WO2019244788A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2019244788A1
WO2019244788A1 PCT/JP2019/023638 JP2019023638W WO2019244788A1 WO 2019244788 A1 WO2019244788 A1 WO 2019244788A1 JP 2019023638 W JP2019023638 W JP 2019023638W WO 2019244788 A1 WO2019244788 A1 WO 2019244788A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
tire
belt
width direction
region
Prior art date
Application number
PCT/JP2019/023638
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 隆弘
正之 有馬
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019244788A1 publication Critical patent/WO2019244788A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present disclosure relates to a tire.
  • the tire disclosed in Patent Document 1 has an annular belt outside the tire frame member, and the annular belt is formed by spirally winding a resin-coated cord formed by coating a reinforcing cord with a resin. Is formed.
  • the present disclosure aims to improve cornering power while suppressing a decrease in ride comfort.
  • the tire according to the first aspect is provided with a tire frame member including a carcass, a tread formed of a rubber material, and a resin material provided between the tire frame member and the tread. And a resin reinforcement body in which a reinforcement cord wound in the tire circumferential direction is embedded, wherein the resin reinforcement body is located outside in the tire width direction when the entire tire width direction of the resin reinforcement body is taken as 100%.
  • a resin reinforcement body made of a resin material and embedded with a cord wound in the tire circumferential direction is provided between the tire frame member and the tread. Thereby, the rigidity of (the crown portion of) the tire frame member is increased.
  • the resin reinforcing body is formed such that the average thickness dimension of the outer region (the region 25% from the outer end in the width direction) is larger than the average thickness size of the central region (the region other than the outer region). ing.
  • the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved.
  • the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. .
  • an arrow R direction indicates a tire radial direction
  • an arrow W direction indicates a tire width direction
  • the tire radial direction means a direction orthogonal to the tire rotation axis (not shown).
  • the tire width direction means a direction parallel to the tire rotation axis.
  • the tire width direction can also be referred to as the tire axial direction.
  • CL indicates the tire equatorial plane.
  • the tire 10 includes a pair of bead portions 20 in which the bead cores 12 are embedded.
  • a carcass 16 composed of one carcass ply 14 straddles between one bead portion 20 and the other bead portion 20.
  • FIG. 1 shows the shape of the tire 10 in a natural state before air filling.
  • the carcass ply 14 is formed by coating a plurality of cords (not shown) extending in the radial direction of the tire 10 with a coating rubber (not shown). That is, the tire 10 of the present embodiment is a so-called radial tire.
  • the cord material of the carcass ply 14 is, for example, PET, but may be another known material.
  • the end portion of the carcass ply 14 has the bead core 12 folded back in the tire radial direction.
  • a portion of the carcass ply 14 that extends from one bead core 12 to the other bead core 12 is called a main body portion 14A, and a portion that is folded back from the bead core 12 is called a folded portion 14B.
  • Bead fillers 18 whose thickness gradually decreases from the bead core 12 to the outside in the tire radial direction are disposed between the main body portion 14A and the folded portion 14B of the carcass ply 14. Note that, in the tire 10, a portion inside the tire radial direction from the tire radial outer end 18 ⁇ / b> A of the bead filler 18 is a bead portion 20.
  • An inner liner 22 made of a rubber material is arranged inside the tire of the carcass 16, and a side rubber layer 24 made of a rubber material is arranged outside the carcass 16 in the tire width direction.
  • the tire core member 25 which forms the skeleton of the tire 10, is formed by the bead core 12, the carcass 16, the bead filler 18, the inner liner 22, and the side rubber layer 24.
  • the tire frame member 25 includes a pair of bead portions 20, a pair of side portions, and a crown portion.
  • the side part is a part that forms the side part of the tire 10 and is gently curved so as to protrude outward from the bead part 20 toward the crown part in the tire rotation axis direction.
  • the crown portion is a portion that connects the pair of side portions to each other in the tire width direction, and is a portion that supports a tread 36 described later.
  • An annular belt 26 is arranged outside the crown portion of the tire frame member 25, in other words, outside the carcass 16 in the tire radial direction.
  • the belt 26 is joined to the outer peripheral surface of the carcass 16.
  • the belt 26 is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a resin 32. The method of manufacturing the belt 26 will be described later.
  • the reinforcing cord 30 of the belt 26 is thicker than the cord of the carcass ply 14 and has high strength (tensile strength).
  • the reinforcing cord 30 of the belt 26 can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers.
  • the reinforcing cord 30 of the present embodiment is a steel cord.
  • a “1 ⁇ 5” steel cord having a diameter of 0.225 mm can be used, but a steel cord having another conventionally known structure can also be used.
  • thermoplastic resin having elasticity a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering the elasticity during running and the moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
  • thermoplastic elastomer examples include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester-based thermoplastic elastomer (TPC). And dynamically crosslinked thermoplastic elastomers (TPV).
  • TPO polyolefin-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPA polyamide-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPC polyester-based thermoplastic elastomer
  • TEV dynamically crosslinked thermoplastic elastomers
  • thermoplastic resin examples include a polyurethane resin, a polyolefin resin, a vinyl chloride resin, and a polyamide resin.
  • the deflection temperature under load (under a load of 0.45 MPa) specified in ISO75-2 or ASTM D648 is 78 ° C. or more
  • the tensile yield strength specified in JIS K7113 is 10 MPa.
  • a material having a tensile elongation at break specified in JIS K 7113 of 50% or more and a Vicat softening temperature (A method) specified in JIS K 7206 of 130 ° C. or more can be used.
  • the tensile modulus of elasticity of the resin 32 that covers the reinforcing cord 30 (defined by JIS K7113: 1995) is preferably 50 MPa or more.
  • the upper limit of the tensile modulus of the resin 32 covering the reinforcing cord 30 is preferably 1000 MPa or less.
  • the tensile modulus of the resin 32 covering the reinforcing cord 30 is particularly preferably in the range of 200 to 500 MPa.
  • a tread 36 made of a rubber material is disposed outside the belt 26 in the tire radial direction via a cushion rubber (not shown).
  • a conventionally known rubber material is used as the rubber material used for the tread 36.
  • a groove 37 for drainage is formed in the tread 36.
  • the tread 36 has a conventionally known pattern.
  • the width BW (width dimension measured along the tire width direction) of the belt 26 is 75% or more with respect to the contact width TW of the tread 36 measured along the tire width direction. In addition, it is preferable that the width BW of the belt 26 be 110% or less with respect to the contact width TW.
  • the contact width TW of the tread 36 means that the tire 10 is mounted on a standard rim specified in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard), and the applicable size and ply rating in JATMA YEAR BOOK 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table), so that the rotation axis is parallel to the horizontal flat plate in the stationary state It is the one when placed and the mass corresponding to the maximum load capacity is added.
  • the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
  • a resin plate 35 is joined to an outer portion in the width direction of the belt 26 (in FIG. 1, illustration of the resin plate 35 is omitted).
  • a total of four resin plates 35 are provided, each of which is provided in an annular shape around the tire rotation axis, similarly to the belt 26. That is, the resin plate 35 is arranged with the tire radial direction as the plate thickness direction.
  • the four resin plates 35 are provided on the outer side in the tire radial direction and the inner side in the tire radial direction on one side in the width direction of the belt 26 (left side in FIG. 2), and on the other side in the width direction of the belt 26 (right side in FIG. 2).
  • the resin plate 35 is joined to the resin 32 portion of the belt 26 by welding.
  • the position of the outer end of the resin plate 35 in the tire width direction substantially coincides with the position of the outer end of the belt 26 in the tire width direction. Therefore, the resin plate 35 has no portion protruding outward in the tire width direction with respect to the belt 26.
  • the structure in which the resin plate 35 does not protrude outward in the tire width direction with respect to the belt 26 is illustrated.
  • the belt 26 may protrude outward in the tire width direction. In this case, the effect of reducing the widthwise rigidity step at the belt end is exhibited.
  • the crown portion of the tire frame member 25 is reinforced by the belt 26 and the resin plate 35.
  • the tire 10 includes the resin reinforcement 31 that reinforces the tire frame member 25, and the resin reinforcement 31 includes the belt 26 and the resin plate 35.
  • the belt 26 is formed by spirally winding the resin-coated cords 34 having the same cross section (rectangular cross section in the present embodiment), so that the thickness dimension of the belt 26 is in the width direction of the belt 26. Is substantially constant irrespective of the position. Therefore, the thickness dimension of the resin reinforcing body 31 is thicker in the portion where the resin plate 35 is joined than in the portion where the resin plate 35 is not joined. That is, it can be said that the resin reinforcing body 31 includes a thin portion where the resin plate 35 is not joined and a pair of thick portions where the resin plate 35 is joined.
  • the width W1 of the resin plate 35 is preferably 12.5 to 25.0% of the width BW of the belt 26.
  • the thickness of the belt 26 and the thickness of the resin plate 35 are the same. Therefore, the thickness of the thick portion is set to be about three times the thickness of the thin portion.
  • the thickness dimension of the belt 26 and the thickness dimension of the resin plate 35 are not limited to substantially the same, and may be appropriately changed according to the required rigidity.
  • the thickness of the thick portion relative to the thickness of the thin portion is preferably 150 to 400%.
