WO2019244519A1 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
WO2019244519A1
WO2019244519A1 PCT/JP2019/019271 JP2019019271W WO2019244519A1 WO 2019244519 A1 WO2019244519 A1 WO 2019244519A1 JP 2019019271 W JP2019019271 W JP 2019019271W WO 2019244519 A1 WO2019244519 A1 WO 2019244519A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
separator
projection lens
front surface
distribution pattern
Prior art date
Application number
PCT/JP2019/019271
Other languages
English (en)
French (fr)
Inventor
佳百合 樹下
定幸 小西
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to EP19821997.4A priority Critical patent/EP3812651B1/en
Priority to US17/254,277 priority patent/US11293617B2/en
Priority to CN201980041407.XA priority patent/CN112292562B/zh
Publication of WO2019244519A1 publication Critical patent/WO2019244519A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region

Definitions

  • the present invention relates to a vehicular lamp, and in particular, can suppress a relatively high luminous intensity of a part (for example, about 4 degrees below a horizontal line) of a low beam light distribution pattern, and also relates to a vertical direction with respect to a horizontal direction.
  • the present invention relates to a vehicular lamp capable of forming a low-beam light distribution pattern having a uniform thickness.
  • a projection lens constituted by a first lens and a second lens, a light guide lens disposed behind the projection lens, and a light guide lens disposed behind the light guide lens, and pass through the light guide lens and the projection lens in this order.
  • a vehicular lamp including a low-beam light source that emits light forming a low-beam light distribution pattern by being illuminated forward in a forward direction (for example, see Patent Document 1 (FIG. 1 and the like)).
  • the inventors of the present invention have studied and found that, in the above-described vehicle lighting device of the related art, a part of the low beam light distribution pattern (for example, 4 degrees below the horizontal line) is satisfied, although the law required for the low beam light distribution pattern is satisfied. (In the vicinity), the luminous intensity becomes relatively high, causing, for example, luminous intensity unevenness (luminance unevenness), and the thickness of the central portion of the low-beam light distribution pattern becomes thinner than the left and right side thicknesses. The ring was found to drop.
  • an object of the present invention is to provide a vehicular lamp capable of forming a low-beam light distribution pattern having a uniform thickness in the vertical direction (that is, capable of suppressing a reduction in light distribution feeling). .
  • one aspect of the present invention is a projection lens, a separator disposed behind the projection lens, and disposed behind the separator, and transmits through the separator and the projection lens in this order.
  • a low-beam light source that emits light that forms a low-beam light distribution pattern when illuminated forward, and the vehicle lighting device includes: an upper separator body including a front surface and a rear surface opposite to the front surface.
  • a first light guide portion extending from a lower portion of the upper separator body toward the low-beam light source, and having a first light-entering surface at a front end facing the low-beam light source, wherein the projection lens has a front surface;
  • the rear surface of the projection lens includes an upper light-entering surface facing the front surface of the upper separator body, the light source for low beam,
  • the light guide section, the upper separator main body and the upper light incident surface are each disposed above a reference axis that passes through the focal point of the projection lens and extends in the vehicle front-rear direction.
  • the upper surface of the upper separator body is in surface contact with the lower part of the upper light-entering surface of the rear surface of the projection lens, and a space is provided between the upper part of the lower surface of the upper separator body and the lower part of the upper light-entering surface of the rear surface of the projection lens.
  • the distance between the front surface of the upper separator main body and the upper light incident surface of the rear surface of the projection lens increases as going upward.
  • the surface shape of the upper light incident surface on the rear surface of the projection lens is such that the luminous intensity distribution of the light distribution pattern for low beam satisfies a rule, and in the horizontal direction, the light distribution for low beam.
  • the thickness of the pattern in the vertical direction is adjusted to be uniform.
  • a preferred embodiment further includes an ADB light source that emits light that forms the ADB light distribution pattern by being radiated forward through the separator and the projection lens in this order
  • the separator includes: A second separator having a lower separator body including a front surface and a rear surface opposite thereto, and a second light guide extending from an upper portion of the lower separator body toward the ADB light source, and having a second light incident surface at a front end facing the ADB light source;
  • a light unit, and the rear surface of the projection lens further includes a lower light-entering surface facing the front surface of the lower separator body, the ADB light source, the second light guide unit, the lower separator body, and The lower light incident surfaces are respectively disposed below the reference axis, and the front surface of the lower separator body is in surface contact with the lower light incident surface of the rear surface of the projection lens.
  • FIG. 1 is a perspective view of a vehicle lamp 10.
  • A The top view of the vehicle lamp 10,
  • FIG. 2 is a cross-sectional view of the vehicle lamp 10 shown in FIG. 1 cut along a horizontal plane (a plane including an X axis and a Y axis) including a reference axis AX.
  • FIG. 2 is a cross-sectional view of the vehicle lamp 10 shown in FIG. 1 cut along a vertical plane (a plane including an X axis and a Z axis) including a reference axis AX.
  • FIG. 2 is an exploded perspective view of the vehicle lamp 10.
  • FIG. 2 is a perspective view of a structure in which a heat sink 20, a light source module 30, a holder 40, and a separator 50 are combined.
  • FIG. 4 is a perspective view of a separator 50.
  • A An example of the low beam light distribution pattern P Lo
  • (D) is a diagram illustrating a state in which a plurality of regions (for example, a plurality of regions A1 to A4 that are individually turned on and off) constituting an ADB light distribution pattern are circular and overlap each other.
  • a plurality of regions for example, a plurality of regions A1 to A4 that are individually turned on and off
  • the upper separator main body 52 is omitted and a separator having only the first light guide portion 52d (the same configuration as the above-described conventional light guide lens) is used.
  • This is an example of a low-beam light distribution pattern P Lo formed when the upper separator main body 52 is omitted and a separator having only the first light guide section 52d is used.
  • FIG. 13 is a cross-sectional view of the vehicle lamp 10A shown in FIG. 12 taken along the line AA. It is a perspective view of 50 A of separators.
  • A A top view of a separator 50A, (b) a rear view, (c) a bottom view, and (d) a side view. It is an example of a holding structure of a separator 50A and a primary lens 60A. It is a figure for explaining the optical path of light from low beam light source 32a.
  • FIG. 9 is a diagram for explaining a relationship between an upper light incident surface 60Ab1 and a lower light incident surface 60Ab2 of the primary lens 60A and a focal plane FP of the projection lens 90. It is a modification of the focal plane FP of the projection lens 90.
  • FIG. 5 A diagram for explaining a gap S13 between the front surface 52Aa of the upper separator body 52A and the front surface 53a of the lower separator body 53 from which light from the ADB light source 32b is emitted.
  • B When the gap S13 occurs.
  • 5 is an example of a combined light distribution pattern including a light distribution pattern for low beam and a light distribution pattern for ADB, which is formed in FIG. It is a partial longitudinal section of separator 50B.
  • A) is a perspective view of an upper separator main body 52B
  • (b) is a perspective view of a lower separator main body 53B.
  • FIG. 1 is a perspective view of a vehicular lamp 10.
  • 2A is a top view of the vehicular lamp 10
  • FIG. 2B is a front view
  • FIG. 2C is a side view.
  • the vehicle lighting device 10 shown in FIGS. 1 and 2 includes a low-beam light distribution pattern P Lo (see FIG. 9A), or a low-beam light distribution pattern P Lo and an ADB (Adaptive Driving Beam) light distribution pattern P.
  • This is a vehicular headlamp that can form a combined light distribution pattern including ADB (see FIG. 9C), and is mounted on the left and right sides of the front end of a vehicle (not shown).
  • the low-beam light distribution pattern P Lo and the ADB light distribution pattern PADB are formed on a virtual vertical screen (disposed approximately 25 m ahead of the vehicle front) facing the front of the vehicle.
  • XYZ axes are defined. The X axis extends in the vehicle front-rear direction, the Y axis extends in the vehicle width direction, and the Z axis extends in the vertical direction.
  • FIG. 3 is a cross-sectional view of the vehicle lamp 10 shown in FIG. 1 cut along a horizontal plane including the reference axis AX (a plane including the X axis and the Y axis).
  • FIG. 4 is a cross-sectional view of the vehicle lamp 10 shown in FIG. 1 cut along a vertical plane (a plane including the X axis and the Z axis) including the reference axis AX.
  • FIG. 5 is an exploded perspective view of the vehicle lamp 10.
  • the vehicle lamp 10 of the present embodiment includes a heat sink 20, a light source module 30, a holder 40, a separator 50, a primary lens 60, a retainer 70, a secondary lens 80, and the like.
  • the vehicle lamp 10 is disposed in a lamp room including an outer lens and a housing, and is attached to a housing or the like.
  • the heat sink 20 is made of aluminum die-cast and includes a base 22 including a front surface 22a and a rear surface 22b opposite thereto.
  • Front surface 22a includes light source module mounting surface 22a1 and peripheral surface 22a2 surrounding light source module mounting surface 22a1.
  • the light source module mounting surface 22a1 and the peripheral surface 22a2 are, for example, planes parallel to a plane including the Y axis and the Z axis.
  • Screw holes 22a5 (three places in FIG. 5) are provided on the light source module mounting surface 22a1 to fix the light source module 30 with screws.
  • positioning pins 22a6 (two locations in FIG. 5) are provided on the light source module mounting surface 22a1 to position the light source module 30.
  • the peripheral surface 22a2 includes a holder contact surface 22a3 with which the holder 40 contacts, and a retainer contact surface 22a4 with which the retainer 70 contacts.
  • the retainer contact surfaces 22a4 are provided on both left and right sides of the peripheral surface 22a2.
  • the thickness (thickness in the X-axis direction) between the retainer contact surface 22a4 and the rear surface 22b is greater than the thickness (thickness in the X-axis direction) between the holder contact surface 22a3 and the rear surface 22b, and forms a step. ing.
  • the base 22 is provided with screw holes 22c (two locations in FIG. 3) into which the screws N1 are inserted.
  • the screw hole 22c penetrates the retainer contact surface 22a4 and the rear surface 22b.
  • first extension 24 extending rearward (in the X-axis direction) from each of the left and right sides of the base 22.
  • second extension 26 extending laterally (Y-axis direction) is provided.
  • a radiation fin 28 is provided on the rear surface 22b of the base 22.
  • the light source module 30 includes a plurality of low beam light sources 32a and a plurality of ADB light sources 32b, and a substrate 34 on which a plurality of low beam light sources 32a, a plurality of ADB light sources 32b, and connectors 34c are mounted.
  • FIG. 8C is a front view (perspective view) of the plurality of low-beam light sources 32a and the plurality of ADB light sources 32b through the separator 50.
  • the plurality of low-beam light sources 32a are mounted on the board 34 in a form arranged in the upper stage and in the Y-axis direction.
  • the plurality of ADB light sources 32b are mounted on the board 34 in a form arranged in the lower stage and in the Y-axis direction.
  • Each of the light sources 32a and 32b is, for example, a semiconductor light-emitting element such as an LED or an LD having a rectangular (for example, 1 mm square) light-emitting surface, and the substrate 34 with each light-emitting surface facing forward (front).
  • a semiconductor light-emitting element such as an LED or an LD having a rectangular (for example, 1 mm square) light-emitting surface, and the substrate 34 with each light-emitting surface facing forward (front).
  • FIG. 8C represent light emitting surfaces of the respective light sources 32a and 32b.
  • the substrate 34 is provided with through holes 34a (two locations in FIG. 5) into which the positioning pins 22a6 of the heat sink 20 are inserted, and cutouts S1 (three locations in FIG. 5) into which the screws N2 are inserted.
  • the screw N2 inserted into the cutout portion S1 is screwed into the screw hole 22a5 of the heat sink 20 in a state where the positioning pins 22a6 of the heat sink 20 are inserted into the through holes 34a of the substrate 34. It is fixed to the heat sink 20 (light source module mounting surface 22a1).
  • the holder 40 is made of a synthetic resin such as acrylic or polycarbonate, and includes a cup-shaped holder body 42 that is open at the front side and closed at the rear side.
  • the front surface 42a of the holder main body 42 has a shape in which the rear surface of the separator 50 is inverted (backward) so that the rear surface of the separator 50 (the rear surface 52b of the upper separator main body 52 and the rear surface 53b of the lower separator main body 53) makes surface contact. (A concave spherical surface).
  • the holder main body 42 is provided with a through hole 42c into which the first light guide 52d and the second light guide 53d of the separator 50 are inserted.
  • the holder main body 42 is provided with a cylindrical portion 44 extending rearward (X-axis direction) from the outer peripheral portion of the holder main body 42.
  • a flange 46 is provided at the distal end of the cylindrical portion 44 so as to contact the holder contact surface 22a3 of the heat sink 20.
  • a notch S4 is provided in the holder body 42 (and the cylindrical portion 44).
  • a convex portion 48 and a convex portion 49 are provided on the front opening end surface 40 a of the holder 40.
  • FIG. 6 is a perspective view of a structure in which the heat sink 20, the light source module 30, the holder 40, and the separator 50 are combined.
  • FIG. 7 is a perspective view of the separator 50.
  • the separator 50 is a cup-shaped member made of silicone resin and having an open front side and a closed rear side.
  • the separator 50 includes an upper separator main body 52 and a lower separator main body 53.
  • the upper separator main body 52 is disposed above the reference axis AX, and the lower separator main body 53 is disposed below the reference axis AX.
  • the reference axis AX extends in the X-axis direction.
  • the upper half of the rear surface 60b of the primary lens 60 is arranged such that the upper half of the rear surface 60b (spherical surface convex toward the rear) of the upper surface of the primary lens 60 is in surface contact with the reference axis AX. It is configured as an inverted surface (spherical surface concave toward the rear).
  • the rear surface 52b (see FIGS. 3 and 4) of the upper separator main body 52 is arranged such that an upper half of the front surface 42a (a spherical surface concave toward the front) of the holder 40 (holder main body 42) is in upper surface contact with the reference axis AX.
  • the upper half of the front surface 42a of the holder 40 (holder main body 42) is configured as a reversed surface (spherical surface convex toward the rear).
  • the lower edge of the front surface 52a of the upper separator main body 52 has a stepped edge portion 52a1 and a stepped edge portion 52a1 having a shape corresponding to the cutoff line CL Lo (CL1 to CL3). It includes extended edge portions 52a2, 52a3 arranged on both sides. Note that the extended edge portion may be provided on only one side.
  • the stepped edge portion 52a1 includes a side e1 corresponding to the left horizontal cutoff line CL1, a side e2 corresponding to the right horizontal cutoff line CL2, and an oblique cutoff line CL3 connecting the left horizontal cutoff line CL1 and the right horizontal cutoff line CL2. Is included.
  • the extended edge portion 52a2 is arranged at the same position as the side e1 in the Z-axis direction.
  • the extended edge portion 52a3 is arranged at the same position as the side e2 in the Z-axis direction.
  • the lower end surface 52c of the upper separator main body 52 is a surface extending in the horizontal direction (X-axis direction) from the lower end edge of the front surface 52a of the upper separator main body 52 toward the rear surface 52b of the upper separator main body 52.
  • a first light guide section 52d is provided on a rear surface 52b of the upper separator main body 52 to guide light from the light source module 30 (the plurality of low-beam light sources 32a).
  • the first light guide portion 52d has a base end provided in a partial area including the stepped edge portion 52a1 of the rear surface 52b of the upper separator main body 52, and is connected to the light source module 30 (the plurality of low beam light sources 32a). Extending towards. Note that a part of the region including the stepped edge portion 52a1 is a region of the rear surface 52b of the upper separator main body 52 facing the light source module 30 (the light emitting surfaces of the plurality of low beam light sources 32a).
  • the first light guide 52d is inserted into the through hole 42c of the holder 40.
  • a first light entrance surface 52e is provided at the tip of the first light guide 52d.
  • the first light incident surface 52e is, for example, a plane parallel to a plane including the Y axis and the Z axis.
  • the first light incident surface 52e is arranged at a position facing the light source module 30 (the light emitting surfaces of the plurality of low beam light sources 32a) in a state where the first light guide portion 52d is inserted into the through hole 42c of the holder 40. (See FIG. 4).
  • the distance between the first light incident surface 52e and the light source module 30 (the light emitting surfaces of the plurality of low beam light sources 32a) is, for example, 0.2 mm.
  • a flange 52 f is provided on the front opening end surface of the upper separator main body 52.
  • a through hole 52f1 one position in FIGS. 5 and 7) into which the protrusion 48 of the holder 40 is inserted
  • a through hole 52f2 (FIGS. 5 and 7) into which the protrusion 49 of the holder 40 is inserted. (Two places).
  • the lower half of the rear surface 60b of the primary lens 60 is arranged such that the lower half of the front surface 53a of the primary lens 60 is in contact with the lower surface 60b of the rear surface 60b (spherical surface convex toward the rear) of the primary lens 60. It is configured as an inverted surface (spherical surface concave toward the rear).
  • the rear surface 53b (see FIGS. 3 and 4) of the lower separator main body 53 is in such a manner that a lower half of the front surface 42a (a spherical surface concave toward the front) of the holder 40 (holder main body 42) is in lower surface contact with the reference axis AX.
  • the lower half of the front surface 42a of the holder 40 (holder main body 42) is configured as a surface of an inverted shape (spherical surface convex toward the rear).
  • the upper edge of the front surface 53a of the lower separator main body 53 has a stepped edge portion 53a1 (sides e1 'to e3') having a shape obtained by inverting the stepped edge portion 52a1, and a stepped portion. It includes extended edge portions 53a2, 53a3 arranged on both sides of the edge portion 53a1. Note that the extended edge portion may be provided on only one side.
  • the extended edge 53a2 is arranged at the same position as the side e1 'in the Z-axis direction.
  • the extended edge portion 53a3 is arranged at the same position as the side e2 'in the Z-axis direction.
  • the upper end surface 53c (see FIG. 4) of the lower separator main body 53 is a surface extending in the horizontal direction (X-axis direction) from the upper end edge of the front surface 53a of the lower separator main body 53 toward the rear surface 53b of the lower separator main body 53.
  • a second light guide unit 53d is provided on the rear surface 53b of the lower separator main body 53 to guide light from the light source module 30 (the plurality of ADB light sources 32b).
  • the base end of the second light guide 53d is provided in a part of the rear surface 53b of the lower separator main body 53 including the stepped edge 53a1, and is connected to the light source module 30 (the plurality of ADB light sources 32b). Extending towards.
  • the partial area including the stepped edge portion 53a1 is an area of the rear surface 53b of the lower separator main body 53 facing the light source module 30 (light emitting surfaces of the plurality of ADB light sources 32b).
  • the second light guide 53d is inserted into the through hole 42c of the holder 40.
  • a second light entrance surface 53e is provided at the tip of the second light guide 53d.
  • a plurality of regions for example, a plurality of regions A1 to A4 that are individually turned on and off
  • configuring the ADB light distribution pattern are circular as shown in FIG. 9B, and is adjusted so as to be formed in a state of being divided by vertical edges as shown in FIG. 9B.
  • 9B and 9D show ADB light distribution patterns formed when the number of ADB light sources 32b is four. 9B and 9D indicate that the ADB light source 32b corresponding to the hatched area is turned off.
  • the second light incident surface 53e is arranged at a position facing the light source module 30 (the light emitting surface of the plurality of ADB light sources 32b) in a state where the second light guide portion 53d is inserted into the through hole 42c of the holder 40. (See FIG. 4).
  • the distance between the second light incident surface 53e and the light source module 30 (the light emitting surfaces of the plurality of ADB light sources 32b) is, for example, 0.2 mm.
  • a flange 53 f is provided on the front opening end surface of the lower separator main body 53.
