WO2019242141A1 - 移动终端 - Google Patents

移动终端 Download PDF

Info

Publication number
WO2019242141A1
WO2019242141A1 PCT/CN2018/107117 CN2018107117W WO2019242141A1 WO 2019242141 A1 WO2019242141 A1 WO 2019242141A1 CN 2018107117 W CN2018107117 W CN 2018107117W WO 2019242141 A1 WO2019242141 A1 WO 2019242141A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
mobile terminal
phase retarder
polarized light
Prior art date
Application number
PCT/CN2018/107117
Other languages
English (en)
French (fr)
Inventor
陈威
于磊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2019551654A priority Critical patent/JP7248583B2/ja
Priority to KR1020197026210A priority patent/KR102164173B1/ko
Publication of WO2019242141A1 publication Critical patent/WO2019242141A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0429Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using polarisation elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • Embodiments of the present disclosure relate to the technical field of terminals, and in particular, to a mobile terminal.
  • an ambient light sensor In a mobile terminal, an ambient light sensor is generally provided.
  • the ambient light sensor is usually disposed below the glass cover of the mobile terminal and configured to detect the intensity of the ambient light to adjust the brightness of the display screen.
  • the space under the glass cover is becoming less and less. If the ambient light sensor is continuously placed under the glass cover, it will become an obstacle for the mobile terminal to go to the full screen.
  • two light sensors are provided below the display panel of the mobile terminal.
  • One light sensor is configured to detect the intensity of light emitted by the display panel
  • the other light sensor is configured to detect the display panel.
  • the intensity of the mixed light of the emitted light and the ambient light, and then the intensity of the ambient light is obtained according to the detection results of the two.
  • the results of this scheme for detecting ambient light are not accurate. Therefore, how to improve the accuracy of detecting ambient light is a technical problem that needs to be solved.
  • an embodiment of the present disclosure provides a mobile terminal for improving the accuracy of detecting ambient light.
  • a mobile terminal including: a display panel, a first phase retarder, a light splitting element, and at least one light sensor;
  • the first phase retarder is located between the display panel and the light splitting element
  • the at least one light sensor is disposed opposite to the light splitting element, and is configured to receive ambient light and light emitted from the display panel, and the ambient light passing through the display panel and light emitted from the display panel pass through in sequence. Through the first phase retarder and the spectroscopic element.
  • the at least one light sensor may include two light sensors.
  • the light splitting element may include a first side surface, the first side surface being parallel to a side surface of the first phase retarder opposite to the first side surface, so that the ambient light and the display panel The emitted light enters the beam splitting element vertically.
  • the beam splitting element may be a polarizing beam splitting prism.
  • the polarization beam splitting prism may include a second side and a third side; the second side is opposite and parallel to the first side; the second side is adjacent to the third side and Mutually perpendicular
  • One light sensor is disposed opposite to the second side, and the other light sensor is disposed opposite to the third side.
  • the beam splitting element may be a laterally shifted polarizing beam splitting prism.
  • the laterally-shifted polarization beam splitting prism may include a fourth side and a fifth side; the fourth side is opposite to and parallel to the first side; the fourth side and the fifth side Adjacently, the angle between the fourth side and the fifth side is an acute angle; the fourth side includes a first region and a second region; the first region is opposite the first side, so The second region is located on one side of the fifth side;
  • One light sensor is opposed to the first area, and the other light sensor is opposed to the second area.
  • the beam splitting element may be a polarizing beam splitting plate
  • the polarization beam splitter is inclined with respect to a side of the first phase retarder opposite to the polarization beam splitter, so that the ambient light and light emitted by the display panel obliquely enter the polarization beam splitter. .
  • the first phase retarder may be a quarter wave plate.
  • a circular polarizer may be further included.
  • the circular polarizer is located on a side of the display panel away from the first phase retarder, and is configured to convert the ambient light into circularly polarized light.
  • the circular polarizer may include a polarizer and a second phase retarder; the second phase retarder is located between the polarizer and the display panel.
  • the polarizer may be a polarizer
  • the second phase retarder may be a quarter wave plate
  • an ambient light detection circuit may be further included; the ambient light detection circuit is electrically connected to the at least one light sensor, so that according to the ambient light and the display panel received by the at least one light sensor The emitted light acquires the intensity of the ambient light.
  • a system-on-chip SOC may be further included; the system-on-chip is electrically connected to the at least one light sensor, so that according to the ambient light received by the at least one light sensor and the display panel emits Light to obtain the intensity of the ambient light.
  • the mobile terminal includes: a display panel, a first phase retarder, a light splitting element, and at least one light sensor; the first phase retarder is located between the display panel and the light splitting element ; At least one light sensor is opposite to the light splitting element, and is configured to receive ambient light and light emitted from the display panel; the ambient light passing through the display panel and the light emitted by the display panel pass through the first phase retarder and the light splitting element in order, To improve the accuracy of detecting ambient light.
  • the light emitted from the display panel is converted into circularly polarized light by a first phase retarder, and then the light emitted by the display panel is decomposed by a light splitting element to obtain two linearly polarized lights whose polarization directions are mutually perpendicular.
  • the two linearly polarized light have different propagation paths, so that the two linearly polarized lights can be detected separately.
  • the ambient light passing through the display panel and the ambient light that can pass through the first phase retarder and the beam splitter in turn are received by the light sensor.
  • the technical solution provided by the embodiments of the present disclosure can perform light emission on the same display area on the display panel. Decompose and detect separately to eliminate the influence of the display panel display content and improve the accuracy of detecting ambient light.
  • Fig. 1 is a schematic structural diagram of a mobile terminal according to an exemplary embodiment
  • Fig. 2 is a schematic diagram of a cross section of a mobile terminal according to an exemplary embodiment
  • Fig. 3 is a schematic diagram illustrating a cross section of a mobile terminal according to another exemplary embodiment.
  • Fig. 1 is a schematic structural diagram of a mobile terminal 100 according to an exemplary embodiment.
  • the mobile terminal 100 includes a casing 18, a transparent glass cover 17 and a display panel 12 located below the glass cover 17.
  • the display panel 12 is located in the casing 18. The light emitted from the display panel 12 can pass through the glass cover 17.
  • the display panel 12 can be seen through a transparent glass cover 17.
  • the display panel 12 may be, for example, an OLED display panel, but is not limited thereto.
  • Fig. 2 is a schematic diagram illustrating a cross section of a mobile terminal according to an exemplary embodiment.
  • the mobile terminal 100 according to the embodiment of the present disclosure further includes a first phase retarder 13, a light splitting element 14, and at least one light sensor 15, 16.
  • the first phase retarder 13 is located between the display panel 12 and the light splitting element 14.
  • the at least one light sensor 15 and 16 are respectively disposed opposite to the light splitting element 14 and are configured to receive ambient light A1 and light O1 emitted by the display panel 12, and pass through the ambient light A1 and the display panel 12.
  • the light O1 emitted by the display panel 12 passes through the first phase retarder 13 and the light splitting element 14 in this order.
  • the light O1 emitted from the display panel 12 is converted into circularly polarized light by the first phase retarder 13, and then the light O1 emitted from the display panel 12 is decomposed by the light splitting element 14 to obtain two beams with perpendicular polarization directions.
  • Linearly polarized light where the two linearly polarized lights have different propagation paths, so that the two linearly polarized lights can be detected separately.
  • the ambient light A1 passing through the display panel 12 and the ambient light A1 that can pass through the first phase retarder 13 and the beam splitting element 14 in this order are received by the light sensors 15 and 16.
  • the technical solution provided by the embodiment of the present disclosure can be applied to the same display area on the display panel 12
  • the light O1 is decomposed and separately detected to eliminate the influence of the display content of the display panel 12 and improve the accuracy of detecting the ambient light A1.
  • the glass cover 17 is located on a side of the display panel 12 away from the first phase retarder 13.
  • the mobile terminal 100 may further include a circular polarizer 11.
  • the circular polarizer 11 is located on a side of the display panel 12 away from the first phase retarder 13 and is configured to convert the ambient light A1 into a first circularly polarized light A2.