  • the resin material constituting the resin plate 35 for example, the same resin material as the resin 32 of the belt 26 can be used. However, the present invention is not limited to this.
  • the resin plate 35 only needs to be able to be welded to the resin 32 of the belt 26. In some cases, a resin material having the same kind of resin material but different in hardness may be used, or a resin material different from the resin 32 may be used. A resin material may be used.
  • an unvulcanized tire frame member 25 (tire case) including an inner liner 22, a bead core 12, a bead filler 18, a carcass ply 14, and a side rubber layer 24 is formed on the outer periphery of a known tire forming drum (not shown). I do.
  • the separately formed resin reinforcing member 31 is arranged radially outside the tire frame member 25 on the tire building drum, and the tire frame member 25 is expanded to expand the outer peripheral surface of the tire frame member 25, in other words, the outer periphery of the carcass 16. The surface is pressed against the inner peripheral surface of the resin reinforcing body 31.
  • an unvulcanized tread 36 is attached to the outer peripheral surface of the belt 26 in the same manner as a general pneumatic tire. Thereby, a raw tire is completed.
  • the green tire is vulcanized and molded in a vulcanization mold in the same manner as a general pneumatic tire. Thereby, the tire 10 is completed.
  • the code supply device 42, the heating device 50, the pressing roller 60, and the cooling roller 70 are movably disposed near the belt forming drum 40.
  • the cord supply device 42 includes a reel 43 around which the resin-coated cord 34 is wound, and a guide member 44 for guiding the resin-coated cord 34 unwound from the reel 43 to the outer periphery of the belt forming drum 40.
  • the guide member 44 has a cylindrical shape, and the resin-coated cord 34 passes through the inside thereof. Further, the resin-coated cord 34 is sent out from the mouth 46 of the guide member 44 toward the outer peripheral surface of the belt forming drum 40.
  • the heating device 50 blows hot air onto the resin-coated cord 34 to heat and melt the blown portion.
  • air heated by a heating wire (not shown) is blown out from the outlet 52 by an airflow generated by a fan (not shown), and the blown hot air is blown against the resin-coated cord 34.
  • the configuration of the heating device 50 is not limited to the above configuration, and may be any configuration as long as the thermoplastic resin can be heated and melted.
  • a hot iron may be brought into contact with the side surface of the resin-coated cord 34 to heat and melt the side surface, may be heated and melted by radiant heat, or may be heated and melted by irradiating infrared rays.
  • the pressing roller 60 is for pressing a resin-coated cord 34 described later against the outer peripheral surface of the belt forming drum 40, and is capable of adjusting the pressing force F. Further, the roller surface of the pressing roller 60 is processed to prevent the resin material in a molten state from adhering.
  • the pressing roller 60 is rotatable. When the resin-coated cord 34 is pressed against the outer periphery of the belt forming drum 40, the pressing roller 60 is driven to rotate in the rotation direction (the direction of the arrow A) of the belt forming drum 40. It has become.
  • the cooling roller 70 is disposed downstream of the pressing roller 60 in the rotation direction of the belt forming drum 40, and cools the resin coating cord 34 while pressing the resin coating cord 34 against the outer peripheral surface of the belt forming drum 40. is there.
  • the cooling roller 70 is capable of adjusting the pressing force, and has been subjected to processing for preventing adhesion of a molten resin material to the roller surface.
  • the cooling roller 70 is rotatable similarly to the pressing roller 60, and when the resin-coated cord 34 is pressed against the outer peripheral surface of the belt forming drum 40, the rotation direction of the belt forming drum 40 (arrow A) Direction).
  • the cooling roller 70 is configured such that a liquid (for example, water) flows through the inside of the roller, and a member (the resin-coated cord 34 in the present embodiment) that comes into contact with the roller surface by heat exchange of the liquid. Can be cooled. When the resin material in the molten state is naturally cooled, the cooling roller 70 may be omitted.
  • a liquid for example, water
  • a member the resin-coated cord 34 in the present embodiment
  • the belt forming drum 40 is rotated in the direction of arrow A, and the resin-coated cord 34 is sent out from the mouth 46 of the cord supply device 42 toward the outer peripheral surface of the belt forming drum 40.
  • the resin-coated cord 34 is attached to the belt forming drum 40 while Is pressed against the outer peripheral surface of the belt forming drum 40 by the pressing roller 60.
  • the resin-coated cord 34 is deformed (deformed by crushing) so that the side portion swells in the tire rotation axis direction by the pressing roller 60, and the side surfaces of the resin 32 adjacent in the tire rotation axis direction come into contact with each other. Weld. Thereafter, the molten portion of the resin 32 contacts the cooling roller 70 and is solidified, and the welding of the adjacent resin-coated cords 34 is completed.
  • the resin-coated cord 34 is spirally wound around the outer peripheral surface of the belt forming drum 40 and pressed against the outer peripheral surface, whereby the belt 26 is formed on the outer peripheral surface of the belt forming drum 40.
  • the belt 26 is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a coating resin 32.
  • the four resin plates 35 are joined to the belt 26 by welding.
  • the resin reinforcement 31 is formed (see FIG. 2).
  • the joining method by welding is not particularly limited, but for the resin plate 35 on the outer side in the tire radial direction, after the belt 26 is formed on the belt forming drum 40, the resin plate 35 is welded to the belt 26 before being removed from the belt forming drum 40. Is preferred.
  • a reinforcing body 31 is provided. Thereby, the crown portion of the tire frame member 25 is reinforced.
  • the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). It is formed as follows. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved. Further, compared to a mode in which the overall thickness of the resin reinforcing body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
  • the resin plate 35 is joined to the belt 26 (spiral belt layer) of the resin reinforcing member 31, so that the thickness of the resin reinforcing member 31 outside in the tire width direction is increased. That is, since the resin reinforcing member 31 can be formed by adding the resin plate 35 made of resin to the belt 26, manufacturing is easy.
  • the area W1 of the belt 26 where the resin plate 35 is joined and the thickness dimension is increased when the entire belt width direction of the belt 26 in the tire width direction is 100%, the area W1 is 12.
  • the region is 5 to 25.0%.
  • the resin reinforcement 31 is formed such that the average thickness of the outer region OR is 1.5 times (more preferably, 2 times or more) the average thickness of the central region CR. That is, since the ratio of the average thickness dimension of the outer region OR and the central region CR of the resin reinforcing body 31 is set to a certain value or more, a significant effect can be obtained.
  • the tensile elasticity of the resin 32 covering the reinforcing cord 30 is set to 50 MPa or more and the thickness is set to 0.7 mm or more, the in-plane shear rigidity of the belt 26 in the tire width direction is sufficiently ensured. be able to.
  • width BW of the belt 26 is set to 75% or more of the contact width TW of the tread 36, the rigidity near the shoulder 39 can be increased.
  • the resin-coated cord 34 used in manufacturing the belt 26 was formed by coating two reinforcing cords 30 with the resin 32.
  • the resin-coated cord 34 is one reinforcing cord 30. May be coated with the resin 32, or three or more reinforcing cords 30 may be coated with the resin 32.
  • the tire of the second embodiment is different from the first embodiment in the configuration of the resin reinforcing body 31. Since the configuration other than the resin reinforcement 31 is substantially the same, a description will be given with reference to FIG. Hereinafter, a method of manufacturing the resin reinforcement 31 of the second embodiment will be described, and the structure thereof will be described.
  • a belt 26T shown in FIG. 4A is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a resin 32 for covering.
  • the resin-coated cord 34 of the second embodiment is formed to have a larger vertical dimension (a direction that coincides with the tire radial direction when the tire is completed) than the resin-coated cord 34 of the first embodiment, and has a substantially square cross section. It has been.
  • the outer peripheral surface (outer surface in the tire radial direction) and the inner peripheral surface of the belt 26T are cut to reduce the thickness dimension of the belt 26 at the central portion in the width direction.
  • the belt 26 shown in FIG. 4B is formed.
  • the belt 26 is formed such that the average thickness of the outer region OR is twice or more the average thickness of the center region CR.
  • the belt 26 corresponds to the “resin reinforcement” of the present disclosure. That is, the resin reinforcing body 31 does not include the resin plate 35 but includes only the belt 26 (spiral belt layer, a resin-coated cord 34 spirally wound).
  • the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). Is also formed to be large. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved. In addition, compared to a mode in which the entire thickness of the resin reinforcement body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
  • the tire of the third embodiment is different from the first and second embodiments in the configuration of the resin reinforcing body 31. Since the configuration other than the resin reinforcement 31 is substantially the same, only the resin reinforcement 31 of the third embodiment will be described with reference to FIG.
  • the resin reinforcement 31 is formed by integral formation by injection molding. Therefore, the shape and size of the resin reinforcing body 31 can be determined by the shape and size of the mold used for injection molding.
  • the resin reinforcing body 31 is formed such that the thickness dimension gradually decreases from the outer side in the width direction to the center side in the width direction. Therefore, the resin reinforcement 31 cannot be clearly divided into a portion having a large thickness and a portion having a small thickness.
  • the resin reinforcing body 31 may be formed so that a thick portion (thick portion) and a small portion (thin portion) can be clearly distinguished. .
