor assembly 100 can perform detection tasks such as ranging to ensure the normal and safe flight and take-off and landing operations of the unmanned aerial vehicle 200.
  • the sensor component 100 is located at the rear end of the body 2.
  • the sensor assembly 100 can be mainly used to perform detection tasks such as ranging on the rear of the UAV 200, so that the UAV 200 can smoothly perform flight operations such as obstacle avoidance at the rear.
  • the binocular sensors in the sensor assembly 100 can be disposed on the longitudinal symmetrical plane of the airframe 2.
  • the visual sensors arranged vertically in the binocular sensor are equal to the two sides of the UAV 200 (arm 4 and power set 5), and both are the maximum distances that can be achieved. Structures such as propellers 4 and 5 in the power set 5 have less obstruction, which can improve the accuracy and reliability of distance measurement.
  • the body 2 of the unmanned aerial vehicle 200 has a cavity for accommodating the sensor assembly 100, and a communication space is provided on the shell wall of the cavity.
  • the first lens holes 22 on the inner and outer sides of the cavity are matched with the binocular sensor in the sensor assembly 100.
  • the entire sensor assembly 100 can be protected by the body 2, and external light can enter the binocular sensor in the sensor assembly 100 through the first lens hole 22, so that the binocular sensor performs normal image acquisition.
  • a second lens hole is provided on the body 2 to communicate with the inner and outer sides of the cavity and match the additional at least one sensor. twenty three.
  • an additional sensor may perform a detection task through the second lens hole 23.
  • the position and size of the second lens hole 23 are matched with the position of the additional sensor and the size of the detection end.
  • the unmanned aerial vehicle 200 may further include a binocular sensor provided at the front end of the fuselage 2, and a binocular sensor provided at the bottom of the fuselage 2, Ultrasonic sensors or infrared sensors.
  • the binocular sensor provided at the front end of the body 2 and the binocular sensor, the ultrasonic sensor or the infrared sensor provided at the bottom of the body 2 can be used simultaneously, or can be selectively installed and used.
  • the unmanned aerial vehicle specifically includes an airframe and a sensor component disposed in the airframe;
  • the sensor component specifically includes a binocular sensor, the binocular sensor includes two vision sensors, and the two vision sensors are located in the same vertical plane, and The two vision sensors are spaced up and down.
