WO2019230496A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019230496A1
WO2019230496A1 PCT/JP2019/020079 JP2019020079W WO2019230496A1 WO 2019230496 A1 WO2019230496 A1 WO 2019230496A1 JP 2019020079 W JP2019020079 W JP 2019020079W WO 2019230496 A1 WO2019230496 A1 WO 2019230496A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin sheet
belt
width direction
outer resin
Prior art date
Application number
PCT/JP2019/020079
Other languages
French (fr)
Japanese (ja)
Inventor
正之 有馬
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019230496A1 publication Critical patent/WO2019230496A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire.
  • a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
  • the belt is formed by covering a cord spirally wound in the tire circumferential direction with rubber, and by arranging a resin sheet on one side of the belt in the tire radial direction, the belt can be bent.
  • a technique for reinforcing rigidity has also been proposed (for example, Patent Document 2).
  • the thickness of the resin sheet is sufficient to obtain sufficient bending rigidity. It is difficult. Therefore, there has been a problem that sufficient resistance cannot be obtained with respect to inputs such as protrusions such as stones, steps, curbs and road fences.
  • an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
  • the gist configuration of the present invention is as follows.
  • the pneumatic tire of the present invention is a belt in which a cord wound spirally in the tire circumferential direction is covered with rubber, An outer resin sheet made of resin and arranged to overlap the outer side of the belt in the tire radial direction; An inner resin sheet made of resin and arranged overlapping the inner side in the tire radial direction of the belt; It is characterized by having.
  • tire width direction dimension of the belt and other dimensions in the present specification are measured in a state in which the tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
  • tire contact width means that the outermost position in the tire width direction of the contact surface in the state where the tire is mounted on the applicable rim, the specified internal pressure is filled, and the maximum load is loaded, Means the distance in the tire width direction between the ground contact ends in a state of being loaded with a specified internal pressure and in a no-load state.
  • the “center in the tire width direction” is the center in the tire width direction between the ground contact points (the position of the tire equator) when the tire is mounted on the applicable rim, filled with the specified internal pressure, and is in an unloaded state. Means.
  • appcable rim is an industrial standard effective in the region where tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • JATMA YEAR BOOK and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc.
  • Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width.
  • the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial sectional view showing a belt, an outer resin sheet, an inner resin sheet, and a carcass in the embodiment shown in FIG. 1. It is a tire width direction schematic sectional drawing which shows the pneumatic tire which concerns on the modification of embodiment shown in FIG.
  • a pneumatic tire 1 (hereinafter also simply referred to as “tire 1”) according to an embodiment of the present invention shown in FIG. 1 is mounted on a rim of a wheel for a passenger car, for example, and a gas such as air or nitrogen is supplied at a specified internal pressure. It is a rubber radial tire that is filled and used, and includes a bead core 2 a embedded in a pair of bead portions 2 and a carcass 3 straddling a toroidal shape.
  • the tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3.
  • a belt reinforcing layer that reinforces the belt 4 over its entire width may be disposed between the belt 4 and the tread 5.
  • the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but can also have an asymmetric configuration.
  • the tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled.
  • the material and shape of the bead core 2a are not particularly limited, or a structure without the bead core 2a may be employed.
  • the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
  • the belt 4 is a spiral belt in a state where the cord 4b covered with the rubber 4a, that is, the rubber-coated cord is spirally wound in the tire circumferential direction (around the tire axis).
  • Cord 4b Rubber 4a This belt 4 is formed by winding a rubber 4a cord 4b cord 4b rubber 4a rubber 4a rubber-coated cord so as to be in close contact with each other in the tire width direction, and then integrating the adjacent rubber 4a by vulcanization. be able to.
  • the rubber-coated cord may include a plurality of cords 4b. Since the belt 4 configured as described above is configured as a spiral belt, the diameter growth hardly occurs, so that the high-speed running performance of the tire 1 can be improved.
  • the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction.
  • the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire contact width, but the width of the belt 4 in the tire width direction is larger than 100% of the tire contact width, and the belt 4 It is preferable that both ends in the tire width direction are provided outside the tire ground contact end on the outer side in the tire width direction and provided over the entire range of the tire ground contact width.
  • chord 4b can be suitably changed according to a tire width dimension.
  • any known material can be used, for example, a steel cord can be used.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • a cord made of organic fiber or carbon fiber can be used as the cord 4b.
  • any rubber an organic polymer substance exhibiting rubber elasticity at room temperature
  • those used as tire materials can be used.
  • the tire 1 of this embodiment includes an outer resin sheet 6.
  • the outer resin sheet 6 is made of sheet-shaped (plate-shaped) resin, and is disposed on the outer side in the tire radial direction of the belt 4.
  • the tire 1 of the present embodiment includes an inner resin sheet 7.
  • the inner resin sheet 7 is made of sheet-shaped (plate-shaped) resin, and is disposed so as to overlap the inner side in the tire radial direction of the belt 4. Since the outer resin sheet 6 and the inner resin sheet 7 are spaced apart from each other in the tire radial direction with the belt 4 in between, the outer resin sheet 6 and the inner resin sheet 7 having a small thickness can prevent the protrusions from penetrating. High bending rigidity can be obtained.
  • the outer resin sheet 6 and the inner resin sheet 7 are disposed with a gap in the tire radial direction with the belt 4 interposed therebetween, so the thickness of the outer resin sheet 6 and the thickness of the inner resin sheet 7 are arranged.
  • the belt 4 is reinforced so that the outer resin sheet 6 and the inner resin sheet 7 have sufficient bending rigidity without increasing the overall thickness of the belt 4, the outer resin sheet 6, and the inner resin sheet 7.
  • the resin sheet having the total thickness of the outer resin sheet 6 and the inner resin sheet 7 is disposed so as to overlap only on one side in the tire radial direction of the belt 4. Since the bending rigidity with respect to the penetration of the protrusions can be further increased, the thickness of the resin sheet necessary for obtaining the desired bending rigidity can be further reduced. Therefore, it is possible to reinforce the belt 4 so as to have a desired bending rigidity while reducing the weight, and the rolling resistance of the tire 1 can be reduced. Moreover, since the bending rigidity can be reduced by making the outer resin sheet 6 to the inner resin sheet 7 thinner, the riding comfort of the vehicle in which the tire 1 is used can be enhanced.
  • the outer resin sheet 6 and the inner resin sheet 7 are each fixed to the surface of the belt 4 by adhesion or welding.
