WO2019245143A1 - 개선된 전극 탭과 집전체 연결 구조를 갖는전극 조립체 및 그 제조 방법 - Google Patents

개선된 전극 탭과 집전체 연결 구조를 갖는전극 조립체 및 그 제조 방법 Download PDF

Info

Publication number
WO2019245143A1
WO2019245143A1 PCT/KR2019/004512 KR2019004512W WO2019245143A1 WO 2019245143 A1 WO2019245143 A1 WO 2019245143A1 KR 2019004512 W KR2019004512 W KR 2019004512W WO 2019245143 A1 WO2019245143 A1 WO 2019245143A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
electrode tab
conductive adhesive
positive electrode
Prior art date
Application number
PCT/KR2019/004512
Other languages
English (en)
French (fr)
Inventor
김경민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/967,902 priority Critical patent/US20210036297A1/en
Priority to EP19822921.3A priority patent/EP3739671B1/en
Priority to CN201980010729.8A priority patent/CN111684623A/zh
Publication of WO2019245143A1 publication Critical patent/WO2019245143A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Electrode assembly having improved electrode tab and current collector connection structure and manufacturing method thereof
  • the present invention relates to a secondary battery and a method of manufacturing the same, and to an electrode assembly having an improved electrode tab and a current collector connection structure and a method of manufacturing the same.
  • lithium secondary batteries examples include nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and lithium secondary batteries.
  • nickel cadmium batteries nickel hydrogen batteries
  • nickel zinc batteries nickel zinc batteries
  • lithium secondary batteries are widely used in advanced electronic devices because of their advantages such as free charging and discharging, very low self discharge rate, high operating voltage and high energy density per unit weight. have.
  • the battery may ignite, and the lithium secondary battery may explode due to the increased internal pressure of the battery.
  • the method of using the material inside the cell does not require additional installation process and can be applied to all kinds of batteries, but the addition of the material degrades the performance of the battery such as the rate characteristic and the battery capacity and reliability. Since there is a problem of failing to provide a proper operation, various measures have been discussed that can bring about a definite current blocking effect while minimizing degradation of the battery.
  • Lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • Such a positive electrode active material and a negative electrode active material are respectively disposed with a positive electrode and a negative electrode applied to a current collector with a separator therebetween to form an electrode assembly, and the electrode assembly is housed together with an electrolyte solution in a packaging material and sealed.
  • FIG. 1 is a perspective view of a conventional jelly roll electrode assembly
  • Figure 2 is an exploded perspective view before the electrode assembly of Figure 1 is wound.
  • the conventional jelly roll type electrode assembly 100 includes 5 anodes 110, a cathode 120, and a separator 130, and the separator 130 includes a cathode 110 and an anode 120. Intervened). .
  • the positive electrode 110 includes a sheet-shaped positive electrode current collector 111 and a positive electrode active material layer 113 formed on the positive electrode current collector 111.
  • the positive electrode current collector 111 includes a positive electrode non-coating portion 115 that is a portion where the positive electrode active material layer 113 is not formed.
  • the positive electrode non-coating portion 115 is located on both sides of the positive electrode current collector 111. 0 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the positive electrode tab 140 is attached to the positive electrode non-coated portion 115 by welding to connect the positive electrode current collector 111 and the positive electrode snake 140.
  • FIG 3 is a schematic cross-sectional view of a case of welding a positive electrode tab to a conventional positive electrode current collector.
  • the positive electrode current collector 111 and the positive electrode tab 140 are positioned between the welding device 180 and ultrasonic welding or resistance welding is performed. Since the welding device 180 damages the active material layer, as described with reference to FIG. 2, the positive electrode non-coating portion 115 is provided on both surfaces of the positive electrode current collector 111.
  • the same or similar configuration as that of the conventional positive electrode 110 is applied to the negative electrode non-coating portion 125 to be provided on both sides of the negative electrode current collector 121.
  • the positive electrode non-coating portion 115 and the negative electrode non-coating portion 125 provided on both surfaces of the positive electrode current collector 111 and the negative electrode current collector 121 do not form an active material layer as much as the space, which causes a decrease in the capacity of the electrode assembly 100. do.
  • the number of the positive electrode 5 tab 140 and the negative electrode tab 160 increases, which causes the positive electrode plain portion 115 and the negative electrode plain portion 125 to increase further, thereby more clearly showing a decrease in battery capacity.
  • the problem to be solved by the embodiments of the present invention is to solve the above problems, the secondary battery electrode assembly to realize a sufficient battery capacity while ensuring safety for overcharge by improving the connection structure between the electrode tab and the current collector And a method for producing the same.
  • Electrode assembly for a secondary battery for solving the above problems, an electrode current collector; An electrode on one surface of the electrode current collector 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • An uncoated portion in which an active material layer is not formed An electrode tab positioned on the uncoated portion; And a conductive adhesive portion interposed between the uncoated portion and the electrode tab, wherein the conductive adhesive portion includes a gas generating material.
  • the conductive adhesive part may further include a conductive material and an adhesive material.
  • the adhesive material, the conductive material and the gas generating material may form the conductive adhesive part in the form of a slurry.
  • gas may be generated to increase the volume of the conductive adhesive.
  • the decomposition voltage may be a voltage of 4. or more.
  • the gas generating material is 2 ⁇ 3 , 3 ⁇ 400 3 And ⁇ 3 at least.
  • the conductive adhesive may have a thickness of 10 micrometers or less.
  • the electrode tab is a metal strip-shaped member having a width and a length, and the electrode tab is an electrode tab overlapping portion stacked on the uncoated portion and an electrode tab extending out of the electrode current collector from the electrode tab overlapping portion.
  • An extension part may be formed, and the conductive adhesive part may be formed in the same shape and area as the electrode tab overlapping part.
  • a method of manufacturing an electrode assembly for a secondary battery includes coating a conductive adhesive solution including a gas generating material on a metal plate for an electrode tab; Forming a release film on the metal plate for the electrode tab to cover the coated conductive adhesive solution; Drying the conductive adhesive solution to change the conductive adhesive portion; Slitting the metal sheet for electrode tab to form a plurality of strips; Cutting the plurality of strips to produce a plurality of electrode tabs on which the conductive adhesive portion and the sub-film are stacked; Removing the release film from the electrode tab; And attaching the electrode tab from which the release film is removed to one surface of an electrode current collector.
  • the coating of the conductive adhesive may include a coating region in which the conductive adhesive is coated in a longitudinal direction and an uncoated region that is not coated in a horizontal direction. 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the plurality of strips may be cut such that the electrode system includes the coated area and the uncoated area one by one.
  • the electrode tab includes an electrode tab overlapping portion stacked on an electrode current collector and an electrode tab extension extending from the electrode tab overlapping portion to the outside of the electrode current collector, and a horizontal length of the coating area is equal to a length of the electrode tab overlapping portion.
  • the horizontal length of the uncoated region may be the same as that of the electrode tab extension.
  • the step of adhering the electrode tab to one surface of the electrode current collector may be to adhere the electrode tab to a non-coated portion of the one surface of the electrode current collector in which the electrode active material layer is not formed.
  • the conductive adhesive may be prepared in the form of a slurry further comprising a conductive material and an adhesive material.
  • the gas generating material may generate gas when the decomposition voltage is reached to increase the volume of the conductive adhesive.
  • the decomposition voltage may be a voltage of 4. or more.
  • the gas generating material is 2 ⁇ 3 , 3 ⁇ 403 ⁇ 4 , It can include at least one of the.
  • the conductive adhesive may have a thickness of 10 micrometers or less.
  • the secondary by including a gas generating material in the conductive adhesive portion between the electrode tab and the electrode current collector, the secondary to ensure the safety against abnormal operating conditions such as overcharge without increasing the resistance in the normal operating state Production of battery electrodes is possible.
  • the electrode tab having the conductive adhesive part and the release film can be mass produced without a separate welding process.
  • FIG. 1 is a perspective view of a conventional jelly roll type electrode assembly.
  • FIG. 2 is an exploded perspective view of the electrode assembly of FIG. 1 before being wound up.
  • FIG 3 is a schematic cross-sectional view of a case of welding a positive electrode tab to a conventional positive electrode current collector.
  • FIG. 4 is a perspective view of a jellyroll-type electrode assembly according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of the electrode assembly of FIG. 4 before it is wound.
  • FIG. 6 is an enlarged plan view of the show portion of FIG. 5; FIG.
  • FIG. 8 is an enlarged cross-sectional view of portion 0 of FIG. 7.
  • FIG. 9 is a partially enlarged cross-sectional view of FIG. 7 after gas generation.
  • 0 is a perspective view of an electrode tab according to an embodiment of the present invention.
  • 11 and 12 are views for explaining a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a jellyroll type electrode assembly according to the present invention.
  • 5 is an exploded perspective view before and after the electrode assembly of FIG. 4 is wound;
  • FIG. 6 is an enlarged plan view of the show part of FIG. 5;
  • FIG. _ Cross-sectional view. 8 is an enlarged cross-sectional view of portion 0 of FIG. 7.