  • the distance between the vision sensor and the structure such as the propeller on the side of the UAV is relatively long, which can effectively reduce the obstruction of the vision angle of the lens of the vision sensor by the propeller, and ensure the normal shooting and image acquisition of the vision sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种传感器组件(100),包括双目传感器(1),双目传感器(1)包括两个视觉传感器(11),两个视觉传感器(11)位于同一竖直平面内,且两个所述视觉传感器(11)上下间隔设置。一种无人飞行器(200),包含传感器组件(100)。该传感器组件能够实现双目传感器的正常测距,且不会被无人飞行器的结构所遮挡。

Description

传感器组件及无人飞行器 技术领域
本发明涉及飞行器领域,尤其涉及一种传感器组件及无人飞行器。
背景技术
随着科技的不断发展,无人飞行器等智能设备越来越多的进入到了各类应用领域中。
目前,智能设备在自动执行任务时,需要依靠视觉传感器等传感设备探测外部环境。其中,双目传感器由于拥有两个水平排列且间隔设置的摄像机,因而可利用不同位置的摄像机之间的视觉差,通过多幅图像而获取周围环境或者待探测物体的三维几何信息,例如智能设备与物体之间的距离等,从而进行较为全面可靠的传感探测。其中,双目传感器的探测距离与两个摄像机的间距有关,为了形成较远的探测距离,应让两个摄像机保持较远的间隔。
然而,由于无人飞行器的机臂和螺旋桨等位于无人飞行器的侧方,这些结构在水平方向上与双目传感器的摄像机距离较近,容易对摄像机造成遮挡,壁障距离较大。
发明内容
本发明提供一种传感器组件及无人飞行器,能够实现双目传感器的正常测距,且不会被无人飞行器的结构所遮挡。
第一方面,本发明提供一种传感器组件,应用在无人飞行器上,传感器组件包括双目传感器,双目传感器包括两个视觉传感器,两个视觉传感器位于同一竖直平面内,且两个视觉传感器上下间隔设置。
第二方面,本发明提供一种无人飞行器,包括机体和设置于机体内的如上所述的传感器组件。
本发明的传感器组件及无人飞行器,传感器组件应用在无人飞行器上, 传感器组件包括双目传感器,双目传感器包括两个视觉传感器,两个视觉传感器位于同一竖直平面内,且两个视觉传感器上下间隔设置。这样视觉传感器与无人飞行器侧方得螺旋桨等结构的距离较远,能够有效减少螺旋桨对于视觉传感器的镜头视角的遮挡,保证视觉传感器的正常拍摄与图像采集。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的传感器组件的结构示意图;
图2是图1中A处的局部放大示意图;
图3是本发明实施例一提供的传感器组件的爆炸示意图;
图4是本发明实施例一提供的传感器组件中支撑件的结构示意图;
图5是本发明实施例一提供的传感器组件中柔性套的结构示意图;
图6是本发明实施例二提供的一种无人飞行器的结构示意图。
附图标记说明:
1—双目传感器;2—机体;3—传感器;4—机臂;5—动力套装;11、11a、11b—视觉传感器;12—支撑件;13—固定件;14—柔性套;21—螺纹孔;22—第一镜头孔;23—第二镜头孔;31—第一传感器;32—第二传感器;121—第一固定槽;122—固定部;123—第二固定槽;131—止挡部;132—连接部;141—第二通孔;142—卡凸部;1221—第一通孔;1222—卡槽;100—传感器组件;200—无人飞行器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例一提供的传感器组件的结构示意图。图2是图1中A处的局部放大示意图。图3是本发明实施例一提供的传感器组件的爆炸示意图。图4是本发明实施例一提供的传感器组件中支撑件的结构示意图。图5是本发明实施例一提供的传感器组件中柔性套的结构示意图。如图1至图5所示,本实施例提供的传感器组件,应用在无人飞行器上,传感器组件包括双目传感器1,双目传感器1包括两个分别独立获取图像的视觉传感器11(即11a和11b),两个视觉传感器11位于同一竖直平面内,两个视觉传感器11a和11b上下间隔设置,并分别靠近无人飞行器的上下两端。
具体的,当无人飞行器飞行时,需要对自身以及周围障碍物之间的距离进行测量和判断,以避免因障碍物距离过近而对无人飞行器的飞行造成干扰,甚至出现无人飞行器撞上障碍物的现象。为了对无人飞行器和周围障碍物之间的距离进行测量,无人飞行器上可以设置有传感器组件,并利用传感器实现测距和避障等操作。用于测距的传感器的种类一般有多种,例如通常可以利用视觉传感器实现对障碍物的测距。
其中,为了通过视觉传感器进行测距,传感器组件中包括有双目传感器1。双目传感器可以通过相隔一定距离设置的两路视觉传感器11a和11b分别对物体进行拍摄和探测,从而根据两个视觉传感器之间的距离差和角度差,对两路视觉传感器11a和11b所拍摄到的图像进行综合处理,进而计算得到被拍摄物体与无人飞行器之间的距离。其中,视觉传感器11通常可以为摄像头等能够采集画面图像的传感器。
为了让无人飞行器实现空中飞行,无人飞行器通常会设置有机臂和动力套装,并依靠动力套装中的螺旋桨产生动力,实现无人飞行器的起降和正常飞行。然而,机臂和动力套装一般位于无人飞行器的两侧,因而当视觉传感器同样靠近无人飞行器的两侧时,机臂和螺旋桨可能会对视觉传感器11的镜头视角造成遮挡和覆盖,这样视觉传感器所采集到的是不完全的图像,会影响到对被拍摄物体的空间特征的准确判断,造成测距不准现象。为了避免视觉传感器的镜头视角被无人飞行器的其它结构所遮挡,本实施例中,双目传感器1并非常规的水平左右设置,而是让两个视觉传感 器11a和11b布置在同一竖直面上,且两个视觉传感器11a和11b上下间隔设置,同时视觉传感器11a和视觉传感器11b分别靠近无人飞行器的上下两端。此时,两个视觉传感器一上一下设置,因而视觉传感器11a和视觉传感器11b之间可以维持一个较大的间距,以保证双目传感器1具有足够的探测距离;同时,视觉传感器11可以布置在无人飞行器的远离螺旋桨的中轴线一带,这样视觉传感器11与螺旋桨等结构的距离较远,能够有效减少螺旋桨对于视觉传感器11的镜头视角的遮挡,保证视觉传感器11的正常拍摄与图像采集。
其中,为了让双目传感器1中的两个视觉传感器11a和11b均与螺旋桨等遮挡结构具有较远的距离,作为一种可选的实施方式,两个视觉传感器11a和11b均可以位于无人飞行器的纵向对称面上。