  • the flange 53f is provided with through holes 53f1 (two locations in FIGS. 5 and 7) into which the protrusions 48 of the holder 40 are inserted.
  • the notch S5 is provided in the lower separator main body 53 so that the connector 34c of the light source module 30 does not contact (interfere with) the lower separator main body 53.
  • the upper separator body 52 and the lower separator body 53 are in line contact with the lower edge of the front surface 52a of the upper separator body 52 and the upper edge of the front surface 53a of the lower separator body 53, and
  • the separator 50 is formed by combining the lower end surface 52c of the upper separator main body 52 and the upper end surface 53c of the lower separator main body 53 in surface contact.
  • the first light guide portion 52d of the upper separator body 52 and the second light guide portion 53d of the lower separator body 53 are inserted (for example, press-fitted or fitted) into the through hole 42c of the holder 40.
  • the first light incident surface 52e of the separator main body 52 (first light guide 52d) faces the light source module 30 (the light emitting surface of the plurality of low beam light sources 32a), and the lower separator main body 53 (second light guide 53d).
  • the light source module 30 (the light emitting surfaces of the plurality of ADB light sources 32b) face each other (see FIGS.
  • the rear surface 53b of the lower separator main body 53 is placed in a state of being in surface contact with the front surface 42a of the holder 40 (holder main body 42) (see FIGS. 3 and 4).
  • the protrusion 48 of the holder 40 is inserted into the through hole 52f1 of the upper separator main body 52 and the through hole 53f1 of the lower separator main body 53 (see FIG. 6). Further, the protrusion 49 of the holder 40 is inserted into the through hole 52f2 of the upper separator main body 52 (see FIG. 6).
  • the primary lens 60 is a spherical lens including a front surface 60a and a rear surface 60b on the opposite side.
  • the front surface 60a is a spherical surface convex forward
  • the rear surface 60b is a spherical surface convex rearward.
  • the primary lens 60 is provided with a flange portion 62.
  • the flange portion 62 extends between the front surface 60a and the rear surface 60b so as to surround the reference axis AX.
  • the retainer 70 includes a retainer body 72 which is made of a synthetic resin such as acrylic or polycarbonate, and is a cylindrical body that becomes conical and widens from the front opening end face toward the rear opening end face.
  • the secondary lens 80 is made of a synthetic resin such as acrylic or polycarbonate and includes a lens body 82.
  • the lens body 82 includes a front surface 82a and a rear surface 82b opposite to the front surface 82a (see FIGS. 3 and 4).
  • the front surface 82a is a plane parallel to a plane including the Y axis and the Z axis
  • the rear surface 82b is a spherical surface convex toward the rear.
  • a cylindrical portion 84 is provided on the outer peripheral portion of the lens main body 82 so as to extend rearward (in the X-axis direction) from the outer peripheral portion of the lens main body 82.
  • the focal point F has a lower edge (stepped edge portion 52a1) of the front surface 52a of the upper separator main body 52 and an upper edge (front edge) of the front surface 53a of the lower separator main body 53.
  • a projection lens located in the vicinity of the attached edge portion 53a1) is formed.
  • the curvature of field (rear focal plane) of this projection lens is at the lower edge of the front surface 52a of the upper separator main body 52 (stepped edge portion 52a1) and at the upper edge of the front surface 53a of the lower separator main body 53 (stepped edge portion 53a1). They almost match.
  • the primary lens 60 and the secondary lens 80 constituting the projection lens for example, a spherical lens and a plano-convex lens described in Japanese Patent Application Laid-Open No. 2015-79660 can be used.
  • the secondary lens 80 having the above-described configuration is arranged such that the lens main body 82 is disposed in front of the primary lens 60 and the pressing and screw receiving portion 86 is in contact with the flange 76 of the retainer 70 (see FIGS. 3 and 3). (See FIG. 4).
  • the light from the plurality of low beam light sources 32a emits the first light incident surface 52e of the first light guide portion 52d of the upper separator main body 52.
  • the light is guided through the first light guide portion 52 d and exits from the front surface 52 a of the upper separator main body 52.
  • a luminous intensity distribution corresponding to the light distribution pattern for low beam is formed on the front surface 52a of the upper separator main body 52.
  • This luminous intensity distribution includes sides e1 to e3 (see FIG. 8A) corresponding to the cutoff lines CL Lo (CL1 to CL3).
  • the projection lens constituted by the primary lens 60 and the secondary lens 80 reversely projects this luminous intensity distribution forward.
  • a low-beam light distribution pattern P Lo including the cutoff lines CL (CL1 to CL3) at the upper end edge is formed.
  • the light from the plurality of ADB light sources 32b enters the second light guide surface 53e of the second light guide portion 53d of the lower separator main body 53, and the second light guide portion 53d
  • the light is guided inside, and is emitted from the front surface 53a of the lower separator body 53.
  • a luminous intensity distribution corresponding to the ADB light distribution pattern is formed on the front surface 53a of the lower separator main body 53.
  • This luminous intensity distribution includes sides e1 'to e3' (see FIG. 8B) corresponding to the cutoff lines CL ADB (CL1 'to CL3').
  • the projection lens constituted by the primary lens 60 and the secondary lens 80 reversely projects this luminous intensity distribution forward.
  • FIG. 9 (b) the light distribution pattern P ADB for ADB comprising a cut-off line CL ADB to the lower edge (CL1' ⁇ CL3') is formed.
  • FIG. 9 (b) represents the ADB light distribution pattern P ADB formed when a plurality of ADB light source 32b is four.
  • a hatched area in FIG. 9B indicates that the ADB light source 32b corresponding to the area is turned off.
  • the present inventors have studied and found that the vehicle lamp 10 having the above configuration satisfies the regulations required for the low beam light distribution pattern, but a part of the low beam light distribution pattern (for example, around 4 degrees below the horizontal line). It has been found that the luminous intensity becomes relatively high, for example, causing luminous intensity unevenness (luminance unevenness), and as a result, the light distribution feeling is reduced.
  • the reason why the luminous intensity of a part of the low-beam light distribution pattern (for example, around 4 degrees below the horizontal line) is high is that, of the light from the low-beam light source 32a, light having a relatively high luminous intensity (for example, the low-beam light source 32a) narrow angle direction of light) is part of the light distribution pattern P Lo low beam by constituted projection lens by the primary lens 60 and secondary lens 80 with respect to the optical axis AX 32a (see FIG. 4) (e.g., below the horizon (About 4 degrees).
  • FIG. 10 shows an example in which the upper separator main body 52 is omitted, and a separator (a light guide lens similar to the above-described related art) including only the first light guide 52d is used.
  • FIG. 10 when the upper separator main body 52 is omitted as the separator 50 and a separator including only the first light guide 52 d is used, a part of the low-beam light distribution pattern P Lo (for example, 4 11), the thickness TC at the center of the low-beam light distribution pattern P Lo becomes thinner than the thicknesses TL and TR on both the left and right sides, as shown in FIG. As a result, it was found that the light distribution feeling was reduced.
  • FIG. 11 is an example of a low-beam light distribution pattern P Lo formed when the upper separator main body 52 is omitted and a separator having only the first light guide portion 52d is used.
  • the thickness of the upper separator body 52 along the reference axis AX increases in the horizontal direction as the distance from the reference axis AX increases (see the thicknesses T1 and T2 in FIG. 3).
  • the light from the low-beam light source 32a that passes through the thicker part of the separator main body 52 has a longer optical path length in the upper separator main body 52. Idemitsu is considered to be due to.
  • a portion of the upper separator main body 52 far from the reference axis AX is a portion near the reference axis AX (for example, see a portion of the thickness T1 in FIG. 3). Thicker than). Therefore, light from the low-beam light source 32a that passes through a portion of the upper separator main body 52 that is far from the reference axis AX (for example, see the portion of the thickness T2 in FIG.
  • the present inventors have examined that the light distribution pattern for low beam has a longer vertical length, a lower density (a narrower bright range), and a lower maximum luminous intensity than the light distribution pattern for ADB.
  • the rear surface 60b of the primary lens 60 into which the light from the light source 32a enters is a spherical surface (spherical surface having a constant curvature), is coincident (surface contact), and the focal plane FP of the projection lens 90 and the ADB light source.
  • FIG. 19A is an example of an ADB light distribution pattern and a low beam light distribution pattern formed when the separator (a light guide lens similar to the above-described related art) shown in FIG. 10 is used.
  • the luminous intensity of a part of the low beam light distribution pattern (for example, around 4 degrees below the horizontal line) can be suppressed from becoming relatively high, and the thickness in the vertical direction with respect to the horizontal direction can be suppressed.
  • a vehicle lighting device 10A that can form a low-beam light distribution pattern that makes the light distribution uniform (that is, can suppress a decrease in light distribution feeling) will be described.
  • “uniform” is not limited to uniform in a strict sense. That is, it is “uniform” as long as it can be visually evaluated as uniform or substantially uniform.
  • the vehicle lamp 10A of the present embodiment is different from the vehicle lamp 10 of the first embodiment in that a separator 50A is used instead of the separator 50 and a primary lens 60A is used instead of the primary lens 60. Different. Otherwise, the configuration is the same as that of the first embodiment.
  • the description will be focused on the differences from the first embodiment, and the same components will be denoted by the same reference numerals and description thereof will be omitted as appropriate.
  • FIG. 12 is a cross-sectional view of the vehicle lamp 10A cut along a vertical plane (a plane including the X axis and the Z axis) including the reference axis AX.
  • FIG. 13 is a sectional view of the vehicle lamp 10A shown in FIG. 12 taken along the line AA. 12 and 13, the heat sink 20, the holder 40, the retainer 70 and the like are omitted.
  • the vehicular lamp 10A includes a secondary lens 80, a primary lens 60A disposed behind the secondary lens 80, a separator 50A disposed behind the primary lens 60A, and a separator 50A. And a plurality of low-beam light sources 32a (hereinafter simply referred to as a low-beam light source) that transmit light passing through the separator 50A, the primary lens 60A, and the secondary lens 80 in this order, and irradiating forward to form a low-beam light distribution pattern.
  • a low-beam light source a plurality of low-beam light sources 32a (hereinafter simply referred to as a low-beam light source) that transmit light passing through the separator 50A, the primary lens 60A, and the secondary lens 80 in this order, and irradiating forward to form a low-beam light distribution pattern.
  • ADB light source 32a and a plurality of ADB light sources 32b (hereinafter simply referred to as light sources) that transmit light passing through the separator 50A, the primary lens 60A, and the secondary lens 80 in this order, and irradiating forward to form an ADB light distribution pattern.
  • ADB light source 32b ).
  • the low beam light source 32a, the ADB light source 32b, the separator 50A, the primary lens 60A, and the secondary lens 80 are held by the heat sink 20, the holder 40, the retainer 70, and the like as in the first embodiment, so that the positional relationship shown in FIG. Is kept.
  • the secondary lens 80 (front surface 82a and rear surface 82b) and the primary lens 60A (front surface 60a) constitute a projection lens 90.
  • the projection lens 90 is a rear surface of the rearmost lens (in the present embodiment, the primary lens 60A and the secondary lens 80 in the present embodiment) among one or more lenses (the primary lens 60A and the secondary lens 80 in the present embodiment).
  • Optical surfaces other than the rear surface 60Ab of the lens 60A (the front surface 60a of the primary lens 60A, the front surface 82a and the rear surface 82b of the secondary lens 80 in this embodiment).
  • the focal plane FP of the projection lens 90 is, for example, a spherical surface having a constant curvature (see FIG. 20).
  • the focal point F of the projection lens 90 is located between the lower edge of the front surface 52Aa of the upper separator main body 52A and the upper edge of the front surface 53a of the lower separator main body 53 in the vertical direction. Although not shown, the focal point F of the projection lens 90 is located at the center of the lower edge of the front surface 52Aa of the upper separator main body 52A (and the upper edge of the front surface 53a of the lower separator main body 53) in the horizontal direction.
  • the reference axis AX passes through the focal point F and extends in the vehicle front-rear direction (X direction).
  • FIG. 14 is a perspective view of the separator 50A
  • FIG. 15A is a top view of the separator 50A
  • FIG. 15B is a rear view
  • FIG. 15C is a bottom view
  • FIG. 15D is a side view.
  • the separator 50A is a cup-shaped member made of silicone resin and having an opening on the front side and a closure on the rear side as shown in FIG.
  • the separator 50A includes an upper separator body 52A, a first light guide 52d, a first extension 54, a second extension 55, a lower separator body 53, and a second light guide. 53d and a flange portion 56, and these are configured as one part integrally formed.
  • the upper separator main body 52A is arranged above the reference axis AX, and the lower separator main body 53 is arranged below the reference axis AX.
  • the upper separator main body 52A is a thin plate-shaped light guide including a front surface 52Aa and a rear surface 52Ab opposite thereto. Specifically, the upper separator main body 52A curves along the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A in the horizontal cross section (see FIG. 13), and extends upward in the vertical cross section. (See FIG. 12).
  • the lower edge of the front surface 52Aa of the upper separator main body 52A includes a stepped edge portion 52a1 (not shown in FIG. 12) having a shape corresponding to the cutoff line CL Lo (CL1 to CL3), as in the first embodiment.
  • the upper separator main body 52A is arranged with the front surface 52Aa facing the rear surface 60Ab (the upper light incident surface 60Ab1) of the primary lens 60A.
  • the lower part of the front surface 52Aa of the upper separator main body 52A is in surface contact with the lower part of the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A.
  • a space S is formed between a portion above the lower portion of the front surface 52Aa of the upper separator main body 52A and a portion above the lower portion of the rear surface 60Ab (the upper light incident surface 60Ab1) of the primary lens 60A.
  • the light from the low beam light source 32a emitted from the first light guide portion 52d (front surface 52Aa) of the upper separator main body 52A becomes diffused light, and reaches the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A.
  • the light becomes weaker as the distance (space S) between the front surface 52Aa of the upper separator main body 52A and the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A increases (that is, as it goes upward from the reference axis AX).
  • the low beam light distribution pattern has an ideal luminous intensity distribution in which the light distribution pattern for a low beam decreases in a gradation form from the upper edge to the lower side.
  • the vertical length H1 (see FIG. 12) of a portion (surface contact portion) where the lower portion of the front surface 52Aa of the upper separator main body 52A and the lower portion of the rear surface 60b (upper light incident surface 60Ab1) of the primary lens 60A are in surface contact. For example, it is 0.7 mm.
  • a high luminous intensity zone having a relatively high luminous intensity can be formed near the cutoff line of the low beam light distribution pattern.
  • the vertical length of the high luminous intensity zone can be adjusted.
  • the front surface 52Aa of the upper separator main body 52A receives light from the low-beam light source 32a guided inside the upper separator main body 52A while repeating total reflection between the front surface 52Aa and the rear surface 52Ab of the upper separator main body 52A.
  • it is configured as a curved surface slightly convex toward the front so as to emit light from the front surface 52Aa of the 52A (see FIG. 17).
  • the rear surface 52Ab of the upper separator main body 52A is also configured as a curved surface slightly convex forward.
  • the thickness T (see FIG. 12) of the upper separator body 52A is, for example, 2 mm in consideration of moldability and the like.
  • the vertical length H2 (see FIG. 12) of the upper separator main body 52A is, for example, 7 mm in consideration of the vertical length (thickness) of the low beam light distribution pattern. By adjusting the length H2, the vertical length of the low beam light distribution pattern can be adjusted.
  • the first light guide 52d is a thin plate light guide including an upper surface 52d1 and a lower surface 52d2 on the opposite side.
  • the first light guide portion 52d extends from a lower portion of the upper separator main body 52A (rear surface 52Ab) toward the low-beam light source 32a, and has a first light-entering surface 52e at an end thereof, to which the low-beam light source 32a faces.
  • the first light entrance surface 52e is a surface on which light from the low beam light source 32a enters the separator 50A (the first light guide 52d), and is, for example, a plane parallel to a plane including the Y axis and the Z axis. is there.
  • the first extension portion 54 and the second extension portion 55 are so-called connecting portions where the optical function is not intended.
  • the first extension 54 extends forward from the upper end of the upper separator body 52A.
  • the second extension 55 extends from the front end of the first extension 54 along the rear surface 60Ab of the primary lens 60A.
  • the lower separator main body 53 is a thin plate-shaped light guide including a front surface 53a and a rear surface 53b on the opposite side.
  • the upper edge of the front surface 53a of the lower separator main body 53 includes a stepped edge portion 53a1 (not shown in FIG. 12) having a shape obtained by inverting the stepped edge portion 52a1, as in the first embodiment.
  • the second light guide portion 53d extends from the upper portion of the lower separator main body 53 (rear surface 53b) toward the ADB light source 32b, and has a second light entrance surface 53e at the tip to which the ADB light source 32b faces.
  • the second light incident surface 53e is a surface on which light from the ADB light source 32b enters the separator 50A (the second light guide 53d), and is, for example, a plane parallel to a plane including the Y axis and the Z axis. is there.
  • FIG. 16 shows an example of a structure for holding the separator 50A and the primary lens 60A.
  • the separator 50A having the above structure is sandwiched between the holder 40 and the retainer 70 together with the primary lens 60A.
  • the first light guide portion 52d and the second light guide portion 53d are inserted into the through holes 42c of the holder 40, and the first light incident surface 52e and the low beam light source 32a (light emitting surface) face each other.
  • the light incident surface 53e and the ADB light source 32b (light emitting surface) face each other, and the rear surface (rear surface 52Ab, 53b, etc.) of the separator 50A is in surface contact with the front surface 42a of the holder 40 (holder body 42). It is sandwiched between the holder 40 and the retainer 70 together with the primary lens 60A.
  • the primary lens 60A is made of a transparent resin such as acrylic or polycarbonate, and is a spherical lens including a front surface 60a and a rear surface 60Ab on the opposite side as shown in FIG.
  • the front surface 60a is a spherical surface convex forward
  • the rear surface 60Ab is a spherical surface convex rearward.
  • the flange portion 62 is provided on the primary lens 60A. The flange portion 62 extends so as to surround the reference axis AX between the front surface 60a and the rear surface 60Ab.
  • the rear surface 60Ab of the primary lens 60A includes an upper light incident surface 60Ab1 disposed above the reference axis AX and a lower light incident surface 60Ab2 disposed below the reference axis AX.
  • the upper light incident surface 60Ab1 is a surface on which light from the low beam light source 32a emitted from the front surface 52Aa of the upper separator main body 52A enters the primary lens 60A.
  • the upper light incident surface 60Ab1 is provided in a region of the rear surface 60Ab of the primary lens 60A facing the front surface 52Aa of the upper separator main body 52A.
  • a lower portion of the upper light incident surface 60Ab1 coincides with the rear focal plane FP of the projection lens 90.
  • the portion above the lower part of the upper light incident surface 60Ab1 does not coincide with the rear focal plane FP of the projection lens 90, and is inclined forward with respect to the rear focal plane FP.
  • the surface shape of the upper light incident surface 60Ab1 satisfies the rules required for the low beam light distribution pattern, and the light intensity of a part of the low beam light distribution pattern (for example, around 4 degrees below the horizontal line) becomes relatively high. Adjustment is performed so that the thickness can be suppressed and the thickness in the vertical direction becomes uniform in the horizontal direction (that is, the deterioration of the light distribution feeling can be suppressed).
  • the surface shape of the upper light incident surface 60Ab1 is adjusted so that the luminous intensity distribution of the low beam light distribution pattern decreases in a gradation manner from the upper end edge of the low beam light distribution pattern downward.
