WO2019244590A1 - 両吸込渦巻ポンプ - Google Patents

両吸込渦巻ポンプ Download PDF

Info

Publication number
WO2019244590A1
WO2019244590A1 PCT/JP2019/021342 JP2019021342W WO2019244590A1 WO 2019244590 A1 WO2019244590 A1 WO 2019244590A1 JP 2019021342 W JP2019021342 W JP 2019021342W WO 2019244590 A1 WO2019244590 A1 WO 2019244590A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
casing
double suction
centrifugal pump
ribs
Prior art date
Application number
PCT/JP2019/021342
Other languages
English (en)
French (fr)
Inventor
小川 宗一郎
裕之 川▲崎▼
考之 宮本
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to US17/252,932 priority Critical patent/US11441576B2/en
Priority to CN201980041400.8A priority patent/CN112292533A/zh
Publication of WO2019244590A1 publication Critical patent/WO2019244590A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/006Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4273Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a double suction centrifugal pump, and more particularly to a casing reinforcement structure for accommodating an impeller.
  • the double suction centrifugal pump includes a rotating shaft to which both suction type impellers are fixed, and a casing that accommodates the impeller and forms a liquid flow path, and rotates the impeller inside the casing to pump the liquid.
  • the pressure is raised in the casing, and the pressurized liquid is discharged from the discharge port to the outside.
  • the casing is generally manufactured by casting. If the thickness of the entire casing is increased in order to increase the rigidity of the casing, the weight of the casing will increase, and as a result, the weight of the entire suction centrifugal pump will increase.
  • a suction volute including a rotating shaft, an impeller fixed to the rotating shaft, a casing accommodating the impeller, and a leg fixed to the casing, wherein the casing communicates with a suction port
  • the casing has an upper casing and a lower casing fastened to each other, and at least one rib is provided on each of both side surfaces of the lower casing constituting the suction volute,
  • a double suction volute pump is provided, wherein the ribs extend in the radial direction of the rotating shaft and the ribs are spaced from the legs.
  • the height of the rib gradually decreases with distance from the upper end of the rib.
  • the lower casing has a semi-annular portion extending along an outer peripheral surface of the rotating shaft, and an upper end of the rib is connected to the semi-annular portion.
  • the lower end of the rib is smoothly connected to the outer surface of the lower casing.
  • the rib provided on each of both side surfaces of the suction volute is plural.
  • a cross-sectional shape of at least one of the plurality of ribs is different from a cross-sectional shape of another rib.
  • the plurality of ribs are located within a fan-shaped region having a vertical centerline extending through a center axis of the rotation shaft as a center line when viewed from the axial direction of the rotation shaft, and The central angle of the region is 140 degrees or less.
  • the leg is located on an extension of the plurality of ribs.
  • the plurality of ribs have different lengths, with the rib closer to the inlet being longer.
  • the double suction volute pump further includes at least one upper rib provided on an outer surface of the upper casing. In one embodiment, the double suction volute pump further includes at least one bottom rib provided on a bottom surface of the lower casing.
  • the rib is not connected to the leg, but is separated from the leg.
  • the legs have not only a function of supporting the casing, but also a function of suppressing vibration of the casing during pump operation. Therefore, in general, the position of the leg is necessarily determined from such a viewpoint.
  • the position of the rib is determined based on the size and position of the region of the casing where high stress occurs. Since the ribs are separated from the legs, the position of the ribs is increased in flexibility. Further, the number of ribs can be appropriately determined without depending on the leg. Therefore, it is possible to appropriately arrange the rib at a position necessary for reinforcing the lower casing.
  • FIG. 2 is a perspective view of the double suction centrifugal pump shown in FIG. 1 as viewed obliquely from below. It is a side view of both suction volute pumps. It is a longitudinal cross-sectional view of the double suction volute pump shown in FIG.
  • FIG. 5A is a cross-sectional view illustrating an example of a cross-sectional shape of a rib.
  • FIG. 5B is a cross-sectional view illustrating an example of a cross-sectional shape of the rib.
  • FIG. 5C is a cross-sectional view illustrating an example of a cross-sectional shape of the rib.
  • FIG. 5D is a cross-sectional view illustrating an example of a cross-sectional shape of the rib. It is the perspective view which looked at another embodiment of the double suction volute pump of the present invention from diagonally above. It is a longitudinal cross-sectional view of the double suction volute pump shown in FIG. It is the perspective view which looked at still another embodiment of the double suction centrifugal pump of the present invention from diagonally below.
  • FIG. 1 is a perspective view of an embodiment of the double suction centrifugal pump of the present invention as viewed obliquely from above
  • FIG. 2 is a perspective view of the double suction centrifugal pump shown in FIG. 1 as viewed from obliquely below
  • FIG. FIG. 4 is a side view of the double suction centrifugal pump
  • FIG. 4 is a longitudinal sectional view of the double suction centrifugal pump shown in FIG.
  • the double suction centrifugal pump includes a rotating shaft 1, an impeller 2 fixed to the rotating shaft 1, a casing 3 containing the impeller 2 to form a liquid flow path, and a plurality of legs fixed to the casing 3.
  • a section 5 is provided.
  • the impeller 2 is a double suction type impeller having two liquid inlets 2a and one liquid outlet 2b.
  • the two liquid inlets 2a are on both sides of the impeller 2 and face in opposite directions.
  • the liquid outlet 2 b is located on the outer periphery of the impeller 2.
  • the casing 3 has a spiral shape.
  • the casing 3 includes an upper casing 3a and a lower casing 3b divided by a horizontal plane passing through the central axis AX of the rotating shaft 1.
  • four legs 5 are connected to the bottom of the lower casing 3b.
  • the lower casing 3b has a liquid suction port 6 and a discharge port 7 for discharging the liquid pressurized by the impeller 2.
  • the suction port 6 and the discharge port 7 face in opposite directions.
  • the upper casing 3a and the lower casing 3b are fastened to each other by a plurality of bolts 8. More specifically, the lower end of the upper casing 3a is constituted by an upper flange 4a, and the upper end of the lower casing 3b is constituted by a lower flange 4b.
  • the upper flange 4a has a mating surface facing downward, and the lower flange 4b has a mating surface facing upward.
