WO2019230773A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019230773A1
WO2019230773A1 PCT/JP2019/021239 JP2019021239W WO2019230773A1 WO 2019230773 A1 WO2019230773 A1 WO 2019230773A1 JP 2019021239 W JP2019021239 W JP 2019021239W WO 2019230773 A1 WO2019230773 A1 WO 2019230773A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
resin
reinforcing member
belt
Prior art date
Application number
PCT/JP2019/021239
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 長谷川
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019230773A1 publication Critical patent/WO2019230773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire.
  • a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
  • the belt is formed by spirally winding a resin-coated cord or a rubber-coated cord with a cord coated with a coating material such as resin or rubber in the tire circumferential direction (so-called spiral belt).
  • a belt formed by spirally winding a resin-coated cord or a rubber-coated cord in the tire circumferential direction has a problem that it is weak against input due to protrusions or the like because its binding force in the tire width direction is slightly low. .
  • an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
  • the gist configuration of the present invention is as follows.
  • the pneumatic tire of the present invention comprises a belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction, and a width direction reinforcing member, And further including one or more circumferential main grooves extending continuously in the tire circumferential direction;
  • the width direction reinforcing member is arranged over at least a region between end portions in the tire width direction of the one or more circumferential main grooves.
  • the “circumferential main groove” refers to a groove having a groove width (opening width) of 2 mm or more.
  • the “groove width” and other dimensions in the present specification are measured in a state in which the tire is mounted on the applicable rim, filled with the specified internal pressure, and in a no-load state.
  • the “circumferential main groove” may extend linearly, or may extend in a curved shape or zigzag shape, and in the case of linear extension, it extends at an inclination angle of 10 ° or less with respect to the tire circumferential direction. Preferably it is.
  • tire contact width means that the outermost position in the tire width direction of the contact surface in the state where the tire is mounted on the applicable rim, the specified internal pressure is filled, and the maximum load is applied is the ground end, and the tire is applied to the applicable rim. It is set as the distance in the tire width direction between the ground contact ends in a state in which it is mounted and filled with the specified internal pressure and is in a no-load state.
  • appcable rim is an industrial standard effective in the region where tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • JATMA YEAR BOOK and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc.
  • Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width.
  • the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
  • the present invention can provide a pneumatic tire excellent in protrusion penetration resistance.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. It is a schematic sectional drawing which shows the belt, the resin reinforcement layer, and the width direction reinforcement member in embodiment shown in FIG. It is a tire width direction schematic sectional drawing which shows the pneumatic tire concerning other embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention.
  • the pneumatic tire 1 of the present embodiment (hereinafter also simply referred to as a tire) includes a carcass 3 straddling a bead core 2 a embedded in a pair of bead portions 2 in a toroidal shape.
  • the tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3.
  • the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but may be asymmetrical. .
  • the tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled.
  • the material and shape of the bead core are not particularly limited, or may have a structure without the bead core 2a.
  • the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
  • the belt 4 is a spiral belt in a state in which a resin-coated cord in which the cord 4b is coated with the coating resin 4a is spirally wound around the tire axis.
  • the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction.
  • the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width.
  • the thickness (maximum thickness) of the belt 4 is not particularly limited, but may be 2 to 6 mm, for example.
  • the cord 4b any known material can be used, for example, a steel cord can be used.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • the cord 4b can also use organic fiber, carbon fiber, or the like.
  • a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal dislocation can also be used.
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
  • thermoplastic resin examples include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the deflection temperature under load (when 0.45 MPa is loaded) specified in ISO 75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. 10 MPa or more, and the tensile elongation at break (JIS K7113) specified in JIS K7113 is 50% or more and the Vicat softening temperature (Method A) specified in JIS K7206 is 130 ° C or more. Can do.
  • the tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 4a that covers the cord 4b is preferably 50 MPa or more. This is because the belt rigidity can be increased.
  • the tensile modulus of the coating resin 4a that covers the cord 4b is preferably 1000 MPa or less. This is because the ride comfort can be maintained well.
  • the coating resin 4a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • the resin-coated cord can be formed, for example, by coating a molten coating resin 4a on the outer peripheral side of the cord 4b and solidifying by cooling.
  • FIG. 2 is a schematic sectional view showing the belt 4, the resin reinforcing layer 6, and the width direction reinforcing member 7 in the embodiment shown in FIG.
  • the tire 1 of the present embodiment includes a resin reinforcing layer 6 on the inner side in the tire radial direction of the belt 4.
  • the resin reinforcing layer 6 is a layer made of a plate-like resin.
  • the width of the resin reinforcing layer 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, and can be, for example, 100 to 130% of the tire ground contact width.
  • the thickness (maximum thickness) of the resin reinforcing layer 6 is not particularly limited, but may be, for example, 0.1 to 3 mm.
  • FIG. 3 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to another embodiment of the present invention. As shown in FIG.
  • a configuration without the resin reinforcing layer 6 may be employed. Further, as shown in FIG. 3, in the present invention, a width direction reinforcing member 7 can be disposed on the inner side in the tire radial direction of the carcass 3.
  • the tire 1 of the present embodiment further includes a width direction reinforcing member 7 on the inner side of the belt 4 in the tire radial direction (in this example, on the inner side of the resin reinforcing layer 6 in the tire radial direction).
  • the width of the width direction reinforcing member 7 in the tire width direction is smaller than the width of the belt 4 in the tire width direction, and may be, for example, 80 to 110% of the tire ground contact width.
  • the thickness (maximum thickness) of the width direction reinforcing member 7 is not particularly limited, but may be 0.5 to 1.5 mm, for example.
  • the width-direction reinforcing member 7 is a member formed by rubber-coating (one or a plurality of) steel cords or organic fiber cords extending obliquely with respect to the tire circumferential direction.
