WO2019241932A1 - 确定生产设备路径的方法、装置、系统、存储介质和终端 - Google Patents

确定生产设备路径的方法、装置、系统、存储介质和终端 Download PDF

Info

Publication number
WO2019241932A1
WO2019241932A1 PCT/CN2018/092014 CN2018092014W WO2019241932A1 WO 2019241932 A1 WO2019241932 A1 WO 2019241932A1 CN 2018092014 W CN2018092014 W CN 2018092014W WO 2019241932 A1 WO2019241932 A1 WO 2019241932A1
Authority
WO
WIPO (PCT)
Prior art keywords
production equipment
production
path
equipment
availability
Prior art date
Application number
PCT/CN2018/092014
Other languages
English (en)
French (fr)
Inventor
曹佃松
Original Assignee
西门子股份公司
曹佃松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 曹佃松 filed Critical 西门子股份公司
Priority to PCT/CN2018/092014 priority Critical patent/WO2019241932A1/zh
Priority to CN201880092555.XA priority patent/CN112041864A/zh
Publication of WO2019241932A1 publication Critical patent/WO2019241932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • This application relates to the field of production control. Specifically, the present application relates to a method, an apparatus, a system, a storage medium, a processor, and a terminal for determining a path of a production equipment.
  • a production process includes multiple production steps, which are performed sequentially from the first step to the last step to complete the production. For example, if product P100 is to be produced, production steps 10, 20, 30, 40, and 50 need to be performed in order.
  • step 10 is used for pre-assembly of product P100, and equipment M10 or M11 can be used for pre-assembly of step 10, and the time required for pre-assembly is 10 minutes and 11 minutes respectively;
  • step 20 is used for assembly of product P100, equipment M20 or M21 can be used for the assembly of this step 20, the assembly time is 12 minutes and 8 minutes respectively;
  • step 30 is used for the test of product P100, and equipment M30, M31 or M32 can be used for the test of this step 30, The time required for the test is 15 minutes, 12 minutes, and 20 minutes;
  • step 40 is used for spray painting of the product P100, and the equipment M40 or M41 can be used for the test of step 40.
  • Step 50 is used for packaging of product P100.
  • Device M50 can be used for packaging of step 50.
  • the time required for packaging is 3 minutes.
  • designated equipment is required to complete the corresponding production. Since in some steps, more than two devices can be used for corresponding production, it is necessary to make a selection of the equipment used in the production step when performing each production step. After selecting these equipments for production, the production process will proceed from the equipment selected in each production step to the equipment selected in the next production step, up to the equipment selected in the last production step.
  • the sequence of equipment used in this production process is called the production equipment path.
  • one possible production equipment path is M10-M20-M30-M40-M50. In the above example, there may be a total of 24 production equipment paths of 2 ⁇ 2 ⁇ 3 ⁇ 2.
  • the embodiments of the present application provide a method, an apparatus, a system, a storage medium, a processor, and a terminal for determining a production equipment path, so as to at least solve the problem that it is difficult to determine an optimized production equipment path in the prior art.
  • a method for determining a path of a production device includes: configuring an availability rate of one or more virtual devices corresponding to one or more production devices to an availability rate of a corresponding production device.
  • Equipment simulation corresponding to production equipment multiple production equipment paths are calculated based on one or more virtual equipment, each production equipment path represents the order of production equipment used in the production process; based on the availability of one or more virtual equipment and based on each Simulation results are generated for each production equipment path, and the simulation results represent production-related data for each production equipment path; multiple production equipment paths are sorted according to sorting conditions and simulation results; and optimized production equipment paths are determined according to the sort.
  • the selected production equipment path can conform to the actual situation of the production equipment of the factory, providing the exact required production equipment path.
  • configuring the availability rate of one or more virtual devices corresponding to one or more production equipment to the availability rate of the corresponding production equipment includes: calculating the Availability, operating data represents information that one or more production equipment is occupied or available for use.
  • determining the optimized production equipment path according to the ranking includes: determining the highest ranked production equipment path among the plurality of production equipment paths as the optimized production equipment path.
