WO2019242311A1 - 压缩机及空调系统 - Google Patents

压缩机及空调系统 Download PDF

Info

Publication number
WO2019242311A1
WO2019242311A1 PCT/CN2019/073948 CN2019073948W WO2019242311A1 WO 2019242311 A1 WO2019242311 A1 WO 2019242311A1 CN 2019073948 W CN2019073948 W CN 2019073948W WO 2019242311 A1 WO2019242311 A1 WO 2019242311A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
control valve
refrigerant
pressure
heat exchanger
Prior art date
Application number
PCT/CN2019/073948
Other languages
English (en)
French (fr)
Inventor
刘星如
郑波
梁祥飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/049,935 priority Critical patent/US11713888B2/en
Priority to EP19823011.2A priority patent/EP3767106B1/en
Publication of WO2019242311A1 publication Critical patent/WO2019242311A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/029Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by the layout or mutual arrangement of components, e.g. of compressors or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present application relates to the field of air conditioning technology, and in particular, to a compressor and an air conditioning system.
  • the supplemental gas enthalpy technology has become a key technology to solve the problem of performance degradation of rotor compressors in cold regions.
  • the supplementary gas technology commonly used in rotor compressors is mainly two-stage enthalpy increase and two-cylinder enthalpy increase.
  • the research shows that the double-cylinder enthalpy increase technology is equivalent to the two-stage compression under the condition of large pressure ratio, while the medium-small pressure ratio is better than the two-stage effect.
  • the patent number 201710632120.7 has designed the volume ratio of a conventional two-cylinder enthalpy compressor and achieved good results, but the main problem is that the suction of one cylinder of the two-cylinder enthalpy compressor is all derived from Make-up gas, while the volume of make-up gas is relatively small, and the pressure belongs to medium pressure refrigerant, so the volume of the cylinder is very small, which is generally about one tenth of the displacement of the other cylinder.
  • the volume ratio of two cylinders of 10: 1 will cause a series of problems.
  • the dual-cylinder enthalpy-increasing compressor also has the problem of switching between different cylinders under different operating modes. This is due to the poor performance of the gas supplement under the condition of small pressure ratio. At this time, the gas supplement valve will be cut off, and the small cylinder will need to be switched from The evaporator outlet draws air.
  • the patent No. 201510760115.5 proposes a device similar to a three-way valve externally, which can switch the two-cylinder compressor to single-stage operation and two-cylinder enthalpy-increasing operation.
  • this method requires the addition of a switching device outside the compressor, which increases the complexity of the system.
  • the double-cylinder compressor has a better air-supply effect than double-stage compressors.
  • Two-stage but because the double-cylinder compressor is a parallel structure, the volumetric efficiency is poor at large pressure ratios, so its overall performance is not as good as double-stages at large pressure ratios.
  • the main purpose of this application is to provide a compressor and an air conditioning system to solve the problem of small volume of small and large cylinders in the prior art double-cylinder enthalpy-increasing compressor.
  • a compressor in order to achieve the above object, according to an aspect of the present application, a compressor is provided.
  • the compressor includes a first cylinder, and the first cylinder is provided with a first suction port and a first exhaust port.
  • the first exhaust port is used for connection with a predetermined heat exchanger;
  • the second cylinder is provided with a second suction port and a second exhaust port, and the second exhaust port is used for connection with the A predetermined heat exchanger is connected;
  • an advance exhaust device is provided on a cylinder block of the first cylinder or on an upper end surface of the first cylinder or on a lower end surface of the first cylinder, so
  • the advance exhaust device includes an advance exhaust port and a first control valve that controls opening and closing of the advance exhaust port, and the advance exhaust port is connected to the second intake port.
  • an air conditioning system including a compressor, and the compressor is the above-mentioned compressor.
  • the air conditioning system further includes a gas-liquid separator, a first heat exchanger, a second heat exchanger, a first throttling element, and a second throttling element, wherein an inlet of the first heat exchanger Is connected to both the first exhaust port and the second exhaust port, the outlet of the first heat exchanger is connected to the inlet of the first throttle element, and the outlet of the first throttle element is connected to The inlet of the gas-liquid separator is connected, the bottom outlet of the gas-liquid separator is connected to the inlet of the second throttle element, and the outlet of the second throttle element is connected to the inlet of the second heat exchanger Connection, the outlet of the second heat exchanger is connected to the first suction port, the first heat exchanger forms the predetermined heat exchanger, and the top outlet of the gas-liquid separator is connected to the second The suction port is connected.
  • the air-conditioning system includes a two-cylinder enthalpy increasing mode.
  • refrigerant is discharged from the first cylinder and the second cylinder of the compressor. It becomes a high-pressure subcooled liquid through the first heat exchanger, and enters the gas-liquid separator after passing through the first throttling element.
  • the refrigerant is divided into two channels, one refrigerant
  • the liquid enters the second throttling element through an outlet at the bottom of the gas-liquid separator to be throttled into a low-pressure two-phase refrigerant and enters the second heat exchanger, and the low-pressure two-phase refrigerant is evaporated in the second heat exchanger
  • the gaseous refrigerant is sucked by the first cylinder; the other refrigerant gas in the gas-liquid separator passes through the top outlet of the gas-liquid separator and the refrigerant discharged from the advanced exhaust device After being mixed, it is sucked by the second cylinder.
  • an air conditioning system including a compressor, and the compressor is the above-mentioned compressor.
  • the air conditioning system further includes a gas-liquid separator, a first heat exchanger, a second heat exchanger, a first throttling element, and a second throttling element, wherein an inlet of the first heat exchanger Is connected to both the first exhaust port and the second exhaust port, the outlet of the second heat exchanger is connected to the inlet of the first throttle element, and the outlet of the first throttle element is connected to The inlet of the gas-liquid separator is connected, the bottom outlet of the gas-liquid separator is connected to the inlet of the second throttle element, and the outlet of the second throttle element is connected to the inlet of the second heat exchanger Connection, the outlet of the second heat exchanger is connected to the first suction port, the first heat exchanger forms the predetermined heat exchanger, and the top outlet of the gas-liquid separator is connected to the second The suction port is connected.
  • the air conditioning system includes a two-stage enthalpy-increasing operation mode.
  • the second control valve is opened and the third control valve is closed.
  • the back pressure of the valve plate of the first exhaust valve of the early exhaust device is always greater than the pressure of the compression chamber corresponding to the position of the early exhaust port.
  • the first control valve of the early exhaust device is always closed;
  • the refrigerant discharged from the first exhaust port and the refrigerant discharged from the top outlet of the gas-liquid separator are mixed and sucked by the second suction port,
  • the high-temperature and high-pressure refrigerant coming out of the second exhaust port of the compressor is condensed by the first heat exchanger to become a high-pressure subcooled liquid refrigerant, and then throttled into two by the first throttle element.
  • the phase refrigerant enters the gas-liquid separator.
  • the refrigerant In the gas-liquid separator, the refrigerant is divided into two paths, and the bottom liquid flows out through the bottom outlet of the gas-liquid separator and enters the second throttling element.
  • Second heat exchanger, refrigerant The gaseous refrigerant in the evaporator is sucked by the first cylinder; the gaseous refrigerant in the gas-liquid separator flows out through the top outlet of the gas-liquid separator and is mixed with the refrigerant discharged from the first cylinder. It is sucked in by the second suction port to realize double-stage enthalpy compression of the refrigerant.
  • the air-conditioning system further includes a two-cylinder enthalpy-increasing operation mode.
  • the second control valve is closed and the third control valve is opened.
  • the first control valve of the advanced exhaust device When the pressure in the compression chamber of the first cylinder is greater than the back pressure of the advanced exhaust device, the first control valve of the advanced exhaust device is opened until the first cylinder rotor of the first cylinder passes through the advanced exhaust device, so The first control valve is closed; in the two-cylinder enthalpy-increasing operation mode: after the refrigerant is discharged from the compressor, it is changed into a high-pressure subcooled liquid by the first heat exchanger, and after passing through the first throttle element, Enter the gas-liquid separator; in the gas-liquid separator, the refrigerant is divided into two paths, of which a refrigerant liquid enters the second throttling element through a bottom outlet of the gas-liquid separator to be throttled to a low pressure Two-phase refrigerant enters the second heat exchanger, and the low-pressure two-phase refrigerant evaporates in the second heat exchanger to become a gaseous refrigerant and is sucked in by the first su
  • the present application provides a new type of compressor and air-conditioning system by using advanced exhaust technology.