  • the thick portion be a region of 12.5 to 25.0% from the widthwise outer end of the resin reinforcement 31.
  • the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). Is also formed to be large. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, cornering power is improved. In addition, compared to a mode in which the overall thickness of the resin reinforcement body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
  • the resin reinforcement 31 is integrally formed, unlike the resin reinforcement 31 of the first or second embodiment, there is no bonding interface existing between the resin-coated cords 34. Therefore, there is no fear of cracking based on the bonding interface of the resin reinforcement 31.
  • the belt 26 has a shape extending linearly in the tire width direction when viewed in a cross section passing through the tire rotation axis.
  • the shape of the belt 26 may be such that the central portion in the tire width direction is convex outward in the tire radial direction when viewed in a cross section passing through the tire rotation axis.
  • the tire 10 is a general pneumatic tire
  • a run-flat tire in which side portions are reinforced with reinforcing rubber may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

This tire is provided with: a tire skeleton member formed by including a carcass; a tread formed from a rubber material; a resin reinforcement body which is provided between the tire skeleton member and the tread, and is formed from a resin material, and in which a reinforcement cord wound in the tire circumferential direction is embedded. In the resin reinforcement body, outer regions each of which is a 25% region from the corresponding outer end in the tire width direction, have an average thickness dimension that is larger than the average thickness dimension of a center region which is the remaining region.

Description

タイヤtire
 本開示は、タイヤに関する。 The present disclosure relates to a tire.
 特許文献1開示のタイヤは、タイヤ骨格部材の外側に環状のベルトを有しており、環状のベルトは、補強コードを樹脂で被覆して形成した樹脂被覆コードを螺旋状に巻回することで形成されている。 The tire disclosed in Patent Document 1 has an annular belt outside the tire frame member, and the annular belt is formed by spirally winding a resin-coated cord formed by coating a reinforcing cord with a resin. Is formed.
特開2014-210487号公報JP 2014-210487 A
 上記のようなタイヤにおいて、コーナリングパワーを向上させるためには、樹脂被覆コードの厚みを増大させることでベルトの厚みを増大させ、高剛性化を図ることが考えられる。しかし、単にベルトの厚みを増大させると乗り心地が低下するという問題がある。 タ イ ヤ In the tire as described above, in order to improve the cornering power, it is conceivable to increase the thickness of the belt by increasing the thickness of the resin-coated cord to increase the rigidity. However, there is a problem that simply increasing the thickness of the belt deteriorates ride comfort.
 本開示は、乗り心地の低下を抑制しつつ、コーナリングパワーを向上させることを目的とする。 The present disclosure aims to improve cornering power while suppressing a decrease in ride comfort.
 第1の態様に係るタイヤは、カーカスを含んで構成されたタイヤ骨格部材と、ゴム材料で構成されたトレッドと、前記タイヤ骨格部材と前記トレッドとの間に設けられ、樹脂材料で構成されると共にタイヤ周方向に巻回された補強コードが埋設されている樹脂補強体と、を備え、前記樹脂補強体は、前記樹脂補強体のタイヤ幅方向全体を100%としたときのタイヤ幅方向外側端部から25%の領域である外側領域の平均厚み寸法がその他の領域である中央領域の平均厚み寸法よりもよりも大きい、タイヤである。 The tire according to the first aspect is provided with a tire frame member including a carcass, a tread formed of a rubber material, and a resin material provided between the tire frame member and the tread. And a resin reinforcement body in which a reinforcement cord wound in the tire circumferential direction is embedded, wherein the resin reinforcement body is located outside in the tire width direction when the entire tire width direction of the resin reinforcement body is taken as 100%. A tire in which an average thickness dimension of an outer region which is a region 25% from an end is larger than an average thickness size of a central region which is another region.
 第1の態様に係るタイヤでは、タイヤ骨格部材とトレッドとの間に、樹脂材料で構成されると共にタイヤ周方向に巻回されたコードが埋設されている樹脂補強体が設けられている。これにより、タイヤ骨格部材(のクラウン部)の剛性が高められている。 タ イ ヤ In the tire according to the first aspect, a resin reinforcement body made of a resin material and embedded with a cord wound in the tire circumferential direction is provided between the tire frame member and the tread. Thereby, the rigidity of (the crown portion of) the tire frame member is increased.
 ここで、樹脂補強体は、外側領域(幅方向外側端部から25%の領域)の平均厚み寸法が中央領域(外側領域以外の領域)の平均厚み寸法よりもよりも大きくなるように形成されている。このため、クラウン部におけるタイヤ幅方向外側が重点的に高剛性化され、その結果、コーナリングパワーが向上されている。また、樹脂補強体のタイヤ幅方向の全体の厚みが大きくする態様と比較して、クラウン部におけるタイヤ幅方向中央部の高剛性化が抑制され、その結果、乗り心地の低下が抑制されている。 Here, the resin reinforcing body is formed such that the average thickness dimension of the outer region (the region 25% from the outer end in the width direction) is larger than the average thickness size of the central region (the region other than the outer region). ing. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved. Further, compared to a mode in which the overall thickness of the resin reinforcement in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. .
 本開示によれば、乗り心地の低下を抑制しつつ、コーナリングパワーを向上させることができる。 According to the present disclosure, it is possible to improve cornering power while suppressing a decrease in ride comfort.
実施形態に係るタイヤを示す断面図(タイヤ回転軸を通る断面)である。It is a sectional view (cross section which passes along a tire rotation axis) showing a tire concerning an embodiment. 第1実施形態の樹脂補強体を示す拡大断面図である。It is an expanded sectional view showing the resin reinforcement of a 1st embodiment. ベルト(スパイラルベルト層)の製造方法の一例を示す断面斜視図である。It is a sectional perspective view showing an example of a manufacturing method of a belt (spiral belt layer). 第2実施形態の樹脂補強体を示す拡大断面図であり、(A)は製造過程の断面を示し、(B)はタイヤ完成状態における断面を示す。It is an expanded sectional view showing the resin reinforcement of a 2nd embodiment, (A) shows the section in the manufacturing process, and (B) shows the section in the tire completion state. 第3実施形態の樹脂補強体を示す断面図である。It is sectional drawing which shows the resin reinforcement of 3rd Embodiment.
 以下、本開示を実施するための形態を図面に基づき説明する。図面において、矢印R方向はタイヤ径方向を示し、矢印W方向はタイヤ幅方向を示す。タイヤ径方向とは、タイヤ回転軸(図示せず)と直交する方向を意味する。タイヤ幅方向とは、タイヤ回転軸と平行な方向を意味する。タイヤ幅方向をタイヤ軸方向と言い換えることもできる。図面において、CLはタイヤ赤道面を示す。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In the drawings, an arrow R direction indicates a tire radial direction, and an arrow W direction indicates a tire width direction. The tire radial direction means a direction orthogonal to the tire rotation axis (not shown). The tire width direction means a direction parallel to the tire rotation axis. The tire width direction can also be referred to as the tire axial direction. In the drawings, CL indicates the tire equatorial plane.
[第1実施形態]
 図1~図3を用いて、第1実施形態に係るタイヤ10について説明する。
[First Embodiment]
The tire 10 according to the first embodiment will be described with reference to FIGS.
 図1に示すように、タイヤ10は、ビードコア12が埋設された一対のビード部20を備える。一方のビード部20と他方のビード部20との間には、1枚のカーカスプライ14からなるカーカス16が跨っている。なお、図1は、タイヤ10の空気充填前の自然状態の形状を示している。 タ イ ヤ As shown in FIG. 1, the tire 10 includes a pair of bead portions 20 in which the bead cores 12 are embedded. A carcass 16 composed of one carcass ply 14 straddles between one bead portion 20 and the other bead portion 20. FIG. 1 shows the shape of the tire 10 in a natural state before air filling.
 カーカスプライ14は、タイヤ10のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。即ち、本実施形態のタイヤ10は、所謂ラジアルタイヤである。カーカスプライ14のコードの材料は、例えば、PETであるが、従来公知の他の材料であっても良い。 The carcass ply 14 is formed by coating a plurality of cords (not shown) extending in the radial direction of the tire 10 with a coating rubber (not shown). That is, the tire 10 of the present embodiment is a so-called radial tire. The cord material of the carcass ply 14 is, for example, PET, but may be another known material.
 カーカスプライ14は、その端部分がビードコア12をタイヤ径方向外側に折り返されている。カーカスプライ14のうち、一方のビードコア12から他方のビードコア12に跨る部分が本体部14Aと呼ばれ、ビードコア12から折り返されている部分が折返し部14Bと呼ばれる。 The end portion of the carcass ply 14 has the bead core 12 folded back in the tire radial direction. A portion of the carcass ply 14 that extends from one bead core 12 to the other bead core 12 is called a main body portion 14A, and a portion that is folded back from the bead core 12 is called a folded portion 14B.
 カーカスプライ14の本体部14Aと折返し部14Bとの間には、ビードコア12からタイヤ径方向外側に向けて厚さが漸減するビードフィラー18が配置されている。なお、タイヤ10において、ビードフィラー18のタイヤ径方向外側端18Aからタイヤ径方向内側の部分がビード部20とされている。 Bead fillers 18 whose thickness gradually decreases from the bead core 12 to the outside in the tire radial direction are disposed between the main body portion 14A and the folded portion 14B of the carcass ply 14. Note that, in the tire 10, a portion inside the tire radial direction from the tire radial outer end 18 </ b> A of the bead filler 18 is a bead portion 20.
