WO2018045735A1 - 一种用于激光测量信号修正的装置 - Google Patents

一种用于激光测量信号修正的装置 Download PDF

Info

Publication number
WO2018045735A1
WO2018045735A1 PCT/CN2017/075821 CN2017075821W WO2018045735A1 WO 2018045735 A1 WO2018045735 A1 WO 2018045735A1 CN 2017075821 W CN2017075821 W CN 2017075821W WO 2018045735 A1 WO2018045735 A1 WO 2018045735A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
signal
beam splitting
splitting prism
Prior art date
Application number
PCT/CN2017/075821
Other languages
English (en)
French (fr)
Inventor
刘龙为
潘子祥
Original Assignee
深圳市中图仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中图仪器股份有限公司 filed Critical 深圳市中图仪器股份有限公司
Publication of WO2018045735A1 publication Critical patent/WO2018045735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present invention relates to a laser measuring device, and more particularly to an apparatus for laser measuring signal correction.
  • a laser interferometer is an optical measuring instrument that measures linear displacement using light wave interference techniques.
  • the laser is divided into two beams, one beam is a stationary reference light, and the other beam is a moving measurement light.
  • the processing is performed by electronic or software algorithms. The moving distance of the moving light is measured.
  • the laser interferometer optical path is as shown in FIG. 3, and the laser light is output from the laser 101 and then obtained by the depolarization beam splitting prism 102 to obtain the stabilized light 103 and the working light, and the working light enters the polarization beam splitting prism 104 to obtain the linear polarized light.
  • the structure of the system is shorter and more compact, and the reflected beam of the polarization beam splitting prism 104 is mainly utilized, so that it can filter a mode and play a polarizing function, and then directly expand the beam collimation, and then pass through a quarter.
  • the wave plate 105 converts the linearly polarized light into circularly polarized light, and then enters the external optical path system 106 to form reference light and measurement light.
  • the extinction of the reflected light of the polarization beam splitting prism 104 is relatively low and away from the laser output end, the polarization state of the laser is changed during the transmission process due to the influence of various optical components in the system and the surrounding environment, resulting in the output of the linearly polarized light itself.
  • the degree of polarization is low.
  • the extinction polarization extinction ratio is also deteriorated. In the above cases, the polarization state of the optical signal is impure.
  • the photodetector 108 receives a part of the optical signal that does not generate interference, and generates a DC component, which causes the Lissa, which is formed by the subsequent interference signal, to appear eccentric as shown in FIG. happening.
  • the existing optical path system is relatively simple in the processing of the return light signal, only through a 1/2 wave plate 107, and then splits through the splitting prism and then enters each photodetector separately, but actually the laser beam expands collimation After that, there is still a certain divergence angle. In the case of long-distance measurement, the spot size after laser divergence may be larger than that of the photodetector receiving surface as shown in Fig. 5.
  • the laser energy is Gaussian, and the light intensity in different regions on the spot is different.
  • the photosurface of the detector is not at the center of the laser, the Lissajous figure of the interference signal will become elliptical, as shown in Fig. 6.
  • Lissajous appears to be eccentric or abnormal in shape, it will affect the calculation results in the electronic and software systems, resulting in abnormal measurement results.
  • the photodetector can only receive part of the optical signal on the laser signal. Since the laser energy has a Gaussian distribution, the light intensity at different positions on the laser spot is different, so the Lissajous figure formed by the interference signal light at different positions is different. When the distance is far enough, the spot is larger than the photosensitive surface of the detector, the photodetector Deviating from the center of the spot, the interference signal pattern formed by the Lissajous figure will become an abnormality such as an ellipse, which will affect the calculation of the actual moving distance of the system.
  • the present invention provides an apparatus for laser measurement signal correction.
  • the Lissajous figure formed by the measurement signal becomes elliptical, expands the measurement distance of the laser interferometer, optimizes the pattern formed by the interference signal, and improves the accuracy of the system measurement.
  • the invention provides a device for laser measurement signal correction, comprising a laser, a depolarization beam splitting prism, a polarization beam splitting prism, a detection system, an external light path system, a collecting lens, a 1/2 wave plate and a signal detecting and processing system.
  • the laser light emitted by the laser passes through the depolarization beam splitting prism and the polarization beam splitting prism to form an outgoing light, and the emitted light is injected into the external light path system through the analyzer, and the detecting system ensures the The linear polarization characteristic of the emitted light is described, and the signal light emitted by the external optical path system is injected into the signal detection and processing system through the collecting lens and the 1/2 wave plate.
  • the analyzer system includes a polarizer and a quarter-wave plate arranged in order of light path.
  • the analyzer system includes a polarizing prism and a quarter-wave plate arranged in order of optical paths.