  • the outer resin sheet 6 and the inner resin sheet 7 are fixed to the surface of the belt 4, the outer resin sheet 6 and the inner resin sheet 7 are integrated with the belt 4 interposed therebetween and are constrained to each other. Bending rigidity can be further increased. Thereby, protrusion penetration resistance can be improved more effectively.
  • the width of the outer resin sheet 6 in the tire width direction is not particularly limited, but is preferably equal to or less than the width of the belt 4 in the tire width direction (same in the present embodiment shown in FIG. 1). More specifically, the width of the outer resin sheet 6 in the tire width direction is preferably 10 to 100% of the width of the belt 4 in the tire width direction. By setting the width of the outer resin sheet 6 in the tire width direction to 10 to 100% of the width of the belt 4 in the tire width direction, the protrusion penetration resistance can be improved while suppressing an increase in the weight of the tire 1.
  • the outer resin sheet 6 is preferably arranged with the center position in the tire width direction aligned with the center position in the tire width direction of the belt 4, but at least at the center in the tire width direction, the outer resin sheet 6 is disposed so as to overlap the belt 4.
  • the center position in the tire width direction may be shifted from the center position in the tire width direction of the belt 4.
  • the width of the inner resin sheet 7 in the tire width direction is not particularly limited, but is preferably the same as the width of the belt 4 in the tire width direction as in the present embodiment shown in FIG.
  • the width of the inner resin sheet 7 in the tire width direction is made larger than the width of the belt 4 in the tire width direction, and both ends of the inner resin sheet 7 in the tire width direction are larger than both ends of the belt 4 in the tire width direction. It can also be set as the structure located in a tire width direction outer side. Further, the width of the inner resin sheet 7 in the tire width direction can be made larger than the width of the outer resin sheet 6 in the tire width direction.
  • the thickness (maximum thickness) of the outer resin sheet 6 and the thickness (maximum thickness) of the inner resin sheet 7 are not particularly limited, for example, each may be 0.5 mm or more.
  • the total thickness of the outer resin sheet 6 and the inner resin sheet 7 is preferably 1.0 to 6.0 mm, more preferably 1.0 to 4.0 mm. More preferably, the thickness is set to 0.0 to 3.0 mm. Thereby, protrusion penetration resistance can be improved, suppressing the weight increase of the pneumatic tire 1.
  • the total thickness of the outer resin sheet 6 and the inner resin sheet 7 is increased. If the same, the thickness of the inner resin sheet 7 is larger than the thickness of the outer resin sheet 6, so that the tensile force in the tire width direction applied when the protrusion penetrates can be more effectively supported. It is.
  • the inner resin sheet 7 may be thinner than the outer resin sheet 6.
  • thermoplastic elastomer As the resin of the outer resin sheet 6 and the inner resin sheet 7, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam, or a resin that is cured by thermal dislocation is used. You can also.
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
  • thermoplastic resin examples include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used.
  • a material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
  • the tensile modulus of elasticity of the resin of the outer resin sheet 6 and the inner resin sheet 7 is preferably 100 MPa or more. This is because the outer resin sheet 6 or the inner resin sheet 7 can be lightened and the rigidity can be increased. Moreover, it is preferable that the tensile elasticity modulus of resin of the outer side resin sheet 6 and the inner side resin sheet 7 shall be 1000 Mpa or less, respectively. This is because the ride comfort can be maintained well. Note that the resin here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • thermoplastic elastomer is used as the resin of the outer resin sheet 6 and the inner resin sheet 7.
  • a thermoplastic elastomer as the resin of the outer resin sheet 6 and the inner resin sheet 7
  • the resin of the outer resin sheet 6 and the resin of the inner resin sheet 7 are preferably the same as each other, but may be different from each other.
  • thermoplastic resin When a thermoplastic resin is used as the resin of the outer resin sheet 6 and the inner resin sheet 7, the thermoplastic resin generally has a higher rigidity than the weight of rubber or the like, and therefore the outer resin sheet 6 And the rigidity with respect to the tire width direction can be ensured, reducing the weight of the inner resin sheet 7.
  • the tire 1 can be configured such that the tread 5 is provided with two or more circumferential main grooves 8 that continuously extend linearly in the tire circumferential direction.
  • the tread 5 is provided with a total of four circumferential main grooves 8, two at a time in the tire width direction half with the tire equatorial plane CL as a boundary.
  • the number and arrangement of the circumferential main grooves 8 can be arbitrary, and the tread 5 can be configured not to be provided with the circumferential main grooves 8.
  • the “circumferential main groove” means a groove having a groove width (opening width) of 2 mm or more. Further, the “groove width” is measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
  • the “circumferential main groove” may extend linearly, or may extend in a curved shape or a zigzag shape.
  • both ends of the outer resin sheet 6 in the tire width direction are centered in the tire width direction of the tread 5 (tires). It is preferable that the configuration is located outside the two circumferential main grooves 8 adjacent to each other with the equator plane CL) interposed therebetween.
  • the outer resin sheet 6 has a width in the tire width direction that is wider than the interval between the edges on the outer side in the tire width direction of the two circumferential main grooves 8 adjacent to each other across the center in the tire width direction of the tread 5. It is preferable that the two circumferential main grooves 8 are arranged in a region including the inner portion in the tire radial direction.
  • the present invention can also be applied to a tire 1 configured as a run-flat tire.
  • the tire 1 shown in FIG. 3 includes a reinforcing rubber layer 10 on each of the side wall portions 9 on both sides in the tire width direction, and is configured as a run flat tire.
  • the reinforcing rubber layer 10 has a crescent-shaped cross section, is disposed inside the carcass 3 in the tire width direction, and is embedded in the sidewall portion 9 so as not to be exposed on the tire inner surface.
  • the tire 1 can be used when the internal pressure becomes equal to or lower than a specified internal pressure (for example, atmospheric pressure) due to puncture or the like when the tire 1 is attached to the rim. Even if it exists, the load of a vehicle can be supported by the side wall part 9 in which the reinforcement rubber layer 10 was provided, and it can drive
  • a specified internal pressure for example, atmospheric pressure
  • the run-flat tire can run even if the air escapes and the internal pressure falls below the specified internal pressure. However, since the force toward the outer side in the tire radial direction due to the internal pressure is not applied to the belt 4, buckling is likely to occur. .
  • the outer resin sheet 6 is arranged on the outer side in the tire radial direction of the belt 4 and the inner side in the tire radial direction of the belt 4. Since the inner resin sheet 7 is overlapped and the bending rigidity of the belt 4 is reinforced, the penetration resistance to protrusions can be improved, and the tire 1 configured as a run-flat tire is in a run-flat running (middle). It is possible to prevent the occurrence of buckling and to ensure the running performance of the tire 1 during the run-flat running in which the internal pressure is not more than the specified internal pressure.