  • 9 is a partial enlarged cross-sectional view of FIG. 7 after gas generation.
  • the electrode assembly 200 includes a pair of electrodes and a separator 230 disposed therebetween.
  • the pair of electrodes includes an anode 210 and a cathode 220.
  • FIG. 5 a state before the electrode assembly 200 is wound is illustrated in FIG. 5.
  • the anode 210, the separator 230, and the cathode 220 are formed in a sheet shape and sequentially stacked.
  • the electrode assembly 200 is sealed and stored together with an electrolyte solution in a packaging material (not shown) to manufacture a secondary battery.
  • the positive electrode 210 includes a sheet-shaped positive electrode current collector 211 and a positive electrode active material layer 213 formed on the positive electrode current collector 211.
  • the positive electrode current collector 211 includes a positive electrode non-coating portion 215 that is a portion where the positive electrode active material layer 213 is not formed.
  • the positive electrode active material layer 213 is preferably formed on both surfaces of the positive electrode current collector 211 from the viewpoint of ensuring the capacity.
  • the positive electrode active material layer 213 is coated on a portion of the positive electrode current collector 211, and in one embodiment, as shown in FIG. 5, a rectangular shape is formed at one end in the longitudinal direction of the positive electrode current collector 211. 2019/245143 1 »(1 ⁇ 1 ⁇ 2019/004512
  • the portion where the positive electrode active material layer 213 is not formed corresponds to the positive electrode non-coating portion 215. Seen .
  • the positive electrode non-coating portion 215 according to the embodiment is formed on only one surface of the positive electrode current collector 211, unlike the conventional one formed on both sides of the positive electrode current collector 211.
  • the positive electrode tab 240 is bonded to the positive electrode tab 240, and the positive electrode tab 240 and the positive electrode 210 are electrically connected to each other. In the present embodiment, the positive electrode tab 240 may be adhered to the positive electrode non-coating portion 215 by a conductive adhesive, which will be described later with reference to FIG. 7.
  • the positive electrode tab 240 is attached through the conductive adhesive 250 instead of the conventional welding, it is possible to form the positive electrode non-coating portion 215 only on one surface of the electrode current collector without damaging the positive electrode active material layer 213. . Therefore, since the area of the positive electrode active material layer 213 can be increased, the amount of the active material is increased, thereby increasing the capacity of the secondary battery. In particular, in the high-power model of the battery, the number of electrode tabs increases, so the capacity improvement is large compared to the conventional.
  • the position and the shape of the positive electrode non-coating portion 215 are not limited thereto, but may be modified.
  • the positive electrode plain portion 215 may be formed in a rectangular area at one end in the width direction of the positive electrode current collector 211.
  • the positive electrode non-coating portion 215 may be formed in a rectangular area at the center of the positive electrode current collector 211.
  • the positive electrode non-coating portion 215 is formed to extend from one side to the other side of the positive electrode current collector 211, but the positive electrode non-coating portion 215 is formed of the positive electrode tab 240. It may be formed to a minimum size only in the overlapping area.
  • the negative electrode 220 includes a sheet-shaped negative electrode current collector 221 and a negative electrode active material layer 223 formed on the negative electrode current collector 221 similar to the positive electrode 210 mentioned above, and the negative electrode current collector 221
  • the negative electrode non-coating portion 225 is a portion where the negative electrode active material layer 223 is not formed.
  • the foregoing description of the positive electrode 210 may also be applied to the components associated with the negative electrode 220.
  • the positive electrode non-coating portion 215 is positioned at one end in the longitudinal direction of the positive electrode current collector 211, and the negative electrode non-coating portion 225 is positioned at the one end in the longitudinal direction of the negative electrode current collector 221. 215 is located opposite the end where it is located. 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the positions of the positive electrode non-coating portion 215 and the negative electrode non-coating portion 225 are not limited thereto, and may be the same or overlap each other.
  • the positive electrode current collector 211 may be a surface treated with carbon, nickel, titanium, silver, or the like on the surface of stainless steel, nickel, titanium, calcined carbon, or aluminum or stainless steel. Further, as long as the material has high conductivity without causing chemical change of the secondary battery, there is no limitation in using it as the positive electrode current collector 211.
  • the negative electrode current collector 221 a copper material is mainly used.
  • the negative electrode current collector 221 may be a surface treatment of carbon, nickel, titanium, silver, etc. on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel, aluminum-cadmium alloy And the like can be used.
  • the positive electrode active material forming the positive electrode active material layer 213 is formed of lithium
  • the negative electrode active material forming the negative electrode active material layer 223 is a carbon-based active material, and a carbon material such as crystalline carbon, amorphous carbon, carbon composite, carbon fiber, lithium metal, lithium alloy, etc. may be used as the negative electrode active material.
  • the positive electrode active material layer 213 and the negative electrode active material layer 223 may further include a binder and a conductive material in addition to the active material.
  • the binder adheres the active material particles to each other well, and also serves to adhere the active material to the current collector, and typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, and carboxy.
  • Polyvinylchloride polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic Laminated styrene-butadiene rubber, epoxy resin, nylon, and the like may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, 2019/245143 1 »(: 1 '/ 1 ⁇ 2019/004512
  • any electronic conductive material can be used without causing chemical change, and examples thereof include carbonaceous materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, aluminum, Metal materials such as metal powder or metal fibers such as silver,
  • a conductive material containing a conductive polymer such as 5 polyphenylene derivative or a mixture thereof can be used.
  • the separator 230 is not particularly limited as long as it has a porous material.
  • the separator 230 is a porous polymer membrane, such as a porous polyolefin membrane, polyvinylidene fluoride-nucleated fluoropropylene, polyvinylidene
  • Inorganic particles may be bound to one or both surfaces of the separator 230.
  • the inorganic particles are preferably inorganic particles having a high dielectric constant of 5 or more, and more preferably inorganic particles having a dielectric constant of 10 or more and having a low density. This is because the lithium ions moving in the battery can be easily transferred.
  • Non-limiting examples of inorganic particles having a high dielectric constant of 5 or more include 1) ( ⁇ ,) 0 3 (? ⁇ ′) ,
  • the anode tab 240 has a predetermined width and length. 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the positive electrode tab 240 overlaps the positive electrode plain portion 215 of the positive electrode current collector 211 and is electrically connected thereto. Specifically, the positive electrode tab 240 protrudes outward from one end of the positive electrode current collector 211 in the positive electrode tab overlapping portion 241 and the positive electrode tab overlapping portion 241 stacked on the positive electrode current collector 211. Extension 242.
  • the positive electrode tab overlapping portion 241 is fixed to the positive electrode non-coating portion 215 of the positive electrode current collector 211. Since the positive electrode 210 having the positive electrode tab 240 fixed thereon is stacked and wound with the separator 230 and the negative electrode 220, the positive electrode tab overlap 241 is overlapped with the positive electrode 210 and the separator 230.
  • the positive electrode tab 240 is attached to the positive electrode non-coating portion 215 of the positive electrode current collector 211 through the conductive adhesive portion 250, rather than by welding.
  • the anode 210 and the anode tab 240 are electrically connected.
  • the conductive adhesive part 250 has adhesiveness to fix the positive electrode tab 240 to the positive electrode current collector 211.
  • the conductive adhesive 250 may be formed in the same shape and area as the positive electrode tab overlap 241. It is necessary to derive the length or area of the conductive adhesive 250 that meets the minimum required adhesion. However, in the case of the high power model, when the area of the positive electrode tab overlap 241 is narrow, the temperature may locally increase due to the concentration of current, so that it is equal to the total area of the positive electrode tab overlap 241 touching the positive electrode current collector 211. It may be formed so as to the area of the conductive adhesive portion 250.
  • the conductive adhesive 250 includes an adhesive material 251, a conductive material 252, and a gas generating material 253.
  • the adhesive material 251 should be one that does not react with the electrolyte solution, for example, an acrylate series is preferable.
  • Adhesive Material 251 Silver Butyl Acrylate Hydroxybutyl
  • the positive electrode tab 240 may be made of the same kind of metal material as the positive electrode current collector 211.
  • it may be aluminum. In that case, at the anode 210 019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the conductive material 252 of the conductive adhesive portion 250 is preferably any one of aluminum particles, 0 ⁇ 0: 311x ) 11 11 6, and carbon black. It is especially preferable that they are aluminum particles. Then, a current path based on an aluminum material may be provided between the positive electrode tab 240, the conductive adhesive part 250, and the positive electrode current collector 211 without increasing the contact resistance.
  • the aluminum particles may be spherical particles.
  • the negative electrode tab 260 may be made of the same kind of metal as the negative electrode current collector 221.