  • the compressor of the present application can greatly increase the first and second cylinders.
  • the volume makes the application of the dual-cylinder enthalpy technology easier for small-capacity compressors; by increasing the volume of the first and second cylinders, the efficiency of the second cylinder, that is, the small cylinder, is effectively improved, thereby achieving performance improvement;
  • This application can realize the free switching of enthalpy-increasing operation and enthalpy-free operation without adding other components; under the condition of small pressure ratio, a part of the capacity of the dual-cylinder compressor can be unloaded.
  • the compressor of the present application can switch between two-stage compression and two-cylinder independent compression, so that the dual advantages of two-stage low-temperature performance and two-cylinder high-temperature performance can be taken into account, so that the compressor can be operated in a wide range of variable conditions.
  • the operating performance of the compressor can be effectively improved; secondly, the proposed compressor can greatly increase the small cylinder volume when the two-cylinder is running, thereby making it difficult to process the two-cylinder compressor when it is applied to a small-capacity compressor At the same time, due to the increase in the volume of the small cylinder, the efficiency of the small cylinder can be effectively improved; again, due to the advance exhaust port, the compressor can be freely switched between enthalpy-increasing operation and non-enthalpy-increasing operation.
  • the enthalpy-increasing operating conditions are basically small pressure ratio operating conditions, so by discharging the exhaust port to the second cylinder in advance, it is possible to unload part of the capacity of the two-cylinder compressor.
  • FIG. 1 schematically illustrates a connection relationship diagram of a first embodiment of an air conditioning system of the present application
  • FIG. 2 schematically illustrates a connection relationship diagram of the compressor in the first embodiment of the present application after the gas-liquid separator is removed;
  • FIG. 3 schematically illustrates a refrigerant trend diagram when the compressor in FIG. 1 is in a two-cylinder enthalpy-increasing operation mode
  • FIG. 4 schematically illustrates a refrigerant trend diagram when the compressor in FIG. 1 is in an unloading operation mode
  • FIG. 5 schematically illustrates a connection relationship diagram of a second embodiment of an air conditioning system of the present application
  • FIG. 6 schematically illustrates a connection relationship diagram of a compressor according to a second embodiment of the invention after the gas-liquid separator is removed;
  • FIG. 7 schematically illustrates a refrigerant trend diagram when the air-conditioning system in FIG. 5 is in a two-stage enthalpy-increasing operation mode
  • FIG. 8 schematically illustrates a refrigerant trend diagram when the air conditioning system in FIG. 5 is in a two-cylinder enthalpy-increasing operation mode
  • FIG. 9 schematically illustrates a refrigerant trend diagram when the air conditioning system in FIG. 5 is in an unloading operation mode
  • FIG. 10 is a plan view schematically showing the start position of the rotation angle of the first cylinder
  • FIG. 11 schematically illustrates a top view of a first cylinder in a suction closed position
  • FIG. 12 schematically illustrates a top view of the first cylinder when the advanced exhaust device in the present application is in an open position
  • FIG. 13 schematically illustrates a top view of the first cylinder when the advanced exhaust device in the present application is in a closed position
  • FIG. 14 schematically illustrates a top view of a first cylinder when an advanced exhaust device in the present application is in an exhaust inspiration position
  • FIG. 15 schematically illustrates a top view of the first cylinder when the advanced exhaust device in the present application is at an exhaust end position.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the drawing is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or structures” or “below” Other devices or constructs. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.
  • an air conditioning system in this embodiment includes a compressor 1, a first heat exchanger 2, The second heat exchanger 3, the first throttle element 4, the second throttle element 6, and the gas-liquid separator 5, wherein the inlet of the first heat exchanger 2 and the first exhaust port 112 and the second exhaust port 122 are all connected, the outlet of the first heat exchanger 2 is connected to the inlet of the first throttle element 4, the outlet of the first throttle element 4 is connected to the inlet of the gas-liquid separator 5 of the compressor 1, and the gas-liquid separator 5
  • the outlet at the bottom is connected to the inlet of the second throttle element 6, the outlet of the second throttle element 6 is connected to the inlet of the second heat exchanger 3, and the outlet of the second heat exchanger 3 is connected to the first suction port 111,
  • the top outlet of the gas-liquid separator 5 is connected to the second suction port 121.
  • the compressor 1 in this embodiment includes a first cylinder 11, a second cylinder
  • the first cylinder 11 is provided with a first suction port 111 and a first exhaust port 112, and the first exhaust port 112 is used to connect with the first heat exchanger 2;
  • the second cylinder 12 is provided with a first Two intake ports 121 and a second exhaust port 122.
  • the second exhaust port 122 is used to connect with the first heat exchanger 2.
  • the advance exhaust device 116 is provided on the cylinder block of the first cylinder 11 or the first cylinder 11 On the upper end face (ie, the upper flange or the middle partition plate) or on the lower end face of the first cylinder 11 (on the lower flange), the advance exhaust device 116 includes an advance exhaust port (not shown in the figure) and a control A first control valve (not shown) that opens and closes the early exhaust port, and the early exhaust port is connected to the second intake port 121.
  • the compressor 1 in this embodiment includes two operating modes, which are a two-cylinder enthalpy increasing mode and an unloading operating mode:
  • Two-cylinder enthalpy-increasing mode As shown in Figures 2 and 3, the refrigerant is discharged from the two first cylinders 11 and the second cylinders 12 of the compressor 1 and then becomes a high-pressure subcooled liquid through the first heat exchanger 2 and passes through the first After the throttle element 4 enters the gas-liquid separator 5; the refrigerant in the gas-liquid separator 5 is divided into two paths, in which the bottom refrigerant liquid enters the second throttle element 6 through the bottom outlet of the gas-liquid separator 5 and becomes throttled into The low-pressure two-phase refrigerant enters the inlet of the second heat exchanger 3, and the low-pressure two-phase refrigerant evaporates in the second heat exchanger 3 to become a gaseous refrigerant, which is sucked in by the first suction port 111 of the first cylinder 11; gas-liquid separation The other refrigerant gas in the compressor 5 flows out through the top outlet of the gas-liquid separator 5 and is mixed with the refriger
  • the back pressure of the exhaust device 116 is intermediate pressure, so The first control valve at the device 116 is closed; when the first cylinder rotor 114 is turned from the suction closed position to a position where the pressure in the compression chamber reaches the intermediate pressure, because the pressure in the compression chamber is less than the intermediate pressure, the first The control valve is closed, as shown in FIG. 11, and when the first cylinder rotor 114 is turned to a position corresponding to the pressure in the compression chamber, the first control valve is opened, and the exhaust process starts early, as shown in FIG.
  • Unloading operation mode As shown in Figure 4, when the system is operating at a low pressure ratio and the amount of gas in the gas-liquid separator 5 is small, the system is unloading and running.
  • the specific implementation plan is to close the top of the gas-liquid separator 5
  • the gas supplementary valve (not shown) on the gas branch circuit.
  • the high-temperature and high-pressure gaseous refrigerant is changed into a high-pressure subcooled liquid refrigerant by the first heat exchanger 2, and then enters the gas-liquid separator 5 through the first throttle element 4.
  • the second heat exchanger 3 evaporates, it is sucked in by the first suction port 111 of the compressor 1; since the supplementary valve is closed at this time, the suction of the second cylinder 12 of the compressor 1 will all come from the exhaust of the advanced exhaust device 116 At this time, the back pressure of the first cylinder 11 of the compressor 1 will be determined by the position of the exhaust device 116 in advance; when the back pressure of the compression chamber of the first cylinder 11 is greater than the suction pressure of the second cylinder 12, the first control valve opens, Until the first cylinder rotor 114 turns past the exhaust port in advance, the first control valve is closed; essentially, In enthalpy mode, unloading operation mode only cuts off the supplemental gas branch, and because the refrigerant in the supplemental gas branch is one of the intake sources of the second cylinder 12, after the disconnection, the intake pressure of the second cylinder 12 will be reduced, and the first A control valve will be opened in advance, and the decrease in the suction pressure and the angle of the first control valve to open
  • the present application provides a new type of compressor and air conditioning system by using advanced exhaust technology.
  • the compressor of the present application can greatly increase the first cylinder 11 and the second cylinder.
  • the volume of 12 makes it easier to apply the double-cylinder enthalpy technology to the small-capacity compressor 1.
  • the performance can be improved; in addition, the present application can realize the free switching between enthalpy-increasing operation and non-enthalpy-increasing operation without adding other components; under small pressure ratio conditions, parts of the dual-cylinder compressor can be unloaded Volume.
  • the volume ratio of the second cylinder 12 and the first cylinder 11 in this embodiment is in the range of 0.1 to 0.5.