一般的,无人飞行器为左右对称的结构,以保证飞行时的平稳性,这样无人飞行器在纵向上,也就是无人飞行器的前进方向上具有对称面,该对称面与无人飞行器的两侧的机臂以及螺旋桨之间的距离均相等。因而,可以将双目传感器1中的视觉传感器11a和视觉传感器11b均设置在无人飞行器的纵向对称面上。此时,视觉传感器11与无人飞行器的左侧和右侧螺旋桨均具有相等的距离,也就是说,视觉传感器11能够和无人飞行器的任一侧螺旋桨均保持相等的间距。可以较为容易的推断出,该间距即为视觉传感器11与无人飞行器侧方螺旋桨所能保持的最大距离,而螺旋桨对位于此处的视觉传感器11的镜头视角的遮挡最小。若视觉传感器11位于该纵向对称面之外的其它位置,则无人飞行器会有一侧螺旋桨与视觉传感器11之间的间距小于该最大距离,此时螺旋桨对镜头视角也会有较大的遮挡。
可选的,为了实现双目传感器1的正常测距,两个视觉传感器11a和11b均面向同一方向。这样两个视觉传感器大致朝着无人飞行器的同一侧进行探测,且两个视觉传感器可以探测同一个方向的物体或景物画面,并利用两个视觉传感器所获取的图像之间的差异而获得该方向的物体以及景物的三维空间信息,从而实现后续的测距等操作。
其中,视觉传感器11a和视觉传感器11b的光轴方向可以完全相同,也可以保持有一定的夹角。在其中一种可选的方式中,两个视觉传感器11 的光轴相互平行。这样两个视觉传感器11所获取的图像角度是一致的,而区别仅在于两个视觉传感器11之间具有一定的距离差,这样可以简化后续的图像处理过程,有助于快速可靠的获得无人飞行器与待测物体之间的距离信息。
此外,当双目传感器1中的视觉传感器11位于同一个竖直平面内时,可以令视觉传感器11面向竖直平面内的不同方向,这样双目传感器1可以对不同的高度进行探测。其中可选的,可以让两个视觉传感器11a和11b之间的光心连线与水平面之间具有夹角。
具体的,视觉传感器11的光心,一般为视觉传感器11中光学镜片的几何中心位置。当两个视觉传感器11a以及11b的光心连线并不是和水平面平行,而是和水平面之间具有一定夹角时,则此时这两个视觉传感器所面对的方向也就不会是传感器组件的上方或下方,而是向水平方向倾斜。这样双目传感器1即可对侧方的物体进行探测与测距。而双目传感器1中视觉传感器11所面对的方向即可由光心连线与水平面之间夹角的大小所决定。
进一步的,作为其中一种视觉传感器的设置方式,视觉传感器11a和视觉传感器11b的光心连线与水平面之间可以保持相互垂直的角度。此时,视觉传感器11不仅位于同一竖直平面内,且两个视觉传感器的沿上下方向的位置相互重叠。这样视觉传感器11a以及11b的光心连线沿着竖直方向,而视觉传感器11所面向的方向均为水平方向,这样可以探测位于双目传感器1水平正前方的物体,从而完成无人飞行器的大多数飞行状态下的测距任务。
为了连接和固定视觉传感器11,作为一种可选的结构,传感器组件中还可以包括支撑件12,支撑件12设置在无人飞行器上,且支撑件12用于固定视觉传感器11。这样当传感器组件固定在无人飞行器的机体2上时,由于视觉传感器11设置在支撑件12上,所以只要把支撑件12固定在机体2上,即可实现传感器组件的定位。
具体的,为了将视觉传感器11固定在支撑件12上,在其中一种可选的方式中,支撑件12上可以设置有用于固定视觉传感器的第一固定槽121。这样视觉传感器11可以被容置在第一固定槽121内而得到固定。其中, 第一固定槽121可以具有和视觉传感器11的外形相互匹配的形状,例如第一固定槽121可以形成为一侧开口,而另一侧封闭的腔体,以将视觉传感器11收容在该腔体之中。
具体的,由于两个视觉传感器11a和11b之间的相对位置和相对角度均需要保证较高的精度,因而支撑件12通常为一个独立的结构件,这样可以利用支撑件12自身的刚性完成视觉传感器11的定位,并使两个视觉传感器11a和11b之间具有较为精确的相对位置以及相对角度。
此外,为了避免支撑件12自身发生影响视觉传感器12相对位置的形变,支撑件12通常可以由刚度较大的材料构成,例如支撑件12可以为铝合金等金属材料制成。
当支撑件12固定在无人飞行器的机体2上时,一般可以采用卡接或者是螺纹连接等固定形式。此时,支撑件12和机体2之间通常会因为装配时所产生的应力(螺纹连接的应力或者卡接抵触时产生的应力)而产生一定的位移或形变,该位移和形变会影响到支撑件12本身,让支撑件12产生一定的变形,从而改变支撑件12上两个视觉传感器11之间的相对位置与角度。同时,无人飞行器在飞行时所产生的正常飞行振动也会通过机体2传递给支撑件12,使支撑件12上的视觉传感器11受到振动影响。因而为了避免因为装配应力或者机体2飞行振动而对视觉传感器11所产生的不利影响,确保双目传感器1可靠准确的工作,可选的,传感器组件中的支撑件12和无人飞行器的机体2之间柔性连接。这样通过柔性连接方式,可以减少支撑件12的装配应力,并过滤来自机体2的振动,让支撑件12上所固定的视觉传感器11之间保持较为准确的相对位置和角度。
具体的,支撑件12和机体2之间可以通过多种方式实现柔性连接,例如是支撑件12和机体2之间可以设置有减振件,或者是减振结构等。作为其中一种柔性连接方式,传感器组件中还可以包括柔性连接件,柔性连接件连接在支撑件12和无人飞行器的机体2之间。
具体的,柔性连接件自身能够产生一定的弹性形变,从而可以通过弹性形变而抵消和吸收一部分装配应力,或者是来自于机体2的飞行振动。一般的,为了让柔性连接件产生弹性形变,柔性连接件可以具有可产生弹性形变的结构,或者是自身采用柔性材料制成。
而为了通过柔性连接件固定在机体2上,可选的,支撑件12一般可以包括固定部122,固定部122用于通过柔性连接件和无人飞行器的机体2连接。具体的,固定部122可以为凸出于支撑件本体表面的凸出结构,或者是支撑件上开设的定位凹槽或者容置腔等。这样柔性连接件可以通过固定部122安装在支撑件上,并和机体2实现连接。
具体的,作为支撑件以及固定部的其中一种设置方式,两个视觉传感器11a和11b可以分别设置在支撑件12的两端,而固定部122位于支撑件12的中段。此时,支撑件12可以呈具有一定长度的固定梁或者固定杆等形状,且两个视觉传感器11分别设置于支撑件12的上下两端,而支撑件12中部的固定部122可以通过柔性连接件和无人飞行器的机体2相连,这样支撑件12与机体2之间的固定点位于支撑件12的长度方向的中段,而支撑件12本身从机体2的纵向方向跨越固定点的上下两侧。因而固定点两侧受力较为均衡,支撑件12不会发生摇摆等位移现象。