  • the method further includes: before determining the optimized production equipment path according to the ranking, screening a plurality of production equipment paths that meet the constraints as a basis for determining the optimized production equipment path.
  • the method further includes: obtaining operating data from existing data of the production equipment or through the Internet of Things.
  • the method further includes: continuously updating the availability of the virtual device according to the operating data.
  • the production-related data includes production time and / or production cost.
  • a device for determining a path of a production device including: a configuration unit configured to configure an availability rate of one or more virtual devices corresponding to one or more production devices as Availability, virtual equipment simulation corresponding production equipment; path calculation unit, calculate multiple production equipment paths based on one or more virtual equipment, each production equipment path represents the order of production equipment used in the production process; simulation unit, according to a Or availability of multiple virtual devices and generating simulation results based on each production device path, the simulation results representing production-related data for each production device path; a sorting unit that sorts multiple production device paths based on the sorting conditions and simulation results; and The determination unit determines the optimized production equipment path according to the sequencing.
  • the selected production equipment path can be adapted to the actual situation of the production equipment of the factory, and a device for determining the exact required production equipment path is provided.
  • the apparatus further includes: an operation information extraction unit that calculates an availability rate of one or more production equipment according to the operation data, and the operation data represents information that the one or more production equipment is occupied or usable.
  • the apparatus further includes an operation data acquisition unit that acquires operation data from existing data of the production equipment or through the Internet of Things.
  • the apparatus further includes an availability rate updating unit that continuously updates the availability rate of the virtual device according to the operating data.
  • the determining unit determines that the highest ranked production equipment path is an optimized production equipment path.
  • the apparatus further includes: a screening unit that, before the determination unit determines the optimized production equipment path according to the ranking, screens a plurality of production equipment paths that meet the constraints as a basis for determining the optimized production equipment path.
  • a system for determining a production equipment path including: one or more production equipments; and a device for determining a production equipment path, including: a configuration unit, which will correspond to one or more production equipments.
  • the availability rate of one or more virtual devices is configured as the availability rate of the corresponding production device, and the virtual device simulates the corresponding production device;
  • the path calculation unit calculates multiple production device paths based on one or more virtual devices, and each production device path Represents the sequence of production equipment used in the production process; simulation unit, which generates simulation results based on the availability of one or more virtual equipment and based on each production equipment path, and the simulation results represent production-related data for each production equipment path; sequencing unit , Sorting multiple production equipment paths according to sorting conditions and simulation results; and determining a unit to determine optimized production equipment paths based on the sorting.
  • the selected production equipment path can be adapted to the actual situation of the production equipment of the factory, providing a system for determining the exact required production equipment path.
  • a storage medium includes a stored program, wherein, when the program runs, the device where the storage medium is located is controlled to execute the method according to any one of the foregoing.
  • a processor is provided, and the processor is configured to run a program, and when the program runs, the method according to any one of the foregoing is performed.
  • a terminal including: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and are configured by one or more Multiple processors execute, and one or more programs execute the method according to any one of the above.
  • a computer program product tangibly stored on a computer-readable medium and including computer-executable instructions that, when executed, cause at least one process
  • the processor performs the method according to any one of the above.
  • the method according to the embodiment of the present application may be implemented by a program in a storage medium, a processor, and a terminal, thereby determining an accurate required production equipment path.
  • a solution is provided for configuring a virtual device to comply with an availability rate of an actual production device, thereby calculating a production device path, and sorting the production device path according to a sorting condition to determine an optimized production device path, thereby providing a factory-compliant
  • the simulation results of the actual situation accurately determine the optimized production equipment path that meets the production needs.
  • FIG. 1 is a flowchart of a method for determining a production equipment path according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining a path of a production equipment according to an exemplary embodiment of the present application
  • FIG. 3 is a block diagram of an apparatus for determining a path of a production equipment according to an embodiment of the present application
  • FIG. 4 is a block diagram of an apparatus for determining a path of a production equipment according to an exemplary embodiment of the present application
  • FIG. 5 is a block diagram of a system for determining a production equipment path according to an embodiment of the present application
  • FIG. 6 is a block diagram of a system for determining a production equipment path according to an exemplary embodiment of the present application.