  • the tire 1 is for a passenger car, but may be used for a vehicle other than a passenger car.
  • the tire 1 may be a normal tire (summer tire) used in seasons other than winter, or may be a studless tire (winter tire) suitable for snowy roads and frozen roads.

Abstract

A pneumatic tire 1 according to the present invention is characterized by comprising: a belt 4 wherein a cord 4b, which is helically wound in the tire circumferential direction, is covered by a rubber 4a; an outer resin sheet 6 which is formed of a resin and is arranged to be superposed on the belt 4 on the outside of the belt 4 in the tire radial direction; and an inner resin sheet 7 which is formed of a resin and is arranged to be superposed on the belt 4 on the inside of the belt 4 in the tire radial direction.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire.
 従来、空気入りタイヤにおいては、タイヤ性能の向上を所期して、カーカスのタイヤ径方向外側にベルトが配置されることが、通常行われている(例えば、特許文献1)。 Conventionally, in a pneumatic tire, a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).
 また、当該ベルトを、タイヤ周方向に螺旋状に巻回したコードをゴムで被覆してなるものとするとともに、当該ベルトのタイヤ径方向の一方側に樹脂シートを配置することで、ベルトの曲げ剛性を補強するようにした技術も提案されている(例えば、特許文献2)。 In addition, the belt is formed by covering a cord spirally wound in the tire circumferential direction with rubber, and by arranging a resin sheet on one side of the belt in the tire radial direction, the belt can be bent. A technique for reinforcing rigidity has also been proposed (for example, Patent Document 2).
特開平10-035220号公報Japanese Patent Laid-Open No. 10-035220 特表2013-539734号公報Special table 2013-539734 gazette
 しかし、ベルトのタイヤ径方向の一方側に樹脂シートを配置した構成では、樹脂シートを設けることによる重量増や配置スペース等を考慮すると、樹脂シートを十分な曲げ剛性を得られる程度の厚さとすることは困難である。そのため、石、段差、縁石、道路鋲などの突起等の入力に対して十分な耐性を得ることができないという問題があった。 However, in the configuration in which the resin sheet is arranged on one side in the tire radial direction of the belt, considering the increase in weight due to the resin sheet and the arrangement space, the thickness of the resin sheet is sufficient to obtain sufficient bending rigidity. It is difficult. Therefore, there has been a problem that sufficient resistance cannot be obtained with respect to inputs such as protrusions such as stones, steps, curbs and road fences.
 そこで、本発明は、耐突起貫入性に優れた空気入りタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a pneumatic tire having excellent protrusion penetration resistance.
 本発明の要旨構成は、以下の通りである。
 本発明の空気入りタイヤは、タイヤ周方向に螺旋状に巻回されたコードがゴムで被覆されたベルトと、
 樹脂からなり、前記ベルトのタイヤ径方向外側に重なって配置された外側樹脂シートと、
 樹脂からなり、前記ベルトのタイヤ径方向内側に重なって配置された内側樹脂シートと、
を有することを特徴とする。
The gist configuration of the present invention is as follows.
The pneumatic tire of the present invention is a belt in which a cord wound spirally in the tire circumferential direction is covered with rubber,
An outer resin sheet made of resin and arranged to overlap the outer side of the belt in the tire radial direction;
An inner resin sheet made of resin and arranged overlapping the inner side in the tire radial direction of the belt;
It is characterized by having.
 ここで、ベルトのタイヤ幅方向寸法及び本明細書内のその他の寸法は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。
 ただし、「タイヤ接地幅」は、タイヤを適用リムに装着し、規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側位置を接地端とし、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での接地端間のタイヤ幅方向距離を意味する。また、「タイヤ幅方向中心」は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での、両接地端間のタイヤ幅方向の中心(タイヤ赤道面の位置)を意味する。
Here, the tire width direction dimension of the belt and other dimensions in the present specification are measured in a state in which the tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
However, “tire contact width” means that the outermost position in the tire width direction of the contact surface in the state where the tire is mounted on the applicable rim, the specified internal pressure is filled, and the maximum load is loaded, Means the distance in the tire width direction between the ground contact ends in a state of being loaded with a specified internal pressure and in a no-load state. The “center in the tire width direction” is the center in the tire width direction between the ground contact points (the position of the tire equator) when the tire is mounted on the applicable rim, filled with the specified internal pressure, and is in an unloaded state. Means.
 本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている、または将来的に記載される適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。また、「規定内圧」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力に対応する空気圧(最高空気圧)をいう。なお、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。 In this specification, “applicable rim” is an industrial standard effective in the region where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) Tire and Rim Technical Organization's STANDARDDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc. Standard rim (ETRTOSTANDAND in the applicable size to be described in the future) Refers to Measuring Rim, TRA's YEAR BOOK, Design Rim) (ie, “Rim” above) In addition to the current size, it includes the size that can be included in the above industrial standards in the future.As an example of “future size to be described”, it is described as “FUTURE DEVELOPMENTS” in ETRTO STANDARDDS MANUAL 2013 edition. However, in the case of a size not described in the industry standard, it means a rim having a width corresponding to the tire bead width. The “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
 本発明によれば、耐突起貫入性に優れた空気入りタイヤを提供することができる。 According to the present invention, it is possible to provide a pneumatic tire excellent in protrusion penetration resistance.
本発明の一実施形態に係る空気入りタイヤを示す、タイヤ幅方向概略断面図である。1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. 図1に示す実施形態における、ベルト、外側樹脂シート、内側樹脂シート及びカーカスを示す概略一部断面図である。FIG. 2 is a schematic partial sectional view showing a belt, an outer resin sheet, an inner resin sheet, and a carcass in the embodiment shown in FIG. 1. 図1に示す実施形態の変形例に係る空気入りタイヤを示す、タイヤ幅方向概略断面図である。It is a tire width direction schematic sectional drawing which shows the pneumatic tire which concerns on the modification of embodiment shown in FIG.