 カーカス16のタイヤ内側には、ゴム材料からなるインナーライナー22が配置されており、カーカス16のタイヤ幅方向外側には、ゴム材料からなるサイドゴム層24が配置されている。 An inner liner 22 made of a rubber material is arranged inside the tire of the carcass 16, and a side rubber layer 24 made of a rubber material is arranged outside the carcass 16 in the tire width direction.
 ビードコア12、カーカス16、ビードフィラー18、インナーライナー22、及びサイドゴム層24によって、タイヤ10の骨格を成すタイヤ骨格部材25が形成されている。 The tire core member 25, which forms the skeleton of the tire 10, is formed by the bead core 12, the carcass 16, the bead filler 18, the inner liner 22, and the side rubber layer 24.
 タイヤ骨格部材25は、一対のビード部20と、一対のサイド部と、クラウン部と、から構成されているといえる。サイド部は、タイヤ10の側部を形成し、ビード部20からクラウン部に向かってタイヤ回転軸方向外側に凸となるように緩やかに湾曲している部分である。クラウン部は、一対のサイド部同士をタイヤ幅方向に繋ぐ部分であり、後述するトレッド36を支持する部分である。 It can be said that the tire frame member 25 includes a pair of bead portions 20, a pair of side portions, and a crown portion. The side part is a part that forms the side part of the tire 10 and is gently curved so as to protrude outward from the bead part 20 toward the crown part in the tire rotation axis direction. The crown portion is a portion that connects the pair of side portions to each other in the tire width direction, and is a portion that supports a tread 36 described later.
(ベルト)
 タイヤ骨格部材25のクラウン部の外側、言い換えればカーカス16のタイヤ径方向外側には、環状のベルト26が配置されている。ベルト26は、カーカス16の外周面に接合されている。図2や図3に示すように、ベルト26は、2本の補強コード30を樹脂32で被覆した樹脂被覆コード34を螺旋状に巻回することで形成されている。なお、ベルト26の製法方法は後述する。
(belt)
An annular belt 26 is arranged outside the crown portion of the tire frame member 25, in other words, outside the carcass 16 in the tire radial direction. The belt 26 is joined to the outer peripheral surface of the carcass 16. As shown in FIGS. 2 and 3, the belt 26 is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a resin 32. The method of manufacturing the belt 26 will be described later.
 ベルト26の補強コード30は、カーカスプライ14のコードよりも太く、かつ、強力(引張強度)が大きいものを用いることが好ましい。ベルト26の補強コード30は、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成することができる。本実施形態の補強コード30は、スチールコードである。補強コード30としては、例えば、直径が0.225mmの“1×5”のスチールコードを用いることができるが、従来公知の他の構造のスチールコードを用いることもできる。 It is preferable that the reinforcing cord 30 of the belt 26 is thicker than the cord of the carcass ply 14 and has high strength (tensile strength). The reinforcing cord 30 of the belt 26 can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers. The reinforcing cord 30 of the present embodiment is a steel cord. As the reinforcing cord 30, for example, a “1 × 5” steel cord having a diameter of 0.225 mm can be used, but a steel cord having another conventionally known structure can also be used.
 補強コード30を被覆する樹脂32には、サイドゴム層24を構成するゴム、及び後述するトレッド36を構成するゴム材料よりも引張弾性率の高い樹脂材料が用いられている。補強コード30を被覆する樹脂32としては、弾性を有する熱可塑性樹脂、熱可塑性エラストマー(TPE)、及び熱硬化性樹脂等を用いることができる。走行時の弾性と製造時の成形性を考慮すると、熱可塑性エラストマーを用いることが望ましい。 (4) As the resin 32 for covering the reinforcing cord 30, a rubber material constituting the side rubber layer 24 and a resin material having a higher tensile modulus than a rubber material constituting the tread 36 described later are used. As the resin 32 that covers the reinforcing cord 30, a thermoplastic resin having elasticity, a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering the elasticity during running and the moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
 熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。 Examples of the thermoplastic elastomer include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester-based thermoplastic elastomer (TPC). And dynamically crosslinked thermoplastic elastomers (TPV).
 また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂材料としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張破壊伸びが50%以上、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。 Further, examples of the thermoplastic resin include a polyurethane resin, a polyolefin resin, a vinyl chloride resin, and a polyamide resin. Further, as the thermoplastic resin material, for example, the deflection temperature under load (under a load of 0.45 MPa) specified in ISO75-2 or ASTM D648 is 78 ° C. or more, and the tensile yield strength specified in JIS K7113 is 10 MPa. As described above, a material having a tensile elongation at break specified in JIS K 7113 of 50% or more and a Vicat softening temperature (A method) specified in JIS K 7206 of 130 ° C. or more can be used.
 補強コード30を被覆する樹脂32の引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。また、補強コード30を被覆する樹脂32の引張弾性率の上限は、1000MPa以下とすることが好ましい。なお、補強コード30を被覆する樹脂32の引張弾性率は、200~500MPaの範囲内が特に好ましい。 引 張 The tensile modulus of elasticity of the resin 32 that covers the reinforcing cord 30 (defined by JIS K7113: 1995) is preferably 50 MPa or more. The upper limit of the tensile modulus of the resin 32 covering the reinforcing cord 30 is preferably 1000 MPa or less. The tensile modulus of the resin 32 covering the reinforcing cord 30 is particularly preferably in the range of 200 to 500 MPa.
(トレッド)
 ベルト26のタイヤ径方向外側には、クッションゴム(図示せず)を介してゴム材料からなるトレッド36が配置されている。トレッド36に用いるゴム材料は、従来一般公知のものが用いられる。トレッド36には、排水用の溝37が形成されている。また、トレッド36のパターンも従来一般公知のものが用いられる。
(tread)
A tread 36 made of a rubber material is disposed outside the belt 26 in the tire radial direction via a cushion rubber (not shown). As the rubber material used for the tread 36, a conventionally known rubber material is used. A groove 37 for drainage is formed in the tread 36. Further, the tread 36 has a conventionally known pattern.
 ベルト26の幅BW(タイヤ幅方向に沿って計測する幅寸法)は、タイヤ幅方向に沿って計測するトレッド36の接地幅TWに対して75%以上とすることが好ましい。なお、ベルト26の幅BWは、接地幅TWに対して110%以下とすることが好ましい。 幅 It is preferable that the width BW (width dimension measured along the tire width direction) of the belt 26 is 75% or more with respect to the contact width TW of the tread 36 measured along the tire width direction. In addition, it is preferable that the width BW of the belt 26 be 110% or less with respect to the contact width TW.
 ここで、トレッド36の接地幅TWとは、タイヤ10をJATMA YEAR BOOK(2018年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、静止した状態で水平な平板に対して回転軸が平行となるように配置し、最大の負荷能力に対応する質量を加えたときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。 Here, the contact width TW of the tread 36 means that the tire 10 is mounted on a standard rim specified in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard), and the applicable size and ply rating in JATMA YEAR BOOK 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table), so that the rotation axis is parallel to the horizontal flat plate in the stationary state It is the one when placed and the mass corresponding to the maximum load capacity is added. When the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
(樹脂板)
 図2に拡大して示すように、ベルト26の幅方向外側部分には、樹脂板35が接合されている(図1では樹脂板35の図示を省略している。)。樹脂板35は、合計4枚設けられ、それぞれ、ベルト26と同じくタイヤ回転軸を中心とする円環状に設けられている。つまり、樹脂板35は、タイヤ径方向を板厚方向として配置されている。4枚の樹脂板35は、ベルト26の幅方向一方側部分(図2の左側部分)のタイヤ径方向外側とタイヤ径方向内側、ベルト26の幅方向他方側部分(図2の右側部分)のタイヤ径方向外側とタイヤ径方向内側の4ヶ所にそれぞれ接合されている。具体的には、樹脂板35は、ベルト26のうち樹脂32の部分と溶着により接合されている。樹脂板35のタイヤ幅方向外側端部の位置は、ベルト26のタイヤ幅方向外側端部の位置と略一致している。そのため、樹脂板35には、ベルト26に対してタイヤ幅方向外側に突出している部分がない。
 なお、本実施形態は、ベルト26に対する樹脂板35のタイヤ幅方向外側への突出がない構造を例示したが、タイヤ径方向外側またはタイヤ径方向内側の樹脂板35の何れか一方の端部を、ベルト26に対してタイヤ幅方向外側に突出させても良い。この場合、ベルト端での幅方向剛性段差を緩和する効果を奏する。
(Resin plate)
As shown in an enlarged manner in FIG. 2, a resin plate 35 is joined to an outer portion in the width direction of the belt 26 (in FIG. 1, illustration of the resin plate 35 is omitted). A total of four resin plates 35 are provided, each of which is provided in an annular shape around the tire rotation axis, similarly to the belt 26. That is, the resin plate 35 is arranged with the tire radial direction as the plate thickness direction. The four resin plates 35 are provided on the outer side in the tire radial direction and the inner side in the tire radial direction on one side in the width direction of the belt 26 (left side in FIG. 2), and on the other side in the width direction of the belt 26 (right side in FIG. 2). It is joined to each of four locations on the tire radial outside and the tire radial inside. Specifically, the resin plate 35 is joined to the resin 32 portion of the belt 26 by welding. The position of the outer end of the resin plate 35 in the tire width direction substantially coincides with the position of the outer end of the belt 26 in the tire width direction. Therefore, the resin plate 35 has no portion protruding outward in the tire width direction with respect to the belt 26.