  • the upper flange 4a and the lower flange 4b are fastened by a plurality of bolts 8 with a gasket (not shown) sandwiched between the mating surface of the upper flange 4a and the mating surface of the lower flange 4b.
  • the rotating shaft 1 is rotatably supported by bearings 10 arranged on both sides of the casing 3.
  • the gap between the rotating shaft 1 and the casing 3 is sealed by a shaft sealing device 11.
  • the shaft seal device 11 is, for example, a mechanical seal.
  • the bearing 10 and the shaft seal device 11 are fixed to a bearing mounting base 15.
  • the bearing mounting pedestal 15 is fitted in annular projections 16 formed on both sides of the casing 3.
  • This annular projection 16 surrounds the outer peripheral surface of the rotating shaft 1.
  • the upper half of the annular projection 16 is an upper semi-annular portion 16a formed from a part of the upper casing 3a, and the lower half of the annular projection 16 is a lower semi-annular portion formed from a part of the lower casing 3b.
  • the part 16b The upper semi-annular portion 16a and the lower semi-annular portion 16b constituting the annular projection 16 extend along the outer peripheral surface of the rotating shaft 1.
  • the upper casing 3a and the lower casing 3b have a suction volute 20 communicating with the suction port 6.
  • the suction volute 20 extends from the suction port 6 to the two liquid inlets 2 a of the impeller 2.
  • the upper casing 3a and the lower casing 3b further have a discharge volute 22 communicating with the discharge port 7.
  • the discharge volute 22 extends from the liquid outlet 2 b of the impeller 2 to the discharge port 7.
  • the rotating shaft 1 is connected to a motor (not shown) such as an electric motor or an internal combustion engine.
  • a motor such as an electric motor or an internal combustion engine.
  • the liquid is sucked into the casing 3 through the suction port 6.
  • the liquid flows into the liquid inlet 2 a of the impeller 2 through the suction volute 20, and is discharged from the liquid outlet 2 b of the impeller 2 and discharged to the volute 22 as the impeller 2 rotates.
  • the liquid flows through the discharge volute 22 and is discharged from the discharge port 7.
  • a plurality of ribs 28A, 28B, 28C for reinforcing the lower casing 3b are provided on both side surfaces of the lower casing 3b constituting the suction volute 20.
  • These ribs 28A, 28B, 28C are side ribs provided on the side surface of the lower casing 3b.
  • three sets of ribs that is, a first rib 28A, a second rib 28B, and a third rib 28C are provided.
  • the ribs 28A, 28B, 28C and the lower casing 3b constitute an integrated structure made of a casting.
  • the upper casing 3a is also a casting.
  • the ribs 28A, 28B, and 28C extend across both regions of the lower casing 3b where high stress is generated during a water pressure resistance test.
  • a region where a high stress is generated during the water pressure resistance test is a region surrounded by a dashed line indicated by a symbol G. More specifically, the region G is a region determined based on the result of the stress analysis.
  • the ribs 28A, 28B, 28C extend on the region G to prevent deformation of the lower casing 3b (that is, to reinforce the lower casing 3b).
  • the region G is located below the rotating shaft 1 and extends from the lower semi-annular portion 16b of the lower casing 3b to the bottom.
  • the upper ends of the first rib 28A, the second rib 28B, and the third rib 28C are connected to the outer surface (lower surface) of the lower semi-annular portion 16b, and the first rib 28A, the second rib 28B, and the third
  • the lower end of the rib 28C is smoothly connected to the outer surface of the lower casing 3b.
  • the first rib 28A, the second rib 28B, and the third rib 28C do not cross each other and extend in the radial direction of the rotating shaft 1 when viewed from the axial direction of the rotating shaft 1. Since the ribs 28A, 28B, and 28C do not intersect with each other, a defect (poor running of the molten metal) hardly occurs during casting.
  • the first rib 28A, the second rib 28B, and the third rib 28C are not connected to the leg 5 and are separated from the leg 5.
  • the legs 5 have not only a function of supporting the casing 3 but also a function of suppressing vibration of the casing 3 during pump operation. Therefore, in general, the position of the leg 5 is necessarily determined from such a viewpoint.
  • the positions of the ribs 28A, 28B, 28C are determined based on the size and position of the region G. In the present embodiment, since the ribs 28A, 28B, 28C are separated from the leg 5, the degree of freedom of the positions of the ribs 28A, 28B, 28C increases. Therefore, the ribs 28A, 28B, 28C can be appropriately arranged at positions necessary for reinforcing the lower casing 3b.
  • the number of ribs may be changed as necessary. Specifically, the number of ribs is appropriately determined according to the size of the region G where high stress occurs. The size and position of the region G can vary depending on the type of pump. When the region G is small, one rib may be provided. When the region G is large, four or more ribs may be provided.
  • the double suction volute pump includes two bottom ribs 30 ⁇ / b> A and 30 ⁇ / b> B extending between two pairs of legs 5.
  • These bottom ribs 30A, 30B are provided on the bottom surface of the lower casing 3b. More specifically, one set of legs 5 is connected to suction volute 20, and bottom rib 30 ⁇ / b> A is provided on the bottom surface of suction volute 20. Both ends of the bottom rib 30 ⁇ / b> A are respectively connected to two legs 5 on the suction volute 20. The other set of legs 5 is connected to the discharge volute 22, and a bottom rib 30 ⁇ / b> B is provided on the bottom surface of the discharge volute 22.
  • Both ends of the bottom rib 30B are connected to two legs 5 on the discharge volute 22, respectively.
  • These two bottom ribs 30 ⁇ / b> A, 30 ⁇ / b> B extend in parallel with the central axis AX of the rotating shaft 1.
  • the bottom rib 30A on the suction side has a function of reinforcing the bottom surface of the suction volute 20, and the bottom rib 30B on the discharge side has a function of reinforcing the bottom surface of the discharge volute 22.
  • the second rib 28 ⁇ / b> B when viewed from the axial direction of the rotating shaft 1, the second rib 28 ⁇ / b> B is on a vertical line CL extending downward from the central axis AX of the rotating shaft 1,
  • the rib 28A and the third rib 28C are arranged on both sides of the second rib 28B.
  • the leg portion 5 is on an extension of the first rib 28A and the third rib 28C, but the extending direction of the first rib 28A and the third rib 28C is not limited to the present embodiment.
  • the region G where high stress is generated is located in a fan-shaped region having a vertical line CL as a center line passing through the central axis AX of the rotary shaft 1 when viewed from the axial direction of the rotary shaft 1.
  • the central angle ⁇ of the fan-shaped region is 140 degrees or less.
  • the first rib 28A, the second rib 28B, and the third rib 28C are located in the fan-shaped region.