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示す本発明の一実施形態に係る空気入りタイヤ1(以下、単に「タイヤ1」とも称する)は、例えば乗用車用のホイールのリムに装着され、空気、窒素等の気体を規定内圧で充填して使用されるゴム製のラジアルタイヤであり、一対のビード部2に埋設されたビードコア2aにトロイダル状に跨るカーカス3を備えている。このタイヤ1は、カーカス3のクラウン部のタイヤ径方向外側に、ベルト4と、トレッド5とを順に備えている。なお、ベルト4とトレッド5との間にベルト4をその全幅に亘って補強するベルト補強層を配置するようにしてもよい。また、ベルト4とトレッド5の間に、ベルト4のタイヤ幅方向の端部を覆うベルト補強層を設けるようにしてもよい。図1に示すように、本実施形態のタイヤ1は、タイヤ赤道面CLを境界とするタイヤ幅方向半部間で同様の構成を有しているが、非対称な構成とすることもできる。 A pneumatic tire 1 (hereinafter also simply referred to as “tire 1”) according to an embodiment of the present invention shown in FIG. 1 is mounted on a rim of a wheel for a passenger car, for example, and a gas such as air or nitrogen is supplied at a specified internal pressure. It is a rubber radial tire that is filled and used, and includes a bead core 2 a embedded in a pair of bead portions 2 and a carcass 3 straddling a toroidal shape. The tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3. A belt reinforcing layer that reinforces the belt 4 over its entire width may be disposed between the belt 4 and the tread 5. Further, a belt reinforcing layer that covers the end of the belt 4 in the tire width direction may be provided between the belt 4 and the tread 5. As shown in FIG. 1, the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but can also have an asymmetric configuration.
 本実施形態のタイヤ1は、スチールコードを束ねたビードコア2aを有している。ビードコア2aの材質や形状は特に限定されず、あるいは、ビードコア2aを備えない構造とすることもできる。また、本実施形態では、有機繊維からなる1枚のカーカスプライでカーカス3を構成しているが、カーカスプライの材料や枚数も特に限定されない。 The tire 1 of the present embodiment has a bead core 2a in which steel cords are bundled. The material and shape of the bead core 2a are not particularly limited, or a structure without the bead core 2a may be employed. Moreover, in this embodiment, although the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.
 本実施形態では、ベルト4は、ゴム4aで被覆されたコード4bすなわちゴム被覆コードがタイヤ周方向(タイヤ軸周り)に螺旋状に巻回された状態のスパイラルベルトである。コード4bゴム4aこのベルト4は、ゴム4aコード4bコード4bゴム4aゴム4aゴム被覆コードをタイヤ幅方向に密着するように巻き回した後、隣接するゴム4aを加硫により一体化させて形成することができる。なお、ゴム被覆コードは、複数本のコード4bを含むものとしてもよい。上記構成のベルト4は、スパイラルベルトに構成されることで径成長を殆ど生じないため、タイヤ1の高速走行性を向上させることができる。 In the present embodiment, the belt 4 is a spiral belt in a state where the cord 4b covered with the rubber 4a, that is, the rubber-coated cord is spirally wound in the tire circumferential direction (around the tire axis). Cord 4b Rubber 4a This belt 4 is formed by winding a rubber 4a cord 4b cord 4b rubber 4a rubber 4a rubber-coated cord so as to be in close contact with each other in the tire width direction, and then integrating the adjacent rubber 4a by vulcanization. be able to. Note that the rubber-coated cord may include a plurality of cords 4b. Since the belt 4 configured as described above is configured as a spiral belt, the diameter growth hardly occurs, so that the high-speed running performance of the tire 1 can be improved.
 本発明では、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90~120%とすることができるが、ベルト4のタイヤ幅方向の幅をタイヤ接地幅の100%よりも大きくして、ベルト4のタイヤ幅方向の両端がそれぞれタイヤ接地端よりもタイヤ幅方向外側に位置してタイヤ接地幅の全範囲に亘って設けられるようにするのが好ましい。なお、コード4bのタイヤ周方向へ巻き回す回数は、タイヤ幅寸法等に応じて適宜変更可能である。 In the present invention, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. The width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire contact width, but the width of the belt 4 in the tire width direction is larger than 100% of the tire contact width, and the belt 4 It is preferable that both ends in the tire width direction are provided outside the tire ground contact end on the outer side in the tire width direction and provided over the entire range of the tire ground contact width. In addition, the frequency | count of winding to the tire peripheral direction of the code | cord | chord 4b can be suitably changed according to a tire width dimension.
 コード4bとしては、任意の既知の材質のものを用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bとしては、有機繊維やカーボン繊維等で構成されたものを用いることもできる。 As the cord 4b, any known material can be used, for example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. Moreover, as the cord 4b, a cord made of organic fiber or carbon fiber can be used.
 ゴム4aとしては、任意のゴム(常温でゴム弾性を示す有機高分子物質)を用いることができ、例えばタイヤの材料として用いられるものを用いることができる。 As the rubber 4a, any rubber (an organic polymer substance exhibiting rubber elasticity at room temperature) can be used, and for example, those used as tire materials can be used.