  • the surface shape of the front surface 52Aa of the upper separator main body 52A may be similarly adjusted.
  • the surface shape of the upper light incident surface 60Ab1 is adjusted using predetermined simulation software, and the light distribution pattern for low beam (luminous intensity distribution or the like) is checked each time the adjustment is made. Satisfies the regulations required for the pattern, can suppress a relatively high luminous intensity of a part of the low beam light distribution pattern (for example, around 4 degrees below the horizontal line), and reduce the thickness in the vertical direction with respect to the horizontal direction. It is possible to find the surface shape of the upper light incident surface 60Ab1 on which the low-beam light distribution pattern that is uniform (that is, the light distribution feeling can be suppressed from being lowered) is formed.
  • the lower light incident surface 60Ab2 is a surface on which light from the ADB light source 32b emitted from the front surface 53a of the lower separator main body 53 enters the primary lens 60A.
  • the lower light incident surface 60Ab2 is provided in a region of the rear surface 60Ab of the primary lens 60A facing the front surface 53a of the lower separator main body 53.
  • the lower light incident surface 60Ab2 coincides with the rear focal plane FP of the projection lens 90.
  • the primary lens 60A having the above configuration is sandwiched between the holder 40 and the retainer 70 together with the separator 50A.
  • the flange portion 62 contacts the flange portion 56 of the separator 50A
  • a part of the rear surface 60Ab makes surface contact with the second extension 55 of the separator 50A
  • the lower portion of the rear surface 60Ab (the upper light incident surface 60Ab1) is
  • the lower surface of the front surface 52Aa of the upper separator main body 52A makes surface contact with the lower portion of the front surface 52Aa
  • the rear surface 60Ab (lower light incident surface 60Ab2) makes surface contact with the front surface 53a of the lower separator main body 53
  • the front surface 52Aa of the upper separator main body 52 and the primary lens 60A In a state where the space S is formed between the rear surface 60Ab (the upper light incident surface 60Ab1), the space S is sandwiched between the holder 40 and the retainer 70 together with the separator 50A.
  • FIG. 20 is a diagram for explaining the relationship between the upper light incident surface 60Ab1 and lower light incident surface 60Ab2 of the primary lens 60A and the focal plane FP of the projection lens 90.
  • the lower part of the upper light incident surface 60Ab1 of the primary lens 60A and the upper part of the lower light incident surface 60Ab2 of the primary lens 60A are defined as a first region B1, and are higher than the lower part of the upper light incident surface 60Ab1 of the primary lens 60A.
  • a second region B2 and a portion below the upper part of the lower light incident surface 60Ab2 of the primary lens 60A is a third region B3, the first region B1 coincides with the focal plane FP of the projection lens 90
  • the second area B2 is disposed forward (or rearward) with respect to the focal plane FP of the projection lens 90
  • the third area B3 is disposed rearward (or forward) with respect to the focal plane FP of the projection lens 90. I have.
  • the distance between the second area B2 and the focal plane FP of the projection lens 90 increases as the distance from the reference axis AX increases.
  • the distance between the third area B3 and the focal plane FP of the projection lens 90 increases as going downward from the reference axis AX.
  • a high luminous intensity zone having a relatively high luminous intensity near the cutoff line of the light distribution pattern for low beam and a high luminous intensity having a relatively high luminous intensity near the lower edge of the light distribution pattern for ADB are provided.
  • the vertical length of the band can be adjusted.
  • the vertical length of the low beam light distribution pattern can be adjusted.
  • the vertical length of the ADB light distribution pattern can be adjusted.
  • the secondary lens 80 is a plano-convex lens made of a transparent resin such as acrylic or polycarbonate and including a front surface 82a and a rear surface 82b on the opposite side.
  • the front surface 82a is a plane parallel to a plane including the Y axis and the Z axis, and the rear surface 82b is a spherical surface convex toward the rear.
  • FIG. 17 is a diagram for explaining the optical path of light from the low beam light source 32a.
  • a part of the light, for example, light Ray1 (for example, low-beam light) of narrow-angle direction with respect to the optical axis AX 32a of use light source 32a is to Idemitsu directly from the lower portion of the front surface 52Aa of the upper separator body 52A, further, entering from above the light incident surface 60Ab1 primary lens 60A to the primary lens 60A
  • the light is projected by a projection lens 90 composed of a primary lens 60A and a secondary lens 80, and is used to form a low-beam light distribution pattern.
  • the light from the low-beam light source 32a that has entered the separator 50A (the first light-guiding unit 52d)
  • another part of the light for example, the light Ray2 (for example, the low-beam light source 32a) having a relatively low luminous intensity.
  • the light in a wide angle direction with respect to the optical axis AX 32a ) is guided in the upper separator main body 52A while repeating total reflection between the front surface 52Aa and the rear surface 52Ab of the upper separator main body 52A to be guided into the front surface of the upper separator main body 52A.
  • FIG. 27 is a graph showing the luminous intensity distribution of light guided inside the upper separator body 52A and emitted from the front surface 52Aa of the upper separator body 52A while repeating total reflection between the front surface 52Aa and the rear surface 52Ab of the upper separator body 52A. It is.
  • FIG. 18 is an example of a low-beam light distribution pattern P Lo formed by the vehicle lamp 10A.
  • the space S is formed between the front surface 52Aa of the upper separator main body 52A and the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A, light enters the separator 50A (first light guide portion 52d).
  • the light Ray1 having a relatively high luminous intensity is emitted from the front surface 52Aa of the upper separator main body 52A and from the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A to the primary lens 60A.
  • the light enters it is refracted (diffused) and further Fresnel-reflected.
  • a part of the light distribution pattern for low beam for example, about 4 degrees below the horizontal line
  • the space S is formed between the front surface 52Aa of the upper separator main body 52A and the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A, light enters the separator 50A (first light guide portion 52d).
  • the light Ray1 having a relatively high luminous intensity is refracted (diffused) when entering the primary lens 60A from the rear surface 60Ab (upper light incident surface 60Ab1) of the primary lens 60A.
  • a part thereof is projected by the projection lens 90 constituted by the primary lens 60A and the secondary lens 80 onto an area (mainly, a lower part at the center) where the luminous intensity in the low beam light distribution pattern is relatively low.
  • FIG. 19B is an example of an ADB light distribution pattern and a low beam light distribution pattern formed when the separator 50A shown in FIG. 20 is used.
  • the reason why the low-beam light distribution pattern is longer in the vertical direction than the ADB light distribution pattern is that the second region B2 is disposed forward (or rearward) with respect to the focal plane FP of the projection lens 90. Therefore, the light from the low beam light source 32a that enters the primary lens 60A from the upper light entrance surface 60Ab1 of the primary lens 60A is emitted from the front surface 52Aa of the upper separator main body 52A, and is transmitted by the primary lens 60A and the secondary lens 80. It is considered that the image is projected in a blurred state by the configured projection lens 90.
  • the reason why the low-beam light distribution pattern is lower in density (brighter area is narrower) and the maximum luminous intensity is lower than the ADB light distribution pattern is that a part of the low-beam light distribution pattern (for example, a horizontal line). This is considered to be the same as the reason why the luminous intensity (around 4 degrees below) does not increase.
  • the width W2 of the low-beam light distribution pattern P Lo becomes wider than the width W1 of the ADB light distribution pattern P ADB as shown in FIG. This is because the width W4 of the first light guide 52d through which the light from the ADB is guided is wider than the width W3 of the second light guide 53d through which the light from the ADB light source 32b is guided.
  • an ADB light distribution pattern P ADB is formed.
  • the low beam light source 32a and the ADB light source 32b are turned on, the low beam light distribution pattern P Lo and the ADB light distribution pattern PADB are formed.
  • a combined light distribution pattern is formed. This is the same as in the first embodiment, and a description thereof will be omitted.
  • the reason why the outline of the ADB light distribution pattern is moderately blurred is that the third region B3 is disposed rearward (or forward) with respect to the focal plane FP of the projection lens 90, so that the lower separator main body 53 is formed.
  • the light from the ADB light source 32b that exits from the front surface 53a of the first lens 60A and enters the primary lens 60A from the lower incident surface 60Ab2 of the primary lens 60A is projected by the projection lens 90 constituted by the primary lens 60A and the secondary lens 80. It is considered that the image is projected in a blurred state.
  • the present embodiment it is possible to suppress a relative increase in the luminous intensity of a part of the light distribution pattern for low beam (for example, around 4 degrees below the horizontal line), and It is possible to provide a vehicle lamp 10A capable of forming a low-beam light distribution pattern having a uniform thickness in the vertical direction (that is, capable of suppressing a reduction in light distribution feeling).
  • the light distribution pattern for low beam having a longer length in the vertical direction, a lower density (a narrower bright range), and a lower maximum luminous intensity, and a lower contour. It is possible to provide a vehicular lamp 10A that can form an ADB light distribution pattern that is appropriately blurred.
  • FIG. 22A is a diagram for explaining a gap S13 between the front surface 52Aa of the upper separator main body 52A and the front surface 53a of the lower separator main body 53 from which light from the ADB light source 32b emits light, and FIG. It is an example of a combined light distribution pattern including a light distribution pattern for low beam and a light distribution pattern for ADB formed when a gap S13 occurs.
  • a gap S13 is provided between the front surface 52Aa of the upper separator body 52A from which light from the low beam light source 32a emits light and the front surface 53a of the lower separator body 53 from which light from the ADB light source 32b emits light. Even when the light distribution pattern P Lo for the low beam and the light distribution pattern PADB for the ADB become gentle, the light distribution feeling can be suppressed from being reduced.
  • the lighting device 10B will be described.
  • the vehicle lamp 10B of the present embodiment is different from the vehicle lamp 10A of the second embodiment in that a separator 50B is used instead of the separator 50A. Otherwise, the configuration is the same as that of the second embodiment.
  • the description will be focused on the differences from the second embodiment, and the same components will be denoted by the same reference numerals and description thereof will be appropriately omitted.
  • FIG. 23 is a partial longitudinal sectional view of the separator 50B.
  • FIG. 24A is a perspective view of the upper separator main body 52B, and
  • FIG. 24B is a perspective view of the lower separator main body 53B.
  • the separator 50B shown in FIG. 23 is configured by combining the upper separator main body 52B and the lower separator main body 53B shown in FIG.
  • the separator 50B is different from the separator 50A of the second embodiment in that the upper portion of the front end of the lower separator main body 53B includes an overlap portion 57 that extends upward, as shown in FIGS. 23 and 24B. Different. Otherwise, the configuration is the same as that of the separator 50A of the second embodiment.
  • description will be made focusing on differences from the separator 50A of the second embodiment, and the same components will be denoted by the same reference numerals and description thereof will be appropriately omitted.
  • the overlap portion 57 includes a front surface 57a facing the upper light incident surface 60Ab1 (not shown in FIG. 23) of the primary lens 60A, a lower portion of the upper separator main body 52B (front surface 52Aa), and a lower separator main body.
  • This is a thin film light guide portion including a gap S13 between the upper surface of the upper separator 53B (front surface 53a) and a rear surface 57b of the upper separator body 52B facing the front surface 52Aa.
  • the thickness T3 of the overlap portion 57 is, for example, 0.2 mm.
  • the thickness T3 of the overlap portion 57 is desirably as thin as possible in order to suppress a decrease in the transmittance of light from the low beam light source 32a emitted from the front surface 52Aa of the upper separator main body 52B.
  • the overlap portion 57 is configured such that the light Ray3 from the ADB light source 32b guided inside the overlap portion 57 while repeating total reflection between the front surface 57a and the rear surface 57b of the overlap portion 57 is formed by the overlap portion 57.
  • Light is emitted from the front surface 57a, and is arranged in a state where a gap S15 is formed between the rear surface 57b of the overlap portion 57 and the front surface 52Aa of the upper separator main body 52B.
  • the gap S15 is, for example, 0.02 mm.
  • part of the light for example, light Ray1 (for example, see FIG. 17) having a relatively strong luminous intensity is transmitted to the upper separator.
  • the light directly exits from the lower portion of the front surface 52Aa of the main body 52B, passes through the overlap portion 57, further enters the primary lens 60A from the upper light incident surface 60Ab1 of the primary lens 60A, and is constituted by the primary lens 60A and the secondary lens 80.
  • the light is projected by the projection lens 90 to form a low-beam light distribution pattern.
  • the light from the low-beam light source 32a that has entered the separator 50B (the first light guide section 52d)
  • another part of the light for example, light Ray2 having a relatively weak luminous intensity (see, for example, FIG. 17).
  • the light enters the primary lens 60A from the upper light incident surface 60Ab1 of the primary lens 60A and is projected by the projection lens 90 constituted by the primary lens 60A and the secondary lens 80, so that it is used for forming a low beam light distribution pattern. .
  • the light from the ADB light source 32b enters the separator 50B (the second light guide 53d) from the second light entrance surface 53e.
  • the light from the ADB light source 32b that has entered the separator 50B (the second light guide 53d)
  • part of the light directly exits from the upper portion of the front surface 53a of the lower separator main body 53B, and further enters the lower part of the primary lens 60A.
  • the light enters the primary lens 60A from the surface 60Ab2 and is projected by the projection lens 90 composed of the primary lens 60A and the secondary lens 80, and is used for forming an ADB light distribution pattern.
  • FIG. 25 is an example of a synthesized light distribution pattern including a light distribution pattern P Lo and ADB light distribution pattern P ADB for low beam formed by the vehicular lamp 10B.
  • the gap S13 is generated between the light distribution patterns P Lo for the low beam and the light distribution pattern P ADB for the ADB , the luminous intensity changes smoothly, thereby suppressing a decrease in the light distribution feeling.
  • the vehicle lighting device 10 ⁇ / b> B that can perform the above operation can be provided.
  • FIG. 26 is a partial vertical cross-sectional view of the separator 50B (modification).
  • the overlap portion 57 in which the upper portion of the front end of the lower separator main body 53B extends upward is used as the overlap portion, but the present invention is not limited to this.
  • an overlap portion 58 in which the lower portion of the front end of the upper separator main body 52B extends downward may be used.
  • the overlap portion 58 includes a front surface 58a facing the lower light incident surface 60Ab2 (not shown in FIG. 26) of the primary lens 60A, a lower portion of the upper separator body 52B (front surface 52Aa), and an upper portion of the lower separator body 53B (front surface 53a). And the rear surface 58b of the lower separator main body 53B facing the front surface 53a of the lower separator body 53B.
  • the thickness T4 of the overlap portion 58 is, for example, 0.2 mm.
  • the thickness T4 of the overlap portion 58 is desirably as thin as possible in order to suppress a decrease in the transmittance of light from the ADB light source 32b emitted from the front surface 53a of the lower separator main body 53B.
  • the overlapping portion 58 is configured such that light from the low-beam light source 32 a guided inside the overlapping portion 58 while repeating total reflection between the front surface 58 a and the rear surface 58 b of the overlapping portion 58 is formed on the front surface of the overlapping portion 58.
  • Light is emitted from 58a, and is arranged in a state where a gap S16 is formed between the rear surface 58b of the overlap portion 58 and the front surface 53a of the lower separator main body 53B.
  • the gap S16 is, for example, 0.02 mm.
  • the light Ray1 (for example, see FIG. 17) having a relatively strong luminous intensity is lower than the front surface 52Aa of the upper separator main body 52B.
  • the overlapping portion 58 Directly pass through the overlapping portion 58, further enter the primary lens 60A from the upper incident surface 60Ab1 of the primary lens 60A, and are projected by the projection lens 90 constituted by the primary lens 60A and the secondary lens 80. This is used to form a low beam light distribution pattern.
  • the light Ray2 (for example, see FIG. 17) having a relatively low luminous intensity is transmitted to the front surface 52Aa of the upper separator main body 52B.
  • the light is guided inside the upper separator main body 52B while repeating total reflection between the upper and lower surfaces 52Ab and exits from the front surface 52Aa of the upper separator main body 52B, and further enters the primary lens 60A from the upper light incident surface 60Ab1 of the primary lens 60A.
  • the light is projected by a projection lens 90 composed of a primary lens 60A and a secondary lens 80, and is used to form a low-beam light distribution pattern.
  • the light from the low-beam light source 32a that has entered the separator 50B (the first light-guiding unit 52d) another part (see the light ray indicated by the symbol Ray4 in FIG. 26) is transmitted to the front surface 58a of the overlap unit 58.
  • the light is guided inside the overlap portion 58 while repeating total reflection between the light and the rear surface 58b, and is emitted from the front surface 58a of the overlap portion 58.
  • the light is projected by the projection lens 90 constituted by the primary lens 60A and the secondary lens 80. The light is projected between the low beam light distribution pattern (lower) and the ADB light distribution pattern (upper).
  • the light from the ADB light source 32b enters the separator 50B (the second light guide 53d) from the second light entrance surface 53e.
  • the light from the ADB light source 32b that has entered the separator 50B (the second light guide 53d)
  • part of the light directly exits from the upper portion of the front surface 53a of the lower separator main body 53B, and further enters the lower part of the primary lens 60A.
  • the light enters the primary lens 60A from the surface 60Ab2 and is projected by the projection lens 90 composed of the primary lens 60A and the secondary lens 80, and is used for forming an ADB light distribution pattern.
  • the present inventors as shown in FIG. 25, the combined light distribution pattern including the low beam light distribution pattern and the ADB light distribution pattern formed as described above, the low beam light distribution pattern P Lo and the ADB light distribution pattern. It was confirmed that the change in luminous intensity between the light distribution pattern PADB and the light distribution pattern became gentle, and it was possible to suppress a decrease in light distribution feeling.
  • the overlap portion 57 is applied to the separator 50A of the vehicle lamp 10A of the second embodiment, but the present invention is not limited to this.
  • the overlap portion 57 may be applied to the separator 50 of the vehicle lamp 10A of the first embodiment and other separators. The same applies to the overlapping portion 58.
  • the projection lens 90 constituted by two lenses, the primary lens 60A and the secondary lens 80, was used as the projection lens, but the invention is not limited to this.
  • a projection lens composed of one lens may be used as the projection lens, or a projection lens composed of three or more lenses may be used.
  • the separator 50A including the upper separator main body 52A, the first light guide unit 52d, the lower separator main body 53, and the second light guide unit 53d is used as the separator.
  • a separator that includes the upper separator main body 52A and the first light guide part 52d and does not include the lower separator main body 53 and the second light guide part 53d may be used as the separator. That is, the lower separator main body 53 and the second light guide 53d may be omitted.
  • FIG. 21 is a modification of the focal plane FP of the projection lens 90.
  • holder body 42a ... front face, 42c ... through hole, 44 ... cylindrical part, 46 ... flange part, 48 ... Projection, 49 Projection, 50, 50A Separator, 52, 52A Upper separator body, 52a, 52Aa Front, 52a1 Stepped edge, 52a ... Extended edge portion, 52a3 ... Extended edge portion, 52b, 52Ab ... Back surface, 52c ... Lower end surface, 52d ... First light guide portion, 52e ... First light entrance surface, 52f ... Flange portion, 52f1 ... Through hole, 52f2 ...

