WO2019242448A1 - 一种125ksi钢级抗硫油井管及其制造方法 - Google Patents

一种125ksi钢级抗硫油井管及其制造方法 Download PDF

Info

Publication number
WO2019242448A1
WO2019242448A1 PCT/CN2019/087832 CN2019087832W WO2019242448A1 WO 2019242448 A1 WO2019242448 A1 WO 2019242448A1 CN 2019087832 W CN2019087832 W CN 2019087832W WO 2019242448 A1 WO2019242448 A1 WO 2019242448A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil well
well pipe
steel grade
quenching
125ksi
Prior art date
Application number
PCT/CN2019/087832
Other languages
English (en)
French (fr)
Inventor
罗明
刘耀恒
张忠铧
齐亚猛
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to RU2020141593A priority Critical patent/RU2763722C1/ru
Publication of WO2019242448A1 publication Critical patent/WO2019242448A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the invention relates to an oil well pipe and a manufacturing method thereof, in particular to a sulfur-resistant oil well pipe and a manufacturing method thereof.
  • the existing standardized anti-sulfur steel grades have a yield strength of 80ksi (that is, 551MPa), 90ksi (that is, 620MPa), and 95ksi (that is, 655MPa). And 110ksi (that is, 758MPa), and higher yield strength such as 125ksi (that is, 862MPa) steel grade sulfur-resistant pipes have not been included in the American Petroleum Institute (API) standards, the reason is the existing research and production technology The level is not yet mature.
  • the publication number is CN103160752A and the publication date is June 19, 2013.
  • the Chinese patent document entitled "A high-strength seamless steel pipe with excellent low-temperature toughness and its manufacturing method" discloses a high-strength seamless steel pipe with excellent low-temperature toughness.
  • the publication number is CN103966524A, the publication date is August 6, 2014, and the Chinese patent document entitled "A Sulfide Stress Cracking Resistant Oil Pipe and Casing and Its Manufacturing Method” discloses a sulfide stress crack resistant oil pipe And casing, the composition of which is C: 0.12% to 0.20%, Si: 0.15% to 0.40%, Mn: 0.30% to 1.00%, P: 0.015% or less, S: 0.010% or less, Cr: 0.50% to 1.60% , Mo: 0.60% to 1.20%, Ni: 0.50% to 2.0%, Nb: 0.02% to 0.08%, Ti: 0.005% to 0.015%, Al: 0.01% to 0.10%, Ca: 0.001% to 0.01%, B : 0.001% or less, N: 0.005 to 0.03%.
  • This invention optimizes the content of Cr, Mo, Ni, Nb and reduces the content of C to make M 23 C 6 type carbides and M 3 C in tempered martensite structure.
  • Type carbides and the ratio of the average Cr concentration and average Fe concentration contained in the carbides are controlled within a certain range, thereby obtaining a 125ksi steel-grade oil casing with a fine and uniform tempered martensite structure.
  • One of the objectives of the present invention is to provide a 125ksi steel grade anti-sulfur oil well pipe, which has high strength and excellent resistance to stress corrosion corrosion of hydrogen sulfide, and can be widely applied to fields such as oil and gas extraction in a hydrogen sulfide environment.
  • the present invention proposes a 125ksi steel grade anti-sulfur oil well pipe whose chemical element mass percentage is:
  • C is an important element for ensuring strength and hardenability.
  • the C content is low, it is difficult to ensure the strength, and it is difficult to avoid the precipitation of pre-eutectoid ferrite, which affects the sulfur resistance.
  • the C content is too high, quenching cracks easily occur, and at the same time, coarse grain boundary carbides M 23 C 6 (mainly (Fe, Cr, Mo, Mn) 23 C 6 , in which the Fe and Cr content are higher, The content of Mo and Mn elements is slightly less, and the precipitation tendency of Fe: Cr: Mo: Mn is close to 60: 10: 6: 1), which affects the sulfur resistance. Therefore, the inventor of the present invention controlled the mass percentage of C in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to be 0.20 to 0.30%, preferably in the range of 0.21 to 0.25%.
  • Si is an element brought in by a deoxidizer in steel. When the content exceeds 0.5%, the cold brittleness tendency of the steel is significantly increased. When the content is less than 0.1%, the deoxidation effect is affected. Therefore, the inventor of the present invention limits the mass percentage of Si in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to 0.1 to 0.5%, and preferably ranges from 0.2 to 0.4%.
  • Mn is also an element brought in by the deoxidizer. Mn has the beneficial effects of expanding the austenite phase region, increasing the hardenability, and refining the grains. However, Mn is liable to segregation during solidification, resulting in obvious Banded structure, due to the obvious difference between the hardness and precipitation between the banded structure and the matrix, will affect the sulfur resistance of steel. Therefore, the mass percentage of Mn needs to be limited to 0.6% or less. In addition, in order to ensure the deoxidation effect, it is necessary to limit the mass percentage of Mn to 0.2% or more. Therefore, the inventor of the present invention limits the mass percentage of Mn in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to 0.2 to 0.6%, and preferably ranges from 0.3 to 0.5%.
  • Cr is an element that improves strength and hardenability, and is conducive to improving corrosion resistance. However, if the Cr content is too high, coarse Cr 23 C 6 carbides will be precipitated at the grain boundaries during tempering, which is not conducive to the stress corrosion resistance of hydrogen sulfide. Therefore, the inventor of the present invention put the 125ksi steel grade anti-sulfur oil well pipe according to the present invention
  • the mass percentage of Cr is limited to 0.30 to 0.70%, and the preferred range is 0.4 to 0.6%.
  • Mo is an element that improves strength and hardenability, and is conducive to improving corrosion resistance.
  • the precipitation of Mo carbides during high-temperature tempering improves the tempering resistance. Therefore, to ensure the strength and high-temperature tempering resistance, a sufficient amount of Mo must be added.
  • Mo is a precious element and will significantly increase the cost. Will cause coarse carbide precipitation, which is not conducive to the resistance to hydrogen sulfide stress corrosion performance. Therefore, the inventor of the present invention limits the mass percentage of Mo in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to 0.60 to 1.00%, and preferably ranges from 0.65 to 0.85%.
  • V is an effective grain-refining element, which can play the role of precipitation strengthening and improving high temperature tempering resistance.
  • V can ensure that the dislocation density is reduced when the steel is tempered at high temperature, which is conducive to the precipitation of fine VC precipitated phase, and the fine VC precipitated phase is a good hydrogen trap, which can improve the resistance to hydrogen sulfide stress corrosion.
  • too high V will cause temper brittleness, which will affect the toughness of the steel and reduce the ability of the steel to resist hydrogen sulfide stress corrosion. Therefore, the inventor of the present invention limited the mass percentage of V in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to 0.10 to 0.20%, preferably 0.13 to 0.17%.
  • Nb is an effective grain refining element.
  • the grain refining is beneficial to improve the strength, toughness, and resistance to stress corrosion of hydrogen sulfide. Therefore, the inventor of the present invention uses the 125ksi steel grade anti-sulfur oil well pipe according to the present invention.
  • the mass percentage of the Nb element is limited to 0.01 to 0.06%, and the preferred range is 0.02 to 0.04%.