而为了提高支撑件12的支撑稳定性以及支撑件12和机体2之间的连接结构强度,可选的,固定部122为偶数个,且固定部122相对于支撑件12对称设置。这样将多个固定部122对称设置,可以将来自于支撑件12的重力分散到不同的固定部122上,且固定部122之间受力较为均匀,使支撑件12得到可靠的支撑与定位。
而在本实施例中,可以让固定部122为两个,两个固定部122对称设置在支撑件12的左右两侧。这样两个固定部122均可以和机体2实现连接,且由于固定部122分别设置在支撑件12两侧,因而支撑件12上竖直排列的两个视觉传感器11的重心位于两个固定部122之间,这样能够对支撑件12形成可靠的支撑和定位,避免支撑件12出现受力不均和歪斜等现象。
当支撑件12通过固定部122与无人飞行器的机体2连接时,可选的,传感器组件中还可以包括固定件13,固定部122上设置有第一通孔1221,固定件13穿过第一通孔1221并与无人飞行器的机体2连接,以将支撑件12固定在机体2上。
具体的,第一通孔1221的方向通常可以沿竖直方向或者水平方向,而固定件13的形状可以与第一通孔1221的形状以及孔径相互匹配,这样 固定件13穿过第一通孔1221后,就会利用固定件13与第一通孔1221的孔壁之间的配合,以及固定件13与机体2之间的连接而实现固定件13、固定部122与机体2三者之间的相对固定。
其中,当固定件13与机体2连接时,可以通过螺纹或者卡合结构实现固定件13与机体2之间的可拆卸连接,以便于进行传感器组件的维护和更换。
为了防止固定件13从第一通孔1221中脱出,可选的,固定件13具体可以具有止挡部131和连接部132,其中,连接部132穿设在第一通孔1221内并与机体2固定,而止挡部131止挡在第一通孔1221的外端面上。这样当连接部132与机体2相对固定后,止挡部131会挡在固定部122的外侧,以避免固定件13从第一通孔1221中脱出。
其中,为了便于和机体2连接,可选的,连接部132为杆状,且连接部32的外表面设置有连接螺纹。这样连接部32可以穿入第一通孔1221内,并依靠连接螺纹和机体2连接。而相应的,机体2上通常开设有和连接部132相互匹配的螺纹孔21。
此外,为了形成可靠的止挡,止挡部131通常可以为盖状或者饼状,此时,止挡部131能够和第一通孔1221的外端面之间形成较大的接触面,同时止挡部131的凸出尺寸较为紧凑。
而适配于支撑件12与机体2之间的上述可能的固定方式,柔性连接件也会具有相应的结构和形状。作为柔性连接件的其中一种可选的实施方式,柔性连接件为柔性套14,且柔性套14具有第二通孔141,柔性套14设置在第一通孔1221内,且第二通孔141与第一通孔1221同轴设置,固定件13通过第二通孔141固定在柔性套14内侧,以使柔性套14在支撑件12与固定件13之间形成柔性连接。
具体的,柔性套14通常自身具有弹性,能够产生一定形变的材料形成,所以当外界的作用力和振动施加在柔性套14上时,柔性套14可以凭借自身的形变将其吸收或过滤,而当作用力和振动消除时,柔性套14即可依靠自身弹性而回复原状。上述固定方式中,柔性套14可以套在固定件13与第一通孔1221的孔壁之间,且柔性套14外壁与支撑件12的固定部122连接,而柔性套14的第二通孔141孔壁与固定件13连接,因而来 自于固定件13上的装配应力和机体振动均能够被套在固定件13外侧的柔性套14所吸收,而减少支撑件12所受到的影响。
当柔性套14设置在第一通孔1221内时,通常可以依靠柔性套14自身和第一通孔1221孔壁之间的摩擦力实现柔性套14在第一通孔1221轴向上的定位。而当无人飞行器长期使用,或者无人飞行器飞行时产生较大的振动时,柔性套14可能会从第一通孔1221中滑出,影响到支撑件12与固定件13之间的正常柔性连接。为了加强对柔性套14的定位。可选的,固定部122设置有沿第一通孔1221径向开设的卡槽1222,柔性套14的外壁上设置有可与卡槽1222相互匹配的卡凸部142,柔性套14设置在第一通孔1221中时,卡凸部142卡设在卡槽1222内。
具体的,由于柔性套14自身能够产生弹性形变,因而可以较为容易的装配在第一通孔1221内,且使柔性套14外壁上的卡凸部142卡合在卡槽1222内。这样通过卡槽1222,固定部122即可完成对柔性套14的轴向方向上的固定。
其中,卡槽1222和卡凸部142的数量以及形状均可以有多种,例如卡槽1222可以为一个或者多个,且多个卡槽1222可以设置在固定部122上的相对两侧,或者是沿第一通孔1221的轴向间隔排列等。而卡凸部142可以为沿第一通孔1221径向凸出的凸起或者弹性卡爪等。或者,卡槽1222和卡凸部142也可以具有其它本领域技术人员所熟知的数量和形状,此处不再赘述。
一般的,柔性套14或者其它柔性连接件可以为由柔性材料所支撑的一体式元件,例如可以让柔性连接件为硅胶件。硅胶具有较好的弹性和回复能力,同时具有较好的化学稳定性与耐腐蚀性,可以适应无人飞行器的工作环境,在支撑件12和无人飞行器的机体2之间形成可靠的柔性连接。
此外,在将所述支撑件12固定于机体2上时,可留一定的活动间隙,如此可使得当受到外力冲击时,支撑件12整个一起活动,不会造成悬空的部位相对固定的部位变形较大的情况。
在传感器组件中,双目传感器1仅能实现无人飞行器的一个方向的测距任务。而为了实现无人飞行器在其它方向上的探测与测距,通常无人飞行器还需要设置其它传感器。在一种可选的实施方式中,为了进行其它方 向上的测距操作,传感器组件还可以包括额外的至少一个传感器3,额外的至少一个传感器3也设置在支撑件12上。
具体的,传感器组件中,还可以包括有其它可用于测距任务,或者其它探测任务的传感器3。其中,和双目传感器1类似,这些传感器3可能同样需要具有较为精确和稳定的相对位置,因而这些额外的传感器3也可以设置在支撑件12上,并利用刚性的支撑件12实现这些传感器3的稳定支撑以及精确定位,保障传感器3能够实现准确的测距等探测任务。
通常的,这些额外的传感器3的功能包括但并不限于进行测距任务,此处为便于说明,均以这些额外的传感器3为用于测距的传感器为例进行说明。
可选的,为了使传感器组件执行多个方向上的测距,双目传感器1的探测方向指向传感器组件前方,而额外的至少一个传感器3和双目传感器1的探测方向不同。这样额外的传感器3能够实现和双目传感器1在不同方向上的探测任务,从而完成无人飞行器飞行时,其在多个方向上的测距和避障操作。