  • the circular polarizer 11 is located between the glass cover plate 17 and the display panel 12.
  • the circular polarizer 11 may include a polarizer 111 and a second phase retarder 112.
  • the polarizer 111 may be a polarizer
  • the second phase retarder 112 may be a quarter wave plate.
  • the second phase retarder 112 is located between the polarizer 111 and the display panel 12 so that the ambient light A1 is sequentially passed through the polarizer 111 and the second phase retarder 112 and converted. Is the first circularly polarized light A2. Specifically, the ambient light A1 is converted into a fourth linearly polarized light A4 by the polarizer 111.
  • the polarization direction of the fourth linearly polarized light A4 may be perpendicular to the incident surface of the ambient light A1 entering the polarizer 111, or may be parallel to the incident surface of the ambient light A1 entering the polarizer 111.
  • the polarization direction of the fourth linearly polarized light A4 shown in FIG. 2 is perpendicular to the incident surface where the ambient light A1 enters the polarizer 111.
  • the polarization direction of the fourth linearly polarized light A4 is perpendicular to the incident surface of the polarizer 111 entering the ambient light A1 as an example for description.
  • the fourth linearly polarized light A4 is converted into the first circularly polarized light A2 by the second phase retarder 112.
  • the first circularly polarized light A2 can pass through the display panel 12 and can be used for subsequent detection of the intensity of the ambient light A1.
  • the first phase retarder 13 is configured to convert the first circularly polarized light A2 transmitted through the display panel 12 to a first linearly polarized light A3, and emit the display panel 12
  • the light O1 is converted into a second circularly polarized light O2.
  • the first phase retarder 13 may be a quarter wave plate.
  • the light O1 emitted by the display panel 12 may be unpolarized natural light.
  • the light O1 emitted from the display panel 12 can be converted into the second circularly polarized light O2 after passing through the first phase retarder 13.
  • the second circularly polarized light O2 may include left-handed circularly polarized light and right-handed circularly polarized light.
  • the first circularly polarized light A2 can be converted into the first linearly polarized light A3 after passing through the first phase retarder 13.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the fourth linearly polarized light A4 are perpendicular to each other.
  • the polarization direction of the fourth linearly polarized light A4 when the polarization direction of the fourth linearly polarized light A4 is perpendicular to the incident surface of the polarizer 111 of the ambient light A1, the polarization direction of the first linearly polarized light A3 is parallel to the first circularly polarized light A2 incident to the first phase retarder. 13 of the incident surface.
  • the polarization direction of the fourth linearly polarized light A4 is parallel to the incident surface of the polarizer 111 of the ambient light A1
  • the polarization direction of the first linearly polarized light A3 is perpendicular to the incident of the first circularly polarized light A2 to the first phase retarder 13 Incident surface.
  • the polarization direction of the first linearly polarized light A3 shown in FIG. 2 is parallel to the incident surface of the first circularly polarized light A2 entering the first phase retarder 13 as an example for description.
  • the light splitting element 14 is configured to transmit the first linearly polarized light A3 and decompose the second circularly polarized light O2 to obtain a second linearly polarized light O3 and a third linearly polarized light O4.
  • the second linearly polarized light O3 has the same propagation path as the first linearly polarized light A3, and the third linearly polarized light O4 and the second linearly polarized light O3 have different propagation paths.
  • the at least one light sensor 15, 16 is configured to detect a first intensity of a mixed light of the first linearly polarized light A3 and the second linearly polarized light O3, and detect a second intensity of the third linearly polarized light O4, In order to obtain the intensity of the ambient light A1 according to the first intensity and the second intensity. Because the second intensity of the third linearly polarized light O4 is related to the intensity of the second linearly polarized light O3, the intensity of the second linearly polarized light O3 can be obtained according to the second intensity, and further, the first linearly polarized light and the second linearly polarized light can be obtained according to the second intensity.
  • the intensity of O3 is the intensity of the first linearly polarized light A3.
  • the intensity of the ambient light A1 can be obtained according to the correlation between the intensity of the first linearly polarized light A3 and the intensity of the ambient light A1.
  • the technical solution provided by the embodiment of the present disclosure can decompose the light O1 emitted from the same display area on the display panel 12 and separately detect it to eliminate the influence of the display content of the display panel 12 and improve the accuracy of detecting the ambient light A1.
  • the screen ratio of the terminal device can be increased.
  • the beam splitting element 14 may be a polarization beam splitting prism.
  • the polarization beam splitting prism includes a first side surface S1, a second side surface S2, and a third side surface S3.
  • the first side S1 is parallel to a side of the first phase retarder 13 opposite to the first side S1, so that the first linearly polarized light A3 and the second circularly polarized light O2 enter a polarization beam splitting prism perpendicularly.
  • the incident angle between the first linearly polarized light A3 and the second circularly polarized light O2 may be a Brewster angle.
  • the second side surface S2 is opposite and parallel to the first side surface S1, and the second side surface S2 is adjacent to and perpendicular to the third side surface S3.
  • the polarization beam splitting prism allows the first linearly polarized light A3 to transmit, and decomposes the second circularly polarized light O2 into a second linearly polarized light O3 and a third linearly polarized light O4.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the second linearly polarized light O3 are respectively parallel to the incident surface of the polarization beam splitter prism, and the polarization of the third linearly polarized light O4 The direction is perpendicular to the incident surface.
  • the first linearly polarized light A3 and the second linearly polarized light O3 are emitted from the second side surface S2, and the third linearly polarized light O4 is emitted from the third side surface S3. It should be noted that, in the embodiment of the present disclosure, all incident surfaces may be parallel to each other.
  • the at least one light sensor 15, 16 includes a first light sensor 15 and a second light sensor 16.
  • the first light sensor 15 is located on a propagation path of the first linearly polarized light A3 and the second linearly polarized light O3, and is configured to detect a mixture of the first linearly polarized light A3 and the second linearly polarized light O3.
  • the second light sensor 16 is located on a propagation path of the third linearly polarized light O4 and is configured to detect a second intensity of the third linearly polarized light O4.
  • the first linearly polarized light A3 when the polarization direction of the first linearly polarized light A3 is parallel to the incident surface of the first linearly polarized light A3 incident on the light splitting element 14, the first linearly polarized light A3
  • the second linearly polarized light O3 is emitted from the second side surface S2 and the third linearly polarized light O4 is emitted from the third side surface S3
  • the first light sensor 15 is disposed opposite to the second side surface S2.
  • the second light sensor 16 is disposed opposite to the third side S3.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the second linearly polarized light O3 are perpendicular to the incident surface of the polarization beam splitter prism, respectively.
  • the polarization direction is parallel to the incident surface.
  • the first linearly polarized light A3 and the second linearly polarized light O3 are emitted from the third side surface S3, and the third linearly polarized light O4 is emitted from the second side surface S2.
  • the first light sensor 15 is disposed opposite the third side S3, and the second light sensor 16 is disposed opposite the second side S2.
  • the above-mentioned left-handed circularly polarized light can be decomposed into the second linearly polarized light O3 and the third linearly-polarized light O4 after passing through the spectroscopic element 14, and the right-handed circularly polarized light can also be decomposed into the second linearly polarized light through the spectroscopic element 14.
  • the beam splitting element 14 may be a laterally shifted polarizing beam splitting prism.
  • the laterally-shifted polarization beam splitting prism includes a first side surface S1, a fourth side surface S4, and a fifth side surface S5.
  • the first side S1 is parallel to the side of the first phase retarder 13 opposite to the first side S1, so that the first linearly polarized light A3 and the second circularly polarized light O2 enter the polarization beam splitting prism perpendicularly.
  • the incident angle between the first linearly polarized light A3 and the second circularly polarized light O2 may be a Brewster angle.
  • the fourth side S4 is opposite to and parallel to the first side S1, the fourth side S4 is adjacent to the fifth side S5, and the gap between the fourth side S4 and the fifth side S5
  • the angle is an acute angle, and the included angle can be set according to specific conditions.