Abstract

ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となるロービーム用配光パターンを形成することができる車両用灯具を提供する。投影レンズと、前記投影レンズの後方に配置されたセパレータと、前記セパレータの後方に配置され、前記セパレータ及び前記投影レンズをこの順に透過して前方に照射されてロービーム用配光パターンを形成する光を発光するロービーム用光源と、を備えた車両用灯具において、前記セパレータは、前面とその反対側の後面とを含む上セパレータ本体と、前記上セパレータ本体の下部から前記ロービーム用光源に向かって延び、先端に前記ロービーム用光源が対向する第1入光面を有する第1導光部と、を含み、前記投影レンズは、前面とその反対側の後面とを含み、前記投影レンズの後面は、前記上セパレータ本体の前面が対向する上入光面を含み、前記ロービーム用光源、前記第1導光部、前記上セパレータ本体及び前記上入光面は、それぞれ、前記投影レンズの焦点を通りかつ車両前後方向に延びる基準軸より上に配置され、前記上セパレータ本体の前面の下部は、前記投影レンズの後面の上入光面の下部に面接触し、前記上セパレータ本体の前面の下部より上の部分と前記投影レンズの後面の上入光面の下部より上の部分との間に空間が形成されていることを特徴とする。

Description

車両用灯具
 本発明は、車両用灯具に関し、特に、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となるロービーム用配光パターンを形成することができる車両用灯具に関する。
 従来、第1レンズ及び第2レンズによって構成される投影レンズと、投影レンズの後方に配置された導光レンズと、導光レンズの後方に配置され、導光レンズ及び投影レンズをこの順に透過して前方に照射されてロービーム用配光パターンを形成する光を発光するロービーム用光源と、を備えた車両用灯具が提案されている(例えば、特許文献1(図1等)参照)。
特開2015-79660号公報
 しかしながら、本発明者らが検討したところ、上記従来技術の車両用灯具においては、ロービーム用配光パターンに求められる法規を満たすものの、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなって例えば光度ムラ(輝度ムラ)を生じ、また、ロービーム用配光パターンの中央部の厚みが左右両側の厚みと比べて薄くなり、その結果、配光フィーリングが低下することが判明した。
 本発明は、上記事情に鑑みてなされたものであり、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、配光フィーリングが低下するのを抑制することができる)ロービーム用配光パターンを形成することができる車両用灯具を提供することを目的とする。
 上記目的を達成するために、本発明の一つの側面は、投影レンズと、前記投影レンズの後方に配置されたセパレータと、前記セパレータの後方に配置され、前記セパレータ及び前記投影レンズをこの順に透過して前方に照射されてロービーム用配光パターンを形成する光を発光するロービーム用光源と、を備えた車両用灯具において、前記セパレータは、前面とその反対側の後面とを含む上セパレータ本体と、前記上セパレータ本体の下部から前記ロービーム用光源に向かって延び、先端に前記ロービーム用光源が対向する第1入光面を有する第1導光部と、を含み、前記投影レンズは、前面とその反対側の後面とを含み、前記投影レンズの後面は、前記上セパレータ本体の前面が対向する上入光面を含み、前記ロービーム用光源、前記第1導光部、前記上セパレータ本体及び前記上入光面は、それぞれ、前記投影レンズの焦点を通りかつ車両前後方向に延びる基準軸より上に配置され、前記上セパレータ本体の前面の下部は、前記投影レンズの後面の上入光面の下部に面接触し、前記上セパレータ本体の前面の下部より上の部分と前記投影レンズの後面の上入光面の下部より上の部分との間に空間が形成されており、前記ロービーム用光源からの光は、前記第1入光面から前記第1導光部に入光し、一部が前記上セパレータ本体の前面から直接出光し、かつ、他の一部が前記上セパレータ本体の前面と後面との間で全反射を繰り返しつつ前記上セパレータ本体内を導光されて前記上セパレータ本体の前面から出光し、さらに、前記投影レンズの上入光面から前記投影レンズに入光し、前記投影レンズよって投影されることで前記ロービーム用配光パターンの形成に用いられることを特徴とする。
 また、上記発明において、好ましい態様は、前記上セパレータ本体の前面と前記投影レンズの後面の上入光面との間の間隔は、上方に向かうに従って広くなることを特徴とする。
 また、上記発明において、好ましい態様は、前記投影レンズの後面の上入光面の面形状は、前記ロービーム用配光パターンの光度分布が法規を満たし、かつ、水平方向に関し、前記ロービーム用配光パターンの鉛直方向の厚みが均一となるように調整されていることを特徴とする。
 また、上記発明において、好ましい態様は、前記セパレータ及び前記投影レンズをこの順に透過して前方に照射されてADB用配光パターンを形成する光を発光するADB用光源をさらに備え、前記セパレータは、前面とその反対側の後面とを含む下セパレータ本体と、前記下セパレータ本体の上部から前記ADB用光源に向かって延び、先端に前記ADB用光源が対向する第2入光面を有する第2導光部と、を含み、前記投影レンズの後面は、さらに、前記下セパレータ本体の前面が対向する下入光面を含み、前記ADB用光源、前記第2導光部、前記下セパレータ本体及び前記下入光面は、それぞれ、前記基準軸より下に配置され、前記下セパレータ本体の前面は、前記投影レンズの後面の下入光面に面接触していることを特徴とする。
車両用灯具10の斜視図である。 (a)車両用灯具10の上面図、(b)正面図、(c)側面図である。 図1に示す車両用灯具10を、基準軸AXを含む水平面(X軸及びY軸を含む平面)で切断した断面図である。 図1に示す車両用灯具10を、基準軸AXを含む鉛直面(X軸及びZ軸を含む平面)で切断した断面図である。 車両用灯具10の分解斜視図である。 ヒートシンク20、光源モジュール30、ホルダ40及びセパレータ50を組み合わせた構造体の斜視図である。 セパレータ50の斜視図である。 (a)上セパレータ本体52の一部正面図、(b)下セパレータ本体53の一部正面図、(c)セパレータ50を透視した複数のロービーム用光源32a及び複数のADB用光源32bの正面図(透視図)である。 (a)ロービーム用配光パターンPLoの一例、(b)ADB用配光パターンPADBの一例、(c)ロービーム用配光パターンPLo及びADB用配光パターンPADBを含む合成配光パターンの一例、(d)ADB用配光パターンを構成する複数の領域(例えば、個別に点消灯される複数の領域A1~A4)が円形となって相互に重なっている様子を表す図である。 上セパレータ本体52を省略し、第1導光部52dのみのセパレータ(上記従来技術の導光レンズと同様の構成)を用いた例である。 上セパレータ本体52を省略し、第1導光部52dのみのセパレータを用いた場合に形成されるロービーム用配光パターンPLoの一例である。 車両用灯具10Aを、基準軸AXを含む鉛直面(X軸及びZ軸を含む平面)で切断した断面図である。 図12に示す車両用灯具10AのA-A断面図である。 セパレータ50Aの斜視図である。 (a)セパレータ50Aの上面図、(b)背面図、(c)底面図、(d)側面図である。 セパレータ50A及びプライマリレンズ60Aの保持構造の一例である。 ロービーム用光源32aからの光の光路を説明するための図である。 車両用灯具10Aにより形成されるロービーム用配光パターンPLoの一例である。 (a)図10に示すセパレータ(上記従来技術と同様の導光レンズ)を用いた場合に形成されるADB用配光パターン及びロービーム用配光パターンの一例、(b)図20に示すセパレータ(上記従来技術と同様の導光レンズ)を用いた場合に形成されるADB用配光パターン及びロービーム用配光パターンの一例である。 プライマリレンズ60Aの上入光面60Ab1及び下入光面60Ab2と投影レンズ90の焦点面FPとの関係を説明するための図である。 投影レンズ90の焦点面FPの変形例である。 (a)上セパレータ本体52Aの前面52AaとADB用光源32bからの光が出光する下セパレータ本体53の前面53aとの間の隙間S13を説明するための図、(b)隙間S13が生じた場合に形成される、ロービーム用配光パターン及びADB用配光パターンを含む合成配光パターンの一例である。 セパレータ50Bの一部縦断面図である。 (a)上セパレータ本体52Bの斜視図、(b)下セパレータ本体53Bの斜視図である。 車両用灯具10Bにより形成されるロービーム用配光パターンPLo及びADB用配光パターンPADBを含む合成配光パターンの一例である。 セパレータ50B(変形例)の一部縦断面図である。 上セパレータ本体52Aの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52A内を導光されて上セパレータ本体52Aの前面52Aaから出光する光の光度分布を表すグラフである。
 以下、本発明の一実施形態である車両用灯具10について添付図面を参照しながら説明する。各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。
 図1は、車両用灯具10の斜視図である。図2(a)は車両用灯具10の上面図、図2(b)は正面図、図2(c)は側面図である。
 図1及び図2に示す車両用灯具10は、ロービーム用配光パターンPLo(図9(a)参照)、又は、ロービーム用配光パターンPLo及びADB(Adaptive Driving Beam)用配光パターンPADBを含む合成配光パターン(図9(c)参照)を形成可能な車両用前照灯であり、車両(図示せず)の前端部の左側及び右側に搭載される。ロービーム用配光パターンPLo、ADB用配光パターンPADBは、車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成される。なお、以下、説明の便宜のため、XYZ軸を定義する。X軸は車両前後方向に延びており、Y軸は車幅方向に延びており、Z軸は鉛直方向に延びている。
 図3は、図1に示す車両用灯具10を、基準軸AXを含む水平面(X軸及びY軸を含む平面)で切断した断面図である。図4は、図1に示す車両用灯具10を、基準軸AXを含む鉛直面(X軸及びZ軸を含む平面)で切断した断面図である。図5は、車両用灯具10の分解斜視図である。
 図3~図5に示すように、本実施形態の車両用灯具10は、ヒートシンク20、光源モジュール30、ホルダ40、セパレータ50、プライマリレンズ60、リテーナ70、セカンダリレンズ80等を備える。車両用灯具10は、図示しないが、アウターレンズとハウジングとによって構成される灯室内に配置され、ハウジング等に取り付けられる。
 図5に示すように、ヒートシンク20は、アルミダイキャスト製で、前面22aとその反対側の後面22bとを含むベース22を含む。
 前面22aは、光源モジュール実装面22a1と、当該光源モジュール実装面22a1を取り囲む周囲面22a2と、を含む。
 光源モジュール実装面22a1及び周囲面22a2は、例えば、Y軸及びZ軸を含む平面に対して平行な平面である。
 光源モジュール実装面22a1には、光源モジュール30をネジ止め固定するために、ネジ穴22a5(図5中、3箇所)が設けられる。また、光源モジュール実装面22a1には、光源モジュール30を位置決めするために、位置決めピン22a6(図5中、2箇所)が設けられる。
 周囲面22a2は、ホルダ40が当接するホルダ当接面22a3と、リテーナ70が当接するリテーナ当接面22a4と、を含む。
 リテーナ当接面22a4は、周囲面22a2の左右両側にそれぞれ設けられる。
 リテーナ当接面22a4と後面22bとの間の厚み(X軸方向の厚み)は、ホルダ当接面22a3と後面22bとの間の厚み(X軸方向の厚み)より厚く、段差部を構成している。
 ベース22には、ネジN1が挿入されるネジ穴22c(図3中、2箇所)が設けられる。ネジ穴22cは、リテーナ当接面22a4と後面22bとを貫通している。
 ベース22の左右両側には、それぞれ、当該ベース22の左右両側から後方(X軸方向)に向かって延びた第1延長部24が設けられる。第1延長部24の先端部には、側方(Y軸方向)に向かって延びた第2延長部26が設けられる。
 ベース22の後面22bには、放熱フィン28が設けられる。
 光源モジュール30は、複数のロービーム用光源32a及び複数のADB用光源32bと、複数のロービーム用光源32a、複数のADB用光源32b及びコネクタ34cが実装された基板34と、を含む。
 図8(c)は、セパレータ50を透視した複数のロービーム用光源32a及び複数のADB用光源32bの正面図(透視図)である。
 図8(c)に示すように、複数のロービーム用光源32aは、上段かつY軸方向に配置された形態で基板34に実装される。複数のADB用光源32bは下段かつY軸方向に配置された形態で基板34に実装される。
 各々の光源32a、32bは、例えば、矩形(例えば、1mm角)の発光面を備えたLEDやLD等の半導体発光素子であり、各々の発光面を前方(正面)に向けた状態で基板34に実装される。図8(c)中の複数の矩形は、各々の光源32a、32bの発光面を表す。
 基板34には、ヒートシンク20の位置決めピン22a6が挿入される貫通穴34a(図5中、2箇所)、ネジN2が挿入される切欠部S1(図5中、3箇所)が設けられる。
 上記構成の光源モジュール30は、ヒートシンク20の位置決めピン22a6が基板34の貫通穴34aに挿入された状態で、切欠部S1に挿入されたネジN2をヒートシンク20のネジ穴22a5に螺合させることでヒートシンク20(光源モジュール実装面22a1)に固定される。
 図3~図5に示すように、ホルダ40は、アクリルやポリカーボネイト等の合成樹脂製で、前方側が開口し、後方側が閉塞したカップ状のホルダ本体42を含む。
 ホルダ本体42の前面42aは、セパレータ50の後面(上セパレータ本体52の後面52b及び下セパレータ本体53の後面53b)が面接触するように、当該セパレータ50の後面が反転した形状の面(後方に向かって凹の球状面)として構成される。
 ホルダ本体42には、セパレータ50の第1導光部52d及び第2導光部53dが挿入される貫通穴42cが設けられる。
 ホルダ本体42には、当該ホルダ本体42の外周部から後方(X軸方向)に向かって延びた筒状部44が設けられる。そして、筒状部44の先端部には、ヒートシンク20のホルダ当接面22a3に当接するフランジ部46が設けられる。
 なお、ホルダ本体42(及び筒状部44)には、切欠部S4が設けられる。
 ホルダ40の前方側開口端面40aには、凸部48と、凸部49と、が設けられる。
 図6は、ヒートシンク20、光源モジュール30、ホルダ40及びセパレータ50を組み合わせた構造体の斜視図である。
 図7は、セパレータ50の斜視図である。
 図7に示すように、セパレータ50は、シリコン樹脂製で、前方側が開口し、後方側が閉塞したカップ状の部材である。セパレータ50は、上セパレータ本体52と、下セパレータ本体53と、を含む。
 図4に示すように、上セパレータ本体52は基準軸AXより上に配置され、下セパレータ本体53は基準軸AXより下に配置される。基準軸AXは、X軸方向に延びている。
 上セパレータ本体52の前面52aは、プライマリレンズ60の後面60b(後方に向かって凸の球状面)の基準軸AXより上半分が面接触するように、当該プライマリレンズ60の後面60bの上半分が反転した形状の面(後方に向かって凹の球状面)として構成される。
 上セパレータ本体52の後面52b(図3及び図4参照)は、ホルダ40(ホルダ本体42)の前面42a(前方に向かって凹の球状面)の基準軸AXより上半分が面接触するように、当該ホルダ40(ホルダ本体42)の前面42aの上半分が反転した形状の面(後方に向かって凸の球状面)として構成される。
 図8(a)に示すように、上セパレータ本体52の前面52aの下端縁は、カットオフラインCLLo(CL1~CL3)に対応した形状の段差付きエッジ部52a1、及び、段差付きエッジ部52a1の両側に配置された延長エッジ部52a2、52a3を含む。なお、延長エッジ部は、片側にだけ設けられていてもよい。
 段差付きエッジ部52a1は、左水平カットオフラインCL1に対応する辺e1、右水平カットオフラインCL2に対応する辺e2、及び、左水平カットオフラインCL1と右水平カットオフラインCL2とを接続する斜めカットオフラインCL3に対応する辺e3を含む。
 延長エッジ部52a2は、Z軸方向に関し、辺e1と同一位置に配置される。延長エッジ部52a3は、Z軸方向に関し、辺e2と同一位置に配置される。
 上セパレータ本体52の下端面52c(図4参照)は、上セパレータ本体52の前面52aの下端縁から上セパレータ本体52の後面52bに向かって水平方向(X軸方向)に延びた面である。
