WO2019230761A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019230761A1
WO2019230761A1 PCT/JP2019/021225 JP2019021225W WO2019230761A1 WO 2019230761 A1 WO2019230761 A1 WO 2019230761A1 JP 2019021225 W JP2019021225 W JP 2019021225W WO 2019230761 A1 WO2019230761 A1 WO 2019230761A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
resin member
resin
pneumatic tire
Prior art date
Application number
PCT/JP2019/021225
Other languages
French (fr)
Japanese (ja)
Inventor
誓志 今
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019230761A1 publication Critical patent/WO2019230761A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire.
  • a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
  • a belt in which a resin-coated cord or a rubber-coated cord is spirally wound in the tire circumferential direction has almost no binding force in the tire width direction, and is therefore weak against input by protrusions or the like. was there.
  • an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
  • the gist configuration of the present invention is as follows.
  • the pneumatic tire of the present invention includes a belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction, and a resin member disposed on the outer side or the inner side of the belt in the tire radial direction. And fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention.
  • the pneumatic tire 1 of the present embodiment (hereinafter also simply referred to as a tire) includes a carcass 3 straddling a bead core 2 a embedded in a pair of bead portions 2 in a toroidal shape.
  • the tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3.
  • the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but may be asymmetrical. .
  • the tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled.
  • the material and shape of the bead core are not particularly limited, or may have a structure without the bead core 2a.
  • the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
  • the belt 4 is a spiral belt in a state in which a rubber-coated cord in which a cord 4b is coated with a coating rubber 4a is spirally wound around a tire axis.
  • the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction.
  • the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width.
  • the thickness (maximum thickness) of the belt 4 is not particularly limited, but may be, for example, 0.3 to 3.5 mm.
  • the cord 4b any known material can be used, for example, a steel cord can be used.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • the cord 4b can also use organic fiber, carbon fiber, or the like.
  • nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used.
  • the covering rubber 4a can be made of any known rubber material such as a rubber material usually used for belt coating rubber.
  • tire contact width means that the tire is applied to the outermost position in the tire width direction of the contact surface when the tire is mounted on the applicable rim, filled with the specified internal pressure, and the maximum load is applied. Mounted on the rim, filled with the specified internal pressure, and defined as the distance in the tire width direction between the ground contact edges in a no-load state. In addition, other dimensions in the present specification are measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
  • appcable rim is an industrial standard effective in the region where tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • JATMA YEAR BOOK and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc.
  • Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width.
  • the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
  • the belt 4 may be a spiral belt in which a cord 4b covered with a coating resin 4a that is a coating material is spirally wound in the tire circumferential direction.
  • the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction.
  • the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width.
  • the thickness (maximum thickness) of the belt 4 is not particularly limited, but may be, for example, 0.3 to 3.5 mm. In this case as well, any known material can be used for the cord 4b. For example, a steel cord can be used.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • the cord 4b can also use organic fiber, carbon fiber, or the like.
  • nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used.
  • the coating resin 4a for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal dislocation can also be used.
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
  • TPO polyolefin-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPA polyamide-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPC polyester-based thermoplastic elastomer
  • TPV dynamic crosslinkable thermoplastic elastomer
  • thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used.
  • a material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
  • the tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 4a that covers the cord 4b is preferably 50 MPa or more.
  • the tensile modulus of the coating resin 4a that covers the cord 4b is preferably 1000 MPa or less.
  • the coating resin 4a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • the resin-coated cord can be formed, for example, by coating a molten coating resin 4a on the outer peripheral side of the cord 4b and solidifying by cooling.
  • the tire 1 includes a resin member 6 that continuously extends in the tire width direction, which is plate-shaped in this example, on the inner side in the tire radial direction of the belt 4.
  • the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but the resin member 6 may be disposed on the outer side in the tire radial direction of the belt 4.
  • the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but may be the same or smaller.
  • the width of the resin member 6 in the tire width direction can be, for example, 80 to 130% of the tire ground contact width.
  • the resin of the resin member 6 can be the same type of resin as the case where the coating material 4b of the belt cord 4a is a resin, but a different type of resin can also be used.
  • short fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member 6.
  • the predetermined direction can be ⁇ 80 ° or less with respect to the tire width direction, preferably ⁇ 45 ° or less, particularly preferably ⁇ 20 ° or less, and ⁇ 10 ° or less. It is most preferable (in this embodiment, the direction is a direction inclined at ⁇ 20 ° or less with respect to the tire width direction).