 図1、図2に示すように、本実施形態のタイヤ1は、外側樹脂シート6を備えている。外側樹脂シート6はシート状(プレート状)の樹脂からなり、ベルト4のタイヤ径方向外側に重ねて配置されている。また、本実施形態のタイヤ1は、内側樹脂シート7を備えている。内側樹脂シート7はシート状(プレート状)の樹脂からなり、ベルト4のタイヤ径方向内側に重ねて配置されている。外側樹脂シート6と内側樹脂シート7とはベルト4を挟んで互いにタイヤ径方向に間隔を空けて配置されるので、厚さの薄い外側樹脂シート6と内側樹脂シート7とによって、突起の貫入に対する高い曲げ剛性を得ることができる。すなわち、本実施形態では、外側樹脂シート6と内側樹脂シート7とはベルト4を挟んで互いにタイヤ径方向に間隔を空けて配置されるので、外側樹脂シート6の厚さと内側樹脂シート7の厚さとを合計した厚さを有する樹脂シートをベルト4のタイヤ径方向の一方側のみに重ねて配置した構成と比べて、突起の貫入に対する曲げ剛性をより高くすることができる。したがって、ベルト4、外側樹脂シート6及び内側樹脂シート7の全体の厚さを増加させることなく、外側樹脂シート6と内側樹脂シート7とにより十分な曲げ剛性を有するようにベルト4を補強して、石、段差、縁石、道路鋲等の突起の貫入に対する耐性(耐突起貫入性)を向上させることができる。また、ベルト剛性を外側樹脂シート6と内側樹脂シート7とにより補強して高めることで、このタイヤ1が装着された車両の操縦安定性を高めることができる。さらに、ベルト4は、外側樹脂シート6と内側樹脂シート7との間に挟み込まれた構成となるので、ベルト4を構成するゴム4aが突起の貫入時にタイヤ径方向に向けたせん断力を受けて隣り合うコード4bの間において裂けてしまうことを防止することができる。 As shown in FIGS. 1 and 2, the tire 1 of this embodiment includes an outer resin sheet 6. The outer resin sheet 6 is made of sheet-shaped (plate-shaped) resin, and is disposed on the outer side in the tire radial direction of the belt 4. Further, the tire 1 of the present embodiment includes an inner resin sheet 7. The inner resin sheet 7 is made of sheet-shaped (plate-shaped) resin, and is disposed so as to overlap the inner side in the tire radial direction of the belt 4. Since the outer resin sheet 6 and the inner resin sheet 7 are spaced apart from each other in the tire radial direction with the belt 4 in between, the outer resin sheet 6 and the inner resin sheet 7 having a small thickness can prevent the protrusions from penetrating. High bending rigidity can be obtained. That is, in the present embodiment, the outer resin sheet 6 and the inner resin sheet 7 are disposed with a gap in the tire radial direction with the belt 4 interposed therebetween, so the thickness of the outer resin sheet 6 and the thickness of the inner resin sheet 7 are arranged. As compared with the configuration in which the resin sheet having the total thickness is overlapped only on one side in the tire radial direction of the belt 4, the bending rigidity with respect to the penetration of the protrusions can be further increased. Therefore, the belt 4 is reinforced so that the outer resin sheet 6 and the inner resin sheet 7 have sufficient bending rigidity without increasing the overall thickness of the belt 4, the outer resin sheet 6, and the inner resin sheet 7. In addition, it is possible to improve resistance to protrusions (projection resistance) such as stones, steps, curbs, and road fences. Further, by reinforcing the belt rigidity with the outer resin sheet 6 and the inner resin sheet 7, it is possible to improve the steering stability of the vehicle on which the tire 1 is mounted. Furthermore, since the belt 4 is configured to be sandwiched between the outer resin sheet 6 and the inner resin sheet 7, the rubber 4a constituting the belt 4 receives a shearing force in the tire radial direction when the protrusion penetrates. It is possible to prevent tearing between adjacent cords 4b.
 上記のように、本実施形態では、外側樹脂シート6の厚さと内側樹脂シート7の厚さとを合計した厚さを有する樹脂シートをベルト4のタイヤ径方向の一方側のみに重ねて配置した構成と比べて、突起の貫入に対する曲げ剛性をより高くすることができるので、所望の曲げ剛性を得るために必要な樹脂シートの厚さをより薄くすることができる。したがって、軽量化をしつつ所望の曲げ剛性を有するようにベルト4を補強することを可能として、タイヤ1の転がり抵抗を低減させることができる。また、外側樹脂シート6ないし内側樹脂シート7を薄くすることで、これらの曲げ剛性を小さくすることができるので、このタイヤ1が用いられる車両の乗り心地性を高めることができる。 As described above, in the present embodiment, a configuration in which the resin sheet having the total thickness of the outer resin sheet 6 and the inner resin sheet 7 is disposed so as to overlap only on one side in the tire radial direction of the belt 4. Since the bending rigidity with respect to the penetration of the protrusions can be further increased, the thickness of the resin sheet necessary for obtaining the desired bending rigidity can be further reduced. Therefore, it is possible to reinforce the belt 4 so as to have a desired bending rigidity while reducing the weight, and the rolling resistance of the tire 1 can be reduced. Moreover, since the bending rigidity can be reduced by making the outer resin sheet 6 to the inner resin sheet 7 thinner, the riding comfort of the vehicle in which the tire 1 is used can be enhanced.
 外側樹脂シート6と内側樹脂シート7は、それぞれベルト4の表面に接着ないし溶着により固着された構成とされるのが好ましい。外側樹脂シート6と内側樹脂シート7とをベルト4の表面に固着した構成とすることにより、外側樹脂シート6と内側樹脂シート7とをベルト4を挟んで一体化して互いに拘束された状態として、曲げ剛性をより高めることができる。これにより、耐突起貫入性をより効果的に向上させることができる。 It is preferable that the outer resin sheet 6 and the inner resin sheet 7 are each fixed to the surface of the belt 4 by adhesion or welding. By adopting a configuration in which the outer resin sheet 6 and the inner resin sheet 7 are fixed to the surface of the belt 4, the outer resin sheet 6 and the inner resin sheet 7 are integrated with the belt 4 interposed therebetween and are constrained to each other. Bending rigidity can be further increased. Thereby, protrusion penetration resistance can be improved more effectively.
 外側樹脂シート6のタイヤ幅方向の幅は、特に限定されないが、ベルト4のタイヤ幅方向の幅と同一またはそれ以下(図1に示す本実施の形態では、同一)とするのが好ましい。より具体的には、外側樹脂シート6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅の10~100%とするのが好ましい。外側樹脂シート6のタイヤ幅方向の幅をベルト4のタイヤ幅方向の幅の10~100%とすることにより、このタイヤ1の重量増を抑えつつ、耐突起貫入性を向上させることができる。 The width of the outer resin sheet 6 in the tire width direction is not particularly limited, but is preferably equal to or less than the width of the belt 4 in the tire width direction (same in the present embodiment shown in FIG. 1). More specifically, the width of the outer resin sheet 6 in the tire width direction is preferably 10 to 100% of the width of the belt 4 in the tire width direction. By setting the width of the outer resin sheet 6 in the tire width direction to 10 to 100% of the width of the belt 4 in the tire width direction, the protrusion penetration resistance can be improved while suppressing an increase in the weight of the tire 1.
 外側樹脂シート6は、タイヤ幅方向中心位置をベルト4のタイヤ幅方向中心位置に一致させて配置されるのが好ましいが、少なくともタイヤ幅方向中心において、ベルト4に重ねて配置されていれば、タイヤ幅方向中心位置がベルト4のタイヤ幅方向中心位置からずれて配置されていてもよい。 The outer resin sheet 6 is preferably arranged with the center position in the tire width direction aligned with the center position in the tire width direction of the belt 4, but at least at the center in the tire width direction, the outer resin sheet 6 is disposed so as to overlap the belt 4. The center position in the tire width direction may be shifted from the center position in the tire width direction of the belt 4.