  • the beneficial effects of the present invention are: by the above scheme, on the one hand, adding a detection system after the collimated beam expanding system of the laser output, thereby ensuring the linear polarization characteristic of the emitted laser, filtering out
  • the DC component in the subsequent measurement signal does not need to be added to the analyzer before the subsequent multiple photodetectors, and the Lissajous formed by the interference signal does not appear eccentric; on the other hand, it increases in the optical path of the laser receiving
  • a concentrating lens as long as the lens size is large enough, can reduce the reflected signal spot, so that the spot size is much smaller than the photodetector surface size, so that even when moving the mirror, the reflected spot energy will be completely photoelectric
  • the detector receives the resulting interference signal pattern Lissajous into a standard circle.
  • Figure 1 is a schematic illustration of an apparatus for laser measurement signal correction in accordance with the present invention.
  • FIG. 2 is a schematic diagram of a post-concentration interference signal spot and a photosensitive surface of a device for laser measurement signal correction according to the present invention.
  • Figure 3 is a system diagram of a conventional laser interferometer measurement.
  • Figure 5 is a diagram of the Lissajous figure when the photosensitive surface measured by a conventional laser interferometer is at the center of the laser spot.
  • Figure 6 is a diagram of the Lissajous figure when the photosurface measured by a conventional laser interferometer is not at the center of the laser spot.
  • 1 to 2 are: laser 1; depolarization beam splitting prism 2; frequency stabilization signal light 3; polarization beam splitting prism 4; polarizer 5; outgoing light 6; quarter wave plate 7; external light path System 8; concentrating lens 9; 1/2 wave plate 10; signal light 11; signal detection processing system 12.
  • a device for laser measurement signal correction includes a laser 1, a depolarization beam splitting prism 2, a polarization beam splitting prism 4, a polarization detecting system, an external light path system 8, a collecting lens 9, and a 1/2 wave.
  • the detection system ensures the linear polarization characteristic of the outgoing light 6, and the signal light emitted by the external optical path system 8 passes through the collecting lens 9, the 1/2 wave plate 10 Into the signal detection processing system 12, the depolarization beam splitting prism 2 emits the stabilized signal light 3.
  • the analyzer system includes a polarizer 5 and a quarter-wave plate 7 arranged in order of light path.
  • the analyzer system includes a polarizing prism and a quarter-wave plate 7 arranged in order of optical paths.
  • the signal detection processing system 12 includes a photodetector.
  • the external light path system 8 includes a polarization beam splitting prism and two corner reflections.
  • the working principle of the device for laser measurement signal correction provided by the invention is as follows:
  • the polarizer 5 (1) Adding a polarizer 5 or other polarizing device after the collimated beam expanding system of the laser output, thereby ensuring the linear polarization characteristic of the outgoing laser and filtering out the direct current component in the subsequent measurement signal, the polarizer 5 It is also possible to form a detection system with the 1/4 wave plate 7, and it is not necessary to add an analyzer before the subsequent plurality of photodetectors, and the Lissajous figure formed by the interference signal does not appear eccentric.
  • a condensing lens 9 is added to the optical path of the laser reception. As long as the size parameter of the lens 9 is reasonable, the reflected signal spot can be reduced, so that the size of the spot 14 is much smaller than the size of the photosurface 13 of the photodetector (as shown in FIG. 2). In addition, the position of the concentrating lens 9 is strictly required, and it is necessary to ensure that the focus of the spot is near the photosensitive surface 13 of the photodetector, and the interference light signal spot formed after the condensing lens 9 is added is as shown in FIG. 2, so that even in the moving mirror At the same time, the reflected spot energy will be relatively easily received by the photodetector, and the resulting interference signal pattern Lissajous will become a standard circle.
  • the Lissajous figure obtained by the measurement signal does not appear to be eccentric or elliptical, which effectively improves the accuracy of the calculation of the measurement distance and improves the reliability of the system.
  • the focus lens 9 Since the focus lens 9 is added at the signal receiving end, the reflected signal spot can be effectively reduced, and the signal light energy is concentrated, thereby improving the measurement distance of the system.
  • the polarizer 5 or other polarizing device added at the laser output position can improve the polarization characteristics of the output laser, and the quarter-wave plate 7 constitutes a polarization detecting system to ensure the purity of the output line polarized light.
  • a concentrating lens 9 fixed at the signal receiving end or a system with concentrating effect can increase the distance measured by the system, reduce the reflected laser spot, concentrate the spot energy, and illuminate all the signal light to the photodetector photosurface. on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于激光测量信号修正的装置,包括激光器(1)、消偏振分光棱镜(2)、偏振分光棱镜(4)、检偏系统(5、7)、外光路系统(8)、聚光透镜(9)、1/2波片(10)和信号探测处理系统(12),其中,激光器(1)射出的激光先后经过消偏振分光棱镜(2)、偏振分光棱镜(4)形成出射光(6),出射光(6)经检偏系统(5、7)射入外光路系统(8),检偏系统(5、7)保证了出射光(6)的线偏振特性,外光路系统(8)射出的信号光(11)先后经过聚光透镜(9)、1/2波片(10)射入信号探测处理系统(12)。装置的有益效果是:一方面,干涉信号形成的李萨如图不会出现偏心的现象;另一方面,可将反射回来的信号光斑缩小,使光斑尺寸远小于光电探测器光敏面尺寸。