  • the conductive material (not shown) of the conductive adhesive portion at the cathode 220 It is preferably one of carbon black and copper particles. It is preferable that it is especially a copper particle. Then, a current path based on a copper material may be provided between the negative electrode tab 260, the conductive adhesive part (not shown), and the negative electrode current collector 221 without increasing the contact resistance.
  • the conductive adhesive portion 250 is not significantly increased in resistance as compared with the case where the gas generating material 253 is not contained by the electrical passage by the conductive material 252 having low resistance. It has conductivity.
  • the gas generating material 253 is composed of a material that decomposes and generates gas when reaching a predetermined voltage.
  • the predetermined voltage may be defined as a decomposition voltage for decomposing the gas generating material 253 to generate gas, and has a different value depending on the type of the gas generating material 253.
  • the conductive adhesive 250 has a thickness equal to the first thickness X before the decomposition voltage is reached, but the gas is released by the gas generating material 253 due to the abnormal operating state.
  • the volume of the conductive bonding portion 250 is increased by the generated gas so that the thickness of the conductive bonding portion 250 may be a second thickness greater than the first thickness 00).
  • the flow of conductive material 252 occurs with increasing volume of conductive adhesive 250 and the distance between conductive materials 252 increases.
  • the resistance of the conductive adhesive part 250 is rapidly increased as a result of which the resistance of the battery cell is increased and the voltage is increased, eventually reaching the termination voltage.
  • abnormal operation states such as overcharging or overdischarging are terminated, thereby ensuring the stability of the secondary battery.
  • the gas generating material 253 is not particularly limited as long as it generates a gas when a predetermined voltage is reached.
  • knee 2 ( : 0 3 is used and applied in the electrode assembly 200.
  • the losing voltage is 4.7 ⁇ 4.85 or more
  • 2 ⁇ 3 is decomposed to generate (1), ⁇ 2 gas.
  • the volume of the conductive adhesive portion 250 is increased by the gas.
  • the decomposition voltage may change slightly depending on the type of the gas generating material 253, but according to the present embodiment, Kn 2 ⁇ 3 (4 /; 7 or more), 3 ⁇ 4 (: 3 ⁇ 4 ( 41) or more, 03 (1) 3 (4. or more), ⁇ 0 3 (4.9 or more), 3 ⁇ 4 (4.9 or more) It is preferable that it is above.
  • the conductive adhesive part 250 formed of the adhesive material 251, the conductive material 252, and the gas generating material 253 may be in the form of a slurry applied between the electrode current collector and the electrode tab. Since the conductive adhesive portion 250 is configured in the form of a slurry, the thickness of the conductive adhesive portion 250 may be adjusted more easily, or the content of the gas generating material 253 in the conductive adhesive portion 250 may be adjusted.
  • the degree of reaching the termination voltage and the resistance value of the conductive adhesive part 250 may be freely adjusted for each battery to be manufactured, thereby reducing the cost of manufacturing the battery.
  • the adhesive material 251, the conductive material 252 and the gas generating material 253 are dispersed without being concentrated in a specific portion, so that the electrical conductivity, the degree of adhesion and the degree of reaching the termination voltage can be effectively It can be secured.
  • the weight ratio of the adhesive material 251, the conductive material 252, and the gas generating material 253 to the conductive adhesive part 250 is fixed to the adhesive material 251 at 40%, 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • the conductive material 252 is 30% to 50% and the gas generating material 253 is 10% to 30%.
  • the thickness of the conductive adhesive portion 250 is preferably 10 micrometer pinching.
  • a non-active material-coated non-coated portion is provided on both sides of the electrode current collector to weld-bond the tab to the non-coated portion, but in the embodiment of the present invention, the conductive adhesive portion 250 is not welded. 5), the positive electrode active material layer 213 is completely coated on one surface of the positive electrode current collector 211, so that the positive electrode non-coating portion 215 is formed on the other side of the positive electrode, as shown in FIGS. Tabs 240 may be formed. Therefore, since a plain portion does not need to be formed on the surface opposite to the surface where the positive electrode tab 240 is bonded, sufficient capacity can be ensured. Since the configuration for the cathode 210 and the configuration for the anode 220 are the same or similar to each other, such a battery capacity can be secured even in the case of the cathode 220.
  • the gas generating material is placed in the electrode layer containing the active material to ensure stability against overcharging, external short circuit, needle penetration, and local damage, the amount of the active material will be reduced and the battery capacity will be reduced by the space occupied by the gas generating material.
  • the gas generating material is disposed between the conductive current collectors 250 between the electrode current collectors 211 and 221 and the electrode tabs 240 and 260 to minimize the decrease in battery efficiency due to the reduction of the active material.
  • FIG. 10 is a perspective view of an electrode tab according to an embodiment of the present invention.
  • the electrode tab 360 of FIG. 10 may be used to manufacture the electrode assembly 200 as the positive electrode tab 240 or the negative electrode tab 260 described above.
  • the electrode tab 360 is overlapped with the electrode current collector to be electrically connected to each other, and is a metal band-shaped member having a width and a length.
  • the electrode tab 360 includes an electrode tab overlap 361 stacked on the electrode current collector and an electrode tab extension 362 extending from the electrode tab overlap 361 to the outside of the electrode current collector.
  • the conductive adhesive part 370 and the release film 380 are laminated
  • 11 and 12 are views for explaining the electrode assembly manufacturing method according to the present invention.
  • An adhesive, conductive material and gas generating material are mixed to prepare a conductive adhesive in the form of a slurry.
  • the adhesive material should be one that does not react with the electrolyte solution, for example, an acrylate series is preferable.
  • the gas generating material is not particularly limited as long as it generates a gas when a predetermined voltage is reached.
  • knee 2 (: 0 3 rule).
  • a conductive adhesive liquid is coated on the tab metal plate 359.
  • the coating area 374 coated with the conductive adhesive liquid in the longitudinal direction and the uncoated area 376 uncoated are alternately positioned along the horizontal direction.
  • the transverse length 3 of the coating area 374 is the same as that of the electrode tab overlap 361 of FIG. 10 and the transverse length of the uncoated area 376 is equal to the length of the electrode tab extension 362 of FIG. 10.
  • the coating area 374 is not formed on the entire surface of the tab metal plate 359 in this manner, but in the shape of a stripe pattern, and the forming method is similar to that used for applying an electrode active material layer. (31) coating, or a method such as placing a barrier film such as bar) on the uncoated region 376 and spraying the conductive adhesive solution thereon may be used.
  • the conductive adhesive liquid of the coating area 374 is dried to change to the conductive adhesive part 370.
  • the tab metal plate 359 of FIG. 11 is slit into a plurality of strips 359 ′ along the longitudinal direction in accordance with the width of the electrode tab 360. Subsequently, when the strip 359 'is cut to include the coating area 374 and the uncoated area 376 in one of the strips 359', the same shape as that of the electrode tab overlap 361 and A plurality of electrode tabs 360 having a conductive adhesive portion 370 and a release film 380 stacked on the electrode tab overlapping portion 361 may be formed. 2019/245143 1 »(: 1 ⁇ 1 ⁇ 2019/004512
  • a strip 359 'in the form of a reel is introduced, and the strip 359' is cut so that the coating area 374 and the uncoated area 376 are included in the winder (a).
  • the release film 380 was removed to remove the positive electrode uncoated portion 215 and / or .
  • the electrode tab 360 may be adhered to the electrode current collector without cumbersome welding to manufacture the electrode assembly.
  • Electrode tab according to the present invention can be used to manufacture an electrode assembly and a secondary battery including the same by replacing the electrode tab of the conventional welding method.
  • Electrode tab according to the invention is made of adhesive tab release film . After peeling off, through a simple operation of adhering the electrode tab to the electrode current collector, it is possible to manufacture a secondary battery by omitting the conventional complicated welding process. Since conventional ultrasonic welding is performed to attach the tab to the current collector during manufacturing of the electrode assembly, there is a problem in that efficiency and deterioration are inevitably generated due to the installation cost and maintenance cost related to the welding. In the present invention, this problem is solved by using an electrode tab having a release film attached thereto.
  • the electrode assembly of the present invention that can be produced by this method, the electrode tab and the electrode current collector can be connected without damaging the active material layer. Since the non-coated portion may be formed only on one surface of the current collector, an effect of increasing the capacity of the secondary battery is obtained. In addition, the gas generating material for securing safety is placed in the conductive adhesive portion between the electrode current collector and the electrode tab, not in the electrode layer, thereby minimizing the decrease in battery efficiency due to the reduction of the active material.
  • a secondary battery capable of minimizing the limit of the battery capacity while ensuring safety against abnormal operation such as overcharge and external short circuit by improving the connection structure between the electrode tab and the current collector can be manufactured. It becomes possible. In particular, in the high-power model where the number of electrode tabs increases, the current blocking effect and the battery capacity improvement effect are more evident.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법 (ELECTRODE ASSEMBLY WITH IMPROVED CONNECTION BETWEEN CURRENT COLLECTOR AND ELECTRODE TAP AND METHOD OF MANUFACTURING THE SAME)에 관한 것으로, 전극 탭과 집전체 사이의 연결 구조를 개선하여 과충전에 대한 안전성 및 전지용량을 확보하는 전극 조립체 및 그 제조방법을 제공한다. 본 발명에 따른 전극 조립체는, 전극 집전체; 상기 전극 집전체의 일면에 전극 활물질층이 형성되지 않은 무지부; 상기 무지부에 위치하는 전극 탭; 및 상가 무지부와 상기 전극 탭 사이에 위치하는 전도성 접착부를 포함하고, 상기 전도성 접착부는 가스 발생 물질을 포함한다.