 内側樹脂シート7のタイヤ幅方向の幅は、特に限定されないが、図1に示す本実施の形態のように、ベルト4のタイヤ幅方向の幅と同一とするのが好ましい。突起が貫入時に加わるタイヤ幅方向への引張力がより大きくなるベルト4のタイヤ径方向内側におけるタイヤ幅方向の全範囲体に内側樹脂シート7を重ねて配置する構成とすることにより、当該引張り力を内側樹脂シート7に確実に支持させて、耐突起貫入性をより効果的に向上させることができる。なお、内側樹脂シート7のタイヤ幅方向の幅をベルト4のタイヤ幅方向の幅よりも大きくして、内側樹脂シート7のタイヤ幅方向の両端部がベルト4のタイヤ幅方向の両端部よりもタイヤ幅方向外側に位置する構成とすることもできる。また、内側樹脂シート7のタイヤ幅方向の幅を外側樹脂シート6のタイヤ幅方向の幅よりも大きくすることもできる。 The width of the inner resin sheet 7 in the tire width direction is not particularly limited, but is preferably the same as the width of the belt 4 in the tire width direction as in the present embodiment shown in FIG. By adopting a configuration in which the inner resin sheet 7 is disposed so as to overlap the entire range in the tire width direction on the inner side in the tire radial direction of the belt 4 where the tensile force in the tire width direction applied when the protrusion penetrates is increased. Can be reliably supported by the inner resin sheet 7, and the protrusion penetration resistance can be improved more effectively. The width of the inner resin sheet 7 in the tire width direction is made larger than the width of the belt 4 in the tire width direction, and both ends of the inner resin sheet 7 in the tire width direction are larger than both ends of the belt 4 in the tire width direction. It can also be set as the structure located in a tire width direction outer side. Further, the width of the inner resin sheet 7 in the tire width direction can be made larger than the width of the outer resin sheet 6 in the tire width direction.
 外側樹脂シート6の厚さ(最大厚さ)と内側樹脂シート7の厚さ(最大厚さ)は、特に限定しないが、例えば、それぞれ0.5mm以上とすることができる。また、外側樹脂シート6の厚さと内側樹脂シート7の厚さの合計の厚さは1.0~6.0mmとするのが好ましく、1.0~4.0mmとするのがより好ましく、1.0~3.0mmとするのがより好ましい。これにより、空気入りタイヤ1の重量増を抑えつつ、耐突起貫入性を向上させることができる。何れの場合においても、外側樹脂シート6の厚さと内側樹脂シート7の厚さとを同一の厚さとすることができるが、外側樹脂シート6の厚さよりも内側樹脂シート7の厚さを厚くするのが好ましい。突起が貫入時に加わるタイヤ幅方向への引張力はベルト4のタイヤ径方向外側よりもタイヤ径方向内側で大きくなるので、外側樹脂シート6の厚さと内側樹脂シート7の厚さの合計の厚さが同一であれば、外側樹脂シート6の厚さよりも内側樹脂シート7の厚さを厚くした方が、突起が貫入時に加わるタイヤ幅方向への引張力をより効果的に支持することができるからである。なお、外側樹脂シート6の厚さよりも内側樹脂シート7の厚さを薄くしてもよい。 Although the thickness (maximum thickness) of the outer resin sheet 6 and the thickness (maximum thickness) of the inner resin sheet 7 are not particularly limited, for example, each may be 0.5 mm or more. The total thickness of the outer resin sheet 6 and the inner resin sheet 7 is preferably 1.0 to 6.0 mm, more preferably 1.0 to 4.0 mm. More preferably, the thickness is set to 0.0 to 3.0 mm. Thereby, protrusion penetration resistance can be improved, suppressing the weight increase of the pneumatic tire 1. FIG. In any case, the thickness of the outer resin sheet 6 and the thickness of the inner resin sheet 7 can be made the same, but the inner resin sheet 7 is made thicker than the outer resin sheet 6. Is preferred. Since the tensile force in the tire width direction applied when the protrusion penetrates is larger on the inner side in the tire radial direction than on the outer side in the tire radial direction of the belt 4, the total thickness of the outer resin sheet 6 and the inner resin sheet 7 is increased. If the same, the thickness of the inner resin sheet 7 is larger than the thickness of the outer resin sheet 6, so that the tensile force in the tire width direction applied when the protrusion penetrates can be more effectively supported. It is. The inner resin sheet 7 may be thinner than the outer resin sheet 6.
 外側樹脂シート6及び内側樹脂シート7の樹脂としては、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。 As the resin of the outer resin sheet 6 and the inner resin sheet 7, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam, or a resin that is cured by thermal dislocation is used. You can also. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
 外側樹脂シート6及び内側樹脂シート7の樹脂の引張弾性率(JIS K7113:1995に規定される)は、それぞれ100MPa以上とするのが好ましい。外側樹脂シート6ないし内側樹脂シート7を軽量化しつつ剛性を高めることができるからである。また、外側樹脂シート6及び内側樹脂シート7の樹脂の引張弾性率は、それぞれ1000MPa以下とするのが好ましい。乗り心地性を良好に維持することができるからである。なお、ここでいう樹脂には、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。 The tensile modulus of elasticity of the resin of the outer resin sheet 6 and the inner resin sheet 7 (specified in JIS K7113: 1995) is preferably 100 MPa or more. This is because the outer resin sheet 6 or the inner resin sheet 7 can be lightened and the rigidity can be increased. Moreover, it is preferable that the tensile elasticity modulus of resin of the outer side resin sheet 6 and the inner side resin sheet 7 shall be 1000 Mpa or less, respectively. This is because the ride comfort can be maintained well. Note that the resin here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
 本実施形態では、外側樹脂シート6及び内側樹脂シート7の樹脂として熱可塑性エラストマーを用いている。外側樹脂シート6及び内側樹脂シート7の樹脂として熱可塑性エラストマーを用いることで、外側樹脂シート6及び内側樹脂シート7をベルト4に対応した形状に容易に成形することができる。なお、外側樹脂シート6の樹脂と内側樹脂シート7の樹脂とは、互いに同一であるのが好ましいが、互いに異なる樹脂とすることもできる。 In this embodiment, a thermoplastic elastomer is used as the resin of the outer resin sheet 6 and the inner resin sheet 7. By using a thermoplastic elastomer as the resin of the outer resin sheet 6 and the inner resin sheet 7, the outer resin sheet 6 and the inner resin sheet 7 can be easily formed into a shape corresponding to the belt 4. The resin of the outer resin sheet 6 and the resin of the inner resin sheet 7 are preferably the same as each other, but may be different from each other.