  • the short fibers can be oriented in the injection or extrusion direction by injecting or extruding a molten resin containing the short fibers.
  • the short fiber an organic short fiber or an inorganic short fiber can be used as the short fiber.
  • the organic short fiber examples include polyamide-based, polyester-based, polyolefin-based, polyvinyl alcohol-based, and cellulose-based short fibers.
  • short fibers such as iron, copper, aluminum, and carbon can be used as the inorganic short fibers. These short fibers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the fibers (short fibers) extend at an angle of 10 ° or less with the “predetermined direction”.
  • the rigidity of the belt 4 can be sufficiently reinforced and enhanced, and the steering stability and the like can be improved. Furthermore, in the pneumatic tire of the present embodiment, since the short fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member 6, the rigidity in the tire width direction of the resin member 6 is increased. The resin member 6 bears the tensile force in the tire width direction that occurs when the protrusion penetrates, and thus the protrusion penetration resistance can be improved.
  • the short fibers are oriented in a direction inclined at an angle of ⁇ 20 ° or less with respect to the tire width direction, the rigidity and the rigidity in the tire width direction are particularly enhanced to effectively obtain the above-described effects. be able to. Further, the tensile force in the tire width direction is more intense on the inner side in the tire radial direction.
  • the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, so that the tire can be more effectively used. The resin member 6 can bear the tensile force in the width direction.
  • the protrusion penetration resistance can be improved.
  • a short fiber having a length of 10 mm or less as the fiber as in the above embodiment. This is because the longer the fiber length, the better the impact strength, but the fiber bundle remains at the time of molding and the problem of dispersibility remains.
  • a long fiber having a length of more than 10 mm can be used.
  • the covering material 4a of the cord 4b of the belt 4 is preferably rubber. It is because it is excellent in manufacturability. Further, when the coating material 4a is rubber, the protrusion penetration resistance can be effectively obtained.
  • the covering material 4a of the cord 4b of the belt 4 is preferably made of resin. This is because the resin has higher rigidity than the weight.
  • the predetermined direction inclined with respect to the tire circumferential direction is preferably ⁇ 20 ° or less, and most preferably ⁇ 10 ° or less with respect to the tire width direction. This is because the rigidity in the tire width direction of the resin member 6 can be further improved.
  • the resin member 6 is preferably arranged on the inner side in the tire radial direction of the belt 4.
  • the resin member 6 having oriented short fibers in a place where the tensile force in the tire width direction is more strongly generated, the resin member 6 bears the tensile force in the tire width direction more effectively, This is because the protrusion penetration resistance can be effectively improved.
  • the fiber (short fiber) content in the resin member 6 is preferably in the range of 0.1 to 45% by weight.
  • the content of the fiber (short fiber) 0.1% by weight or more, the above-mentioned reinforcing effect by the fiber (short fiber) can be more reliably exhibited, while the content of the fiber (short fiber) is included. This is because when the amount is 45% by weight or less, deterioration of ride comfort can be prevented.
  • the fibers are preferably arranged uniformly throughout the resin member 6 within the above-described content range, for example, but a part of the resin member 6 (for example, the tire width direction) It may be arranged only in the central part or one end part or both end parts in the tire width direction).
  • the length of the short fiber is preferably 0.01 mm or more in order to obtain the effect of the above orientation more reliably.
  • an inorganic short fiber particularly a metal short fiber
  • the coating layer is preferably an arbitrary adhesive layer having adhesiveness between the resin and the short metal fibers. By providing such a coating layer, it is also possible to suppress a decrease in durability of the resin member 6 due to contact between short fibers during production or the like.
  • the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but may be disposed on the outer side in the tire radial direction of the belt 4.
  • the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but the width of the resin member 6 in the tire width direction is the tire width of the belt 4. It may be smaller than the width in the direction or may be substantially the same width. Further, the thickness of the resin member 6 can be made larger, substantially the same or smaller than the thickness of the belt 4. In the embodiment shown in FIG.
  • the resin member 6 is a plate-like member extending continuously in the tire width direction, but the resin member 6 is intermittent in the tire width direction (for example, intermittent). It may be a plate-like one extending in general.
  • the circumferential main grooves 8 (four in the illustrated example) continuously extending in the tire circumferential direction are provided, but the number of the circumferential main grooves 8 is particularly limited. Alternatively, the circumferential main groove 8 may not be provided.

