WO2019244425A1 - 障害物検知システム及び障害物検知方法 - Google Patents

障害物検知システム及び障害物検知方法 Download PDF

Info

Publication number
WO2019244425A1
WO2019244425A1 PCT/JP2019/011019 JP2019011019W WO2019244425A1 WO 2019244425 A1 WO2019244425 A1 WO 2019244425A1 JP 2019011019 W JP2019011019 W JP 2019011019W WO 2019244425 A1 WO2019244425 A1 WO 2019244425A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
obstacle
train
obstacle detection
adjacent
Prior art date
Application number
PCT/JP2019/011019
Other languages
English (en)
French (fr)
Inventor
和也 杉本
拓久哉 中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019244425A1 publication Critical patent/WO2019244425A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an obstacle detection system and an obstacle detection method, and is suitably applied to an obstacle detection system and an obstacle detection method for detecting an obstacle in a double track environment.
  • an external sensor is mounted on the train, and based on information acquired from the external sensor, whether there is an obstacle on the track in front of the train.
  • Systems have been devised to detect the For example, according to the on-orbit obstacle detection system disclosed in Patent Document 1, a forward monitoring camera is installed in front of a train, and after detecting a track area in an image obtained from the camera, the vehicle travels in the same place in the past. The presence or absence of an obstacle on the orbit is detected by comparing the recorded image with the recorded image.
  • a train requires a longer braking distance than a car.
  • the braking distance of a vehicle traveling at a speed of 100 km / h is about 100 m
  • the braking distance of a train traveling at the same speed is about 400 m.
  • the difference in braking performance depends on the difference in the brake structure between the car and the train.However, in the case of a train, it is necessary to transport the standing passenger safely, so rapid deceleration is not possible and a long braking distance is required. Become.
  • Another problem is that when a train runs on a curve or slope, the track is shielded by a structure adjacent to the track, resulting in blind spots from an external sensor mounted on the vehicle. There is a problem that there is a traveling section where the obstacle detection cannot be sufficiently performed.
  • the present invention has been made in view of the above points, and aims to propose an obstacle detection system and an obstacle detection method that improve obstacle detection performance in a double track environment where a plurality of tracks are adjacent. is there.
  • an obstacle detection system for detecting an obstacle in a double track environment including an adjacent first trajectory and a second trajectory.
  • This obstacle detection system is installed on a first train traveling on the first track at an angle to a traveling axis of the first train, and an external field sensor including the second track on a sensor area. And, using the sensor data of the external sensor, transmitting / receiving data or a signal between the obstacle detection device and the outside, and an obstacle detection device that detects the presence or absence of an obstacle on the second track. And a communication unit.
  • an obstacle detection method by an obstacle detection system that detects an obstacle on an adjacent track in a double track environment including an adjacent first track and a second track.
  • the obstacle detection system is installed on the first train traveling on the first track at an angle to the traveling axis of the first train, and An external field sensor including in the sensor area, an obstacle detection device that detects the presence or absence of an obstacle on the second track using sensor data of the external field sensor, and between the obstacle detection device and the outside.
  • FIG. 1 is a conceptual diagram of an obstacle detection device according to a first embodiment of the present invention.
  • 1 is a block diagram illustrating a configuration example of an obstacle detection system according to a first embodiment of the present invention.
  • FIG. 4 is a diagram (part 1) for describing an example of arrangement of side monitoring cameras.
  • FIG. 9 is a diagram (part 2) for describing an example of the arrangement of the side monitoring cameras. It is a figure which shows an example of the camera video image
  • FIG. 6 is a diagram for explaining an adjacent trajectory region in the camera image shown in FIG. 5.
  • FIG. 6 is a diagram for explaining a building limit area on an adjacent track in the camera image shown in FIG. 5. It is a flowchart which shows an example of the processing procedure of an obstacle detection process.
  • FIG. 7 is a conceptual diagram of an obstacle detection device according to a second embodiment of the present invention. It is a block diagram showing an example of composition of an obstacle detection system concerning a 2nd embodiment of the present invention. It is a figure for explaining an example of arrangement of a side surveillance camera in a 2nd embodiment. 13 is a flowchart illustrating an example of a procedure of an obstacle detection process according to the second embodiment.
  • FIG. 1 is a conceptual diagram of an obstacle detection device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the obstacle detection system according to the first embodiment of the present invention. The configuration and functions of the obstacle detection system 1 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the obstacle detection system 1 is suitable for use in a double track environment where a plurality of tracks are adjacent. Specifically, it is assumed that there are a first track and a second track laid adjacent to each other as a double track environment. It is not necessary that the first track and the second track are always laid in parallel with a fixed distance therebetween. It is assumed that the distance, the altitude difference, and the like change between them.
  • the adjacent on-track train 300 and a control system 200 for managing the location of each train are communicably connected via a communication unit 130.
  • the obstacle detection system 1 is configured to include at least the side monitoring camera 110 of the on-track traveling train 100, the obstacle detection device 120, and the communication unit 130.
  • the configuration of the obstacle detection system 1 may include the train location management unit 210 of the control system 200.
  • the obstacle detection device 120 detects an obstacle on an adjacent track, and determines permission / non-permission of the traveling train 300 on the adjacent track traveling on the adjacent track based on the detection result.
  • the traveling of the train 300 on the adjacent track is controlled based on the determination result.
  • the on-track traveling train 100 is configured to detect an obstacle on the adjacent track based on a side monitoring camera 110 that captures an adjacent track and an image captured by the side monitoring camera 110. And an obstacle detection device 120 for detecting.
  • FIGS. 3 and 4 are diagrams (parts 1 and 2) for explaining an example of the arrangement of the side monitoring cameras.
  • the on-track traveling train 100 traveling on the first track 401 in the upward direction in the figure and the second track (adjacent track) 402 on the downward direction in the figures are shown.
  • the side monitoring camera shooting area 111 is indicated by a broken line as a shooting range of the side monitoring camera 110.
  • An obstacle 400 is shown as an example of an irregular small obstacle on the adjacent track 402.
  • the side monitoring camera 110 is installed at, for example, the leading vehicle of the on-track traveling train 100 at an angle with respect to the traveling axis (traveling direction) of the on-track traveling train 100.
  • the side monitoring camera 110 is installed perpendicularly to the traveling axis of the on-track traveling train 100 and at an angle of depression.
  • the adjacent track 402 and its surrounding area are included in the side monitoring camera shooting area 111 (FIG. 4). reference).
  • a camera (side monitoring camera 110) is used as an example of an external sensor that captures the adjacent trajectory 402.
  • the type of the external sensor that can be used in the present embodiment is not limited to a camera. Types of sensors may be used. However, in consideration of the purpose of detecting an irregular small obstacle (obstacle 400) existing on the adjacent orbit 402, the use of a camera or LiDAR is effective. Also, the vehicle on which the side monitoring camera 110 is installed in the on-track traveling train 100 is not limited to the leading vehicle illustrated.
  • the obstacle detection device 120 is a computer that can provide various functions mainly by executing a program. As shown in FIGS. 1 and 2, the obstacle detection device 120 includes a train track route acquisition unit 121, a train track position calculation unit 122, an on-track building limit area calculation unit 123, and an on-track obstacle detection unit 124. , And a progress permission determining unit 125 as a functional configuration.
  • the train track route acquiring unit 121 acquires travel route information between stations where the train 100 travels on the track.
  • the travel route information may be, specifically, the position, gradient, curvature, branch information, and the like of the travel route based on the departure station.
  • the train track route acquisition unit 121 sends the acquired travel route information to the train location position calculation unit 122.
  • the train on-rail position calculating unit 122 obtains the running route information of the on-track traveling train 100 from the train track route obtaining unit 121, and calculates the current on-rail position (on-rail position information) on the running route of the on-track running train 100. Then, the train on-line position calculation unit 122 transmits the calculated on-rail position information to the on-track building limit area calculation unit 123 and also transmits to the train on-line position management unit 210 of the control system 200 via the communication unit 130. .
  • the method by which the train on-rail position calculating unit 122 calculates the on-rail position is not particularly limited. Specifically, for example, a method is conceivable in which a GPS (Global Positioning System) is mounted on the on-track traveling train 100 and calculation is performed based on GPS information obtained from the GPS. Further, for example, a method of calculating the on-rail position by comparing a camera video (image) captured by the side monitoring camera 110 when the vehicle traveled on the same travel route in the past with a current camera video (image) is also considered.
  • GPS Global Positioning System
  • a sensor capable of acquiring distance information to a target such as LiDAR is installed in the on-track traveling train 100, and three-dimensional position information acquired when the vehicle traveled on the same traveling route in the past and current three-dimensional position information are acquired.
  • the obstacle detection device 120 in parallel with the processing by the train track route acquisition unit 121 and the train on-rail position calculation unit 122, the building limit area calculation unit 123 on the adjacent track, the obstacle detection unit 124 on the adjacent track, Then, an obstacle detection process is performed by the progress permission determination unit 125. Since the details of the obstacle detection processing will be described later with reference to FIG. 8, only the outline of the obstacle detection processing will be described below with reference to FIGS.
  • the adjacent track limit building area calculation unit 123 calculates the adjacent track area 404 (see FIG. 6) in the camera image 403 by inputting the camera image 403 (see FIG. 5) captured by the side monitoring camera 110.
  • the adjacent trajectory region means a region in a predetermined range including the adjacent trajectory.
  • FIG. 5 is a diagram showing an example of a camera image taken by the side monitoring camera.
  • FIG. 5 illustrates a camera image 403 captured by the side monitoring camera 110, and an adjacent track 402 is captured.
  • FIG. 6 is a diagram for explaining an adjacent trajectory region in the camera image shown in FIG. According to FIG. 6, in the camera image 403, a region near the adjacent trajectory 402 is shown as an adjacent trajectory region 404.
  • the adjacent track-based building limit area calculation unit 123 uses the calculated adjacent track area 404 and the adjacent track-based vehicle information (details will be described later) received from the train on-line position management unit 210 of the control system 200 to generate an adjacent track.
  • the building limit area 405 (see FIG. 7) on the adjacent track of the vehicle traveling on the track 402 is calculated.
  • the construction limit area on the adjacent track is a predetermined range (building that may not obstruct the train operation in order to secure the safety of train operation on the adjacent track). Critical area).
  • FIG. 7 is a diagram for explaining the building limit area on the adjacent track in the camera image shown in FIG. According to FIG. 7, in the camera image 403, the adjacent track 402 and the area above the adjacent track 402 are shown as the building limit area 405 on the adjacent track. As a specific image, an area larger than the size of the adjacent track running train 300 traveling on the adjacent track 402 by a predetermined degree is set as the adjacent track limit area 405.
  • the arrows shown in FIGS. 5 to 7 and FIGS. 9 and 10 to be described later mean the traveling direction (traveling direction) of the on-track traveling train 100 on which the side monitoring camera 110 is installed.
  • the adjacent on-track obstacle detection unit 124 receives the adjacent on-track building limit area 405 calculated by the adjacent on-track building limit area calculation unit 123, and enters the adjacent on-track building limit area 405 into the adjacent on-track building limit area 405. It detects whether there is an obstacle that hinders traveling. For example, in the case of FIG. 7, there is no obstacle. On the other hand, in FIG. 9 and FIG. 10 described later, the obstacle 400 exists in the building limit area 405 on the adjacent track.
  • the traveling permission determining unit 125 determines whether traveling of the train 300 traveling on the adjacent track 402 is permitted or not permitted, based on the detection result of the obstacle by the obstacle detecting unit 124 on the neighboring track. Specifically, when an obstacle is detected, it is determined that the traveling of the adjacent train 300 is not permitted (not permitted), and a stop signal is transmitted to the control system 200 or the adjacent train 300. . On the other hand, if no obstacle is detected, it is determined that the traveling of the train 300 running on the adjacent track is permitted, and a progress permission signal is transmitted to the control system 200 and the train 300 running on the adjacent track. At this time, the progress permission determination unit 125 can also transmit the detection result of the obstacle by the on-orbit obstacle detection unit 124 to the control system 200.