Description

一种用于激光测量信号修正的装置 技术领域
本发明涉及激光测量装置,尤其涉及一种用于激光测量信号修正的装置。
背景技术
激光干涉仪是用光波干涉技术测量线性位移的光学测量仪器。其测量时,激光分为两束,一束为静止的参考光,另外一束为运动的测量光,通过记录测量光运动时与参考光的相位差,通过电子、软件算法等的处理来得到运动的测量光的移动距离。
现有技术中,激光干涉仪光路如图3,均是激光从激光器101中输出后通过一个消偏振分光棱镜102得到稳频光103和工作光,工作光进入偏振分光棱镜104得到线偏光,为了使系统的结构更短更紧凑,主要利用偏振分光棱镜104的反射光束,这样既可以达到滤去一个模式,又可以起到起偏的作用,然后直接扩束准直,再通过一个1/4波片105将线偏光变成圆偏振光,然后再进入外光路系统106形成参考光和测量光。然而由于偏振分光棱镜104反射光的消光比较低,且远离激光输出端,激光在传输过程中由于受到系统中各个光学元件以及周围环境的影响,偏振态会发生变化,造成输出的线偏振光本身偏振度较低。另外,偏振分光棱镜103的角度安装上如果存在一定的偏差,同样会导致出射的偏振光消光比变差。以上这些情况将造成光信号偏振态不纯,最后光电探测器108接收到部分未产生干涉的光信号,产生一个直流分量,会造成后续干涉信号形成的李萨如图出现偏心如图4等异常情况。另外,现有光路系统在回光信号的处理上也比较简单,仅是通过一个1/2波片107,然后经过分光棱镜分光后分别进入到各个光电探测器,而实际上激光扩束准直后仍然存在一定的发散角,在长距离测量情况下,激光发散后光斑尺寸可能大于光电探测器接收面的情况如图5,而激光能量成高斯分布,光斑上不同区域的光强不同,当探测器的光敏面不在激光的中心时,干涉信号的李萨如图将变成椭圆,如图6。以上两种情况,当李萨如图出现偏心或形状异常的情况,都会影响电子和软件系统中的计算结果,造成测量的结果异常。
现有技术的缺点如下:
1.现有激光干涉仪测量系统中一直未考虑输出激光的线偏振特性的变化。不纯的线偏振输出激光,最后反射回光电探测器后,除了干涉信 号外,还会形成一个直流分量,造成干涉信号形成的李萨如图经常出现偏心的情况,偏心严重的情况下,会造成无法计算实际的移动距离或使计算结果出现较大误差。
2.现有激光干涉仪测量系统,由于未考虑激光光斑发散的情况,在长距离测量时,由于激光干涉仪测量系统光斑变大,光电探测器只能接收到激光信号上部分的光信号,由于激光能量呈高斯分布,所以激光光斑上不同位置的光强不同,所以不同位置的干涉信号光形成的李萨如图也不同,当距离足够远,光斑大于探测器光敏面时,光电探测器偏离光斑中心,形成的干涉信号图样李萨如图会变成椭圆等异常的情况,会影响系统对实际的移动距离的计算。
发明内容
为了解决现有技术中的问题,本发明提供了一种用于激光测量信号修正的装置。
本发明的目的:
1.改善现有激光干涉测量系统中输出激光的线偏振特性,解决激光干涉仪中测量信号形成的李萨如图经常出现偏心的问题,提高激光干涉仪测量的可靠性。
2.解决激光光斑发散造成的,测量信号形成的李萨如图变成椭圆的问题,扩大激光干涉仪的测量距离,优化干涉信号形成的图样,提高系统测量的准确性。
本发明提供了一种用于激光测量信号修正的装置,包括激光器、消偏振分光棱镜、偏振分光棱镜、检偏系统、外光路系统、聚光透镜、1/2波片和信号探测处理系统,其中,所述激光器射出的激光先后经过所述消偏振分光棱镜、偏振分光棱镜形成出射光,所述出射光经所述检偏系统射入所述外光路系统,所述检偏系统保证了所述出射光的线偏振特性,所述外光路系统射出的信号光先后经过所述聚光透镜、1/2波片射入所述信号探测处理系统。
作为本发明的进一步改进,所述检偏系统包括按照光路先后次序布置的起偏器和1/4波片。
作为本发明的进一步改进,所述检偏系统包括按照光路先后次序布置的偏振棱镜和1/4波片。