Description

2019/245143 1»(:1^1{2019/004512
【발명의 설명】
【발명의 명칭】
개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
【기술분야】
관련 출원(들)과의 상호 인용
본 출원은 2018년 6월 20일자 한국 특허 출원 제 10 - 2018-0071080호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차 전지 및 그 제조 방법에 관한 것으로서, 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법에 관한 것이다.
【배경기술】
근래에 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 그 구동 전원으로 사용되는 이차 전지에 대해서 많은 연구가 이루아지고 있다.
이러한 이차 전지에는 예를 들어 니켈 카드뮴전지, 니켈 수소 전지, 니켈 아연전지, 리튬 이차 전지 등이 있다. 이들 중에서 리튬 이차전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 작동 전압이 높고 단위 중량당 에너지 밀도가 높다는 장점 때문에 첨단 전자 기기 분야에서 널리 사용되고 있다.
하지만, 리툼 이차 전지는 고온에 노출되거나, 과충전, 외부 단락, 침상 관통, 국부적 손상 등에 의해 짧은 시간 내에 큰 전류가 흐르게 될 경우, ¾ 발열에 의해 전지가 가열되면서 폭발이 일어날 위험성이 있다. 즉, 전지의 압력이나 온도가 상승하면 활물질의 분해 반응과 다수의 부반응들이 진행되며, 이에 따라 전지의 온도가 급격히 상승하게 되고, 이는 다시 전해액과 전극 사이의 반응을 가속화시킨다. 종국에는 전지의 온도가 급격히 상승하는 열폭주 현상이 일어나게 되고 온도가 일정 이상까지 2019/245143 1»(:1^1{2019/004512
상승하면 전지의 발화가 일어날 수 있으며, 상승된 전지의 내압에 의해 리튬 이차전지가폭발하게 된다.
따라서, 리륨 이차 전지가 과전류 상태, 고온 상태 등의 비정상적인 작동 상태에 놓였을 때 이를 효과적으로 제어하기 위해 다양한 방안을
5 논의하고 있다. 안전성을 확보하기 위한 노력의 일환으로서, 셀 바깥쪽에 소자를 장착하는 방법과, 셀 내부의 물질을 이용하는 방법이 있다. 온도의 변화를 이용하는
Figure imgf000003_0001
소자, 010소자, 전압 및 전류를 제어하는 보호 회로, 전지 내압의 변화를 이용하는 안전 벤트 크 해†; ) 등이 전자에 해당하고, 전지 내부의 온도나 전압, 전류 등의 변화에 따라 물리적, 화학적, 전기화학적으로 변화할수 있는물질을 첨가하는 것이 후자에 속한다.
셀 내부의 물질을 이용하는 방법의 경우, 추가적인 설치 공정을 필요로 하지 않으며 모든 종류의 전지에 적용이 가능하다는 장점이 있으나, 물질의 첨가로 인해 레이트 특성이나 전지 용량 등의 전지의 성능이 저하되고 신뢰성 있는 작동을 제공하지 못하는 문제점을 가지고 있으므로,5 전지의 성능 저하를 최소로 하면서 확실한 전류 차단 효과를 가져올 수 있는 다양한방안이 논의되고 있다.
리륨 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 이러한 양극 활물질과 음극 활물질을 · 각각 집전체에 도포한 양극과 음극을 분리막을 사이에 두고 배치하여 전극 조립체를 구성하고, 이 전극 조립체를 전해액과 함께 외장재에 수납하여 밀봉한다.
도 1은 종래 젤리롤형 전극 조립체의 사시도이고, 도 2는 도 1의 전극조립체가권취되기 전의 분해 사시도이다.
도 1 및 도 2를 참조하면, 종래 젤리롤형 전극 조립체 ( 100)는5 양극 (110), 음극 (120)과 분리막 ( 130)을 포함하고, 분리막 (130)은 양극 ( 110)과음극 ( 120) 사이에 개재된다. .
양극 (110)은 시트 형상의 양극 집전체 (111) 및 양극 집전체 (111) 상에 형성된 양극 활물질층 ( 113)을 포함한다. 양극 집전체 ( 111)는 양극 활물질층 ( 113)이 형성되지 않은 부분인 양극 무지부 (115)를 포함한다. 양극 무지부 ( 115)는 양극집전체 (111)의 양면에 위치한다. 0 2019/245143 1»(:1^1{2019/004512
. 양극 무지부 ( 115)에 양극 탭 ( 140)이 용접으로 부착되어 양극 집전체 (111)와 양극 뱀 ( 140)이 연결된다.
도 3은 종래 양극 집전체에 양극 탭을 용접하는 경우의 개략적인 단면도이다.
5 도 3을 참조하면 , 용접 장치 ( 180) 사이에 양극 집전체 (111)와 양극 탭 ( 140)을 위치시키고 초음파 용접 또는 저항 용접을 실시한다. 용접 장치 (180)는 활물질층에 손상을 입히므로, 도 2에서도 설명한 바와 같이, 양극무지부 ( 115)가 양극 집전체 ( 111) 양면에 제공되도록 한다.
종래 음극 (120)의 경우에도 종래 양극 ( 110)과 상호 동일 내지0 유사한 구성이 적용되어 음극 무지부 (125)가 음극 집전체 ( 121) 양면에 제공되도록 한다.
양극 집전체 (111)와 음극 집전체 (121)의 양면에 제공된 양극 무지부 ( 115)와 음극 무지부 (125)는 그 공간만큼 활물질층이 형성되지 않아 전극 조립체 ( 100) 용량 감소의 원인이 된다. 고출력 모델에서는 양극5 탭 ( 140) 및 음극 탭 (160)의 수가 증가하므로, 이로 인해 양극 무지부 ( 115)와 음극 무지부 (125)가 더 증가하게 되어 전지 용량의 감소가 더 확연히 드러난다.
이에, 상기와 같은 리튬 이차 전지의 과충전시 폭발 등의 위험을 방지할 수 있으며 , 동시에 고용량 ·슬림화의 추세에 부응하기 위해 전지의 용량 저하를 최소화한 리툼 이차 전지에 대한 연구가 요구되고 있는 실정이다.
【발명의 내용】
【기술적 과제】
본 발명의 실시예들이 해결하고자 하는 과제는 상기와 같은 문제점을 해결하기 위한 것으로서, 전극 탭과 집전체 사이의 연결 구조를 개선하여 과충전 등에 대한 안전성을 확보하면서도 충분한 전지 용량을 구현하는 이차전지용 전극조립체 및 그 제조 방법을제공하는 것이다. 【기술적 해결 방법】
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예에 따른 이차 전지용 전극조립체는, 전극 집전체 ; 상기 전극 집전체의 일면에 전극 2019/245143 1»(:1^1{2019/004512
활물질층이 형성되지 않은 무지부; 상기 무지부에 위치하는 전극 탭; 및 상기 무지부와 상기 전극 탭 사이에 위차하는 전도성 접착부를 포함하고, 상기 전도성 접착부는가스발생 물질을포함한다.
상기 전도성 접착부는 전도성 물질과 접착성 물질을 더 포함할 수 있다.
상기 접착상 물질, 상기 전도성 물질 및 상기 가스 발생 물질은 슬러리 형태로상기 전도성 접착부를 형성할수 있다.
상기 가스 발생 물질은 분해 전압에 도달할 때, 가스가 발생하여 상기 전도성 접착부의 부피가증가할수 있다.
상기 분해 전압은 4. 이상의 전압일 수 있다.
상기 가스 발생 물질은 니2¥3, ¾003
Figure imgf000005_0001
및 ¥3 중 적어도하나를포함할수 있다.
상기 전도성 접착부의 두께는 10마이크로미터 이하일 수 있다. 일 실시예에서, 상기 전극 탭은 폭과 길이를 갖는 금속 띠형 부재이고, 상기 전극 탭은 상기 무지부에 적층되는 전극 탭 중첩부 및 상기 전극 탭 중첩부에서 상기 전극 집전체 외부로 연장되는 전극 탭 연장부를 포함하며, 상기 전도성 접착부는 상기 전극 탭 중첩부와 동일한 형상 및 면적으로 형성될 수 있다.
본 발명의 다른 일 실시예에 따른 이차 전지용 전극 조립체 제조방법은, 전극 탭용 금속 판재 상에 가스 발생 물질을 포함하는 전도성 접착액을 코팅하는 단계; 상기 코팅된 전도성 접착액을 덮도록 상기 전극 탭용 금속 판재 상에 이형 필름을 형성하는 단계; 상기 전도성 접착액을 건조시켜 전도성 접착부로 변화시키는 단계; 상기 전극 탭용 금속 판재를 슬릿팅하여 복수의 스트립을 형성하는 단계; 상기 복수의 스트립을 절단하여 상기 전도성 접착부 및 상기 아형 필름이 적층되어 있는 복수의 전극 탭을 제조하는 단계; 상기 이형 필름을 상기 전극 탭으로부터 제거하는 단계; 및 상기 이형 필름이 제거된 상기 전극 탭을 전극 집전체의 일면에 접착시키는 단계를포함한다.
상기 전도성 접착액을 코팅하는 단계는 상기 전도성 접착액이 세로방향으로 코팅된 코팅 영역과 코팅되지 않은 미코팅 영역이 가로 2019/245143 1»(:1^1{2019/004512
방향을따라 번갈아위치하도록 할수 있다.
상기 전극 템이 상기 코팅 영역과 미코팅 영역을 하나씩 포함하도록 상기 복수의 스트립을 절단할수 있다.
상기 전극 탭은 전극 집전체에 적층되는 전극 탭 중첩부 및 상기 전극 탭 중첩부에서 상기 전극 집전체 외부로 연장되는 전극 탭 연장부를 포함하고, 상기 코팅 영역의 가로 길이가 상기 전극 탭 중첩부 길이와 동일하고 상기 미코팅 영역의 가로 길이가 상기 전극 탭 연장부 길이와 동일할수 있다.