  • the fourth side surface S4 includes a first region Q1 and a second region Q2, the first region Q1 is opposite to the first side surface S1, and the second region Q2 is located on a side of the fifth side surface S5.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the second linearly polarized light O3 are respectively parallel to the incident surface of the polarization beam splitter prism, and the polarization of the third linearly polarized light O4 The direction is perpendicular to the incident surface.
  • the first linearly polarized light A3 and the second linearly polarized light O3 are emitted from the first region Q1, and an exit direction may be perpendicular to the fourth side S4.
  • the exit direction may be perpendicular to the fourth side surface S4.
  • the first light sensor 15 is disposed opposite to the first region Q1
  • the second light sensor 16 is disposed opposite to the second region Q2.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the second linearly polarized light O3 are perpendicular to the incident surface of the polarization beam splitter prism, respectively.
  • the polarization direction is parallel to the incident surface.
  • the first linearly polarized light A3 and the second linearly polarized light O3 are reflected from the fifth side S5 and exit from the second region Q2, and the third linearly polarized light O4 is from the second
  • the first area Q1 is emitted.
  • the first light sensor 15 is opposite to the second area Q2, and the second light sensor 16 is opposite to the first area Q1.
  • the second circularly polarized light O2 and the third linearly polarized light whose polarization directions are perpendicular to each other can be decomposed by using a polarization beam splitting prism or a laterally shifted polarization beam splitting prism.
  • the first linearly polarized light A3 obtained from the ambient light A1 has different propagation directions in the polarization beam splitting prism or the laterally shifted polarization beam splitting prism due to different polarization directions.
  • the polarization direction of the first linearly polarized light A3 and the polarization direction of the second linearly polarized light O3 are the same, both of which are the first polarization direction, and the polarization direction of the third linearly polarized light O4 is the second polarization direction, so The first polarization direction and the second polarization direction are perpendicular to each other.
  • the spectroscopic element 14 can also play a role of limiting the incident.
  • the function of the light range enables the light splitting element 14 to decompose the light O1 emitted from the same display area on the display panel 12 and detect them separately. In this way, the influence of stray light in multiple display areas on the display panel 12 can be avoided, furthermore the influence of the display content of the display panel 12 can be eliminated, and the accuracy of detecting the ambient light A1 can be improved.
  • the beam splitting element 14 may not be limited to the above-mentioned polarizing beam splitting prism and laterally shifted polarizing beam splitting prism, and other beam splitting elements may be used, such as a polarizing beam splitter.
  • the polarization beam splitter may be inclined with respect to a side of the first phase retarder 13 opposite to the polarization beam splitter so that all The first linearly polarized light A3 and the second circularly polarized light O2 are obliquely incident on the polarization splitting flat plate, thereby realizing the function of the polarization splitting flat plate to resolve the second circularly polarized light O2.
  • the terminal device may also detect the mixed light of the first linearly polarized light A3 and the second linearly polarized light O3 and the third linearly polarized light O4 through two different channels of a light sensor, which are not limited to The manner provided by the embodiments of the present disclosure.
  • the terminal device may further include an ambient light detection circuit.
  • the ambient light detection circuit is electrically connected to the at least one light sensor 15, 16 so that the ambient light A1 received by the at least one light sensor 15, 16 and light O1 emitted by the display panel 12 are used to obtain the The intensity of the ambient light A1.
  • the ambient light detection circuit may obtain the third intensity according to the second intensity and the correlation between the second intensity and the third intensity of the second linearly polarized light O3, and according to the The difference between the first intensity and the third intensity obtains the intensity of the ambient light A1.
  • the intensity of the second linearly polarized light O3 can be obtained according to the second intensity
  • the intensity of the first linearly polarized light A3 can be obtained according to the difference between the first intensity and the intensity of the second linearly polarized light O3.
  • the intensity of the ambient light A1 can be obtained according to the correlation between the intensity of the first linearly polarized light A3 and the intensity of the ambient light A1.
  • the correlation between the intensity of the first linearly polarized light A3 and the intensity of the ambient light A1 can also be measured experimentally, or it can also be calculated through theoretical calculations, and the correlation can be expressed in the form of a function. In this way, the influence of the display content of the display panel can be eliminated, and the accuracy of detecting the ambient light A1 can be improved.
  • the terminal device may further include a system-on-chip (SOC).
  • SOC system-on-chip
  • the system-on-chip is electrically connected to the at least one light sensor 15, 16 so that the ambient light is obtained according to the ambient light A1 received by the at least one light sensor 15, 16 and light O1 emitted by the display panel.
  • the SoC may obtain the third intensity according to the second intensity and the correlation between the second intensity and the third intensity of the second linearly polarized light O3, and according to the The difference between the first intensity and the third intensity obtains the intensity of the ambient light A1.
  • the method for the system-level chip to obtain the intensity of the ambient light A1 is similar to the method for the ambient light detection circuit to obtain the intensity of the ambient light A1, and details are not described herein again.
  • the original system-level chip of the terminal device can be used to implement the function of obtaining the intensity of the ambient light A1 according to the first intensity and the second intensity using software, which can avoid adding additional hardware and saving costs. .
  • the circular polarizer 11 disposed above the display panel 12 can also eliminate the reflected light after the first circularly polarized light A2 enters the display panel 12 to prevent the reflected light from affecting the display effect of the display panel 12.
  • the following description is made by taking the first circularly polarized light A2 as a right-handed circularly polarized light as an example.
  • the left-circularly polarized light enters the second phase retarder 112 to obtain a fifth linearly polarized light, and the polarization direction of the fifth linearly polarized light is parallel to
  • the left-handed circularly polarized light is incident on the incident surface of the second phase retarder 112. Since the incident surface of the left-handed circularly polarized light entering the second phase retarder 112 and the incident surface of the ambient light A1 entering the polarizer 111 are parallel to each other, the polarization direction of the fifth linearly polarized light is perpendicular to the polarization of the fourth linearly polarized light A4.
  • the direction, that is, the polarization direction of the fifth linearly polarized light is perpendicular to the transmission direction of the polarizer 111.
  • the polarizer 111 will not allow the fifth linearly polarized light to pass. In this way, the reflected light after the first circularly polarized light A2 enters the display panel 12 is eliminated.
  • the display panel 12 may be, but is not limited to, an OLED display panel.
  • the glass cover 17, the circular polarizer 11 and the display panel 12 may be integrated together.
  • the above “below” is the direction in which the glass cover 17 of the mobile terminal 100 is directed to the display panel 12.
  • the embodiment of the present disclosure does not limit the specific implementation of the mobile terminal 100 except the display panel 12, the first phase retarder 13, the light splitting element 14, and at least one light sensor 15, 16, such as the housing 18.
  • the mobile terminal includes: a display panel, a first phase retarder, a light splitting element, and at least one light sensor; the first phase retarder is located between the display panel and the light splitting element ; At least one light sensor is opposite to the light splitting element, and is configured to receive ambient light and light emitted from the display panel; the ambient light passing through the display panel and the light emitted by the display panel pass through the first phase retarder and the light splitting element in order, To improve the accuracy of detecting ambient light.
  • the light emitted from the display panel is converted into circularly polarized light by a first phase retarder, and then the light emitted by the display panel is decomposed by a light splitting element to obtain two linearly polarized lights whose polarization directions are perpendicular to each other.
  • the two linearly polarized light have different propagation paths, so that the two linearly polarized lights can be detected separately.
  • the ambient light passing through the display panel and the ambient light that can pass through the first phase retarder and the beam splitter in turn are received by the light sensor.
  • the technical solution provided by the embodiments of the present disclosure can perform light emission on the same display area on the display panel. Decompose and detect separately to eliminate the influence of the display panel display content and improve the accuracy of detecting ambient light.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种移动终端,包括:显示面板(12)、第一位相延迟器(13)、分光元件(14)以及至少一个光传感器(15、16);第一位相延迟器(13)位于显示面板(12)与分光元件(14)之间;至少一个光传感器(15、16)分别与分光元件(14)相对设置,配置为接收环境光(A1)以及显示面板(12)发射的光,穿过显示面板(12)的环境光(A1)与显示面板(12)发射的光(O1)依次穿过第一位相延迟器(13)与分光元件(14)。