  • the steel cord or the organic fiber cord is preferably inclined at an angle of 45 to 90 ° with respect to the tire circumferential direction.
  • the rubber any known material may be used.
  • a rubber often used for tire rubber may be used.
  • the steel cord one made of monofilament or one obtained by twisting a plurality of monofilaments can be used.
  • nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used.
  • the width direction reinforcing member 7 may be a member made of resin.
  • the resin since the resin has a higher rigidity than the weight, it is preferable to reduce the weight by adopting a configuration without the steel cord or the organic fiber cord.
  • the steel cord or the organic fiber is preferable.
  • the cord may be covered with a resin.
  • the resin of the width direction reinforcing member 7 a resin of the same material as the coating resin 4 a of the belt 4 can be used, but a different resin can also be used.
  • the tensile modulus of elasticity of the resin of the width direction reinforcing member 7 (specified in JIS K7113: 1995) is preferably 50 MPa or more. This is because the belt rigidity can be reinforced and increased. Moreover, it is preferable that the tensile elasticity modulus of resin of the width direction reinforcement member 7 shall be 1000 Mpa or less. It is because riding comfort etc. can be maintained favorable.
  • the tire 1 of the present embodiment has one or more tires (in the illustrated example, the tire equator) that are inclined at an angle of 10 ° or less and continuously extend linearly. Further, there are four circumferential main grooves 8 in total in the tire width direction half with the surface CL as a boundary. The number and arrangement of the circumferential main grooves 8 may be arbitrary (if one or more are provided).
  • the width direction reinforcement member 7 is arrange
  • the width direction reinforcing member 7 extends continuously in the tire width direction. That is, the width direction reinforcing member 7 is disposed at a position in the tire width direction corresponding to one or more circumferential main grooves 8, and the width of the width direction reinforcing member 7 in the tire width direction is the circumferential direction main groove 8. It is larger than the width in the tire width direction between the ends in the tire width direction.
  • the width direction reinforcing member 7 is preferably provided in a tire width direction region including at least the tire equatorial plane CL.
  • the width direction reinforcing member 7 may be provided at least in the entire region in the tire width direction region between the two circumferential main grooves closest to the tire equatorial plane CL. preferable.
  • the effect of the pneumatic tire of this embodiment is explained.
  • the rigidity of the belt 4 is sufficiently reinforced to enhance the steering stability. Etc. can be improved. Furthermore, since the pneumatic tire of the present embodiment has the width direction reinforcing member 7 in the tire width direction region, the rigidity in the tire width direction is provided at the portion where the circumferential main groove 8 is disposed with low rigidity. By arranging the high member, the width direction reinforcing member 7 bears the tensile force in the tire width direction that is generated when the protrusion is overcome, so that the protrusion penetration resistance can be improved.
  • the width direction reinforcing member 7 is placed on the inner side in the tire radial direction of the belt 4 (in this embodiment, the tire radial direction of the resin reinforcing layer 6 By arranging the inner side), the width direction reinforcing member 7 can bear the tensile force in the tire width direction more effectively.
  • the belt 4 is a resin-coated belt, and since the resin has higher rigidity than the weight in comparison with rubber, it is possible to improve tire performance such as steering stability while reducing the weight. it can.
  • the width direction reinforcing member 7 is made of steel cord or organic fiber cord covered with rubber, the rigidity in the tire width direction can be higher than the rigidity in the tire circumferential direction depending on the extending direction of the cord. It can be adjusted by the inclination angle of the cord. As described above, according to the pneumatic tire of the present embodiment, the protrusion penetration resistance can be improved.
  • the coating material is preferably a resin. This is because the resin has higher rigidity than the weight in comparison with the rubber, so that the tire performance such as steering stability can be improved while reducing the weight.
  • the covering material is preferably rubber. This is because the rubber-coated cord is particularly excellent in manufacturability.
  • the width-direction reinforcing member 7 is a member formed by rubber coating a steel cord or an organic fiber cord extending obliquely with respect to the tire circumferential direction. Is preferred. Since the rigidity in the extending direction of the cord can be increased, it can be adjusted by the extending angle of the cord or the like when securing the rigidity of the width direction reinforcing member 7 in the tire width direction.
  • the steel cord or the organic fiber cord preferably extends at an inclination angle of 80 ° to 90 ° with respect to the tire circumferential direction in order to ensure rigidity in the tire width direction.
  • the width direction reinforcing member is preferably a member made of resin. This is because the rigidity of the resin is higher than the weight, so that the rigidity of the width direction reinforcing member 7 in the tire width direction can be ensured while reducing the weight.
  • two or more circumferential main grooves 8 are provided, and in the tire width direction region between the two circumferential main grooves 8 adjacent in the tire width direction, the width direction reinforcement is performed. It is preferable to have a region where the member 7 is not disposed.
  • the width direction reinforcing member 7 is disposed on the inner side in the tire radial direction of the belt 4, but the width direction reinforcing member 7 may be disposed on the outer side in the tire radial direction of the belt 4.
  • the width of the resin reinforcing layer 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but may be the same or smaller.
  • the width direction reinforcing member 7 may be provided outside the resin reinforcing layer 6 in the tire radial direction as long as it is inside the belt 4 in the tire radial direction.
  • the width of the width direction reinforcing member 7 in the tire width direction is smaller than the width of the belt 4 and the resin reinforcing layer 6 in the tire width direction, but either or both of the belt 4 and the resin reinforcing layer 6 are used. It may be larger than the width in the tire width direction. This means that, depending on the position of the circumferential main groove 8 in the tire width direction (for example, when the circumferential main groove 8 is arranged on the outer side in the tire width direction), the width direction reinforcing member 7 is moved to the position in the tire width direction.
  • the shoulder portion with low rigidity In order to reinforce the protrusion and further improve the protrusion penetration resistance, such a large width can be used.