  • the train on-line position management unit 210 of the control system 200 may determine whether to permit or prohibit the traveling of the train 300 on the adjacent track. Good.
  • the traveling permission determination unit 125 does not need to perform the traveling permission / non-permission determination, and the train on-line position management unit 210 of the control system 200 determines whether the traveling Based on the determination, the permission / prohibition of the traveling of the train 300 on the adjacent track may be determined, and a progress permission signal or a stop signal may be transmitted to the train 300 on the adjacent track according to the determination result.
  • the control system 200 includes a train location control unit 210.
  • the traffic control system 200 is a system for controlling the operation of a train, and has a functional unit other than the train location management unit 210, but is not shown in the drawings because it is not related to the present description.
  • the train on-line position management unit 210 uses vehicle information (adjacent on-track vehicle information) on the nearest adjacent on-track running train 300 that runs on the adjacent track 402 as viewed from the on-track running train 100 using an operation diagram of the target route.
  • vehicle information adjacent on-track vehicle information
  • the acquired information is transmitted to the obstacle detection device 120 of the on-track traveling train 100 (the adjacent on-track building limit area calculation unit 123) via the communication unit 130.
  • the train on-rail position management unit 210 updates the on-track vehicle information to the next overtaking or passing vehicle information. And retransmit to the on-track traveling train 100.
  • the on-track vehicle information is, for example, the vehicle structure (vehicle width, vehicle height, number of trains, etc.) of the nearest adjacent on-track train 300.
  • vehicle structure vehicle width, vehicle height, number of trains, etc.
  • IP address and the like assigned to the adjacent on-track running train 300 are also included. .
  • the on-track position management unit 210 can also be transmitted to the on-track train 100 as adjacent on-track vehicle information.
  • the train-on-rail position management unit 210 receives the detection result of the obstacle by the adjacent on-track obstacle detection unit 124 from the obstacle detection device 120 (progress permission determination unit 125) of the on-track traveling train 100, The traveling permission signal / stop signal of the traveling train 300 is received.
  • the control signal to the adjacent track running train 300 is finally determined by the administrator of the control system 200. Is also good.
  • a progress permission signal or a stop signal is transmitted to the train control drive unit 310 of the train 300 running on the adjacent track according to the final decision of the manager.
  • the control system 200 is provided to improve the safety of the obstacle detection system 1, but the control system 200 is not an essential component in the obstacle detection system of the present invention.
  • an access point corresponding to the communication unit 130
  • the running control may be performed using only the inter-vehicle communication between the on-track running train 100 and the adjacent on-track running train 300.
  • the traveling permission determining unit 125 of the obstacle detection device 120 in the on-track traveling train 100 transmits a traveling permission signal or a stop signal to the train control driving unit 310 of the adjacent on-track traveling train 300, The traveling control of the traveling train 300 on the adjacent track can be realized.
  • Train 300 on adjacent track As shown in FIG. 2, the train 300 running on an adjacent track includes a train control drive unit 310 that controls and drives the own vehicle.
  • the train control driving unit 310 continues or stops the running of the train 300 on the adjacent track based on the progress permission signal or the stop signal input via the communication unit 130. More specifically, the train control drive unit 310 has two states: an inactive state in which a brake is applied to the adjacent on-track train 300, and an active state in which the brake is released. In the present embodiment, for example, it is configured to be normally inactive and to be active only while receiving the progress permission signal. This makes it possible to realize a so-called fail-safe configuration in which the inactive state to which the brake is applied is set to be on the safe side, and the safety of train control can be enhanced.
  • the adjacent on-track traveling train 300 corresponds to the side monitoring camera 110 and the obstacle detection device 120 similarly to the on-track traveling train 100.
  • a configuration may be provided. In the case of such a configuration, both the on-track traveling train 100 and the adjacent on-track traveling train 300 can realize forward monitoring (obstruction detection) of each other.
  • FIG. 8 is a flowchart illustrating an example of a processing procedure of the obstacle detection processing.
  • the obstacle detection processing according to the present embodiment is realized by executing the processing procedure illustrated in FIG. 8 at a constant cycle.
  • the building limit area calculation unit 123 on the adjacent track acquires the camera image 403 captured by the side monitoring camera 110 (step S11). Specifically, the camera image 403 illustrated in FIG. 5 is obtained.
  • the adjacent orbital building limit area calculation unit 123 calculates the adjacent orbital area 404 in the camera image 403 input in step S11 (step S12). When the calculation processing of the adjacent trajectory region 404 ends, the process proceeds to step S13.
  • the adjoining on-track construction limit area calculation unit 123 includes: an installation position and a posture of the side monitoring camera 110; travel route information of the on-track traveling train 100 acquired by the train track route acquisition unit 121; Based on the on-rail position information calculated by 122, a rough orbit existing area in the camera image 403 is estimated.
  • the on-track adjacent building limit area calculation unit 123 performs image processing on the estimated rough track existence area to extract edge information in the image.
  • the edge information indicates, for example, a line segment area where similar luminance values are continuous in an image.
  • the adjacent-track building limit area calculation unit 123 can calculate the adjacent track area 404 indicating the peripheral area of the adjacent track 402. (See FIG. 6).
  • step S ⁇ b> 13 the on-orbit building limit area calculation unit 123 determines whether or not the adjacent track area 404 exists in the camera image 403 of the side monitoring camera 110. Specifically, for example, it is determined whether or not the adjacent trajectory region 404 calculated in step S12 exists in the camera image 403 obtained in step S11 over a certain area.
  • step S13 when the adjacent orbital region 404 exists over a certain area, it is determined that the adjacent orbital region 404 exists (YES in step S13), and the process proceeds to step S14.
  • the adjacent track area 404 does not exist over a certain area, it is determined that the adjacent track area 404 does not exist (NO in step S13), and the process proceeds to step S19.
  • step S14 the on-track building limit area calculation unit 123 acquires the on-track vehicle information from the train on-line position management unit 210 of the control system 200 via the communication unit 130, and proceeds to step S15.
  • step S15 the adjacent on-track building limit area calculation unit 123 calculates the adjacent on-track building limit area 405 based on the adjacent track area 404 calculated in step S12 and the adjacent on-track vehicle information acquired in step S14. I do.
  • step S15 the calculation of the building limit area 405 on the adjacent track in step S15 will be described in detail.
  • the adjacent trajectory regions 404 calculated in step S12 are two linear regions each including one trajectory (adjacent trajectory 402). Further, the width of the two adjacent tracks 402 is fixed, and basically, the interval does not change in the middle of the route. In addition, the two trajectories are on the same plane.
  • the adjacent orbital building limit area calculation unit 123 calculates the installation position of the side monitoring camera 110, the camera parameters of the side monitoring camera 110 (settings related to imaging), and the pixels between the two adjacent track areas 404. Based on the number, the distance in the real space per pixel constituting the ground in the camera image 403 can be calculated.
  • the adjacent on-track building limit area calculation unit 123 sets By using these pieces of information and the distance in the real space per pixel calculated in advance, the building limit area 405 on the adjacent track in the camera image 403 can be calculated (see FIG. 7).
  • a specific image of the adjacent railroad building limit area 405 is an area larger than the size of the adjacent railroad running train 300 running on the adjacent railroad track 402 by a predetermined amount. In the case of FIG. It is calculated in the area.
  • the adjacent on-track construction limit area calculation unit 123 converts the camera image 403 and the adjacent on-track construction limit area 405 into the adjacent on-track obstacle detection unit 124.
  • the on-orbit obstacle detection unit 124 performs the process of step S16 with the input as a trigger.
  • FIG. 9 is a diagram showing an example of an image in which a building limit area on an adjacent track is superimposed on a camera image.
  • the obstacle detecting unit 124 on the adjacent track can acquire an image as shown in FIG. 9 at the start of step S16.
  • step S16 the adjacent on-track obstacle detection unit 124 determines whether there is an obstacle that hinders the running of the adjacent on-track train 300 in the adjacent on-track building limit area 405 calculated in step S15. Is detected (obstacle detection).
  • step S16 a method in which the calculation processing of the adjacent trajectory region 404 in step S12 is extended can be considered. That is, in the camera image 403 (particularly, the building limit area 405 on the adjacent track), a process of calculating the continuity of a straight line area obtained based on the edge information like the adjacent track area 404 is effective. As a result, for example, when a rupture in the linear region is found, it can be determined (detected) that there is an obstacle that blocks the adjacent trajectory 402. For example, the obstacle 400 shown in FIG. 9 has broken the continuity of the adjacent trajectory 402.
  • a utility pole 410 shown in FIG. 9 is a service facility installed between a first track 401 and a second track (adjacent track) 402, and is not an obstacle on the adjacent track 402.
  • the utility pole 410 is also photographed in the building limit area 405 on the adjacent track, and the continuity of the adjacent track 402 is broken. Therefore, erroneous detection may be caused only by the calculation of the continuity of the linear region described above.
  • FIG. 9 shows a feature point 411 and a feature point 412 as corner feature points of the telephone pole 410 and the obstacle 400.
  • the motion stereo method calculates the three-dimensional position information of the corner feature points in the real space by the principle of triangulation by using the traveling speed of the on-orbit running train 100 and the movement amount of the corner feature points between frames. It is a technique to do.
  • the KLT (Kanade-Lucas-Tomasi) method is widely known for calculating the amount of movement of a corner feature point between frames.
  • FIG. 10 is a diagram illustrating an example of a change with time of the image illustrated in FIG. 9.
  • a corner feature point of the utility pole 410 at time t is shown by a feature point 411, and a corner feature point after a lapse of time ⁇ t (time t + ⁇ t) is shown by a feature point 421.
  • the feature point 411 and the feature point 421 indicate the same position on the utility pole 410.
  • a corner feature point at time t is indicated by a feature point 412, and a corner feature point after a lapse of time ⁇ t (time t + ⁇ t) is indicated by a feature point 422.
  • an arbitrary feature point P in the camera image 403 is converted from P A (u_a, v_a) to P B (from the time t to the time t + ⁇ t in the image coordinate system in the image).
  • u_b, v_b when the angle between the optical axes of the side monitoring cameras 110 before and after the movement is ⁇ , and the traveling speed of the on-track traveling train 100 is V, the depth information Z of the feature point P is Can be calculated by the following equation (1).
  • the height information H of the feature point P can be calculated by the following equation (2).
  • f means the focal length of the side monitoring camera 110, which is a known value that can be obtained by camera calibration.
  • the adjacent on-orbit obstacle detection unit 124 obtains the three-dimensional position information (depth information Z) on the real space for the feature point P in the adjacent orbit building limit area 405.
  • the height information H can be calculated, and an obstacle existing on the adjacent trajectory 402 can be detected based on the calculation result. That is, if the position specified by the depth information Z and the height information H is within the building limit area 405 on the adjacent track, the feature point P can be determined to be an obstacle existing on the adjacent track 402. If it is not within the building limit area 405 on the adjacent track (for example, the obstacle 400), it can be determined that the feature point P is not an obstacle existing on the adjacent track 402 (for example, the telephone pole 410).
  • the above-described continuity of the linear region and the motion stereo method it becomes possible to close the trajectory and more accurately detect an object existing on the trajectory.
  • step S16 The above is the detailed processing method of the obstacle detection in step S16 of detecting whether there is an obstacle that hinders the traveling of the train 300 running on the adjacent track while avoiding erroneous detection.
  • the detection result of the obstacle detection is input from the adjacent track obstacle detection unit 124 to the traveling permission determination unit 125, and the process proceeds to step S17.
  • step S17 the progress permission determining unit 125 confirms the presence or absence of an obstacle from the detection result of the obstacle detection in step S16. If there is an obstacle (YES in step S17), the process proceeds to step S18, and if there is no obstacle (NO in step S17), the process proceeds to step S19.