Abstract

This pneumatic tire is provided with a belt in which a cord coated with a coating material is wound helically in the tire circumferential direction, and a resin member which is disposed outside or inside the belt in the tire radial direction. Fibers oriented in a predetermined direction which is tilted relative to the tire circumferential direction are arranged in the resin member.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire.
 従来、空気入りタイヤにおいては、タイヤ性能の向上を所期して、カーカスのタイヤ径方向外側にベルトが配置されることが、通常行われている(例えば、特許文献1)。 Conventionally, in a pneumatic tire, a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
 当該ベルトは、コードを樹脂又はゴム等の被覆材料で被覆した樹脂被覆コード又はゴム被覆コード等がタイヤ周方向に螺旋状に巻回された状態のもの(いわゆる、スパイラルベルト)とすることも提案されている。 It is also proposed to use a belt in which a resin-coated cord or rubber-coated cord, etc., in which the cord is coated with a coating material such as resin or rubber, is spirally wound in the tire circumferential direction (so-called spiral belt). Has been.
特開平10-035220号公報Japanese Patent Laid-Open No. 10-035220
 しかしながら、樹脂被覆コード又はゴム被覆コード等がタイヤ周方向に螺旋状に巻回された状態のベルトは、タイヤ幅方向への拘束力を殆ど有しないため、突起等による入力に対して弱いという問題があった。 However, a belt in which a resin-coated cord or a rubber-coated cord is spirally wound in the tire circumferential direction has almost no binding force in the tire width direction, and is therefore weak against input by protrusions or the like. was there.
 そこで、本発明は、耐突起貫入性に優れた空気入りタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
 本発明の要旨構成は、以下の通りである。
 本発明の空気入りタイヤは、被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、前記ベルトのタイヤ径方向外側又は内側に配置された樹脂部材と、を備え、前記樹脂部材内に、タイヤ周方向に対して傾斜した所定の方向に配向した繊維を配置したことを特徴とする。
The gist configuration of the present invention is as follows.
The pneumatic tire of the present invention includes a belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction, and a resin member disposed on the outer side or the inner side of the belt in the tire radial direction. And fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member.
 本発明によれば、耐突起貫入性に優れた空気入りタイヤを提供することができる。 According to the present invention, it is possible to provide a pneumatic tire excellent in protrusion penetration resistance.
本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。図1に示すように、本実施形態の空気入りタイヤ1(以下、単にタイヤとも称する)は、一対のビード部2に埋設されたビードコア2aにトロイダル状に跨るカーカス3を備えている。このタイヤ1は、カーカス3のクラウン部のタイヤ径方向外側に、ベルト4と、トレッド5とを順に備えている。なお、図1に示すように、本実施形態のタイヤ1は、タイヤ赤道面CLを境界とするタイヤ幅方向半部間で同様の構成を有しているが、非対称な構成とすることもできる。 FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. As shown in FIG. 1, the pneumatic tire 1 of the present embodiment (hereinafter also simply referred to as a tire) includes a carcass 3 straddling a bead core 2 a embedded in a pair of bead portions 2 in a toroidal shape. The tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3. As shown in FIG. 1, the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but may be asymmetrical. .
 本実施形態のタイヤ1は、スチールコードを束ねたビードコア2aを有している。ビードコアの材質や形状は特に限定されず、あるいは、ビードコア2aを有しない構造とすることができる。また、本実施形態では、有機繊維からなる1枚のカーカスプライでカーカス3を構成しているが、カーカスプライの材料や枚数も特に限定されない。 The tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled. The material and shape of the bead core are not particularly limited, or may have a structure without the bead core 2a. Moreover, in this embodiment, although the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
 本実施形態では、ベルト4は、コード4bが被覆ゴム4aにより被覆されたゴム被覆コードがタイヤ軸周りに螺旋状に巻き回された状態のスパイラルベルトである。本実施形態では、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90~120%とすることができる。ベルト4の厚さ(最大厚さ)は、特に限定しないが、例えば、0.3~3.5mmとすることができる。コード4bは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bは、有機繊維やカーボン繊維等を用いることもできる。有機繊維は、例えばナイロン等を用いることができ、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。また、被覆ゴム4aは、ベルトコーティングゴムに通常用いるゴム材料等、任意の既知のゴム材料を用いることができる。 In this embodiment, the belt 4 is a spiral belt in a state in which a rubber-coated cord in which a cord 4b is coated with a coating rubber 4a is spirally wound around a tire axis. In the present embodiment, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. The width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width. The thickness (maximum thickness) of the belt 4 is not particularly limited, but may be, for example, 0.3 to 3.5 mm. As the cord 4b, any known material can be used, for example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. The cord 4b can also use organic fiber, carbon fiber, or the like. For example, nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used. The covering rubber 4a can be made of any known rubber material such as a rubber material usually used for belt coating rubber.