 図3及び図4に示すように、上セパレータ本体52の後面52bには、光源モジュール30(複数のロービーム用光源32a)からの光を導光するために、第1導光部52dが設けられる。第1導光部52dは、その基端部が上セパレータ本体52の後面52bのうち段差付きエッジ部52a1を含む一部領域に設けられ、かつ、光源モジュール30(複数のロービーム用光源32a)に向かって延びている。なお、段差付きエッジ部52a1を含む一部領域は、上セパレータ本体52の後面52bのうち光源モジュール30(複数のロービーム用光源32aの発光面)が対向する領域である。第1導光部52dは、ホルダ40の貫通穴42cに挿入される。
 第1導光部52dの先端部には、第1入光面52eが設けられる。第1入光面52eは、例えば、Y軸及びZ軸を含む平面に対して平行な平面である。
 第1入光面52eは、第1導光部52dがホルダ40の貫通穴42cに挿入された状態で、光源モジュール30(複数のロービーム用光源32aの発光面)と対向する位置に配置される(図4参照)。第1入光面52eと光源モジュール30(複数のロービーム用光源32aの発光面)との間隔は、例えば、0.2mmである。
 図5、図7に示すように、上セパレータ本体52の前方側開口端面には、フランジ部52fが設けられる。フランジ部52fには、ホルダ40の凸部48が挿入される貫通穴52f1(図5、図7中、1箇所)、ホルダ40の凸部49が挿入される貫通穴52f2(図5、図7中、2箇所)が設けられる。
 下セパレータ本体53の前面53aは、プライマリレンズ60の後面60b(後方に向かって凸の球状面)の基準軸AXより下半分が面接触するように、当該プライマリレンズ60の後面60bの下半分が反転した形状の面(後方に向かって凹の球状面)として構成される。
 下セパレータ本体53の後面53b(図3及び図4参照)は、ホルダ40(ホルダ本体42)の前面42a(前方に向かって凹の球状面)の基準軸AXより下半分が面接触するように、当該ホルダ40(ホルダ本体42)の前面42aの下半分が反転した形状の面(後方に向かって凸の球状面)として構成される。
 図8(b)に示すように、下セパレータ本体53の前面53aの上端縁は、段差付きエッジ部52a1が反転した形状の段差付きエッジ部53a1(辺e1´~e3´)、及び、段差付きエッジ部53a1の両側に配置された延長エッジ部53a2、53a3を含む。なお、延長エッジ部は、片側にだけ設けられていてもよい。
 延長エッジ部53a2は、Z軸方向に関し、辺e1´と同一位置に配置される。延長エッジ部53a3は、Z軸方向に関し、辺e2´と同一位置に配置される。
 下セパレータ本体53の上端面53c(図4参照)は、下セパレータ本体53の前面53aの上端縁から下セパレータ本体53の後面53bに向かって水平方向(X軸方向)に延びた面である。
 図3及び図4に示すように、下セパレータ本体53の後面53bには、光源モジュール30(複数のADB用光源32b)からの光を導光するために、第2導光部53dが設けられる。第2導光部53dは、その基端部が下セパレータ本体53の後面53bのうち段差付きエッジ部53a1を含む一部領域に設けられ、かつ、光源モジュール30(複数のADB用光源32b)に向かって延びている。なお、段差付きエッジ部53a1を含む一部領域は、下セパレータ本体53の後面53bのうち光源モジュール30(複数のADB用光源32bの発光面)が対向する領域である。第2導光部53dは、ホルダ40の貫通穴42cに挿入される。
 第2導光部53dの先端部には、第2入光面53eが設けられる。第2入光面53eは、ADB用配光パターンを構成する複数の領域(例えば、個別に点消灯される複数の領域A1~A4)が図9(d)に示すように円形となって相互に重なるのを防止し、図9(b)に示すように縦エッジで分割された状態で形成されるように調整された面である。なお、図9(b)、図9(d)は、複数のADB用光源32bが4個の場合に形成されるADB用配光パターンを表す。図9(b)、図9(d)中のハッチング領域は、当該領域に対応するADB用光源32bが消灯されていることを表す。
 第2入光面53eは、第2導光部53dがホルダ40の貫通穴42cに挿入された状態で、光源モジュール30(複数のADB用光源32bの発光面)と対向する位置に配置される(図4参照)。第2入光面53eと光源モジュール30(複数のADB用光源32bの発光面)との間隔は、例えば、0.2mmである。
 図5、図7に示すように、下セパレータ本体53の前方側開口端面には、フランジ部53fが設けられる。フランジ部53fには、ホルダ40の凸部48が挿入される貫通穴53f1(図5、図7中、2箇所)が設けられる。
 なお、下セパレータ本体53には、当該下セパレータ本体53に光源モジュール30のコネクタ34cが当接(干渉)しないように、切欠部S5が設けられる。
 図8(c)に示すように、上セパレータ本体52及び下セパレータ本体53は、上セパレータ本体52の前面52aの下端縁と下セパレータ本体53の前面53aの上端縁とが線接触し、かつ、上セパレータ本体52の下端面52cと下セパレータ本体53の上端面53cとが面接触した状態で組み合わされてセパレータ50を構成する。
 上記構成のセパレータ50は、上セパレータ本体52の第1導光部52d及び下セパレータ本体53の第2導光部53dがホルダ40の貫通穴42cに挿入(例えば、圧入又は嵌合)され、上セパレータ本体52(第1導光部52d)の第1入光面52eと光源モジュール30(複数のロービーム用光源32aの発光面)とが対向し、下セパレータ本体53(第2導光部53d)の第2入光面53eと光源モジュール30(複数のADB用光源32bの発光面)とが対向し(図3及び図4参照)、かつ、セパレータ50の後面(上セパレータ本体52の後面52b及び下セパレータ本体53の後面53b)がホルダ40(ホルダ本体42)の前面42aに面接触(図3及び図4参照)した状態で配置される。
 その際、上セパレータ本体52の貫通穴52f1及び下セパレータ本体53の貫通穴53f1にホルダ40の凸部48が挿入される(図6参照)。さらに、上セパレータ本体52の貫通穴52f2にホルダ40の凸部49が挿入される(図6参照)。
 図5に示すように、プライマリレンズ60は、前面60aとその反対側の後面60bとを含む球状レンズである。前面60aは前方に向かって凸の球状面で、後面60bは後方に向かって凸の球状面である。プライマリレンズ60には、フランジ部62が設けられる。フランジ部62は、前面60aと後面60bとの間において基準軸AXを取り囲むように延びている。
 図5に示すように、リテーナ70は、アクリルやポリカーボネイト等の合成樹脂製で、前方側開口端面から後方側開口端面に向かうに従って錐体状に広くなる筒体であるリテーナ本体72を含む。
 図5に示すように、セカンダリレンズ80は、アクリルやポリカーボネイト等の合成樹脂製で、レンズ本体82を含む。
 レンズ本体82は、前面82aとその反対側の後面82bとを含む(図3及び図4参照)。前面82aはY軸及びZ軸を含む平面に対して平行な平面で、後面82bは後方に向かって凸の球状面である。
 レンズ本体82の外周部には、当該レンズ本体82の外周部から後方(X軸方向)に向かって延びた筒状部84が設けられる。
 プライマリレンズ60及びセカンダリレンズ80は、焦点F(図8(c)参照)が上セパレータ本体52の前面52aの下端縁(段差付きエッジ部52a1)及び下セパレータ本体53の前面53aの上端縁(段差付きエッジ部53a1)近傍に位置する投影レンズを構成する。この投影レンズの像面湾曲(後方焦点面)は、上セパレータ本体52の前面52aの下端縁(段差付きエッジ部52a1)及び下セパレータ本体53の前面53aの上端縁(段差付きエッジ部53a1)に略一致している。
 この投影レンズを構成するプライマリレンズ60及びセカンダリレンズ80としては、例えば、特開2015-79660号公報に記載の球状レンズ及び平凸レンズを用いることができる。
 上記構成のセカンダリレンズ80は、レンズ本体82がプライマリレンズ60の前方に配置され、かつ、押さえ部兼ネジ受け部86がリテーナ70のフランジ部76に当接した状態で配置される(図3及び図4参照)。
 上記構成の車両用灯具10においては、複数のロービーム用光源32aを点灯すると、当該複数のロービーム用光源32aからの光は、上セパレータ本体52の第1導光部52dの第1入光面52eから入光し、第1導光部52d内を導光され、上セパレータ本体52の前面52aから出光する。これにより、上セパレータ本体52の前面52aに、ロービーム用配光パターンに対応する光度分布が形成される。この光度分布は、カットオフラインCLLo(CL1~CL3)に対応する辺e1~e3(図8(a)参照)を含む。プライマリレンズ60及びセカンダリレンズ80によって構成される投影レンズは、この光度分布を前方に反転投影する。これにより、図9(a)に示すように、上端縁にカットオフラインCL(CL1~CL3)を含むロービーム用配光パターンPLoが形成される。
 複数のADB用光源32bを点灯すると、複数のADB用光源32bからの光は、下セパレータ本体53の第2導光部53dの第2入光面53eから入光し、第2導光部53d内を導光され、下セパレータ本体53の前面53aから出光する。これにより、下セパレータ本体53の前面53aに、ADB用配光パターンに対応する光度分布が形成される。この光度分布は、カットオフラインCLADB(CL1´~CL3´)に対応する辺e1´~e3´(図8(b)参照)を含む。プライマリレンズ60及びセカンダリレンズ80によって構成される投影レンズは、この光度分布を前方に反転投影する。これにより、図9(b)に示すように、下端縁にカットオフラインCLADB(CL1´~CL3´)を含むADB用配光パターンPADBが形成される。なお、図9(b)は、複数のADB用光源32bが4個の場合に形成されるADB用配光パターンPADBを表す。図9(b)中のハッチング領域は、当該領域に対応するADB用光源32bが消灯されていることを表す。
 複数のロービーム用光源32a及び複数のADB用光源32bを点灯すると、図9(c)に示すように、ロービーム用配光パターンPLo及びADB用配光パターンPADBを含む合成配光パターンが形成される。
 本発明者らが検討したところ、上記構成の車両用灯具10においては、ロービーム用配光パターンに求められる法規を満たすものの、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなって例えば光度ムラ(輝度ムラ)を生じ、その結果、配光フィーリングが低下することが判明した。
 ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が高くなる理由は、ロービーム用光源32aからの光のうち、光度が相対的に強い光(例えば、ロービーム用光源32aの光軸AX32a(図4参照)に対して狭角方向の光)がプライマリレンズ60及びセカンダリレンズ80によって構成される投影レンズによってロービーム用配光パターンPLoの一部(例えば、水平線より下4度付近)に投影(又は投射)されることによるものである。
 図10は、上セパレータ本体52を省略し、第1導光部52dのみのセパレータ(上記従来技術と同様の導光レンズ)を用いた例である。
 図10に示すように、セパレータ50として、上セパレータ本体52を省略し、第1導光部52dのみのセパレータを用いた場合、ロービーム用配光パターンPLoの一部(例えば、水平線より下4度付近)の光度が相対的に高くなることに加え、さらに、図11に示すように、ロービーム用配光パターンPLoの中央部の厚みTCが左右両側の厚みTL、TRと比べて薄くなり、その結果、配光フィーリングが低下することが判明した。図11は、上セパレータ本体52を省略し、第1導光部52dのみのセパレータを用いた場合に形成されるロービーム用配光パターンPLoの一例である。
 ロービーム用配光パターンPLoの中央部の厚みTCが左右両側の厚みTL、TRと比べて薄くなる詳しい理由は不明であるが、次のように考えることができる。
 すなわち、第1に、上セパレータ本体52の基準軸AXに沿った厚みが、水平方向に関し、基準軸AXから離れるに従って厚くなること(図3中の厚みT1、T2参照)、第2に、上セパレータ本体52のうち、厚みが厚い部分を透過するロービーム用光源32aからの光ほど、上セパレータ本体52内での光路長が長いため、鉛直方向に大きく拡散されて上セパレータ本体52の前面52aから出光すること、によるものと考えられる。
 例えば、上セパレータ本体52のうち、基準軸AXから遠くの部分(例えば、図3中の厚みT2の部分参照)は、基準軸AXから近くの部分(例えば、図3中の厚みT1の部分参照)と比べて厚い。そのため、上セパレータ本体52のうち、基準軸AXから遠くの部分(例えば、図3中の厚みT2の部分参照)を透過するロービーム用光源32aからの光は、基準軸AXから近くの部分(例えば、図3中の厚みT1の部分参照)を透過するロービーム用光源32aからの光と比べて上セパレータ本体52内での光路長が長いため、鉛直方向に大きく拡散されて上セパレータ本体52の前面52aから出光する。その結果、ロービーム用配光パターンPLoの中央部の厚みTCが左右両側の厚みTL、TRと比べて薄くなると考えられる。
 また、本発明者らが検討したところ、ロービーム用配光パターンは、ADB用配光パターンと比べ、鉛直方向長さが長く、密度が低く(明るい範囲が狭く)、かつ、最大光度が低いことが求められるのに対して、図10に示すように、投影レンズ90の焦点面FPと、ロービーム用光源32aからの光が出光するセパレータ50の前面52a(及びセパレータ50の前面52aから出光するロービーム用光源32aからの光が入光するプライマリレンズ60の後面60b)がそれぞれ球面(曲率が一定の球面)で、一致(面接触)し、かつ、投影レンズ90の焦点面FPと、ADB用光源32bからの光が出光するセパレータ50の前面53a(及びセパレータ50の前面53aから出光するADB用光源32bからの光が入光するプライマリレンズ60の後面60b)がそれぞれ球面(曲率が一定の球面)で、一致(面接触)している場合、図19(a)に示すように、ロービーム用配光パターンPLoとADB用配光パターンPADBが上下対称の形状及び光度分布となり、上記求められるロービーム用配光パターンを形成することができないことが判明した。また、ADB用配光パターンの輪郭が鮮明になり、配光フィーリングが低下することも判明した。図19(a)は、図10に示すセパレータ(上記従来技術と同様の導光レンズ)を用いた場合に形成されるADB用配光パターン及びロービーム用配光パターンの一例である。
 次に、第2実施形態として、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、配光フィーリングが低下するのを抑制することができる)ロービーム用配光パターンを形成することができる車両用灯具10Aについて説明する。なお、本明細書において「均一」とは、厳密な意味での均一に限らない。すなわち、視覚的に均一又は略均一と評価できる限り、「均一」である。
 本実施形態の車両用灯具10Aは、上記第1実施形態の車両用灯具10と比べ、セパレータ50に代えてセパレータ50Aを用い、かつ、プライマリレンズ60に代えてプライマリレンズ60Aを用いている点が相違する。それ以外、上記第1実施形態と同様の構成である。以下、上記第1実施形態との相違点を中心に説明し、同様の構成については同一の符号を付して適宜説明を省略する。
 図12は、車両用灯具10Aを、基準軸AXを含む鉛直面(X軸及びZ軸を含む平面)で切断した断面図である。図13は、図12に示す車両用灯具10AのA-A断面図である。なお、図12、図13中、ヒートシンク20、ホルダ40、リテーナ70等は省略されている。
 図12、図13に示すように、車両用灯具10Aは、セカンダリレンズ80と、セカンダリレンズ80の後方に配置されたプライマリレンズ60Aと、プライマリレンズ60Aの後方に配置されたセパレータ50Aと、セパレータ50Aの後方に配置され、セパレータ50A、プライマリレンズ60A及びセカンダリレンズ80をこの順に透過して前方に照射されてロービーム用配光パターンを形成する光を発光する複数のロービーム用光源32a(以下、単にロービーム用光源32aという)と、セパレータ50A、プライマリレンズ60A及びセカンダリレンズ80をこの順に透過して前方に照射されてADB用配光パターンを形成する光を発光する複数のADB用光源32b(以下、単にADB用光源32bという)と、を備える。
 ロービーム用光源32a、ADB用光源32b、セパレータ50A、プライマリレンズ60A、セカンダリレンズ80は、第1実施形態と同様、ヒートシンク20、ホルダ40、リテーナ70等で保持されることによって図12に示す位置関係が保たれる。
 セカンダリレンズ80(前面82a及び後面82b)及びプライマリレンズ60A(前面60a)は、投影レンズ90を構成する。具体的には、投影レンズ90は、1枚又は複数枚のレンズ(本実施形態では、プライマリレンズ60A、セカンダリレンズ80)のうち、最後方に配置されたレンズの後面(本実施形態では、プライマリレンズ60Aの後面60Ab)以外の光学面(本実施形態では、プライマリレンズ60Aの前面60a、セカンダリレンズ80の前面82a及び後面82b)により構成される。投影レンズ90の焦点面FPは、例えば、曲率が一定の球面である(図20参照)。