  • the second cylinder 12 of this embodiment can be made It is bigger and easier to realize.
  • both the first throttle element 4 and the second throttle element 6 are throttle valves.
  • the first throttle element 4 and the second throttle element 6 may also be used.
  • the capillary is provided within the scope of protection of the present application as long as it is other deformation modes under the concept of the present application.
  • an air conditioning system is provided.
  • the structure of the air conditioning system in this embodiment is basically the same as that of the air conditioning system in the first embodiment.
  • the difference is that
  • the compressor 1 in this embodiment further includes a connection channel 113 and a switching control valve group.
  • the first end of the connection channel 113 is in communication with the first exhaust port 112, and the second end of the connection channel 113 is in communication with the second suction port 121.
  • the switching control valve group is arranged between the first cylinder 11 and the second cylinder 12 to make the compressor 1 work in a two-stage enthalpy increasing mode or a two-cylinder enthalpy increasing mode or an unloading operating mode.
  • the switching control valve group includes a second control valve 13 and a third control valve 14, and the second control valve 13 is provided on the connection channel 113 to control the on / off of the connection channel 113; the third control valve 14 is provided on the first
  • the exhaust pipe 112 is connected to the refrigerant pipe of the first heat exchanger 2 to control the on-off of the refrigerant pipe.
  • the compressor 1 In the closed state, the compressor 1 is in a two-stage enthalpy-increasing operation mode; when the second control valve 13 is closed and the third control valve 14 is opened, when the pressure in the compression chamber of the first cylinder 11 is greater than the intermediate supplemental pressure, The control valve is opened due to the pressure difference, and part of the refrigerant in the first cylinder 11 is discharged and sucked in by the second suction port 121 of the second cylinder 12.
  • the compressor 1 is in a two-cylinder enthalpy-increasing operation mode;
  • the third control valve is opened, and the supplementary air valve on the supplementary air branch is closed, when the pressure in the compression chamber of the first cylinder 11 reaches the back pressure of the advance exhaust port, the first The control valve opens.
  • compressor 1 is unloaded. Line mode.
  • the second control valve 13 and the third control valve 14 in this embodiment are both stop valves to prevent the refrigerant from flowing backward.
  • the check valve can also be provided as another on-off valve
  • the air cylinder 12 is any combination of a rotor type, a piston type, and a scroll type.
  • the early exhaust port and the second suction port 121 are connected through an internal channel of the compressor 1 or connected through a pipe.
  • the exhaust port and the second suction port 121 can be set according to an actual structure, and the structure is simple and easy to implement.
  • the volume ratio of the second cylinder 12 and the first cylinder 11 is in the range of 0.5 to 0.7.
  • the second cylinder 12 in this embodiment can also be made larger, which is easier to process and implement.
  • the operation mode of the air-conditioning system in this embodiment includes three types, namely a two-stage enthalpy-increasing operation mode, a two-cylinder enthalpy-increasing operation mode, and an unloading operation mode.
  • the operation principle is described below with reference to FIGS. 6 to 15:
  • FIG. 7 shows the system schematic of the two-stage enthalpy-increasing operation mode.
  • the second control valve 13 is opened and the third control valve 14 is closed; because the back pressure of the valve plate of the first control valve of the advance exhaust device 116 is always greater than the compression chamber corresponding to the advance exhaust port position Therefore, the first control valve of the early exhaust device 116 is always closed; in this mode, the refrigerant discharged from the first exhaust port 112 and the refrigerant flowing out of the top outlet of the gas-liquid separator 5 are mixed.
  • the high-temperature and high-pressure refrigerant coming out of the first exhaust port 112 of the compressor 1 is condensed by the first heat exchanger 2 to become a high-pressure subcooled liquid refrigerant, and then passes through the first
  • the throttle element 4 throttles into a two-phase refrigerant and enters the gas-liquid separator 5.
  • the refrigerant is divided into two paths, and the bottom liquid flows out through the bottom outlet of the gas-liquid separator 5 and flows through the second throttling.
  • Element 6 enters the second heat exchanger 3, and the refrigerant evaporates in the second heat exchanger 3 to become a gaseous refrigerant, which is sucked into the first suction port 111 of the compressor 1; the gaseous refrigerant in the gas-liquid separator 5 passes through The top outlet of the gas-liquid separator 5 flows out and is discharged from the first cylinder 11 of the compressor 1 Mixed refrigerant compressor of the second intake port 121 after inhalation to realize the two-stage compression refrigerant enthalpy.
  • Figure 8 shows the principle of the air-conditioning system operating in the two-cylinder enthalpy-increasing mode.
  • the second control valve 13 of the compressor 1 is closed and the third control valve 14 is opened; because the back pressure of the advanced exhaust device 116 is an intermediate pressure, and the exhaust pressure of the first cylinder 11 is greater than the advanced exhaust device 116 back pressure, so when the pressure in the compression chamber of the first cylinder 11 of the compressor 1 is greater than the back pressure of the advance exhaust device 116, the first control valve of the advance exhaust device 116 opens until the first cylinder rotor of the compressor 1 114 turns the advanced exhaust device 116 before the first control valve is closed.
  • the refrigerant After the refrigerant is discharged from the two cylinders of the compressor 1, it is converted into a high-pressure subcooled liquid by the first heat exchanger 2, The first throttle element 4 enters the gas-liquid separator 5; the refrigerant in the gas-liquid separator 5 is divided into two paths, in which the bottom refrigerant liquid enters the second throttle element 6 through the bottom outlet of the gas-liquid separator 5.
  • the low-pressure two-phase refrigerant flows into the inlet of the second heat exchanger 3, and the low-pressure two-phase refrigerant evaporates in the second heat exchanger 3 to become a gaseous refrigerant, which is sucked into the first suction port 111; in the gas-liquid separator 5
  • the other refrigerant gas flows out through the top outlet of the gas-liquid separator 5, and
  • the refrigerant discharged from the advance exhaust device 116 is mixed and sucked by the second suction port 121; in this case, the compression process of the first cylinder 11 of the compressor 1 is: from the first cylinder rotor 114 to the first The apex position of the cylinder vane 115 starts. As shown in FIG.
  • the compression process has not started.
  • the back pressure of the exhaust device 116 is advanced to an intermediate pressure.
  • the first control valve of the exhaust device 116 is closed; when the first cylinder rotor 114 is turned from the suction closed position to a position where the pressure in the compression chamber reaches the intermediate pressure, the pressure in the compression chamber is less than the intermediate pressure, so the first The control valve is closed, as shown in FIG. 11, and when the first cylinder rotor 114 is turned to a position corresponding to the pressure in the compression chamber, the first control valve is opened, and the exhaust process starts early, as shown in FIG.
  • Unloading operation mode As shown in Figure 9, when the system is operating at a low pressure ratio and the amount of gas in the gas-liquid separator 5 is small, the system is in the unloading operation mode.
  • the specific implementation plan is to turn off the gas-liquid separator 5
  • the second control valve 13 of the compressor 1 is closed, the third control valve 14 of the compressor 1 is opened, and the high-temperature and high-pressure gaseous refrigerant is changed into a high-pressure subcooled liquid refrigerant by the first heat exchanger 2
  • the first throttling element 4 enters the gas-liquid separator 5 and becomes a medium-pressure refrigerant.
  • the back pressure of the first cylinder 11 of the compressor 1 will be determined by the position of the advanced exhaust device 116; when the back pressure of the compression chamber of the first cylinder 11 is greater than that of the second cylinder 12
  • the first control valve opens until the first cylinder rotor 114 turns past the exhaust port in advance
  • the first control valve is closed; in essence, compared to the enthalpy-increasing mode, the unloading operation mode only cuts off the supplemental gas branch, and because the refrigerant of the supplemental gas branch is one of the sources of intake of the second cylinder 12, after the disconnection, This will cause the suction pressure of the second cylinder 12 to decrease, and at the same time, the first control valve will open in advance.
  • the reduction in the suction pressure and the opening angle of the first control valve are coupled to each other.
  • the volume ratio of the cylinder 12 is determined.
  • the compressor of this embodiment better solves the problem of poor performance at low and medium pressure ratios of the two-stage compressor, and can also better solve the poor volumetric efficiency and exhaust temperature of the two-cylinder enthalpy compressor at low temperature.
  • the dual-cylinder enthalpy increasing mode and single-stage system can be switched freely; in addition, the unloading problem of the two-cylinder enthalpy increasing compressor at a small pressure ratio is also solved to a certain extent. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机(1),包括:第一气缸(11),第一气缸(11)上设置有第一吸气口(111)和第一排气口(112),第一排气口(112)用于与预定换热器连接;第二气缸(12),第二气缸(12)上设置有第二吸气口(121)和第二排气口(122),第二排气口(122)用于与预定换热器连接;提前排气装置(116),提前排气装置(116)设置在第一气缸(11)的缸体上或第一气缸(11)的上端面上或第一气缸(11)的下端面上,提前排气装置(116)包括提前排气口和控制提前排气口开闭的第一控制阀,提前排气口与第二吸气口(121)连接。以及一种包括压缩机(1)的空调系统。这种压缩机可大幅度提高双缸运行时的小缸容积,进而使得双缸压缩机应用于小容量压缩机时的加工难度大幅度降低,同时由于小缸容积的增大,可有效改善小缸的效率。