  • the invention example in which the width direction reinforcing member 7 having a width of 60 mm in the tire width direction is arranged has higher plunger durability than the comparative example.

Abstract

A pneumatic tire of the present invention is provided with: a belt comprising a cord coated with a coating material and wound spirally in a tire circumferential direction; and a widthwise reinforcing member. The pneumatic tire further includes one or more circumferential main grooves extending continuously in the tire circumferential direction. The widthwise reinforcing member is disposed at least across a region between tire widthwise ends of the one or more circumferential main grooves.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire.
 従来、空気入りタイヤにおいては、タイヤ性能の向上を所期して、カーカスのタイヤ径方向外側にベルトが配置されることが、通常行われている(例えば、特許文献1)。 Conventionally, in a pneumatic tire, a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
 当該ベルトは、コードを樹脂又はゴム等の被覆材料で被覆した樹脂被覆コード又はゴム被覆コード等をタイヤ周方向に螺旋状に巻回してなるもの(いわゆる、スパイラルベルト)とすることも提案されている。 It has also been proposed that the belt is formed by spirally winding a resin-coated cord or a rubber-coated cord with a cord coated with a coating material such as resin or rubber in the tire circumferential direction (so-called spiral belt). Yes.
特開平10-035220号公報Japanese Patent Laid-Open No. 10-035220
 しかしながら、樹脂被覆コード又はゴム被覆コード等をタイヤ周方向に螺旋状に巻回してなるベルトは、タイヤ幅方向への拘束力が若干低いため、突起等による入力に対して弱いという問題があった。 However, a belt formed by spirally winding a resin-coated cord or a rubber-coated cord in the tire circumferential direction has a problem that it is weak against input due to protrusions or the like because its binding force in the tire width direction is slightly low. .
 そこで、本発明は、耐突起貫入性に優れた空気入りタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
 本発明の要旨構成は、以下の通りである。
 本発明の空気入りタイヤは、被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、幅方向補強部材と、を備え、
 タイヤ周方向に連続して延びる、1本以上の周方向主溝をさらに有し、
 前記幅方向補強部材は、少なくとも、前記1本以上の周方向主溝のタイヤ幅方向端部間領域にわたって配置されたことを特徴とする。
The gist configuration of the present invention is as follows.
The pneumatic tire of the present invention comprises a belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction, and a width direction reinforcing member,
And further including one or more circumferential main grooves extending continuously in the tire circumferential direction;
The width direction reinforcing member is arranged over at least a region between end portions in the tire width direction of the one or more circumferential main grooves.
 ここで、「周方向主溝」とは、溝幅(開口幅)が、2mm以上のものをいうものとする。ここで、「溝幅」及び本明細書内のその他の寸法は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。「周方向主溝」は、直線状に延びていても、湾曲状又はジグザグ状に延びていても良く、直線状に延びる場合は、タイヤ周方向に対して10°以下の傾斜角度で延びていることが好ましい。
 ただし、「タイヤ接地幅」は、タイヤを適用リムに装着し、規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側位置を接地端とし、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での接地端間のタイヤ幅方向距離とする。
Here, the “circumferential main groove” refers to a groove having a groove width (opening width) of 2 mm or more. Here, the “groove width” and other dimensions in the present specification are measured in a state in which the tire is mounted on the applicable rim, filled with the specified internal pressure, and in a no-load state. The “circumferential main groove” may extend linearly, or may extend in a curved shape or zigzag shape, and in the case of linear extension, it extends at an inclination angle of 10 ° or less with respect to the tire circumferential direction. Preferably it is.
However, “tire contact width” means that the outermost position in the tire width direction of the contact surface in the state where the tire is mounted on the applicable rim, the specified internal pressure is filled, and the maximum load is applied is the ground end, and the tire is applied to the applicable rim. It is set as the distance in the tire width direction between the ground contact ends in a state in which it is mounted and filled with the specified internal pressure and is in a no-load state.
 本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている、または将来的に記載される適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。また、「規定内圧」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力に対応する空気圧(最高空気圧)をいう。なお、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。 In this specification, “applicable rim” is an industrial standard effective in the region where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc. Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width. The “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
 本発明によれば、本発明は、耐突起貫入性に優れた空気入りタイヤを提供することができる。 According to the present invention, the present invention can provide a pneumatic tire excellent in protrusion penetration resistance.
本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. 図1に示す実施形態における、ベルト、樹脂補強層、及び幅方向補強部材を示す概略断面図である。It is a schematic sectional drawing which shows the belt, the resin reinforcement layer, and the width direction reinforcement member in embodiment shown in FIG. 本発明の他の実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。It is a tire width direction schematic sectional drawing which shows the pneumatic tire concerning other embodiment of this invention.
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。図1に示すように、本実施形態の空気入りタイヤ1(以下、単にタイヤとも称する)は、一対のビード部2に埋設されたビードコア2aにトロイダル状に跨るカーカス3を備えている。このタイヤ1は、カーカス3のクラウン部のタイヤ径方向外側に、ベルト4と、トレッド5とを順に備えている。なお、図1に示すように、本実施形態のタイヤ1は、タイヤ赤道面CLを境界とするタイヤ幅方向半部間で同様の構成を有しているが、非対称な構成とすることもできる。 FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. As shown in FIG. 1, the pneumatic tire 1 of the present embodiment (hereinafter also simply referred to as a tire) includes a carcass 3 straddling a bead core 2 a embedded in a pair of bead portions 2 in a toroidal shape. The tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3. As shown in FIG. 1, the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but may be asymmetrical. .