  • Ti is also an effective grain refinement element, and can also play a role in solidifying N. However, too high Ti will form coarse TiN inclusions, which is detrimental to the resistance of steel to hydrogen sulfide stress corrosion. Therefore, the inventor of the present invention limited the mass percentage of Ti in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention to 0.015 to 0.035%, and the preferred range is 0.015 to 0.025%.
  • W can significantly improve the hardenability and mechanical properties of steel. W can also improve the tempering resistance of the steel, so that the increased Mo content in the steel will not cause further coarse M 23 C 6 type carbides and KSI carbides (mainly (Fe, Mo, Cr) 3 C carbides). , The ratio of Fe: Mo: Cr is close to 10: 4: 1), but MC-type carbides (mainly WC, VC, or (Mo, V) C and other carbides) that cause fine and uniform precipitation, where ( Mo, V) The Mo: V ratio in C carbides is close to 1: 1).
  • W can ensure that the steel still has high strength after tempering at a higher temperature or a longer tempering time, so that the dislocation density can be greatly reduced, and the steel's resistance to hydrogen sulfide stress is improved. Corrosion performance. Since the beneficial effect is not obvious when the amount of W added is small, and the amount of W added will increase the cold brittleness of the steel, the inventor of the present invention made the W in the 125ksi steel grade anti-sulfur oil well pipe according to the present invention. The mass percentage is limited to 0.20 to 0.60%, and the preferred range is 0.25 to 0.45%.
  • Al is an element necessary for deoxidation of steel, so it is impossible to completely avoid bringing Al into the steel. However, if the Al content exceeds 0.1%, it will adversely affect the casting process of the steel. Therefore, the inventor of the present invention
  • the mass percentage of Al in the 125ksi steel grade anti-sulfur oil well pipe is limited to Al ⁇ 0.1%, and the preferred range is 0.01 to 0.03%.
  • N The addition of N to the steel can effectively improve the strength and hardness of the steel, but it will also cause the steel to segregate at the grain boundaries and reduce the resistance to hydrogen sulfide stress corrosion of the steel.
  • the mass percentage of N in the sulfur-resistant oil well pipe is limited to N ⁇ 0.008%. Because contact with air cannot be avoided during the smelting and pouring process, reducing the N content indefinitely will significantly increase the cost of smelting production.
  • the mass percentage of N can be limited to 0.002 to 0.008%, and the preferred range is 0.003 to 0.005%.
  • the Cr and Mo elements satisfy: 2.4 ⁇ [Cr%] + 3 [Mo%] ⁇ 3.5.
  • the 125ksi steel grade anti-sulfur oil well pipe of the present invention has excellent resistance to stress corrosion corrosion of hydrogen sulfide, and to avoid large-scale precipitated phases caused by excessively high levels of Cr and Mo, Precipitation, which is not conducive to the resistance of steel to hydrogen sulfide stress corrosion.
  • the elements Cr and Mo should satisfy the relationship: 2.4 ⁇ [Cr%] + 3 [Mo%] ⁇ 3.5, where Cr and Mo Mo represents its mass percentage, and the value when it is brought into the above defined formula should be substituted into the value before the percent sign.
  • other unavoidable impurities mainly include S, P, and O.
  • S is a harmful element in steel, and its presence has an adverse effect on the corrosion resistance, hot workability, and toughness of steel. Therefore, the content of S should be as small as possible.
  • the present invention will reduce the content of S in 125ksi steel grade anti-sulfur oil well pipes The mass percentage is limited to S ⁇ 0.004%, preferably S ⁇ 0.001%.
  • P is also a harmful element in steel. Its presence has an adverse effect on the corrosion resistance and toughness of steel. Therefore, the content of P should be as small as possible.
  • the present invention limits the mass percentage of P element in 125ksi steel grade anti-sulfur oil well pipes.
  • O is an element that reduces the corrosion resistance and toughness of steel. If the content of O is too high, the content of inclusions is also high. Therefore, the content of O in steel should be strictly controlled.
  • the mass percentage of the element is limited to O ⁇ 0.01%, and preferably, O ⁇ 0.005%.
  • the microstructure of the 125ksi steel grade anti-sulfur oil well pipe according to the present invention is a fully tempered sorbite structure.
  • Our research shows that both the bainite structure and the quenched martensite structure remaining in the heat treatment process are resistant to hydrogen sulfide. Stress corrosion is harmful, and the tempered morselite structure has the best resistance to hydrogen sulfide stress corrosion.
  • sufficient quenching speed and temperature must be ensured during quenching and heat treatment to obtain fully quenched martensite. organization.
  • the 125 ksi steel grade anti-sulfur oil well pipe according to the present invention has a K 1SSC value ⁇ 27.5 MPa * m 1/2 which is characteristic of H 2 S stress corrosion resistance.
  • another object of the present invention is to provide a method for manufacturing the above-mentioned 125ksi steel-grade sulfur-resistant oil well pipe.
  • the manufacturing method is low in cost, and the manufactured 125ksi steel-grade sulfur-resistant oil well pipe has a relatively low cost through reasonable process design. High strength and excellent resistance to hydrogen sulfide stress corrosion.
  • the present invention proposes a method for manufacturing the above-mentioned 125ksi steel grade anti-sulfur oil well pipe, which includes the steps:
  • step (1) in some embodiments, first, electric furnace smelting is performed, and then the molten steel is cast into an ingot, and then forged or rolled into a tube billet.
  • step (3) in some embodiments, the hot-rolled dead pipe is quickly passed through an annular cooling device with a water-cooled nozzle, and the dead pipe is controlled by controlling the water pressure and flow of the nozzle and the roller conveying speed of the dead pipe.
  • On-line controlled cooling to obtain a uniform and fine bainite structure through a certain cooling rate and cooling temperature after rolling. The purpose of obtaining bainite structure through controlled cooling is to obtain enough austenite nucleation particles during subsequent quenching and heating.
  • step (4) in some embodiments, in the quenching step, the cooled waste pipe is heated to Ac3 + (30-50 ° C), then maintained for 0.5-1 h, and then water quenched; in the tempering step, the The quenched rough tube is tempered in a tempering furnace, the tempering temperature is 680-700 ° C, the holding time is 1.5-2.5h, and then air cooling is performed to obtain a tempered sorbite structure.
  • the quenching speed ⁇ 30 ° C / s is to ensure that a full martensite structure is obtained after quenching, and the full martensite structure can be transformed into Full tempered sorbite structure.
  • tempered sorbite structure has the best resistance to hydrogen sulfide stress corrosion.
  • the quenching speed is low, some bainite structure will be generated, and the bainite structure will not undergo tempering sorbite transformation in the subsequent tempering process, so that the tempering structure is tempered sorbite and residual bainite.
  • the residual bainite structure is a strong hydrogen trap due to its high hardness and high dislocation density, which is not good for the material's resistance to hydrogen sulfide stress corrosion.
  • bainite structure is obtained through controlled cooling after rolling, and sufficient austenite nucleation particles can be obtained by subsequent quenching and heating, and the size of the original austenite grains is refined. All the martensite is transformed into quenched martensite, and in the subsequent tempering heat treatment, the quenched martensite is transformed into tempered morselite.