 ここで、「タイヤ接地幅」は、タイヤを適用リムに装着し、規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側位置を接地端とし、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での接地端間のタイヤ幅方向距離とする。
 また、本明細書内のその他の寸法は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。
Here, "tire contact width" means that the tire is applied to the outermost position in the tire width direction of the contact surface when the tire is mounted on the applicable rim, filled with the specified internal pressure, and the maximum load is applied. Mounted on the rim, filled with the specified internal pressure, and defined as the distance in the tire width direction between the ground contact edges in a no-load state.
In addition, other dimensions in the present specification are measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
 本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている、または将来的に記載される適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。また、「規定内圧」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力に対応する空気圧(最高空気圧)をいう。なお、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。 In this specification, “applicable rim” is an industrial standard effective in the region where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc. Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width. The “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
 他の実施形態として、ベルト4は、被覆材料である被覆樹脂4aにより被覆されたコード4bがタイヤ周方向に螺旋状に巻回された状態のスパイラルベルトとすることもできる。この場合も、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。この場合も、ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90~120%とすることができる。この場合も、ベルト4の厚さ(最大厚さ)は、特に限定しないが、例えば、0.3~3.5mmとすることができる。この場合も、コード4bは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bは、有機繊維やカーボン繊維等を用いることもできる。有機繊維は、例えばナイロン等を用いることができ、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。また、被覆樹脂4aは、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。コード4bを被覆する被覆樹脂4aの引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。また、コード4bを被覆する被覆樹脂4aの引張弾性率は、1000MPa以下とすることが好ましい。なお、ここでいう被覆樹脂4aには、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。上記の樹脂被覆コードは、例えば、溶融状態の被覆樹脂4aをコード4bの外周側に被覆し、冷却により固化させることによって形成することができる。 As another embodiment, the belt 4 may be a spiral belt in which a cord 4b covered with a coating resin 4a that is a coating material is spirally wound in the tire circumferential direction. Also in this case, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. Also in this case, the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width. Also in this case, the thickness (maximum thickness) of the belt 4 is not particularly limited, but may be, for example, 0.3 to 3.5 mm. In this case as well, any known material can be used for the cord 4b. For example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. The cord 4b can also use organic fiber, carbon fiber, or the like. For example, nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used. Further, as the coating resin 4a, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal dislocation can also be used. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used. The tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 4a that covers the cord 4b is preferably 50 MPa or more. The tensile modulus of the coating resin 4a that covers the cord 4b is preferably 1000 MPa or less. The coating resin 4a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature). The resin-coated cord can be formed, for example, by coating a molten coating resin 4a on the outer peripheral side of the cord 4b and solidifying by cooling.
 また、図1に示すように、このタイヤ1は、ベルト4のタイヤ径方向内側に、この例ではプレート状の、タイヤ幅方向に連続して延在する樹脂部材6を備えている。なお、本実施形態では、樹脂部材6は、ベルト4のタイヤ径方向内側に配置されているが、樹脂部材6は、ベルト4のタイヤ径方向外側に配置しても良い。図1に示すように、本実施形態では、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より大きいが、同じ又は小さくすることもできる。樹脂部材6のタイヤ幅方向の幅は、例えば、タイヤ接地幅の80~130%とすることができる。また、樹脂部材6の樹脂は、ベルトのコード4aの被覆材料4bを樹脂とした場合と同じ種類の樹脂を用いることができるが、異なる種類の樹脂を用いることもできる。 Further, as shown in FIG. 1, the tire 1 includes a resin member 6 that continuously extends in the tire width direction, which is plate-shaped in this example, on the inner side in the tire radial direction of the belt 4. In this embodiment, the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but the resin member 6 may be disposed on the outer side in the tire radial direction of the belt 4. As shown in FIG. 1, in the present embodiment, the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but may be the same or smaller. The width of the resin member 6 in the tire width direction can be, for example, 80 to 130% of the tire ground contact width. The resin of the resin member 6 can be the same type of resin as the case where the coating material 4b of the belt cord 4a is a resin, but a different type of resin can also be used.