其中,为了将其它额外的传感器3固定在支撑件上,作为一种可选的固定方式,支撑件12上设置有用于固定额外的至少一个传感器3的第二固定槽123,第二固定槽123和额外的至少一个传感器3对应。其中第二固定槽123的具体结构和形状均和额外的传感器相匹配,以将额外的传感器3收容并固定在其中。第二固定槽123的数量一般和额外的传感器3的数量相同,以便将额外的传感器3一一对应的固定在第二固定槽123之中。
具体的,为了向不同方向进行探测,额外的至少一个传感器3可以包括以下至少一者:指向传感器组件侧方的第一传感器31和指向传感器组件上方的第二传感器32。这样额外的传感器3可以向传感器组件侧方以及传感器组件的上方进行测距等探测操作,从而和指向传感器组件前方的双目传感器1形成互补的探测区域,有效扩大了测距和避障范围。
在上述实施例基础上,作为进一步的可选的实施方式,第一传感器31的数量可以为两个,且两个第一传感器31分别指向传感器组件侧方的相对两侧。这样,探测方向相对设置的两个第一传感器31即可分别对传感器组件的两个侧方进行探测,以提供较大的测距和避障范围。这样两个第 一传感器31可以和双目传感器1协同工作,从而覆盖传感器组件周向上大约270°的探测范围。具体的,两个第一传感器可以分别指向传感器组件的左右两侧。
此外,可选的,第一传感器31也可以仅设置在传感器组件的一侧,以执行传感器组件的单侧探测任务。
为了让额外的传感器3执行测距等探测任务,可选的,额外的传感器3为单目视觉传感器、双目视觉传感器或者飞行时间(Time of flight,TOF)模组等。其中,单目视觉传感器和双目视觉传感器均可以通过采集到的视觉图像获取传感器组件与待测物体之间的距离。不同之处在于,单目视觉传感器是利用无人飞行器移动时待测物体的图像变化实现测距,而双目视觉传感器则是利用两个不同视觉传感器之间的视角差异进行测距。而飞行时间模组则通常采用飞行时间测距法进行测距,具体为一边发出红外探测光线,一边接受经过待测物体反射的探测光线以获得与待测物体之间的距离。上述额外的传感器可以根据无人飞行器的结构空间或者使用需要而选用不同类型。例如通常的,第一传感器31一般为单目视觉传感器或者双目视觉传感器,而第二传感器32通常选用飞行时间模组等。
本实施例中,传感器组件应用在无人飞行器上,传感器组件包括双目传感器,双目传感器包括两个视觉传感器,两个视觉传感器位于同一竖直平面内,且两个视觉传感器上下间隔设置。这样视觉传感器与无人飞行器侧方得螺旋桨等结构的距离较远,能够有效减少螺旋桨对于视觉传感器的镜头视角的遮挡,保证视觉传感器的正常拍摄与图像采集。
图6是本发明实施例二提供的一种无人飞行器的结构示意图。如图6所示,本实施例提供的无人飞行器200,具体包括机体2和设置于机体2内的传感器组件100。其中,传感器组件100的具体结构、功能和工作原理均已在前述实施例一中进行了详细说明,此处不再赘述。
具体的,无人飞行器200除了机体2之外,还包括有机臂4以及设置在机臂4上的动力套装5等组成部分。在机体2上设置有传感器组件100,传感器组件100中的双目传感器等部分可以进行测距等探测任务,保证无人飞行器200的正常、安全的飞行和起降作业。
其中,由于无人飞行器200的机体2的前端通常设置有云台和摄像组 件等,因而可选的,传感器组件100位于机体2的后端。这样传感器组件100可以主要用于对无人飞行器200的后方进行测距等探测任务,使无人飞行器200顺利实现后方的避障等飞行操作。
因为无人飞行器200整体一般为左右对称布局,因而可以将传感器组件100中的双目传感器设置在机体2的纵向对称面上。这样双目传感器中竖直排列的视觉传感器与无人飞行器200的两侧(机臂4和动力套装5)距离均相等,且均为能够实现的最大距离,因而视觉传感器的镜头视角受到机臂4以及动力套装5中螺旋桨等结构的遮挡较小,能够提高测距的准确性和可靠性。
具体的,为了容纳传感器组件100,并使传感器组件100正常工作,可选的,无人飞行器200的机体2具有用于容置传感器组件100的空腔,空腔的壳壁上开设有连通空腔内外两侧的第一镜头孔22,第一镜头孔22与传感器组件100中的双目传感器相匹配。此时,整个传感器组件100即可被机体2所保护,且外界光线能够通过第一镜头孔22进入传感器组件100中的双目传感器,使双目传感器进行正常的图像采集。
此外,当传感器组件100还包括额外的至少一个传感器时,为了让额外的传感器正常工作,在机体2上还开设有连通空腔内外两侧并与额外的至少一个传感器相匹配的第二镜头孔23。此时,额外的传感器可以通过第二镜头孔23而执行探测任务。一般的,第二镜头孔23的位置和大小均和额外的传感器的位置及探测端大小相匹配。
而为了进一步提高无人飞行器200飞行的安全性和可靠性,或者完成其它探测任务,无人飞行器200还可以包括设置于机体2前端的双目传感器,以及设置于机体2底部的双目传感器、超声波传感器或红外传感器等。其中,设置于机体2前端的双目传感器和设置与机体2底部的双目传感器、超声波传感器或红外传感器可以同时使用,也可以有选择性的安装与使用。
本实施例中,无人飞行器具体包括机体和设置于机体内的传感器组件;其中传感器组件具体包括双目传感器,双目传感器包括两个视觉传感器,两个视觉传感器位于同一竖直平面内,且两个视觉传感器上下间隔设置。这样视觉传感器与无人飞行器侧方得螺旋桨等结构的距离较远,能够有效减少螺旋桨对于视觉传感器的镜头视角的遮挡,保证视觉传感器的正常拍 摄与图像采集。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (59)

  1. 一种传感器组件,应用在无人飞行器上,其特征在于,所述传感器组件包括双目传感器,所述双目传感器包括两个视觉传感器,两个所述视觉传感器位于同一竖直平面内,且两个所述视觉传感器上下间隔设置。
  2. 根据权利要求1所述的传感器组件,其特征在于,两个所述视觉传感器均位于所述无人飞行器的纵向对称面上。
  3. 根据权利要求2所述的传感器组件,其特征在于,两个所述视觉传感器均面向同一方向。
  4. 根据权利要求3所述的传感器组件,其特征在于,两个所述视觉传感器的光轴相互平行。
  5. 根据权利要求1-4任一项所述的传感器组件,其特征在于,两个所述视觉传感器的光心连线与水平面之间具有夹角。
  6. 根据权利要求5所述的传感器组件,其特征在于,两个所述视觉传感器的光心连线与水平面相互垂直。
  7. 根据权利要求1-4任一项所述的传感器组件,其特征在于,还包括支撑件,所述支撑件设置在所述无人飞行器上,且所述支撑件用于固定所述视觉传感器。
  8. 根据权利要求7所述的传感器组件,其特征在于,所述支撑件和所述无人飞行器的机体之间柔性连接。