  • the uniform and fine bainite structure is obtained through the on-line controlled cooling process, so that the manufacturing method according to the present invention can obtain a smaller grain structure after only one quenching and tempering heat treatment, thereby obtaining the 125ksi steel grade according to the present invention.
  • the sulfur-resistant oil well pipe is refined by two or more quenching and tempering heat treatments in order to improve the strength of the steel and the stability of the resistance to hydrogen sulfide stress corrosion.
  • the manufacturing method of the present invention Can significantly reduce costs.
  • the cooling rate is controlled to be 10 to 30 ° C / s, because the cooling rate is too fast and the bainite structure cannot be obtained, and the cooling rate is too slow. Will form pearlite.
  • the bainite transformation temperature Bs 830-270 [C%]-90 [Mn%]-70 [Cr%]-83 [Mo%], where C, Mn, Cr, and Mo Respectively indicate their respective mass percentages, and the values brought into the above limiting formula should be substituted with the values before the percent sign. For example, when the mass percentage of C is 0.25%, the mass percentage of Mn is 0.53%, and the mass percentage of Cr is 0.45.
  • step (2) the tube blank is heated to 1050-1250 ° C., and is held for 1 to 3 hours, and then a rough tube is obtained by perforation and hot rolling.
  • step (2) the final rolling temperature of the hot rolling is controlled to be higher than 900 ° C., so as to ensure that the waste pipe is a full austenite structure at the end of the final rolling to ensure subsequent
  • the on-line controlled cooling process realizes the transformation of austenite to bainite.
  • step (3) the cooling on the cooling bed is performed after the on-line controlled cooling is completed.
  • the 125ksi steel grade anti-sulfur oil well pipe and its manufacturing method according to the present invention have the following beneficial effects:
  • the present invention makes the 125ksi steel grade anti-sulfur oil well pipe of the present invention low in cost through reasonable composition design, has high strength and excellent resistance to hydrogen sulfide stress corrosion, and can be widely applied to hydrogen sulfide containing Environmental oil and gas extraction and other fields.
  • the method for manufacturing a 125ksi steel grade anti-sulfur oil well pipe according to the present invention significantly reduces the manufacturing cost through optimized process design, and makes the yield strength (R t0.7 ) of the 125ksi steel grade anti-sulfur oil well pipe obtained .
  • ⁇ 125ksi that is, 862MPa
  • the K 1SSC value representing the resistance to H 2 S stress corrosion is ⁇ 27.5MPa * m 1/2 .
  • Table 1-1 and Table 1-2 list the mass percentages of the chemical elements in the 125ksi steel grade anti-sulfur oil well pipes of Examples 1-8 and Comparative Examples 1-10, where Examples 7 and 8 are optimized components .
  • Example 1 0.25 0.21 0.53 0.013 0.003 0.45 0.75 0.11 0.03
  • Example 2 0.2 0.49 0.37 0.012 0.001 0.69 0.61 0.16 0.01
  • Example 3 0.29 0.12 0.2 0.014 0.002 0.31 0.95 0.19 0.05
  • Example 4 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
  • Example 5 0.24 0.29 0.28 0.009 0.002 0.66 0.94 0.18 0.04
  • Example 6 0.28 0.42 0.44 0.012 0.003 0.38 0.82 0.17 0.03
  • Example 7 0.21 0.2 0.5 0.009 0.001 0.41 0.85 0.15 0.02
  • Example 8 0.24 0.4 0.3 0.011 0.002 0.51 0.75 0.17 0.04 Comparative Example 1 0.25 0.35 0.36 0.011 0.002 0.42 0.76 0.13 0.04 Comparative Example 2 0.23 0.41 0.39 0.013 0.001 0.27 0.77 0.08 0.04 Comparative Example 3 0.27 0.32 0.27 0.009 0.002
  • Comparative Example 7 0.26 0.47 0.52 0.008 0.001 0.52 0.71 0.22 0.07 Comparative Example 8 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02 Comparative Example 9 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02 Comparative Example 10 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
  • Example 1 0.022 0.45 0.06 0.009 0.006 2.7
  • Example 2 0.032 0.58 0.09 0.005 0.005 2.52
  • Example 3 0.015 0.21 0.04 0.002 0.007 3.16
  • Example 4 0.033 0.36 0.07 0.004 0.006 2.92
  • Example 5 0.019 0.25 0.06 0.007 0.005 3.48
  • Example 6 0.034 0.41 0.08 0.008 0.002 2.84
  • Example 7 0.025 0.21 0.01 0.004 0.003 2.96
  • Example 8 0.019 0.45 0.03 0.003 0.005 2.76 Comparative Example 1 0.031 0.17 0.06 0.003 0.004 2.7 Comparative Example 2 0.028 0.32 0.04 0.002 0.003 2.58 Comparative Example 3 0.032 0.36 0.06 0.008 0.006 2.27 Comparative Example 4 0.019 0.27 0.07 0.005 0.002 3.6 Comparative Example 5 0.021 0.62 0.05 0.003 0.004 3.47 Comparative Example 6
  • each chemical element in Table 1-1 and Table 1-2 is the weight percentage of the chemical composition after smelting in the electric furnace.
  • the smelted molten steel is cast into an ingot and then rolled into Tube blank.
  • the tube blank is heated to 1050-1250 ° C, and after holding for 1 to 3 hours, a rough tube is obtained through piercing and hot rolling.
  • the final rolling temperature of the hot rolling is controlled to be above 900 ° C.
  • On-line controlled cooling is performed on the dried pipes whose temperature is in the single austenite temperature zone after hot rolling.
  • the on-line control cooling device is a ring-shaped cooling device with water-cooled nozzles.
  • the design of the ring-shaped nozzle can ensure uniform cooling in the circumferential direction of the steel pipe.
  • the cooling intensity is controlled according to the water pressure and flow rate of the nozzle and the roller conveying speed of the waste pipe. Designed to keep the waste pipe rotating while passing through the spray ring, which can prevent the bending of the cooling process and make production difficult.
  • the tempering temperature is 680-700 ° C
  • the holding time is 1.5-2.5h
  • the air is cooled to obtain the specification as 125ksi steel grade anti-sulfur oil well pipe.
  • Table 2-1 and Table 2-2 list the specific process parameters of the method for manufacturing the 125ksi steel-grade sulfur-resistant oil well pipe of Example 1-8 and Comparative Example 1-10.
  • Example 7 and Example 8 are 125ksi steel grade anti-sulfur pipes with a preferred composition, whose K ISCC value exceeds 30 MPa ⁇ m 1/2 , and has better resistance to hydrogen sulfide stress corrosion.
  • Mo and W in the 125ksi steel grade anti-sulfur oil well pipe of Comparative Example 5 are both too high, which significantly increases the tempering resistance of the steel and enhances its cold hardenability, leading to a reduction in sulfur resistance.
  • the 125ksi steel grade anti-sulfur oil well pipe of Comparative Example 8 did not undergo an on-line controlled cooling process after hot rolling, resulting in a coarse and uneven structure obtained after a single quenching and tempering heat treatment, thereby reducing sulfur resistance.
  • the final cooling temperature of the on-line controlled cooling of the billet after hot rolling is not in the range of (Bs ⁇ 30) ° C, and the bainite transformation has not been achieved, resulting in a quenched and tempered heat treatment.
  • the obtained structure is coarse and uneven, and the sulfur resistance is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种125ksi钢级抗硫油井管,其化学元素质量百分比为:C:0.20~0.30%,Si:0.1~0.5%,Mn:0.2~0.6%,Cr:0.30~0.70%,Mo:0.60~1.00%,V:0.10~0.20%,Nb:0.01~0.06%,Ti:0.015~0.035%,W:0.20~0.60%,Al≤0.1%,N≤0.008%,余量为Fe和其他不可避免的杂质。本发明还公开了一种上述125ksi钢级抗硫油井管的制造方法,包括步骤:(1)制得管坯;(2)将管坯穿孔和热轧,制得荒管;(3)在线控冷;(4)淬火+回火:淬火步骤中淬火温度为Ac3+(30~50℃),其中Ac3(℃)=910-203[C%]1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],然后水淬,水淬速度≥30℃/s;回火步骤中回火温度为680~700℃,然后空冷。