  • the calculation method of the production equipment path can be simulated by using the equipment virtual model.
  • the device virtual model a plurality of virtual devices are provided corresponding to the actual production devices, and each virtual device represents an actual production device.
  • the virtual device performs processing of the corresponding production device, thereby simulating the production device.
  • This simulation of production equipment can be used to provide simulation results of the production process to determine production-related data such as the production time or production cost required for each production equipment path to perform the production process.
  • production-related data such as the production time or production cost required for each production equipment path to perform the production process.
  • the simulation results obtained by using virtual equipment to simulate the production equipment cannot truly reflect the production-related data of the actual production process, because the production equipment may not be able to guarantee 100% availability because it needs to produce other products, so The simulation results will deviate from the actual situation.
  • the virtual model of the above-mentioned production product P100 is configured to simulate the production process, and the configuration of the equipment is as follows.
  • Pathname Production time 10 20: 29: 30.0000 twenty two 20: 30: 30.0000 9 20: 32: 30.0000 twenty one 20: 33: 30.0000 4 20: 33: 30.0000
  • the optimal production equipment path is path 10.
  • the production time is 20: 29: 30.0000, which is 20 hours, 29 minutes, and 30 seconds.
  • This production equipment path is M10-M21-M31-M41-M50.
  • the optimal production equipment path obtained from the above simulation results may be different from the actual optimal production equipment path.
  • FIG. 1 is a flowchart of a method for determining a production equipment path according to an embodiment of the present application.
  • a method for determining a production equipment path according to an embodiment of the present application includes:
  • step S101 the availability rate of one or more virtual devices corresponding to one or more production equipment is configured as the availability rate of the corresponding production equipment, and the virtual equipment simulates the corresponding production equipment.
  • the virtual equipment that simulates the corresponding production equipment is configured as the availability of the production equipment.
  • the virtual equipment will run according to the state of the actual availability of the production equipment to accurately simulate the production process.
  • the virtual equipment in the virtual model conforms to the status of the actual production equipment, and the virtual model becomes the production digital twin of the production equipment of the production process.
  • a plurality of production equipment paths are calculated according to one or more virtual equipments, and each production equipment path represents an order of production equipment used in a production process.
  • multiple production equipment paths are calculated.
  • M10 or M11 can be used, then M10 is set in one production equipment path, and M11 equipment is in another production equipment path.
  • the next path point can be M20 or M21, the next path point can be M30, M31, or M32, the next path point can be M40 or M41, and the final path point is M50.
  • the selection of each waypoint results in a different production equipment route.
  • Step S105 Generate a simulation result based on the availability of one or more virtual devices and based on each production equipment path, and the simulation result represents production-related data for each production equipment path.
  • the simulation of the production process is performed.
  • the virtual equipment runs according to the configured availability, and generates simulation results for each production equipment path.
  • the simulation results include, for example, production path Production-relevant data for the production time required by the operation. For example, still find optimized production equipment paths that meet the following production requirements:
  • the simulation process will generate the production time required to produce 100 products based on each production equipment path.
  • step S107 a plurality of production equipment paths are sorted according to a sorting condition and a simulation result. After obtaining the simulation results of each production equipment path as above, in order to find the production equipment path with the shortest production time, the production time is used as the sorting condition, and the production time data in the simulation result is used to sort the production equipment paths as shown in the following table (Shows the results of the 15 shortest production times).
  • Step S109 Determine the optimized production equipment path according to the ranking. For the production demand with the shortest production time, it can be seen that after sorting according to the production time, the production equipment path with the shortest production time can be determined as the path 8.
  • the devices in path 8 are M10-M21-M30-M41-M50.
  • the selected production equipment path can conform to the actual situation of the production equipment of the factory, providing the exact required production equipment path.
  • FIG. 2 is a flowchart of a method of determining a production equipment path according to an exemplary embodiment of the present application.
  • step S201 is performed to obtain operating data from existing data of the production equipment or through the Internet of Things.
  • the existing data of the production equipment may be operational data known to the production equipment.
  • the Internet of Things can be used to obtain its operational data directly from production equipment.