  9. 根据权利要求8所述的传感器组件,其特征在于,还包括柔性连接件,所述柔性连接件连接在所述支撑件和所述无人飞行器的机体之间。
  10. 根据权利要求9所述的传感器组件,其特征在于,所述支撑件包括固定部,所述固定部用于通过所述柔性连接件和所述无人飞行器的机体连接。
  11. 根据权利要求10所述的传感器组件,其特征在于,两个所述视觉传感器分别设置在所述支撑件的两端,所述固定部位于所述支撑件的中段。
  12. 根据权利要求10或11所述的传感器组件,其特征在于,还包括固定件,所述固定部上设置有第一通孔,所述固定件穿过所述第一通孔并与所述无人飞行器的机体连接,以将所述支撑件固定在所述机体上。
  13. 根据权利要求12所述的传感器组件,其特征在于,所述固定件具有止挡部和连接部,所述连接部穿设在所述第一通孔内并与所述机体固定,所述止挡部止挡在所述第一通孔的外端面上。
  14. 根据权利要求13所述的传感器组件,其特征在于,所述连接部为杆状,且所述连接部的外表面设置有连接螺纹。
  15. 根据权利要求12所述的传感器组件,其特征在于,所述柔性连接件为柔性套,且所述柔性套具有第二通孔,所述柔性套设置在所述第一通孔内,且所述第二通孔与所述第一通孔同轴设置,所述固定件通过所述第二通孔固定在所述柔性套内侧,以使所述柔性套在所述支撑件与所述固定件之间形成柔性连接。
  16. 根据权利要求15所述的传感器组件,其特征在于,所述固定部设置有沿所述第一通孔径向开设的卡槽,所述柔性套的外壁上设置有可与所述卡槽相互匹配的卡凸部,所示柔性套设置在所述第一通孔中时,所述卡凸部卡设在所述卡槽内。
  17. 根据权利要求10或11所述的传感器组件,其特征在于,所述固定部为偶数个,且所述固定部相对于所述支撑件对称设置。
  18. 根据权利要求17所述的传感器组件,其特征在于,所述固定部为两个,两个所述固定部对称设置在所述支撑件的左右两侧。
  19. 根据权利要求7所述的传感器组件,其特征在于,所述支撑件上设置有用于固定所述视觉传感器的第一固定槽。
  20. 根据权利要求9-11任一项所述的传感器组件,其特征在于,所述柔性连接件为硅胶件。
  21. 根据权利要求7所述的传感器组件,其特征在于,还包括额外的至少一个传感器,所述额外的至少一个传感器也设置在所述支撑件上。
  22. 根据权利要求21所述的传感器组件,其特征在于,所述双目传感器的探测方向指向所述传感器组件前方,所述额外的至少一个传感器和所述双目传感器的探测方向不同。
  23. 根据权利要求22所述的传感器组件,其特征在于,所述支撑件上设置有用于固定所述额外的至少一个传感器的第二固定槽,所述第二固定槽和所述额外的至少一个传感器对应。
  24. 根据权利要求21-23任一项所述的传感器组件,其特征在于,所述额外的至少一个传感器包括以下至少一者:指向所述传感器组件侧方的第一传感器和指向所述传感器组件上方的第二传感器。
  25. 根据权利要求24所述的传感器组件,其特征在于,所述第一传感器的数量为两个,且两个所述第一传感器分别指向所述传感器组件侧方的相对两侧。
  26. 根据权利要求25所述的传感器组件,其特征在于,两个所述第一传感器分别指向所述传感器组件的左右两侧。
  27. 根据权利要求21-23任一项所述的传感器组件,其特征在于,所述额外的一个传感器为单目视觉传感器、双目视觉传感器或者TOF模组。
  28. 一种无人飞行器,其特征在于,包括机体和设置于所述机体内的传感器组件;
    其中,所述传感器组件包括双目传感器,所述双目传感器包括两个视觉传感器,两个所述视觉传感器位于同一竖直平面内,且两个所述视觉传感器上下间隔设置。
  29. 根据权利要求28所述的无人飞行器,其特征在于,两个所述视觉传感器均位于所述无人飞行器的纵向对称面上。
  30. 根据权利要求29所述的无人飞行器,其特征在于,两个所述视觉传感器均面向同一方向。
  31. 根据权利要求30所述的无人飞行器,其特征在于,两个所述视觉传感器的光轴相互平行。
  32. 根据权利要求28-31任一项所述的无人飞行器,其特征在于,两个所述视觉传感器的光心连线与水平面之间具有夹角。
  33. 根据权利要求32所述的无人飞行器,其特征在于,两个所述视觉传感器的光心连线与水平面相互垂直。
  34. 根据权利要求28-31任一项所述的无人飞行器,其特征在于,还包括支撑件,所述支撑件设置在所述无人飞行器上,且所述支撑件用于固定所述视觉传感器。
  35. 根据权利要求34所述的无人飞行器,其特征在于,所述支撑件和所述无人飞行器的机体之间柔性连接。
  36. 根据权利要求35所述的无人飞行器,其特征在于,还包括柔性连接件,所述柔性连接件连接在所述支撑件和所述无人飞行器的机体之间。
  37. 根据权利要求36所述的无人飞行器,其特征在于,所述支撑件包括固定部,所述固定部用于通过所述柔性连接件和所述无人飞行器的机体连接。
  38. 根据权利要求37所述的无人飞行器,其特征在于,两个所述视觉传感器分别设置在所述支撑件的两端,所述固定部位于所述支撑件的中段。
  39. 根据权利要求37或38所述的无人飞行器,其特征在于,还包括固定件,所述固定部上设置有第一通孔,所述固定件穿过所述第一通孔并与所述无人飞行器的机体连接,以将所述支撑件固定在所述机体上。
  40. 根据权利要求39所述的无人飞行器,其特征在于,所述固定件具有止挡部和连接部,所述连接部穿设在所述第一通孔内并与所述机体固定,所述止挡部止挡在所述第一通孔的外端面上。
  41. 根据权利要求40所述的无人飞行器,其特征在于,所述连接部为杆状,且所述连接部的外表面设置有连接螺纹。
  42. 根据权利要求39所述的无人飞行器,其特征在于,所述柔性连接件为柔性套,且所述柔性套具有第二通孔,所述柔性套设置在所述第一通孔内,且所述第二通孔与所述第一通孔同轴设置,所述固定件通过所述第二通孔固定在所述柔性套内侧,以使所述柔性套在所述支撑件与所述固定件之间形成柔性连接。
  43. 根据权利要求42所述的无人飞行器,其特征在于,所述固定部设置有沿所述第一通孔径向开设的卡槽,所述柔性套的外壁上设置有可与所述卡槽相互匹配的卡凸部,所示柔性套设置在所述第一通孔中时,所述卡凸部卡设在所述卡槽内。
  44. 根据权利要求37或38所述的无人飞行器,其特征在于,所述固定部为偶数个,且所述固定部相对于所述支撑件对称设置。
  45. 根据权利要求44所述的无人飞行器,其特征在于,所述固定部为两个,两个所述固定部对称设置在所述支撑件的左右两侧。