Description

一种125ksi钢级抗硫油井管及其制造方法 技术领域
本发明涉及一种油井管及其制造方法,尤其涉及一种抗硫油井管及其制造方法。
背景技术
随着石油天然气的日益枯竭,油气的开采开发朝着深井、超深井的方向发展,相应地,油气井环境具有更高的压力、更高的温度、更高的腐蚀性,特别是油气中含有硫化氢腐蚀介质,这对油井管材质的强度和抗硫化氢应力腐蚀能力提出了更高的要求。
在美国石油协会标准套管和油管规范(API Spec 5CT)中,现有标准化的抗硫管钢级有屈服强度为80ksi(也就是551MPa)、90ksi(也就是620MPa)、95ksi(也就是655MPa)及110ksi(也就是758MPa)这四种,而更高屈服强度如125ksi(也就是862MPa)钢级的抗硫管仍未纳入美国石油协会(API)标准,其原因是现有的研究和生产技术水平尚不成熟。对于低合金钢来说,强度和抗硫化氢应力腐蚀是一对矛盾的性能因子,强度提高其抗硫化氢应力腐蚀能力会明显下降。要同时保证强度和抗硫性能,目前只能采用昂贵的13Cr以上的高合金不锈钢或者镍基合金,而采用低合金钢的几乎没有。目前国内外尚没有实现125ksi钢级抗硫油井管的批量生产和应用,而现有的专利也是以牺牲抗硫性能为代价来提高材料强度的。
公开号为CN103160752A,公开日为2013年6月19日,名称为“一种低温韧性优良的高强无缝钢管及其制造方法”的中国专利文献公开了一种低温韧性优良的高强无缝钢管,其成分为:C:0.15%~0.20%、Si:0.20%~0.30%、Mn:0.20%~0.50%、P:≤0.010%、S:≤0.003%、Cr:0.6%~0.8%、Mo:0.4%~0.7%、Ni:1.0%~1.4%、Nb:0.01%~0.035%、Als:0.01%~0.05%,采用的是Cr-Mo-Ni体系来获得125ksi钢级油井管,虽然韧性得到大幅度提高,-60℃冲击功达到40J以上,但未有抗硫性能的保证。
公开号为CN103966524A,公开日为2014年8月6日,名称为“一种抗硫化物应力开裂的油管和套管及其制造方法”的中国专利文献公开了一种抗硫化物应力开裂的油管和套管,其成分为C:0.12%~0.20%、Si:0.15%~0.40%、Mn:0.30%~1.00%、P:0.015%以下、S:0.010%以下、Cr:0.50%~1.60%、Mo:0.60%~1.20%、Ni:0.50%~2.0%、Nb:0.02%~0.08%、Ti:0.005%~0.015%、Al:0.01%~0.10%、Ca:0.001%~0.01%、B:0.001%以下、N:0.005~0.03%,该发明通过优化Cr、Mo、Ni、Nb的含量以及降低C含量,使回火马氏体组织中的M 23C 6型碳化物、M 3C型碳化物以及碳化物中含有的平均Cr浓度与平均Fe浓度之比控制在一定范围内,从而获得具有精细均匀回火马氏体组织的125ksi钢级油套管。
鉴于此,期望获得一种125ksi钢级油井管,其具有较高的强度和优异的抗硫化氢应力腐蚀性能,能够广泛适用于含硫化氢环境的石油天然气开采等领域。
发明内容
本发明的目的之一在于提供一种125ksi钢级抗硫油井管,其具有较高的强度和优异的抗硫化氢应力腐蚀性能,能够广泛适用于含硫化氢环境的石油天然气开采等领域。
为了实现上述目的,本发明提出了一种125ksi钢级抗硫油井管,其化学元素质量百分比为:
C:0.20~0.30%,Si:0.1~0.5%,Mn:0.2~0.6%,Cr:0.30~0.70%,Mo:0.60~1.00%,V:0.10~0.20%,Nb:0.01~0.06%,Ti:0.015~0.035%,W:0.20~0.60%,Al≤0.1%,N≤0.008%,余量为Fe和其他不可避免的杂质。
本发明所述的125ksi钢级抗硫油井管中的各化学元素的设计原理为:
C:C是保证强度及淬透性的重要元素。C含量较低时,强度难以保证,也难以避免先共析铁素体的析出,影响抗硫性能。而C含量过高时,易出现淬火裂纹,同时还会增大晶界粗大碳化物M 23C 6(主要为(Fe,Cr,Mo,Mn) 23C 6,其中Fe和Cr含量较高,Mo和Mn元素含量略少,Fe:Cr:Mo:Mn接近60:10:6:1)的析出倾向,从而影响抗硫性能。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的C的质量百分比控制在0.20~0.30%,优选范围是 0.21~0.25%。
Si:Si是钢中由脱氧剂而带入的元素,其含量超过0.5%时,会显著增加钢的冷脆倾向,其含量低于0.1%时,会影响脱氧效果。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Si的质量百分比限定在0.1~0.5%,优选范围是0.2~0.4%。
Mn:Mn也是由脱氧剂而带入的元素,Mn具有扩大奥氏体相区、增加淬透性、细化晶粒的有益效果,但Mn在凝固时易发生偏析,造成最终产品中的明显带状组织,由于带状组织与基体间的硬度、析出相有明显差异,会影响钢的抗硫性能。因此需要将Mn的质量百分比限定在0.6%以下。此外,为了保证脱氧效果,需要将Mn的质量百分比限定在0.2%以上。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Mn的质量百分比限定在0.2~0.6%,优选范围是0.3~0.5%。
Cr:Cr是提高强度和淬透性的元素,有利于提高抗腐蚀性能。但Cr含量过高会导致回火时在晶界析出粗大的Cr 23C 6碳化物,不利于抗硫化氢应力腐蚀性能,因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Cr的质量百分比限定在0.30~0.70%,优选范围是0.4~0.6%。
Mo:Mo是提高强度和淬透性的元素,有利于提高抗腐蚀性能。Mo的碳化物在高温回火时析出提高了回火抗力,因此要保证强度和高温回火抗力就必须加入足量的Mo,但Mo是贵重元素,会显著增加成本,同时过高的Mo也会导致粗大的碳化物析出,从而不利于抗硫化氢应力腐蚀性能。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Mo的质量百分比限定在0.60~1.00%,优选范围是0.65~0.85%。
V:V是有效的细化晶粒元素,能够起到析出强化和提高高温回火抗力的作用。V可以保证钢在高温回火时降低位错密度,从而有利于析出细小的VC析出相,而细小的VC析出相是很好的氢陷阱,可以提高抗硫化氢应力腐蚀性能。但过高的V会导致回火脆性,从而会影响钢的韧性,降低钢的抗硫化氢应力腐蚀能力。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的V的质量百分比限定在0.10~0.20%,优选范围是0.13~0.17%。
Nb:Nb是有效的细化晶粒元素,晶粒的细化有利于提高钢的强度、韧性及抗硫化氢应力腐蚀性能,因此本案发明人将本发明所述的125ksi钢级抗硫油 井管中的Nb元素的质量百分比限定在0.01~0.06%,优选范围是0.02~0.04%。
Ti:Ti也是有效的细化晶粒元素,同时还能起到固N的作用。但是过高的Ti会形成粗大的TiN夹杂物,这对钢的抗硫化氢应力腐蚀性能不利。因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Ti的质量百分比限定在0.015~0.035%,优选范围是0.015~0.025%。
W:W可以显著提高钢的淬透性和力学性能。W还能提高钢的回火抗力,从而在钢中Mo含量增加的同时不会进一步引起粗大的M 23C 6型碳化物和KSI碳化物(主要为(Fe,Mo,Cr) 3C碳化物,Fe:Mo:Cr的比例接近10:4:1)的析出,而是使细小的、均匀沉淀的MC型碳化物(主要为WC、VC或者(Mo,V)C等碳化物,其中(Mo,V)C碳化物中的Mo:V的比例接近1:1)析出。此外,W可以保证钢在较高的温度下或者较长的回火时间下进行回火后,仍具有较高的强度,从而使位错密度得以大幅度降低,从而提高钢的抗硫化氢应力腐蚀性能。由于W加入量较少时,其所起的有益作用不明显,而加入量过多又会增加钢的冷脆性,本案发明人将本发明所述的125ksi钢级抗硫油井管中的W的质量百分比限定在0.20~0.60%,优选范围是0.25~0.45%。
Al:Al是钢脱氧所必须的元素,因此无法完全避免将Al带入钢中,但Al含量超过0.1%后,对钢的浇铸过程会有不利影响,因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的Al的质量百分比限定在Al≤0.1%,优选范围是0.01~0.03%。
N:钢中加入N会有效提升钢的强度和硬度,但也会使钢在晶界处产生偏析从而降低钢的抗硫化氢应力腐蚀性能,因此本案发明人将本发明所述的125ksi钢级抗硫油井管中的N的质量百分比限定在N≤0.008%。由于冶炼和浇注过程避免不了与空气接触,无限度地降低N含量会显著提高冶炼生产成本。可将的N的质量百分比限定在0.002~0.008%,优选范围是0.003~0.005%。
进一步地,在本发明所述的125ksi钢级抗硫油井管中,其中Cr和Mo元素满足:2.4≤[Cr%]+3[Mo%]≤3.5。