 本実施形態のタイヤ1は、スチールコードを束ねたビードコア2aを有している。ビードコアの材質や形状は特に限定されず、あるいは、ビードコア2aを有しない構造とすることができる。また、本実施形態では、有機繊維からなる1枚のカーカスプライでカーカス3を構成しているが、カーカスプライの材料や枚数も特に限定されない。 The tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled. The material and shape of the bead core are not particularly limited, or may have a structure without the bead core 2a. Moreover, in this embodiment, although the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
 本実施形態では、ベルト4は、コード4bが被覆樹脂4aにより被覆された樹脂被覆コードがタイヤ軸周りに螺旋状に巻き回された状態のスパイラルベルトである。本発明では、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90~120%とすることができる。ベルト4の厚さ(最大厚さ)は、特に限定しないが、例えば、2~6mmとすることができる。コード4bは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bは、有機繊維やカーボン繊維等を用いることもできる。また、被覆樹脂4aは、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸び(JIS K7113)が50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。コード4bを被覆する被覆樹脂4aの引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。ベルト剛性を高めることができるからである。また、コード4bを被覆する被覆樹脂4aの引張弾性率は、1000MPa以下とすることが好ましい。乗り心地性を良好に維持することができるからである。なお、ここでいう被覆樹脂4aには、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。上記の樹脂被覆コードは、例えば、溶融状態の被覆樹脂4aをコード4bの外周側に被覆し、冷却により固化させることによって形成することができる。 In this embodiment, the belt 4 is a spiral belt in a state in which a resin-coated cord in which the cord 4b is coated with the coating resin 4a is spirally wound around the tire axis. In the present invention, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. The width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width. The thickness (maximum thickness) of the belt 4 is not particularly limited, but may be 2 to 6 mm, for example. As the cord 4b, any known material can be used, for example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. The cord 4b can also use organic fiber, carbon fiber, or the like. Further, as the coating resin 4a, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal dislocation can also be used. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (when 0.45 MPa is loaded) specified in ISO 75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. 10 MPa or more, and the tensile elongation at break (JIS K7113) specified in JIS K7113 is 50% or more and the Vicat softening temperature (Method A) specified in JIS K7206 is 130 ° C or more. Can do. The tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 4a that covers the cord 4b is preferably 50 MPa or more. This is because the belt rigidity can be increased. The tensile modulus of the coating resin 4a that covers the cord 4b is preferably 1000 MPa or less. This is because the ride comfort can be maintained well. The coating resin 4a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature). The resin-coated cord can be formed, for example, by coating a molten coating resin 4a on the outer peripheral side of the cord 4b and solidifying by cooling.
 図2は、図1に示す実施形態における、ベルト4、樹脂補強層6、及び幅方向補強部材7を示す概略断面図である。図1、図2に示すように、本実施形態のタイヤ1は、ベルト4のタイヤ径方向内側に、樹脂補強層6を備えている。樹脂補強層6は、プレート状の樹脂からなる層である。図示例では、樹脂補強層6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より大きく、例えば、タイヤ接地幅の100~130%とすることができる。樹脂補強層6の厚さ(最大厚さ)は、特に限定しないが、例えば、0.1~3mmとすることができる。樹脂補強層6の樹脂は、ベルト4の被覆樹脂4aと同じ材料の樹脂を用いることができるが、異なる樹脂を用いることもできる。樹脂補強層6の樹脂の引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。また、樹脂補強層6の樹脂の引張弾性率は、1000MPa以下とすることが好ましい。このような樹脂補強層6を有することにより、乗り心地性等を良好に維持しつつ、ベルト剛性を補強して高めることができる。図3は、本発明の他の実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。図3に示すように、本発明では、樹脂補強層6を有しない構成とすることもできる。また、図3に示すように、本発明では、カーカス3のタイヤ径方向内側に幅方向補強部材7を配置することもできる。 FIG. 2 is a schematic sectional view showing the belt 4, the resin reinforcing layer 6, and the width direction reinforcing member 7 in the embodiment shown in FIG. As shown in FIGS. 1 and 2, the tire 1 of the present embodiment includes a resin reinforcing layer 6 on the inner side in the tire radial direction of the belt 4. The resin reinforcing layer 6 is a layer made of a plate-like resin. In the illustrated example, the width of the resin reinforcing layer 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, and can be, for example, 100 to 130% of the tire ground contact width. The thickness (maximum thickness) of the resin reinforcing layer 6 is not particularly limited, but may be, for example, 0.1 to 3 mm. As the resin of the resin reinforcing layer 6, a resin of the same material as the coating resin 4 a of the belt 4 can be used, but a different resin can also be used. The tensile modulus of elasticity of the resin of the resin reinforcing layer 6 (specified in JIS K7113: 1995) is preferably 50 MPa or more. Moreover, it is preferable that the tensile elasticity modulus of resin of the resin reinforcement layer 6 shall be 1000 Mpa or less. By having such a resin reinforcement layer 6, it is possible to reinforce and enhance the belt rigidity while maintaining good riding comfort and the like. FIG. 3 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to another embodiment of the present invention. As shown in FIG. 3, in the present invention, a configuration without the resin reinforcing layer 6 may be employed. Further, as shown in FIG. 3, in the present invention, a width direction reinforcing member 7 can be disposed on the inner side in the tire radial direction of the carcass 3.
 図1に示すように、本実施形態のタイヤ1は、ベルト4のタイヤ径方向内側に(この例では、樹脂補強層6のタイヤ径方向内側に)、幅方向補強部材7をさらに備えている。図示例では、幅方向補強部材7のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より小さく、例えば、タイヤ接地幅の80~110%とすることができる。幅方向補強部材7の厚さ(最大厚さ)は、特に限定しないが、例えば、0.5~1.5mmとすることができる。 As shown in FIG. 1, the tire 1 of the present embodiment further includes a width direction reinforcing member 7 on the inner side of the belt 4 in the tire radial direction (in this example, on the inner side of the resin reinforcing layer 6 in the tire radial direction). . In the illustrated example, the width of the width direction reinforcing member 7 in the tire width direction is smaller than the width of the belt 4 in the tire width direction, and may be, for example, 80 to 110% of the tire ground contact width. The thickness (maximum thickness) of the width direction reinforcing member 7 is not particularly limited, but may be 0.5 to 1.5 mm, for example.