 外側樹脂シート6及び内側樹脂シート7の樹脂として熱可塑性樹脂を用いた場合には、熱可塑性樹脂は、ゴム等と比較して一般的に重量に比して剛性が高いため、外側樹脂シート6及び内側樹脂シート7を軽量化しつつ、そのタイヤ幅方向に対する剛性を確保することができる。 When a thermoplastic resin is used as the resin of the outer resin sheet 6 and the inner resin sheet 7, the thermoplastic resin generally has a higher rigidity than the weight of rubber or the like, and therefore the outer resin sheet 6 And the rigidity with respect to the tire width direction can be ensured, reducing the weight of the inner resin sheet 7.
 図1に示すように、タイヤ1は、トレッド5に、タイヤ周方向に直線状に連続して延びる、2本以上の周方向主溝8が設けられた構成とすることができる。本実施形態では、トレッド5には、タイヤ赤道面CLを境界とするタイヤ幅方向半部に2本ずつの計4本の周方向主溝8が設けられている。なお、周方向主溝8の本数や配置は任意のものとすることができ、トレッド5に周方向主溝8が設けられない構成とすることもできる。 As shown in FIG. 1, the tire 1 can be configured such that the tread 5 is provided with two or more circumferential main grooves 8 that continuously extend linearly in the tire circumferential direction. In the present embodiment, the tread 5 is provided with a total of four circumferential main grooves 8, two at a time in the tire width direction half with the tire equatorial plane CL as a boundary. The number and arrangement of the circumferential main grooves 8 can be arbitrary, and the tread 5 can be configured not to be provided with the circumferential main grooves 8.
 ここで、「周方向主溝」とは、溝幅(開口幅)が、2mm以上のものをいうものとする。また、「溝幅」は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。「周方向主溝」は、直線状に延びていても、湾曲状又はジグザグ状に延びていてもよい。 Here, the “circumferential main groove” means a groove having a groove width (opening width) of 2 mm or more. Further, the “groove width” is measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state. The “circumferential main groove” may extend linearly, or may extend in a curved shape or a zigzag shape.
 上記のように、トレッド5に2本以上の周方向主溝8が設けられている場合には、外側樹脂シート6は、そのタイヤ幅方向の両端が、それぞれトレッド5のタイヤ幅方向中心(タイヤ赤道面CL)を挟んで隣接する2本の周方向主溝8よりもタイヤ幅方向外側に位置する構成とされるのが好ましい。この場合、外側樹脂シート6は、トレッド5のタイヤ幅方向中心を挟んで隣接する2本の周方向主溝8のタイヤ幅方向外側の縁部の間隔よりも広いタイヤ幅方向の幅を有し、当該2本の周方向主溝8のタイヤ径方向内側部分を含む領域に配置された構成とされるのが好ましい。これにより、トレッド5に2本以上の周方向主溝8が設けられた場合において、最も耐突起貫入性が弱くなるタイヤ幅方向中心を挟んで隣接する2本の周方向主溝8が設けられた部分におけるタイヤ1の剛性を外側樹脂シート6及び内側樹脂シート7により補強して、耐突起貫入性をより効果的に向上させることができる。 As described above, when two or more circumferential main grooves 8 are provided in the tread 5, both ends of the outer resin sheet 6 in the tire width direction are centered in the tire width direction of the tread 5 (tires). It is preferable that the configuration is located outside the two circumferential main grooves 8 adjacent to each other with the equator plane CL) interposed therebetween. In this case, the outer resin sheet 6 has a width in the tire width direction that is wider than the interval between the edges on the outer side in the tire width direction of the two circumferential main grooves 8 adjacent to each other across the center in the tire width direction of the tread 5. It is preferable that the two circumferential main grooves 8 are arranged in a region including the inner portion in the tire radial direction. As a result, when two or more circumferential main grooves 8 are provided in the tread 5, two circumferential main grooves 8 adjacent to each other across the center in the tire width direction where the protrusion penetration resistance is weakest are provided. The rigidity of the tire 1 at the raised portion can be reinforced by the outer resin sheet 6 and the inner resin sheet 7 to improve the protrusion penetration resistance more effectively.
 図3に変形例として示すように、本発明は、ランフラットタイヤに構成されたタイヤ1に適用することもできる。図3に示すタイヤ1は、タイヤ幅方向の両側のサイドウォール部9のそれぞれに補強ゴム層10を備えてランフラットタイヤに構成されている。補強ゴム層10は、断面三日月状となっており、カーカス3のタイヤ幅方向内側に配置され、タイヤ内面に露出しないようにサイドウォール部9に埋設されている。それぞれのサイドウォール部9に補強ゴム層10が設けられることにより、タイヤ1は、リムに装着された状態でパンク等によって空気が抜けて内圧が規定内圧以下(例えば大気圧)となった場合であっても、補強ゴム層10が設けられたサイドウォール部9によって車両の荷重を支えて、所定のスピードで一定距離を安全に走行することができる。 As shown in FIG. 3 as a modified example, the present invention can also be applied to a tire 1 configured as a run-flat tire. The tire 1 shown in FIG. 3 includes a reinforcing rubber layer 10 on each of the side wall portions 9 on both sides in the tire width direction, and is configured as a run flat tire. The reinforcing rubber layer 10 has a crescent-shaped cross section, is disposed inside the carcass 3 in the tire width direction, and is embedded in the sidewall portion 9 so as not to be exposed on the tire inner surface. By providing the reinforcing rubber layers 10 on the respective sidewall portions 9, the tire 1 can be used when the internal pressure becomes equal to or lower than a specified internal pressure (for example, atmospheric pressure) due to puncture or the like when the tire 1 is attached to the rim. Even if it exists, the load of a vehicle can be supported by the side wall part 9 in which the reinforcement rubber layer 10 was provided, and it can drive | work safely for a fixed distance at predetermined speed.