在本发明所述的技术方案中,为了保证本发明所述的125ksi钢级抗硫油井管具有优异的抗硫化氢应力腐蚀性能,同时为了避免过高含量的Cr和Mo导致大尺寸的析出相析出,从而不利于钢的抗硫化氢应力腐蚀性能,本案发明人通过研究发现,Cr和Mo元素应满足关系式:2.4≤[Cr%]+3[Mo%]≤3.5,式中 的Cr和Mo分别表示其质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值,例如当Cr的质量百分比为0.45%,Mo的质量百分比为0.75%,则代入公式时的数值分别为0.45和0.75,从而计算得到[Cr%]+3[Mo%]=0.45+3×0.75=2.7。
更进一步地,在本发明所述的125ksi钢级抗硫油井管中,在所述其他不可避免的杂质中,S≤0.004%,P≤0.015%,O≤0.01%。
在本发明所述的技术方案中,其他不可避免的杂质主要包括S、P和O。S是钢中的有害元素,其存在对于钢的耐腐蚀性、热加工性、韧性都有不利的影响,因此S含量应尽量少,本发明将125ksi钢级抗硫油井管中的S元素的质量百分比限定在S≤0.004%,优选地,S≤0.001%。P是也是钢中的有害元素,其存在对于钢的耐腐蚀性、韧性都有不利影响,因此P含量也应尽量少,本发明将125ksi钢级抗硫油井管中的P元素的质量百分比限定在P≤0.015%,优选地,P≤0.01%。O是降低钢的耐蚀性和韧性的元素,O含量过高意味着夹杂物的含量也较高,因此应严格控制钢中O的含量,本发明将125ksi钢级抗硫油井管中的O元素的质量百分比限定在O≤0.01%,优选地,O≤0.005%。
进一步地,本发明所述的125ksi钢级抗硫油井管,其微观组织为全回火索氏体组织,我们的研究表明热处理过程残留的贝氏体组织和淬火马氏体组织均对抗硫化氢应力腐蚀有害,而回火索氏体组织抗硫化氢应力腐蚀能力最佳,为确保回火后获得全索氏体组织,淬火热处理时需保证足够的淬火速度和温度来获得全淬火马氏体组织。
进一步地,本发明所述的125ksi钢级抗硫油井管,其表征抗H 2S应力腐蚀能力的K 1SSC值≥27.5MPa*m 1/2
相应地,本发明的另一目的在于提供一种上述125ksi钢级抗硫油井管的制造方法,该制造方法成本低廉,并通过合理的工艺设计使制得的125ksi钢级抗硫油井管具有较高的强度和优异的抗硫化氢应力腐蚀性能。
为了实现上述目的,本发明提出了一种上述125ksi钢级抗硫油井管的制造方法,其包括步骤:
(1)制得管坯;
(2)将管坯穿孔和热轧,制得荒管;
(3)采用在线控冷的方式对荒管进行冷却;
(4)采用淬火+回火进行一次调质热处理:其中在淬火步骤,淬火温度为Ac3+(30~50℃),其中Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],然后进行水淬,水淬速度≥30℃/s;其中在回火步骤,回火温度为680~700℃,然后空冷。
在本发明所述的制造方法中,在步骤(1)中,在一些实施方式中,先进行电炉冶炼,然后将冶炼后的钢水浇铸成铸锭,然后再锻造或轧制成管坯。在步骤(3)中,在一些实施方式中,将热轧后的荒管迅速通过带水冷喷嘴的环形冷却装置,通过控制喷嘴的水压、流量以及荒管的辊道传送速度对荒管进行在线控冷冷却,通过一定轧后冷却速度和冷却温度以便获得均匀细小的贝氏体组织。通过控制冷却获得贝氏体组织的目的是为后续淬火加热时获得足够多的奥氏体形核质点,淬火前钢中的碳化物越多越弥散,淬火加热形成的奥氏体晶粒就越细小越均匀,回火加热形成的回火索氏体组织也越细小越均匀,从而导致钢的抗硫化氢应力腐蚀能力也越强。如果轧后不采用控制冷却则获得的组织为铁素体和珠光体(有部分贝氏体),铁素体和珠光体组织为片层状结构,碳化物的分布不成弥散分布,而贝氏体组织的碳化物基本呈均匀弥散分布。在步骤(4)中,在一些实施方式中,在淬火步骤,将冷却后的荒管加热到Ac3+(30~50℃)后,保温0.5-1h,然后进行水淬;在回火步骤,将淬火后的荒管在回火炉中进行回火,回火温度为680~700℃,保温时间为1.5-2.5h,然后进行空冷,以便得到回火索氏体组织。
此外,需要说明的是,在步骤(4)中,在淬火步骤,淬火速度≥30℃/s是为了确保淬火后获得全马氏体组织,全马氏体组织在后续回火过程可以转变为全回火索氏体组织,研究表明回火索氏体组织具有最优的耐硫化氢应力腐蚀性能。而淬火速度偏低时会有部分贝氏体组织产生,贝氏体组织在后续回火过程不会出现回火索氏体转变,使得回火组织为回火索氏体和残留贝氏体,而残留的贝氏体组织由于具有高硬度、高位错密度,是强烈的氢陷阱,对材料的耐硫化氢应力腐蚀性能不利。
此外,需要说明的是,在步骤(4)中,在淬火步骤,淬火温度为Ac3+(30~50℃),其中Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],式中的C、Si、V、Mo和W分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值,例如当C的质量百分比为 0.25%,Si的质量百分比为0.21%,V的质量百分比为0.11%,Mo的质量百分比为0.75%,W的质量百分比为0.45%,则代入公式时的数值分别为0.25、0.21、0.11、0.75和0.45,从而计算得到Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%]=910-203×0.25 1/2+44.7×0.21+104×0.11+31.5×0.75+13.1×0.45=858.8。
此外,本发明所述的制造方法,通过轧后控制冷却获得贝氏体组织,后续淬火加热可获得足够多的奥氏体形核质点,细化原奥氏体晶粒尺寸,淬火冷却时奥氏体全部转变为淬火马氏体,后续回火热处理时淬火马氏体全部转变为回火索氏体。通过在线控冷工艺获得均匀细小的贝氏体组织,使本发明所述的制造方法只需要进行一次调质热处理后即可获得较小的晶粒组织,从而获得本发明所述的125ksi钢级抗硫油井管,相比于现有技术中通过两次或者多次调质热处理来细化晶粒,以便提高钢的强度和抗硫化氢应力腐蚀性能的稳定性,本发明所述的制造方法可以显著降低成本。
进一步地,在本发明所述的制造方法中,在步骤(3)中,控制冷却速度为10~30℃/s,控制终冷温度为(Bs±30)℃,其中贝氏体转变温度Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],完成在线控冷后进行空冷。
在本发明所述的制造方法中,在步骤(3)中,控制冷却速度为10~30℃/s,原因是冷却速度过快会导致得不到贝氏体组织,而冷却速度过慢则会形成珠光体。此外,需要说明的是,贝氏体转变温度Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],式中的C、Mn、Cr和Mo分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值,例如当C的质量百分比为0.25%,Mn的质量百分比为0.53%,Cr的质量百分比为0.45%,Mo的质量百分比为0.75%,则代入公式时的数值分别为0.25、0.53、0.45和0.75,从而计算得到Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%]=830-270×0.25-90×0.53-70×0.45-83×0.75=621.1。
进一步地,在本发明所述的制造方法中,在步骤(2)中,将管坯加热到1050~1250℃,保温1~3小时后,经穿孔、热轧制得荒管。
进一步地,在本发明所述的制造方法中,在步骤(2)中,控制热轧的终轧温度在900℃以上,以保证终轧结束时荒管为全奥氏体组织,以保证后续在线控冷过程实现奥氏体向贝氏体组织转变。
进一步地,在本发明所述的制造方法中,在步骤(3)中,完成在线控冷后进行冷床空冷。
本发明所述的125ksi钢级抗硫油井管及其制造方法与现有技术相比,具有以下有益效果:
(1)本发明通过合理的成分设计,使本发明所述的125ksi钢级抗硫油井管成本低廉,并具有较高的强度和优异的抗硫化氢应力腐蚀性能,能够广泛适用于含硫化氢环境的石油天然气开采等领域。
(2)本发明所述的125ksi钢级抗硫油井管的制造方法通过优化的工艺设计,显著降低制造成本,并且使制得的125ksi钢级抗硫油井管的屈服强度(R t0.7)≥125ksi(也就是862MPa),表征抗H 2S应力腐蚀能力的K 1SSC值≥27.5MPa*m 1/2
具体实施方式
下面将具体的实施例对本发明所述的125ksi钢级抗硫油井管及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和对比例1-10
表1-1和表1-2列出了实施例1-8和对比例1-10的125ksi钢级抗硫油井管中各化学元素的质量百分比,其中实施例7和实施例8是优化成分。
表1-1.(wt%,余量为Fe和除P、S、O以外的不可避免的杂质)
序号 C Si Mn P S Cr Mo V Nb
实施例1 0.25 0.21 0.53 0.013 0.003 0.45 0.75 0.11 0.03
实施例2 0.2 0.49 0.37 0.012 0.001 0.69 0.61 0.16 0.01
实施例3 0.29 0.12 0.2 0.014 0.002 0.31 0.95 0.19 0.05