Description

压缩机及空调系统
相关申请
本申请要求2018年06月22日申请的,申请号为201810654923.7,名称为“压缩机及空调系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调技术领域,特别是涉及一种压缩机及空调系统。
背景技术
补气增焓技术已成为解决转子压缩机应用在寒冷地区性能衰减问题的关键技术。目前,在转子压缩机上普遍应用的补气技术主要为双级增焓以及双缸增焓。研究表明:双缸增焓技术在大压比工况下,补气效果与双级压缩相当,而在中小压比工况下,补气效果优于双级。
专利号为201710632120.7的专利对常规双缸增焓压缩机的容积比进行了设计,并取得了较好的效果,但其主要问题在于:双缸增焓压缩机的一个缸的吸气全部来源于补气,而补气的气体量相对较少,而压力又属于中压制冷剂,因此导致该缸体容积很小,一般为另外一个缸排量的十分之一左右。
显然,两缸为10:1的容积比将导致系列问题,第一,小缸效率差;第二,小排量压缩机较难实现,这是由于压缩机排量小时,要求小缸非常小,加工难度大。
此外,双缸增焓压缩机还存在不同运行模式下不同缸体的切换问题,这是由于小压比工况下,补气效果不佳,这时补气阀将切断,小缸将需要从蒸发器出口吸气。
专利号为201510760115.5的专利提出了一种在外部接一个类似三通阀的装置,可将双缸压缩机切换成单级运行和双缸增焓运行两种方式。然而,该方式需要在压缩机外部增加切换装置,增加了系统的复杂度,双缸压缩机在中小压比下,补气效果优于双级,而在不补气时性能较大幅度优于双级,但双缸压缩机由于属于并联结构,在大压比下,容积效率较差,因此其整体性能在大压比下不如双级。
发明内容
本申请的主要目的在于提供一种压缩机及空调系统,以解决现有技术的双缸增焓压缩 机中大小气缸的容积小的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种压缩机,该压缩机包括:第一气缸,所述第一气缸上设置有第一吸气口和第一排气口,所述第一排气口用于与预定换热器连接;第二气缸,所述第二气缸上设置有第二吸气口和第二排气口,所述第二排气口用于与所述预定换热器连接;提前排气装置,所述提前排气装置设置在所述第一气缸的缸体上或所述第一气缸的上端面上或所述第一气缸的下端面上,所述提前排气装置包括提前排气口和控制所述提前排气口开闭的第一控制阀,所述提前排气口与所述第二吸气口连接。
根据本申请的另一方面,提供了一种空调系统,包括压缩机,所述压缩机为上述的压缩机。
可选地,所述空调系统还包括气液分离器,第一换热器、第二换热器、第一节流元件、第二节流元件,其中,所述第一换热器的入口与所述第一排气口和所述第二排气口均连接,所述第一换热器的出口与所述第一节流元件的入口连接,所述第一节流元件的出口与所述气液分离器的入口连接,所述气液分离器的底部出口与所述第二节流元件的入口连接,所述第二节流元件的出口与所述第二换热器的入口连接,所述第二换热器的出口与所述第一吸气口连接,所述第一换热器形成所述预定换热器,所述气液分离器的顶部出口与所述第二吸气口连接。
可选地,所述空调系统包括包含双缸增焓模式,当所述空调系统处于双缸增焓模式时,制冷剂从所述压缩机的所述第一气缸和所述第二气缸排出后经所述第一换热器变为高压过冷液体,经所述第一节流元件后进入所述气液分离器;在所述气液分离器中制冷剂分为两路,一路制冷剂液体经所述气液分离器底部出口进入所述第二节流元件节流成为低压两相制冷剂进入所述第二换热器,低压两相制冷剂在所述第二换热器中蒸发变为气态制冷剂被所述第一气缸吸入;所述气液分离器中的另一路制冷剂气体经所述气液分离器的顶部出口,与来自所述提前排气装置所排出的制冷剂混合后被所述第二气缸吸入。
根据本发明的再一方面,提供了一种空调系统,包括压缩机,所述压缩机为上述的压缩机。
可选地,所述空调系统还包括气液分离器,第一换热器、第二换热器、第一节流元件、第二节流元件,其中,所述第一换热器的入口与所述第一排气口和所述第二排气口均连接,所述第二换热器的出口与所述第一节流元件的入口连接,所述第一节流元件的出口与所述气液分离器的入口连接,所述气液分离器的底部出口与所述第二节流元件的入口连接,所述第二节流元件的出口与所述第二换热器的入口连接,所述第二换热器的出口与所述第一 吸气口连接,所述第一换热器形成所述预定换热器,所述气液分离器的顶部出口与所述第二吸气口连接。
可选地,所述空调系统包括包含双级增焓运行模式,当所述空调系统处于双级增焓运行模式时,所述第二控制阀打开,所述第三控制阀关闭,由于所述提前排气装置的所述第一控制阀的阀片的背压始终大于所述提前排气口位置所对应压缩腔的压力,因此,所述提前排气装置的第一控制阀始终关闭;在所述双级增焓运行模式下,制冷剂从所述第一排气口排出的制冷剂与所述气液分离器的顶部出口流出的制冷剂混合后被所述第二吸气口吸入,从所述压缩机的所述第二排气口出来的高温高压制冷剂经所述第一换热器被冷凝,成为高压过冷液态制冷剂后经所述第一节流元件节流成两相制冷剂进入所述气液分离器,在所述气液分离器中,制冷剂分为两路,底部液体经所述气液分离器底部出口流出经所述第二节流元件进入所述第二换热器,制冷剂在所述第二换热器中蒸发变为气态制冷剂被所述第一气缸吸入;所述气液分离器中的气态制冷剂经所述气液分离器的顶部出口流出与所述第一气缸排出的制冷剂混合后被所述第二吸气口吸入,实现对冷媒的双级增焓压缩。
可选地,所述空调系统还包括双缸增焓运行模式,当所述空调系统处于双缸增焓运行模式时,所述第二控制阀关闭,所述第三控制阀打开,当所述第一气缸压缩腔内压力大于提前排气装置背压时,所述提前排气装置的第一控制阀打开,直到所述第一气缸的第一气缸转子转过所述提前排气装置,所述第一控制阀才关闭;在双缸增焓运行模式中:制冷剂从所述压缩机排出后经所述第一换热器变为高压过冷液体,经所述第一节流元件后进入所述气液分离器;在所述气液分离器中制冷剂分为两路,其中一路制冷剂液体经所述气液分离器的底部出口进入所述第二节流元件节流成为低压两相制冷剂进入所述第二换热器,低压两相制冷剂在所述第二换热器中蒸发变为气态制冷剂被所述第一吸气口吸入;所述气液分离器中的另一路制冷剂气体经所述气液分离器的顶部出口流出,与来自所述提前排气装置所排出的制冷剂混合后被所述第二吸气口吸入。
可见,本申请通过利用提前排气技术,提供了一种新型的压缩机及空调系统,相比传统双缸增焓压缩机,本申请的压缩机可大幅度增加第一气缸和第二气缸的容积,使得双缸增焓技术在小容量压缩机上应用变得更加简易;通过增加第一气缸和第二气缸的容积,有效改善第二气缸,即小气缸的效率,进而实现性能的提升;此外,本申请能够在不增加其余部件的前提下,可实现增焓运行与不增焓运行的自由切换;在小压比工况下,可卸载双缸压缩机的部分容积。
本申请的压缩机可实现双级压缩和双缸独立压缩之间的切换,从而可兼顾双级低温性能优双缸中高温性能优的双重优点,使得压缩机可在大范围变工况均运行在高效状态,因 而可有效改善压缩机的运行性能;其次,提出的压缩机可大幅度提高双缸运行时的小缸容积,进而使得双缸压缩机应用于小容量压缩机时的加工难度大幅度降低,同时由于小缸容积的增大,可有效改善小缸的效率;再次,由于设置了提前排气口,可实现压缩机增焓运行与不增焓运行的自由切换,同时,由于不增焓的工况基本都是小压比工况,因此通过提前排气口向第二气缸的泄出,可卸载双缸压缩机的部分容积。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示意性示出了本申请的空调系统的第一实施例的连接关系图;
图2示意性示出了本申请的第一实施例的压缩机去掉气液分离器后的连接关系图;
图3示意性示出了图1中压缩机处于双缸增焓运行模式时的冷媒走向图;
图4示意性示出了图1中压缩机处于卸载运行模式时的冷媒走向图;
图5示意性示出了本申请的空调系统的第二实施例的连接关系图;
图6示意性示出了发明的第二实施例的压缩机去掉气液分离器后的连接关系图;
图7示意性示出了图5中的空调系统处于双级增焓运行模式时的冷媒走向图;
图8示意性示出了图5中的空调系统处于双缸增焓运行模式时的冷媒走向图;
图9示意性示出了图5中的空调系统处于卸载运行模式时的冷媒走向图;
图10示意性示出了第一气缸转角开始位置时的俯视图
图11示意性示出了第一气缸吸气闭合位置时的俯视图;
图12示意性示出了本申请中的提前排气装置处于开启位置时第一气缸的俯视图;
图13示意性示出了本申请中的提前排气装置处于闭合位置时第一气缸的俯视图;
图14示意性示出了本申请中的提前排气装置处于排气启示位置时第一气缸的俯视图;