  46. 根据权利要求34所述的无人飞行器,其特征在于,所述支撑件 上设置有用于固定所述视觉传感器的第一固定槽。
  47. 根据权利要求36-38任一项所述的无人飞行器,其特征在于,所述柔性连接件为硅胶件。
  48. 根据权利要求34所述的无人飞行器,其特征在于,还包括额外的至少一个传感器,所述额外的至少一个传感器也设置在所述支撑件上。
  49. 根据权利要求48所述的无人飞行器,其特征在于,所述双目传感器的探测方向指向所述传感器组件前方,所述额外的至少一个传感器和所述双目传感器的探测方向不同。
  50. 根据权利要求49所述的无人飞行器,其特征在于,所述支撑件上设置有用于固定所述额外的至少一个传感器的第二固定槽,所述第二固定槽和所述额外的至少一个传感器对应。
  51. 根据权利要求48-50任一项所述的无人飞行器,其特征在于,所述额外的至少一个传感器包括以下至少一者:指向所述传感器组件侧方的第一传感器和指向所述传感器组件上方的第二传感器。
  52. 根据权利要求51所述的无人飞行器,其特征在于,所述第一传感器的数量为两个,且两个所述第一传感器分别指向所述传感器组件侧方的相对两侧。
  53. 根据权利要求52所述的无人飞行器,其特征在于,两个所述第一传感器分别指向所述传感器组件的左右两侧。
  54. 根据权利要求48-50任一项所述的无人飞行器,其特征在于,所述额外的一个传感器为单目视觉传感器、双目视觉传感器或者飞行时间TOF模组。
  55. 根据权利要求28-31任一项所述的无人飞行器,其特征在于,所述传感器组件位于所述机体的后端。
  56. 根据权利要求28-31任一项所述的无人飞行器,其特征在于,所述传感器组件中的双目传感器设置在所述机体的纵向对称面上。
  57. 根据权利要求28-31任一项所述的无人飞行器,其特征在于,所述机体具有用于容置所述传感器组件的空腔,所述空腔的壳壁上开设有连通所述空腔内外两侧的第一镜头孔,所述第一镜头孔与所述双目传感器相匹配。
  58. 根据权利要求57所述的无人飞行器,其特征在于,所述传感器组件还包括额外的至少一个传感器,所述机体上还开设有连通所述空腔内外两侧并与所述额外的至少一个传感器相匹配的第二镜头孔。
  59. 根据权利要求58所述的无人飞行器,其特征在于,所述无人机飞行器还包括设置于所述机体前端的双目传感器和/或设置于所述机体底部的双目传感器或红外传感器。
PCT/CN2018/092938 2018-06-26 2018-06-26 传感器组件及无人飞行器 WO2020000209A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880031611.9A CN110770128B (zh) 2018-06-26 2018-06-26 传感器组件及无人飞行器
PCT/CN2018/092938 WO2020000209A1 (zh) 2018-06-26 2018-06-26 传感器组件及无人飞行器
US17/129,361 US20210107681A1 (en) 2018-06-26 2020-12-21 Sensor assembly and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092938 WO2020000209A1 (zh) 2018-06-26 2018-06-26 传感器组件及无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/129,361 Continuation US20210107681A1 (en) 2018-06-26 2020-12-21 Sensor assembly and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020000209A1 true WO2020000209A1 (zh) 2020-01-02

Family

ID=68985646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092938 WO2020000209A1 (zh) 2018-06-26 2018-06-26 传感器组件及无人飞行器

Country Status (3)

Country Link
US (1) US20210107681A1 (zh)
CN (1) CN110770128B (zh)
WO (1) WO2020000209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266806A1 (zh) * 2021-06-21 2022-12-29 深圳市大疆创新科技有限公司 移动平台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205131672U (zh) * 2015-11-03 2016-04-06 天津艾思科尔科技有限公司 一种带有双目视觉结构的无人机
US20170168481A1 (en) * 2015-12-14 2017-06-15 Gopro, Inc. User interface for orienting antennas
CN206394875U (zh) * 2016-11-16 2017-08-11 三峡大学 工程结构表面缺陷无人巡检仪
CN207397096U (zh) * 2017-08-23 2018-05-22 吉林省彬生蓝航天际无人机科技有限公司 一种新型巡检无人机巡检装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603929B2 (ja) * 1998-04-17 2004-12-22 京セラ株式会社 車載用ステレオカメラの支持装置
JP2007239917A (ja) * 2006-03-09 2007-09-20 Toyo Tire & Rubber Co Ltd 防振ブッシュ
FR3020282B1 (fr) * 2014-04-24 2016-05-13 Parrot Platine universelle de montage pour drone a voilure tournante
JP6482856B2 (ja) * 2014-12-22 2019-03-13 セコム株式会社 監視システム