本发明的有益效果是:通过上述方案,一方面,在激光输出的准直扩束系统后增加一个检偏系统,这样可保证出射激光的线偏振特性,滤除了 后续测量信号中的直流分量,不需要在后续多个光电探测器前加入检偏器,干涉信号形成的李萨如图就不会出现偏心的现象;另一方面,在激光接收的光路中增加一个聚光透镜,只要透镜尺寸足够大,就可将反射回来的信号光斑缩小,使其光斑尺寸远小于光电探测器光敏面尺寸,这样即使在移动反射镜时,反射光斑能量也会全部被光电探测器接收到,从而形成的干涉信号图样李萨如图就会成标准的圆形。
附图说明
图1是本发明一种用于激光测量信号修正的装置的示意图。
图2是本发明一种用于激光测量信号修正的装置的聚光后干涉信号光斑与光敏面的示意图。
图3是传统激光干涉仪测量的系统图。
图4是传统激光干涉仪测量的干涉信号形成的李萨如图。
图5是传统激光干涉仪测量的光敏面在激光光斑中心时的李萨如图。
图6是传统激光干涉仪测量的光敏面不在激光光斑中心时的李萨如图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
图1至图2中的附图标号为:激光器1;消偏振分光棱镜2;稳频信号光3;偏振分光棱镜4;起偏器5;出射光6;1/4波片7;外光路系统8;聚光透镜9;1/2波片10;信号光11;信号探测处理系统12。
如图1所示,一种用于激光测量信号修正的装置,包括激光器1、消偏振分光棱镜2、偏振分光棱镜4、检偏系统、外光路系统8、聚光透镜9、1/2波片10和信号探测处理系统12,其中,所述激光器1射出的激光先后经过所述消偏振分光棱镜2、偏振分光棱镜4形成出射光6,所述出射光6经所述检偏系统射入所述外光路系统8,所述检偏系统保证了所述出射光6的线偏振特性,所述外光路系统8射出的信号光先后经过所述聚光透镜9、1/2波片10射入所述信号探测处理系统12,消偏振分光棱镜2射出稳频信号光3。
如图1所示,所述检偏系统包括按照光路先后次序布置的起偏器5和1/4波片7。
如图1所示,所述检偏系统包括按照光路先后次序布置的偏振棱镜和1/4波片7。
如图1所示,所述信号探测处理系统12包括光电探测器。
如图1所示,所述外光路系统8包括一个偏振分光棱镜和两个角反射 镜,其中一个角反射镜固定,形成参考光,另一个角反射镜可移动,用于反射测量光。
本发明提供的一种用于激光测量信号修正的装置的工作原理为:
(1)在激光输出的准直扩束系统后增加一个起偏器5或其他的偏振器件,这样可保证出射激光的线偏振特性,滤除了后续测量信号中的直流分量,该起偏器5还可以与1/4波片7形成一个检偏系统,不需要在后续多个光电探测器前加入检偏器,干涉信号形成的李萨如图就不会出现偏心的现象。
(2)在激光接收的光路中增加一个聚光透镜9。只要透镜9尺寸参数合理,就可将反射回来的信号光斑缩小,使其光斑14的尺寸远小于光电探测器的光敏面13的尺寸(如图2所示)。另外,聚光透镜9的位置有严格要求,必须保证光斑的聚焦点在光电探测器的光敏面13附近,加入聚光透镜9后形成的干涉光信号光斑如图2,这样即使在移动反射镜时,反射光斑能量也会比较容易的全部被光电探测器接收到,从而形成的干涉信号图样李萨如图就会成标准的圆形。
本发明提供的一种用于激光测量信号修正的装置的优点为:
(1)测量信号得到的李萨如图不会出现偏心或者椭圆的情况,有效提高了对测量距离的计算的准确性,提高了系统的可靠性。
(2)由于在信号接收端增加了聚焦透镜9,可以有效缩小反射信号光斑,集中信号光能量,提高了系统的测量距离。
(3)在激光输出位置加入的起偏器5或其他的偏振器件,能够改善输出激光的偏振特性,与1/4波片7组成检偏系统,保证输出线偏振光的纯净。
(4)在信号接收端固定的一个聚光透镜9或具有聚光效果的系统,可以增加系统测量的距离,能够将反射激光光斑缩小,集中光斑能量,将信号光全部打道光电探测器光敏面上。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (3)