 本実施形態のタイヤ1では、樹脂部材6内に、タイヤ周方向に対して傾斜した所定の方向に配向した短繊維が配置されている。上記所定の方向は、タイヤ幅方向に対して、±80°以下とすることができるが、±45°以下とすることが好ましく、±20°以下とすることが特に好ましく、±10°以下とすることが最も好ましい(本実施形態では、当該方向は、タイヤ幅方向に対して、±20°以下で傾斜した方向である)。なお、短繊維を配向させるに当たっては、短繊維を含む溶融した樹脂を射出又は押し出して成型することにより、射出又は押し出しの方向に短繊維を配向させることができる。
 短繊維は、有機短繊維又は無機短繊維を用いることができ、例えば、有機短繊維としては、ポリアミド系、ポリエステル系、ポリオレフィン系、ポリビニルアルコール系、及びセルロース系等の短繊維が挙げられる。一方、無機短繊維は、例えば、鉄、銅、アルミニウム、カーボン等の短繊維を用いることができる。これらの短繊維は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 本実施形態において、繊維(短繊維)が、上記「所定の方向」と10°以内の角度で延びている。
 以下、本実施形態の空気入りタイヤの作用効果について説明する。
In the tire 1 of the present embodiment, short fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member 6. The predetermined direction can be ± 80 ° or less with respect to the tire width direction, preferably ± 45 ° or less, particularly preferably ± 20 ° or less, and ± 10 ° or less. It is most preferable (in this embodiment, the direction is a direction inclined at ± 20 ° or less with respect to the tire width direction). In order to orient the short fibers, the short fibers can be oriented in the injection or extrusion direction by injecting or extruding a molten resin containing the short fibers.
As the short fiber, an organic short fiber or an inorganic short fiber can be used. Examples of the organic short fiber include polyamide-based, polyester-based, polyolefin-based, polyvinyl alcohol-based, and cellulose-based short fibers. On the other hand, short fibers such as iron, copper, aluminum, and carbon can be used as the inorganic short fibers. These short fibers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
In the present embodiment, the fibers (short fibers) extend at an angle of 10 ° or less with the “predetermined direction”.
Hereinafter, the effect of the pneumatic tire of this embodiment is explained.
 本実施形態の空気入りタイヤでは、まず、ベルト4の他に樹脂部材6が配置されているため、ベルト4の剛性を十分に補強して高めて、操縦安定性等を向上させることができる。
 さらに、本実施形態の空気入りタイヤでは、樹脂部材6内に、タイヤ周方向に対して傾斜した所定の方向に配向した短繊維を配置しているため、樹脂部材6のタイヤ幅方向剛性を高めることができ、突起貫入時に生じる、タイヤ幅方向への引張力を樹脂部材6が負担することで耐突起貫入性を向上させることができる。本実施形態では、短繊維は、タイヤ幅方向に対して、±20°以下の角度で傾斜した方向に配向しているため、特にタイヤ幅方向の剛性を高めて上記の作用効果を有効に得ることができる。また、タイヤ幅方向への引張力は、タイヤ径方向内側においてより強く生じるところ、本実施形態では、樹脂部材6をベルト4のタイヤ径方向内側に配置していることで、より効果的にタイヤ幅方向への引張力を樹脂部材6が負担することができる。また、樹脂部材6とは別の部材で補強する場合と比べて、製造における工程増や当該別の部材による重量増を招かなくて済み、あるいは、樹脂部材6自体の材質を高剛性のものにする場合と比べて、乗り心地性の悪化や大変形時の樹脂部材6の割れ等を抑制することができる。
 以上のように、本実施形態の空気入りタイヤによれば、耐突起貫入性を向上させることができる。
In the pneumatic tire of the present embodiment, first, since the resin member 6 is disposed in addition to the belt 4, the rigidity of the belt 4 can be sufficiently reinforced and enhanced, and the steering stability and the like can be improved.