 ランフラットタイヤは、空気が抜けて内圧が規定内圧以下となっても走行が可能であるが、内圧によるタイヤ径方向外側に向けた力がベルト4に加わらなくなることから、バックリングが生じ易くなる。これに対し、図3に示す本実施形態の変形例に係るタイヤ1では、上記の通り、ベルト4のタイヤ径方向外側に外側樹脂シート6を重ねて配置するとともにベルト4のタイヤ径方向内側に内側樹脂シート7を重ねて配置して、ベルト4の曲げ剛性を補強するようにしたので、耐突起貫入性を向上できるとともに、ランフラットタイヤに構成されたタイヤ1がランフラット走行時(中)にバックリングが生じることを防止して、内圧が規定内圧以下となったランフラット走行時におけるタイヤ1の走行性能を確保することができる。 The run-flat tire can run even if the air escapes and the internal pressure falls below the specified internal pressure. However, since the force toward the outer side in the tire radial direction due to the internal pressure is not applied to the belt 4, buckling is likely to occur. . On the other hand, in the tire 1 according to the modification of the present embodiment shown in FIG. 3, as described above, the outer resin sheet 6 is arranged on the outer side in the tire radial direction of the belt 4 and the inner side in the tire radial direction of the belt 4. Since the inner resin sheet 7 is overlapped and the bending rigidity of the belt 4 is reinforced, the penetration resistance to protrusions can be improved, and the tire 1 configured as a run-flat tire is in a run-flat running (middle). It is possible to prevent the occurrence of buckling and to ensure the running performance of the tire 1 during the run-flat running in which the internal pressure is not more than the specified internal pressure.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態には何ら限定されるものではない。例えば、上記の実施形態では、タイヤ1は、乗用車用のものとしたが、乗用車以外の車両に用いられるものとしてもよい。また、タイヤ1は、冬季以外の季節に使用するノーマルタイヤ(夏タイヤ)であってよく、積雪路や凍結路に適したスタッドレスタイヤ(冬タイヤ)であってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment at all. For example, in the above embodiment, the tire 1 is for a passenger car, but may be used for a vehicle other than a passenger car. The tire 1 may be a normal tire (summer tire) used in seasons other than winter, or may be a studless tire (winter tire) suitable for snowy roads and frozen roads.
1:空気入りタイヤ、 2:ビード部、 2a:ビードコア、 3:カーカス、4:ベルト、 4a:ゴム、 4b:コード、 5:トレッド、6:外側樹脂シート、 7:内側樹脂シート、 8:周方向主溝、9:サイドウォール部、 10:補強ゴム層、 CL:タイヤ赤道面 1: pneumatic tire, 2: bead part, 2a: bead core, 3: carcass, 4: belt, 4a: rubber, 4b: cord, 5: tread, 6: outer resin sheet, 7: inner resin sheet, 8: circumference Direction main groove, 9: sidewall portion, 10: reinforcing rubber layer, CL: tire equatorial plane

Claims (6)

  1.  タイヤ周方向に螺旋状に巻回されたコードがゴムで被覆されたベルトと、
     樹脂からなり、前記ベルトのタイヤ径方向外側に重なって配置された外側樹脂シートと、
     樹脂からなり、前記ベルトのタイヤ径方向内側に重なって配置された内側樹脂シートと、
    を有することを特徴とする、空気入りタイヤ。
    A belt in which a cord spirally wound in the tire circumferential direction is covered with rubber;
    An outer resin sheet made of resin and arranged to overlap the outer side of the belt in the tire radial direction;
    An inner resin sheet made of resin and arranged overlapping the inner side in the tire radial direction of the belt;
    A pneumatic tire characterized by comprising:
  2.  前記外側樹脂シート及び前記内側樹脂シートは、それぞれ前記ベルトに固着されている、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the outer resin sheet and the inner resin sheet are each fixed to the belt.
  3.  前記外側樹脂シートのタイヤ幅方向の幅は、前記ベルトのタイヤ幅方向の幅の10~100%である、請求項1または2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein a width of the outer resin sheet in the tire width direction is 10 to 100% of a width of the belt in the tire width direction.
  4.  前記外側樹脂シートの厚さと前記内側樹脂シートの厚さの合計が、1.0~6.0mmである、請求項1~3の何れか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein a total thickness of the outer resin sheet and the inner resin sheet is 1.0 to 6.0 mm.
  5.  前記外側樹脂シートの樹脂の引張弾性率及び前記内側樹脂シートの樹脂の引張弾性率は、それぞれ100~1000MPaである、請求項1~4の何れか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein a tensile elastic modulus of the resin of the outer resin sheet and a tensile elastic modulus of the resin of the inner resin sheet are 100 to 1000 MPa, respectively.
  6.  前記外側樹脂シート及び前記内側樹脂シートは、それぞれ熱可塑性エラストマーからなる、請求項1~5の何れか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 5, wherein the outer resin sheet and the inner resin sheet are each made of a thermoplastic elastomer.
PCT/JP2019/020079 2018-05-31 2019-05-21 Pneumatic tire WO2019230496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105459A JP2019209746A (en) 2018-05-31 2018-05-31 Pneumatic tire
JP2018-105459 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230496A1 true WO2019230496A1 (en) 2019-12-05

Family

ID=68698098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020079 WO2019230496A1 (en) 2018-05-31 2019-05-21 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209746A (en)
WO (1) WO2019230496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345434B2 (en) * 2020-06-08 2023-09-15 株式会社ブリヂストン pneumatic tires

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
WO2014171164A1 (en) * 2013-04-19 2014-10-23 住友ゴム工業株式会社 Pneumatic tire
JP2015511896A (en) * 2012-02-29 2015-04-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Multi-layer laminates that can be used to reinforce tire belts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
JP2015511896A (en) * 2012-02-29 2015-04-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Multi-layer laminates that can be used to reinforce tire belts
WO2014171164A1 (en) * 2013-04-19 2014-10-23 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2019209746A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US7617855B2 (en) Pneumatic tire
EP3130483B1 (en) Pneumatic tire
EP3459763B1 (en) Tire
US20090095397A1 (en) Floating two-ply tire
JP4761858B2 (en) Pneumatic tire
WO2019230773A1 (en) Pneumatic tire
US6622764B2 (en) Underlay structure for increased crown stiffening
WO2019230770A1 (en) Pneumatic tire
US11305585B2 (en) Pneumatic tire
US9004121B2 (en) Tire including a continuous pressure membrane
WO2019230496A1 (en) Pneumatic tire
JP4901144B2 (en) Pneumatic tire
JPH11222010A (en) Pneumatic radial tire
WO2019230497A1 (en) Pneumatic tire
EP1502770B1 (en) Motorcycle radial tyre
US20200376892A1 (en) Pneumatic tire
WO2020137627A1 (en) Run-flat tire
JP5013522B2 (en) Pneumatic radial tire
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP3747117B2 (en) Pneumatic radial tire
JP7151627B2 (en) pneumatic tire
WO2022130659A1 (en) Pneumatic radial tire for passenger vehicle
WO2022130658A1 (en) Pneumatic radial tyre for passenger vehicle
WO2022130657A1 (en) Pneumatic radial tire for passenger vehicle
JP6987022B2 (en) Pneumatic tires and manufacturing methods for pneumatic tires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811072

Country of ref document: EP

Kind code of ref document: A1