图15示意性示出了本申请中的提前排气装置处于排气结束位置时第一气缸的俯视图。
附图标记:
1压缩机;2第一换热器;3第二换热器;4第一节流元件;5气液分离器;6第二节流元件;11第一气缸;111第一吸气口;112第一排气口;113连接通道;114第一气缸转子;115第一气缸滑片;116提前排气装置;12第二气缸;121第二吸气口;122第二排气口;13第二控制阀;14第三控制阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
参见图1至图4,图10至图15所示,根据本申请的第一实施例,提供了一种空调系统,本实施例中的空调系统包括压缩机1、第一换热器2、第二换热器3、第一节流元件4、第二节流元件6、气液分离器5,其中,第一换热器2的入口与第一排气口112和第二排气口122均连接,第一换热器2的出口与第一节流元件4的入口连接,第一节流元件4的出口与压缩机1的气液分离器5的入口连接,气液分离器5的底部出口与第二节流元件6的入口连接,第二节流元件6的出口与第二换热器3的入口连接,第二换热器3的出口与第一吸气口111连接,气液分离器5的顶部出口与第二吸气口121连接。本实施例中的压缩机1包括第一气缸11、第二气缸12、以及提前排气装置116。
实际连接时,第一气缸11上设置有第一吸气口111和第一排气口112,第一排气口112用于与第一换热器2连接;第二气缸12上设置有第二吸气口121和第二排气口122,第二 排气口122用于与第一换热器2连接;提前排气装置116设置在第一气缸11的缸体上或第一气缸11的上端面(即上法兰或者中间隔板上)上或第一气缸11的下端面上(下法兰上),提前排气装置116包括提前排气口(图中未示出)和控制提前排气口开闭的第一控制阀(图中未示出),提前排气口与第二吸气口121连接。
本实施例中的压缩机1包括两种运行模式,分别是双缸增焓模式和卸载运行模式:
双缸增焓模式:如图2和3所示,制冷剂从压缩机1的两个第一气缸11和第二气缸12排出后经第一换热器2变为高压过冷液体,经第一节流元件4后进入气液分离器5;在气液分离器5中制冷剂分为两路,其中底部制冷剂液体经气液分离器5底部出口进入第二节流元件6节流成为低压两相制冷剂进入第二换热器3入口,低压两相制冷剂在第二换热器3中蒸发变为气态制冷剂被第一气缸11的第一吸气口111吸入;气液分离器5中的另一路制冷剂气体经气液分离器5的顶部出口流出,与来自提前排气装置116所排出的制冷剂混合后被第二吸气口121吸入;在这种情况下,压缩机1的第一气缸11压缩过程为:从第一气缸转子114转至第一气缸滑片115顶点位置开始,如图10所示,在第一气缸转子114转过第一吸气口111前,压缩过程未开始,此时提前排气装置116的背压为中间压力,因此提前排气装置116的处的第一控制阀关闭;当第一气缸转子114从吸气闭合位置转至压缩腔内压力达到中间压力所对应的位置之间,由于压缩腔内压力小于中间压力,因此第一控制阀关闭,如图11所示,而当第一气缸转子114转到压缩腔内压力大于中间压力所对应的位置时,第一控制阀打开,提前排气过程开始,如图12所示,此时随着转角的增大,压缩腔内压力保持不变,第一控制阀仍处于打开状态,当第一气缸转子114转过提前排气口时,第一气缸11的排气过程开始,当第一气缸转子114转过第一排气口112时,第一气缸11排气过程结束,进而完成整个循环,如图13所示,压缩腔继续压缩,当压缩腔内压力达到排气压力时,第一控制阀打开,排气过程开始,如图14所示,当第一气缸转子114转过第一排气口112时,排气过程结束,如图15所示,进而完成整个循环;压缩机1的第二气缸12压缩过程与现有压缩机一致,此处不再赘述。
卸载运行模式:如图4所示,当系统运行在小压比工况下,气液分离器5中气体量很少时,系统卸载运行,具体实现方案为:关闭气液分离器5顶部补气支路上的补气阀(图中未画出),高温高压气态制冷剂经第一换热器2变为高压过冷液态制冷剂,再经第一节流元件4进入气液分离器5,由于气液分离器5上的补气阀关闭,气液分离器5中的所有制冷剂经第二节流元件6节流变为低压两相制冷剂进入第二换热器3,在第二换热器3蒸发后被压缩机1的第一吸气口111吸入;由于此时补气阀关闭,压缩机1的第二气缸12的吸气将全部来源于提前排气装置116的排气,此时压缩机1的第一气缸11的背压将由提 前排气装置116的位置决定;当第一气缸11压缩腔背压大于第二气缸12吸气压力时,第一控制阀打开,直到第一气缸转子114转过提前排气口,第一控制阀关闭;本质上讲,相比增焓模式,卸载运行模式只是切断了补气支路,而由于补气支路的制冷剂是第二气缸12吸气来源之一,切断之后,将致使第二气缸12吸气压力降低,同时第一控制阀将提前打开,吸气压力的降低幅度和第一控制阀打开提前排气装置的角度是相互耦合的,两者均由第一气缸11和第二气缸12的容积比决定。
可见,本申请通过利用提前排气技术,提供了一种新型的压缩机及空调系统,相比传统双缸增焓压缩机,本申请的压缩机可大幅度增加第一气缸11和第二气缸12的容积,使得双缸增焓技术在小容量压缩机1上应用变得更加简易;通过增加第一气缸11和第二气缸12的容积,有效改善第二气缸12,即小气缸的效率,进而实现性能的提升;此外,本申请能够在不增加其余部件的前提下,可实现增焓运行与不增焓运行的自由切换;在小压比工况下,可卸载双缸压缩机的部分容积。
可选地,本实施例中的第二气缸12和第一气缸11的容积比在0.1至0.5的范围内,相对于现有技术中的结构而言,本实施例的第二气缸12可以做得大一些,比较容易加工实现。
可选地,第一节流元件4和第二节流元件6均为节流阀,当然,在本申请的其他实施例中,还可以将第一节流元件4和第二节流元件6设置为毛细管,只要是在本申请的构思下的其他变形方式,均在本申请的保护范围之内。
参见图5至图15所示,根据本申请的另一实施例,提供了一种空调系统,本实施例中的空调系统与第一实施例中的空调系统的结构基本一致,所不同的是,本实施例中的压缩机1还包括连接通道113和切换控制阀组,连接通道113的第一端与第一排气口112连通,连接通道113的第二端与第二吸气口121连通;切换控制阀组设置在第一气缸11和第二气缸12之间使压缩机1工作在双级增焓运行模式或双缸增焓模式或卸载运行模式。
具体来说,切换控制阀组包括第二控制阀13和第三控制阀14,第二控制阀13设置在连接通道113上以控制连接通道113的通断;第三控制阀14设置在第一排气口112与第一换热器2连接的冷媒管上以控制冷媒管的通断;其中,第二控制阀13开启,第三控制阀14关闭时,第一控制阀由于背压作用始终处于关闭状态,压缩机1处于双级增焓运行模式;当第二控制阀13关闭,第三控制阀14开启时,当第一气缸11的压缩腔内压力大于中间补气压力时,第一控制阀由于压差作用打开,第一气缸11中的部分制冷剂被排出,并被第二气缸12的第二吸气口121吸入,此时压缩机1处于双缸增焓运行模式;当第二控制阀13关闭,第三控制阀开启,且补气支路上补气阀关闭时,当第一气缸11的压缩腔内压力达到 提前排气口的背压时,提前排气口上的第一控制阀打开,此时,压缩机1处于卸载运行模式。
可选地,本实施例中的第二控制阀13和第三控制阀14均为截止阀,防止冷媒倒流,当然,单向阀还可以设置为其他开闭阀,第一气缸11和第二气缸12为转子式、活塞式、涡旋形式的任意组合。提前排气口与第二吸气口121之间通过压缩机1内部通道连接或者通过管道连接,具体可以根据实际的结构设置,结构简单,便于实现。第二气缸12和第一气缸11的容积比在0.5至0.7的范围内,相对于第一实施例,本实施例中的第二气缸12还可以做得更大一些,更加容易加工和实现。
本实施例中的空调系统的运行模式包括三种,分别是双级增焓运行模式、双缸增焓运行模式和卸载运行模式,现结合图6至图15对其运行原理进行说明如下:
双级增焓运行模式:图7展示了双级增焓运行模式的系统原理图。在双级运行模式下,第二控制阀13打开,第三控制阀14关闭;由于提前排气装置116的第一控制阀的阀片背压始终大于所述提前排气口位置所对应压缩腔的压力,因此,提前排气装置116的第一控制阀始终关闭;在该模式下,制冷剂从第一排气口112排出的制冷剂与气液分离器5的顶部出口流出的制冷剂混合后被压缩机1第二吸气口121吸入,从压缩机1的第一排气口112出来的高温高压制冷剂经第一换热器2被冷凝,成为高压过冷液态制冷剂后经第一节流元件4节流成两相制冷剂进入气液分离器5,在气液分离器5中,制冷剂分为两路,底部液体经气液分离器5底部出口流出经第二节流元件6进入第二换热器3,制冷剂在第二换热器3中蒸发变为气态制冷剂被压缩机1的第一吸气口111吸入;气液分离器5中的气态制冷剂经气液分离器5的顶部出口流出与压缩机1的第一气缸11排出的制冷剂混合后被压缩机第二吸气口121吸入,实现对冷媒的双级增焓压缩。