 図12に示すように、投影レンズ90の焦点Fは、鉛直方向に関し、上セパレータ本体52Aの前面52Aaの下端縁と下セパレータ本体53の前面53aの上端縁との間に位置する。また、投影レンズ90の焦点Fは、図示しないが、水平方向に関し、上セパレータ本体52Aの前面52Aaの下端縁(及び下セパレータ本体53の前面53aの上端縁)の中央に位置する。基準軸AXは、焦点Fを通り、かつ、車両前後方向(X方向)に延びている。
 図14はセパレータ50Aの斜視図、図15(a)はセパレータ50Aの上面図、図15(b)は背面図、図15(c)は底面図、図15(d)は側面図である。
 セパレータ50Aは、シリコン樹脂製で、図14等に示すように、前方側が開口し、後方側が閉塞したカップ状の部材である。
 図12に示すように、セパレータ50Aは、上セパレータ本体52Aと、第1導光部52dと、第1延長部54と、第2延長部55と、下セパレータ本体53と、第2導光部53dと、フランジ部56と、を含み、これらが一体成形された一部品として構成される。
 上セパレータ本体52Aは基準軸AXより上に配置され、下セパレータ本体53は基準軸AXより下に配置される。
 上セパレータ本体52Aは、前面52Aaとその反対側の後面52Abとを含む薄板状の導光部である。具体的には、上セパレータ本体52Aは、水平断面において、プライマリレンズ60Aの後面60Ab(上入光面60Ab1)に沿って湾曲し(図13参照)、かつ、鉛直断面において、上方に向かって延びた(図12参照)薄板状の導光部である。上セパレータ本体52Aの前面52Aaの下端縁は、上記第1実施形態と同様、カットオフラインCLLo(CL1~CL3)に対応した形状の段差付きエッジ部52a1(図12中図示略)を含む。
 図12等に示すように、上セパレータ本体52Aは、前面52Aaがプライマリレンズ60Aの後面60Ab(上入光面60Ab1)に対向した状態で配置される。
 上セパレータ本体52Aの前面52Aaの下部は、プライマリレンズ60Aの後面60Ab(上入光面60Ab1)の下部に面接触している。また、上セパレータ本体52Aの前面52Aaの下部より上の部分とプライマリレンズ60Aの後面60Ab(上入光面60Ab1)の下部より上の部分との間に空間Sが形成されている。
 上セパレータ本体52Aの前面52Aaとプライマリレンズ60Aの後面60Ab(上入光面60Ab1)との間の間隔(空間S)は、上方に向かうに従って広くなる。上セパレータ本体52Aの前面52Aaと投影レンズ90の後方焦点面FP(像面湾曲。図12参照)との関係も同様である。
 なお、上セパレータ本体52Aの第1導光部52d(前面52Aa)から出光するロービーム用光源32aからの光は拡散光となるため、プライマリレンズ60Aの後面60Ab(上入光面60Ab1)に到達する光は、上セパレータ本体52Aの前面52Aaとプライマリレンズ60Aの後面60Ab(上入光面60Ab1)との間の間隔(空間S)が広くなるに従って(つまり、基準軸AXから上方に向かうに従って)弱くなる。その結果、ロービーム用配光パターンは、上端縁から下方に向かうに従ってグラデーション状に低下する理想的な光度分布となる。
 上セパレータ本体52Aの前面52Aaの下部とプライマリレンズ60Aの後面60b(上入光面60Ab1)の下部とが面接触した部分(面接触部)の鉛直方向の長さH1(図12参照)は、例えば、0.7mmである。この面接触部を設けることで、ロービーム用配光パターンのカットオフライン近傍に相対的に光度が高い高光度帯を形成することができる。また、長さH1を調整することで、高光度帯の鉛直方向長さを調整することができる。
 上セパレータ本体52Aの前面52Aaは、上セパレータ本体52Aの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52A内を導光されるロービーム用光源32aからの光が、上セパレータ本体52Aの前面52Aaから出光するように、例えば、前方に向かって若干凸の曲面として構成される(図17参照)。上セパレータ本体52Aの後面52Abも同様に前方に向かって若干凸の曲面として構成される。
 上セパレータ本体52Aの厚みT(図12参照)は、成形性等を考慮して例えば2mmである。また、上セパレータ本体52Aの鉛直方向長さH2(図12参照)は、ロービーム用配光パターンの鉛直方向長さ(厚み)を考慮して例えば7mmである。長さH2を調整することで、ロービーム用配光パターンの鉛直方向長さを調整することができる。
 図12に示すように、第1導光部52dは、上面52d1とその反対側の下面52d2とを含む薄板状の導光部である。第1導光部52dは、上セパレータ本体52A(後面52Ab)の下部からロービーム用光源32aに向かって延び、先端にロービーム用光源32aが対向する第1入光面52eを有する。第1入光面52eは、ロービーム用光源32aからの光がセパレータ50A(第1導光部52d)に入光する面で、例えば、Y軸及びZ軸を含む平面に対して平行な平面である。
 第1延長部54及び第2延長部55は、光学機能が意図されていないいわゆるつなぎの部分である。第1延長部54は、上セパレータ本体52Aの上端部から前方に向かって延びている。第2延長部55は、第1延長部54の前端部からプライマリレンズ60Aの後面60Abに沿って延びている。
 下セパレータ本体53は、前面53aとその反対側の後面53bとを含む薄板状の導光部である。下セパレータ本体53の前面53aの上端縁は、上記第1実施形態と同様、段差付きエッジ部52a1が反転した形状の段差付きエッジ部53a1(図12中図示略)を含む。
 第2導光部53dは、下セパレータ本体53(後面53b)の上部からADB用光源32bに向かって延び、先端にADB用光源32bが対向する第2入光面53eを有する。第2入光面53eは、ADB用光源32bからの光がセパレータ50A(第2導光部53d)に入光する面で、例えば、Y軸及びZ軸を含む平面に対して平行な平面である。
 図16は、セパレータ50A及びプライマリレンズ60Aの保持構造の一例である。
 図16に示すように、上記構成のセパレータ50Aは、プライマリレンズ60Aと共にホルダ40とリテーナ70との間に挟持される。具体的には、第1導光部52d及び第2導光部53dがホルダ40の貫通穴42cに挿入され、第1入光面52eとロービーム用光源32a(発光面)とが対向し、第2入光面53eとADB用光源32b(発光面)とが対向し、かつ、セパレータ50Aの後面(後面52Ab、53b等)がホルダ40(ホルダ本体42)の前面42aに面接触した状態で、プライマリレンズ60Aと共にホルダ40とリテーナ70との間に挟持される。
 プライマリレンズ60Aは、アクリルやポリカーボネイト等の透明樹脂製で、図12に示すように、前面60aとその反対側の後面60Abとを含む球状レンズである。前面60aは前方に向かって凸の球状面で、後面60Abは後方に向かって凸の球状面である。プライマリレンズ60Aには、フランジ部62が設けられる。フランジ部62は、前面60aと後面60Abとの間において基準軸AXを取り囲むように延びている。
 プライマリレンズ60Aの後面60Abは、基準軸AXより上に配置された上入光面60Ab1と、基準軸AXより下に配置された下入光面60Ab2と、を含む。
 上入光面60Ab1は、上セパレータ本体52Aの前面52Aaから出光するロービーム用光源32aからの光がプライマリレンズ60Aに入光する面である。上入光面60Ab1は、プライマリレンズ60Aの後面60Abのうち、上セパレータ本体52Aの前面52Aaが対向する領域に設けられる。
 上入光面60Ab1の下部は、投影レンズ90の後方焦点面FPと一致している。一方、上入光面60Ab1の下部より上の部分は、投影レンズ90の後方焦点面FPと一致しておらず、後方焦点面FPに対して前方に傾斜している。
 上入光面60Ab1の面形状は、ロービーム用配光パターンに求められる法規を満たし、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、配光フィーリングが低下するのを抑制することができる)ように調整される。例えば、上入光面60Ab1の面形状は、ロービーム用配光パターンの光度分布がロービーム用配光パターンの上端縁から下方に向かうに従ってグラデーション状に低下するように調整される。なお、上セパレータ本体52Aの前面52Aaの面形状も同様に調整される場合がある。
 このように調整された上入光面60Ab1の面形状は複雑な自由曲面となるため、当該上入光面60Ab1の面形状を具体的な数値等で表すのは困難である。
 しかしながら、例えば、所定のシミュレーションソフトウエアを用いて、上入光面60Ab1の面形状を調整し、調整するごとに、ロービーム用配光パターン(光度分布等)を確認することで、ロービーム用配光パターンに求められる法規を満たし、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、配光フィーリングが低下するのを抑制することができる)ロービーム用配光パターンが形成される上入光面60Ab1の面形状を見出すことができる。
 下入光面60Ab2は、下セパレータ本体53の前面53aから出光するADB用光源32bからの光がプライマリレンズ60Aに入光する面である。下入光面60Ab2は、プライマリレンズ60Aの後面60Abのうち、下セパレータ本体53の前面53aが対向する領域に設けられる。下入光面60Ab2は、投影レンズ90の後方焦点面FPと一致している。
 図16に示すように、上記構成のプライマリレンズ60Aは、セパレータ50Aと共にホルダ40とリテーナ70との間に挟持される。具体的には、フランジ部62がセパレータ50Aのフランジ部56に当接し、後面60Abの一部がセパレータ50Aの第2延長部55に面接触し、後面60Ab(上入光面60Ab1)の下部が上セパレータ本体52Aの前面52Aaの下部に面接触し、後面60Ab(下入光面60Ab2)が下セパレータ本体53の前面53aに面接触し、かつ、上セパレータ本体52の前面52Aaとプライマリレンズ60Aの後面60Ab(上入光面60Ab1)との間に空間Sが形成された状態で、セパレータ50Aと共にホルダ40とリテーナ70との間に挟持される。
 図20は、プライマリレンズ60Aの上入光面60Ab1及び下入光面60Ab2と投影レンズ90の焦点面FPとの関係を説明するための図である。
 図20に示すように、プライマリレンズ60Aの上入光面60Ab1の下部及びプライマリレンズ60Aの下入光面60Ab2の上部を第1領域B1とし、プライマリレンズ60Aの上入光面60Ab1の下部より上の部分を第2領域B2とし、プライマリレンズ60Aの下入光面60Ab2の上部より下の部分を第3領域B3とした場合、第1領域B1は、投影レンズ90の焦点面FPに一致し、第2領域B2は、投影レンズ90の焦点面FPに対して前方(又は後方)に配置され、第3領域B3は、投影レンズ90の焦点面FPに対して後方(又は前方)に配置されている。
 第2領域B2と投影レンズ90の焦点面FPとの間の間隔は、基準軸AXから上方に向かうに従って広くなる。一方、第3領域B3と投影レンズ90の焦点面FPとの間の間隔は、基準軸AXから下方に向かうに従って広くなる。
 なお、第1領域B1を調整することで、ロービーム用配光パターンのカットオフライン近傍の相対的に光度が高い高光度帯及びADB用配光パターンの下端縁近傍の相対的に光度が高い高光度帯の鉛直方向長さを調整することができる。また、第2領域B2を調整することで、ロービーム用配光パターンの鉛直方向長さを調整することができる。また、第3領域B3を調整することで、ADB用配光パターンの鉛直方向長さを調整することができる。
 セカンダリレンズ80は、アクリルやポリカーボネイト等の透明樹脂製で、前面82aとその反対側の後面82bとを含む平凸レンズである。前面82aはY軸及びZ軸を含む平面に対して平行な平面で、後面82bは後方に向かって凸の球状面である。
 図17は、ロービーム用光源32aからの光の光路を説明するための図である。
 上記構成の車両用灯具10Aにおいては、ロービーム用光源32aを点灯すると、ロービーム用光源32aからの光は、第1入光面52eからセパレータ50A(第1導光部52d)に入光する。
 図17に示すように、セパレータ50A(第1導光部52d)に入光したロービーム用光源32aからの光のうち、一部の光、例えば、光度が相対的に強い光Ray1(例えば、ロービーム用光源32aの光軸AX32aに対して狭角方向の光)は、上セパレータ本体52Aの前面52Aaの下部から直接出光し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。
 また、セパレータ50A(第1導光部52d)に入光したロービーム用光源32aからの光のうち、他の一部の光、例えば、光度が相対的に弱い光Ray2(例えば、ロービーム用光源32aの光軸AX32aに対して広角方向の光)は、上セパレータ本体52Aの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52A内を導光されて上セパレータ本体52Aの前面52Aaから出光し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。図27は、上セパレータ本体52Aの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52A内を導光されて上セパレータ本体52Aの前面52Aaから出光する光の光度分布を表すグラフである。
 本発明者らは、以上のようにして形成されるロービーム用配光パターンが、図18に示すように、ロービーム用配光パターンに求められる法規を満たし、ロービーム用配光パターンの一部(例えば、水平線Hより下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、厚みTC、TL、TRが均一となり、配光フィーリングが低下するのを抑制することができる)ことを確認した。図18は、車両用灯具10Aにより形成されるロービーム用配光パターンPLoの一例である。
 ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が高くならない詳しい理由は不明であるが、次のように考えることができる。
 すなわち、上セパレータ本体52Aの前面52Aaとプライマリレンズ60Aの後面60Ab(上入光面60Ab1)との間に空間Sが形成されているため、セパレータ50A(第1導光部52d)に入光したロービーム用光源32aからの光のうち、光度が相対的に強い光Ray1は、上セパレータ本体52Aの前面52Aaから出光する際及びプライマリレンズ60Aの後面60Ab(上入光面60Ab1)からプライマリレンズ60Aに入光する際、それぞれ、屈折し(拡散され)、さらに、フレネル反射する。その結果、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)に向かう光が低減するためと考えられる。
 水平方向に関し、鉛直方向の厚みが均一となる詳しい理由は不明であるが、次のように考えることができる。
 すなわち、上セパレータ本体52Aの前面52Aaとプライマリレンズ60Aの後面60Ab(上入光面60Ab1)との間に空間Sが形成されているため、セパレータ50A(第1導光部52d)に入光したロービーム用光源32aからの光のうち、光度が相対的に強い光Ray1は、プライマリレンズ60Aの後面60Ab(上入光面60Ab1)からプライマリレンズ60Aに入光する際、屈折し(拡散され)、その一部がプライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってロービーム用配光パターン中の光度が相対的に低い領域(主に、中央部の下部領域)に投影されるためと考えられる。
 また、上セパレータ本体52Aの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52A内を導光され、上セパレータ本体52Aの前面52Aaから出光するロービーム用光源32aからの光がプライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってロービーム用配光パターン中の光度が相対的に低い領域(主に、中央部の下部領域)に投影されるためと考えられる。
 また、本発明者らは、以上のようにして形成されるロービーム用配光パターンが、図19(b)に示すように、ADB用配光パターンPADBと比べ、鉛直方向長さが長く(図19(b)中、T3<T4)、密度が低く(明るい範囲が狭く)、かつ、最大光度が低くなることを確認した。図19(b)は、図20に示すセパレータ50Aを用いた場合に形成されるADB用配光パターン及びロービーム用配光パターンの一例である。
 ロービーム用配光パターンが、ADB用配光パターンと比べ、鉛直方向長さが長くなる理由は、第2領域B2が、投影レンズ90の焦点面FPに対して前方(又は後方)に配置されているため、上セパレータ本体52Aの前面52Aaから出光し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光するロービーム用光源32aからの光が、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってボケた状態で投影されることによるものと考えられる。