  • step S ⁇ b> 18 the progress permission determination unit 125 transmits a stop signal (or an abnormality occurrence signal indicating that an obstacle is present) of the train 300 on the adjacent track via the communication unit 130 to the train location position of the control system 200.
  • the information is transmitted to the management unit 210.
  • the control system 200 instructs the train control drive unit 310 of the adjacent on-track traveling train 300 to stop progressing, thereby causing the adjacent on-track traveling train 300 to stop. Can be stopped.
  • the control system 200 may also perform processing such as recording the detection result of the obstacle detection. For example, by recording the presence of an obstacle together with the position information of the detected obstacle, it can be useful when giving an instruction to a worker to remove the obstacle.
  • step S18 besides the above-described processing method, for example, when an obstacle is detected in a state where the inter-vehicle distance between the on-track traveling train 100 and the adjacent on-track traveling train 300 is short, or as in the modified example described above.
  • the stop signal (described above) is transmitted from the traveling permission determination unit 125 of the on-track traveling train 100 to the train control driving unit 310 of the adjacent on-track traveling train 300 via the communication unit 130.
  • An abnormal occurrence signal may be transmitted directly, and the train 300 running on the adjacent track may be immediately stopped.
  • step S19 there is no obstacle, so there is no need to stop the train 300 running on the adjacent track. Therefore, the travel permission determining unit 125 transmits a travel permission signal (or a signal indicating no abnormality indicating that no obstacle exists) to the train location control unit 210 of the control system 200 via the communication unit 130. By receiving the traveling permission signal (abnormality-free signal), the control system 200 can confirm that the adjacent track 402 has no abnormality. In step S19, since no abnormality has occurred with respect to the obstacle, no signal may be transmitted to the control system 200.
  • step S18 or step S19 After the processing in step S18 or step S19, the obstacle detection processing ends, but after a certain period elapses, the obstacle detection processing is performed again. As described above, by performing the obstacle detection processing illustrated in FIG. 8, it is possible to accurately detect an obstacle on the adjacent track 402 from the side of the on-track traveling train 100.
  • the adjacent trajectory 402 is provided even in a double track environment where a plurality of trajectories are adjacent.
  • the upper obstacle can be accurately detected, and the safety of the traveling of the train 300 on the adjacent track can be enhanced.
  • the obstacle detection system 1 information on an external sensor installed at an angle to the traveling axis of the vehicle (in this example, the camera image of the side monitoring camera 110 mounted on the side) 403) can be used to obtain the state of the adjacent orbit 402.
  • Obstacle detection in front of the upper running train 300 can be realized. That is, since the own vehicle (the on-track train 100) performs the obstacle detection in front of the adjacent on-track train 300, monitoring is performed while capturing the shooting target near the center of the angle of view from closer than when monitoring forward. And an obstacle can be accurately detected.
  • the vehicle since the vehicle is monitored on the adjacent track while moving, obstacles and blind spots due to the traveling environment such as structures near the track hardly occur, and obstacles on the adjacent track on the open track can be accurately detected.
  • the obstacle detection system 1 is capable of providing the adjacent track 402 under the double track environment without being affected by the performance of the external sensor, the traveling section, the traveling environment, and the like described above as the problems of the related art.
  • the upper obstacle can be detected accurately, and the traveling safety of the traveling train 300 on the adjacent track can be enhanced.
  • Patent Document 1 describes a function of detecting the presence or absence of an obstacle on an adjacent track when an adjacent track is included in an image captured by a forward monitoring camera installed on the front of the vehicle. I have.
  • FIG. 7 of Patent Literature 1 shows an example in which a traveling trajectory of a company is taken as a center and a part of an adjacent trajectory reflected in the field of view is detected.
  • the number of pixels required for detection is not reflected in the image, making it difficult to detect, even when shooting with a surveillance camera installed in front of the vehicle.
  • the focal length of the lens mounted on the surveillance camera is increased in order to project small obstacles, the angle of view of the camera will be narrowed accordingly, and depending on the traveling section, the periphery of the adjacent track may not be sufficiently projected Improve the nature.
  • an object that is not included in the building limit area 405 on the adjacent orbit is reflected in the information of the external sensor (camera image 403 by the side monitoring camera 110).
  • a known method such as the motion stereo method, for example, only obstacles that hinder the traveling of the on-track train 300 while avoiding erroneous detection are avoided. Can be accurately detected.
  • the on-orbit traveling train equipped with the obstacle detection device 120 Since it is possible to stop the traveling of the traveling train 300 on the adjacent track from 100 directly or via the control system 200, it is possible to realize quick safety control.
  • the obstacle detection system 1 (obstacle detection device 120) according to the present embodiment can be used not only as a system for supporting the surroundings of a driver in manned driving, but also for unmanned operation of a train on an open track. It can also be used as a forward monitoring system for trains running on adjacent tracks to realize the above.
  • FIG. 11 is a conceptual diagram of an obstacle detection device according to the second embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating a configuration example of an obstacle detection system according to the second embodiment of the present invention. Note that FIGS. 11 and 12 correspond to FIGS. 1 and 2 exemplified in the first embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the obstacle detection system 2 includes side monitoring cameras 110A and 110B as an example of a plurality of external sensors mounted on the on-track traveling train 100. , 110C. These are cameras that monitor on an adjacent track similarly to the side monitoring camera 110 in the first embodiment.
  • the side monitoring camera 110A is attached to the first vehicle and the side monitoring camera is attached to the second vehicle.
  • a side monitoring camera 110C is mounted on the third vehicle.
  • the sensor data (camera image) acquired by each of the side monitoring cameras 110A to 110C is input to the building limit area calculation unit 123 on the adjacent track of the obstacle detection device 120.
  • FIG. 13 is a diagram for explaining an example of the arrangement of the side monitoring cameras according to the second embodiment.
  • the on-track traveling train 100 traveling on the first track 401 in the upward direction in the figure includes the side monitoring cameras 110A to 110C in order from the first to third cars in the traveling direction. Is installed.
  • the side monitoring cameras 110A to 110C are cameras for photographing the second trajectory (adjacent trajectory) 402, and the photographing range is indicated by camera photographing areas 111A to 111C.
  • Each camera is installed at an angle with respect to the traveling axis of the on-track traveling train 100.
  • all the cameras are installed perpendicularly to the traveling axis of the train and at an angle of depression, but the present invention is not limited to this, and the position and orientation may be set for each camera. In addition, the angle of view and the shooting cycle may be changed for each camera.
  • a plurality of side monitoring cameras 110A to 110C are shown as an example of the plurality of external sensors.
  • the type of the external sensor is not limited.
  • a combination of a camera and LiDAR may be used.
  • FIG. 13 shows an obstacle 400 as an example of an irregular small obstacle on the adjacent orbit 402.
  • a plurality of side monitoring cameras 110A to 110C can shoot a wider area than shooting with one camera (see FIG. 3). Also, it is possible to capture an overlapping area. For this reason, by processing images from these cameras, it is possible to detect obstacles with higher accuracy.
  • FIG. 14 is a flowchart illustrating an example of a procedure of an obstacle detection process according to the second embodiment. Note that the processing illustrated in FIG. 14 has many in common with the obstacle detection processing illustrated in FIG. 8 in the first embodiment, and a detailed description thereof will be omitted. The difference from the first embodiment (see FIG. 8) is that since a plurality of external sensors are mounted, it is necessary to execute the obstacle detection processing on adjacent tracks for the number of external sensors.
  • the obstacle detection processing according to the second embodiment is realized by executing the processing procedure illustrated in FIG. 14 at regular intervals.
  • the building limit area calculation unit 123 on the adjacent track acquires a camera image captured by any of the side monitoring cameras 110A to 110C (step S11).
  • a camera image of the side monitoring camera 110A is obtained.
  • the adjacent building limit area calculation unit 123 calculates the adjacent track area in the acquired camera image.
  • the method of calculating the adjacent trajectory region the method described in the first embodiment can be adopted.
  • step S21 in the same manner as in step S13 of FIG. 8, the adjacent orbital building limit area calculation unit 123 determines that the adjacent orbital area exists in the camera image of the side monitoring camera 110A acquired in step S11. It is determined whether or not to perform. If it is determined that there is an adjacent trajectory region, the process proceeds to step S14. On the other hand, if it is determined that there is no adjacent orbit area, it is not immediately determined that there is no obstacle as shown in FIG. 8, but the camera images by the other side monitoring cameras 110B and 110C are checked in step S22. Proceed to.
  • steps S14 to S16 is the same as that in FIG. 8, and the adjacent track building limit area calculation unit 123 acquires the adjacent track vehicle information from the control system 200 (train on-line position management unit 210), and The upper architectural limit area is calculated, and it is detected whether or not there is an obstacle in the adjacent railroad architectural limit area that hinders the traveling of the adjacent railroad traveling train 300 (obstacle detection).
  • step S22 it is confirmed whether or not the processing in steps S11 to S16 has been completed for the number of external sensors.
  • the process proceeds to step S23.
  • the process returns to step S11, and the process is performed on the sensor data of the unprocessed external sensor (for example, the side monitoring camera 110B).
  • step S23 the progress permission determining unit 125 integrates the obstacle detection results of the external sensors, and in step S24, confirms the presence or absence of an obstacle based on the integrated result. Specifically, for example, when obstacle detection is performed on the sensor data of the three side monitoring cameras 110A to 110C, and when an obstacle is detected in at least one of the data, the integration result is displayed. It is determined that there is an obstacle (YES in step S24), and the process proceeds to step S18. On the other hand, if no obstacle is detected in any of the three units, it is determined that there is no obstacle (NO in step S24), and the process proceeds to step S19.
  • an abnormality occurrence signal is transmitted in step S18, and an abnormality absence signal is transmitted in step S19, and the obstacle detection processing ends.
  • the obstacle detection system 2 according to the second embodiment is provided with a plurality of external sensors that capture images on adjacent tracks, thereby providing the obstacle detection system 1 according to the first embodiment. Can be regarded as an improvement.
  • the number of external sensors (side monitoring cameras 110) installed in the obstacle detection system 1 is one.
  • the vehicle runs at a high speed there is a possibility that an obstacle may not be detected.
  • the possibility that an image that is not suitable for obstacle detection is acquired due to blurring of the captured image or that the difference between the images (pixel movement amount) increases. Tracking obstacles can be difficult.
  • an external sensor (side monitoring cameras 110A, 110B, 110C) is installed in each vehicle of the own vehicle, and the plurality of external sensors are used.
  • the obstacle detection using the acquired sensor data (camera image 403), a plurality of detection results can be compared with each other, and it can be expected that undetected obstacles are suppressed.
  • the position where the external sensor can be installed is expected to reach 100 m or more. Therefore, sensor data acquired at different timings (time) can be used for obstacle detection even if a plurality of external sensors are installed at equal intervals, for example, for a train length of 100 m.
  • the obstacle detection system 2 suppresses the occurrence of undetected obstacles, particularly during high-speed running, Obstacle detection with higher accuracy than in the first embodiment can be realized.
  • the obstacle detection system 2 uses a plurality of external sensors, so that, for example, even if one of the external sensors fails, the entire system does not immediately stop functioning. Since the obstacle detection can be continued, the effect of increasing the availability and durability of the system is achieved.
  • the present invention is not limited to the above embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • the above-described configurations, functions, and the like may be implemented by software by a processor interpreting and executing a program that implements each function.
  • Information such as a program, a table, and a file for implementing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate those which are considered necessary for explanation, and do not necessarily indicate all control lines and information lines on the product. In implementation, it may be considered that almost all components are interconnected.