  1. 一种用于激光测量信号修正的装置,其特征在于:包括激光器、消偏振分光棱镜、偏振分光棱镜、检偏系统、外光路系统、聚光透镜、1/2波片和信号探测处理系统,其中,所述激光器射出的激光先后经过所述消偏振分光棱镜、偏振分光棱镜形成出射光,所述出射光经所述检偏系统射入所述外光路系统,所述检偏系统保证了所述出射光的线偏振特性,所述外光路系统射出的信号光先后经过所述聚光透镜、1/2波片射入所述信号探测处理系统。
  2. 根据权利要求1所述的用于激光测量信号修正的装置,其特征在于:所述检偏系统包括按照光路先后次序布置的起偏器和1/4波片。
  3. 根据权利要求1所述的用于激光测量信号修正的装置,其特征在于:所述检偏系统包括按照光路先后次序布置的偏振棱镜和1/4波片。
PCT/CN2017/075821 2016-09-06 2017-03-07 一种用于激光测量信号修正的装置 WO2018045735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621044888.XU CN205879112U (zh) 2016-09-06 2016-09-06 一种用于激光测量信号修正的装置
CN201621044888.X 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018045735A1 true WO2018045735A1 (zh) 2018-03-15

Family

ID=57704805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075821 WO2018045735A1 (zh) 2016-09-06 2017-03-07 一种用于激光测量信号修正的装置

Country Status (2)