Description

移动终端
相关申请和交叉引用
本申请基于申请号为201810650270.5、申请日为2018年06月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开实施例涉及终端技术领域,尤其涉及一种移动终端。
背景技术
在移动终端中,一般设置有环境光传感器。环境光传感器通常设置在移动终端的玻璃盖板的下方,配置为检测环境光的强度,以调节显示屏幕的亮度。但是,随着移动终端朝向全面屏的方向发展,玻璃盖板下方的空间越来越少,如果将环境光传感器继续放置于玻璃盖板下方,则成为移动终端走向全面屏的障碍。
相关技术中,为提高移动终端的屏占比,在移动终端的显示面板的下方设置两个光传感器,一个光传感器配置为检测显示面板发射的光的强度,另一个光传感器配置为检测显示面板发射的光与环境光的混合光的强度,然后根据二者的检测结果获取环境光的强度。然而,该方案对环境光的检测结果并不准确。因此,如何提高检测环境光的准确度是需要解决的一个技术问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种移动终端, 用以提高检测环境光的准确度。
根据本公开实施例的第一方面,提供一种移动终端,包括:显示面板、第一位相延迟器、分光元件以及至少一个光传感器;
所述第一位相延迟器位于所述显示面板与所述分光元件之间;
所述至少一个光传感器分别与所述分光元件相对设置,配置为接收环境光以及所述显示面板发射的光,穿过所述显示面板的所述环境光与所述显示面板发射的光依次穿过所述第一位相延迟器与所述分光元件。
在一个实施例中,所述至少一个光传感器可包括两个光传感器。
在一个实施例中,所述分光元件可包括第一侧面,所述第一侧面平行于所述第一位相延迟器上与第一侧面相对的侧面,以使所述环境光以及所述显示面板发射的光垂直入射所述分光元件。
在一个实施例中,所述分光元件可为偏振分光棱镜。
在一个实施例中,所述偏振分光棱镜可包括第二侧面与第三侧面;所述第二侧面与所述第一侧面相对且平行;所述第二侧面与所述第三侧面相邻且相互垂直;
一个光传感器与所述第二侧面相对设置,另一个光传感器与所述第三侧面相对设置。
在一个实施例中,所述分光元件可为侧向位移偏振分光棱镜。
在一个实施例中,所述侧向位移偏振分光棱镜可包括第四侧面与第五侧面;所述第四侧面与所述第一侧面相对且平行;所述第四侧面与所述第五侧面相邻,所述第四侧面与所述第五侧面之间的夹角为锐角;所述第四侧面包括第一区域与第二区域;所述第一区域与所述第一侧面相对,所述第二区域位于所述第五侧面的一侧;
一个光传感器与所述第一区域相对,另一个光传感器与所述第二区域相对。
在一个实施例中,所述分光元件可为偏振分光平片;
所述偏振分光平片相对于所述第一位相延迟器上与所述偏振分光平片相对的侧面倾斜设置,以使所述环境光以及所述显示面板发射的光斜射所述偏振分光平片。
在一个实施例中,所述第一位相延迟器可为四分之一波片。
在一个实施例中,还可包括圆偏光片,所述圆偏光片位于所述显示面板远离所述第一位相延迟器的一侧,配置为将所述环境光转换为圆偏振光。
在一个实施例中,所述圆偏光片可包括起偏器与第二位相延迟器;所述第二位相延迟器位于所述起偏器与所述显示面板之间。
在一个实施例中,所述起偏器可为偏光片,所述第二位相延迟器可为四分之一波片。
在一个实施例中,还可包括环境光检测电路;所述环境光检测电路与所述至少一个光传感器电连接,以使得根据所述至少一个光传感器接收的所述环境光以及所述显示面板发射的光获取所述环境光的强度。
在一个实施例中,还可包括系统级芯片SOC;所述系统级芯片与所述至少一个光传感器电连接,以使得根据所述至少一个光传感器接收的所述环境光以及所述显示面板发射的光获取所述环境光的强度。
本公开的实施例提供的技术方案可以包括以下有益效果:移动终端,包括:显示面板、第一位相延迟器、分光元件以及至少一个光传感器;第一位相延迟器位于显示面板与分光元件之间;至少一个光传感器分别与分光元件相对设置,配置为接收环境光以及显示面板发射的光,穿过显示面板的环境光与显示面板发射的光依次穿过第一位相延迟器与分光元件,用以提高检测环境光的准确度。
在一些本公开实施例中,通过第一位相延迟器将显示面板发射的光 转换为圆偏振光,然后,通过分光元件对显示面板发射的光进行分解得到偏振方向相互垂直的两束线偏振光,其中,该两束线偏振光的传播路径不同,这样,可以对两束线偏振光分别进行探测。穿过显示面板的环境光与可依次穿过第一位相延迟器与分光元件环境光被光传感器接收。由于分光元件可以对特定入射角的入射光实现分光功能,而对其他入射角的入射光不能实现分光功能,因此,本公开实施例提供的技术方案可以对显示面板上同一显示区域发射的光进行分解,并分别进行探测,以排除显示面板显示内容的影响,提高检测环境光的准确度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的移动终端的结构示意图;
图2是根据一示例性实施例示出的移动终端的横截面的示意图;
图3是根据另一示例性实施例示出的移动终端的横截面的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的移动终端100的结构示意图。移动终端100包括外壳18、透明的玻璃盖板17以及位于玻璃盖板17下方 的显示面板12。其中,显示面板12位于所述外壳18中。显示面板12发射的光可以透过玻璃盖板17。显示面板12可以通过透明的玻璃盖板17被看到。显示面板12例如可以是OLED显示面板,但不限于此。
图2是根据一示例性实施例示出的移动终端的横截面的示意图。如图2所示,本公开实施例的移动终端100还包括:第一位相延迟器13、分光元件14以及至少一个光传感器15、16。
如图2所示,所述第一位相延迟器13位于所述显示面板12与所述分光元件14之间。所述至少一个光传感器15、16分别与所述分光元件14相对设置,配置为接收环境光A1以及所述显示面板12发射的光O1,穿过所述显示面板12的所述环境光A1与所述显示面板12发射的光O1依次穿过所述第一位相延迟器13与所述分光元件14。
本实施例中,通过第一位相延迟器13将显示面板12发射的光O1转换为圆偏振光,然后,通过分光元件14对显示面板12发射的光O1进行分解得到偏振方向相互垂直的两束线偏振光,其中,该两束线偏振光的传播路径不同,这样,可以对两束线偏振光分别进行探测。穿过显示面板12的环境光A1与可依次穿过第一位相延迟器13与分光元件14环境光A1被光传感器15、16接收。由于分光元件14可以对特定入射角的入射光实现分光功能,而对其他入射角的入射光不能实现分光功能,因此,本公开实施例提供的技术方案可以对显示面板12上同一显示区域发射的光O1进行分解,并分别进行探测,以排除显示面板12显示内容的影响,提高检测环境光A1的准确度。
如图2所示,在一个实施例中,玻璃盖板17位于显示面板12远离所述第一位相延迟器13的一侧。