  • the heights of the first rib 28A, the second rib 28B, and the third rib 28C gradually decrease in accordance with the distance from the upper ends of the ribs 28A, 28B, 28C. This is based on the result of analyzing the stress generated in the lower casing 3b when water pressure is applied to the casing 3 from the inside. According to the stress analysis, the stress generated in the lower casing 3b is highest at the center of the suction volute 20 and gradually decreases as the distance from the lower semi-annular portion 16b increases.
  • the heights of the first rib 28A, the second rib 28B, and the third rib 28C gradually decrease along the gradient of the stress generated in the lower casing 3b.
  • the first rib 28A and the third rib 28C have the same configuration.
  • the ribs 28A, 28B, 28C change along the stress gradient, the ribs 28A, 28B, 28C are formed while minimizing the total volume of the ribs 28A, 28B, 28C.
  • the mechanical strength required for the lower casing 3b can be secured. As a result, the weight of the entire pump is reduced, and the cost is reduced.
  • the lower ends of the first rib 28A, the second rib 28B, and the third rib 28C are smoothly connected to the outer surface of the lower casing 3b, a defect (improper run-out failure) occurs at the lower ends of the ribs 28A, 28B, 28C during casting. ) Is unlikely to occur.
  • the first rib 28A, the second rib 28B, and the third rib 28C have different lengths, and the rib closer to the suction port 6 is longer. That is, the first rib 28A closest to the suction port 6 is longer than the second rib 28B, and the second rib 28B is longer than the third rib 28C farthest from the suction port 6.
  • the lengths of the first rib 28A, the second rib 28B, and the third rib 28C are determined depending on the radial width of the region G. That is, the lengths of the first rib 28A, the second rib 28B, and the third rib 28C are equal to or longer than the radial width of the region G.
  • the first rib 28A, the second rib 28B, and the third rib 28C have a minimum length necessary to sufficiently reinforce the entire region G. Therefore, the volume of the entire rib is minimized, and as a result, the weight of the entire pump is reduced and the cost is reduced.
  • FIG. 5A is a diagram showing a cross section of the first rib 28A.
  • the cross section of the first rib 28A is trapezoidal.
  • the cross sections of the second rib 28B and the third rib 28C are also trapezoidal.
  • the cross section of the first rib 28A, the second rib 28B, and the third rib 28C may be triangular, as shown in FIG. 5B, or semi-circular, as shown in FIG. 5C. Or may be semi-elliptical, as shown in FIG. 5D. As shown in FIGS.
  • the width W of the cross section of the first rib 28A gradually decreases as the distance from the outer surface of the lower casing 3b increases, a defect (poor running water) hardly occurs during casting.
  • the cross sections of the first rib 28A, the second rib 28B, and the third rib 28C are not limited to the examples shown in FIGS. 5A to 5D. Other shapes may be used.
  • the cross-sectional shape of at least one of the first rib 28A, the second rib 28B, and the third rib 28C may be different from the cross-sectional shape of the other rib.
  • all of the first rib 28A, the second rib 28B, and the third rib 28C may have different cross-sectional shapes.
  • FIG. 6 is a perspective view of another embodiment of the double suction centrifugal pump of the present invention viewed obliquely from above
  • FIG. 7 is a longitudinal sectional view of the double suction centrifugal pump shown in FIG.
  • the configuration of this embodiment that is not particularly described is the same as that of the embodiment described with reference to FIGS. 1 to 5, and thus redundant description will be omitted.
  • each of the suction volute pumps further includes an upper rib 33 provided on an outer surface of the upper casing 3a.
  • the upper rib 33 is located at the top of the upper casing 3a, and extends parallel to the central axis AX of the rotating shaft 1. More specifically, the upper rib 33 is provided on the outer surface of the discharge volute 22 and extends across the discharge volute 22. In one embodiment, upper rib 33 may extend across both discharge volute 22 and suction volute 20.
  • the upper rib 33 may be located on the suction port 6 side of the top of the upper casing 3a on the outer surface of the upper casing 3a, or may be located on the discharge port 7 side of the top of the upper casing 3a. Good. Further, a plurality of upper ribs may be provided on the outer surface of the upper casing 3a.
  • the discharge volute 22 receives the highest liquid pressure.
  • the upper rib 33 provided on the outer surface of the upper casing 3a reinforces the upper casing 3a including the discharge volute 22 and can prevent the upper casing 3a (particularly, the discharge volute 22) from being deformed. Further, the discharge volute 22 can be made thinner, and as a result, both suction volute pumps can be reduced in weight.
  • FIG. 8 is a perspective view of still another embodiment of the double-suction volute pump of the present invention viewed from obliquely below.
  • the configuration of this embodiment that is not particularly described is the same as that of the embodiment described with reference to FIGS. 1 to 5, and thus redundant description will be omitted.
  • the bottom rib 30A provided on the bottom of the suction volute 20 is referred to as a first bottom rib 30A.
  • the two-sided suction centrifugal pump further includes a second bottom rib 30C provided on the bottom surface of the lower casing 3b. More specifically, the first bottom rib 30A and the second bottom rib 30C are provided on the bottom surface of the suction volute 20. One end of the second bottom rib 30C is connected to the back side of the suction port 6, and the other end of the second bottom rib 30C is connected to the bottom of the discharge volute 22.
  • the first bottom rib 30A is parallel to the center axis AX of the rotating shaft 1, and the second bottom rib 30C is perpendicular to the center axis AX of the rotating shaft 1.
  • the second bottom rib 30C is orthogonal to the first bottom rib 30A.
  • the second bottom rib 30C extends in the flow direction of the liquid sucked into the casing 3 through the suction port 6.
  • the second bottom rib 30C arranged as described above can prevent the deformation of the lower casing 3b due to the stress generated in the liquid suction direction.
  • the present invention is not limited to this embodiment.
  • the bottom ribs 30A and 30C can also have an optimal arrangement or an optimal angle based on the stress generated in the lower casing region G.
  • the present invention is applicable to a casing reinforcement structure for accommodating the impellers of the two suction volute pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明は、羽根車を収容するケーシングの補強構造に関するものである。両吸込渦巻ポンプは、回転軸(1)と、回転軸(1)に固定された羽根車(2)と、羽根車(2)を収容するケーシング(3)と、ケーシング(3)に固定された脚部(5)を備える。ケーシング(3)は、吸込み口(6)に連通する吸込みボリュート(20)を有する。ケーシング(3)は、互いに締結された上ケーシング(3a)と下ケーシング(3b)を有し、吸込みボリュート(20)を構成する下ケーシング(3b)の両側面のそれぞれには、リブ(28A,28B,28C)が設けられている。回転軸(1)の軸方向から見たときに、リブ(28A,28B,28C)は回転軸(1)の半径方向に延びている。リブ(28A,28B,28C)は脚部(5)から離れている。