Country Link
CN (1) CN205879112U (zh)
WO (1) WO2018045735A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955516A (zh) * 2018-08-08 2018-12-07 河南师范大学 一种基于同步移相干涉技术的纳米测量仪
CN112484647A (zh) * 2020-11-18 2021-03-12 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法
CN113156654A (zh) * 2021-04-29 2021-07-23 北京大学 一种低重频激光自准直装置及其准直方法
CN114114701A (zh) * 2021-11-16 2022-03-01 中国科学院上海技术物理研究所 一种通过角锥棱镜和分光棱镜实现偏振退化的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205879112U (zh) * 2016-09-06 2017-01-11 深圳市中图仪器科技有限公司 一种用于激光测量信号修正的装置
CN116222437A (zh) * 2020-12-25 2023-06-06 深圳市中图仪器股份有限公司 具有平行光束偏光元件的直线度干涉测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039007A1 (en) * 2004-08-20 2006-02-23 Kim Seung W Vibration-insensitive interferometer
CN1887219A (zh) * 2006-07-13 2007-01-03 浙江大学 采用无色散相移器的全场光学相干层析成像系统
JP2007225341A (ja) * 2006-02-21 2007-09-06 Lasertec Corp 干渉計、及び形状の測定方法
CN101033937A (zh) * 2007-04-13 2007-09-12 南京师范大学 光学干涉测量中分光、成像及同步移相的方法和装置
CN101995211A (zh) * 2010-09-29 2011-03-30 哈尔滨工程大学 单频激光偏振干涉仪在线调试装置及方法
CN102175141A (zh) * 2011-01-13 2011-09-07 清华大学 一种双路单频激光干涉仪
CN105157576A (zh) * 2015-05-27 2015-12-16 合肥工业大学 可同时实现三维位移测量的激光测量装置及方法
CN205879112U (zh) * 2016-09-06 2017-01-11 深圳市中图仪器科技有限公司 一种用于激光测量信号修正的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039007A1 (en) * 2004-08-20 2006-02-23 Kim Seung W Vibration-insensitive interferometer
JP2007225341A (ja) * 2006-02-21 2007-09-06 Lasertec Corp 干渉計、及び形状の測定方法
CN1887219A (zh) * 2006-07-13 2007-01-03 浙江大学 采用无色散相移器的全场光学相干层析成像系统
CN101033937A (zh) * 2007-04-13 2007-09-12 南京师范大学 光学干涉测量中分光、成像及同步移相的方法和装置
CN101995211A (zh) * 2010-09-29 2011-03-30 哈尔滨工程大学 单频激光偏振干涉仪在线调试装置及方法
CN102175141A (zh) * 2011-01-13 2011-09-07 清华大学 一种双路单频激光干涉仪
CN105157576A (zh) * 2015-05-27 2015-12-16 合肥工业大学 可同时实现三维位移测量的激光测量装置及方法
CN205879112U (zh) * 2016-09-06 2017-01-11 深圳市中图仪器科技有限公司 一种用于激光测量信号修正的装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955516A (zh) * 2018-08-08 2018-12-07 河南师范大学 一种基于同步移相干涉技术的纳米测量仪
CN108955516B (zh) * 2018-08-08 2023-12-19 河南师范大学 一种基于同步移相干涉技术的纳米测量仪
CN112484647A (zh) * 2020-11-18 2021-03-12 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法
CN113156654A (zh) * 2021-04-29 2021-07-23 北京大学 一种低重频激光自准直装置及其准直方法
CN113156654B (zh) * 2021-04-29 2022-07-01 北京大学 一种低重频激光自准直装置及其准直方法
CN114114701A (zh) * 2021-11-16 2022-03-01 中国科学院上海技术物理研究所 一种通过角锥棱镜和分光棱镜实现偏振退化的方法及装置
CN114114701B (zh) * 2021-11-16 2023-09-12 中国科学院上海技术物理研究所 一种通过角锥棱镜和分光棱镜实现偏振退化的方法及装置

Also Published As

Publication number Publication date
CN205879112U (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2018045735A1 (zh) 一种用于激光测量信号修正的装置
US7355719B2 (en) Interferometer for measuring perpendicular translations
US9587927B2 (en) High speed high resolution heterodyne interferometric method and system
US6897962B2 (en) Interferometer using beam re-tracing to eliminate beam walk-off
US6943894B2 (en) Laser distance measuring system and laser distance measuring method
WO2015085694A1 (zh) 一种双频激光位移和角度干涉仪
US20220146249A1 (en) Grating displacement measuring device and method based on conical diffraction
CN205942120U (zh) 一种带有偏振分束元件的自准光路系统
US7268886B2 (en) Method and apparatus for simultaneously measuring displacement and angular variations
JPH0339605A (ja) 光学式表面形状測定装置
JPH06174844A (ja) レーザ測距装置
KR100997948B1 (ko) 변위와 변각을 동시에 측정하는 장치
JPH09166414A (ja) 光計測装置
JP2572111B2 (ja) レーザ干渉測定装置
JPH06307858A (ja) 光学式変位計
CN110849593B (zh) 基于声光调制器外差干涉测量光学系统波像差的测量设备
CN111664786B (zh) 适用于双频激光干涉测量的光隔离装置及方法
JP6169420B2 (ja) 光学干渉計
JP2000121322A (ja) レーザ測長器
US20230152452A1 (en) METHOD FOR SIMULTANEOUSLY MEASURING MULTI DOF GEs BY LASER AND SYSTEM THEREFOR
JPH10281718A (ja) 偏光光学素子及び偏光方位調整方法、及びそれを用いた光波干渉測定装置
JPH1144503A (ja) 光波干渉測定装置
JP2691899B2 (ja) 干渉計
JPH0510733A (ja) 3次元形状測定装置
JP2016170160A (ja) レーザ干渉計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847911

Country of ref document: EP

Kind code of ref document: A1