双缸增焓运行模式:图8展示了空调系统运行在双缸增焓模式下的原理示意图。在该模式下,压缩机1的第二控制阀13关闭,第三控制阀14打开;由于提前排气装置116的背压为中间压力,而第一气缸11的排气压力大于提前排气装置116的背压,因此当压缩机1的第一气缸11压缩腔内压力大于提前排气装置116背压时,提前排气装置116的第一控制阀打开,直到压缩机1的第一气缸转子114转过提前排气装置116,第一控制阀才关闭;从制冷剂角度看:制冷剂从压缩机1的两个缸体排出后经第一换热器2变为高压过冷液体,经第一节流元件4后进入气液分离器5;在气液分离器5中制冷剂分为两路,其中底部制冷剂液体经气液分离器5的底部出口进入第二节流元件6节流成为低压两相制冷剂进入第二换热器3入口,低压两相制冷剂在第二换热器3中蒸发变为气态制冷剂被第一吸气口111吸入;气液分离器5中的另一路制冷剂气体经气液分离器5的顶部出口流出,与来自提前 排气装置116所排出的制冷剂混合后被第二吸气口121吸入;在这种情况下,压缩机1的第一气缸11压缩过程为:从第一气缸转子114转至第一气缸滑片115顶点位置开始,如10所示,在第一气缸转子114转过第一吸气口111前,压缩过程未开始,此时提前排气装置116的背压为中间压力,因此提前排气装置116的第一控制阀关闭;当第一气缸转子114从吸气闭合位置转至压缩腔内压力达到中间压力所对应的位置之间,由于压缩腔内压力小于中间压力,因此第一控制阀关闭,如图11所示,而当第一气缸转子114转到压缩腔内压力大于中间压力所对应的位置时,第一控制阀打开,提前排气过程开始,如图12所示,此时随着转角的增大,压缩腔内压力保持不变,第一控制阀仍处于打开状态,当第一气缸转子114转过提前排气口时,提前排气过程结束,如图13所示,压缩腔继续压缩,当压缩腔内压力达到排气压力时,第一控制阀打开,排气过程开始,如图14,当第一气缸转子114转过第一排气口112时,排气过程结束,如图15所示,进而完成整个循环;压缩机1的第二气缸12压缩过程与现有压缩机一致,此处不再赘述;
卸载运行模式:如图9所示,当系统运行在小压比工况下,气液分离器5中气体量很少时,系统处于卸载运行模式,具体实现方案为:关闭气液分离器5上的补气阀,压缩机1第二控制阀13关闭,压缩机1的第三控制阀14打开,高温高压气态制冷剂经第一换热器2变为高压过冷液态制冷剂,再经第一节流元件4进入气液分离器5变为中压制冷剂,由于补气阀关闭,气液分离器5中的所有制冷剂经第二节流元件6节流变为低压两相制冷剂进入第二换热器3,在第二换热器3蒸发后被压缩机1的第一吸气口111吸入;由于此时补气阀关闭,压缩机1的第二气缸12的吸气将全部来源于提前排气装置116的排气,此时压缩机1的第一气缸11的背压将由提前排气装置116的位置决定;当第一气缸11压缩腔背压大于第二气缸12吸气压力时,第一控制阀打开,直到第一气缸转子114转过提前排气口,第一控制阀关闭;本质上讲,相比增焓模式,卸载运行模式只是切断了补气支路,而由于补气支路的制冷剂是第二气缸12吸气来源之一,切断之后,将致使第二气缸12吸气压力降低,同时第一控制阀将提前打开,吸气压力的降低幅度和第一控制阀打开的角度是相互耦合的,两者均由第一气缸11和第二气缸12的容积比决定。
根据本实施例的结构可以知道,本实施例通过结合双级增焓以及双缸增焓的优点以及提前排气技术,提出了一种可灵活切换为单级、双缸增焓以及双级增焓的双缸压缩机及空调系统,该系统可在大压比下运行双级增焓模式、中小压比工况下运行双缸增焓模式以及小压比不增焓工况下运行单级模式,进而可使得压缩机高效地运行在大范围变工况条件下。
可见,本实施例的压缩机较好地解决了双级压缩机中小压比下性能较差的问题,也能 较好的解决双缸增焓压缩机低温工况下容积效率差以及排气温度的问题,同时还可在小压比工况下,实现双缸增焓模式与单级系统的自由切换;此外,还一定程度上解决了双缸增焓压缩机在小压比下的卸载问题。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种压缩机(1),其特征在于,包括:
    第一气缸(11),所述第一气缸(11)上设置有第一吸气口(111)和第一排气口(112),所述第一排气口(112)用于与预定换热器连接;
    第二气缸(12),所述第二气缸(12)上设置有第二吸气口(121)和第二排气口(122),所述第二排气口(122)用于与所述预定换热器连接;
    提前排气装置(116),所述提前排气装置(116)设置在所述第一气缸(11)的缸体上或所述第一气缸(11)的上端面上或所述第一气缸(11)的下端面上,所述提前排气装置(116)包括提前排气口和控制所述提前排气口开闭的第一控制阀,所述提前排气口与所述第二吸气口(121)连接。
  2. 根据权利要求1所述的压缩机(1),其特征在于,所述第一气缸(11)和所述第二气缸(12)为转子式、活塞式、涡旋形式的任意组合。
  3. 根据权利要求1所述的压缩机(1),其特征在于,所述提前排气口与所述第二吸气口(121)之间通过所述压缩机(1)内部通道连接或者通过管道连接。
  4. 根据权利要求1所述的压缩机(1),其特征在于,所述第二气缸(12)和所述第一气缸(11)的容积比在0.1至0.7的范围内。
  5. 根据权利要求1至3中任一项所述的压缩机(1),其特征在于,所述压缩机(1)还包括:
    连接通道(113),所述连接通道(113)的第一端与所述第一排气口(112)连通,所述连接通道(113)的第二端与所述第二吸气口(121)连通;
    切换控制阀组,所述切换控制阀组设置在所述第一气缸(11)和第二气缸(12)之间使所述压缩机(1)工作在双级增焓运行模式或双缸增焓模式或卸载运行模式。
  6. 根据权利要求5所述的压缩机(1),其特征在于,所述切换控制阀组包括:
    第二控制阀(13),所述第二控制阀(13)设置在所述连接通道(113)上以控制所述连接通道(113)的通断;
    第三控制阀(14),所述第三控制阀(14)设置在所述第一排气口(112)与所述预定换热器连接的冷媒管上以控制所述冷媒管的通断;
    其中,所述第二控制阀(13)开启,第三控制阀(14)关闭时,所述第一控制阀由于背压作用始终处于关闭状态,所述压缩机(1)处于双级增焓运行模式;当所述第二控制阀(13)关闭,第三控制阀(14)开启时,当所述第一气缸(11)的压缩腔内压力大于中 间补气压力时,所述第一控制阀由于压差作用打开,所述第一气缸(11)中的部分制冷剂被排出,并被所述第二气缸(12)的第二吸气口(121)吸入,此时所述压缩机(1)处于双缸增焓运行模式;当所述第二控制阀(13)关闭,所述第三控制阀开启,且补气支路上补气阀关闭时,当所述第一气缸(11)的压缩腔内压力达到所述提前排气口的背压时,所述提前排气口上的所述第一控制阀打开,此时,所述压缩机(1)处于卸载运行模式。
  7. 根据权利要求6所述的压缩机(1),其特征在于,所述第二控制阀(13)和所述第三控制阀(14)均为截止阀。
  8. 一种空调系统,包括压缩机(1),其特征在于,所述压缩机(1)为权利要求1至4中任一项所述的压缩机(1)。
  9. 根据权利要求8所述的空调系统,其特征在于,所述空调系统还包括气液分离器(5),第一换热器(2)、第二换热器(3)、第一节流元件(4)、第二节流元件(6),其中,所述第一换热器(2)的入口与所述第一排气口(112)和所述第二排气口(122)均连接,所述第一换热器(2)的出口与所述第一节流元件(4)的入口连接,所述第一节流元件(4)的出口与所述气液分离器(5)的入口连接,所述气液分离器(5)的底部出口与所述第二节流元件(6)的入口连接,所述第二节流元件(6)的出口与所述第二换热器(3)的入口连接,所述第二换热器(3)的出口与所述第一吸气口(111)连接,所述第一换热器(2)形成所述预定换热器,所述气液分离器(5)的顶部出口与所述第二吸气口(121)连接。