Furthermore, in the pneumatic tire of the present embodiment, since the short fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member 6, the rigidity in the tire width direction of the resin member 6 is increased. The resin member 6 bears the tensile force in the tire width direction that occurs when the protrusion penetrates, and thus the protrusion penetration resistance can be improved. In the present embodiment, since the short fibers are oriented in a direction inclined at an angle of ± 20 ° or less with respect to the tire width direction, the rigidity and the rigidity in the tire width direction are particularly enhanced to effectively obtain the above-described effects. be able to. Further, the tensile force in the tire width direction is more intense on the inner side in the tire radial direction. In the present embodiment, the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, so that the tire can be more effectively used. The resin member 6 can bear the tensile force in the width direction. Further, as compared with the case of reinforcing with a member different from the resin member 6, it is not necessary to increase the number of manufacturing steps and the weight of the other member, or the material of the resin member 6 itself is highly rigid. Compared with the case where it makes, the deterioration of riding comfort, the crack of the resin member 6 at the time of large deformation, etc. can be suppressed.
As described above, according to the pneumatic tire of the present embodiment, the protrusion penetration resistance can be improved.
 本発明の空気入りタイヤでは、上記実施形態のように、繊維として、長さ10mm以下の短繊維を用いることが好ましい。繊維長が長い方が衝撃強度は向上するが、成型時に繊維束が残り分散性の課題を残すからである。一方で、本発明では、長さ10mm超の長繊維を用いることもできる。 In the pneumatic tire of the present invention, it is preferable to use a short fiber having a length of 10 mm or less as the fiber as in the above embodiment. This is because the longer the fiber length, the better the impact strength, but the fiber bundle remains at the time of molding and the problem of dispersibility remains. On the other hand, in the present invention, a long fiber having a length of more than 10 mm can be used.
 本発明の空気入りタイヤでは、ベルト4のコード4bの被覆材料4aは、ゴムであることが好ましい。製造性に優れているからである。また、被覆材料4aがゴムである場合に、耐突起貫入性を有効に得ることができるからである。一方で、上述したように、ベルト4のコード4bの被覆材料4aは、樹脂とすることも好ましい。樹脂は、重量に比して剛性が高いためである。 In the pneumatic tire of the present invention, the covering material 4a of the cord 4b of the belt 4 is preferably rubber. It is because it is excellent in manufacturability. Further, when the coating material 4a is rubber, the protrusion penetration resistance can be effectively obtained. On the other hand, as described above, the covering material 4a of the cord 4b of the belt 4 is preferably made of resin. This is because the resin has higher rigidity than the weight.
 本発明の空気入りタイヤでは、タイヤ周方向に対して傾斜した所定の方向は、タイヤ幅方向に対して、±20°以下であることが好ましく、±10°以下であることが最も好ましい。樹脂部材6のタイヤ幅方向剛性をより一層向上させることができるからである。 In the pneumatic tire of the present invention, the predetermined direction inclined with respect to the tire circumferential direction is preferably ± 20 ° or less, and most preferably ± 10 ° or less with respect to the tire width direction. This is because the rigidity in the tire width direction of the resin member 6 can be further improved.
 本発明の空気入りタイヤでは、樹脂部材6は、ベルト4のタイヤ径方向内側に配置されていることが好ましい。タイヤ幅方向への引張力がより強く生じる箇所に、配向した短繊維を有する樹脂部材6が配置されることにより、より効果的にタイヤ幅方向への引張力を樹脂部材6が負担して、耐突起貫入性を効果的に向上させることができるからである。 In the pneumatic tire of the present invention, the resin member 6 is preferably arranged on the inner side in the tire radial direction of the belt 4. By arranging the resin member 6 having oriented short fibers in a place where the tensile force in the tire width direction is more strongly generated, the resin member 6 bears the tensile force in the tire width direction more effectively, This is because the protrusion penetration resistance can be effectively improved.
 本発明において、樹脂部材6における繊維(短繊維)の含有量は、0.1~45重量%の範囲内であることが好ましい。繊維(短繊維)の含有量を0.1重量%以上とすることにより、繊維(短繊維)による上記の補強効果をより確実に発揮することができ、一方で、繊維(短繊維)の含有量を45重量%以下とすることにより、乗り心地性の悪化を防ぐことができるからである。
 本発明において、繊維(短繊維)は、樹脂部材6中の全体に、例えば上記の含有量の範囲で、均一に配置されていることが好ましいが、樹脂部材6の一部(例えばタイヤ幅方向中央部又はタイヤ幅方向片側端部又は両端部)のみに配置されていても良い。
In the present invention, the fiber (short fiber) content in the resin member 6 is preferably in the range of 0.1 to 45% by weight. By making the content of the fiber (short fiber) 0.1% by weight or more, the above-mentioned reinforcing effect by the fiber (short fiber) can be more reliably exhibited, while the content of the fiber (short fiber) is included. This is because when the amount is 45% by weight or less, deterioration of ride comfort can be prevented.