Note that, in the present embodiment, the structure in which the resin plate 35 does not protrude outward in the tire width direction with respect to the belt 26 is illustrated. Alternatively, the belt 26 may protrude outward in the tire width direction. In this case, the effect of reducing the widthwise rigidity step at the belt end is exhibited.
 これらベルト26及び樹脂板35により、タイヤ骨格部材25のクラウン部が補強されている。換言すると、タイヤ10は、タイヤ骨格部材25を補強する樹脂補強体31を備えており、樹脂補強体31は、ベルト26及び樹脂板35により構成されている。 ク ラ ウ ン The crown portion of the tire frame member 25 is reinforced by the belt 26 and the resin plate 35. In other words, the tire 10 includes the resin reinforcement 31 that reinforces the tire frame member 25, and the resin reinforcement 31 includes the belt 26 and the resin plate 35.
 ベルト26は、前述したように同一断面(本実施形態では断面矩形)の樹脂被覆コード34を螺旋状に巻回することで形成されているので、ベルト26の厚み寸法は、ベルト26の幅方向の位置によらず略一定となっている。したがって、樹脂補強体31の厚み寸法は、樹脂板35が接合されている部分において樹脂板35が接合されていない部分よりも厚くなっている。すなわち、樹脂補強体31は、樹脂板35が接合されていない薄部と、樹脂板35が接合されている一対の厚部と、から構成されているといえる。 As described above, the belt 26 is formed by spirally winding the resin-coated cords 34 having the same cross section (rectangular cross section in the present embodiment), so that the thickness dimension of the belt 26 is in the width direction of the belt 26. Is substantially constant irrespective of the position. Therefore, the thickness dimension of the resin reinforcing body 31 is thicker in the portion where the resin plate 35 is joined than in the portion where the resin plate 35 is not joined. That is, it can be said that the resin reinforcing body 31 includes a thin portion where the resin plate 35 is not joined and a pair of thick portions where the resin plate 35 is joined.
 樹脂板35の幅寸法W1は、ベルト26の幅BWに対して12.5~25.0%であることが好ましい。 幅 The width W1 of the resin plate 35 is preferably 12.5 to 25.0% of the width BW of the belt 26.
 ベルト26の厚み寸法と樹脂板35の厚み寸法は同一とされている。そのため、厚部の厚み寸法は、薄部の厚み寸法の約3倍とされている。但し、ベルト26の厚み寸法と樹脂板35の厚み寸法は略同一に限られず、求められる剛性に応じて適宜変更してよい。但し、薄部の厚み寸法に対する厚部の厚み寸法は、150~400%が好ましい。 厚 み The thickness of the belt 26 and the thickness of the resin plate 35 are the same. Therefore, the thickness of the thick portion is set to be about three times the thickness of the thin portion. However, the thickness dimension of the belt 26 and the thickness dimension of the resin plate 35 are not limited to substantially the same, and may be appropriately changed according to the required rigidity. However, the thickness of the thick portion relative to the thickness of the thin portion is preferably 150 to 400%.
 樹脂板35を構成する樹脂材料としては、例えば、ベルト26の樹脂32と同じ樹脂材料を用いることができる。但し、これに限定されず、樹脂板35はベルト26の樹脂32と溶着できればよく、場合によっては樹脂32とは同種の樹脂材料で硬さの異なるものを用いたり、樹脂32とは異なる種類の樹脂材料を用いたりしてもよい。 は As the resin material constituting the resin plate 35, for example, the same resin material as the resin 32 of the belt 26 can be used. However, the present invention is not limited to this. The resin plate 35 only needs to be able to be welded to the resin 32 of the belt 26. In some cases, a resin material having the same kind of resin material but different in hardness may be used, or a resin material different from the resin 32 may be used. A resin material may be used.
(タイヤの製造方法)
 次に、タイヤ10の製造方法の一例を説明する。
(Tire manufacturing method)
Next, an example of a method for manufacturing the tire 10 will be described.
 まず、公知のタイヤ成形ドラム(不図示)の外周に、インナーライナー22、ビードコア12、ビードフィラー18、カーカスプライ14、及びサイドゴム層24からなる未加硫のタイヤ骨格部材25(タイヤケース)を形成する。 First, an unvulcanized tire frame member 25 (tire case) including an inner liner 22, a bead core 12, a bead filler 18, a carcass ply 14, and a side rubber layer 24 is formed on the outer periphery of a known tire forming drum (not shown). I do.
 次に、別途形成した樹脂補強体31をタイヤ成形ドラム上のタイヤ骨格部材25の径方向外側に配置し、タイヤ骨格部材25を拡張してタイヤ骨格部材25の外周面、言い換えればカーカス16の外周面を樹脂補強体31の内周面に圧着する。 Next, the separately formed resin reinforcing member 31 is arranged radially outside the tire frame member 25 on the tire building drum, and the tire frame member 25 is expanded to expand the outer peripheral surface of the tire frame member 25, in other words, the outer periphery of the carcass 16. The surface is pressed against the inner peripheral surface of the resin reinforcing body 31.
 次に、ベルト26の外周面に、一般の空気入りタイヤと同様に未加硫のトレッド36を貼り付ける。これにより、生タイヤが完成する。 Next, an unvulcanized tread 36 is attached to the outer peripheral surface of the belt 26 in the same manner as a general pneumatic tire. Thereby, a raw tire is completed.
 最後に、生タイヤを、一般の空気入りタイヤと同様に加硫成形モールドで加硫成形する。これにより、タイヤ10が完成する。 Lastly, the green tire is vulcanized and molded in a vulcanization mold in the same manner as a general pneumatic tire. Thereby, the tire 10 is completed.
(樹脂補強体31の製造方法)
 次に、樹脂補強体31の製造方法の一例を図3を用いて説明する。
(Method of Manufacturing Resin Reinforcement 31)
Next, an example of a method for manufacturing the resin reinforcement 31 will be described with reference to FIG.
 まず、ベルト成形ドラム40の近傍にコード供給装置42、加熱装置50、押付ローラ60、及び冷却ローラ70を移動可能に配置する。 First, the code supply device 42, the heating device 50, the pressing roller 60, and the cooling roller 70 are movably disposed near the belt forming drum 40.
 コード供給装置42は、樹脂被覆コード34を巻き付けたリール43と、このリール43から巻き出された樹脂被覆コード34をベルト成形ドラム40の外周に案内するためのガイド部材44と、を含んで構成されている。このガイド部材44は、筒状とされ、内部を樹脂被覆コード34が通過するようになっている。また、ガイド部材44の口部46からは、ベルト成形ドラム40の外周面に向かって樹脂被覆コード34が送り出される。 The cord supply device 42 includes a reel 43 around which the resin-coated cord 34 is wound, and a guide member 44 for guiding the resin-coated cord 34 unwound from the reel 43 to the outer periphery of the belt forming drum 40. Have been. The guide member 44 has a cylindrical shape, and the resin-coated cord 34 passes through the inside thereof. Further, the resin-coated cord 34 is sent out from the mouth 46 of the guide member 44 toward the outer peripheral surface of the belt forming drum 40.
 加熱装置50は、熱風を樹脂被覆コード34に吹き当てて、吹き当てた部分を加熱し溶融させるものである。なお、本実施形態では、電熱線(不図示)で加熱した空気をファン(不図示)で発生させた気流で吹出し口52から吹き出し、この吹き出した熱風を樹脂被覆コード34に吹き当てるようになっている。なお、加熱装置50の構成は、上記構成に限定されず、熱可塑性樹脂を加熱溶融できれば、どのような構成であってもよい。例えば、樹脂被覆コード34の側面に熱鏝を接触させて側面を加熱溶融させてもよく、輻射熱で加熱溶融させてもよく、赤外線を照射して加熱溶融させてもよい。 The heating device 50 blows hot air onto the resin-coated cord 34 to heat and melt the blown portion. In the present embodiment, air heated by a heating wire (not shown) is blown out from the outlet 52 by an airflow generated by a fan (not shown), and the blown hot air is blown against the resin-coated cord 34. ing. The configuration of the heating device 50 is not limited to the above configuration, and may be any configuration as long as the thermoplastic resin can be heated and melted. For example, a hot iron may be brought into contact with the side surface of the resin-coated cord 34 to heat and melt the side surface, may be heated and melted by radiant heat, or may be heated and melted by irradiating infrared rays.