 また、ロービーム用配光パターンが、ADB用配光パターンと比べ、密度が低く(明るい範囲が狭く)、かつ、最大光度が低くなる理由は、上記ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が高くならない理由と同様と考えられる。
 なお、図19(b)中、ロービーム用配光パターンPLoの幅W2がADB用配光パターンPADBの幅W1より広くなるのは、図15(b)に示すように、ロービーム用光源32aからの光が導光される第1導光部52dの幅W4がADB用光源32bからの光が導光される第2導光部53dの幅W3より広いことによるものである。
 なお、ADB用光源32bを点灯すると、ADB用配光パターンPADBが形成され、ロービーム用光源32a及びADB用光源32bを点灯すると、ロービーム用配光パターンPLo及びADB用配光パターンPADBを含む合成配光パターンが形成される。この点は、第1実施形態と同様であるため、説明を省略する。
 また、本発明者らは、以上のようにして形成されるADB用配光パターンの輪郭が適度にぼけた状態となることを確認した。
 ADB用配光パターンの輪郭が適度にぼけた状態となる理由は、第3領域B3が、投影レンズ90の焦点面FPに対して後方(又は前方)に配置されているため、下セパレータ本体53の前面53aから出光し、さらに、プライマリレンズ60Aの下入光面60Ab2からプライマリレンズ60Aに入光するADB用光源32bからの光が、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってボケた状態で投影されることによるものと考えられる。
 以上説明したように、本実施形態によれば、ロービーム用配光パターンの一部(例えば、水平線より下4度付近)の光度が相対的に高くなるのを抑制でき、かつ、水平方向に関し、鉛直方向の厚みが均一となる(つまり、配光フィーリングが低下するのを抑制することができる)ロービーム用配光パターンを形成することができる車両用灯具10Aを提供することができる。
 また、本実施形態によれば、ADB用配光パターンと比べ、鉛直方向長さが長く、密度が低く(明るい範囲が狭く)、かつ、最大光度が低いロービーム用配光パターン、及び、輪郭が適度にぼけたADB用配光パターンを形成することができる車両用灯具10Aを提供することができる。
 本発明者らが検討したところ、上記構成の車両用灯具10Aにおいては、セパレータ50Aの成形ばらつきや温度変化等に起因して、図22(a)に示すように、ロービーム用光源32aからの光が出光する上セパレータ本体52Aの前面52AaとADB用光源32bからの光が出光する下セパレータ本体53の前面53aとの間に隙間S13が生じる場合があり、隙間S13が生じた場合、図22(b)に示すように、ロービーム用配光パターンPLoとADB用配光パターンPADBとの間(図22(a)中の符号S14が示す隙間参照)で光度が急激に低下し、配光フィーリングが低下することが判明した。図22(a)は上セパレータ本体52Aの前面52AaとADB用光源32bからの光が出光する下セパレータ本体53の前面53aとの間の隙間S13を説明するための図、図22(b)は隙間S13が生じた場合に形成される、ロービーム用配光パターン及びADB用配光パターンを含む合成配光パターンの一例である。
 次に、第3実施形態として、ロービーム用光源32aからの光が出光する上セパレータ本体52Aの前面52AaとADB用光源32bからの光が出光する下セパレータ本体53の前面53aとの間に隙間S13が生じた場合であっても、ロービーム用配光パターンPLoとADB用配光パターンPADBとの間の光度変化がなだらかになり、配光フィーリングが低下するのを抑制することができる車両用灯具10Bについて説明する。
 本実施形態の車両用灯具10Bは、上記第2実施形態の車両用灯具10Aと比べ、セパレータ50Aに代えてセパレータ50Bを用いている点が相違する。それ以外、上記第2実施形態と同様の構成である。以下、上記第2実施形態との相違点を中心に説明し、同様の構成については同一の符号を付して適宜説明を省略する。
 図23は、セパレータ50Bの一部縦断面図である。図24(a)は上セパレータ本体52Bの斜視図、図24(b)は下セパレータ本体53Bの斜視図である。
 図23に示すセパレータ50Bは、図24に示す上セパレータ本体52Bと下セパレータ本体53Bとを組み合わせることで構成される。
 セパレータ50Bは、上記第2実施形態のセパレータ50Aと比べ、図23、図24(b)に示すように、下セパレータ本体53Bの前端部の上部が上方に延びたオーバーラップ部57を含む点で相違する。それ以外、上記第2実施形態のセパレータ50Aと同様の構成である。以下、上記第2実施形態のセパレータ50Aとの相違点を中心に説明し、同様の構成については同一の符号を付して適宜説明を省略する。
 図23に示すように、オーバーラップ部57は、プライマリレンズ60Aの上入光面60Ab1(図23中図示略)が対向する前面57aと、上セパレータ本体52B(前面52Aa)の下部と下セパレータ本体53B(前面53a)の上部との間の隙間S13及び上セパレータ本体52Bの前面52Aaが対向する後面57bと、を含む薄膜状の導光部である。
 オーバーラップ部57の厚みT3は、例えば、0.2mmである。なお、上セパレータ本体52Bの前面52Aaから出光するロービーム用光源32aからの光の透過率が低下するのを抑制するため、オーバーラップ部57の厚みT3は、できる限り薄い方が望ましい。
 オーバーラップ部57は、オーバーラップ部57の前面57aと後面57bとの間で全反射を繰り返しつつオーバーラップ部57内を導光されるADB用光源32bからの光Ray3が、オーバーラップ部57の前面57aから出光するように、オーバーラップ部57の後面57bと上セパレータ本体52Bの前面52Aaとの間に隙間S15が形成された状態で配置される。隙間S15は、例えば、0.02mmである。
 上記構成の車両用灯具10Bにおいては、ロービーム用光源32a及びADB用光源32bを同時点灯すると、ロービーム用光源32aからの光は、第1入光面52eからセパレータ50B(第1導光部52d)に入光する。
 セパレータ50B(第1導光部52d)に入光したロービーム用光源32aからの光のうち、一部の光、例えば、光度が相対的に強い光Ray1(例えば、図17参照)は、上セパレータ本体52Bの前面52Aaの下部から直接出光し、オーバーラップ部57を透過し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。
 また、セパレータ50B(第1導光部52d)に入光したロービーム用光源32aからの光のうち、他の一部の光、例えば、光度が相対的に弱い光Ray2(例えば、図17参照)は、上セパレータ本体52Bの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52B内を導光されて上セパレータ本体52Bの前面52Aaから出光し、オーバーラップ部57を透過し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。
 一方、ADB用光源32bからの光は、第2入光面53eからセパレータ50B(第2導光部53d)に入光する。
 セパレータ50B(第2導光部53d)に入光したADB用光源32bからの光のうち、一部が下セパレータ本体53Bの前面53aの上部から直接出光し、さらに、プライマリレンズ60Aの下入光面60Ab2からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでADB用配光パターンの形成に用いられる。
 また、図23に示すように、セパレータ50B(第2導光部53d)に入光したADB用光源32bからの光のうち、他の一部(図23中、符号Ray3が示す光線参照)がオーバーラップ部57の前面57aと後面57bとの間で全反射を繰り返しつつオーバーラップ部57内を導光されてオーバーラップ部57の前面57aから出光し、さらに、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってロービーム用配光パターン(下部)とADB用配光パターン(上部)との間に投影される。
 本発明者らは、以上のようにして形成されるロービーム用配光パターン及びADB用配光パターンを含む合成配光パターンが、図25に示すように、ロービーム用配光パターンPLoとADB用配光パターンPADBとの間の光度変化がなだらかになり、配光フィーリングが低下するのを抑制することができることを確認した。図25は、車両用灯具10Bにより形成されるロービーム用配光パターンPLo及びADB用配光パターンPADBを含む合成配光パターンの一例である。
 以上説明したように、本実施形態によれば、ロービーム用光源32aからの光が出光する上セパレータ本体52Bの前面52AaとADB用光源32bからの光が出光する下セパレータ本体53Bの前面53aとの間に隙間S13が生じた場合であっても、ロービーム用配光パターンPLoとADB用配光パターンPADBとの間の光度変化がなだらかになり、配光フィーリングが低下するのを抑制することができる車両用灯具10Bを提供することができる。
 次に、変形例について説明する。
 図26は、セパレータ50B(変形例)の一部縦断面図である。
 上記第3実施形態では、オーバーラップ部として、下セパレータ本体53Bの前端部の上部が上方に延びたオーバーラップ部57を用いた例について説明したが、これに限らない。例えば、図26に示すように、オーバーラップ部として、上セパレータ本体52Bの前端部の下部が下方に延びたオーバーラップ部58を用いてもよい。
 オーバーラップ部58は、プライマリレンズ60Aの下入光面60Ab2(図26中図示略)が対向する前面58aと、上セパレータ本体52B(前面52Aa)の下部と下セパレータ本体53B(前面53a)の上部との間の隙間S13及び下セパレータ本体53Bの前面53aが対向する後面58bと、を含む薄膜状の導光部である。
 オーバーラップ部58の厚みT4は、例えば、0.2mmである。なお、下セパレータ本体53Bの前面53aから出光するADB用光源32bからの光の透過率が低下するのを抑制するため、オーバーラップ部58の厚みT4は、できる限り薄い方が望ましい。
 オーバーラップ部58は、オーバーラップ部58の前面58aと後面58bとの間で全反射を繰り返しつつオーバーラップ部58内を導光されるロービーム用光源32aからの光が、オーバーラップ部58の前面58aから出光するように、オーバーラップ部58の後面58bと下セパレータ本体53Bの前面53aとの間に隙間S16が形成された状態で配置される。隙間S16は、例えば、0.02mmである。
 本変形例においては、ロービーム用光源32a及びADB用光源32bを同時点灯すると、ロービーム用光源32aからの光は、第1入光面52eからセパレータ50B(第1導光部52d)に入光する。
 セパレータ50B(第1導光部52d)に入光したロービーム用光源32aからの光のうち、光度が相対的に強い光Ray1(例えば、図17参照)は、上セパレータ本体52Bの前面52Aaの下部から直接出光し、オーバーラップ部58を透過し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。
 また、セパレータ50B(第1導光部52d)に入光したロービーム用光源32aからの光のうち、光度が相対的に弱い光Ray2(例えば、図17参照)は、上セパレータ本体52Bの前面52Aaと後面52Abとの間で全反射を繰り返しつつ上セパレータ本体52B内を導光されて上セパレータ本体52Bの前面52Aaから出光し、さらに、プライマリレンズ60Aの上入光面60Ab1からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでロービーム用配光パターンの形成に用いられる。
 さらに、セパレータ50B(第1導光部52d)に入光したロービーム用光源32aからの光のうち、他の一部(図26中、符号Ray4が示す光線参照)がオーバーラップ部58の前面58aと後面58bとの間で全反射を繰り返しつつオーバーラップ部58内を導光されてオーバーラップ部58の前面58aから出光し、さらに、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によってロービーム用配光パターン(下部)とADB用配光パターン(上部)との間に投影される。
 一方、ADB用光源32bからの光は、第2入光面53eからセパレータ50B(第2導光部53d)に入光する。
 セパレータ50B(第2導光部53d)に入光したADB用光源32bからの光のうち、一部が下セパレータ本体53Bの前面53aの上部から直接出光し、さらに、プライマリレンズ60Aの下入光面60Ab2からプライマリレンズ60Aに入光し、プライマリレンズ60A及びセカンダリレンズ80によって構成される投影レンズ90によって投影されることでADB用配光パターンの形成に用いられる。
 本発明者らは、以上のようにして形成されるロービーム用配光パターン及びADB用配光パターンを含む合成配光パターンが、図25に示すように、ロービーム用配光パターンPLoとADB用配光パターンPADBとの間の光度変化がなだらかになり、配光フィーリングが低下するのを抑制することができることを確認した。
 また、上記第3実施形態では、オーバーラップ部57を第2実施形態の車両用灯具10Aのセパレータ50Aに適用した例について説明したが、これに限らない。例えば、オーバーラップ部57を第1実施形態の車両用灯具10Aのセパレータ50、その他のセパレータに適用してもよい。オーバーラップ部58についても同様である。
 上記実施形態では、投影レンズとして、プライマリレンズ60A及びセカンダリレンズ80の二枚のレンズによって構成される投影レンズ90を用いた例について説明したが、これに限らない。例えば、投影レンズとして、図示しないが、一枚のレンズによって構成される投影レンズを用いてもよいし、三枚以上のレンズによって構成される投影レンズを用いてもよい。
 また、上記実施形態では、セパレータとして、上セパレータ本体52Aと、第1導光部52dと、下セパレータ本体53と、第2導光部53dと、を含むセパレータ50Aを用いた例について説明したが、これに限らない。例えば、上記従来技術と同様、セパレータとして、上セパレータ本体52Aと第1導光部52dとを含み、下セパレータ本体53と第2導光部53dとを含まないセパレータを用いてもよい。つまり、下セパレータ本体53と第2導光部53dは省略してもよい。
 また、上記実施形態では、投影レンズ90の焦点面FPとして、曲率が一定の球面(図20参照)を用いた例について説明したが、これに限らない。例えば、図21に示すように、投影レンズ90の焦点面FPとして、曲率が不均一に変化する球面を用いてもよい。図21は、投影レンズ90の焦点面FPの変形例である。
 上記各実施形態で示した各数値は全て例示であり、これと異なる適宜の数値を用いることができるのは無論である。
 上記各実施形態はあらゆる点で単なる例示にすぎない。上記各実施形態の記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。
 10…車両用灯具、20…ヒートシンク、22…ベース、22a…前面、22a1…光源モジュール実装面、22a2…周囲面、22a3…ホルダ当接面、22a4…リテーナ当接面、22a5…ネジ穴、22a6…位置決めピン、22b…後面、22c…ネジ穴、24…第1延長部、26…第2延長部、28…放熱フィン、30…光源モジュール、32a…ロービーム用光源、32b…ADB用光源、34…基板、34a…貫通穴、34c…コネクタ、40…ホルダ、40a…前方側開口端面、42…ホルダ本体、42a…前面、42c…貫通穴、44…筒状部、46…フランジ部、48…凸部、49…凸部、50、50A…セパレータ、52、52A…上セパレータ本体、52a、52Aa…前面、52a1…段差付きエッジ部、52a2…延長エッジ部、52a3…延長エッジ部、52b、52Ab…後面、52c…下端面、52d…第1導光部、52e…第1入光面、52f…フランジ部、52f1…貫通穴、52f2…貫通穴、52g…導光部、52h…入光面、53…下セパレータ本体、53a…前面、53a1…段差付きエッジ部、53a2…延長エッジ部、53a3…延長エッジ部、53b…後面、53c…上端面、53d…第2導光部、53e…第2入光面、53f…フランジ部、53f1…貫通穴、53g…導光部、53h…入光面、60、60A…プライマリレンズ、60a…前面、60b、60Ab…後面、60Ab1…上入光面、60Ab2…下入光面、62…フランジ部、70…リテーナ、72…リテーナ本体、76…フランジ部、80…セカンダリレンズ、82…レンズ本体、82a…前面、82b…後面、84…筒状部、86…押さえ部兼ネジ受け部、88…位置決めピン、AX…基準軸、CL…カットオフライン、CL1…左水平カットオフライン、CL2…右水平カットオフライン、CL3…カットオフライン、CLADB…カットオフライン、CLLo…カットオフライン、F…焦点、N1、N2…ネジ、PADB…ADB用配光パターン、PLo…ロービーム用配光パターン