Abstract

隣接する第一の軌道と第二の軌道とを含む複線環境下において障害物を検知する障害物検知システム(1)は、第一の軌道上を走行する第一の列車(軌道上走行列車(100))に当該列車の進行軸に角度を付けて設置され、第二の軌道上をセンサ領域に含む外界センサ(側方監視カメラ(110))と、側方監視カメラ(110)のセンサデータを用いて、第二の軌道上の障害物の有無を検知する障害物検知装置(120)と、障害物検知装置(120)と外部との間でデータまたは信号の送受信を行う通信部(130)と、を備える。

Description

障害物検知システム及び障害物検知方法
 本発明は、障害物検知システム及び障害物検知方法に関し、複線環境下において障害物を検知する障害物検知システム及び障害物検知方法に適用して好適なものである。
 軌道上を走行する列車は、軌道上の障害物を操舵によって回避することができないため、軌道上の障害物の有無を認識することは、列車の安全性や運用性を向上させるために重要である。
 従来、運転士が列車を運転する有人運転システムの場合は、軌道上の障害物の有無は、運転士の目視によって確認される。一方、運転士が存在しない無人運転システムの場合は、専用軌道を設けて他の交通を遮断することによって軌道上への障害物の発生を抑制するといった対策が一般的であり、開放軌道における安全な無人運転システムの実現には至っていない。
 このような背景を鑑みて、近年では、開放軌道における無人運転システムの実現に向けて、外界センサを列車に搭載し、外界センサから取得した情報に基づいて列車前方の軌道上の障害物の有無を検出するシステムが考案されている。例えば特許文献1に開示された軌道上障害物検知システムによれば、列車前面に前方監視用のカメラを設置し、カメラから取得した映像内の軌道領域を検出した後、過去に同じ場所を走行した際に記録された映像と比較することで、軌道上の障害物の有無を検出する。
特開2016-052849号公報
 しかし、従来技術によって開放軌道における軌道上の障害物の有無を検出しようとすると、以下のような課題があった。
 まず、列車向けの障害物検知機能を構築する際は、自動車と比べてより遠方の障害物を精度よく検知する技術が求められるが、従来技術ではこのような要求に応えることが困難であった。詳しく説明すると、列車は自動車に比べて長い制動距離を必要とする。具体的には例えば、時速100kmで走行する自動車の制動距離が約100mであるのに対し、同速度で走行する列車の制動距離は約400mにも及ぶ。制動性能の差異は自動車と列車のブレーキ構造の違いにもよるが、列車の場合は起立した状態の乗客を安全に輸送する必要があるため、急激な減速ができず、長い制動距離が必要となる。
 昨今、自動車分野においては、運転補助または自動運転向けに、カメラ、ミリ波レーダ、LiDAR(Light Detection and Ranging)といった外界センサの開発が進んでいるが、これらの外界センサによる対象物の検知距離は最長でも200m程度である。そのため、自動車向けの外界センサを用いた障害物検知機能を列車走行環境に流用しただけでは、遠方の障害物を精度よく検知することは困難であり、列車向けの障害物検知機能に求められる技術水準を満たすことができない。
 また、別の課題として、列車がカーブや斜面を走行する場合には、軌道近傍に隣接する構造物によって軌道が遮蔽されることで、自車に搭載した外界センサからの死角となるため、前方の障害物検知を十分に実施できない走行区間が存在するという問題がある。
 本発明は以上の点を考慮してなされたもので、複数の軌道が隣接する複線環境下で、障害物の検知性能を向上させる障害物検知システム及び障害物検知方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、隣接する第一の軌道と第二の軌道とを含む複線環境下において障害物を検知する障害物検知システムが提供される。この障害物検知システムは、前記第一の軌道上を走行する第一の列車に当該第一の列車の進行軸に角度を付けて設置され、前記第二の軌道上をセンサ領域に含む外界センサと、前記外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する障害物検知装置と、前記障害物検知装置と外部との間でデータまたは信号の送受信を行う通信部と、を備えることを特徴とする。
 また、かかる課題を解決するため本発明においては、隣接する第一の軌道と第二の軌道とを含む複線環境下において隣接軌道上の障害物を検知する障害物検知システムによる障害物検知方法が提供される。この障害物検知方法では、前記障害物検知システムが、前記第一の軌道上を走行する第一の列車に当該第一の列車の進行軸に角度を付けて設置され、前記第二の軌道上をセンサ領域に含む外界センサと、前記外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する障害物検知装置と、前記障害物検知装置と外部との間でデータまたは信号の送受信を行う通信部と、を備えることを特徴とする。
 本発明によれば、複数の軌道が隣接する複線環境下で、障害物の検知性能を向上させることができる。
本発明の第1の実施の形態に係る障害物検知装置の概念図である。 本発明の第1の実施の形態に係る障害物検知システムの構成例を示すブロック図である。 側方監視カメラの配置例を説明するための図(その1)である。 側方監視カメラの配置例を説明するための図(その2)である。 側方監視カメラによって撮影されたカメラ映像の一例を示す図である。 図5に示したカメラ映像における隣接軌道領域を説明するための図である。 図5に示したカメラ映像における隣接軌道上建築限界領域を説明するための図である。 障害物検知処理の処理手順の一例を示すフローチャートである。 カメラ映像に隣接軌道上建築限界領域を重畳させた画像例を示す図である。 図9に示した画像の時間経過に伴う変化例を示す図である。 本発明の第2の実施の形態に係る障害物検知装置の概念図である。 本発明の第2の実施の形態に係る障害物検知システムの構成例を示すブロック図である。 第2の実施の形態における側方監視カメラの配置例を説明するための図である。 第2の実施の形態における障害物検知処理の処理手順の一例を示すフローチャートである。
 以下図面について、本発明の実施の形態を詳述する。なお、各図面において同一の構成については同一の番号を付し、繰り返しの説明を省略する。
(1)第1の実施の形態
 図1は、本発明の第1の実施の形態に係る障害物検知装置の概念図である。また、図2は、本発明の第1の実施の形態に係る障害物検知システムの構成例を示すブロック図である。図1及び図2を参照しながら、本発明の第1の実施の形態に係る障害物検知システム1の構成及び機能について説明する。
 本実施の形態に係る障害物検知システム1は、複数の軌道が隣接する複線環境下で用いられて好適なものである。複線環境として具体的には、隣接して敷設された第一の軌道及び第二の軌道があるとする。なお、第一の軌道と第二の軌道は、常に一定距離を保って平行に敷設されている必要はなく、現実の開放軌道と同様に、走行環境や走行区間等に応じて、互いの軌道間で距離や高度差等が変化するものとする。
 図2に示すように、本実施の形態では、第一の軌道上を走行する軌道上走行列車100と、第一の軌道に隣接して敷設された第二の軌道(隣接軌道)上を走行する隣接軌道上走行列車300と、各列車の在線位置の管理等を行う管制システム200とが、通信部130を介して通信可能に接続される。そして障害物検知システム1は、少なくとも、軌道上走行列車100の側方監視カメラ110及び障害物検知装置120と、通信部130とを備えて構成される。なお、障害物検知システム1の構成に、管制システム200の列車在線位置管理部210を含めてもよい。
 障害物検知システム1は、障害物検知装置120が隣接軌道上の障害物の検知を行い、その検知結果に基づいて隣接軌道上を走行する隣接軌道上走行列車300の進行許可/不許可を判断し、判断結果に基づいて隣接軌道上走行列車300の走行を制御するものである。
 以下、各構成要素について詳しく説明する。
(1-1)軌道上走行列車100
 図1,図2に示したように、軌道上走行列車100は、隣接軌道を撮影する側方監視カメラ110と、側方監視カメラ110が撮影した映像等に基づいて隣接軌道上の障害物を検知する障害物検知装置120とを備えている。
 図3及び図4は、側方監視カメラの配置例を説明するための図(その1,その2)である。図3,図4には、第一の軌道401上を図中の上方向に向けて走行する軌道上走行列車100と、第二の軌道(隣接軌道)402上を図中の下方向に向けて走行する隣接軌道上走行列車300とが示されている。なお、図3,図4では、側方監視カメラ110による撮影範囲として側方監視カメラ撮影領域111が破線で示されている。また、隣接軌道402上の不定形の小型障害物の一例として障害物400が示されている。
 図3に示したように、側方監視カメラ110は、軌道上走行列車100の例えば先頭車両に、軌道上走行列車100の進行軸(進行方向)に対して角度を有して設置される。本実施の形態では、図4に示した通り、側方監視カメラ110は、軌道上走行列車100の進行軸に対して垂直かつ俯角を付けて設置される。このような設置条件を満たすことにより、隣接軌道402及びその周辺の領域(簡便のため、単に「隣接軌道402」と称することがある)が側方監視カメラ撮影領域111に包含される(図4参照)。
 なお、本説明では、隣接軌道402を撮影する外界センサの一例としてカメラ(側方監視カメラ110)を用いるが、本実施の形態において利用可能な外界センサの種類はカメラに限定されず、他の種類のセンサであってもよい。但し、隣接軌道402上に存在する不定形の小型障害物(障害物400)を検知するという目的を考慮すると、カメラやLiDARの利用が有効である。また、軌道上走行列車100において側方監視カメラ110を設置する車両についても、例示した先頭車両に限定されるものではない。
 次に、障害物検知装置120について説明する。障害物検知装置120は、主にプログラムの実行によって種々の機能を提供可能な計算機である。図1,図2に示したように、障害物検知装置120は、列車軌道経路取得部121、列車在線位置算出部122、隣接軌道上建築限界領域算出部123、隣接軌道上障害物検知部124、及び進行許可判断部125を機能構成として備える。
 列車軌道経路取得部121は、軌道上走行列車100が走行する駅間の走行経路情報を取得する。ここで走行経路情報とは、具体的には、出発駅を基準とした際の、走行経路の位置、勾配、曲率、及び分岐情報等が考えられる。列車軌道経路取得部121は、取得した走行経路情報を列車在線位置算出部122に送る。
 列車在線位置算出部122は、列車軌道経路取得部121から軌道上走行列車100の走行経路情報を取得し、軌道上走行列車100の走行経路における現在の在線位置(在線位置情報)を算出する。そして列車在線位置算出部122は、算出した在線位置情報を、隣接軌道上建築限界領域算出部123に送信するとともに、通信部130を介して管制システム200の列車在線位置管理部210にも送信する。
 なお、列車在線位置算出部122が在線位置を算出する方法は特に限定されない。具体的には例えば、GPS(Global Positioning System)を軌道上走行列車100に搭載し、当該GPSから得られるGPS情報に基づいて算出する方法が考えられる。また例えば、過去に同じ走行経路を走行した際に側方監視カメラ110が撮影したカメラ映像(画像)と、現在のカメラ映像(画像)とを比較することによって、在線位置を算出する方法も考えられる。また例えば、LiDARのような対象までの距離情報を取得可能なセンサを軌道上走行列車100に設置し、過去に同じ走行経路を走行した際に取得した3次元位置情報と現在の3次元位置情報とを照合することによって在線位置を算出する方法も考えられる。