 本実施形態では、幅方向補強部材7は、タイヤ周方向に対して傾斜して延びる(1本又は複数本の)スチールコード又は有機繊維コードをゴム被覆してなる部材である。これによりタイヤ幅方向の剛性を高めることができる。タイヤ幅方向の剛性を確保する観点から、スチールコード又は有機繊維コードは、タイヤ周方向に対して45~90°の角度で傾斜していることが好ましい。ゴムとしては、任意の既知の材料を用いて良く、例えば、タイヤゴムによく用いられるものを用いても良い。スチールコードは、モノフィラメントからなるものや、複数本のモノフィラメントを撚り合わせたものを用いることができる。有機繊維は、例えばナイロン等を用いることができ、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。 In the present embodiment, the width-direction reinforcing member 7 is a member formed by rubber-coating (one or a plurality of) steel cords or organic fiber cords extending obliquely with respect to the tire circumferential direction. Thereby, the rigidity in the tire width direction can be increased. From the viewpoint of ensuring rigidity in the tire width direction, the steel cord or the organic fiber cord is preferably inclined at an angle of 45 to 90 ° with respect to the tire circumferential direction. As the rubber, any known material may be used. For example, a rubber often used for tire rubber may be used. As the steel cord, one made of monofilament or one obtained by twisting a plurality of monofilaments can be used. For example, nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used.
 あるいは、他の実施形態として、幅方向補強部材7は、樹脂からなる部材とすることもできる。この場合、樹脂は重量に比して剛性が高いため、スチールコード又は有機繊維コードを有しない構成とすることが軽量化のために好ましいが、幅方向剛性をより高めるためにスチールコード又は有機繊維コードを樹脂で被覆した構成とすることもできる。幅方向補強部材7の樹脂は、ベルト4の被覆樹脂4aと同じ材料の樹脂を用いることができるが、異なる樹脂を用いることもできる。幅方向補強部材7の樹脂の引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。ベルト剛性を補強して高めることができるからである。また、幅方向補強部材7の樹脂の引張弾性率は、1000MPa以下とすることが好ましい。乗り心地性等を良好に維持することができるからである。 Alternatively, as another embodiment, the width direction reinforcing member 7 may be a member made of resin. In this case, since the resin has a higher rigidity than the weight, it is preferable to reduce the weight by adopting a configuration without the steel cord or the organic fiber cord. However, in order to further increase the rigidity in the width direction, the steel cord or the organic fiber is preferable. The cord may be covered with a resin. As the resin of the width direction reinforcing member 7, a resin of the same material as the coating resin 4 a of the belt 4 can be used, but a different resin can also be used. The tensile modulus of elasticity of the resin of the width direction reinforcing member 7 (specified in JIS K7113: 1995) is preferably 50 MPa or more. This is because the belt rigidity can be reinforced and increased. Moreover, it is preferable that the tensile elasticity modulus of resin of the width direction reinforcement member 7 shall be 1000 Mpa or less. It is because riding comfort etc. can be maintained favorable.
 図1に示すように、本実施形態のタイヤ1は、この例ではタイヤ周方向に対して10°以下の角度で傾斜して直線状に連続して延びる、1本以上(図示例ではタイヤ赤道面CLを境界とするタイヤ幅方向半部に2本ずつの計4本)の周方向主溝8をさらに有する。周方向主溝8の本数や配置は、(1本以上有していれば)任意のものとすることができる。 As shown in FIG. 1, the tire 1 of the present embodiment has one or more tires (in the illustrated example, the tire equator) that are inclined at an angle of 10 ° or less and continuously extend linearly. Further, there are four circumferential main grooves 8 in total in the tire width direction half with the surface CL as a boundary. The number and arrangement of the circumferential main grooves 8 may be arbitrary (if one or more are provided).
 そして、本実施形態のタイヤ1において、幅方向補強部材7は、少なくとも、1本以上の周方向主溝8のタイヤ幅方向端部間領域にわたって配置されている。図示例では、幅方向補強部材7は、タイヤ幅方向に連続して延在している。すなわち、幅方向補強部材7は、1本以上の周方向主溝8に対応したタイヤ幅方向位置に配置され、且つ、幅方向補強部材7のタイヤ幅方向の幅は、当該周方向主溝8のタイヤ幅方向端部間のタイヤ幅方向の幅より大きい。なお、幅方向補強部材7は、少なくともタイヤ赤道面CLを含むタイヤ幅方向領域に設けられていることが好ましい。また、周方向主溝8を2本以上有する場合、幅方向補強部材7は、タイヤ赤道面CLに最も近い2本の周方向主溝間のタイヤ幅方向領域全域に少なくとも設けられていることが好ましい。
 以下、本実施形態の空気入りタイヤの作用効果について説明する。
And in the tire 1 of this embodiment, the width direction reinforcement member 7 is arrange | positioned over the area | region between the tire width direction edge parts of the 1 or more circumferential direction main groove 8 at least. In the illustrated example, the width direction reinforcing member 7 extends continuously in the tire width direction. That is, the width direction reinforcing member 7 is disposed at a position in the tire width direction corresponding to one or more circumferential main grooves 8, and the width of the width direction reinforcing member 7 in the tire width direction is the circumferential direction main groove 8. It is larger than the width in the tire width direction between the ends in the tire width direction. The width direction reinforcing member 7 is preferably provided in a tire width direction region including at least the tire equatorial plane CL. In addition, when two or more circumferential main grooves 8 are provided, the width direction reinforcing member 7 may be provided at least in the entire region in the tire width direction region between the two circumferential main grooves closest to the tire equatorial plane CL. preferable.