如图2所示,在一个实施例中,移动终端100还可包括圆偏光片11。所述圆偏光片11位于所述显示面板12远离所述第一位相延迟器13的一 侧,配置为将所述环境光A1转换为第一圆偏振光A2。在一个实施例中,圆偏光片11位于玻璃盖板17与显示面板12之间。
如图2所示,在一个实施例中,所述圆偏光片11可包括起偏器111与第二位相延迟器112。所述起偏器111可以为偏光片,所述第二位相延迟器112可以为四分之一波片。所述第二位相延迟器112位于所述起偏器111与所述显示面板12之间,以使所述环境光A1依次经过所述起偏器111与所述第二位相延迟器112后转换为所述第一圆偏振光A2。具体地,环境光A1经所述起偏器111后转换为第四线偏振光A4。其中,第四线偏振光A4的偏振方向可垂直于环境光A1入射起偏器111的入射面,也可以平行于环境光A1入射起偏器111的入射面。图2中所示的第四线偏振光A4的偏振方向垂直于环境光A1入射起偏器111的入射面。本公开实施例中,以第四线偏振光A4的偏振方向垂直于环境光A1入射起偏器111的入射面为例进行说明。第四线偏振光A4经第二位相延迟器112后转换为第一圆偏振光A2,第一圆偏振光A2能够透过显示面板12,可以供后续检测环境光A1的强度使用。
在一个实施例中,所述第一位相延迟器13配置为将透过所述显示面板12的所述第一圆偏振光A2转换为第一线偏振光A3,并将所述显示面板12发射的光O1转换为第二圆偏振光O2。
在一个实施例中,所述第一位相延迟器13可为四分之一波片。显示面板12发射的光O1可以是非偏振的自然光。显示面板12发射的光O1经第一位相延迟器13后可转换为第二圆偏振光O2。其中,第二圆偏振光O2可以包括左旋圆偏振光与右旋圆偏振光。第一圆偏振光A2经第一位相延迟器13后可转换为第一线偏振光A3。第一线偏振光A3的偏振方向与所述第四线偏振光A4的偏振方向相互垂直。其中,当第四线偏振光A4的偏振方向垂直于环境光A1入射起偏器111的入射面时,第一 线偏振光A3的偏振方向平行于第一圆偏振光A2入射第一位相延迟器13的入射面。当第四线偏振光A4的偏振方向平行于环境光A1入射起偏器111的入射面时,第一线偏振光A3的偏振方向垂直于第一圆偏振光A2入射第一位相延迟器13的入射面。本公开实施例中,以图2中所示的第一线偏振光A3的偏振方向平行于第一圆偏振光A2入射第一位相延迟器13的入射面为例进行说明。
在一个实施例中,所述分光元件14配置为对所述第一线偏振光A3进行透射,并对所述第二圆偏振光O2进行分解得到第二线偏振光O3与第三线偏振光O4。其中,所述第二线偏振光O3与所述第一线偏振光A3的传播路径相同,所述第三线偏振光O4与所述第二线偏振光O3的传播路径不同。所述至少一个光传感器15、16配置为检测所述第一线偏振光A3与所述第二线偏振光O3的混合光的第一强度,并检测所述第三线偏振光O4的第二强度,以使根据所述第一强度与所述第二强度获取所述环境光A1的强度。由于第三线偏振光O4的第二强度与第二线偏振光O3的强度存在关联关系,因此,可以根据第二强度得到第二线偏振光O3的强度,进一步地可以根据第一强度与第二线偏振光O3的强度得到第一线偏振光A3的强度。然后根据第一线偏振光A3的强度与环境光A1的强度之间的关联关系可以得到环境光A1的强度。本公开实施例提供的技术方案可以对显示面板12上同一显示区域发射的光O1进行分解,并分别进行探测,以排除显示面板12显示内容的影响,提高检测环境光A1的准确度。而且,利用显示面板12下方的净空空间放置配置为检测环境光A1的光传感器15、16,可以提高终端设备的屏占比。
如图2所示,在一个实施例中,分光元件14可为偏振分光棱镜。所述偏振分光棱镜包括第一侧面S1、第二侧面S2与第三侧面S3。所述第一侧面S1平行于所述第一位相延迟器13上与第一侧面S1相对的侧面, 以使所述第一线偏振光A3与所述第二圆偏振光O2垂直入射偏振分光棱镜,其中,第一线偏振光A3与所述第二圆偏振光O2的入射角可以为布儒斯特角。所述第二侧面S2与所述第一侧面S1相对且平行,所述第二侧面S2与所述第三侧面S3相邻且相互垂直。偏振分光棱镜允许所述第一线偏振光A3透射,并将第二圆偏振光O2分解为第二线偏振光O3与第三线偏振光O4。在本实施例中,所述第一线偏振光A3的偏振方向、所述第二线偏振光O3的偏振方向分别平行于入射所述偏振分光棱镜的入射面,所述第三线偏振光O4的偏振方向垂直于该入射面。所述第一线偏振光A3与所述第二线偏振光O3从所述第二侧面S2出射,所述第三线偏振光O4从所述第三侧面S3出射。需要说明的是,本公开实施例中,所有的入射面可相互平行。
在一个实施例中,上述的至少一个光传感器15、16包括第一光传感器15与第二光传感器16。所述第一光传感器15位于所述第一线偏振光A3与所述第二线偏振光O3的传播路径上,配置为检测所述第一线偏振光A3与所述第二线偏振光O3的混合光的第一强度。所述第二光传感器16位于所述第三线偏振光O4的传播路径上,配置为检测所述第三线偏振光O4的第二强度。
如图2所示,在一个实施例中,当第一线偏振光A3的偏振方向平行于所述第一线偏振光A3入射所述分光元件14的入射面、所述第一线偏振光A3与所述第二线偏振光O3从所述第二侧面S2出射、所述第三线偏振光O4从所述第三侧面S3出射时,所述第一光传感器15与所述第二侧面S2相对设置,所述第二光传感器16与所述第三侧面S3相对设置。
在另一个实施例中,所述第一线偏振光A3的偏振方向、所述第二线偏振光O3的偏振方向分别垂直于入射所述偏振分光棱镜的入射面, 所述第三线偏振光O4的偏振方向平行于该入射面。在本实施例中,所述第一线偏振光A3与所述第二线偏振光O3从所述第三侧面S3出射、所述第三线偏振光O4从所述第二侧面S2出射。所述第一光传感器15与所述第三侧面S3相对设置,所述第二光传感器16与所述第二侧面S2相对设置。
需要说明的是,上述的左旋圆偏振光经分光元件14后可以被分解为第二线偏振光O3与第三线偏振光O4,右旋圆偏振光经分光元件14后也可以被分解为第二线偏振光O3与第三线偏振光O4。
如图3所示,在另一个实施例中,分光元件14可为侧向位移偏振分光棱镜。所述侧向位移偏振分光棱镜包括第一侧面S1、第四侧面S4与第五侧面S5。所述第一侧面S1平行于所述第一位相延迟器13上与第一侧面S1相对的侧面,以使所述第一线偏振光A3与所述第二圆偏振光O2垂直入射偏振分光棱镜,其中,第一线偏振光A3与所述第二圆偏振光O2的入射角可以为布儒斯特角。所述第四侧面S4与所述第一侧面S1相对且平行,所述第四侧面S4与所述第五侧面S5相邻,所述第四侧面S4与所述第五侧面S5之间的夹角为锐角,该夹角可视具体情况设置。所述第四侧面S4包括第一区域Q1与第二区域Q2,所述第一区域Q1与所述第一侧面S1相对,所述第二区域Q2位于所述第五侧面S5的一侧。在本实施例中,所述第一线偏振光A3的偏振方向、所述第二线偏振光O3的偏振方向分别平行于入射所述偏振分光棱镜的入射面,所述第三线偏振光O4的偏振方向垂直于该入射面。所述第一线偏振光A3与所述第二线偏振光O3从所述第一区域Q1出射,出射方向可垂直于第四侧面S4。所述第三线偏振光O4经所述第五侧面S5反射后从所述第二区域Q2出射,出射方向也可垂直于第四侧面S4。在本实施例中,所述第一光传感器15与所述第一区域Q1相对设置,所述第二光传感器16 与所述第二区域Q2相对设置。