Claims (4)

  1.  投影レンズと、前記投影レンズの後方に配置されたセパレータと、前記セパレータの後方に配置され、前記セパレータ及び前記投影レンズをこの順に透過して前方に照射されてロービーム用配光パターンを形成する光を発光するロービーム用光源と、を備えた車両用灯具において、
     前記セパレータは、前面とその反対側の後面とを含む上セパレータ本体と、前記上セパレータ本体の下部から前記ロービーム用光源に向かって延び、先端に前記ロービーム用光源が対向する第1入光面を有する第1導光部と、を含み、
     前記投影レンズは、前面とその反対側の後面とを含み、
     前記投影レンズの後面は、前記上セパレータ本体の前面が対向する上入光面を含み、
     前記ロービーム用光源、前記第1導光部、前記上セパレータ本体及び前記上入光面は、それぞれ、前記投影レンズの焦点を通りかつ車両前後方向に延びる基準軸より上に配置され、
     前記上セパレータ本体の前面の下部は、前記投影レンズの後面の上入光面の下部に面接触し、
     前記上セパレータ本体の前面の下部より上の部分と前記投影レンズの後面の上入光面の下部より上の部分との間に空間が形成されており、
     前記ロービーム用光源からの光は、前記第1入光面から前記第1導光部に入光し、一部が前記上セパレータ本体の前面から直接出光し、かつ、他の一部が前記上セパレータ本体の前面と後面との間で全反射を繰り返しつつ前記上セパレータ本体内を導光されて前記上セパレータ本体の前面から出光し、さらに、前記投影レンズの上入光面から前記投影レンズに入光し、前記投影レンズよって投影されることで前記ロービーム用配光パターンの形成に用いられる車両用灯具。
  2.  前記上セパレータ本体の前面と前記投影レンズの後面の上入光面との間の間隔は、上方に向かうに従って広くなる請求項1に記載の車両用灯具。
  3.  前記投影レンズの後面の上入光面の面形状は、前記ロービーム用配光パターンの光度分布が法規を満たし、かつ、水平方向に関し、前記ロービーム用配光パターンの鉛直方向の厚みが均一となるように調整されている請求項1又は2に記載の車両用灯具。
  4.  前記セパレータ及び前記投影レンズをこの順に透過して前方に照射されてADB用配光パターンを形成する光を発光するADB用光源をさらに備え、
     前記セパレータは、前面とその反対側の後面とを含む下セパレータ本体と、前記下セパレータ本体の上部から前記ADB用光源に向かって延び、先端に前記ADB用光源が対向する第2入光面を有する第2導光部と、を含み、
     前記投影レンズの後面は、さらに、前記下セパレータ本体の前面が対向する下入光面を含み、
     前記ADB用光源、前記第2導光部、前記下セパレータ本体及び前記下入光面は、それぞれ、前記基準軸より下に配置され、
     前記下セパレータ本体の前面は、前記投影レンズの後面の下入光面に面接触している請求項1から3のいずれか1項に記載の車両用灯具。
PCT/JP2019/019271 2018-06-21 2019-05-15 車両用灯具 WO2019244519A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19821997.4A EP3812651B1 (en) 2018-06-21 2019-05-15 Vehicle lighting fixture
US17/254,277 US11293617B2 (en) 2018-06-21 2019-05-15 Vehicular lighting fixture
CN201980041407.XA CN112292562B (zh) 2018-06-21 2019-05-15 车辆用灯具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118349 2018-06-21
JP2018118349A JP7051607B2 (ja) 2018-06-21 2018-06-21 車両用灯具

Publications (1)

Publication Number Publication Date
WO2019244519A1 true WO2019244519A1 (ja) 2019-12-26

Family

ID=68983661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019271 WO2019244519A1 (ja) 2018-06-21 2019-05-15 車両用灯具

Country Status (5)

Country Link
US (1) US11293617B2 (ja)
EP (1) EP3812651B1 (ja)
JP (1) JP7051607B2 (ja)
CN (1) CN112292562B (ja)
WO (1) WO2019244519A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293617B2 (en) 2018-06-21 2022-04-05 Stanley Electric Co., Ltd. Vehicular lighting fixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221319B2 (ja) * 2021-03-03 2023-02-13 本田技研工業株式会社 ヘッドライト制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079660A (ja) 2013-10-17 2015-04-23 スタンレー電気株式会社 車両用灯具
JP2018083533A (ja) * 2016-11-24 2018-05-31 スタンレー電気株式会社 車両用灯具
WO2018117230A1 (ja) * 2016-12-22 2018-06-28 スタンレー電気株式会社 車両用灯具
WO2018123850A1 (ja) * 2016-12-26 2018-07-05 スタンレー電気株式会社 車両用灯具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130602B2 (ja) * 2014-07-08 2017-05-17 三菱電機株式会社 前照灯モジュール及び前照灯装置
KR101907372B1 (ko) * 2017-04-26 2018-10-12 현대모비스 주식회사 헤드램프 장치
US10648633B2 (en) * 2017-11-29 2020-05-12 Toyota Motor Engineering & Manufacturing North America, Inc. Lamp assemblies with multiple lighting functions sharing a cover lens
JP7051607B2 (ja) 2018-06-21 2022-04-11 スタンレー電気株式会社 車両用灯具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079660A (ja) 2013-10-17 2015-04-23 スタンレー電気株式会社 車両用灯具
JP2018083533A (ja) * 2016-11-24 2018-05-31 スタンレー電気株式会社 車両用灯具
WO2018117230A1 (ja) * 2016-12-22 2018-06-28 スタンレー電気株式会社 車両用灯具
WO2018123850A1 (ja) * 2016-12-26 2018-07-05 スタンレー電気株式会社 車両用灯具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293617B2 (en) 2018-06-21 2022-04-05 Stanley Electric Co., Ltd. Vehicular lighting fixture

Also Published As

Publication number Publication date
JP7051607B2 (ja) 2022-04-11
CN112292562A (zh) 2021-01-29
CN112292562B (zh) 2023-04-25
EP3812651A4 (en) 2022-03-09
US20210270440A1 (en) 2021-09-02
EP3812651B1 (en) 2023-09-06
JP2019220402A (ja) 2019-12-26
EP3812651A1 (en) 2021-04-28
US11293617B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP7022068B2 (ja) 車両用灯具
CN108351080B (zh) 车辆用灯具
CN110121616B (zh) 透镜保持构造以及车辆用灯具
JP2014241220A (ja) 車両用灯具
KR20030084634A (ko) 광원 유닛
WO2019244519A1 (ja) 車両用灯具
JP7176810B2 (ja) 車両用灯具
CN108224352B (zh) 灯具
WO2018117230A1 (ja) 車両用灯具
WO2018123850A1 (ja) 車両用灯具
US11054102B2 (en) Collimator lens, light radiation device, and vehicle lighting apparatus
JP7046730B2 (ja) 車両用灯具
JP7215656B2 (ja) 導光レンズ保持構造及び車両用灯具
JP6975552B2 (ja) 車両用灯具
JP2022053628A (ja) 照明装置
US10823364B2 (en) Vehicular lamp
JP2020174024A (ja) 車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019821997

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019821997

Country of ref document: EP

Effective date: 20210121