Hereinafter, the effect of the pneumatic tire of this embodiment is explained.
 本実施形態の空気入りタイヤでは、まず、この例ではベルト4のタイヤ径方向内側に、樹脂補強層6が配置されているため、ベルト4の剛性を十分に補強して高めて、操縦安定性等を向上させることができる。
 さらに、本実施形態の空気入りタイヤでは、上記のタイヤ幅方向領域に幅方向補強部材7を有しているため、周方向主溝8が配置された剛性が低い箇所にタイヤ幅方向の剛性の高い部材が配置されていることにより、突起乗り越え時に生じる、タイヤ幅方向への引張力を幅方向補強部材7が負担することで耐突起貫入性を向上させることができる。突起乗り越え時のタイヤ幅方向への引張力は、タイヤ径方向内側においてより強く生じるため、幅方向補強部材7をベルト4のタイヤ径方向内側(本実施形態では、樹脂補強層6のタイヤ径方向内側)に配置していることで、より効果的にタイヤ幅方向への引張力を幅方向補強部材7が負担することができる。
 さらには、本実施形態では、ベルト4は、樹脂被覆ベルトであり、樹脂がゴム対比で重量に比して剛性が高いため、軽量化しつつも、操縦安定性等のタイヤ性能を向上させることができる。
 また、幅方向補強部材7をスチールコード又は有機繊維コードをゴム被覆したものとしているため、コードの延在方向によって、タイヤ幅方向に対する剛性をタイヤ周方向に対する剛性より高めることができる。なお、コードの傾斜角度でそれを調整することができる。
 以上のように、本実施形態の空気入りタイヤによれば、耐突起貫入性を向上させることができる。
In the pneumatic tire of the present embodiment, first, in this example, since the resin reinforcing layer 6 is disposed on the inner side in the tire radial direction of the belt 4, the rigidity of the belt 4 is sufficiently reinforced to enhance the steering stability. Etc. can be improved.
Furthermore, since the pneumatic tire of the present embodiment has the width direction reinforcing member 7 in the tire width direction region, the rigidity in the tire width direction is provided at the portion where the circumferential main groove 8 is disposed with low rigidity. By arranging the high member, the width direction reinforcing member 7 bears the tensile force in the tire width direction that is generated when the protrusion is overcome, so that the protrusion penetration resistance can be improved. Since the tensile force in the tire width direction at the time of overcoming the protrusion is generated more strongly on the inner side in the tire radial direction, the width direction reinforcing member 7 is placed on the inner side in the tire radial direction of the belt 4 (in this embodiment, the tire radial direction of the resin reinforcing layer 6 By arranging the inner side), the width direction reinforcing member 7 can bear the tensile force in the tire width direction more effectively.
Furthermore, in the present embodiment, the belt 4 is a resin-coated belt, and since the resin has higher rigidity than the weight in comparison with rubber, it is possible to improve tire performance such as steering stability while reducing the weight. it can.
Moreover, since the width direction reinforcing member 7 is made of steel cord or organic fiber cord covered with rubber, the rigidity in the tire width direction can be higher than the rigidity in the tire circumferential direction depending on the extending direction of the cord. It can be adjusted by the inclination angle of the cord.
As described above, according to the pneumatic tire of the present embodiment, the protrusion penetration resistance can be improved.
 本発明の空気入りタイヤにおいては、前述の実施形態のように、被覆材料は、樹脂であることが好ましい。樹脂は、ゴム対比で重量に比して剛性が高いため、軽量化しつつも、操縦安定性等のタイヤ性能を向上させることができるからである。 In the pneumatic tire of the present invention, as in the above-described embodiment, the coating material is preferably a resin. This is because the resin has higher rigidity than the weight in comparison with the rubber, so that the tire performance such as steering stability can be improved while reducing the weight.
 本発明の空気入りタイヤにおいては、前述の他の実施形態のように、被覆材料は、ゴムであることも好ましい。ゴム被覆コードは、特に製造性に優れているからである。 In the pneumatic tire of the present invention, as in the other embodiments described above, the covering material is preferably rubber. This is because the rubber-coated cord is particularly excellent in manufacturability.
 本発明の空気入りタイヤにおいては、前述の実施形態のように、幅方向補強部材7は、タイヤ周方向に対して傾斜して延びるスチールコード又は有機繊維コードをゴム被覆してなる部材であることが好ましい。コードの延在方向の剛性を高めることができるため、幅方向補強部材7のタイヤ幅方向に対する剛性を確保するに当たって、コードの延在角度等で調整することができる。なお、スチールコード又は有機繊維コードは、タイヤ周方向に対して、80°~90°の傾斜角度で延びていることが、タイヤ幅方向の剛性を確保する上で好ましい。 In the pneumatic tire of the present invention, as in the above-described embodiment, the width-direction reinforcing member 7 is a member formed by rubber coating a steel cord or an organic fiber cord extending obliquely with respect to the tire circumferential direction. Is preferred. Since the rigidity in the extending direction of the cord can be increased, it can be adjusted by the extending angle of the cord or the like when securing the rigidity of the width direction reinforcing member 7 in the tire width direction. The steel cord or the organic fiber cord preferably extends at an inclination angle of 80 ° to 90 ° with respect to the tire circumferential direction in order to ensure rigidity in the tire width direction.
 本発明の空気入りタイヤにおいては、幅方向補強部材は、樹脂からなる部材であることも好ましい。樹脂は、重量に比して剛性が高いため、軽量化しつつも、幅方向補強部材7のタイヤ幅方向に対する剛性を確保することができるからである。 In the pneumatic tire of the present invention, the width direction reinforcing member is preferably a member made of resin. This is because the rigidity of the resin is higher than the weight, so that the rigidity of the width direction reinforcing member 7 in the tire width direction can be ensured while reducing the weight.