상기 전극 탭을 상기 전극 집전체의 일면에 접착시키는 단계는, 상기 전극 집전체의 일면 중에서 전극 활물질층이 형성되지 않는 무지부에 상기 전극 탭을 접착시키는 것일 수 있다.
전도성 접착액은 전도성 물질과 접착성 물질을 더 포함하는 슬러리 형태로 제조될 수 있다.
상기 가스 발생 물질은 분해 전압에 도달할 때 가스가 발생하여 상기 전도성 접착부의 부피가증가할수 있다.
상기 분해 전압은 4. 이상의 전압일 수 있다.
상기 가스 발생 물질이 니2¥3, ¾0¾,
Figure imgf000006_0001
중 적어도하나를포함할수 있다.
상기 전도성 접착부의 두께는 10마이크로미터 이하일 수 있다. 【발명의 효과】
본 발명의 실시예들에 따르면, 전극 탭과 전극 집전체 사이의 전도성 접착부에 가스 발생 물질을 포함시켜, 정상 동작 상태에서 저항을 증가시키지 않으면서 과충전과 같은 비정상 동작 상태에 대한 안전성을 확보하는 이차전지용 전극의 제조가가능하다.
또, 전도성 접착부와 이형 필름이 형성된 전극 탭용 금속 판재를 슬릿팅하고 절단하는 과정을 통해 별도의 용접 공정 없이 전도성 접착부와 이형 필름을 갖춘 전극 탭을 대량 생산할수 있다.
【도면의 간단한설명】
도 1은종래 젤리롤형 전극조립체의 사시도이다.
도 2는도 1의 전극조립체가권취되기 전의 분해 사시도이다. \¥0 2019/245143 1>(71'/10?2019/004512
도 3은 종래 양극 집전체에 양극 탭을 용접하는 경우의 개략적인 단면도이다.
도 4은 본 발명의 일 실시예에 따른 젤리롤형 전극 조립체의 사시도이다.
5 도 5는 도 4의 전극조립체가 권취되기 전와분해 사시도이다.
도 6은 도 5의 쇼부분 확대 평면도이다.
Figure imgf000007_0001
단면도이다.
도 8은 도 7의 0부분 확대 단면도이다.
도 9는 가스 발생 후 도 7의 (:부분 확대 단면도이다.
0 도 10은 본 발명의 일 실시예에 따른 전극 탭의 사시도이다 .
도 11 및 도 12는 본 발명의 일 실시예에 따른 전극 조립체 제조 방법을 설명하기 위한 도면들이다.
【발명의 실시를 위한 형태】
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에5 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에” 또는 “상에” 있다고 할 때, 이는 다른 부분 ’’바로 위에” 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에” 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에”있다고 하는 것은 기준이 되는 부분의 2019/245143 1»(:1^1{2019/004512
위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는“상에”위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 포함'' 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라다른구성요소를 더 포함할수 있는 것을 의미한다. 또한, 명세서 전체에서, "평면상’’이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며 , "단면상"이라 할 때, 이는 대상 부분을 수직으로자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명에 따른 젤리롤형 전극 조립체의 사시도이다. 도 5는 도 4의 전극 조립체가 권취되기 전와 분해 사시도이다. 도 6은 도 5의 쇼 부분 확대 평면도이다.
Figure imgf000008_0001
_ 따라자른단면도이다. 도 8은 도 7의 0 부분 확대 단면도이다. 도 9는 가스 발생 후 도 7의 (:부분 확대 단면도이다.
도 4와 도 5를 참조하면, 본 실시예에 따른 전극 조립체 (200)는 한 쌍의 전극과 그 사이에 배치된 분리막 (230)을 포함한다. 한 쌍의 전극은 양극 (210)과 음극 (220)을 포함한다. 설명의 편의를 위해 도 5에 전극 조립체 (200)가 권취되기 전의 상태를 도시하였다. 도 5를 참조하면, 양극 (210), 분리막 (230) 및 음극 (220)은 시트 형상으로 형성되어 차례로 적층된다. 이러한 전극 조립체 (200)는, 외장재 (미도시 ) 안에 전해액과 함께 밀봉수납되어 이차전지로 제조된다.
양극 (210)에 대한 구성과 음극 (220)에 대한 구성은 상호동일 내지 유사하게 적용되므로 이하 도 5에서는 전극 중에서 양극 (210)을 기준으로 설명하기로 한다.
도 5를 참조하면, 양극 (210)은 시트 형상의 양극 집전체 (211) 및 양극 집전체 (211) 상에 형성된 양극 활물질층 (213)을 포함한다. 양극 집전체 (211)는 양극 활물질층 (213)아 형성되지 않은 부분인 양극 무지부 (215)를 포함한다. 양극 활물질층 (213)은 도시한 바와 같이, 양극 집전체 (211)의 양면에 형성되는 것이 용량 확보 측면에서 바람직하다. 양극 활물질층 (213)욘 양극 집전체 (211)의 일부에 코팅되며, 도 5에 도시된 바와 같이 일 실시예로, 양극 집전체 (211)의 길이 방향 일단부에서 직사각형의 2019/245143 1»(그1^1{2019/004512
면적을 남겨두고 코팅될 수 있다. 양극 활물질층 (213)이 형성되지 않은 부분은 양극 무지부 (215)에 해당한다. 본. 실시예에 따른 양극 무지부 (215)는 양극 집전체 (211)의 양면에 형성되었던 종래와 달리 양극 집전체 (211)의 일면에만 형성된다. 양극 무지부 (215)에는 양극 탭 (240)이 접착되고 양극 탭 (240)과 양극 (210)이 전기적 연결된다. 본 실시예에서 양극 탭 (240)은 전도성 접착부에 의해 양극 무지부 (215)와 접착할 수 있고, 이에 대해서는 후술하는 도 7등에서 설명하기로 한다.
기존의 용접이 아닌 전도성 접착부 (250)를 통해 양극 탭 (240)을 부착하므로 양극 활물질층 (213)에 손상을 입히지 않고, 양극 무지부 (215)를 전극 집전체의 일면에만 형성하는 것이 가능하다. 따라서 양극 활물질층 (213)의 면적을 늘릴 수 있어 활물질의 양이 증가되므로, 이차전지의 용량을 증가시키는 효과를 가져온다. 특히 전지의 고출력 모델에서는 전극 탭의 수가 증가하기 때문에 종래와 비교 시 용량 개선의 효과가크다.
다만, 양극 무지부 (215)의 위치나 형상은 이에 한정되는 것은 아니고 변형이 가능하다. 예를 들어 양극 무지부 (215)는 양극 집전체 (211)의 너비 방향 일단부에서 직사각형의 면적으로 형성될 수 있다. 또는 양극 무지부 (215)는 양극 집전체 (211)의 중앙부에 직사각형의 면적으로 형성될 수 있다. 뿐만 아니라, 본 실시예에서 양극 무지부 (215)는 양극 집전체 (211)의 일측에서 타측까지 연장된 형태로 형성되어 있는 것을 예로 들었으나, 양극 무지부 (215)는 양극 탭 (240)과 중첩되는 영역에만 최소한의 크기로 형성될 수도 있다. 음극 (220)은 상기 언급한 양극 (210)과 유사하게 시트 형상의 음극 집전체 (221) 및 음극 집전체 (221) 상에 형성된 음극 활물질층 (223)을 포함하며, 음극 집전체 (221)는 음극 활물질층 (223)이 형성되지 않은 부분인 음극 무지부 (225)를 포함한다. 앞에서 설명한 양극 (210)에 대한 내용은 음극 (220)과 관련된 구성 요소에도 적용될 수 있다.
도 5를 참조하면 , 양극 무지부 (215)는 양극 집전체 (211)의 길이 방향 일단에 위치하고, 음극 무지부 (225)는 음극 집전체 (221)의 길이 방향 일단에 위치하되 양극 무지부 (215)가 위치한 단부의 반대편에 위치한다. 2019/245143 1»(:1^1{2019/004512
다만, 양극 무지부 (215) 및 음극 무지부 (225)의 위치는 이에 한정되는 것은 아니고서로동일하거나중첩될 수도 있다.
양극 집전체 (211)의 재질은 알루미늄이 주로 이용된다. 이 외에도, 양극 집전체 (211)는 스테인리스 스틸, 니켈, 티탄, 소성 탄소 또는 알루미늄이나스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있다. 나아가, 이차 전지의 화학적 변화를 야기시키지 않고 높은 도전성을 갖는 재질이라면 양극 집전체 (211)로 사용하는데 제한이 없다.
음극 집전체 (221)는주로 구리 재질이 이용된다. 이 외에도, 음극 집전체 (221)는 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있고, 알루미늄-카드뮴 합금등이 사용될 수 있다.
양극 활물질층 (213)을 형성하는 양극 활물질은 리튬 계열의
Figure imgf000010_0001
¾ 등의 금속) 등의 금속 산화물이 사용될 수 있다. 음극 활물질층 (223)을 형성하는 음극 활물질은 탄소 계열의 활물질이고, 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리륨 금속, 리튬합금등이 사용될 수 있다.