In the present invention, the fibers (short fibers) are preferably arranged uniformly throughout the resin member 6 within the above-described content range, for example, but a part of the resin member 6 (for example, the tire width direction) It may be arranged only in the central part or one end part or both end parts in the tire width direction).
 繊維を長さ10mm以下の短繊維とする場合、上記の配向による効果をより確実に得るために、短繊維の長さは、0.01mm以上とすることが好ましい。 When the fiber is a short fiber having a length of 10 mm or less, the length of the short fiber is preferably 0.01 mm or more in order to obtain the effect of the above orientation more reliably.
 短繊維に無機短繊維、特に金属短繊維を用いる場合、樹脂と金属短繊維との接着性を向上させる観点から、金属短繊維の表面にコーティング層を有することが好ましい。コーティング層は、樹脂と金属短繊維との接着性を有する任意の接着層とすることが好ましい。このようなコーティング層を設けることで、製造時等における短繊維同士の接触による樹脂部材6の耐久性の低下を抑制することもできる。 When an inorganic short fiber, particularly a metal short fiber is used as the short fiber, it is preferable to have a coating layer on the surface of the metal short fiber from the viewpoint of improving the adhesiveness between the resin and the metal short fiber. The coating layer is preferably an arbitrary adhesive layer having adhesiveness between the resin and the short metal fibers. By providing such a coating layer, it is also possible to suppress a decrease in durability of the resin member 6 due to contact between short fibers during production or the like.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態には何ら限定されるものではない。例えば、図1に示した実施形態では、樹脂部材6は、ベルト4のタイヤ径方向内側に配置されているが、ベルト4のタイヤ径方向外側に配置しても良い。また、図1に示した実施形態では、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より大きいが、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より小さいか、又は、略同じ幅とすることもできる。また、樹脂部材6の厚さは、ベルト4の厚さより大きくするか、ほぼ同じとするか、あるいは、小さくすることができる。また、図1に示した実施形態では、樹脂部材6は、タイヤ幅方向に連続して延在するプレート状のものであるが、樹脂部材6は、タイヤ幅方向に断続したもの(例えば、断続的に延在するプレート状のもの)であっても良い。
 なお、図1に示した実施形態では、タイヤ周方向に連続して延びる(図示例で4本の)周方向主溝8を有するものとしているが、周方向主溝8の本数は特に限定されず、周方向主溝8を有しない構成とすることもできる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment at all. For example, in the embodiment shown in FIG. 1, the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but may be disposed on the outer side in the tire radial direction of the belt 4. In the embodiment shown in FIG. 1, the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but the width of the resin member 6 in the tire width direction is the tire width of the belt 4. It may be smaller than the width in the direction or may be substantially the same width. Further, the thickness of the resin member 6 can be made larger, substantially the same or smaller than the thickness of the belt 4. In the embodiment shown in FIG. 1, the resin member 6 is a plate-like member extending continuously in the tire width direction, but the resin member 6 is intermittent in the tire width direction (for example, intermittent). It may be a plate-like one extending in general.
In the embodiment shown in FIG. 1, the circumferential main grooves 8 (four in the illustrated example) continuously extending in the tire circumferential direction are provided, but the number of the circumferential main grooves 8 is particularly limited. Alternatively, the circumferential main groove 8 may not be provided.
1:空気入りタイヤ、 2:ビード部、 2a:ビードコア、 3:カーカス、4:ベルト、 4a:被覆樹脂(被覆ゴム、被覆樹脂)、4b:コード、5:トレッド、 6:樹脂部材、 8:周方向主溝、CL:タイヤ赤道面
 
1: pneumatic tire, 2: bead part, 2a: bead core, 3: carcass, 4: belt, 4a: coating resin (coating rubber, coating resin), 4b: cord, 5: tread, 6: resin member, 8: Circumferential main groove, CL: tire equatorial plane

Claims (5)

  1.  被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、
     前記ベルトのタイヤ径方向外側又は内側に配置された樹脂部材と、を備え、
     前記樹脂部材内に、タイヤ周方向に対して傾斜した所定の方向に配向した繊維を配置したことを特徴とする、空気入りタイヤ。
    A belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction;
    A resin member disposed on the outer side or the inner side in the tire radial direction of the belt, and
    A pneumatic tire characterized in that fibers oriented in a predetermined direction inclined with respect to the tire circumferential direction are arranged in the resin member.