  10. 根据权利要求9所述的空调系统,其特征在于,所述空调系统包括包含双缸增焓模式,当所述空调系统处于双缸增焓模式时,制冷剂从所述压缩机(1)的所述第一气缸(11)和所述第二气缸(12)排出后经所述第一换热器(2)变为高压过冷液体,经所述第一节流元件(4)后进入所述气液分离器(5);在所述气液分离器(5)中制冷剂分为两路,一路制冷剂液体经所述气液分离器(5)底部出口进入所述第二节流元件(6)节流成为低压两相制冷剂进入所述第二换热器(3),低压两相制冷剂在所述第二换热器(3)中蒸发变为气态制冷剂被所述第一气缸(11)吸入;所述气液分离器(5)中的另一路制冷剂气体经所述气液分离器(5)的顶部出口,与来自所述提前排气装置(116)所排出的制冷剂混合后被所述第二气缸(12)吸入。
  11. 根据权利要求10所述的空调系统,其特征在于,当所述空调系统处于双缸增焓模式时,所述第一气缸(11)压缩过程为:从所述第一气缸(11)的第一气缸转子(114)转至第一气缸滑片(115)顶点位置处开始,在所述第一气缸转子(114)转过所述第一吸气口(111)前,压缩过程未开始,所述提前排气装置(116)第一控制阀关闭;当所述第一气缸转子(114)从吸气闭合位置转至压缩腔内压力达到中间压力所对应的位置时,所述提 前排气装置(116)的第一控制阀关闭,而当第一气缸转子(114)转到压缩腔内压力大于中间压力所对应的位置时,所述提前排气装置(116)的第一控制阀打开,提前排气过程开始,当所述第一气缸转子(114)转过上所述提前排气口时,提前排气过程结束,压缩腔继续压缩,当压缩腔内压力达到所述第一气缸(11)的排气压力时,所述第一气缸(11)的排气过程开始,当第一气缸转子(114)转过所述第一排气口(112)时,所述第一气缸(11)排气过程结束,进而完成整个循环。
  12. 根据权利要求9所述的空调系统,其特征在于,所述空调系统还包括卸载运行模式,当空调系统处于卸载运行模式时:关闭所述气液分离器(5)顶部补气支路上的补气阀,高温高压气态制冷剂经所述第一换热器(2)变为高压过冷液态制冷剂,再经所述第一节流元件(4)进入所述气液分离器(5),此时,所述气液分离器(5)中的所有制冷剂经所述第二节流元件(6)节流变为低压两相制冷剂进入所述第二换热器(3),在所述第二换热器(3)蒸发后被所述第一气缸(11)吸入;所述第二气缸(12)的吸气全部来源于提前排气装置(116)的排气;当所述第一气缸(11)压缩腔背压大于所述第二气缸(12)吸气压力时,所述提前排气装置(116)的第一控制阀打开,直到所述第一气缸(11)的第一气缸转子(114)转过所述提前排气装置(116)的提前排气口,所述第一控制阀关闭。
  13. 一种空调系统,包括压缩机(1),其特征在于,所述压缩机(1)为权利要求6至7中任一项所述的压缩机(1)。
  14. 根据权利要求13所述的空调系统,其特征在于,所述空调系统还包括气液分离器(5),第一换热器(2)、第二换热器(3)、第一节流元件(4)、第二节流元件(6),其中,所述第一换热器(2)的入口与所述第一排气口(112)和所述第二排气口(122)均连接,所述第二换热器(3)的出口与所述第一节流元件(4)的入口连接,所述第一节流元件(4)的出口与所述气液分离器(5)的入口连接,所述气液分离器(5)的底部出口与所述第二节流元件(6)的入口连接,所述第二节流元件(6)的出口与所述第二换热器(3)的入口连接,所述第二换热器(3)的出口与所述第一吸气口(111)连接,所述第一换热器(2)形成所述预定换热器,所述气液分离器(5)的顶部出口与所述第二吸气口(121)连接。
  15. 根据权利要求14所述的空调系统,其特征在于,所述空调系统包括包含双级增焓运行模式,当所述空调系统处于双级增焓运行模式时,所述第二控制阀(13)打开,所述第三控制阀(14)关闭,由于所述提前排气装置(116)的所述第一控制阀的阀片的背压始终大于所述提前排气口位置所对应压缩腔的压力,因此,所述提前排气装置(116)的第一控制阀始终关闭;在所述双级增焓运行模式下,制冷剂从所述第一排气口(112)排出的制冷剂与所述气液分离器(5)的顶部出口流出的制冷剂混合后被所述第二吸气口(121)吸 入,从所述压缩机(1)的所述第二排气口(122)出来的高温高压制冷剂经所述第一换热器(2)被冷凝,成为高压过冷液态制冷剂后经所述第一节流元件(4)节流成两相制冷剂进入所述气液分离器(5),在所述气液分离器(5)中,制冷剂分为两路,底部液体经所述气液分离器(5)底部出口流出经所述第二节流元件(6)进入所述第二换热器(3),制冷剂在所述第二换热器(3)中蒸发变为气态制冷剂被所述第一气缸(11)吸入;所述气液分离器(5)中的气态制冷剂经所述气液分离器(5)的顶部出口流出与所述第一气缸(11)排出的制冷剂混合后被所述第二吸气口(121)吸入,实现对冷媒的双级增焓压缩。
  16. 根据权利要求14所述的空调系统,其特征在于,所述空调系统还包括双缸增焓运行模式,当所述空调系统处于双缸增焓运行模式时,所述第二控制阀(13)关闭,所述第三控制阀(14)打开,当所述第一气缸(11)压缩腔内压力大于提前排气装置(116)背压时,所述提前排气装置(116)的第一控制阀打开,直到所述第一气缸(11)的第一气缸转子(114)转过所述提前排气装置(116),所述第一控制阀才关闭;在双缸增焓运行模式中:制冷剂从所述压缩机(1)排出后经所述第一换热器(2)变为高压过冷液体,经所述第一节流元件(4)后进入所述气液分离器(5);在所述气液分离器(5)中制冷剂分为两路,其中一路制冷剂液体经所述气液分离器(5)的底部出口进入所述第二节流元件(6)节流成为低压两相制冷剂进入所述第二换热器(3),低压两相制冷剂在所述第二换热器(3)中蒸发变为气态制冷剂被所述第一吸气口(111)吸入;所述气液分离器(5)中的另一路制冷剂气体经所述气液分离器(5)的顶部出口流出,与来自所述提前排气装置(116)所排出的制冷剂混合后被所述第二吸气口(121)吸入。
  17. 根据权利要求16所述的空调系统,其特征在于,当所述空调系统处于双缸增焓模式时,所述第一气缸(11)压缩过程为:从所述第一气缸(11)的第一气缸转子(114)转至第一气缸滑片(115)顶点位置开始,在所述第一气缸转子(114)转过所述第一吸气口(111)前,压缩过程未开始,此时所述提前排气装置(116)的第一控制阀关闭;当所述第一气缸转子(114)从吸气闭合位置转至压缩腔内压力达到中间压力所对应的位置之间,所述第一控制阀关闭,而当所述第一气缸转子(114)转到压缩腔内压力大于中间压力所对应的位置时,所述第一控制阀打开,提前排气过程开始,此时随着所述第一气缸转子(114)转角的增大,压缩腔内压力保持不变,所述第一控制阀仍处于打开状态,当所述第一气缸转子(114)转过所述提前排气装置(116)的提前排气口时,提前排气过程结束,压缩腔继续压缩,当压缩腔内压力达到所述第一排气口(112)的排气压力时,排气过程开始,当所述第一气缸转子(114)转过所述第一排气口(112)时,排气过程结束,进而完成整个循环。
  18. 根据权利要求14所述的空调系统,其特征在于,所述空调系统还包括卸载运行模式,当所述空调系统处于卸载运行模式时,关闭所述气液分离器(5)上的补气阀,所述第二控制阀(13)关闭,所述第三控制阀(14)打开,高温高压气态制冷剂经所述第一换热器(2)变为高压过冷液态制冷剂,再经所述第一节流元件(4)进入所述气液分离器(5)变为中压制冷剂,所述气液分离器(5)中的所有制冷剂经所述第二节流元件(6)节流变为低压两相制冷剂进入所述第二换热器(3),在所述第二换热器(3)蒸发后被所述第一吸气口(111)吸入;当所述第一气缸(11)压缩腔背压大于所述第二气缸(12)吸气压力时,所述第一控制阀打开,直到所述第一气缸(11)的第一气缸转子(114)转过提前排气口,第一控制阀关闭。
PCT/CN2019/073948 2018-06-22 2019-01-30 压缩机及空调系统 WO2019242311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/049,935 US11713888B2 (en) 2018-06-22 2019-01-30 Compressor and air conditioner system
EP19823011.2A EP3767106B1 (en) 2018-06-22 2019-01-30 Compressor and air conditioner system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810654923.7 2018-06-22
CN201810654923.7A CN108533490A (zh) 2018-06-22 2018-06-22 压缩机及空调系统