  • step S203 is performed to calculate the availability rate of one or more production equipments according to the operation data, where the operation data represents information that one or more production equipments are occupied or can be used.
  • the production equipment is occupied during the production of other products. At this time, it cannot be used as production equipment for the production of another product, and can be used when the production equipment is idle. Alternatively, production equipment may not be able to participate in the production of the product for a certain period of time due to malfunctions, repairs, or other reasons that may occur in the factory environment, so that it can be used only part of the time.
  • the availability of the production equipment may be the ratio (percentage) of the actual production time of the production equipment that can participate in the production of the product to the total production process time. Thus, based on this operating data, it is possible to calculate the availability rate at which the production equipment can be used. In this way, the availability of a virtual device that simulates the path of a production device is provided.
  • Step S205 configures the availability rate of the one or more virtual devices corresponding to the one or more production equipment as the availability rate of the corresponding production equipment;
  • Step S207 Calculate a plurality of production equipment paths according to one or more virtual devices, and each production equipment path represents an order of production equipment used in a production process;
  • Step S209 Generate a simulation result based on the availability of one or more virtual devices and based on each production equipment path, and the simulation result represents production-related data for each production equipment path;
  • step S211 a plurality of production equipment paths are sorted according to a sorting condition and a simulation result.
  • steps S101-S107 shown in FIG. 1 are consistent with steps S101-S107 shown in FIG. 1, which are used to configure the virtual equipment by using the availability rate, simulate the production process, and sort the production equipment path (for example, according to the production time from short to long or the production cost from less To the most order), will not repeat them here.
  • step S213 is performed to determine the optimized production equipment path according to the ranking.
  • the sequence of equipment in the production equipment path can be displayed on the display for personnel reference.
  • the optimized production equipment path can be determined according to the above-mentioned order in different ways.
  • production time can be used as a sorting condition.
  • step S209 simulation results are obtained.
  • the simulation results show the production time corresponding to each production equipment path.
  • step S211 based on the production time shown by the simulation result, the production time can be sequenced from short to long.
  • the equipment path is sorted, and the highest ranked production equipment path shown in the sequence of determining the production equipment path is the production equipment path with the shortest production time, that is, the optimized production equipment path that meets production requirements.
  • the production cost can be used as the sorting condition.
  • simulation results are obtained.
  • the simulation results show the production costs corresponding to each production equipment path.
  • the production costs can be produced in ascending order of production costs.
  • the equipment path is sorted, and the highest ranked production equipment path shown in the sequence of determining the production equipment path is the production equipment path with the shortest production cost, that is, the optimized production equipment path that meets production requirements.
  • the production-related data includes production time and / or production cost, and may also include data involved in other production processes. It will be understood that other production-related data may also be used as an order for sorting the path of production equipment Conditions, as long as the data concerned in the production process is used as the sorting condition, the required optimized production equipment path can be determined after sorting.
  • constraints can be used to further screen the optimized production equipment path. For example, select only a portion of all production equipment paths, and the unselected portion does not meet production requirements.
  • the method of further screening the optimized production equipment path is illustrated below by way of example. Before determining the optimized production equipment path according to the ranking, a plurality of production equipment paths that meet the constraints are selected as the basis for determining the optimized production equipment path.
  • the production equipment paths are sorted in the order of the remaining time to the predetermined time from short to long (sorting conditions), and other production-related data (such as production time and production cost) are shown, as shown in the following table :
  • the sorting condition is that the remaining time to the scheduled time is from short to long (or the production time is from long to short). If production needs to be completed 8 hours before the scheduled time and production is not completed 24 hours before the scheduled time, The remaining time to the predetermined time is longer than 8 hours and shorter than 24 hours as a constraint. It can be seen that the production equipment paths 16 to 7 and the production equipment paths in Table 5 meet the production requirements. According to Table 5, it is determined that the production equipment path 16 is the first production equipment path that satisfies the production requirements, as the optimized production equipment path.
  • the method further includes: continuously updating the availability of the virtual equipment according to the operating data. Before each simulation of the production process, the availability of the virtual equipment is updated to ensure that the simulated production equipment path always conforms to the actual situation of the production equipment.