实施例4 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
实施例5 0.24 0.29 0.28 0.009 0.002 0.66 0.94 0.18 0.04
实施例6 0.28 0.42 0.44 0.012 0.003 0.38 0.82 0.17 0.03
实施例7 0.21 0.2 0.5 0.009 0.001 0.41 0.85 0.15 0.02
实施例8 0.24 0.4 0.3 0.011 0.002 0.51 0.75 0.17 0.04
对比例1 0.25 0.35 0.36 0.011 0.002 0.42 0.76 0.13 0.04
对比例2 0.23 0.41 0.39 0.013 0.001 0.27 0.77 0.08 0.04
对比例3 0.27 0.32 0.27 0.009 0.002 0.41 0.62 0.13 0.05
对比例4 0.22 0.39 0.41 0.008 0.001 0.72 0.96 0.15 0.03
对比例5 0.24 0.35 0.33 0.012 0.002 0.32 1.05 0.12 0.04
对比例6 0.21 0.3 0.42 0.011 0.002 0.35 0.74 0.13 0.008
对比例7 0.26 0.47 0.52 0.008 0.001 0.52 0.71 0.22 0.07
对比例8 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
对比例9 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
对比例10 0.26 0.35 0.59 0.011 0.001 0.52 0.8 0.14 0.02
表1-2.(wt%,余量为Fe和除P、S、O以外的不可避免的杂质)
序号 Ti W Al O N [Cr%]+3[Mo%]
实施例1 0.022 0.45 0.06 0.009 0.006 2.7
实施例2 0.032 0.58 0.09 0.005 0.005 2.52
实施例3 0.015 0.21 0.04 0.002 0.007 3.16
实施例4 0.033 0.36 0.07 0.004 0.006 2.92
实施例5 0.019 0.25 0.06 0.007 0.005 3.48
实施例6 0.034 0.41 0.08 0.008 0.002 2.84
实施例7 0.025 0.21 0.01 0.004 0.003 2.96
实施例8 0.019 0.45 0.03 0.003 0.005 2.76
对比例1 0.031 0.17 0.06 0.003 0.004 2.7
对比例2 0.028 0.32 0.04 0.002 0.003 2.58
对比例3 0.032 0.36 0.06 0.008 0.006 2.27
对比例4 0.019 0.27 0.07 0.005 0.002 3.6
对比例5 0.021 0.62 0.05 0.003 0.004 3.47
对比例6 0.013 0.32 0.06 0.006 0.008 2.57
对比例7 0.036 0.38 0.08 0.007 0.008 2.65
对比例8 0.033 0.36 0.07 0.004 0.006 2.92
对比例9 0.033 0.36 0.07 0.004 0.006 2.92
对比例10 0.033 0.36 0.07 0.004 0.006 2.92
注:表中[Cr%]+3[Mo%],式中的Cr和Mo分别表示其质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值。
实施例1-8和对比例1-10的125ksi钢级抗硫油井管采用下述步骤制得(具体工艺参数参见表2-1和表2-2):
(1)表1-1和表1-2中的各化学元素含量是通过电炉冶炼后的化学成分重量百分比,将冶炼后的钢水浇铸成铸锭,然后再轧制成
Figure PCTCN2019087832-appb-000001
的管坯。
(2)将管坯加热到1050~1250℃,保温1~3小时后,经穿孔、热轧制得荒管,其中控制热轧的终轧温度在900℃以上。
(3)将热轧后温度在单项奥氏体温度区的荒管进行在线控制冷却。在线控制冷却装置是带水冷喷嘴的环形冷却装置,环形喷嘴设计可以确保钢管周向冷却均匀,冷却强度根据喷嘴的水压、流量以及荒管的辊道传送速度进行控制,传送辊道采用斜管设计,使荒管通过喷环时保持旋转,这样可以防止冷却过程 弯管导致生产难以进行。控制冷却速度为10~30℃/s,控制终冷温度为(Bs±30)℃,其中贝氏体转变温度Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],完成在线控冷后进行冷床空冷。需要说明的是,贝氏体转变温度Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],式中的C、Mn、Cr和Mo分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值。
(4)采用淬火+回火进行一次调质热处理:其中在淬火步骤,淬火温度为Ac3+(30~50℃),其中Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],保温时间为0.5-1h,然后进行水淬,水淬速度≥30℃/s。其中在回火步骤,回火温度为680~700℃,保温时间为1.5-2.5h,然后空冷,得到规格为
Figure PCTCN2019087832-appb-000002
的125ksi钢级抗硫油井管。需要说明的是,Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],式中的C、Si、V、Mo和W分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值。
表2-1和表2-2列出了实施例1-8和对比例1-10的125ksi钢级抗硫油井管的制造方法的具体工艺参数。
表2-1.
Figure PCTCN2019087832-appb-000003
Figure PCTCN2019087832-appb-000004
注:表中Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],式中的C、Mn、Cr和Mo分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值。
表2-2.
Figure PCTCN2019087832-appb-000005
注:表中Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],式中的C、Si、V、Mo和W分别表示其各自的质量百分比,并且带入上述限定公式时的数值应当代入百分号前的数值。
对实施例1-8和对比例1-10的125ksi钢级抗硫油井管进行性能测试,其中常温拉伸性能测试根据GB/T 228.1-2000标准进行,抗硫化氢应力腐蚀性能根据NACE TM0177-2005D法A溶液试验标准进行,测试结果列于表3中。
表3.
Figure PCTCN2019087832-appb-000006
Figure PCTCN2019087832-appb-000007
由表3可以看出,实施例1-6的125ksi钢级抗硫油井管的屈服强度在125ksi(也就是862MPa)以上,表征抗硫化氢应力腐蚀能力的K ISCC值在27.5MPa·m 1/2以上,实施例7和实施例8是优选成分的125ksi钢级抗硫管,其K ISCC值超过30MPa·m 1/2,抗硫化氢应力腐蚀性能更佳。
对比例1的125ksi钢级抗硫油井管中W含量过低导致抗硫性能下降。
对比例2的125ksi钢级抗硫油井管中Cr和V的含量均过低,导致弥散分布的析出相减少,晶粒细化作用不明显,从而导致抗硫性能下降。
对比例3的125ksi钢级抗硫油井管中Cr+3Mo过低,使得钢在酸性环境下的抗腐蚀能力降低,从而使抗硫性能也降低。
对比例4的125ksi钢级抗硫油井管中Cr和Cr+3Mo均过高,使钢中大尺寸析出相明显增加,抗硫性能降低。
对比例5的125ksi钢级抗硫油井管中Mo和W均过高,使钢的回火抗力明显增加,冷硬性增强,导致抗硫性能降低。
对比例6的125ksi钢级抗硫油井管中Nb和Ti均过低,使弥散分布的析出相减少,晶粒细化作用不明显,抗硫性能降低。
对比例7的125ksi钢级抗硫油井管中V、Nb和Ti均过高,导致钢中粗大夹杂和析出相增多,抗硫性能明显下降。
对比例8的125ksi钢级抗硫油井管,其管坯在热轧后未进行在线控冷工艺,导致一次调质热处理后得到的组织粗大不均匀,从而使抗硫性能降低。
对比例9的125ksi钢级抗硫油井管,其管坯在热轧后在线控冷的终冷温度不在(Bs±30)℃范围内,未能实现贝氏体转变,导致一次调质热处理后得到的组织粗大不均匀,抗硫性能降低。
对比例10的125ksi钢级抗硫油井管,由于在线控冷的冷速太慢,导致形成珠光体和贝氏体混合组织,从而导致一次调质热处理后晶粒细化不明显,抗硫性能降低。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (10)