Publications (1)

Publication Number Publication Date
WO2019242311A1 true WO2019242311A1 (zh) 2019-12-26

Family

ID=63486834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073948 WO2019242311A1 (zh) 2018-06-22 2019-01-30 压缩机及空调系统

Country Status (4)

Country Link
US (1) US11713888B2 (zh)
EP (1) EP3767106B1 (zh)
CN (1) CN108533490A (zh)
WO (1) WO2019242311A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100695A (ja) * 2017-12-04 2019-06-24 パナソニックIpマネジメント株式会社 冷凍サイクル装置及び冷凍サイクル装置の駆動方法
CN108533490A (zh) * 2018-06-22 2018-09-14 珠海格力电器股份有限公司 压缩机及空调系统
CN109405330A (zh) * 2018-09-17 2019-03-01 珠海格力电器股份有限公司 一种压缩机及热泵系统
CN110131167A (zh) * 2019-06-03 2019-08-16 珠海凌达压缩机有限公司 压缩机及空调系统
CN111486609B (zh) * 2020-04-02 2021-10-08 珠海格力节能环保制冷技术研究中心有限公司 一种空调系统和控制方法
CN113776223B (zh) * 2021-10-13 2023-01-24 广东积微科技有限公司 双喷气增焓制冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532493A (zh) * 2008-01-11 2009-09-16 富士通将军股份有限公司 旋转式压缩机
CN102588285A (zh) * 2011-01-18 2012-07-18 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有该压缩机的空调器
CN105114320A (zh) * 2015-08-18 2015-12-02 广东美芝制冷设备有限公司 旋转式变容喷气增焓压缩机
CN204877945U (zh) * 2015-08-18 2015-12-16 珠海凌达压缩机有限公司 滚动转子式压缩机
CN105221421A (zh) * 2014-06-09 2016-01-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调器
CN105864038A (zh) * 2015-01-23 2016-08-17 珠海格力节能环保制冷技术研究中心有限公司 中间腔结构及双级增焓转子式压缩机
CN108533490A (zh) * 2018-06-22 2018-09-14 珠海格力电器股份有限公司 压缩机及空调系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148290A (ja) * 1982-02-26 1983-09-03 Hitachi Ltd スクロ−ル圧縮機を用いた冷凍装置
JP2000320479A (ja) * 1999-05-12 2000-11-21 Mitsubishi Electric Corp 多気筒密閉型圧縮機
JP3723491B2 (ja) 2001-11-09 2005-12-07 三洋電機株式会社 二段圧縮式コンプレッサ
JP2004301074A (ja) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd 半密閉型多段圧縮機
JP3778203B2 (ja) * 2004-05-11 2006-05-24 ダイキン工業株式会社 回転式圧縮機
JP2008175111A (ja) * 2007-01-17 2008-07-31 Daikin Ind Ltd 圧縮機
KR100873682B1 (ko) * 2007-07-16 2008-12-12 엘지전자 주식회사 다단 로터리 압축기
JP5040907B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 冷凍装置
JP5515289B2 (ja) * 2008-12-26 2014-06-11 ダイキン工業株式会社 冷凍装置
US20150159919A1 (en) * 2010-02-25 2015-06-11 Mayekawa Mfg. Co., Ltd. Heat pump unit
CN102235360A (zh) * 2010-05-07 2011-11-09 广东美芝制冷设备有限公司 双缸式旋转压缩机
CN204371670U (zh) * 2014-12-25 2015-06-03 珠海格力节能环保制冷技术研究中心有限公司 旋转压缩机组件及具有其的空调器
CN106705473A (zh) * 2015-08-17 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 换热系统
CN105698426A (zh) * 2016-03-03 2016-06-22 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
CN105927537B (zh) * 2016-06-22 2019-01-18 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN106246541B (zh) * 2016-07-28 2018-07-17 广东美芝制冷设备有限公司 双缸压缩机及制冷装置
CN107366621B (zh) * 2017-07-13 2021-06-08 清华大学 带有三级补气的滚动转子压缩机及空调系统
CN107228070A (zh) * 2017-07-31 2017-10-03 广东美芝制冷设备有限公司 压缩机以及具有它的制冷系统
WO2019185121A1 (de) * 2018-03-27 2019-10-03 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
CN208348065U (zh) * 2018-06-22 2019-01-08 珠海格力电器股份有限公司 压缩机及空调系统
CN112112803A (zh) * 2019-06-21 2020-12-22 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的制冷系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532493A (zh) * 2008-01-11 2009-09-16 富士通将军股份有限公司 旋转式压缩机
CN102588285A (zh) * 2011-01-18 2012-07-18 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有该压缩机的空调器
CN105221421A (zh) * 2014-06-09 2016-01-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调器
CN105864038A (zh) * 2015-01-23 2016-08-17 珠海格力节能环保制冷技术研究中心有限公司 中间腔结构及双级增焓转子式压缩机
CN105114320A (zh) * 2015-08-18 2015-12-02 广东美芝制冷设备有限公司 旋转式变容喷气增焓压缩机
CN204877945U (zh) * 2015-08-18 2015-12-16 珠海凌达压缩机有限公司 滚动转子式压缩机
CN108533490A (zh) * 2018-06-22 2018-09-14 珠海格力电器股份有限公司 压缩机及空调系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767106A4

Also Published As

Publication number Publication date
US11713888B2 (en) 2023-08-01
EP3767106A1 (en) 2021-01-20
US20210102714A1 (en) 2021-04-08
CN108533490A (zh) 2018-09-14
EP3767106B1 (en) 2023-07-26
EP3767106A4 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019242311A1 (zh) 压缩机及空调系统
CN105605817B (zh) 一种制冷系统
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
CN204854066U (zh) 换热系统
CN106705473A (zh) 换热系统
CN107191372B (zh) 旋转式压缩机和具有其的制冷装置
CN208348065U (zh) 压缩机及空调系统
CN106369863B (zh) 制冷装置
WO2024016748A1 (zh) 泵体组件、压缩机、双温空调系统
CN107956687B (zh) 压缩机及其运行控制方法、空调器
US6892548B2 (en) Rotary compressor and refrigerant cycle system having the same
CN207004814U (zh) 旋转式压缩机和具有其的制冷装置
CN111486609B (zh) 一种空调系统和控制方法
CN208332771U (zh) 空调系统
JPH03267592A (ja) 密閉型ロータリー圧縮機
JP3561598B2 (ja) 圧縮機および空気調和機
CN208311044U (zh) 压缩机及空调系统
CN107477904B (zh) 制冷系统
CN108444155B (zh) 空调系统
CN111677665A (zh) 压缩机及具有其的空调装置
CN108533489B (zh) 压缩机及空调系统
CN207610443U (zh) 管路阀门组件及制冷空调系统
CN221032979U (zh) 压缩机装置和制冷剂系统
CN209165646U (zh) 冷暖空调系统
JPH0518613A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19823011.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019823011

Country of ref document: EP

Effective date: 20201016

NENP Non-entry into the national phase

Ref country code: DE