  • FIG. 3 is a block diagram of an apparatus for determining a path of a production equipment according to an embodiment of the present application.
  • the apparatus 1 for determining a path of a production device includes a configuration unit 11 configured to configure an availability rate of one or more virtual devices corresponding to one or more production devices to an availability rate of the corresponding production device.
  • the virtual device Simulation of corresponding production equipment; path calculation unit 13 calculates multiple production equipment paths based on one or more virtual devices, each production equipment path represents the order of production equipment used in the production process; simulation unit 15, according to one or more The availability of virtual equipment and generate simulation results based on each production equipment path, the simulation results represent production-related data for each production equipment path; a sorting unit 17, sorts multiple production equipment paths according to the sorting conditions and simulation results; and a determination unit 19. Determine the optimized production equipment path according to the ranking.
  • the above-mentioned device 1 and its internal unit execute the method for determining the path of the production equipment as shown in FIG. 1, which will not be repeated here. In this way, a device is provided that determines the exact required production equipment path.
  • the apparatus 1 further includes: an operation information extraction unit 21 that calculates an availability rate of one or more production equipment according to the operation data, and the operation data indicates that one or more production equipment is occupied or can be used. Information to provide the availability of virtual devices that emulate the path of a production device.
  • the device further includes: an operation data acquisition unit 23, which acquires operation data from the existing data of the production equipment or through the Internet of Things, to facilitate the acquisition of the operation data of the production equipment; an availability update unit 25, which continuously updates the availability of the virtual equipment according to the operation data To ensure that the simulated production equipment path always conforms to the actual situation of the production equipment; the screening unit 27, before the determination unit determines the optimized production equipment path according to the order, screens multiple production equipment paths that meet the constraints as a basis for determining the optimized production equipment path , And further select the optimized production equipment path according to production needs.
  • the operation information extraction unit 21, the operation data acquisition unit 23, the availability update unit 25, and the screening unit 27 execute the method for determining a production equipment path as shown in FIG. 2 and the above-mentioned method for determining a production equipment path according to production requirements. To repeat.
  • FIG. 5 is a block diagram of a system for determining a production equipment path according to an embodiment of the present application.
  • the system 3 includes: one or more production equipment 5; and a device 1 for determining a path of the production equipment, including: a configuration unit 13 that will correspond to one or more virtual equipment of one or more production equipment
  • the availability rate is configured as the availability rate of the corresponding production equipment, and the virtual equipment simulates the corresponding production equipment.
  • the path calculation unit 13 calculates multiple production equipment paths based on one or more virtual equipment, and each production equipment path represents the production process used.
  • simulation unit 15 generates simulation results based on the availability of one or more virtual equipment and based on each production equipment path, and the simulation results represent production-related data for each production equipment path; sorting unit 17, according to sorting conditions And a plurality of production equipment paths are sequenced with the simulation results; and a determining unit 19 determines an optimized production equipment path according to the ranking.
  • FIG. 6 is a block diagram of a system for determining a production equipment path according to an exemplary embodiment of the present application.
  • the device 1 in the system 3 further includes: an operation information extraction unit 21 that calculates an availability rate of one or more production equipments according to the operation data, and the operation data indicates that one or more production equipments are occupied or can be used.
  • the device further includes: an operation data acquisition unit 23, which acquires operation data from the existing data of the production equipment or through the Internet of Things, to facilitate the acquisition of the operation data of the production equipment; an availability update unit 25, which continuously updates the availability of the virtual equipment according to the operation data To ensure that the simulated production equipment path always conforms to the actual situation of the production equipment; the screening unit 27, before the determination unit determines the optimized production equipment path according to the order, screens multiple production equipment paths that meet the constraints as a basis for determining the optimized production equipment path , And further select the optimized production equipment path according to production needs.
  • the operation data acquisition unit 23 obtains the operation data from one or more production equipments 5 and sends the operation data to the operation information extraction unit 21.
  • the operation information extraction unit 21 calculates the availability of one or more production equipments based on the operation data.
  • the configuration unit 13 The virtual device is configured using the availability rate.
  • the simulation unit 15 generates a simulation result according to the configured virtual device and multiple production equipment paths calculated by the path calculation unit 13.