 押付ローラ60は、後述する樹脂被覆コード34をベルト成形ドラム40外周面に押し付けるものであり、押付力Fを調整できるようになっている。また、押付ローラ60のローラ表面には、溶融状態の樹脂材料の付着を防ぐための加工が施されている。そして、押付ローラ60は、回転自在となっており、樹脂被覆コード34をベルト成形ドラム40の外周に押し付けている状態では、ベルト成形ドラム40の回転方向(矢印A方向)に対して従動回転するようになっている。 The pressing roller 60 is for pressing a resin-coated cord 34 described later against the outer peripheral surface of the belt forming drum 40, and is capable of adjusting the pressing force F. Further, the roller surface of the pressing roller 60 is processed to prevent the resin material in a molten state from adhering. The pressing roller 60 is rotatable. When the resin-coated cord 34 is pressed against the outer periphery of the belt forming drum 40, the pressing roller 60 is driven to rotate in the rotation direction (the direction of the arrow A) of the belt forming drum 40. It has become.
 また、冷却ローラ70は、押付ローラ60よりもベルト成形ドラム40の回転方向下流側に配置され、樹脂被覆コード34をベルト成形ドラム40の外周面に押し付けつつ、樹脂被覆コード34を冷却するものである。この冷却ローラ70は、押付ローラ60と同様に、押付力を調整でき、かつ、ローラ表面に溶融状態の樹脂材料の付着を防ぐための加工が施されている。さらに、冷却ローラ70は、押付ローラ60と同様に、回転自在となっており、樹脂被覆コード34をベルト成形ドラム40の外周面に押し付けている状態では、ベルト成形ドラム40の回転方向(矢印A方向)に対して従動回転するようになっている。また、冷却ローラ70は、ローラ内部を液体(例えば、水など)が流通するようになっており、この液体の熱交換によりローラ表面に接触した部材(本実施形態では、樹脂被覆コード34)などを冷却することができる。なお、溶融状態の樹脂材料を自然冷却させる場合には、冷却ローラ70を省略してもよい。 The cooling roller 70 is disposed downstream of the pressing roller 60 in the rotation direction of the belt forming drum 40, and cools the resin coating cord 34 while pressing the resin coating cord 34 against the outer peripheral surface of the belt forming drum 40. is there. Like the pressing roller 60, the cooling roller 70 is capable of adjusting the pressing force, and has been subjected to processing for preventing adhesion of a molten resin material to the roller surface. Further, the cooling roller 70 is rotatable similarly to the pressing roller 60, and when the resin-coated cord 34 is pressed against the outer peripheral surface of the belt forming drum 40, the rotation direction of the belt forming drum 40 (arrow A) Direction). The cooling roller 70 is configured such that a liquid (for example, water) flows through the inside of the roller, and a member (the resin-coated cord 34 in the present embodiment) that comes into contact with the roller surface by heat exchange of the liquid. Can be cooled. When the resin material in the molten state is naturally cooled, the cooling roller 70 may be omitted.
 次に、ベルト成形ドラム40を矢印A方向に回転させると共にコード供給装置42の口部46から樹脂被覆コード34をベルト成形ドラム40の外周面に向けて送り出す。 Next, the belt forming drum 40 is rotated in the direction of arrow A, and the resin-coated cord 34 is sent out from the mouth 46 of the cord supply device 42 toward the outer peripheral surface of the belt forming drum 40.
 そして、加熱装置50の吹出し口52から樹脂被覆コード34に向かって熱風を吹き出して加熱し樹脂32の表面を溶融させながら、樹脂被覆コード34をベルト成形ドラム40に付着させつつ、樹脂被覆コード34を押付ローラ60でベルト成形ドラム40の外周面に押し付ける。この押付ローラ60によって樹脂被覆コード34は、側部がタイヤ回転軸方向に膨出するように変形(押し潰しによる変形)して、樹脂32のタイヤ回転軸方向に隣接する側面同士が接触して溶着する。
 その後、樹脂32の溶融部分は、冷却ローラ70に接触して固化され、隣接する樹脂被覆コード34同士の溶着が完了する。
Then, while the hot air is blown out from the outlet 52 of the heating device 50 toward the resin-coated cord 34 and heated to melt the surface of the resin 32, the resin-coated cord 34 is attached to the belt forming drum 40 while Is pressed against the outer peripheral surface of the belt forming drum 40 by the pressing roller 60. The resin-coated cord 34 is deformed (deformed by crushing) so that the side portion swells in the tire rotation axis direction by the pressing roller 60, and the side surfaces of the resin 32 adjacent in the tire rotation axis direction come into contact with each other. Weld.
Thereafter, the molten portion of the resin 32 contacts the cooling roller 70 and is solidified, and the welding of the adjacent resin-coated cords 34 is completed.
 このようにして、樹脂被覆コード34をベルト成形ドラム40の外周面に螺旋状に巻き付けると共に該外周面に押し付けていくことで、ベルト成形ドラム40の外周面にベルト26が形成される。 In this manner, the resin-coated cord 34 is spirally wound around the outer peripheral surface of the belt forming drum 40 and pressed against the outer peripheral surface, whereby the belt 26 is formed on the outer peripheral surface of the belt forming drum 40.
 以上のように、ベルト26を、2本の補強コード30を被覆用の樹脂32で被覆した樹脂被覆コード34を螺旋状に巻回することで形成する。 As described above, the belt 26 is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a coating resin 32.
 次に、ベルト26に対して4枚の樹脂板35を溶着により接合する。これにより、樹脂補強体31が形成される(図2参照)。溶着による接合方法は特に限定されないが、タイヤ径方向外側の樹脂板35については、ベルト26をベルト成形ドラム40上で成形した後、ベルト成形ドラム40から取り外す前にベルト26に対して溶着することが好ましい。 Next, the four resin plates 35 are joined to the belt 26 by welding. Thereby, the resin reinforcement 31 is formed (see FIG. 2). The joining method by welding is not particularly limited, but for the resin plate 35 on the outer side in the tire radial direction, after the belt 26 is formed on the belt forming drum 40, the resin plate 35 is welded to the belt 26 before being removed from the belt forming drum 40. Is preferred.
(作用効果)
 次に、本実施形態のタイヤ10の作用効果を説明する。
(Effect)
Next, the operation and effect of the tire 10 of the present embodiment will be described.
 本実施形態のタイヤ10では、カーカス16を含んで構成されたタイヤ骨格部材25とゴム材料で構成されたトレッド36との間に、タイヤ周方向に巻回された補強コード30が埋設された樹脂補強体31が設けられている。これにより、タイヤ骨格部材25のクラウン部が補強されている。 In the tire 10 of the present embodiment, a resin in which a reinforcing cord 30 wound in the tire circumferential direction is embedded between a tire frame member 25 including the carcass 16 and a tread 36 formed of a rubber material. A reinforcing body 31 is provided. Thereby, the crown portion of the tire frame member 25 is reinforced.
 ここで、樹脂補強体31は、外側領域OR(幅方向外側端部から25%の領域)の平均厚み寸法が中央領域CR(外側領域OR以外の領域)の平均厚み寸法よりもよりも大きくなるように形成されている。このため、クラウン部におけるタイヤ幅方向外側が重点的に高剛性化され、その結果、コーナリングパワーが向上されている。また、樹脂補強体31のタイヤ幅方向の全体の厚みが大きくする態様と比較して、クラウン部におけるタイヤ幅方向中央部の高剛性化が抑制され、その結果、乗り心地の低下が抑制されている。 Here, in the resin reinforcing body 31, the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). It is formed as follows. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved. Further, compared to a mode in which the overall thickness of the resin reinforcing body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
 また、樹脂補強体31が、ベルト26(スパイラルベルト層)に樹脂板35が接合されることで樹脂補強体31のタイヤ幅方向外側部分の厚みが増大されている。つまり、ベルト26に樹脂製の樹脂板35を付加することで樹脂補強体31を形成できるので、製造が容易である。 {Circle around (2)} The resin plate 35 is joined to the belt 26 (spiral belt layer) of the resin reinforcing member 31, so that the thickness of the resin reinforcing member 31 outside in the tire width direction is increased. That is, since the resin reinforcing member 31 can be formed by adding the resin plate 35 made of resin to the belt 26, manufacturing is easy.
 また、ベルト26のうち樹脂板35が接合されて厚み寸法が増大している領域W1は、ベルト26のタイヤ幅方向全体を100%としたとき、ベルト26のタイヤ幅方向外側端部から12.5~25.0%の領域である。このように、樹脂板35が接合される領域が適切な領域に設定されているので、コーナリングパワーの向上と乗り心地の確保が適切にバランスする。 Further, in the region W1 of the belt 26 where the resin plate 35 is joined and the thickness dimension is increased, when the entire belt width direction of the belt 26 in the tire width direction is 100%, the area W1 is 12. The region is 5 to 25.0%. As described above, since the region to which the resin plate 35 is joined is set to an appropriate region, the improvement in cornering power and the securing of riding comfort are appropriately balanced.
 また、樹脂補強体31は、外側領域ORの平均厚み寸法が中央領域CRの平均厚み寸法の1.5倍(更に好ましくは2倍以上)になるように形成されている。つまり、樹脂補強体31の外側領域ORと中央領域CRの平均厚み寸法の比が一定以上に設定されているので、有意な効果を得ることができる。 {Circle around (2)} The resin reinforcement 31 is formed such that the average thickness of the outer region OR is 1.5 times (more preferably, 2 times or more) the average thickness of the central region CR. That is, since the ratio of the average thickness dimension of the outer region OR and the central region CR of the resin reinforcing body 31 is set to a certain value or more, a significant effect can be obtained.