在另一个实施例中,所述第一线偏振光A3的偏振方向、所述第二线偏振光O3的偏振方向分别垂直于入射所述偏振分光棱镜的入射面,所述第三线偏振光O4的偏振方向平行于该入射面。在本实施例中,所述第一线偏振光A3与所述第二线偏振光O3经所述第五侧面S5反射后从所述第二区域Q2出射,所述第三线偏振光O4从所述第一区域Q1出射。所述第一光传感器15与所述第二区域Q2相对,所述第二光传感器16与所述第一区域Q1相对。
在图2与图3所示的实施例中,利用偏振分光棱镜或侧向位移偏振分光棱镜可以将第二圆偏振光O2进行分解得到偏振方向相互垂直的第二线偏振光O3与第三线偏振光O4。其中,由环境光A1得到的第一线偏振光A3因偏振方向不同而在偏振分光棱镜或侧向位移偏振分光棱镜中的传播方向不同。总之,所述第一线偏振光A3的偏振方向、所述第二线偏振光O3的偏振方向相同,均为第一偏振方向,所述第三线偏振光O4的偏振方向为第二偏振方向,所述第一偏振方向与所述第二偏振方向相互垂直。
在图2与图3所示的实施例中,基本上只有从分光元件14的第一侧面S1垂直入射的光才能被光传感器15、16检测到,因此,分光元件14还可以起到限制入射光范围的作用,以使分光元件14可以对显示面板12上同一显示区域发射的光O1进行分解,并分别进行探测。这样,可以避免显示面板12上多个显示区域的杂散光的影响,进而可以排除显示面板12显示内容的影响,提高检测环境光A1的准确度。
当然,在实际应用时,分光元件14可以不局限于上述的偏振分光棱镜以及侧向位移偏振分光棱镜,也可以使用其他分光元件,例如偏振分光平片。当使用偏振分光平片对第二圆偏振光O2进行分光处理时,偏 振分光平片可以相对于所述第一位相延迟器13上与所述偏振分光平片相对的侧面倾斜设置,以使所述第一线偏振光A3与所述第二圆偏振光O2斜射所述偏振分光平片,进而实现偏振分光平片分解第二圆偏振光O2的功能。
在另一个实施例中,终端设备也可以通过一个光传感器的两个不同通道分别检测第一线偏振光A3与所述第二线偏振光O3的混合光以及所述第三线偏振光O4,不限于本公开实施例提供的方式。
在一个实施例中,终端设备还可包括环境光检测电路。该环境光检测电路与所述至少一个光传感器15、16电连接,以使得根据所述至少一个光传感器15、16接收的所述环境光A1以及所述显示面板12发射的光O1获取所述环境光A1的强度。在一个实施例中,环境光检测电路可以根据所述第二强度以及所述第二强度与所述第二线偏振光O3的第三强度之间的关联关系得到所述第三强度,并根据所述第一强度与所述第三强度的差值获取所述环境光A1的强度。具体地,第三线偏振光O4的第二强度与第二线偏振光O3的强度存在关联关系,其中,该关联关系可通过实验测得,也可通过理论计算得到,且该关联关系可以通过函数形式表示。因此,可以根据第二强度得到第二线偏振光O3的强度,进一步地,可以根据第一强度与第二线偏振光O3的强度的差值得到第一线偏振光A3的强度。然后,可以根据第一线偏振光A3的强度与环境光A1的强度之间的关联关系可以得到环境光A1的强度。其中,第一线偏振光A3的强度与环境光A1的强度之间的关联关系同样可以通过实验测得,或者也可通过理论计算得到,且该关联关系可以通过函数形式表示。这样,可以排除显示面板显示内容的影响,提高检测环境光A1的准确度。
在另一个实施例中,终端设备还可包括系统级芯片(SOC)。该系 统级芯片与所述至少一个光传感器15、16电连接,以使得根据所述至少一个光传感器15、16接收的所述环境光A1以及所述显示面板发射的光O1获取所述环境光A1的强度。在一个实施例中,系统级芯片可以根据所述第二强度以及所述第二强度与所述第二线偏振光O3的第三强度之间的关联关系得到所述第三强度,并根据所述第一强度与所述第三强度的差值获取所述环境光A1的强度。在本实施例中,系统级芯片获取所述环境光A1的强度的方法与环境光检测电路获取所述环境光A1的强度的方法相似,在此不再赘述。换句话说,本实施例中,可以利用终端设备原有的系统级芯片采用软件实现根据第一强度与第二强度获取所述环境光A1的强度的功能,可以避免增加额外的硬件,节约成本。
另外,设置于显示面板12上方的圆偏光片11还可以消除第一圆偏振光A2入射显示面板12后的反射光,以避免该反射光影响显示面板12的显示效果。具体地,下面以第一圆偏振光A2为右旋圆偏振光为例进行说明。当第一圆偏振光A2入射显示面板12后反射光为左旋圆偏振光,该左旋圆偏振光入射第二位相延迟器112后得到第五线偏振光,第五线偏振光的偏振方向平行于左旋圆偏振光入射第二位相延迟器112的入射面。由于左旋圆偏振光入射第二位相延迟器112的入射面与环境光A1入射起偏器111的入射面相互平行,因此,第五线偏振光的偏振方向垂直于第四线偏振光A4的偏振方向,即第五线偏振光的偏振方向垂直于起偏器111的透振方向。当第五线偏振光入射起偏器111时,起偏器111将不允许第五线偏振光通过。这样,就消除了第一圆偏振光A2入射显示面板12后的反射光。
在一个实施例中,显示面板12可为但不限于OLED显示面板。在一个实施例中,玻璃盖板17、圆偏光片11与显示面板12可以集成在一起。
需要说明的是,在本公开实施例中,上述的“下方”为移动终端100的玻璃盖板17指向显示面板12的方向。本公开实施例对移动终端100中除显示面板12、第一位相延迟器13、分光元件14以及至少一个光传感器15、16之外的部分,例如外壳18,的具体实施方式不作限制。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的实施例提供的技术方案可以包括以下有益效果:移动终端,包括:显示面板、第一位相延迟器、分光元件以及至少一个光传感器;第一位相延迟器位于显示面板与分光元件之间;至少一个光传感器分别与分光元件相对设置,配置为接收环境光以及显示面板发射的光,穿过显示面板的环境光与显示面板发射的光依次穿过第一位相延迟器与分光元件,用以提高检测环境光的准确度。
在一些本公开实施例中,通过第一位相延迟器将显示面板发射的光转换为圆偏振光,然后,通过分光元件对显示面板发射的光进行分解得到偏振方向相互垂直的两束线偏振光,其中,该两束线偏振光的传播路径不同,这样,可以对两束线偏振光分别进行探测。穿过显示面板的环境光与可依次穿过第一位相延迟器与分光元件环境光被光传感器接收。 由于分光元件可以对特定入射角的入射光实现分光功能,而对其他入射角的入射光不能实现分光功能,因此,本公开实施例提供的技术方案可以对显示面板上同一显示区域发射的光进行分解,并分别进行探测,以排除显示面板显示内容的影响,提高检测环境光的准确度。