양극 활물질층 (213)과 음극 활물질층 (223)은 활물질 이외에 바인더 및 도전재를 더 포함할 수 있다. 바인더는 활물질 입자들을 서로 잘 부착시키고, 또한 활물질을 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드 , 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄 , 폴리테트라플루오로에틸렌 , 폴리비닐리덴 플루오라이드 , 폴리에틸렌 , 폴리프로필렌, 스티렌-부타디엔 러버 , 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을사용할 수 있으나, 이에 한정되지 않는다. 도전재는 전극에 도전성을 부여하가 위해 사용되는 것으로서, 구성되는 2019/245143 1»(:1'/1 {2019/004512
전지에 있어서, 화학 변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질,
5 폴리페닐렌 유도체 등의 도전성 폴리머, 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
분리막 (230)은 다공성 재질을 가진 것이라면 특별히 제한이 없다. 분리막 (230)은 다공성이 있는 고분자막, 예컨대 다공성 폴리올레핀막, 폴리비닐리덴 풀루오라이드-핵사풀루오로 프로필텐, 폴리비닐리덴
10 풀루오라이드-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스,
15 시아노에틸수크로오스, 풀루란, 카르복실 메틸 셀룰로오스, 아크리로니트릴스티렌부타디엔 공중합체 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로 , 폴리에틸렌나프탈렌, 부직포막, 20 다공성 웹 此) 구조를 가진 막 또는 이들의 혼합체 등으로 이루어질 수 있다.
분리막 (230)의 단면 또는 양면에는 무기 입자가 결착되어 있을 수 있다. 상기 무기 입자는 5 이상의 고유전율 상수를 갖는 무기 입자가 바람직하며, 10 이상의 유전율 상수를 가지며 밀도가 낮은 무기물 입자가25 더욱 바람직하다. 이는 전지 내에서 이동하는 리륨 이온을 용이하게 전달할 수 있기 때문이다. 5 이상의 고유전율 상수를 갖는 무기 입자의 비제한적인 예로는 1)(社, )03(?幻'),
Figure imgf000011_0001
? ¾1¾此2/3)03-1¾ 03 ■-肝), 631103, ¾02 , ¾ 03, 的02 , >1203 , 九02 , ¾02, 0 )2, ¾¾0, 030, ¾0, 03 또는 이들의 혼합체 등이 있다.
30 도 5 및 도 6을 참조하면, 양극 탭 (240)은 기결정된 폭과 길이를 2019/245143 1»(:1^1{2019/004512
갖는 금속 띠형 부재일 수 있다. 양극 탭 (240)은 양극 집전체 (211)의 양극 무지부 (215)와 중첩되어 전기적으로 연결된다. 구체적으로, 양극 탭 (240)은 양극 집전체 (211)에 적층되는 양극 탭 중첩부 (241) 및 양극 탭 중첩부 (241)에서 양극 집전체 (211)의 일단으로부터 외부로 돌출 연장되는 양극 탭 연장부 (242)를포함한다.
양극 탭 중첩부 (241)는 양극 집전체 (211)의 양극 무지부 (215)에 고정된다. 양극 탭 (240)이 고정된 양극 (210)은 분리막 (230) 및 음극 (220)과 차례로 적층되어 권취되므로 양극 탭 중첩부 (241)는 양극 (210) 및 분리막 (230)과중첩된다.
도 7에 도시한바와 같이, 양극 탭 (240)은 양극 집전체 (211)의 양극 무지부 (215)에 용접이 아닌, 전도성 접착부 (250)를 통해 부착된다. 따라서, 양극 (210)과 양극 탭 (240)이 전기적으로 연결된다. 전도성 접착부 (250)는 접착성을가져 양극 탭 (240)을양극 집전체 (211)에 고정한다.
구체적으로, 전도성 접착부 (250)는 양극 탭 중첩부 (241)와 동일한 형상 및 면적으로 형성될 수 있다. 최소 요구되는 접착력을 만족하는 전도성 접착부 (250)의 길아 또는 면적을 도출할 필요가 있다. 하지만, 고출력 모델의 경우 양극 탭 중첩부 (241) 면적이 좁을 때 전류 집중으로 인하여 온도가 국부적으로 상승할 수 있으므로 , 양극 집전체 (211)에 닿는 양극 탭 중첩부 (241)의 전체 면적과 동일하게 전도성 접착부 (250)의 면적이 되도록 형성할수 있다.
도 8을 참조하면, 전도성 접착부 (250)은 접착성 물질 (251), 전도성 물질 (252) 및 가스 발생 물질 (253)을 포함한다. 접착성 물질 (251)은 전해액과 반응하지 않는 것이어야 하며, 예를 들어 아크릴레이트 계열이 바람직하다. 접착성 물질 (251)은 부틸 아크릴레이
Figure imgf000012_0001
하이드록시부틸
아크릴레이
Figure imgf000012_0002
8(: 1 6)=98 : 2이거나 에틸 핵실 아크릴레이트 내기 116X71 크 /아크릴산 (고 크(^(1)=98 : 2일 수 있다.
양극 탭 (240)은 양극 집전체 (211)와동일한종류의 금속 재질일 수 있다. 예를 들어 알루미늄일 수 있다. 그러한 경우, 양극 (210)에서의 019/245143 1»(:1^1{2019/004512
전도성 접착부 (250)의 전도성 물질 (252)은 알루미늄 입자, 0^0:311x)11 11 아 6) , 및 카본블랙 중 어느 하나임아 바람직하다. 특히 알루미늄 입자인 것이 바람직하다. 그러면 양극 탭 (240) - 전도성 접착부 (250) - 양극 집전체 (211) 사이에 알루미늄 재질을 기조로 하는 전류의 경로가 접촉 저항 증가 없이 마련될 수 있다. 알루미늄 입자는 구형 입자일 수 있다.
음극 탭 (260)은 음극 집전체 (221)와 동일한 종류의 금속 재질일 수 있다. 예를 들어 구리일 수 있다. 그러한 경우, 음극 (220)에서의 전도성 접착부의 전도성 물질 (미도시)은
Figure imgf000013_0001
카본블랙 및 구리 입자 중 어느 하나임이 바람직하다. 특히 구리 입자인 것이 바람직하다. 그러면 음극 탭 (260) - 전도성 접착부 (미도시 ) - 음극 집전체 (221) 사이에 구리 재질을 기조로 하는 전류의 경로가 접촉 저항 증가 없이 마련될 수 있다.
이차 전지의 정상 동작 상태에서, 저항이 낮은 전도성 물질 (252)에 의한 전기적인 통로에 의해 전도성 접착부 (250)는 가스 발생 물질 (253)이 포함되지 않은 경우와 대비하여 저항이 크게 증가하지 않은 수준의 도전성을 갖는다.
가스 발생 물질 (253)은 소정 전압에 도달할 때 분해되어 가스가 발생하는 물질로 구성된다. 여기서 소정 전압은 가스 발생 물질 (253)이 분해되어 가스가 발생하기 위한 분해 전압으로 정의될 수 있으며, 가스 발생 물질 (253)의 종류에 따라 상이한 값을 갖는다.
도 8 및 9를 참조하면, 분해 전압 도달 전 전도성 접착부 (250)는 제 1두께 (X)만큼의 두께를 갖지만, 비정상적인 작동 상태로 의해 분해 전압에 도달하여 가스 발생 물질 (253)에 의해 가스가 발생되면, 발생된 가스에 의해 전도성 접착부 (250)의 부피가 증가하여 전도성 접착부 (250)의 두께는, 제 1두께 00 보다 큰 제 2두께 )가 될 수 있다. 증가된 전도성 접착부 (250)의 부피에 따라 전도성 물질 (252)의 유동아 일어나고, 전도성 물질 (252) 사이의 거리가 증가한다. 전도성 물질 (252) 사이의 거리가 멀어지게 되므로 결과적으로 전도성 접착부 (250)의 저항이 급격히 증가하고, 이는 전지셀의 저항 증가와 전압 증가를 야기시켜, 종국적으로 종료 전압에 도달하게 된다. 상기와 같은 과정을 통해 과충전이나 과방전 등의 비정상적인 작동 상태가종료되어, 이차 전지의 안정성을 확보할 수 있다. 2019/245143 1»(:1^112019/004512
가스 발생 물질 (253)은 소정 전압 도달시 가스가 발생하는 물질이라면 특별히 제한되지 않는다. 예컨대, 니2 (:03
Figure imgf000014_0001
0 03 , 63003 加(¾물질일 수 있다. 특히 니2(3를 포함하는 것이 바람직하다. 가스 발생 물질 (253)로서 니2(:03가 사용되어 전극 조립체 (200) 내에 가해지는 전압이 4.7~4.85 이상이 되면, 니2¥3가분해되어 ⑴, ¥2가스가생성된다. 발생된
¥, 002 가스에 의해 전도성 접착부 (250)의 부피가 증가한다. 분해 전압은 가스 발생 물질 (253)의 종류에 따라조금씩 변경될 수 있으나, 본 실시예에 따라 가스 발생 물질 (253)로 사용 가능한 니23(4/;7 이상), ¾(:¾ (41 이상), 03(1)3(4. 이상), 묘此03(4.9 이상), ¾(4.9 이상)의 분해 전압을 고려하여 분해 전압은
Figure imgf000014_0002
이상인 것이 바람직하다.