 本発明の空気入りタイヤにおいては、2本以上の周方向主溝8を有し、タイヤ幅方向に隣接する2本の周方向主溝8間のいずれかのタイヤ幅方向領域において、幅方向補強部材7が配置されていない領域を有することが好ましい。幅方向補強部材7を離散的に、周方向主溝8により剛性が低下している領域のみに配置することにより、幅方向補強部材7による重量増を抑えつつも、耐突起貫入性を向上させることができるからである。 In the pneumatic tire of the present invention, two or more circumferential main grooves 8 are provided, and in the tire width direction region between the two circumferential main grooves 8 adjacent in the tire width direction, the width direction reinforcement is performed. It is preferable to have a region where the member 7 is not disposed. By disposing the width direction reinforcing member 7 discretely only in the region where the rigidity is reduced by the circumferential main groove 8, the protrusion penetration resistance is improved while suppressing an increase in weight by the width direction reinforcing member 7. Because it can.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態には何ら限定されるものではない。例えば、上記の実施形態では、幅方向補強部材7は、ベルト4のタイヤ径方向内側に配置されているが、幅方向補強部材7は、ベルト4のタイヤ径方向外側に配置しても良い。また、例えば、上記の実施形態では、樹脂補強層6のタイヤ幅方向の幅をベルト4のタイヤ幅方向の幅より大きくしているが、同じ又は小さくすることもできる。また、幅方向補強部材7は、ベルト4のタイヤ径方向内側であれば、樹脂補強層6のタイヤ径方向外側に設けることもできる。あるいは、樹脂補強層6を設けない構成とすることもできる。また、本実施形態では、幅方向補強部材7のタイヤ幅方向の幅は、ベルト4及び樹脂補強層6のタイヤ幅方向の幅よりも小さいが、ベルト4及び樹脂補強層6のいずれか又は両方のタイヤ幅方向の幅より大きくても良い。このことは、周方向主溝8のタイヤ幅方向の位置に応じて(例えば、周方向主溝8がタイヤ幅方向外側寄りに配置されている場合に)、幅方向補強部材7を当該位置の全域にわたって配置するために、そのような大きな幅となる場合のみならず、例えば、ショルダー部の幅方向溝のネガティブ率が大きい場合(例えば30%以上)等に、剛性の低くなっているショルダー部を補強して、より一層耐突起貫入性を向上させるために、そのような大きな幅とすることもできる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment at all. For example, in the above embodiment, the width direction reinforcing member 7 is disposed on the inner side in the tire radial direction of the belt 4, but the width direction reinforcing member 7 may be disposed on the outer side in the tire radial direction of the belt 4. Further, for example, in the above embodiment, the width of the resin reinforcing layer 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but may be the same or smaller. Further, the width direction reinforcing member 7 may be provided outside the resin reinforcing layer 6 in the tire radial direction as long as it is inside the belt 4 in the tire radial direction. Or it can also be set as the structure which does not provide the resin reinforcement layer 6. FIG. In this embodiment, the width of the width direction reinforcing member 7 in the tire width direction is smaller than the width of the belt 4 and the resin reinforcing layer 6 in the tire width direction, but either or both of the belt 4 and the resin reinforcing layer 6 are used. It may be larger than the width in the tire width direction. This means that, depending on the position of the circumferential main groove 8 in the tire width direction (for example, when the circumferential main groove 8 is arranged on the outer side in the tire width direction), the width direction reinforcing member 7 is moved to the position in the tire width direction. Not only when it becomes such a large width to be arranged over the entire region, but also when the negative rate of the width direction groove of the shoulder portion is large (for example, 30% or more), etc., the shoulder portion with low rigidity In order to reinforce the protrusion and further improve the protrusion penetration resistance, such a large width can be used.
 タイヤサイズ225/40R18のランフラットタイヤで、タイヤ幅方向の幅60mmの幅方向補強部材7を配置した場合(図3)(発明例)と、幅方向補強部材7を配置しなかった場合(比較例)とで、プランジャ試験を行った。
 評価結果を表1に示している。
 比較例の評価結果を100とした指数表示とし、数値が大きい方がプランジャ耐久性(耐突起貫入性)に優れていることを示す。
In a run-flat tire of tire size 225 / 40R18, when the width direction reinforcing member 7 having a width of 60 mm in the tire width direction is arranged (FIG. 3) (invention example) and when the width direction reinforcing member 7 is not arranged (comparison) In Example), a plunger test was conducted.
The evaluation results are shown in Table 1.
An index value with the evaluation result of the comparative example as 100 is shown, and a larger value indicates superior plunger durability (protrusion penetration resistance).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、タイヤ幅方向の幅60mmの幅方向補強部材7を配置した発明例は、比較例よりプランジャ耐久性が高いことがわかる。 As shown in Table 1, it can be seen that the invention example in which the width direction reinforcing member 7 having a width of 60 mm in the tire width direction is arranged has higher plunger durability than the comparative example.
1:空気入りタイヤ、 2:ビード部、 2a:ビードコア、 3:カーカス、
4:樹脂被覆ベルト、 4a:被覆樹脂、4b:コード、 5:トレッド、
6:樹脂補強層、 7:幅方向補強部材、 8:周方向主溝、
CL:タイヤ赤道面
 
1: pneumatic tire, 2: bead part, 2a: bead core, 3: carcass,
4: resin-coated belt, 4a: coated resin, 4b: cord, 5: tread,
6: resin reinforcing layer, 7: width direction reinforcing member, 8: circumferential main groove,
CL: Tire equator

Claims (6)

  1.  被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、幅方向補強部材と、を備え、
     タイヤ周方向に連続して延びる、1本以上の周方向主溝をさらに有し、
     前記幅方向補強部材は、少なくとも、前記1本以上の周方向主溝のタイヤ幅方向端部間領域にわたって配置されたことを特徴とする、空気入りタイヤ。
    A belt in which a cord covered with a coating material is spirally wound in a tire circumferential direction, and a width direction reinforcing member,
    And further including one or more circumferential main grooves extending continuously in the tire circumferential direction;
    The pneumatic tire according to claim 1, wherein the width direction reinforcing member is disposed at least over a region between end portions in the tire width direction of the one or more circumferential main grooves.