Claims (14)

  1. 一种移动终端,包括:显示面板、第一位相延迟器、分光元件以及至少一个光传感器;
    所述第一位相延迟器位于所述显示面板与所述分光元件之间;
    所述至少一个光传感器分别与所述分光元件相对设置,配置为接收环境光以及所述显示面板发射的光,穿过所述显示面板的所述环境光与所述显示面板发射的光依次穿过所述第一位相延迟器与所述分光元件。
  2. 根据权利要求1所述的移动终端,其中,所述至少一个光传感器包括两个光传感器。
  3. 根据权利要求2所述的移动终端,其中,所述分光元件包括第一侧面,
    所述第一侧面平行于所述第一位相延迟器上与第一侧面相对的侧面,以使所述环境光以及所述显示面板发射的光垂直入射所述分光元件。
  4. 根据权利要求3所述的移动终端,其中,所述分光元件为偏振分光棱镜。
  5. 根据权利要求4所述的移动终端,其中,所述偏振分光棱镜还包括第二侧面与第三侧面;
    所述第二侧面与所述第一侧面相对且平行;所述第二侧面与所述第三侧面相邻且相互垂直;
    一个光传感器与所述第二侧面相对设置,另一个光传感器与所述第三侧面相对设置。
  6. 根据权利要求3所述的移动终端,其中,所述分光元件为侧向位移偏振分光棱镜。
  7. 根据权利要求6所述的移动终端,其中,所述侧向位移偏振分光棱镜还包括第四侧面与第五侧面;
    所述第四侧面与所述第一侧面相对且平行;所述第四侧面与所述第五侧面相邻,所述第四侧面与所述第五侧面之间的夹角为锐角;所述第四侧面包括第一区域与第二区域;所述第一区域与所述第一侧面相对,所述第二区域位于所述第五侧面的一侧;
    一个光传感器与所述第一区域相对,另一个光传感器与所述第二区域相对。
  8. 根据权利要求1所述的移动终端,其中,所述分光元件为偏振分光平片;
    所述偏振分光平片相对于所述第一位相延迟器上与所述偏振分光平片相对的侧面倾斜设置,以使所述环境光以及所述显示面板发射的光斜射所述偏振分光平片。
  9. 根据权利要求1所述的移动终端,其中,所述第一位相延迟器为四分之一波片。
  10. 根据权利要求1所述的移动终端,其中,所述移动终端还包括圆偏光片,
    所述圆偏光片位于所述显示面板远离所述第一位相延迟器的一侧,配置为将所述环境光转换为圆偏振光。
  11. 根据权利要求10所述的移动终端,其中,所述圆偏光片包括起偏器与第二位相延迟器;
    所述第二位相延迟器位于所述起偏器与所述显示面板之间。
  12. 根据权利要求11所述的移动终端,其中,所述起偏器为偏光片,所述第二位相延迟器为四分之一波片。
  13. 根据权利要求1所述的移动终端,其中,所述移动终端还包括环境光检测电路;
    所述环境光检测电路与所述至少一个光传感器电连接,以使得根据 所述至少一个光传感器接收的所述环境光以及所述显示面板发射的光获取所述环境光的强度。
  14. 根据权利要求1所述的移动终端,其中,还包括系统级芯片SOC;
    所述系统级芯片与所述至少一个光传感器电连接,以使得根据所述至少一个光传感器接收的所述环境光以及所述显示面板发射的光获取所述环境光的强度。
PCT/CN2018/107117 2018-06-22 2018-09-21 移动终端 WO2019242141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019551654A JP7248583B2 (ja) 2018-06-22 2018-09-21 移動端末
KR1020197026210A KR102164173B1 (ko) 2018-06-22 2018-09-21 이동 단말기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810650270.5A CN108881538A (zh) 2018-06-22 2018-06-22 移动终端
CN201810650270.5 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242141A1 true WO2019242141A1 (zh) 2019-12-26

Family

ID=64340386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107117 WO2019242141A1 (zh) 2018-06-22 2018-09-21 移动终端

Country Status (6)

Country Link
US (1) US10755630B2 (zh)
EP (1) EP3588024B1 (zh)
JP (1) JP7248583B2 (zh)
KR (1) KR102164173B1 (zh)
CN (1) CN108881538A (zh)
WO (1) WO2019242141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110659A (ja) * 2020-01-10 2021-08-02 ローム株式会社 光学センサ