접착성 물질 (251), 전도성 물질 (252) 및 가스 발생 물질 (253)로 구성된 전도성 접착부 (250)는 슬러리 형태로 전극 집전체와 전극 탭 사이에 도포되는 형태일 수 있다. 전도성 접착부 (250)가 슬러리 형태로 구성되기 때문에, 보다 간편하게 전도성 접착부 (250)의 두께를 조절하거나, 전도성 접착부 (250) 내 가스 발생 물질 (253)의 함량을조절 할수 있다.
가스 발생 물질 (253)의 함량이 증가할수록 비정상 작동 상태의 소정 전압에서 발생하는 기체의 양이 많아져 더욱 신속하게 종료 전압에 도달할 수 있으나, 그와 동시에 전지 내의 저항으로 작용하여 전지의 성능이 저하될 수 있다. 전지가 사용되는 분야에 따라 양자를 적절히 조절하는 것이 필요한데, 본 발명의 실시예에서는 슬러리 두께를 조절하거나, 가스 발생 물질 (253)의 함량을 조절함으로써, 별다른 추가 공정 없이도, 과충전이나 과방전 등에 대한 종료 전압 도달 정도와 전도성 접착부 (250)의 저항값을 제조되는 전지 마다 자유롭게 조절할 수 있어 전지 제조에 대한 원가를 절감할수 있다.
또한, 슬러리 형태로 도포되기 때문에, 접착성 물질 (251), 전도성 물질 (252) 및 가스 발생 물질 (253)이 특정 부분에 집중되지 않고 분산되어, 전기 전도도, 접착 정도 및 종료 전압 도달 정도를 효과적으로 확보 할 수 있다.
접착성 물질 (251), 전도성 물질 (252) 및 가스 발생 물질 (253)의 전도성 접착부 (250) 대비 중량비는 접착성 물질 (251)이 40%로 고정되고, 2019/245143 1»(:1^1{2019/004512
전도성 물질 (252)이 30% 내지 50%이며 가스 발생 물질 (253)이 10% 내지 30%임이 바람직하다.
전도성 접착부 (250)는 전지 내 저항으로 작용할 수 있으므로, 전도성 접착부 (250)의 두께는 10마이크로미터 끼하임이 바람직하다.
도 3 등을 참조하여 본 바와 같이, 종래에는 활물질층이 코팅되지 않은 무지부를 전극 집전체 양면에 마련하여 무지부에 탭을 용접 접합하지만, 본 발명의 실시예에서는 용접이 아닌, 전도성 접착부 (250)를 통한 접착을 하므로, 도 5 및 도 7에 도시한 바와 같이 양극 활물질층 (213)이 양극 집전체 (211) 일면에 완전히 코팅된 상태에서도 다른 면에 양극무지부 (215)를 형성하여 양극 탭 (240)을 형성할수 있다. 따라서, 양극 탭 (240)이 접착되는 면의 반대면에는 무지부를 형성하지 않아도 되기 때문에 충분한 용량 확보가 가능한 효과가 있다. 양극 (210)에 대한 구성과 음극 (220)에 대한 구성은 상호 동일 내지 유사하게 적용되므로 음극 (220)의 경우에도 이러한전지 용량확보가가능하다.
과충전, 외부단락, 침상관통, 국부적 손상 등에 대한 안정성 확보를 위한가스 발생 물질을 활물질을 포함하고 있는 전극층 내에 위치시킨다면, 가스 발생 물질이 차지하는 공간만큼 활물질의 양이 줄어들고 전지 용량이 감소될 것이나, 본 발명의 실시예에 따르면, 가스 발생 물질을 전극 집전체 (211, 221)와 전극 탭 (240, 260) 사이 전도성 접착부 (250) 위치시켜 활물질 감소로 인한전지 효율 저하를 최소화하였다.
도 10는 본 발명의 일 실시예에 따른 전극 탭의 사시도이다. 도 10의 전극 탭 (360)은 앞서 설명한 양극 탭 (240) 또는 음극 탭 (260)으로서 전극조립체 (200) 제조에 이용될 수 있다.
도 10를 참조하면, 전극 탭 (360)은 전극 집전체와 중첩되어 전기적으로 연결되며, 폭과 길이를 갖는 금속 띠형 부재이다. 전극 탭 (360)은 전극 집전체에 적층되는 전극 탭 중첩부 (361) 및 전극 탭 중첩부 (361)에서 전극 집전체 외부로 연장되는 전극 탭 연장부 (362)를 포함한다. 전극 탭 중첩부 (361)와 동일한 형상 및 면적으로, 전극 탭 중첩부 (361)에 전도성 접착부 (370) 및 이형 필름 (380)이 적층되어 있다. 이하에서는, 이차 전지의 대량 생산이 가능한 전극 조립체의 제조 019/245143 1»(:1^1{2019/004512
방법에 대하여 설명한다.
도 11 및 도 12은 본 발명에 따른 전극 조립체 제조 방법을 설명하기 위한 도면들이다.
접착성 물질, 전도성 물질 및 가스 발생 물질을 혼합하여 슬러리 형태의 전도성 접착액을 제조한다. 접착성 물질은 앞에서 설명한 바와 같이 전해액과 반응하지 않는 것이어야 하며, 예를 들어 아크릴레이트 계열이 바람직하다. 가스 발생 물질은 소정 전압 도달시 가스가 발생하는 물질이라면 특별히 제한되지 않고, 예컨대
Figure imgf000016_0001
물질일 수 있다. 특히 니2(:03룰 포함하는 것이 바람직하다.
도 11을 참조하면, 탭용 금속 판재 (359) 상에 전도성 접착액을 코팅한다. 이 때, 도 11처럼 전도성 접착액이 세로 방향으로 코팅된 코팅 영역 (374)과 코팅되지 않은 미코팅 영역 (376)이 가로 방향을 따라 번갈아 위치하도록 한다. 코팅 영역 (374)의 가로 길이 (3)가 도 10의 전극 탭 중첩부 (361) 길이와 동일하고 미코팅 영역 (376)의 가로 길이 ( 가 도 10의 전극 탭 연장부 (362) 길이와 동일하도록 한다. 코팅 영역 (374)은 이와 같이 탭용 금속 판재 (359)상의 전면에 형성하는 것이 아니라 스트라아프 패턴 형상으로 형성한다. 이렇게 형성하는 방법은 전극 활물질층을 도포할 때에 사용하는 것과 유사한 슬롯 다이 (31아 선 ) 코팅, 혹은 미코팅 영역 (376) 위에 바 )와 같은 차단막을 놓고 위에서 전도성 접착액을 뿌리는 방법 등이 이용될 수 있다.
그 후, 탭용 금속 판재 (359) 상에 코팅 영역 (374)과 미코팅 영역 (376)을 덮는 이형 필름을 적층한다 .
다음으로, 코팅 영역 (374)의 전도성 접착액을 건조시켜 전도성 접착부 (370)로 변화시킨다.
이후, 도 12에서처럼, 전극 탭 (360)의 폭에 맞게 도 11의 탭용 금속 판재 (359)를 세로 방향을 따라 여러 개의 스트립 (359 ' )으로 슬릿팅한다. 이후, 어느 하나의 스트립 (359’)에서 코팅 영역 (374)과 미코팅 영역 (376)이 하나씩 포함되도록 스트립 (359’)을 절단하면, 도 10처럼 전극 탭 중첩부 (361)와 동일한 형상 및 면적으로 전극 탭 중첩부 (361)에 전도성 접착부 (370) 및 이형 필름 (380)이 적층되어 있는 복수의 전극 탭 (360)을 2019/245143 1»(:1^1{2019/004512
얻을수 있다.
전극 조립체 (200) 제조 과정에서는 릴 형태의 스트립 (359’)이 투입되고, 와인더 ( 아)에서 코팅 영역 (374)과 미코팅 영역 (376)이 하나씩 포함되도록 상기 스트립 (359’)을 절단해 전극 탭 (360)을 얻은 후, 이형 필름 (380)을 제거해 양극 무지부 (215) 및/또는 .음극 무지부 (225)에 전도성 접착부 (370)가 놓아도록 하는 일련의 과정을 통해 번거로운 용접 없이 전극 탭 (360)을 전극 집전체에 접착시켜 전극 조립체를 제조할 수 있다.
본 발명에 따른 전극 탭은 종래 용접 방법의 전극 탭을 대체하여 전극 조립체 및 이를 포함하는 이차 전지 제조에 이용될 수 있다. 본 발명에 따른 전극 탭은 접착 탭으로 제조하여 이형 필름.을 벗겨낸 후 전극 집전체에 전극 탭을 접착시키는 간단한 조작을 통해, 종래의 번잡한 용접 공정을 생략하여 이차전지를 제조할 수 있도록 한다. 종래 전극 조립체 제조시 탭을 집전체에 부착하기 위해서는 별도의 초음파 용접을 진행하게 되므로 용접과 관련된 설비비용 및 유지보수 비용이 발생할 수밖에 없어 효율성이 저하되는 문제점이 있다. 본 발명에서는 이형 필름이 부착된 형태의 전극 탭을 이용해 이러한문제점을 해결한다.
이러한 방법을 통해 제조될 수 있는 본 발명의 전극 조립체는, 활물질층에 손상을 입히지 않은 채 전극 탭과 전극 집전체의 연결이 가능하다. 무지부를 집전체 일면에만 형성하여도 되므로 이차 전지의 용량을 증가시키는 효과를 가져온다. 또한 안전성 확보를 위한 가스 발생 물질을 전극 층내가 아닌 전극 집전체와 전극 탭 사이 전도성 접착부에 위치시켜, 활물질 감소로 인한 전지 효율 저하를 최소화할수 있다.
이와 같이, 본 발명에 따르면, 전극 탭과 집전체 사이의 연결 구조가 개선됨으로써 과충전, 외부 단락 등의 비정상적인 작동상황에 대한 안전성을 확보하면서도, 전지 용량의 제한을 최소화 할 수 있는 이차 전지를 제조할 수 있게 된다. 특히 전극 탭의 수가 증가하는 고출력 모델에서 전류차단효과와 전지 용량 개선 효과가 더욱 명확히 나타난다.
이상, 본 발명은 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이에 한정되지 않으며 본 발명이 속한 분야에서 통상의 지식을 가진 2019/245143 1»(:1^1{2019/004512
자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할것이다.
【부호의 설명】
200: 전극조립체
250, 370: 전도성 접착부
251: 접착성 물질
252: 전도성 물질
253: 가스발생 물질