 なお、障害物検知装置120では、上述した列車軌道経路取得部121及び列車在線位置算出部122による処理と並行して、隣接軌道上建築限界領域算出部123、隣接軌道上障害物検知部124、及び進行許可判断部125による障害物検知処理が実行される。この障害物検知処理の詳細については図8を参照しながら後述するため、以下では図5~図7を参照しながら障害物検知処理の概要のみ記載する。
 隣接軌道上建築限界領域算出部123は、側方監視カメラ110が撮影したカメラ映像403(図5参照)を入力として、当該カメラ映像403における隣接軌道領域404(図6参照)を算出する。ここで隣接軌道領域とは、隣接軌道を含む所定範囲の領域を意味する。
 図5は、側方監視カメラによって撮影されたカメラ映像の一例を示す図である。図5には、側方監視カメラ110によって撮影されたカメラ映像403が例示されており、隣接軌道402が撮影されている。また、図6は、図5に示したカメラ映像における隣接軌道領域を説明するための図である。図6によれば、カメラ映像403内において、隣接軌道402の近傍領域が隣接軌道領域404として示されている。
 さらに、隣接軌道上建築限界領域算出部123は、上記算出した隣接軌道領域404や管制システム200の列車在線位置管理部210から受信する隣接軌道上車両情報(詳細は後述する)を用いて、隣接軌道402上を走行する車両の隣接軌道上建築限界領域405(図7参照)を算出する。ここで隣接軌道上建築限界領域とは、隣接軌道上を走行する列車運行の安全を確保するために、列車運行に対する障害となり得る建築物等を設置してはならないとされた既定の範囲(建築限界領域)を意味する。
 図7は、図5に示したカメラ映像における隣接軌道上建築限界領域を説明するための図である。図7によれば、カメラ映像403内において、隣接軌道402及びその上方領域が、隣接軌道上建築限界領域405として示されている。具体的なイメージとしては、隣接軌道402上を走行する隣接軌道上走行列車300のサイズよりも所定程度大きい領域が隣接軌道上建築限界領域405とされる。なお、図5~図7、及び後述する図9,図10に示した矢印は、側方監視カメラ110が設置された軌道上走行列車100の進行方向(走行方向)を意味する。
 隣接軌道上障害物検知部124は、隣接軌道上建築限界領域算出部123が算出した隣接軌道上建築限界領域405を入力として、当該隣接軌道上建築限界領域405内に隣接軌道上走行列車300の走行を阻害する障害物が存在するか否かを検知する。例えば図7の場合は、障害物は存在しない。一方、後述する図9や図10では、隣接軌道上建築限界領域405内に障害物400が存在している。
 進行許可判断部125は、隣接軌道上障害物検知部124による障害物の検知結果に基づいて、隣接軌道402上を走行する隣接軌道上走行列車300の進行許可/不許可を判断する。具体的には、障害物が検知された場合には、隣接軌道上走行列車300の進行を許可しない(不許可)と判断し、停止信号を管制システム200や隣接軌道上走行列車300に送信する。一方、障害物が検知されなかった場合には、隣接軌道上走行列車300の進行を許可すると判断し、進行許可信号を管制システム200や隣接軌道上走行列車300に送信する。なおこのとき、進行許可判断部125は、管制システム200に対して、隣接軌道上障害物検知部124による障害物の検知結果も合わせて送信することができる。
 また、本実施の形態に係る障害物検知システム1の変形例として、隣接軌道上走行列車300に対する進行許可/不許可の判断を、管制システム200の列車在線位置管理部210が行うようにしてもよい。この場合、進行許可判断部125は進行許可/不許可の判断を行わなくてもよく、管制システム200の列車在線位置管理部210が、障害物検知装置120から送信される障害物の検知結果に基づいて、隣接軌道上走行列車300の進行許可/不許可を判断し、判断結果に応じて進行許可信号または停止信号を隣接軌道上走行列車300に送信すればよい。
(1-2)管制システム200
 図1,図2に示したように、管制システム200は、列車在線位置管理部210を備える。管制システム200は、列車の運行を管制するためのシステムであって、列車在線位置管理部210以外の機能部も有するが、本説明には関係しないため図示等を省略している。
 列車在線位置管理部210は、軌道上走行列車100からみて隣接軌道402上を走行する直近の隣接軌道上走行列車300に関する車両情報(隣接軌道上車両情報)を対象路線の運行ダイヤ等を用いて取得し、通信部130を介して軌道上走行列車100の障害物検知装置120(隣接軌道上建築限界領域算出部123)に送信する。
 なお、直近の隣接軌道上走行列車300が軌道上走行列車100を追い抜いたり、すれ違ったりした場合は、列車在線位置管理部210は、隣接軌道上車両情報を、次に追い抜くまたはすれ違う車両情報に更新して軌道上走行列車100に再送信する。
 ここで隣接軌道上車両情報とは、例えば、直近の隣接軌道上走行列車300の車両構造(車両幅、車両高さ、編成数等)である。また、後述するように、軌道上走行列車100と隣接軌道上走行列車300とが通信部130を介して直接通信する場合には、隣接軌道上走行列車300に割り当てられたIPアドレス等も含まれる。
 また、隣接軌道上走行列車300が軌道上走行列車100と同様の構成を備えている場合(特に、列車在線位置算出部122に相当する機能を有する場合)には、列車在線位置管理部210は、隣接軌道上走行列車300の現在の在線位置情報も、隣接軌道上車両情報として軌道上走行列車100に送信することができる。
 この他、列車在線位置管理部210は、軌道上走行列車100の障害物検知装置120(進行許可判断部125)から、隣接軌道上障害物検知部124による障害物の検知結果や、隣接軌道上走行列車300の進行許可信号/停止信号を受信する。ここで、隣接軌道上走行列車300の進行許可信号/停止信号を受信した場合は、例えば管制システム200の管理者によって隣接軌道上走行列車300への制御信号が最終的に決定されるようにしてもよい。その場合、上記管理者の最終決定に従って、隣接軌道上走行列車300の列車制駆動部310に、進行許可信号または停止信号を送信する。
 なお、本実施の形態では、障害物検知システム1の安全性を向上させるために、管制システム200を設けているが、本発明の障害物検知システムにおいて、管制システム200は必須の構成ではない。例えば、軌道上にアクセスポイント(通信部130に相当)を設けて、軌道上走行列車100と隣接軌道上走行列車300との車車間通信のみを用いて走行制御を行うようにしてもよい。このとき、軌道上走行列車100における障害物検知装置120の進行許可判断部125が、隣接軌道上走行列車300の列車制駆動部310に対して、進行許可信号または停止信号を送信することにより、隣接軌道上走行列車300の走行制御を実現することができる。
(1-3)隣接軌道上走行列車300
 図2に示したように、隣接軌道上走行列車300は、自車両の制駆動を行う列車制駆動部310を備える。
 列車制駆動部310は、通信部130を介して入力される進行許可信号または停止信号に基づいて、隣接軌道上走行列車300の走行の継続または停止を行う。より具体的には、列車制駆動部310は、隣接軌道上走行列車300にブレーキを適用する非活性状態と、ブレーキを開放する活性状態の2つの状態を有する。本実施の形態においては、例えば、通常は非活性状態とし、進行許可信号を受信している間にのみ活性状態になるように構成される。このようにすることで、ブレーキを適用した非活性状態を安全側とする、所謂フェールセーフな構成を実現することができ、列車制御の安全性を高めることができる。
 なお、図2では記載を省略したが、本実施の形態の変形例として、隣接軌道上走行列車300が、軌道上走行列車100と同様に側方監視カメラ110及び障害物検知装置120に相当する構成を備えるようにしてもよい。このような構成とした場合には、軌道上走行列車100と隣接軌道上走行列車300の双方が、互いの前方監視(障害物検知)を実現することができる。
(1-4)障害物検知処理
 (1-1)において前述したように、障害物検知装置120では、隣接軌道上建築限界領域算出部123、隣接軌道上障害物検知部124、及び進行許可判断部125による障害物検知処理が実行される。以下では、図5~図10を参照しながら、本実施の形態における障害物検知処理について詳しく説明する。
 図8は、障害物検知処理の処理手順の一例を示すフローチャートである。本実施の形態における障害物検知処理は、図8に例示した処理手順を一定周期で実行することによって実現される。
 図8によれば、障害物検知処理が開始されると、まず、隣接軌道上建築限界領域算出部123が、側方監視カメラ110が撮影したカメラ映像403を取得する(ステップS11)。具体的には、図5に例示したカメラ映像403を取得する。
 次に、隣接軌道上建築限界領域算出部123は、ステップS11で入力したカメラ映像403における隣接軌道領域404を算出する(ステップS12)。隣接軌道領域404の算出処理が終了すると、ステップS13に進む。
 ここで、ステップS12における隣接軌道領域404の算出方法の一例を説明する。本例では、基本的に軌道は途切れることのない線形であると仮定する。
 まず、隣接軌道上建築限界領域算出部123は、側方監視カメラ110の設置位置及び姿勢と、列車軌道経路取得部121が取得した軌道上走行列車100の走行経路情報と、列車在線位置算出部122が算出した在線位置情報とに基づいて、カメラ映像403内の大まかな軌道存在領域を推測する。
 次に、隣接軌道上建築限界領域算出部123は、推測した大まかな軌道存在領域内に画像処理を施して、画像中のエッジ情報を抽出する。ここでエッジ情報とは、例えば画像中で同じような輝度値が連続している線分領域を示している。
 そして、抽出したエッジ情報から、軌道の勾配に沿った直線領域を取得することにより、隣接軌道上建築限界領域算出部123は、隣接軌道402の周辺領域を示す隣接軌道領域404を算出することができる(図6参照)。
 ステップS13では、隣接軌道上建築限界領域算出部123は、側方監視カメラ110によるカメラ映像403のなかに、隣接軌道領域404が存在するか否かを判定する。具体的には例えば、ステップS11で取得したカメラ映像403のうちにステップS12で算出した隣接軌道領域404が一定面積以上存在するか否かを判定する。ステップS13において、隣接軌道領域404が一定面積以上存在した場合は、隣接軌道領域404が存在すると判定し(ステップS13のYES)、ステップS14に進む。一方、隣接軌道領域404が一定面積以上存在しなかった場合は、隣接軌道領域404が存在しないと判定し(ステップS13のNO)、ステップS19に進む。
 ステップS14では、隣接軌道上建築限界領域算出部123は、管制システム200の列車在線位置管理部210から、通信部130を介して隣接軌道上車両情報を取得し、ステップS15に進む。
 ステップS15では、隣接軌道上建築限界領域算出部123は、ステップS12で算出した隣接軌道領域404と、ステップS14で取得した隣接軌道上車両情報とに基づいて、隣接軌道上建築限界領域405を算出する。
 ここで、ステップS15における隣接軌道上建築限界領域405の算出について詳しく説明する。