CN104890875A (zh) * 2015-05-28 2015-09-09 天津大学 全景拍摄用多旋翼无人机
US9963246B2 (en) * 2016-03-28 2018-05-08 Amazon Technologies, Inc. Combining depth and thermal information for object detection and avoidance
CN205872502U (zh) * 2016-07-29 2017-01-11 深圳市大疆创新科技有限公司 减震结构及使用该减震结构的云台组件、无人机
US10165256B2 (en) * 2016-09-14 2018-12-25 Amazon Technologies, Inc. Aerial vehicle optical sensor configuration
CN106477028A (zh) * 2016-11-23 2017-03-08 北京小米移动软件有限公司 飞行器及其脚架结构
CN106527480A (zh) * 2016-12-02 2017-03-22 南京航空航天大学 一种无人机的多传感器融合避障控制系统及方法
CN206402317U (zh) * 2017-01-04 2017-08-11 重庆零度智控智能科技有限公司 摄像系统及飞行器
CN107963209B (zh) * 2017-11-17 2020-03-20 沈阳无距科技有限公司 串列翼倾转旋翼无人机
JP7153065B2 (ja) * 2018-04-13 2022-10-13 Nok株式会社 無人航空機の防振装置、及び無人航空機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205131672U (zh) * 2015-11-03 2016-04-06 天津艾思科尔科技有限公司 一种带有双目视觉结构的无人机
US20170168481A1 (en) * 2015-12-14 2017-06-15 Gopro, Inc. User interface for orienting antennas
CN206394875U (zh) * 2016-11-16 2017-08-11 三峡大学 工程结构表面缺陷无人巡检仪
CN207397096U (zh) * 2017-08-23 2018-05-22 吉林省彬生蓝航天际无人机科技有限公司 一种新型巡检无人机巡检装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266806A1 (zh) * 2021-06-21 2022-12-29 深圳市大疆创新科技有限公司 移动平台

Also Published As

Publication number Publication date
CN110770128A (zh) 2020-02-07
US20210107681A1 (en) 2021-04-15
CN110770128B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US10681285B2 (en) Unmanned aerial vehicle and multi-ocular imaging system
US20180208311A1 (en) System and method for omni-directional obstacle avoidance in aerial systems
AT504580B1 (de) Scan-einrichtung
US20200191556A1 (en) Distance mesurement method by an unmanned aerial vehicle (uav) and uav
WO2020088165A1 (zh) 一种摄像头与激光雷达融合系统
CN110225249B (zh) 一种对焦方法、装置、航拍相机以及无人飞行器
JP6591246B2 (ja) 機上システムの周囲の気流における光学的波面擾乱の測定のための航空波計器
US10259593B2 (en) Obstacle avoidance device
US10053230B2 (en) Magnetic levitation obstacle avoidance device and magnetic levitation holder
KR20180011510A (ko) 근거리 감지형 라이더 센서 시스템
EP3788451B1 (en) Controlling a vehicle using a remotely located laser and an on-board camera
WO2020000209A1 (zh) 传感器组件及无人飞行器
CN208333454U (zh) 传感器组件及无人飞行器
EP3969930B1 (en) Optical remote sensing
Shaqura et al. Human supervised multirotor UAV system design for inspection applications
WO2019183836A1 (zh) 带有全景相机的无人机
US20210387743A1 (en) Flight vehicle
JP6681105B2 (ja) 飛行体
KR102258389B1 (ko) 전방위 촬영 드론
WO2016092254A1 (en) Apparatus and method for optical imaging
Bhandari et al. Flight Test Results of the Collision Avoidance System for a Fixed-Wing UAS using Stereoscopic Vision
WO2024098200A1 (zh) 多传感器装置及联合数据采集组件
JP6905772B2 (ja) 飛行体、点検方法及び点検システム
WO2021084589A1 (ja) 飛行体、点検方法及び点検システム
JP2021066423A (ja) 飛行体、点検方法及び点検システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924095

Country of ref document: EP

Kind code of ref document: A1