 また、補強コード30を被覆している樹脂32の引張弾性率が50MPa以上とされ、厚みも0.7mm以上確保されているので、ベルト26のタイヤ幅方向の面内剪断剛性を十分に確保することができる。 Further, since the tensile elasticity of the resin 32 covering the reinforcing cord 30 is set to 50 MPa or more and the thickness is set to 0.7 mm or more, the in-plane shear rigidity of the belt 26 in the tire width direction is sufficiently ensured. be able to.
 また、ベルト26の幅BWをトレッド36の接地幅TWの75%以上としているので、ショルダー39付近の剛性を高めることができる。 Further, since the width BW of the belt 26 is set to 75% or more of the contact width TW of the tread 36, the rigidity near the shoulder 39 can be increased.
(第1実施形態の変形例)
 上記では、ベルト幅方向に隣接する樹脂被覆コード34同士を溶着により接合する例を説明したが、接着剤により接合してもよい。
(Modification of First Embodiment)
In the above description, the example in which the resin-coated cords 34 adjacent to each other in the belt width direction are joined by welding has been described.
 上記では、樹脂板35をベルト26の樹脂32と溶着により接合する例を説明したが、接着剤により接合してもよい。 In the above description, the example in which the resin plate 35 is joined to the resin 32 of the belt 26 by welding has been described.
 上記では、ベルト26を製造する際に用いた樹脂被覆コード34が、2本の補強コード30を樹脂32で被覆したものである例を説明したが、樹脂被覆コード34は1本の補強コード30を樹脂32で被覆したものであってもよく、3本以上の補強コード30を樹脂32で被覆したものであってもよい。 In the above description, an example was described in which the resin-coated cord 34 used in manufacturing the belt 26 was formed by coating two reinforcing cords 30 with the resin 32. However, the resin-coated cord 34 is one reinforcing cord 30. May be coated with the resin 32, or three or more reinforcing cords 30 may be coated with the resin 32.
[第2実施形態]
 次に、本開示の第2実施形態について説明する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described.
 第2実施形態のタイヤは、樹脂補強体31の構成が第1実施形態とは異なっている。樹脂補強体31以外の構成は略同一なので、樹脂補強体31のみ拡大して示す図4を用いて説明する。以下、第2実施形態の樹脂補強体31の製造方法を説明すると共にその構造を説明する。 タ イ ヤ The tire of the second embodiment is different from the first embodiment in the configuration of the resin reinforcing body 31. Since the configuration other than the resin reinforcement 31 is substantially the same, a description will be given with reference to FIG. Hereinafter, a method of manufacturing the resin reinforcement 31 of the second embodiment will be described, and the structure thereof will be described.
 まず、第1実施形態と同様に、2本の補強コード30を被覆用の樹脂32で被覆した樹脂被覆コード34を螺旋状に巻回することで、図4(A)に示すベルト26Tを形成する。但し、第2実施形態の樹脂被覆コード34は、第1実施形態の樹脂被覆コード34よりも上下寸法(タイヤ完成の状態でタイヤ径方向と一致する方向)が大きく形成され、断面形状が略正方形とされている。 First, similarly to the first embodiment, a belt 26T shown in FIG. 4A is formed by spirally winding a resin-coated cord 34 in which two reinforcing cords 30 are covered with a resin 32 for covering. I do. However, the resin-coated cord 34 of the second embodiment is formed to have a larger vertical dimension (a direction that coincides with the tire radial direction when the tire is completed) than the resin-coated cord 34 of the first embodiment, and has a substantially square cross section. It has been.
 次に、ベルト26Tの外周面(タイヤ径方向の外側の面)及び内周面を削ることで、ベルト26のうちその幅方向中央部分における厚み寸法を小さくする。これにより、図4(B)に示すベルト26を形成する。このベルト26は、外側領域ORの平均厚み寸法が中央領域CRの平均厚み寸法の2倍以上になるように形成されている。第2実施形態では、ベルト26が本開示の「樹脂補強体」に相当する。つまり、樹脂補強体31が、樹脂板35を含んで構成されておらず、ベルト26(スパイラルベルト層、樹脂被覆コード34を螺旋状に巻回したもの)のみから構成されている。 Next, the outer peripheral surface (outer surface in the tire radial direction) and the inner peripheral surface of the belt 26T are cut to reduce the thickness dimension of the belt 26 at the central portion in the width direction. Thus, the belt 26 shown in FIG. 4B is formed. The belt 26 is formed such that the average thickness of the outer region OR is twice or more the average thickness of the center region CR. In the second embodiment, the belt 26 corresponds to the “resin reinforcement” of the present disclosure. That is, the resin reinforcing body 31 does not include the resin plate 35 but includes only the belt 26 (spiral belt layer, a resin-coated cord 34 spirally wound).
(作用効果)
 次に、本実施形態の作用効果について説明する。
(Effect)
Next, the operation and effect of the present embodiment will be described.
 第2実施形態でも、樹脂補強体31は、外側領域OR(幅方向外側端部から25%の領域)の平均厚み寸法が中央領域CR(外側領域OR以外の領域)の平均厚み寸法よりもよりも大きくなるように形成されている。このため、クラウン部におけるタイヤ幅方向外側が重点的に高剛性化され、その結果、コーナリングパワーが向上されている。また、樹脂補強体31のタイヤ幅方向の全体の厚みが大きくする態様と比較して、クラウン部におけるタイヤ幅方向中央部の高剛性化が抑制され、その結果、乗り心地の低下が抑制されている。 Also in the second embodiment, in the resin reinforcement 31, the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). Is also formed to be large. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, the cornering power is improved. In addition, compared to a mode in which the entire thickness of the resin reinforcement body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
〔第2実施形態の変形例〕
 上記では、ベルト26のうち外側面と内側面の両方を削ることで、幅方向中央部の厚み寸法を減少させる例を説明したが、例えば、内側面を削らずに外側面のみを削ってもよい。また例えば、外側面を削らずに内側面のみを削ってもよい。
[Modification of Second Embodiment]
In the above description, an example in which the thickness dimension of the central portion in the width direction is reduced by cutting both the outer surface and the inner surface of the belt 26 has been described. For example, even if only the outer surface is cut without cutting the inner surface. Good. Further, for example, only the inner surface may be cut without cutting the outer surface.
[第3実施形態]
 次に、本開示の第3実施形態について説明する。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described.
 第3実施形態のタイヤは、樹脂補強体31の構成が第1実施形態や第2実施形態とは異なっている。樹脂補強体31以外の構成は略同一なので、第3実施形態の樹脂補強体31のみ拡大して示す図5を用いて説明する。 タ イ ヤ The tire of the third embodiment is different from the first and second embodiments in the configuration of the resin reinforcing body 31. Since the configuration other than the resin reinforcement 31 is substantially the same, only the resin reinforcement 31 of the third embodiment will be described with reference to FIG.
 第3実施形態では、樹脂補強体31が、射出形成による一体形成によって形成されている。したがって、樹脂補強体31の形状及び寸法は、射出成形に用いる金型の形状及び寸法によって定めることができる。 で は In the third embodiment, the resin reinforcement 31 is formed by integral formation by injection molding. Therefore, the shape and size of the resin reinforcing body 31 can be determined by the shape and size of the mold used for injection molding.
 樹脂補強体31は、幅方向外側から幅方向中央側に向けて厚み寸法が次第に漸減するように形成されている。そのため、樹脂補強体31を、厚み寸法が大きい部分と小さい部分とに明確に区画することはできない。但し、射出成形に用いる金型の形状を変更することで、厚み寸法が大きい部分(厚部)と小さい部分(薄部)とが明確に区別できるように樹脂補強体31を形成しても良い。この場合、厚部は、樹脂補強体31の全幅を100%としたとき、樹脂補強体31の幅方向外側端部から12.5~25.0%の領域にすることが好ましい。 The resin reinforcing body 31 is formed such that the thickness dimension gradually decreases from the outer side in the width direction to the center side in the width direction. Therefore, the resin reinforcement 31 cannot be clearly divided into a portion having a large thickness and a portion having a small thickness. However, by changing the shape of the mold used for injection molding, the resin reinforcing body 31 may be formed so that a thick portion (thick portion) and a small portion (thin portion) can be clearly distinguished. . In this case, when the total width of the resin reinforcement 31 is set to 100%, it is preferable that the thick portion be a region of 12.5 to 25.0% from the widthwise outer end of the resin reinforcement 31.
(作用効果)
 第3実施形態でも、樹脂補強体31は、外側領域OR(幅方向外側端部から25%の領域)の平均厚み寸法が中央領域CR(外側領域OR以外の領域)の平均厚み寸法よりもよりも大きくなるように形成されている。このため、クラウン部におけるタイヤ幅方向外側が重点的に高剛性化され、その結果、コーナリングパワーが向上されている。また、樹脂補強体31のタイヤ幅方向の全体の厚みが大きくする態様と比較して、クラウン部におけるタイヤ幅方向中央部の高剛性化が抑制され、その結果、乗り心地の低下が抑制されている。
(Effect)
Also in the third embodiment, in the resin reinforcement 31, the average thickness of the outer region OR (the region 25% from the outer end in the width direction) is larger than the average thickness of the central region CR (the region other than the outer region OR). Is also formed to be large. For this reason, the outer portion of the crown portion in the tire width direction is mainly increased in rigidity, and as a result, cornering power is improved. In addition, compared to a mode in which the overall thickness of the resin reinforcement body 31 in the tire width direction is increased, the rigidity of the central portion in the tire width direction in the crown portion is suppressed, and as a result, the reduction in ride comfort is suppressed. I have.