 まず、図6に例示したように、ステップS12で算出した隣接軌道領域404は、それぞれ軌道(隣接軌道402)を1本ずつ含む2本の直線領域となる。また、隣接軌道402は2本の軌道の幅が一定に定まっており、基本的には、路線の途中で間隔が変化することはない。加えて、2本の軌道は同一平面上に存在する。
 以上のことから、隣接軌道上建築限界領域算出部123は、側方監視カメラ110の設置位置、側方監視カメラ110のカメラパラメータ(撮影に関する設定)、及び2本の隣接軌道領域404間の画素数に基づいて、カメラ映像403において地面を構成する1画素あたりの実空間上の距離を算出することができる。
 一方、ステップS14で取得した隣接軌道上車両情報には、隣接軌道上走行列車300の車両幅及び車両高さを示す情報が含まれていることから、隣接軌道上建築限界領域算出部123は、これらの情報と、先に算出した1画素あたりの実空間上の距離とを用いることによって、カメラ映像403における隣接軌道上建築限界領域405を算出することができる(図7参照)。前述したように、隣接軌道上建築限界領域405の具体的なイメージは、隣接軌道402上を走行する隣接軌道上走行列車300のサイズよりも所定程度大きい領域であり、図7の場合は、矩形領域で算出されている。
 そして、隣接軌道上建築限界領域算出部123は、ステップS15における隣接軌道上建築限界領域405の算出処理を終了すると、カメラ映像403及び隣接軌道上建築限界領域405を隣接軌道上障害物検知部124に入力し、当該入力を契機として、隣接軌道上障害物検知部124がステップS16の処理を行う。
 図9は、カメラ映像に隣接軌道上建築限界領域を重畳させた画像例を示す図である。カメラ映像403及び隣接軌道上建築限界領域405が入力されることにより、ステップS16の開始時おいて、隣接軌道上障害物検知部124は、図9のような画像を取得することができる。
 ステップS16において、隣接軌道上障害物検知部124は、ステップS15で算出された隣接軌道上建築限界領域405のうちに、隣接軌道上走行列車300の走行を阻害する障害物が存在するか否かを検知する(障害物検知)。
 ステップS16における障害物検知の手法としては、例えば、ステップS12における隣接軌道領域404の算出処理を拡張した手法が考えられる。すなわち、カメラ映像403(特に隣接軌道上建築限界領域405)において、隣接軌道領域404のようにエッジ情報に基づいて取得した直線領域について、その連続性を算出する処理が有効である。その結果、例えば、直線領域の断裂が見つかった場合には、隣接軌道402を塞ぐ障害物があると判断(検知)することができる。例えば、図9に示した障害物400は、隣接軌道402の連続性を断裂している。
 但し、実際の列車走行環境を考慮したとき、側方監視カメラ110によるカメラ映像403には、隣接軌道402上の障害物ではない物体(例えば、運行設備等)が映り込む可能性がある。例えば図9に示した電柱410は、第一の軌道401と第二の軌道(隣接軌道)402との間に設置された運行設備であり、隣接軌道402上の障害物ではない。しかし、図9の場合、電柱410も、障害物400と同様に、隣接軌道上建築限界領域405内に撮影され、かつ隣接軌道402の連続性を断裂している。したがって、前述した直線領域の連続性の算出だけでは、誤検知を招くおそれがある。
 このような誤検知を回避するためには、例えば、隣接軌道上建築限界領域405内のコーナー特徴点を算出し、このコーナー特徴点のフレーム間の移動量を利用したモーションステレオ法が有効である。図9には、電柱410及び障害物400における各コーナー特徴点として、特徴点411及び特徴点412が示されている。モーションステレオ法は、軌道上走行列車100の走行速度と、コーナー特徴点のフレーム間の移動量とを用いることで、三角測量の原理によってコーナー特徴点の実空間上での3次元位置情報を算出する手法である。コーナー特徴点のフレーム間の移動量を算出するためには、KLT(Kanade-Lucas-Tomasi)法が広く知られている。
 モーションステレオ法を利用して誤検知を回避する方法について、図10を参照しながら具体的に説明する。図10は、図9に示した画像の時間経過に伴う変化例を示す図である。
 図10では、時間tにおける電柱410のコーナー特徴点を特徴点411で示し、時間Δt経過後(時間t+Δt)におけるコーナー特徴点を特徴点421で示している。特徴点411と特徴点421は、電柱410における同一位置を指している。同様に障害物400についても、時間tにおけるコーナー特徴点を特徴点412で示し、時間Δt経過後(時間t+Δt)におけるコーナー特徴点を特徴点422で示している。
 ここで、モーションステレオ法を利用すると、カメラ映像403内の任意の特徴点Pが、時間tから時間t+Δtまでの間に、画像中の画像座標系においてP(u_a,v_a)からP(u_b,v_b)に移動するとき、移動の前後で側方監視カメラ110の光軸がなす角をθ、軌道上走行列車100の走行速度をVとすると、特徴点Pの深度情報Zは、以下の式(1)によって算出することができる。また、特徴点Pの高さ情報Hは、以下の式(2)によって算出することができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、上記の式(1),式(2)において、fは、側方監視カメラ110の焦点距離を意味し、これはカメラキャリブレーションにより取得可能な既知の値である。また、移動の前後で側方監視カメラ110の光軸がなす角θに関しては、例えば列車軌道経路取得部121が取得した軌道上走行列車100の走行経路情報と、列車在線位置算出部122が取得した軌道上走行列車100の在線位置情報とに基づいて、軌道上走行列車100の姿勢変化を算出することによって求めてもよい。但し、列車の走行環境では急激な旋回が発生しないことを考慮すると、Δtが微小である場合はθ=0として計算しても構わない。
 このようにモーションステレオ法を用いることにより、隣接軌道上障害物検知部124は、隣接軌道上建築限界領域405内の特徴点Pについて、実空間上での3次元位置情報(深度情報Z)と高さ情報Hを算出することができ、この算出結果に基づいて、隣接軌道402上に存在する障害物を検知することができる。すなわち、深度情報Z及び高さ情報Hで特定される位置が、隣接軌道上建築限界領域405内であれば、特徴点Pは隣接軌道402上に存在する障害物であると判断することができ(例えば、障害物400)、隣接軌道上建築限界領域405内でなければ、特徴点Pは隣接軌道402上に存在する障害物ではないと判断することができる(例えば、電柱410)。また、上述した直線領域の連続性とモーションステレオ法を組み合わせることによって、軌道を塞ぎ、かつ軌道上に存在する物体をより正確に検知できるようになる。
 以上が、誤検知を回避しながら、隣接軌道上走行列車300の走行を阻害する障害物が存在するか否かを検知するステップS16の障害物検知の詳細な処理方法である。そしてステップS16の処理後は、障害物検知の検知結果を隣接軌道上障害物検知部124から進行許可判断部125に入力し、ステップS17に進む。
 ステップS17では、進行許可判断部125が、ステップS16の障害物検知の検知結果から、障害物の有無を確認する。障害物が存在した場合は(ステップS17のYES)、ステップS18に進み、障害物が存在しなかった場合は(ステップS17のNO)、ステップS19に進む。
 ステップS18では、進行許可判断部125は、通信部130を介して、隣接軌道上走行列車300の停止信号(障害物が存在することを示す異常発生信号でもよい)を管制システム200の列車在線位置管理部210に送信する。そして、この停止信号(または異常発生信号)の受信に基づいて、管制システム200が隣接軌道上走行列車300の列車制駆動部310に進行の停止を指示することにより、隣接軌道上走行列車300を停止させることができる。なお、管制システム200では、この他に、障害物検知の検知結果を記録する等の処理を行ってもよい。例えば、検知した障害物の位置情報とともに障害物の存在を記録することにより、作業員に当該障害物を除去する指示を出す際に役立てることができる。
 なお、ステップS18では、上記した処理方法以外にも例えば、軌道上走行列車100と隣接軌道上走行列車300との車間距離が近い状態で障害物を検知した場合や、前述した変形例のように管制システム200を備えない構成等の場合には、軌道上走行列車100の進行許可判断部125から通信部130を介して隣接軌道上走行列車300の列車制駆動部310に、停止信号(上記の異常発生信号でもよい)を直接送信し、隣接軌道上走行列車300を即座に停止させるようにしてもよい。
 一方、ステップS19では、障害物が存在しなかったことから、隣接軌道上走行列車300を停止させる必要はない。そこで、進行許可判断部125は、進行許可信号(障害物が存在しないことを示す異常無し信号でもよい)を、通信部130を介して管制システム200の列車在線位置管理部210に送信する。この進行許可信号(異常無し信号)を受信することによって、管制システム200では、隣接軌道402に異常がないことを確認することができる。なお、ステップS19では、障害物に関して異常は発生していないので、管制システム200に何の信号も送信しない、としてもよい。
 ステップS18またはステップS19の処理後、障害物検知処理は終了するが、一定周期が経過した後は、再び障害物検知処理が行われる。以上、図8に示した障害物検知処理が行われることにより、軌道上走行列車100の側から隣接軌道402上の障害物を精度よく検知することができる。
(1-5)まとめ
 以上のように、本実施の形態に係る障害物検知システム1(障害物検知装置120)によれば、複数の軌道が隣接する複線環境下であっても、隣接軌道402上の障害物を精度よく検知することができ、隣接軌道上走行列車300の走行に関する安全性を高めることができる。
 特に、本実施の形態に係る障害物検知システム1では、自車の進行軸に角度を付けて設置された外界センサの情報(本例では、側方に搭載した側方監視カメラ110のカメラ映像403)を用いて隣接軌道402の状態を取得することができる。その結果、自車走行軌道(第一の軌道401)上に加えて、隣接軌道(第二の軌道402)上の障害物の有無を検知できることで、隣接軌道402上を走行する列車(隣接軌道上走行列車300)の前方障害物検知を実現することができる。すなわち、隣接軌道上走行列車300の前方障害物検知を自車(軌道上走行列車100)が担うことにより、前方監視する場合よりも近くから、撮影対象を画角の中央付近に捉えながら監視することができ、障害物を精度よく検知することができる。また、移動しながら隣接軌道上を監視するため、軌道近傍の構造物等、走行環境による障害物や死角が生じ難く、開放軌道において隣接軌道上の障害物を精度よく検知することができる。
 このようにして、本実施の形態に係る障害物検知システム1は、従来技術の課題として前述した外界センサの性能や走行区間・走行環境等の影響を受けることなく、複線環境下において隣接軌道402上の障害物を精度よく検知することができ、隣接軌道上走行列車300の走行安全性を高めることができる。
 なお前述した特許文献1には、自車前面に設置した前方監視用のカメラが撮影した映像内に隣接軌道が含まれる場合に、隣接軌道上の障害物の有無を検出する機能について記載されている。特許文献1の図7を見ると、自社の走行軌道を中心にとった上で、その視野に映りこんだ隣の軌道の一部について検出している例が示されている。