  2.  前記繊維は、長さが10mm以下の短繊維である、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the fiber is a short fiber having a length of 10 mm or less.
  3.  前記被覆材料は、ゴムである、請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the coating material is rubber.
  4.  前記所定の方向は、タイヤ幅方向に対して、±20°以下の範囲にある、請求項1~3のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the predetermined direction is in a range of ± 20 ° or less with respect to a tire width direction.
  5.  前記樹脂部材は、前記ベルトのタイヤ径方向内側に配置された、請求項1~4のいずれか一項に記載の空気入りタイヤ。
     
    The pneumatic tire according to any one of claims 1 to 4, wherein the resin member is disposed on an inner side in the tire radial direction of the belt.
PCT/JP2019/021225 2018-05-31 2019-05-29 Pneumatic tire WO2019230761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105584 2018-05-31
JP2018105584A JP2019209761A (en) 2018-05-31 2018-05-31 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019230761A1 true WO2019230761A1 (en) 2019-12-05

Family

ID=68698242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021225 WO2019230761A1 (en) 2018-05-31 2019-05-29 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209761A (en)
WO (1) WO2019230761A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154307A (en) * 2000-11-21 2002-05-28 Bridgestone Corp Reinforced composite rubber material and pneumatic tire
JP2002160506A (en) * 2000-11-27 2002-06-04 Bridgestone Corp Pneumatic tire
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2004123019A (en) * 2002-10-04 2004-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
US20100282392A1 (en) * 2007-10-05 2010-11-11 Societe De Technologie Michelin Tire using a Reinforcing Structure with Fibres of Flattened Cross Section
US20120090755A1 (en) * 2009-04-09 2012-04-19 Michelin Recherche Et Technique S.A. Tire With Radial Carcass Reinforcement
JP2017001602A (en) * 2015-06-15 2017-01-05 住友ゴム工業株式会社 Non-pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154307A (en) * 2000-11-21 2002-05-28 Bridgestone Corp Reinforced composite rubber material and pneumatic tire
JP2002160506A (en) * 2000-11-27 2002-06-04 Bridgestone Corp Pneumatic tire
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2004123019A (en) * 2002-10-04 2004-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
US20100282392A1 (en) * 2007-10-05 2010-11-11 Societe De Technologie Michelin Tire using a Reinforcing Structure with Fibres of Flattened Cross Section
US20120090755A1 (en) * 2009-04-09 2012-04-19 Michelin Recherche Et Technique S.A. Tire With Radial Carcass Reinforcement
JP2017001602A (en) * 2015-06-15 2017-01-05 住友ゴム工業株式会社 Non-pneumatic tire

Also Published As

Publication number Publication date
JP2019209761A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3305550B1 (en) Reinforcement member for tires, and tire using same
EP3459763B1 (en) Tire
JP2008126747A (en) Pneumatic tire
EP2684712A9 (en) Pneumatic tire, and method for manufacturing same
EP3459762A1 (en) Tire
US9840114B2 (en) Pneumatic radial tire for a passenger car having ultra fine steel cords for a carcass ply
WO2019230773A1 (en) Pneumatic tire
JP5294396B2 (en) Pneumatic radial tire
US20210221175A1 (en) Pneumatic tire
US20190283503A1 (en) Rubber-cord composite, reinforcing member for tires, and tire using same
JP2019001412A (en) Pneumatic tire
JP2009248751A (en) Pneumatic radial tire
JP6774385B2 (en) How to make a pneumatic tire
WO2019230761A1 (en) Pneumatic tire
JP2016533301A (en) Structure of tire apex
WO2009113583A1 (en) Radial tire for vehicle and method for manufacturing the same
JP6928495B2 (en) Pneumatic tires
CN110770044B (en) Pneumatic tire
US20210229500A1 (en) Resin-covered cord and pneumatic tire
WO2019230497A1 (en) Pneumatic tire
JP6384538B2 (en) Pneumatic tire and manufacturing method thereof
JP2019217819A (en) Pneumatic tire
JP6987022B2 (en) Pneumatic tires and manufacturing methods for pneumatic tires
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
WO2019230763A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811842

Country of ref document: EP

Kind code of ref document: A1