Claims

2019/245143 1»(:1^1{2019/004512 【청구범위】
【청구항 1]
전극 집전체 ;
상기 전극 집전체의 일면에 전극 활물질층이 형성되지 않은 무지부; 상기 무지부에 위치하는 전극 탭; 및
상기 무지부와 상기 전극 탭 사이에 위치하는 전도성 접착부를 포함하고,
상기 전도성 접착부는 가스 발생 물질을포함하는 전극 조립체 .
【청구항 2】
제 1항에서,
상기 전도성 접착부는 전도성 물질과 접착성 물질을 더 포함하는 전극 조립체.
【청구항 3】
제 2항에서,
상기 접착성 물질, 상기 전도성 물질 및 상기 가스 발생 물질은 슬러리 형태로 상기 전도성 접착부를 형성하는 전극 조립체.
【청구항 4】
제 1항에서,
상기 가스 발생 물질이 분해 전압에 도달할 때 가스가 발생하여 상기 전도성 접착부의 부피가 증가하는 전극 조립체. 【청구항 5】
제 4항에서,
상기 분해 전압은 4.
5¥ 이상의 전압인 전극 조립체 .
【청구항 6]
제 4항에서, 2019/245143 1»(:1^1{2019/004512
상기 가스 발생 물질이 니丈03, ¾¥3
Figure imgf000020_0001
및 ¥3 중 적어도하나를포함하는 전극조립체.
【청구항 7】
제 1항에서
상기 전도성 접착부의 두께는 10마이크로미터 이하인전극조립체 .
【청구항 8]
제 1항에서,
상기 전극 탭은폭과길이를 갖는금속 띠형 부재이고,
상기 전극 탭은 상기 무지부에 적층되는 전극 탭 중첩부 및 상기 전극 탭 중첩부에서 상기 전극 집전체 외부로 연장되는 전극 탭 연장부를 포함하며,
상기 전도성 접착부는 상기 전극 맵 중첩부와 동일한 형상 및 면적으로 형성되는 전극조립체.
【청구항 9]
제 1항에 따른전극조립체를포함하는 이차전지 .
【청구항 10】
전극 탭용 금속 판재 상에 가스 발생 물질을 포함하는 전도성 접착액을코팅하는 단계 ;
상기 코팅된 전도성 접착액을 덮도록 상기 전극 탭용 금속 판재 상에 이형 필름을 형성하는 단계;
상기 전도성 접착액을 건조시켜 전도성 접착부로 변화시키는 단계; 상기 전극 탭용 금속 판재를 슬릿팅하여 복수의 스트립을 형성하는 단계;
상기 복수의 스트립을 절단하여 상기 전도성 접착부 및 상기 이형 필름이 적층되어 있는복수의 전극 탭을 제조하는 단계 ;
상기 이형 필름을상기 전극 탭으로부터 제거하는단계 ; 및 2019/245143 1»(:1^1{2019/004512
상기 이형 필름이 제거된 상기 전극 탭을 전극 집전체의 일면에 접착시키는 단계를포함하는 전극조립체 제조 방법.
【청구항 11】
제 10항에서,
상기 전도성 접착액을 코팅하는 단계는 상기 전도성 접착액이 세로방향으로 코팅된 코팅 영역과 코팅되지 않은 미코팅 영역이 가로 방향을따라 번갈아위치하도록 하는 전극조립체 제조 방법 .
【청구항 12】
제 11항에서 ,
상기 전극 탭이 상기 코팅 영역과 상기 미코팅 영역을 하나씩 포함하도록상기 복수의 스트립을 절단하는 전극조립체 제조 방법 .
【청구항 13】
제 12항에서 ,
상기 전극 탭은 상기 전극 집전체에 적층되는 전극 탭 중첩부 및 상기 전극 탭 중첩부에서 상기 전극 집전체 외부로 연장되는 전극 탭 연장부를포함하고,
상기 코팅 영역의 가로 길이가 상기 전극 탭 중첩부 길이와 동일하고 상기 미코팅 영역의 가로 길이가 상기 전극 탭 연장부 길이와 동일한 전극조립체 제조 방법 .
【청구항 14】
제 10항에서,
상기 전극 탭을 상기 전극 집전체의 일면에 접착시키는 단계는, 상기 전극 집전체의 일면 중에서 전극 활물질층이 형성되지 않는 무지부에 상기 전극 탭을접착시키는 전극조립체 제조 방법.
【청구항 15】 019/245143 1»(:1^1{2019/004512
제 10항에서,
상기 전도성 접착액은 전도성 물질과 접착성 물질을 더 포함하는 슬러리 형태로 제조된 전극조립체 제조방법 .
【청구항 16】
제 10항에서,
상기 가스 발생 물질은 분해 전압에 도달할 때 가스가 발생하여 상기 전도성 접착부의 부피가증가하는 전극조립체 제조 방법 .
【청구항 17】
제 16항에서,
상기 분해 전압은 4. 이상의 전압인 전극조립체 제조 방법 .
【청구항 18】
제 10항에서,
상기 가스 발생 물질이 니23 , ¾¥3
Figure imgf000022_0001
적어도하나를포함하는 전극조립체 제조방법 .
【청구항 19】
제 10항에서,
상기 전도성 접착부의 두께는 10마이크로미터 이하인 전극조립체 제조 방법 .
PCT/KR2019/004512 2018-06-20 2019-04-15 개선된 전극 탭과 집전체 연결 구조를 갖는전극 조립체 및 그 제조 방법 WO2019245143A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/967,902 US20210036297A1 (en) 2018-06-20 2019-04-15 Electrode assembly with improved connection between current collector and electrode tab, and method of manufacturing the same
EP19822921.3A EP3739671B1 (en) 2018-06-20 2019-04-15 Electrode assembly with improved connection between current collector and electrode tab, and method of manufacturing the same
CN201980010729.8A CN111684623A (zh) 2018-06-20 2019-04-15 具有电极接片与集流体之间改进的连接结构的电极组件及该电极组件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180071080A KR102417106B1 (ko) 2018-06-20 2018-06-20 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
KR10-2018-0071080 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019245143A1 true WO2019245143A1 (ko) 2019-12-26

Family

ID=68982904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004512 WO2019245143A1 (ko) 2018-06-20 2019-04-15 개선된 전극 탭과 집전체 연결 구조를 갖는전극 조립체 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20210036297A1 (ko)
EP (1) EP3739671B1 (ko)
KR (1) KR102417106B1 (ko)
CN (1) CN111684623A (ko)
WO (1) WO2019245143A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2251078A1 (en) * 2022-09-16 2024-03-17 Northvolt Ab A secondary cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060011247A (ko) * 2004-07-29 2006-02-03 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 리튬 이차 전지
JP2006260990A (ja) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd 積層型電池
JP2015038876A (ja) * 2007-11-30 2015-02-26 協立化学産業株式会社 導電性組成物
KR20160115197A (ko) * 2015-03-26 2016-10-06 삼성에스디아이 주식회사 이차 전지
JP2016181469A (ja) * 2015-03-25 2016-10-13 株式会社豊田自動織機 蓄電装置の電極シートの製造方法および検査方法
KR20180071080A (ko) 2016-12-19 2018-06-27 한국광기술원 파장 가변 led 광원 및 이를 이용한 광 조사장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568563B1 (ko) * 2011-06-13 2015-11-11 가부시키가이샤 히타치세이사쿠쇼 리튬 이차 전지
CN102867968B (zh) * 2012-10-08 2016-05-11 中国电子科技集团公司第十八研究所 一种大容量一次锂电池
JP2015032377A (ja) * 2013-07-31 2015-02-16 日本軽金属株式会社 タブリード材用基材、タブリード材用基材の製造方法およびタブリード材の製造方法
JP2016081681A (ja) * 2014-10-15 2016-05-16 凸版印刷株式会社 リチウムイオン二次電池
TWI617076B (zh) * 2016-01-27 2018-03-01 華碩電腦股份有限公司 電池集電層的製造方法
WO2017175480A1 (ja) * 2016-04-05 2017-10-12 リンテック株式会社 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法
CN107681171B (zh) * 2017-09-27 2019-06-18 惠州市惠德瑞锂电科技股份有限公司 一种放电效率高的锂一次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060011247A (ko) * 2004-07-29 2006-02-03 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 리튬 이차 전지
JP2006260990A (ja) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd 積層型電池
JP2015038876A (ja) * 2007-11-30 2015-02-26 協立化学産業株式会社 導電性組成物
JP2016181469A (ja) * 2015-03-25 2016-10-13 株式会社豊田自動織機 蓄電装置の電極シートの製造方法および検査方法
KR20160115197A (ko) * 2015-03-26 2016-10-06 삼성에스디아이 주식회사 이차 전지
KR20180071080A (ko) 2016-12-19 2018-06-27 한국광기술원 파장 가변 led 광원 및 이를 이용한 광 조사장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739671A4

Also Published As

Publication number Publication date
KR20190143304A (ko) 2019-12-30
KR102417106B1 (ko) 2022-07-04
EP3739671A1 (en) 2020-11-18
EP3739671A4 (en) 2021-08-25
CN111684623A (zh) 2020-09-18
US20210036297A1 (en) 2021-02-04
EP3739671B1 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
JP6249493B2 (ja) 非水電解液二次電池
WO2019245144A1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
EP3065205B1 (en) Electrode and cell having electrode
US10547090B2 (en) Battery cell including electrode lead containing gas adsorbent
US20200119406A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP2000030742A (ja) リチウムイオン二次電池要素
CN101442139B (zh) 电极组件和利用该电极组件的二次电池
JP2021036484A (ja) 二次電池および二次電池の製造方法
EP3813178A1 (en) Nonaqueous electrolyte secondary battery
WO2022000307A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
JP5228501B2 (ja) 電極用活物質粒子、電極、電気化学デバイス及び電極の製造方法
WO2019245143A1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는전극 조립체 및 그 제조 방법
JP4636920B2 (ja) 渦巻式電極の電池
US20230041411A1 (en) Electrode and Electrode Assembly
US10153494B2 (en) Electrode having electrically actuated fibers for electron conduction
KR20130103393A (ko) 이차 전지
KR100475989B1 (ko) 리튬이온 2차전지
CN114175336A (zh) 二次电池
US20200076005A1 (en) Cylindrical nonaqueous electrolyte secondary battery
KR20190143302A (ko) 개선된 전극 탭들 사이의 연결 구조를 갖는 전극 조립체
JP2021039818A (ja) 二次電池および二次電池の製造方法
JP2004146222A (ja) 非水二次電池
US11114701B2 (en) Method of producing an electrode-separator winding, electrode-separator winding and button cell with such a winding
JP2000231918A (ja) 非水電解液二次電池
US20220393316A1 (en) Method for Manufacturing Electrode Lead and Pouch Type Secondary Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019822921

Country of ref document: EP

Effective date: 20200810

NENP Non-entry into the national phase

Ref country code: DE