 また、樹脂補強体31を一体成形するため、第1実施形態や第2実施形態の樹脂補強体31とは異なり、樹脂被覆コード34間に存在する接合界面が存在しない。よって、樹脂補強体31の接合界面を基点とした割れの懸念がない。 た め Further, since the resin reinforcement 31 is integrally formed, unlike the resin reinforcement 31 of the first or second embodiment, there is no bonding interface existing between the resin-coated cords 34. Therefore, there is no fear of cracking based on the bonding interface of the resin reinforcement 31.
[補足説明]
 以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Supplemental explanation]
As described above, one embodiment of the present disclosure has been described. However, the present disclosure is not limited to the above, and it goes without saying that various other modifications can be made without departing from the scope of the present invention. It is.
 上記では、ベルト26が、タイヤ回転軸を通る断面で見たときにタイヤ幅方向に直線状に延びる形状である例を説明した。しかし、ベルト26の形状は、タイヤ回転軸を通る断面で見たときに、タイヤ幅方向中央部がタイヤ径方向外側へ凸となる形状であってもよい。 In the above description, an example has been described in which the belt 26 has a shape extending linearly in the tire width direction when viewed in a cross section passing through the tire rotation axis. However, the shape of the belt 26 may be such that the central portion in the tire width direction is convex outward in the tire radial direction when viewed in a cross section passing through the tire rotation axis.
 上記では、タイヤ10が一般的な空気入りタイヤである例を説明したが、サイド部を補強ゴムで補強したランフラットタイヤとしてもよい。 In the above description, the example in which the tire 10 is a general pneumatic tire has been described. However, a run-flat tire in which side portions are reinforced with reinforcing rubber may be used.
 2018年6月18日に出願された日本国特許出願2018-115207号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-115207 filed on June 18, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (4)

  1.  カーカスを含んで構成されたタイヤ骨格部材と、
     ゴム材料で構成されたトレッドと、
     前記タイヤ骨格部材と前記トレッドとの間に設けられ、樹脂材料で構成されると共にタイヤ周方向に巻回された補強コードが埋設されている樹脂補強体と、
     を備え、
     前記樹脂補強体は、前記樹脂補強体のタイヤ幅方向全体を100%としたときのタイヤ幅方向外側端部から25%の領域である外側領域の平均厚み寸法がその他の領域である中央領域の平均厚み寸法よりもよりも大きい、
     タイヤ。
    A tire frame member including a carcass,
    A tread made of rubber material,
    Provided between the tire frame member and the tread, a resin reinforcement body embedded with a reinforcement cord formed of a resin material and wound in the tire circumferential direction,
    With
    The resin reinforcing member has an average thickness dimension of an outer region that is a region that is 25% from an outer end portion in the tire width direction when the entirety of the resin reinforcing member in the tire width direction is 100%. Greater than the average thickness dimension,
    tire.
  2.  前記樹脂補強体は、
     前記補強コードを樹脂で被覆して形成された樹脂被覆コードをタイヤ周方向に螺旋状に巻回して形成されたスパイラルベルト層と、
     前記スパイラルベルト層に対して付加された樹脂製の付加部材と、を含んで構成され、
     前記スパイラルベルト層に前記付加部材が接合されることで前記樹脂補強体のタイヤ幅方向外側部分の厚みが増大されている、
     請求項1に記載のタイヤ。
    The resin reinforcing body,
    A spiral belt layer formed by spirally winding a resin-coated cord formed by coating the reinforcing cord with a resin in the tire circumferential direction,
    An additional member made of resin added to the spiral belt layer,
    By adding the additional member to the spiral belt layer, the thickness of the outer portion of the resin reinforcement in the tire width direction is increased,
    The tire according to claim 1.
  3.  前記スパイラルベルト層のうち前記付加部材が接合されている領域は、前記スパイラルベルト層のタイヤ幅方向全体を100%としたとき、前記スパイラルベルト層のタイヤ幅方向外側端部から12.5~25.0%の領域である、
     請求項2に記載のタイヤ。
    The region of the spiral belt layer where the additional member is joined is 12.5 to 25 from the outer end of the spiral belt layer in the tire width direction when the entirety of the spiral belt layer in the tire width direction is 100%. 0.0% area,
    The tire according to claim 2.
  4.  前記樹脂補強体は、前記外側領域の平均厚み寸法が前記中央領域の平均厚み寸法の1.5倍以上である、
     請求項1~請求項3の何れか一項に記載のタイヤ。
    In the resin reinforcement, the average thickness of the outer region is 1.5 times or more the average thickness of the central region.
    The tire according to any one of claims 1 to 3.
PCT/JP2019/023638 2018-06-18 2019-06-14 Tire WO2019244788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-115207 2018-06-18
JP2018115207A JP2019217843A (en) 2018-06-18 2018-06-18 tire

Publications (1)

Publication Number Publication Date
WO2019244788A1 true WO2019244788A1 (en) 2019-12-26

Family

ID=68983889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023638 WO2019244788A1 (en) 2018-06-18 2019-06-14 Tire

Country Status (2)

Country Link
JP (1) JP2019217843A (en)
WO (1) WO2019244788A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119407A (en) * 1984-11-15 1986-06-06 Bridgestone Corp Pneumatic tire
JPH01229704A (en) * 1988-03-10 1989-09-13 Bridgestone Corp Pneumatic radial tire
JPH02234807A (en) * 1989-03-08 1990-09-18 Bridgestone Corp Pneumatic radial tire
JPH0439104A (en) * 1990-06-01 1992-02-10 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH071914A (en) * 1993-06-14 1995-01-06 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JPH1199806A (en) * 1997-09-30 1999-04-13 Yokohama Rubber Co Ltd:The Pneumatic radial tyre
JP2006315516A (en) * 2005-05-12 2006-11-24 Bridgestone Corp Pneumatic tire
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2016017556A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire
WO2017099127A1 (en) * 2015-12-07 2017-06-15 株式会社ブリヂストン Tire
WO2017203765A1 (en) * 2016-05-26 2017-11-30 株式会社ブリヂストン Tire
WO2018074196A1 (en) * 2016-10-18 2018-04-26 株式会社ブリヂストン Tire
WO2018101175A1 (en) * 2016-12-02 2018-06-07 株式会社ブリヂストン Tire

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119407A (en) * 1984-11-15 1986-06-06 Bridgestone Corp Pneumatic tire
JPH01229704A (en) * 1988-03-10 1989-09-13 Bridgestone Corp Pneumatic radial tire
JPH02234807A (en) * 1989-03-08 1990-09-18 Bridgestone Corp Pneumatic radial tire
JPH0439104A (en) * 1990-06-01 1992-02-10 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH071914A (en) * 1993-06-14 1995-01-06 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JPH1199806A (en) * 1997-09-30 1999-04-13 Yokohama Rubber Co Ltd:The Pneumatic radial tyre
JP2006315516A (en) * 2005-05-12 2006-11-24 Bridgestone Corp Pneumatic tire
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2016017556A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire
WO2017099127A1 (en) * 2015-12-07 2017-06-15 株式会社ブリヂストン Tire
WO2017203765A1 (en) * 2016-05-26 2017-11-30 株式会社ブリヂストン Tire
WO2018074196A1 (en) * 2016-10-18 2018-04-26 株式会社ブリヂストン Tire
WO2018101175A1 (en) * 2016-12-02 2018-06-07 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2019217843A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2018207617A1 (en) Pneumatic tire
JP6845086B2 (en) Pneumatic tires
WO2018235621A1 (en) Pneumatic tire
WO2019230773A1 (en) Pneumatic tire
WO2018225387A1 (en) Tire
WO2019225374A1 (en) Pneumatic tire
WO2019244776A1 (en) Pneumatic tyre
WO2019244788A1 (en) Tire
WO2019244720A1 (en) Tire
WO2020004064A1 (en) Pneumatic tire
WO2019244789A1 (en) Tire
WO2019239898A1 (en) Pneumatic tire
WO2019244775A1 (en) Pneumatic tire
CN109195814B (en) Tyre for vehicle wheels
WO2021112049A1 (en) Fiber, method for manufacturing resin-coated cord, method for manufacturing pneumatic tire
WO2019244721A1 (en) Pneumatic tire
JP2021091356A (en) Pneumatic tire
WO2020004045A1 (en) Tire and tire manufacturing method
CN112313088B (en) Pneumatic tire
JP7557283B2 (en) Aircraft pneumatic radial tires
JP2021095036A (en) Pneumatic tire
WO2021240854A1 (en) Pneumatic radial tire for aircraft
JP2012040959A (en) Tire
WO2019230761A1 (en) Pneumatic tire
JP2021187235A (en) Pneumatic radial tire for aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823069

Country of ref document: EP

Kind code of ref document: A1