  1. 一种125ksi钢级抗硫油井管,其特征在于,其化学元素质量百分比为:
    C:0.20~0.30%,Si:0.1~0.5%,Mn:0.2~0.6%,Cr:0.30~0.70%,Mo:0.60~1.00%,V:0.10~0.20%,Nb:0.01~0.06%,Ti:0.015~0.035%,W:0.20~0.60%,Al≤0.1%,N≤0.008%,余量为Fe和其他不可避免的杂质。
  2. 如权利要求1所述的125ksi钢级抗硫油井管,其特征在于,其中Cr和Mo元素满足:2.4≤[Cr%]+3[Mo%]≤3.5。
  3. 如权利要求1所述的125ksi钢级抗硫油井管,其特征在于,在所述其他不可避免的杂质中,S≤0.004%,P≤0.015%,O≤0.01%。
  4. 如权利要求1所述的125ksi钢级抗硫油井管,其特征在于,其微观组织为回火索氏体。
  5. 如权利要求1所述的125ksi钢级抗硫油井管,其特征在于,其表征抗H 2S应力腐蚀能力的K 1SSC值≥27.5MPa*m 1/2
  6. 如权利要求1-5中任意一项所述的125ksi钢级抗硫油井管的制造方法,其包括步骤:
    (1)制得管坯;
    (2)将管坯穿孔和热轧,制得荒管;
    (3)采用在线控冷的方式对荒管进行冷却;
    (4)采用淬火+回火进行一次调质热处理:其中在淬火步骤,淬火温度为Ac3+(30~50℃),其中Ac3(℃)=910-203[C%] 1/2+44.7[Si%]+104[V%]+31.5[Mo%]+13.1[W%],然后进行水淬,水淬速度≥30℃/s;其中在回火步骤,回火温度为680~700℃,然后空冷。
  7. 如权利要求6所述的制造方法,其特征在于,在步骤(3)中,控制冷却速度为10~30℃/s,控制终冷温度为(Bs±30)℃,其中贝氏体转变温度Bs=830-270[C%]-90[Mn%]-70[Cr%]-83[Mo%],完成在线控冷后进行空冷。
  8. 如权利要求6所述的制造方法,其特征在于,在步骤(2)中,将管坯加热到1050~1250℃,保温1~3小时后,经穿孔、热轧制得荒管。
  9. 如权利要求8所述的制造方法,其特征在于,在步骤(2)中,控制热轧 的终轧温度在900℃以上,以保证终轧结束时荒管为全奥氏体组织。
  10. 如权利要求7所述的制造方法,其特征在于,在步骤(3)中,完成在线控冷后进行冷床空冷。
PCT/CN2019/087832 2018-06-20 2019-05-21 一种125ksi钢级抗硫油井管及其制造方法 WO2019242448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141593A RU2763722C1 (ru) 2018-06-20 2019-05-21 Серостойкая труба для нефтяной скважины, относящаяся к классу прочности стали 125 кфунт/дюйм2 (862 мпа), и способ ее изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810638365.5 2018-06-20
CN201810638365.5A CN110616366B (zh) 2018-06-20 2018-06-20 一种125ksi钢级抗硫油井管及其制造方法