Description

両吸込渦巻ポンプ
 本発明は、両吸込渦巻ポンプに関し、特に羽根車を収容するケーシングの補強構造に関するものである。
 両吸込渦巻ポンプは、両吸込型の羽根車が固定される回転軸と、羽根車を収容して液体の流路を形成するケーシングとを備え、羽根車をケーシング内で回転させることにより液体をケーシング内で昇圧し、該昇圧された液体を吐出し口から外部に吐き出す。
 液体の圧力がケーシングに作用すると、ケーシングの一部に高い応力が発生し、ケーシングが変形する。ケーシングが変形すると、ケーシングフランジの接合面が離れ、水漏れが生じる場合がある。そのため、ケーシングの変形を一定以下にするための剛性がケーシングには要求される。
 両吸込渦巻ポンプのケーシングの形状は複雑であるため、ケーシングは、一般的に、鋳造で製作される。ケーシングの剛性を高めるために、ケーシング全体の肉厚を厚くすると、ケーシングの重量が増加してしまい、結果的に、両吸込渦巻ポンプ全体の重量が増加してしまう。
 一方、ケーシングを薄くすると、ケーシングの機械的強度が低下し、両吸込渦巻ポンプは耐水圧試験に合格することができないことがある。この耐水圧試験は、両吸込渦巻ポンプからの水漏れを検査する目的で行われる。具体的には、ケーシングから羽根車や回転軸を取り外した状態で、ケーシングの吸込み口、吐出し口を含むすべての開口部を閉じて密閉空間をケーシング内に形成し、この密閉空間を、ポンプの最高吐出し圧力の1.5倍の圧力の水で満たし、そのままの状態で3分間以上放置し、水漏れおよびケーシングの変形を検査する。
特開2017-44182号公報 特開2014-206140号公報
 この耐水圧試験では、通常の運転時よりも高い圧力がケーシングに加わるため、ケーシングには高い応力が発生する。このため、吸込みボリュートなどの面積の広いケーシングの部位は、許容を超えて変形してしまうことがある。
 そこで、本発明は、ケーシング自体を肉厚にすることなく、ケーシングの変形を抑制することができる両吸込渦巻ポンプを提供することを目的とする。
 一態様では、回転軸と、前記回転軸に固定された羽根車と、前記羽根車を収容するケーシングと、前記ケーシングに固定された脚部を備え、前記ケーシングは、吸込み口に連通する吸込みボリュートを有し、前記ケーシングは、互いに締結された上ケーシングと下ケーシングを有し、前記吸込みボリュートを構成する前記下ケーシングの両側面のそれぞれには、少なくとも1つのリブが設けられており、前記回転軸の軸方向から見たときに、前記リブは、前記回転軸の半径方向に延びており、前記リブは前記脚部から離れている、両吸込渦巻ポンプが提供される。
 一態様では、前記リブの高さは、前記リブの上端からの距離とともに徐々に減少している。
 一態様では、前記下ケーシングは、前記回転軸の外周面に沿って延びる半円環部を有しており、前記リブの上端は、前記半円環部に接続されている。
 一態様では、前記リブの下端は、前記下ケーシングの外面に滑らかに接続されている。
 一態様では、前記吸込みボリュートの両側面のそれぞれに設けられている前記リブは複数である。
 一態様では、前記複数のリブのうちの少なくとも1つの断面形状は、他のリブの断面形状と異なる。
 一態様では、前記複数のリブは、前記回転軸の軸方向から見たときに、前記回転軸の中心軸線を通る鉛直線を中心線に持つ扇形の領域内に位置しており、前記扇形の領域の中心角は140度以下である。
 一態様では、前記脚部は、前記複数のリブの延長線上に位置している。
 一態様では、前記複数のリブは異なる長さを有し、前記吸込み口に近いリブほど長い。
 一態様では、前記両吸込渦巻ポンプは、前記上ケーシングの外面に設けられた少なくとも1つの上側リブをさらに備えている。
 一態様では、前記両吸込渦巻ポンプは、前記下ケーシングの底面に設けられた少なくとも1つの底面リブをさらに備えている。
 上述した本発明によれば、リブは、脚部に接続されていなく、脚部から離れている。脚部は、ケーシングを支持する機能のみならず、ポンプ運転時のケーシングの振動を抑制する機能も持つ。したがって、一般に、脚部の位置は、かかる観点から必然的に決定される。これに対し、リブの位置は、高い応力が発生するケーシングの領域の大きさおよび位置に基づいて決定される。リブは脚部から離れているので、リブの位置の自由度が増す。さらに、リブの本数も脚部に依存せずに適切に決定することができる。したがって、下ケーシングを補強するのに必要な位置にリブを適切に配置することができる。
本発明の両吸込渦巻ポンプの一実施形態を斜め上から見た斜視図である。 図1に示す両吸込渦巻ポンプを斜め下から見た斜視図である。 両吸込渦巻ポンプの側面図である。 図1に示す両吸込渦巻ポンプの縦断面図である。 図5Aは、リブの断面形状の例を示す断面図である。 図5Bは、リブの断面形状の例を示す断面図である。 図5Cは、リブの断面形状の例を示す断面図である。 図5Dは、リブの断面形状の例を示す断面図である。 本発明の両吸込渦巻ポンプの他の実施形態を斜め上から見た斜視図である。 図6に示す両吸込渦巻ポンプの縦断面図である。 本発明の両吸込渦巻ポンプのさらに他の実施形態を斜め下から見た斜視図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は本発明の両吸込渦巻ポンプの一実施形態を斜め上から見た斜視図であり、図2は図1に示す両吸込渦巻ポンプを斜め下から見た斜視図であり、図3は両吸込渦巻ポンプの側面図であり、図4は図1に示す両吸込渦巻ポンプの縦断面図である。
 両吸込渦巻ポンプは、回転軸1と、回転軸1に固定された羽根車2と、羽根車2を収容して液体の流路を形成するケーシング3と、ケーシング3に固定された複数の脚部5を備えている。図4に示すように、羽根車2は、2つの液体入口2aと、1つの液体出口2bを具備した両吸込型羽根車である。2つの液体入口2aは羽根車2の両側にあり、互いに反対方向を向いている。液体出口2bは羽根車2の外周部に位置している。
 ケーシング3は渦巻き形状を有している。ケーシング3は、回転軸1の中心軸線AXを通る水平面で分割された上ケーシング3aと下ケーシング3bとを備えている。本実施形態では4つの脚部5が下ケーシング3bの底部に接続されている。下ケーシング3bは、液体の吸込み口6と、羽根車2によって昇圧された液体を吐き出す吐出し口7とを有している。吸込み口6および吐出し口7は互いに反対方向を向いている。