 しかし、特許文献1に開示された軌道上障害物検知システムの場合、監視カメラの本来の撮影目的が前方の障害物検知である以上、横方向に撮影される隣接軌道上の障害物を精度よく検知することは容易ではなく、列車が急なカーブや斜面を走行する場合や、隣接軌道の位置が自車の走行軌道から離れている場合等には、監視カメラの画角によっては必ずしも隣接軌道を撮影できるものではない。すなわち、特許文献1に開示された軌道上障害物検知システムは、隣接軌道付近を十分に撮影する思想を開示したものではなく、隣接軌道上の障害物の有無を検出できないことが想定される。
 また、脱線の要因となり得る小石のような不定形の小型障害物の場合、自車前面に設置した監視カメラで撮影しても、検知に必要な画素数が画像中に映し出されず検知が困難になるおそれがある。他方、小型障害物を大きく映し出すために、例えば監視カメラに搭載するレンズの焦点距離を長くすると、その分カメラの画角が狭くなり、走行区間によっては隣接軌道の周辺が十分に映し出されない可能性が高まる。
 以上のように、特許文献1に開示された軌道上障害物検知システムを含む従来技術では、開放軌道において軌道上の障害物の有無を精度よく検出することは困難であると言わざるを得ない。
 また、本実施の形態に係る障害物検知システム1では、外界センサの情報(側方監視カメラ110によるカメラ映像403)において隣接軌道上建築限界領域405に含まれない物体が映り込んだ場合であっても、図8のステップS16で説明したように、例えばモーションステレオ法等の既知の手法を適用することによって、誤検知を回避しながら、隣接軌道上走行列車300の走行を阻害する障害物のみを精度よく検知することができる。
 さらに、本実施の形態に係る障害物検知システム1によれば、障害物検知装置120が隣接軌道402上の障害物を検知した場合には、障害物検知装置120が搭載された軌道上走行列車100から、直接あるいは管制システム200を経由して、隣接軌道上走行列車300の進行を停止させることが可能となるので、速やかな安全制御を実現することができる。
 そして、このような本実施の形態に係る障害物検知システム1(障害物検知装置120)は、有人運転において運転士の周囲監視を支援するシステムとして利用できるだけでなく、開放軌道における列車の無人運転を実現するための、隣接軌道上走行列車向けの前方監視システムとして利用することもできる。
(2)第2の実施の形態
 本発明の第2の実施の形態について説明する。第1の実施の形態に係る障害物検知システム1においては、軌道上走行列車100に1台の外界センサ(側方監視カメラ110)が搭載されていたのに対して、第2の実施の形態に係る障害物検知システム2は、軌道上走行列車100に複数台の外界センサ(側方監視カメラ110A,110B,110C)が搭載される点で異なる。
 図11は、本発明の第2の実施の形態に係る障害物検知装置の概念図である。また、図12は、本発明の第2の実施の形態に係る障害物検知システムの構成例を示すブロック図である。なお、図11,図12は、第1の実施の形態で例示した図1,図2と対応するものであり、共通する構成については同一の番号を付して説明を省略する。
 図11,図12に示したように、第2の実施の形態に係る障害物検知システム2は、軌道上走行列車100に搭載される複数の外界センサの一例として、側方監視カメラ110A,110B,110Cを備える。これらは、第1の実施の形態における側方監視カメラ110と同様、隣接軌道上を監視するカメラであり、一例として、1両目の車両に側方監視カメラ110Aが、2両目の車両に側方監視カメラ110Bが、3両目の車両に側方監視カメラ110Cが、それぞれ搭載される。それぞれの側方監視カメラ110A~110Cで取得されたセンサデータ(カメラ映像)は、障害物検知装置120の隣接軌道上建築限界領域算出部123に入力される。
 図13は、第2の実施の形態における側方監視カメラの配置例を説明するための図である。図13に示したように、第一の軌道401を図中の上方向に向けて走行する軌道上走行列車100には、進行方向の1両目から3両目に順に、側方監視カメラ110A~110Cが搭載されている。側方監視カメラ110A~110Cは、第二の軌道(隣接軌道)402を撮影するためのカメラであり、その撮影範囲はカメラ撮影領域111A~111Cで示されている。各カメラは軌道上走行列車100の進行軸に対し角度を有して設置される。図13では、一例として全てのカメラを列車の進行軸に対して垂直かつ俯角を付けて設置しているが、これに限らず、カメラごとに位置や姿勢を設定してもよい。加えて、カメラごとに画角や撮影周期を変更してもよい。
 なお、本例では、複数の外界センサの一例として複数の側方監視カメラ110A~110Cを示すが、具体的な外界センサの種類は限定されず、例えば、カメラとLiDARの併用等であってもよい。また、図13には、隣接軌道402上の不定形の小型障害物の一例として障害物400が示されている。
 図13に示したように、第2の実施の形態では、複数の側方監視カメラ110A~110Cによって、1台のカメラによって撮影する(図3参照)よりも広範囲を撮影することができ、さらに、重複領域の撮影も可能となっている。このため、これらのカメラによる映像を処理することによって、より精度の高い障害物検知が可能となる。
 次に、第2の実施の形態における障害物検知処理について、第1の実施の形態との違いを中心に説明する。
 図14は、第2の実施の形態における障害物検知処理の処理手順の一例を示すフローチャートである。なお、図14に示した処理は、第1の実施の形態において図8に例示した障害物検知処理と共通するものが多く、これらについては、詳細な説明を省略する。第1の実施の形態(図8参照)との相違点としては、複数台の外界センサが搭載されるため、隣接軌道上の障害物検知処理を外界センサの台数分実行する必要がある。そして、第2の実施の形態における障害物検知処理は、図14に例示した処理手順を一定周期で実行することによって実現される。
 図14によれば、障害物検知処理が開始されると、まず、隣接軌道上建築限界領域算出部123が、側方監視カメラ110A~110Cの何れかが撮影したカメラ映像を取得する(ステップS11)。例えば、初回のステップS11として、側方監視カメラ110Aのカメラ映像を取得するものとする。
 そして、次のステップS12では、隣接軌道上建築限界領域算出部123が、取得したカメラ映像における隣接軌道領域を算出する。隣接軌道領域の算出方法については、第1の実施の形態で説明した方法を採用することができる。
 次のステップS21では、図8のステップS13と同様の方法で、隣接軌道上建築限界領域算出部123が、ステップS11で取得した側方監視カメラ110Aによるカメラ映像のなかに、隣接軌道領域が存在するか否かを判定する。隣接軌道領域が存在すると判定した場合はステップS14に進む。一方、隣接軌道領域が存在しないと判定した場合は、図8のようにすぐに障害物無しとは判断せず、他の側方監視カメラ110B,110Cによるカメラ映像を確認するために、ステップS22に進む。
 ステップS14~S16の処理は、図8と同様であって、隣接軌道上建築限界領域算出部123が、管制システム200(列車在線位置管理部210)から隣接軌道上車両情報を取得し、隣接軌道上建築限界領域を算出し、隣接軌道上建築限界領域のうちに、隣接軌道上走行列車300の走行を阻害する障害物が存在するか否かを検知する(障害物検知)。
 ステップS16の障害物検知が終了すると、ステップS11~S16の処理が外界センサの台数分終了しているか否かを確認する(ステップS22)。全台の外界センサ(側方監視カメラ110A~110C)について処理が終了した場合は(ステップS22のYES)、ステップS23に進む。一方、1台でも未処理であった場合は(ステップS22のNO)、ステップS11に戻り、未処理の外界センサ(例えば側方監視カメラ110B)のセンサデータに対して処理を行う。
 ステップS23では、進行許可判断部125が、各外界センサの障害物検知結果を統合し、ステップS24において、統合した結果に基づいて障害物の有無を確認する。具体的には例えば、3台の側方監視カメラ110A~110Cのセンサデータに対して障害物検知が行われたとするとき、少なくとも何れかのデータで障害物が検知された場合は、統合結果を障害物有りと判断し(ステップS24のYES)、ステップS18に進む。一方、3台の何れでも障害物が検知されなかった場合には、統合結果を障害物無しと判断し(ステップS24のNO)、ステップS19に進む。
 その後は、図8と同様に、ステップS18では異常発生信号が送信され、ステップS19では異常無し信号が送信され、障害物検知処理を終了する。
 以上、図14に示した障害物検知処理が行われることにより、軌道上走行列車100に搭載した複数の外界センサのセンサデータに基づいて、隣接軌道402上の障害物を精度よく検知することができる。
 以上に説明したように、第2の実施の形態に係る障害物検知システム2は、隣接軌道上を撮影する外界センサを複数搭載することによって、第1の実施の形態に係る障害物検知システム1を改良したものと捉えることができる。
 障害物検知システム2と障害物検知システム1とを比較した場合、障害物検知システム1に設置される外界センサ(側方監視カメラ110)は1台であるため、自車(軌道上走行列車100)が高速で走行する場合に、障害物が未検知となるおそれが多少存在する。具体的には、自車高速走行時は、撮影画像にブレが発生して障害物検知に適していない画像が取得される可能性や、画像間の差分(画素移動量)が大きくなることで障害物のトラッキングが困難となる可能性がある。
 これに対し、第2の実施の形態に係る障害物検知システム2では、例えば自車の各車両に外界センサ(側方監視カメラ110A,110B,110C)を設置し、この複数台の外界センサで取得されるセンサデータ(カメラ映像403)を用いて障害物検知を実行することで、複数の検知結果が比較可能となり、障害物の未検知を抑制することに期待できる。
 ここで、多くの列車は複数車両編成で走行するため、例えば5両編成とした場合は、外界センサの設置可能位置は100m以上にも及ぶことが想定される。したがって、複数台の外界センサを100mの列車長に対して、例えば等間隔に設置するだけでも、異なったタイミング(時刻)で取得したセンサデータを障害物検知に用いることができる。
 以上のことから、第2の実施の形態に係る障害物検知システム2は、第1の実施の形態で得られる効果に加えて、特に高速走行時における障害物の未検知発生を抑制し、第1の実施の形態よりも高精度な障害物検知を実現することができる。
 また、第2の実施の形態に係る障害物検知システム2は、複数台の外界センサを用いることにより、例えば何れかの外界センサが故障した場合でも、システム全体がすぐに機能停止することはなく、障害物検知を継続することができるため、システムの可用性や耐久性を高める効果を奏する。
 なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実施には殆ど全ての構成が相互に接続されていると考えてもよい。
 1,2 障害物検知システム
 100 軌道上走行列車
 110(110A,110B,110C) 側方監視カメラ
 111(111A,111B,111C) 側方監視カメラ撮影領域
 120 障害物検知装置
 121 列車軌道経路取得部
 122 列車在線位置算出部
 123 隣接軌道上建築限界領域算出部
 124 隣接軌道上障害物検知部
 125 進行許可判断部
 130 通信部
 200 管制システム
 210 列車在線位置管理部
 300 隣接軌道上走行列車
 310 列車制駆動部
 400 障害物
 401 第一の軌道
 402 第二の軌道(隣接軌道)
 403 カメラ映像
 404 隣接軌道領域
 405 隣接軌道上建築限界領域
 410 電柱
 411,412,421,422 特徴点