Publications (1)

Publication Number Publication Date
WO2019242448A1 true WO2019242448A1 (zh) 2019-12-26

Family

ID=68921083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087832 WO2019242448A1 (zh) 2018-06-20 2019-05-21 一种125ksi钢级抗硫油井管及其制造方法

Country Status (3)

Country Link
CN (1) CN110616366B (zh)
RU (1) RU2763722C1 (zh)
WO (1) WO2019242448A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187995A (zh) * 2020-02-17 2020-05-22 包头钢铁(集团)有限责任公司 一种含硼液压支柱用无缝钢管材料
CN115386808A (zh) * 2022-09-28 2022-11-25 延安嘉盛石油机械有限责任公司 一种耐腐蚀油套管及其制备方法与应用
CN115612935A (zh) * 2022-10-28 2023-01-17 泰尔重工股份有限公司 一种热轧卷筒高性能扇形板及其制造方法
CN116815072A (zh) * 2023-06-12 2023-09-29 延安嘉盛石油机械有限责任公司 一种抗硫油套管接箍及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717218B (zh) * 2022-11-18 2024-02-09 钢铁研究总院有限公司 一种极寒环境用耐低温油井管用钢及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033635A1 (de) * 2005-09-21 2007-03-29 Mannesmann Präzisrohr GmbH Verfahren zur herstellung von kaltgefertigten präzisionsstahlrohren
CN102245790A (zh) * 2008-12-09 2011-11-16 法国瓦罗里克.曼尼斯曼油汽公司 屈服强度高和硫化物应力抗裂性能高的低合金钢
CN102373374A (zh) * 2010-08-23 2012-03-14 宝山钢铁股份有限公司 一种高强度抗硫套管及其热处理制造方法
CN102939400A (zh) * 2010-06-04 2013-02-20 瓦卢莱克曼内斯曼油气法国公司 具有高屈服强度和高耐硫化物应力开裂性的低合金钢

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161254A (ja) * 1997-08-13 1999-03-05 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
CN100526479C (zh) * 2004-03-24 2009-08-12 住友金属工业株式会社 耐蚀性优异的低合金钢的制造方法
MX2008016192A (es) * 2007-03-30 2009-03-09 Sumitomo Metal Ind Acero de baja aleacion para accesorios tubulares para campos petroleros y tuberia de acero sin costuras.
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
RU2352647C1 (ru) * 2007-09-06 2009-04-20 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Труба нефтяного сортамента повышенной прочности
CN101724785A (zh) * 2008-10-28 2010-06-09 宝山钢铁股份有限公司 一种超高强度抗硫化氢腐蚀油井管及其生产方法
FR2942808B1 (fr) * 2009-03-03 2011-02-18 Vallourec Mannesmann Oil & Gas Acier faiblement allie a limite d'elasticite elevee et haute resistance a la fissuration sous contrainte par les sulfures.
JP5728836B2 (ja) * 2009-06-24 2015-06-03 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
CN102330027B (zh) * 2011-10-13 2013-07-17 宝山钢铁股份有限公司 一种120ksi钢级的初级抗硫钻杆及其制造方法
EP2868763B1 (en) * 2012-06-28 2018-04-18 JFE Steel Corporation High carbon steel pipe having excellent cold workability, machinability, and quenching properties, and method for manufacturing same
TR201903460T4 (tr) * 2012-09-14 2019-04-22 Ilsenburger Grobblech Gmbh Düşük alaşımlı, yüksek mukavemetli bir çelik için çelik alaşım.
JP5967066B2 (ja) * 2012-12-21 2016-08-10 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
CN104532132A (zh) * 2014-12-11 2015-04-22 宝山钢铁股份有限公司 一种高强度低合金抗硫化氢应力腐蚀用油井管及其制造方法
CN104532149B (zh) * 2014-12-22 2016-11-16 江阴兴澄特种钢铁有限公司 一种高强韧、抗硫化氢应力腐蚀钻具用圆钢及其制造方法
CN105177434B (zh) * 2015-09-25 2017-06-20 天津钢管集团股份有限公司 125ksi钢级耐硫化氢应力腐蚀油井管的制造方法
CN106319367B (zh) * 2016-09-14 2018-07-06 天津钢管集团股份有限公司 SAGD法开采稠油用125ksi高强韧石油套管及其制造方法
CN108004462B (zh) * 2016-10-31 2020-05-22 宝山钢铁股份有限公司 一种抗硫化氢应力腐蚀开裂的油套管及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033635A1 (de) * 2005-09-21 2007-03-29 Mannesmann Präzisrohr GmbH Verfahren zur herstellung von kaltgefertigten präzisionsstahlrohren
CN102245790A (zh) * 2008-12-09 2011-11-16 法国瓦罗里克.曼尼斯曼油汽公司 屈服强度高和硫化物应力抗裂性能高的低合金钢
CN102939400A (zh) * 2010-06-04 2013-02-20 瓦卢莱克曼内斯曼油气法国公司 具有高屈服强度和高耐硫化物应力开裂性的低合金钢
CN102373374A (zh) * 2010-08-23 2012-03-14 宝山钢铁股份有限公司 一种高强度抗硫套管及其热处理制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187995A (zh) * 2020-02-17 2020-05-22 包头钢铁(集团)有限责任公司 一种含硼液压支柱用无缝钢管材料
CN111187995B (zh) * 2020-02-17 2021-07-20 包头钢铁(集团)有限责任公司 一种含硼液压支柱用无缝钢管材料
CN115386808A (zh) * 2022-09-28 2022-11-25 延安嘉盛石油机械有限责任公司 一种耐腐蚀油套管及其制备方法与应用
CN115612935A (zh) * 2022-10-28 2023-01-17 泰尔重工股份有限公司 一种热轧卷筒高性能扇形板及其制造方法
CN115612935B (zh) * 2022-10-28 2023-12-19 泰尔重工股份有限公司 一种热轧卷筒高性能扇形板及其制造方法
CN116815072A (zh) * 2023-06-12 2023-09-29 延安嘉盛石油机械有限责任公司 一种抗硫油套管接箍及其制备方法
CN116815072B (zh) * 2023-06-12 2024-02-27 延安嘉盛石油机械有限责任公司 一种抗硫油套管接箍及其制备方法

Also Published As

Publication number Publication date
CN110616366B (zh) 2021-07-16
RU2763722C1 (ru) 2021-12-30
CN110616366A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2019242448A1 (zh) 一种125ksi钢级抗硫油井管及其制造方法
US11203794B2 (en) Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
JP2016510361A (ja) 780MPa級冷間圧延二相帯鋼及びその製造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
CN105543704A (zh) 一种高强度抗震耐火耐蚀钢板及制造方法
CN103866203B (zh) 一种大口径高强度桥梁用无缝钢管及其tmcp生产方法
WO2021218932A1 (zh) 一种高强度耐高温腐蚀马氏体不锈钢及其制造方法
CN107988548B (zh) 一种适应低温祼露环境的x80管线钢板及其生产方法
CN109136756B (zh) NbC纳米颗粒强化X90塑性管用钢板及其制造方法
CN109023068B (zh) Vc纳米颗粒强化x90塑性管用钢板及其制造方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
CN108624810B (zh) 一种低成本高强度高抗硫油井管及其制造方法
WO2018041030A1 (zh) 一种抽油杆钢及其制造方法
WO2019179354A1 (zh) 一种耐低温高强高韧油套管及其制造方法
CN107779744B (zh) 一种贝氏体型x100级无缝管线管及其制造方法
CN108085593A (zh) 适用于低温环境油气输送用弯管和管件用钢及制造方法
CN111101077B (zh) 一种低成本高耐磨的张减径辊及其热处理工艺
JPH06136440A (ja) 耐サワー性の優れた高強度鋼板の製造法
WO2017050230A1 (zh) 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
CN114277310A (zh) 一种抗h2s腐蚀的油套管及其制造方法
CN108754322A (zh) 一种高强度电阻焊套管及其制造方法
WO2022242742A1 (zh) 一种抗二氧化碳腐蚀的无缝钢管及其制造方法
WO2023231981A1 (zh) 一种高强度石油套管及其制造方法
WO2022228524A1 (zh) 一种稠油开发用高强度耐热套管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823417

Country of ref document: EP

Kind code of ref document: A1