 上ケーシング3aと下ケーシング3bは、複数のボルト8によって互いに締結されている。より具体的には、上ケーシング3aの下端は上側フランジ4aから構成され、下ケーシング3bの上端は下側フランジ4bから構成されている。上側フランジ4aは下方を向く合わせ面を有し、下側フランジ4bは上方を向く合わせ面を有している。上側フランジ4aの合わせ面と下側フランジ4bの合わせ面との間に図示しないガスケットが挟まれた状態で、上側フランジ4aと下側フランジ4bは、複数のボルト8によって締結される。
 図4に示すように、回転軸1は、ケーシング3の両側に配置された軸受10によって回転可能に支持されている。回転軸1とケーシング3との間の隙間は、軸シール装置11によって封止されている。軸シール装置11は、例えばメカニカルシールである。軸受10および軸シール装置11は、軸受取り付け台座15に固定されている。この軸受取り付け台座15は、ケーシング3の両側に形成された環状突起16内にはめ込まれている。この環状突起16は、回転軸1の外周面を囲んでいる。環状突起16の上半分は、上ケーシング3aの一部から構成された上側半円環部16aであり、環状突起16の下半分は、下ケーシング3bの一部から構成された下側半円環部16bである。環状突起16を構成する上側半円環部16aおよび下側半円環部16bは、回転軸1の外周面に沿って延びている。
 上ケーシング3aおよび下ケーシング3bは、吸込み口6に連通する吸込みボリュート20を有している。吸込みボリュート20は、吸込み口6から羽根車2の2つの液体入口2aまで延びている。上ケーシング3aおよび下ケーシング3bは、吐出し口7に連通する吐出しボリュート22をさらに有している。吐出しボリュート22は、羽根車2の液体出口2bから吐出し口7まで延びている。
 回転軸1は図示しない原動機(電動機または内燃機関など)に接続されている。原動機によって回転軸1および羽根車2が回転すると、液体は、吸込み口6を通じてケーシング3内に吸い込まれる。液体は、吸込みボリュート20を通って羽根車2の液体入口2aに流入し、羽根車2の回転に伴って羽根車2の液体出口2bから吐出しボリュート22に吐き出される。液体は吐出しボリュート22を流れて吐出し口7から吐き出される。
 吸込みボリュート20を構成する下ケーシング3bの両側面には、下ケーシング3bを補強するための複数のリブ28A,28B,28Cが設けられている。これらリブ28A,28B,28Cは、下ケーシング3bの側面上に設けられた側面リブである。本実施形態では、3組のリブ、すなわち第1リブ28A、第2リブ28B、および第3リブ28Cが設けられている。これらのリブ28A,28B,28Cと下ケーシング3bは、鋳物からなる一体構造物を構成している。上ケーシング3aも鋳物である。リブ28A,28B,28Cは、下ケーシング3bの両側面内の、耐水圧試験時に高い応力が発生する領域を横切るように延びている。図1乃至図3において、耐水圧試験時に高い応力が発生する領域は、記号Gで示す一点鎖線で囲まれた領域である。より具体的には、この領域Gは、応力解析の結果に基づいて定められた領域である。
 リブ28A,28B,28Cは、下ケーシング3bの変形を防止するために(すなわち、下ケーシング3bを補強するために)、領域G上を延びている。図3から分かるように、領域Gは、回転軸1の下方に位置し、下ケーシング3bの下側半円環部16bから底部にまで及んでいる。第1リブ28A、第2リブ28B、および第3リブ28Cの上端は、下側半円環部16bの外面(下面)に接続されており、第1リブ28A、第2リブ28B、および第3リブ28Cの下端は、下ケーシング3bの外面に滑らかに接続されている。第1リブ28A、第2リブ28B、および第3リブ28Cは、互いに交差せず、回転軸1の軸方向から見たときに、回転軸1の半径方向に延びている。リブ28A,28B,28Cは互いに交差しないので、鋳造時に欠陥(湯まわり不良)が生じにくい。
 第1リブ28A、第2リブ28B、および第3リブ28Cは、脚部5に接続されていなく、脚部5から離れている。脚部5は、ケーシング3を支持する機能のみならず、ポンプ運転時のケーシング3の振動を抑制する機能も持つ。したがって、一般に、脚部5の位置は、かかる観点から必然的に決定される。これに対し、リブ28A,28B,28Cの位置は、領域Gの大きさおよび位置に基づいて決定される。本実施形態では、リブ28A,28B,28Cは脚部5から離れているので、リブ28A,28B,28Cの位置の自由度が増す。よって、下ケーシング3bを補強するのに必要な位置にリブ28A,28B,28Cを適切に配置することができる。
 また、リブの数も必要に応じて変えてもよい。具体的には、リブの数は、高い応力が発生する領域Gの大きさによって適宜決定される。領域Gの大きさおよび位置は、ポンプの種類によって変わりうる。領域Gが小さい場合は、1つのリブが設けられてもよいし、領域Gが大きい場合は、4本以上のリブが設けられてもよい。
 図2に示すように、本実施形態の両吸込渦巻ポンプは、2組の脚部5の間を延びる2つの底面リブ30A,30Bを備えている。これら底面リブ30A,30Bは、下ケーシング3bの底面に設けられている。より具体的には、一方の組の脚部5は吸込みボリュート20に接続され、底面リブ30Aは吸込みボリュート20の底面に設けられている。底面リブ30Aの両端は、吸込みボリュート20上の2つの脚部5にそれぞれ接続されている。他方の組の脚部5は吐出しボリュート22に接続され、底面リブ30Bは吐出しボリュート22の底面に設けられている。底面リブ30Bの両端は、吐出しボリュート22上の2つの脚部5にそれぞれ接続されている。これら2つの底面リブ30A,30Bは、回転軸1の中心軸線AXと平行に延びている。吸込み側の底面リブ30Aは、吸込みボリュート20の底面を補強し、吐出し側の底面リブ30Bは、吐出しボリュート22の底面を補強する機能を有する。
 図3に示すように、本実施形態では、回転軸1の軸方向から見たときに、第2リブ28Bは、回転軸1の中心軸線AXから下方に延びる鉛直線CL上にあり、第1リブ28Aおよび第3リブ28Cは第2リブ28Bの両側に配置されている。本実施形態では、第1リブ28Aおよび第3リブ28Cの延長線上に脚部5があるが、第1リブ28Aおよび第3リブ28Cの延びる方向は本実施形態に限られない。一般に、高い応力が発生する領域Gは、回転軸1の軸方向から見たときに、回転軸1の中心軸線AXを通る鉛直線CLを中心線に持つ扇形の領域内に位置している。扇形の領域の中心角θは140度以下である。第1リブ28A、第2リブ28B、および第3リブ28Cは、上記扇形の領域内に位置している。