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD947548S1 (en) * 2019-03-06 2022-04-05 Beijing Xiaomi Mobile Software Co., Ltd. Mobile phone
CN111698351B (zh) * 2019-03-14 2021-12-28 北京小米移动软件有限公司 移动终端
JP7365263B2 (ja) 2019-05-09 2023-10-19 ローム株式会社 照度センサ、電子機器および二次元画像センサ
CN112133723A (zh) * 2019-06-24 2020-12-25 南昌欧菲生物识别技术有限公司 感光模组、显示装置及电子设备
CN112146757B (zh) * 2019-06-27 2023-05-30 北京小米移动软件有限公司 环境光检测装置
CN112146758B (zh) * 2019-06-27 2023-07-25 北京小米移动软件有限公司 环境光检测装置
CN112449034A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 一种移动终端
CN112484850B (zh) * 2019-09-11 2024-03-26 北京小米移动软件有限公司 光强检测模块、屏幕部件和移动终端
US10893132B1 (en) 2019-10-09 2021-01-12 Beijing Xiaomi Mobile Software Co., Ltd. Mobile terminal
US11513001B2 (en) * 2019-10-28 2022-11-29 Sensortek Technology Corp. Light sensor module including a polarizing element to block display light
KR20210084879A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 디스플레이 장치
WO2021142639A1 (zh) * 2020-01-15 2021-07-22 杭州芯格微电子有限公司 显示器下部的传感器
US11867538B2 (en) 2020-01-15 2024-01-09 Hangzhou Single Micro Electronic Co., Ltd. Lower display sensor
CN111670346A (zh) * 2020-01-21 2020-09-15 杭州芯格微电子有限公司 显示器下部的照度传感器
WO2021217308A1 (zh) * 2020-04-26 2021-11-04 杭州芯格微电子有限公司 显示器下部的色彩照度传感器
CN112729538A (zh) * 2020-03-30 2021-04-30 义明科技股份有限公司 显示装置及其环境光传感器
CN111337124B (zh) * 2020-04-20 2022-08-05 北京小米移动软件有限公司 终端设备及环境光检测方法
CN111366242B (zh) * 2020-05-27 2020-09-04 北京小米移动软件有限公司 环境光检测装置及终端设备
GB202008691D0 (en) * 2020-06-09 2020-07-22 Ams Int Ag Ambient light sensing
CN111833829B (zh) * 2020-07-24 2022-05-17 Oppo(重庆)智能科技有限公司 环境光感值的获取方法、装置、电子设备和可读存储介质
CN111933665B (zh) 2020-08-05 2023-04-07 维沃移动通信有限公司 显示模组和电子设备
CN111998940B (zh) * 2020-08-28 2023-09-05 Oppo广东移动通信有限公司 显示屏组件、电子设备及环境光强度检测方法
CN113376896B (zh) * 2021-06-04 2023-06-30 惠州华星光电显示有限公司 显示装置
US20240029644A1 (en) * 2022-07-22 2024-01-25 ams Sensors USA Inc. Optical sensor module and method for behind oled ambient light detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201018888A (en) * 2008-11-11 2010-05-16 Ind Tech Res Inst Phase retardance inspection instrument
CN204155595U (zh) * 2013-11-07 2015-02-11 苹果公司 电子设备和检测落在电子设备上的环境光的装置
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置
CN107909922A (zh) * 2017-11-16 2018-04-13 维沃移动通信有限公司 一种移动终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284018A (ja) * 1991-03-13 1992-10-08 Fuji Electric Co Ltd 光電スイッチ
US20020109820A1 (en) * 2001-02-13 2002-08-15 Jui-Wen Pan Color management system of liquid crystal-display projecting apparatus
JP4559162B2 (ja) * 2004-08-30 2010-10-06 ソフトバンクモバイル株式会社 情報通信端末
TWI254128B (en) 2004-12-29 2006-05-01 Optimax Tech Corp Apparatus and method for measuring phase retardation
WO2009035041A1 (ja) 2007-09-13 2009-03-19 Nec Corporation 画像表示装置、画像表示方法、および方向算出プログラム
FR2966258B1 (fr) * 2010-10-15 2013-05-03 Bioaxial Système de microscopie de superresolution de fluorescence et méthode pour des applications biologiques
TW201419036A (zh) * 2012-11-06 2014-05-16 Pixart Imaging Inc 感測元件陣列、控制感測裝置的方法以及相關電子裝置
CN203311091U (zh) * 2013-05-31 2013-11-27 京东方科技集团股份有限公司 一种光学器件、背光源及显示装置
US10228564B2 (en) * 2016-03-03 2019-03-12 Disney Enterprises, Inc. Increasing returned light in a compact augmented reality/virtual reality display
CN105652461A (zh) * 2016-03-31 2016-06-08 京东方科技集团股份有限公司 偏振光光源、显示装置
US9958684B1 (en) * 2017-04-28 2018-05-01 Microsoft Technology Licensing, Llc Compact display engine with MEMS scanners
CN107241467B (zh) * 2017-05-11 2020-08-07 Oppo广东移动通信有限公司 电子装置
CN107422484B (zh) * 2017-09-19 2023-07-28 歌尔光学科技有限公司 棱镜式ar显示装置
US20190243147A1 (en) * 2018-02-07 2019-08-08 Disney Enterprises, Inc. Polarization-sensitive pancake optics
CN208271496U (zh) * 2018-06-22 2018-12-21 北京小米移动软件有限公司 移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201018888A (en) * 2008-11-11 2010-05-16 Ind Tech Res Inst Phase retardance inspection instrument
CN204155595U (zh) * 2013-11-07 2015-02-11 苹果公司 电子设备和检测落在电子设备上的环境光的装置
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置
CN107909922A (zh) * 2017-11-16 2018-04-13 维沃移动通信有限公司 一种移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110659A (ja) * 2020-01-10 2021-08-02 ローム株式会社 光学センサ

Also Published As

Publication number Publication date
CN108881538A (zh) 2018-11-23
KR20200000435A (ko) 2020-01-02
JP2020527222A (ja) 2020-09-03
EP3588024A1 (en) 2020-01-01
US20190392752A1 (en) 2019-12-26
JP7248583B2 (ja) 2023-03-29
US10755630B2 (en) 2020-08-25
EP3588024B1 (en) 2023-08-02
KR102164173B1 (ko) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019242141A1 (zh) 移动终端
US10983048B2 (en) Terahertz full-polarization-state detection spectrograph
US9612152B2 (en) Ambient light sensor with internal light cancellation
US9429831B2 (en) Lighting device and projector
US8130378B2 (en) Phase retardance inspection instrument
US10578492B2 (en) Polarimeter for detecting polarization rotation
CN1917806A (zh) 高效低相干干涉测量
WO2018045735A1 (zh) 一种用于激光测量信号修正的装置
TW201525602A (zh) 雷射投影設備
CN208271496U (zh) 移动终端
US11867538B2 (en) Lower display sensor
WO2019037723A1 (zh) 光传感器及终端设备
TWI382269B (zh) 投影裝置
CN111220904A (zh) 测试互连基板的方法和用于执行该方法的装置
KR101825994B1 (ko) 직선편광으로 인한 계측오차가 보정된 휘도색도계
JP2012185091A (ja) シリコン基板の検査装置および検査方法
CN105021574B (zh) 用于检测样本特性的光学传感装置和方法
JP2009058464A (ja) 光軸計測方法および光軸計測装置
CN109520936A (zh) 基于晶体尖劈干涉实现的旋光度测量方法
KR102045442B1 (ko) 타원해석기
TW201226882A (en) Measurement apparatus and measurement method thereof
US20220268898A1 (en) Optical sensing system
JP2008241469A (ja) 欠陥検査装置
TW202014742A (zh) 光學影像感測裝置
JP2006284621A (ja) 光学素子の評価装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197026210

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019551654

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923028

Country of ref document: EP

Kind code of ref document: A1