Claims (16)

  1.  隣接する第一の軌道と第二の軌道とを含む複線環境下において障害物を検知する障害物検知システムであって、
     前記第一の軌道上を走行する第一の列車に当該第一の列車の進行軸に角度を付けて設置され、前記第二の軌道上をセンサ領域に含む外界センサと、
     前記外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する障害物検知装置と、
     前記障害物検知装置と外部との間でデータまたは信号の送受信を行う通信部と、
     を備えることを特徴とする障害物検知システム。
  2.  前記障害物検知装置は、
     自車の軌道経路を取得する列車軌道経路取得部と、
     前記列車軌道経路取得部が取得した軌道経路に基づいて自車の在線位置を算出する在線位置算出部と、
     前記外界センサのセンサデータから、前記第二の軌道上の建築限界領域を算出する隣接軌道上建築限界領域算出部と、
     前記外界センサのセンサデータを用いて前記第二の軌道上の建築限界領域に障害物が存在するか否かを判断することによって、前記第二の軌道上の障害物の有無を検知する隣接軌道上障害物検知部と、
     を有することを特徴とする請求項1に記載の障害物検知システム。
  3.  前記隣接軌道上障害物検知部は、前記外界センサのセンサデータのうち、前記隣接軌道上建築限界領域算出部によって算出された前記第二の軌道上の建築限界領域に映り込んでいる、前記第二の軌道上に存在しない物体を、前記障害物の有無の検知対象から除去する
     ことを特徴とする請求項2に記載の障害物検知システム。
  4.  前記障害物検知装置は、
     前記隣接軌道上障害物検知部による前記第二の軌道上の障害物の有無の検知結果に基づいて、前記第二の軌道上を走行する第二の列車の進行の許可または停止を判断する進行許可判断部と、をさらに有する
     ことを特徴とする請求項2または請求項3に記載の障害物検知システム。
  5.  前記進行許可判断部は、前記隣接軌道上障害物検知部によって前記第二の軌道上に障害物が有ると検知された場合に、前記第二の列車の進行を停止させる停止信号を前記通信部を介して当該第二の列車に送信する
     ことを特徴とする請求項4に記載の障害物検知システム。
  6.  前記複線環境下で走行する複数の列車の運行を管理する管制センタをさらに備え、
     前記第一の列車に搭載された前記障害物検知装置は、
     自車の在線位置を算出して前記管制センタに送信するとともに、前記第二の軌道上の障害物の有無の検知結果を前記管制センタに送信し、
     前記管制センタは、
     前記障害物検知装置から受信した前記第一の列車の在線位置に基づいて、前記第二の軌道上を走行する第二の列車の車両情報を取得するとともに、前記障害物検知装置から受信した前記障害物の有無の検知結果に基づいて、当該第二の列車の走行の許可または停止を制御する
     ことを特徴とする請求項1から請求項4の何れか1項に記載の障害物検知システム。
  7.  前記第一の列車に複数の前記外界センサが設置され、
     前記障害物検知装置は、前記複数の外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する
     ことを特徴とする請求項1から請求項6の何れか1項に記載の障害物検知システム。
  8.  前記第一の軌道上を走行する前記第一の列車と前記第二の軌道上を走行する第二の列車のそれぞれに、前記外界センサ及び前記障害物検知装置が搭載され、
     前記第一の列車に搭載された前記障害物検知装置が、前記第一の列車に搭載された前記外界センサのセンサデータを用いて前記第二の軌道上の障害物の有無を検知するとともに、前記第二の列車に搭載された前記障害物検知装置が、前記第二の列車に搭載された前記外界センサのセンサデータを用いて前記第一の軌道上の障害物の有無を検知する
     ことを特徴とする請求項1から請求項7の何れか1項に記載の障害物検知システム。
  9.  隣接する第一の軌道と第二の軌道とを含む複線環境下において障害物を検知する障害物検知システムによる障害物検知方法であって、
     前記障害物検知システムは、
     前記第一の軌道上を走行する第一の列車に当該第一の列車の進行軸に角度を付けて設置され、前記第二の軌道上をセンサ領域に含む外界センサと、
     前記外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する障害物検知装置と、
     前記障害物検知装置と外部との間でデータまたは信号の送受信を行う通信部と、
     を備えることを特徴とする障害物検知方法。
  10.  前記外界センサが、前記第二の軌道上を含む前記センサ領域をセンサデータに取得するセンサデータ取得ステップと、
     前記障害物検知装置が、自車の軌道経路を取得する列車軌道経路取得ステップと、
     前記障害物検知装置が、前記列車軌道経路取得ステップで取得した軌道経路に基づいて自車の在線位置を算出する在線位置算出ステップと、
     前記障害物検知装置が、前記外界センサのセンサデータから、前記第二の軌道上の建築限界領域を算出する隣接軌道上建築限界領域算出ステップと、
     前記障害物検知装置が、前記外界センサのセンサデータを用いて前記第二の軌道上の建築限界領域に障害物が存在するか否かを判断することによって、前記第二の軌道上の障害物の有無を検知する隣接軌道上障害物検知ステップと、
     を備えることを特徴とする請求項9に記載の障害物検知方法。
  11.  前記隣接軌道上障害物検知ステップでは、前記外界センサのセンサデータのうち、前記隣接軌道上建築限界領域算出ステップで算出された前記第二の軌道上の建築限界領域に映り込んでいる、前記第二の軌道上に存在しない物体を、前記障害物の有無の検知対象から除去する
     ことを特徴とする請求項10に記載の障害物検知方法。
  12.  前記障害物検知装置が、前記隣接軌道上障害物検知ステップによる前記第二の軌道上の障害物の有無の検知結果に基づいて、前記第二の軌道上を走行する第二の列車の進行の許可または停止を判断する進行許可判断ステップと、をさらに備える
     ことを特徴とする請求項10または請求項11に記載の障害物検知方法。
  13.  前記進行許可判断ステップにおいて、前記隣接軌道上障害物検知ステップで前記第二の軌道上に障害物が有ると検知された場合に、前記第二の列車の進行を停止させる停止信号を前記通信部を介して当該第二の列車に送信する
     ことを特徴とする請求項12に記載の障害物検知方法。
  14.  前記障害物検知システムは、前記複線環境下で走行する複数の列車の運行を管理する管制センタをさらに備え、
     前記第一の列車に搭載された前記障害物検知装置が、自車の在線位置を算出して前記管制センタに送信するとともに、前記第二の軌道上の障害物の有無の検知結果を前記管制センタに送信し、
     前記管制センタが、前記障害物検知装置から受信した前記第一の列車の在線位置に基づいて、前記第二の軌道上を走行する第二の列車の車両情報を取得するとともに、前記障害物検知装置から受信した前記障害物の有無の検知結果に基づいて、当該第二の列車の走行の許可または停止を制御する
     ことを特徴とする請求項9から請求項12の何れか1項に記載の障害物検知方法。
  15.  前記第一の列車に複数の前記外界センサが設置され、
     前記障害物検知装置が、前記複数の外界センサのセンサデータを用いて、前記第二の軌道上の障害物の有無を検知する
     ことを特徴とする請求項9から請求項14の何れか1項に記載の障害物検知方法。
  16.  前記第一の軌道上を走行する前記第一の列車と前記第二の軌道上を走行する第二の列車のそれぞれに、前記外界センサ及び前記障害物検知装置が搭載され、
     前記第一の列車に搭載された前記障害物検知装置が、前記第一の列車に搭載された前記外界センサのセンサデータを用いて前記第二の軌道上の障害物の有無を検知するとともに、前記第二の列車に搭載された前記障害物検知装置が、前記第二の列車に搭載された前記外界センサのセンサデータを用いて前記第一の軌道上の障害物の有無を検知する
     ことを特徴とする請求項9から請求項15の何れか1項に記載の障害物検知方法。
PCT/JP2019/011019 2018-06-22 2019-03-15 障害物検知システム及び障害物検知方法 WO2019244425A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-119363 2018-06-22
JP2018119363A JP2019218035A (ja) 2018-06-22 2018-06-22 障害物検知システム及び障害物検知方法

Publications (1)

Publication Number Publication Date
WO2019244425A1 true WO2019244425A1 (ja) 2019-12-26

Family

ID=68983876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011019 WO2019244425A1 (ja) 2018-06-22 2019-03-15 障害物検知システム及び障害物検知方法

Country Status (2)

Country Link
JP (1) JP2019218035A (ja)
WO (1) WO2019244425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210291881A1 (en) * 2020-03-23 2021-09-23 Bnsf Railway Company Systems and methods for identifying potential deficiencies in railway environment objects
EP4029758A1 (de) * 2021-01-18 2022-07-20 Siemens Mobility GmbH Sicherheitskritische bordseitige überwachung der umgebung eines schienenfahrzeugs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454965B2 (ja) 2020-03-11 2024-03-25 本田技研工業株式会社 情報処理装置、情報処理システムおよび情報処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273123A (ja) * 2005-03-29 2006-10-12 Railway Technical Res Inst 列車安全運行システム、列車安全運行方法、指令センター
JP2016052849A (ja) * 2014-09-04 2016-04-14 公益財団法人鉄道総合技術研究所 障害物検出装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273123A (ja) * 2005-03-29 2006-10-12 Railway Technical Res Inst 列車安全運行システム、列車安全運行方法、指令センター
JP2016052849A (ja) * 2014-09-04 2016-04-14 公益財団法人鉄道総合技術研究所 障害物検出装置及び方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210291881A1 (en) * 2020-03-23 2021-09-23 Bnsf Railway Company Systems and methods for identifying potential deficiencies in railway environment objects
WO2021194744A1 (en) * 2020-03-23 2021-09-30 Bnsf Railway Company Systems and methods for identifying potential deficiencies in railway environment objects
CN115427285A (zh) * 2020-03-23 2022-12-02 北伯林顿铁路公司 用于识别铁路环境物体的潜在缺陷的系统及方法
US11904914B2 (en) 2020-03-23 2024-02-20 Bnsf Railway Company Systems and methods for identifying potential deficiencies in railway environment objects
EP4029758A1 (de) * 2021-01-18 2022-07-20 Siemens Mobility GmbH Sicherheitskritische bordseitige überwachung der umgebung eines schienenfahrzeugs

Also Published As

Publication number Publication date
JP2019218035A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6353525B2 (ja) ホスト車両の速度を制御する方法、及び、ホスト車両の速度を制御するためのシステム
JP4043416B2 (ja) 安全移動支援装置
WO2019244425A1 (ja) 障害物検知システム及び障害物検知方法
CN106909152A (zh) 一种车用环境感知系统及汽车
JP6936679B2 (ja) 情報処理装置およびプログラム
WO2018002984A1 (ja) 車両制御方法及び車両制御装置
JP4858761B2 (ja) 衝突危険性判定システム及び警告システム
JP2010198552A (ja) 運転状況監視装置
CN112466141A (zh) 一种面向车路协同的智能网联路端设备交互方法、系统及存储介质
US20200312052A1 (en) Method for acquiring data captured by a capture module embedded in a mobile device following a predetermined trajectory, corresponding computer program and device
JP2019093998A (ja) 車両制御装置、車両制御方法、およびプログラム
KR20200131832A (ko) 정보 처리 장치, 이동 장치 및 방법, 그리고 프로그램
CN103987604A (zh) 用于当两个车辆之间碰撞时减小事故损失的方法和系统
US20220314967A1 (en) Vehicular control system
CN112486161A (zh) 车辆控制装置、车辆控制方法及存储介质
JP2019188846A (ja) 物体検知システム
JP4762830B2 (ja) 周辺監視システム
JP6465919B2 (ja) 障害物検知システム
JP7459932B2 (ja) 遠隔監視システム、装置、方法、及びプログラム
JP7165907B2 (ja) 車両制御装置、車両、車両制御方法およびプログラム
KR102214488B1 (ko) 교차로에서 자율주행차의 진입 제어 시스템
US20210284165A1 (en) Vehicle control device, vehicle control method, and storage medium
WO2021044707A1 (ja) 周辺観測システム、周辺観測プログラムおよび周辺観測方法
US20240040269A1 (en) Sensor configuration for autonomous vehicles
US20230322272A1 (en) Vehicle control device, vehicle control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823420

Country of ref document: EP

Kind code of ref document: A1