 第1リブ28A、第2リブ28B、および第3リブ28Cの高さは、それらリブ28A,28B,28Cの上端からの距離に従って徐々に減少している。これは、ケーシング3に内側から水圧を加えたときに下ケーシング3bに発生する応力を解析した結果に基づく。応力解析によれば、下ケーシング3bに発生する応力は、吸込みボリュート20の中央で最も高く、下側半円環部16bから離れるに従って徐々に低下する。第1リブ28A、第2リブ28B、および第3リブ28Cの高さは、下ケーシング3bに発生する応力の勾配に沿って徐々に減少している。第1リブ28Aおよび第3リブ28Cも同様の構成を有している。
 本実施形態によれば、応力勾配に沿ってリブ28A,28B,28Cの高さが変化しているので、リブ28A,28B,28Cの全体の体積を最小としつつ、リブ28A,28B,28Cは下ケーシング3bに必要とされる機械的強度を確保することができる。結果として、ポンプ全体が軽量化され、かつ低コストが実現される。さらに、第1リブ28A、第2リブ28B、および第3リブ28Cの下端は下ケーシング3bの外面に滑らかに接続されているので、鋳造時にリブ28A,28B,28Cの下端で欠陥(湯まわり不良)が生じにくい。
 図3に示すように、第1リブ28A、第2リブ28B、および第3リブ28Cは異なる長さを有しており、吸込み口6に近いリブほど長い。すなわち、吸込み口6に最も近い第1リブ28Aは、第2リブ28Bよりも長く、第2リブ28Bは、吸込み口6から最も遠い第3リブ28Cよりも長い。第1リブ28A、第2リブ28B、および第3リブ28Cの長さは、領域Gの半径方向の幅に依存して決定される。すなわち、第1リブ28A、第2リブ28B、および第3リブ28Cの長さは、領域Gの半径方向の幅と同じか、またはそれよりも長い。第1リブ28A、第2リブ28B、および第3リブ28Cは、領域Gの全体を十分に補強するのに必要な最小限の長さを有している。したがって、リブ全体の体積が最小となり、結果として、ポンプ全体が軽量化され、かつ低コストが実現される。
 図5Aは、第1リブ28Aの断面を示す図である。本実施形態では、第1リブ28Aの断面は台形である。第2リブ28Bおよび第3リブ28Cの断面も同様に台形である。一実施形態では、第1リブ28A、第2リブ28B、および第3リブ28Cの断面は、図5Bに示すように三角形であってもよく、または図5Cに示すように、半円形であってもよく、または図5Dに示すように、半楕円形であってもよい。図5A乃至図5Dに示すように、第1リブ28Aの断面の幅Wが下ケーシング3bの外面から離れるに従って徐々に減少しているので、鋳造時に欠陥(湯まわり不良)が生じにくい。ただし、第1リブ28A、第2リブ28B、および第3リブ28Cの断面は、図5A乃至図5Dに示す例に限定されず、鋳造時に欠陥(湯まわり不良)が生じにくい形状であれば、他の形状であってもよい。
 一実施形態では、第1リブ28A、第2リブ28B、および第3リブ28Cのうちの少なくとも1つの断面形状は、他のリブの断面形状と異なってもよい。例えば、第1リブ28A、第2リブ28B、および第3リブ28Cのすべては、異なる断面形状を有してもよい。
 図6は、本発明の両吸込渦巻ポンプの他の実施形態を斜め上から見た斜視図であり、図7は、図6に示す両吸込渦巻ポンプの縦断面図である。本実施形態の特に説明しない構成は、図1乃至図5を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 図6および図7に示すように、両吸込渦巻ポンプは、上ケーシング3aの外面に設けられた上側リブ33をさらに備えている。上側リブ33は、上ケーシング3aの頂部に位置しており、回転軸1の中心軸線AXと平行に延びている。より具体的には、上側リブ33は、吐出しボリュート22の外面上に設けられており、吐出しボリュート22を横切るように延びている。一実施形態では、上側リブ33は、吐出しボリュート22および吸込みボリュート20の両方を横切るように延びていてもよい。上側リブ33は、上ケーシング3aの外面であれば、上ケーシング3aの頂部よりも吸込み口6側に位置してもよく、または上ケーシング3aの頂部よりも吐出し口7側に位置してもよい。さらに、複数の上側リブを上ケーシング3aの外面に設けてもよい。
 両吸込渦巻ポンプの運転中、吐出しボリュート22は、最も高い液体の圧力を受ける。上ケーシング3aの外面上に設けられた上側リブ33は、吐出しボリュート22を含む上ケーシング3aを補強し、上ケーシング3a(特に吐出しボリュート22)の変形を防止することができる。さらに、吐出しボリュート22を薄くすることが可能であり、結果的に両吸込渦巻ポンプを軽量化することができる。
 図8は、本発明の両吸込渦巻ポンプのさらに他の実施形態を斜め下から見た斜視図である。本実施形態の特に説明しない構成は、図1乃至図5を参照して説明した実施形態と同じでるので、その重複する説明を省略する。以下の説明では、吸込みボリュート20の底面に設けられた底面リブ30Aを、第1底面リブ30Aと称する。
 両吸込渦巻ポンプは、下ケーシング3bの底面に設けられた第2底面リブ30Cをさらに備えている。より具体的には、第1底面リブ30Aおよび第2底面リブ30Cは、吸込みボリュート20の底面に設けられている。第2底面リブ30Cの一端は、吸込み口6の裏側に接続され、第2底面リブ30Cの他端は、吐出しボリュート22の底面に接続されている。第1底面リブ30Aは回転軸1の中心軸線AXと平行であり、第2底面リブ30Cは、回転軸1の中心軸線AXに垂直である。本実施形態では、第2底面リブ30Cは、第1底面リブ30Aと直交している。第2底面リブ30Cは、吸込み口6を通じてケーシング3に吸い込まれた液体の流れ方向に沿って延びている。このように配置された第2底面リブ30Cは、液体の吸込み方向に発生する応力に起因する下ケーシング3bの変形を防止することができる。ただし、本発明は、本実施形態に限定されない。底面リブ30A,30Cは、下ケーシング領域Gに発生する応力に基づいて、最適な配置、または最適な角度をとることも可能である。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、両吸込渦巻ポンプの羽根車を収容するケーシングの補強構造に利用可能である。
 1   回転軸
 2   羽根車
 2a  液体入口
 2b  液体出口
 3   ケーシング
 3a  上ケーシング
 3b  下ケーシング
 4a  上側フランジ
 4b  下側フランジ
 5   脚部
 6   吸込み口
 7   吐出し口
 8   ボルト
10   軸受
11   軸シール装置
15   軸受取り付け台座
16   環状突起
16a  上側半円環部
16b  下側半円環部
20   吸込みボリュート
22   吐出しボリュート
28A  第1リブ
28B  第2リブ
28C  第3リブ
30A,30B  底面リブ
33   上側リブ