  2.  前記被覆材料は、樹脂である、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the coating material is a resin.
  3.  前記被覆材料は、ゴムである、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the coating material is rubber.
  4.  前記幅方向補強部材は、タイヤ周方向に対して傾斜して延びるスチールコード又は有機繊維コードをゴム被覆してなる部材である、請求項1~3のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the reinforcing member in the width direction is a member formed by covering a steel cord or an organic fiber cord extending at an inclination with respect to the tire circumferential direction with rubber.
  5.  前記幅方向補強部材は、樹脂からなる部材である、請求項1~3のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the width direction reinforcing member is a member made of resin.
  6.  2本以上の前記周方向主溝を有し、
     タイヤ幅方向に隣接する2本の前記周方向主溝間のいずれかのタイヤ幅方向領域において、前記幅方向補強部材が配置されていない領域を有する、請求項1~5のいずれか一項に記載の空気入りタイヤ。
     
    Having two or more circumferential main grooves,
    The tire width direction region between the two circumferential main grooves adjacent to each other in the tire width direction has a region where the width direction reinforcing member is not disposed. The described pneumatic tire.
PCT/JP2019/021239 2018-05-31 2019-05-29 Pneumatic tire WO2019230773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105565 2018-05-31
JP2018105565A JP2019209755A (en) 2018-05-31 2018-05-31 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019230773A1 true WO2019230773A1 (en) 2019-12-05

Family

ID=68698271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021239 WO2019230773A1 (en) 2018-05-31 2019-05-29 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209755A (en)
WO (1) WO2019230773A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125112A1 (en) * 2019-12-20 2021-06-24 株式会社ブリヂストン Pneumatic tire
JP7377699B2 (en) 2019-12-20 2023-11-10 株式会社ブリヂストン pneumatic tires
JP7377698B2 (en) 2019-12-20 2023-11-10 株式会社ブリヂストン pneumatic tires

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284552A (en) * 2003-03-25 2004-10-14 Bridgestone Corp Pneumatic tire
JP2005035345A (en) * 2003-07-17 2005-02-10 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2006103397A (en) * 2004-10-01 2006-04-20 Bridgestone Corp Pneumatic tire
JP2008285059A (en) * 2007-05-18 2008-11-27 Bridgestone Corp Pneumatic tire for aircraft
JP2009262826A (en) * 2008-04-25 2009-11-12 Bridgestone Corp Pneumatic tire
JP2012035681A (en) * 2010-08-04 2012-02-23 Bridgestone Corp Pneumatic tire
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
JP2013537149A (en) * 2010-09-21 2013-09-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire with protective reinforcement
JP2015515412A (en) * 2012-04-06 2015-05-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with radial or cross-ply carcass
WO2017200064A1 (en) * 2016-05-20 2017-11-23 株式会社ブリヂストン Tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284552A (en) * 2003-03-25 2004-10-14 Bridgestone Corp Pneumatic tire
JP2005035345A (en) * 2003-07-17 2005-02-10 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2006103397A (en) * 2004-10-01 2006-04-20 Bridgestone Corp Pneumatic tire
JP2008285059A (en) * 2007-05-18 2008-11-27 Bridgestone Corp Pneumatic tire for aircraft
JP2009262826A (en) * 2008-04-25 2009-11-12 Bridgestone Corp Pneumatic tire
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
JP2012035681A (en) * 2010-08-04 2012-02-23 Bridgestone Corp Pneumatic tire
JP2013537149A (en) * 2010-09-21 2013-09-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire with protective reinforcement
JP2015515412A (en) * 2012-04-06 2015-05-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with radial or cross-ply carcass
WO2017200064A1 (en) * 2016-05-20 2017-11-23 株式会社ブリヂストン Tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125112A1 (en) * 2019-12-20 2021-06-24 株式会社ブリヂストン Pneumatic tire
JP7377699B2 (en) 2019-12-20 2023-11-10 株式会社ブリヂストン pneumatic tires
JP7377698B2 (en) 2019-12-20 2023-11-10 株式会社ブリヂストン pneumatic tires

Also Published As

Publication number Publication date
JP2019209755A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP2607104B1 (en) Pneumatic tire
WO2017200064A1 (en) Tire
WO2019230773A1 (en) Pneumatic tire
JP2009001073A (en) Pneumatic radial tire
EP0542567B1 (en) Pneumatic tyre
JP6660249B2 (en) tire
CN115362071A (en) Pneumatic tire
EP3081396B1 (en) A bidirectional monobelt construction for a pneumatic tire
EP1176033B1 (en) Pneumatic radial tires
KR20220038779A (en) pneumatic tire
CN110719849B (en) Pneumatic tire with sound absorbing member and tire rim assembly
US20160288574A1 (en) Crown reinforcement for a pneumatic tire
JP4586344B2 (en) Pneumatic tire
CN112996675B (en) Run flat tire
WO2019230496A1 (en) Pneumatic tire
JP2007050726A (en) Pneumatic tire
JP4693160B2 (en) Pneumatic tire
WO2005037575A1 (en) Pneumatic radial tire
JP4268365B2 (en) Pneumatic radial tire
WO2019230497A1 (en) Pneumatic tire
US20210178821A1 (en) Tire
EP3176005A1 (en) A bidirectional monobelt construction for a pneumatic tire
WO2019230761A1 (en) Pneumatic tire
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP7311779B2 (en) run flat tires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810111

Country of ref document: EP

Kind code of ref document: A1