Claims (11)

  1.  回転軸と、
     前記回転軸に固定された羽根車と、
     前記羽根車を収容するケーシングと、
     前記ケーシングに固定された脚部を備え、
     前記ケーシングは、吸込み口に連通する吸込みボリュートを有し、
     前記ケーシングは、互いに締結された上ケーシングと下ケーシングを有し、
     前記吸込みボリュートを構成する前記下ケーシングの両側面のそれぞれには、少なくとも1つのリブが設けられており、
     前記回転軸の軸方向から見たときに、前記リブは、前記回転軸の半径方向に延びており、
     前記リブは前記脚部から離れている、両吸込渦巻ポンプ。
  2.  前記リブの高さは、前記リブの上端からの距離とともに徐々に減少している、請求項1に記載の両吸込渦巻ポンプ。
  3.  前記下ケーシングは、前記回転軸の外周面に沿って延びる半円環部を有しており、
     前記リブの上端は、前記半円環部に接続されている、請求項1または2に記載の両吸込渦巻ポンプ。
  4.  前記リブの下端は、前記下ケーシングの外面に滑らかに接続されている、請求項1乃至3のいずれか一項に記載の両吸込渦巻ポンプ。
  5.  前記吸込みボリュートの両側面のそれぞれに設けられている前記リブは複数である、請求項1乃至4のいずれか一項に記載の両吸込渦巻ポンプ。
  6.  前記複数のリブのうちの少なくとも1つの断面形状は、他のリブの断面形状と異なる、請求項5に記載の両吸込渦巻ポンプ。
  7.  前記複数のリブは、前記回転軸の軸方向から見たときに、前記回転軸の中心軸線を通る鉛直線を中心線に持つ扇形の領域内に位置しており、前記扇形の領域の中心角は140度以下である、請求項5または6に記載の両吸込渦巻ポンプ。
  8.  前記脚部は、前記複数のリブの延長線上に位置している、請求項5乃至7のいずれか一項に記載の両吸込渦巻ポンプ。
  9.  前記複数のリブは異なる長さを有し、前記吸込み口に近いリブほど長い、請求項5乃至8のいずれか一項に記載の両吸込渦巻ポンプ。
  10.  前記上ケーシングの外面に設けられた少なくとも1つの上側リブをさらに備えている、請求項1乃至9のいずれか一項に記載の両吸込渦巻ポンプ。
  11.  前記下ケーシングの底面に設けられた少なくとも1つの底面リブをさらに備えている、請求項1乃至10のいずれか一項に記載の両吸込渦巻ポンプ。
PCT/JP2019/021342 2018-06-22 2019-05-29 両吸込渦巻ポンプ WO2019244590A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/252,932 US11441576B2 (en) 2018-06-22 2019-05-29 Double-suction centrifugal pump
CN201980041400.8A CN112292533A (zh) 2018-06-22 2019-05-29 双吸离心泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118401 2018-06-22
JP2018118401 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019244590A1 true WO2019244590A1 (ja) 2019-12-26

Family

ID=68983670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021342 WO2019244590A1 (ja) 2018-06-22 2019-05-29 両吸込渦巻ポンプ

Country Status (4)

Country Link
US (1) US11441576B2 (ja)
JP (1) JP7213141B2 (ja)
CN (1) CN112292533A (ja)
WO (1) WO2019244590A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483652A (zh) * 2020-10-26 2022-05-13 佛山市顺德区美的洗涤电器制造有限公司 一种蜗壳、风机及烟机
EP4102077A1 (en) * 2021-06-07 2022-12-14 Ebara Corporation Pump casing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629307C1 (ru) * 2016-09-27 2017-08-28 Общество с ограниченной ответственностью "Нефтекамский машиностроительный завод" (ООО "НКМЗ") Магистральный насос
CN114320928A (zh) * 2021-12-21 2022-04-12 嘉利特荏原泵业有限公司 离心泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287397A (en) * 1940-03-29 1942-06-23 Herbert E Rupp Double suction liquid pump
JPS52108145U (ja) * 1976-02-14 1977-08-17
JP2013204530A (ja) * 2012-03-29 2013-10-07 Kubota Corp ポンプ
JP2014206140A (ja) * 2013-04-16 2014-10-30 株式会社日立製作所 両吸込渦巻ポンプ
US20150300365A1 (en) * 2012-11-29 2015-10-22 Ruhrpumpen Sa De Cv Improved seal system for centrifugal pumps having axially split casings
CN105650000A (zh) * 2015-12-30 2016-06-08 中国神华能源股份有限公司 一种循环水泵及改造循环水泵的方法
JP2017044182A (ja) * 2015-08-28 2017-03-02 株式会社荏原製作所 両吸込渦巻ポンプ
US20180087512A1 (en) * 2016-09-27 2018-03-29 W.S. Darley & Co. Double volute end suction pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435403U (ja) 1977-08-15 1979-03-08
JP6117658B2 (ja) * 2013-09-06 2017-04-19 本田技研工業株式会社 遠心ポンプ
CN204284001U (zh) 2014-10-30 2015-04-22 广州市白云泵业集团有限公司 一种能改善轴封泄露问题的单级双吸离心泵
CN104791254A (zh) 2015-04-22 2015-07-22 大连深蓝泵业有限公司 大功率轴向剖分双吸两级泵
JP6625360B2 (ja) * 2015-07-27 2019-12-25 株式会社荏原製作所 ポンプ
CN106481567B (zh) * 2015-08-26 2020-10-16 德昌电机(深圳)有限公司 电动液泵
CN106122032A (zh) 2016-08-29 2016-11-16 湖南长泵业有限公司 一种双进口水平中开式离心泵
CN208138206U (zh) 2018-04-10 2018-11-23 广东肯富来泵业股份有限公司 适合双工况运行的水平中开双吸泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287397A (en) * 1940-03-29 1942-06-23 Herbert E Rupp Double suction liquid pump
JPS52108145U (ja) * 1976-02-14 1977-08-17
JP2013204530A (ja) * 2012-03-29 2013-10-07 Kubota Corp ポンプ
US20150300365A1 (en) * 2012-11-29 2015-10-22 Ruhrpumpen Sa De Cv Improved seal system for centrifugal pumps having axially split casings
JP2014206140A (ja) * 2013-04-16 2014-10-30 株式会社日立製作所 両吸込渦巻ポンプ
JP2017044182A (ja) * 2015-08-28 2017-03-02 株式会社荏原製作所 両吸込渦巻ポンプ
CN105650000A (zh) * 2015-12-30 2016-06-08 中国神华能源股份有限公司 一种循环水泵及改造循环水泵的方法
US20180087512A1 (en) * 2016-09-27 2018-03-29 W.S. Darley & Co. Double volute end suction pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483652A (zh) * 2020-10-26 2022-05-13 佛山市顺德区美的洗涤电器制造有限公司 一种蜗壳、风机及烟机
EP4102077A1 (en) * 2021-06-07 2022-12-14 Ebara Corporation Pump casing

Also Published As

Publication number Publication date
CN112292533A (zh) 2021-01-29
JP7213141B2 (ja) 2023-01-26
JP2020002948A (ja) 2020-01-09
US20210115940A1 (en) 2021-04-22
US11441576B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2019244590A1 (ja) 両吸込渦巻ポンプ
US8272838B2 (en) Impeller and pump including the same
JP6184955B2 (ja) 軸推力を生じる両吸込羽根車を備えるポンプ
KR100970822B1 (ko) 입축형 원심펌프 및 그 로터 및 공기 조화 장치
JP5067928B2 (ja) 軸流ターボ機械
JPWO2014049665A1 (ja) 遠心ポンプ用羽根車及び遠心ポンプ
JP2016109082A (ja) 羽根車およびターボ機械
JP6625360B2 (ja) ポンプ
TWI704291B (zh) 磁驅泵浦
JP2017031965A (ja) 両吸込渦巻ポンプ
KR101849362B1 (ko) 회전 기계
JP7161341B2 (ja) 片吸込ポンプ
JP6583558B2 (ja) 遠心送風機
JP7330508B2 (ja) 羽根車及び水中ポンプ
US20130156545A1 (en) Dual-flow centrifugal pump
WO2023127891A1 (ja) ポンプ
JP7159896B2 (ja) 水中ポンプ
JP2019203420A (ja) ポンプおよび羽根車のバランス調整方法
JP7488120B2 (ja) キャビテーション抑制装置および渦巻ポンプ
JP7132825B2 (ja) ポンプケーシングおよびポンプ装置
JP2017180241A (ja) ポンプおよびライナリング
JP2017044182A (ja) 両吸込渦巻ポンプ
KR102530324B1 (ko) 하부 메탈베어링을 포함하는 입형다단펌프
KR102571417B1 (ko) 터보 압축기
JP2019056344A (ja) 遠心ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822339

Country of ref document: EP

Kind code of ref document: A1