  • the simulation result may include the time and production cost required according to the production process of the production equipment path.
  • the sorting unit 17 sorts the production equipment paths according to the production demand as a sorting condition, and the determination unit 19 determines the optimized production equipment paths according to the sorting.
  • a storage medium includes a stored program, wherein when the program runs, the device where the storage medium is located is controlled to perform the foregoing method for determining an optimized production equipment path according to the sequencing.
  • a processor is provided, and the processor is configured to run a program, and when the program runs, the method for determining the optimized production equipment path according to the sequencing described above is performed.
  • a terminal including: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and are configured by one or more Multiple processors execute, and one or more programs execute the method for determining an optimized production equipment path according to the sequencing.
  • a computer program product tangibly stored on a computer-readable medium and including computer-executable instructions that, when executed, cause at least one process
  • the processor executes the method for determining an optimized production equipment path according to the sequencing.
  • the method according to the embodiment of the present application may be implemented by a program in a storage medium, a processor, and a terminal, thereby determining an accurate required production equipment path.
  • the description of each embodiment has its own emphasis. For a part that is not described in detail in an embodiment, reference may be made to related descriptions in other embodiments.
  • the production equipment path selected according to the solution of the present application is consistent with the actual situation in the factory, because the virtual equipment can simulate the availability of the production equipment. After the optimized production equipment path is selected according to the solution of this application, the production time and production cost can be effectively reduced. This method of determining the optimal production equipment path saves manpower and has accurate results.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are merely schematic.
  • the division of the unit or module is only a logical function division.
  • there may be another division manner such as multiple units or modules or components. Can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, modules or units, and may be electrical or other forms.
  • the units or modules described as separate components may or may not be physically separated, and the components displayed as units or modules may or may not be physical units or modules, which may be located in one place, or may be distributed to On multiple network elements or modules. Some or all of the units or modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit or module in each embodiment of the present application may be integrated into one processing unit or module, or each unit or module may exist separately physically, or two or more units or modules may be integrated into one Unit or module.
  • the above-mentioned integrated unit or module may be implemented in the form of hardware or in the form of a software functional unit or module.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium , Including a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disks, Read-Only Memory (ROM), Random Access Memory (RAM), mobile hard disks, magnetic disks, or optical disks, and other media that can store program codes .

Abstract

本申请涉及确定生产设备路径的方法、装置、系统、存储介质和终端。该方法包括:将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;根据排序条件和仿真结果对多个生产设备路径排序;以及根据排序确定优化的生产设备路径。根据本申请的方案可以确定优化的生产设备路径,从而提供符合工厂实际情况的仿真结果,准确确定满足生产需求的优化的生产设备路径。

Description

确定生产设备路径的方法、装置、系统、存储介质和终端 技术领域
本申请涉及生产控制领域。具体地,本申请涉及确定生产设备路径的方法、装置、系统、存储介质、处理器和终端。
背景技术
当工厂开始生产前,需要确定生产工序来生产产品。通常,生产工序中包括多个生产步骤,这些生产步骤从第一步到最后一步按照顺序进行以完成生产。例如,若准备生产产品P100,需要按照顺序进行生产步骤10、20、30、40和50。其中,步骤10用于产品P100的预组装,设备M10或M11均可以用于该步骤10的预组装,预组装所需时间分别为10分钟和11分钟;步骤20用于产品P100的组装,设备M20或M21均可以用于该步骤20的组装,组装所需时间分别为12分钟和8分钟;步骤30用于产品P100的测试,设备M30、M31或M32均可以用于该步骤30的测试,测试所需时间分别为15分钟、12分钟和20分钟;步骤40用于产品P100的喷漆,设备M40或M41均可以用于该步骤40的测试,测试所需时间分别为11分钟和8分钟;步骤50用于产品P100的包装,设备M50可以用于该步骤50的包装,包装所需时间为3分钟。在包含这5个生产步骤的生产过程中,需要指定设备以完成对应的生产。由于在一些步骤中,有两个以上的设备能够用于对应的生产,因此在执行每一个生产步骤时,需要做出用于该生产步骤的设备的选择。在选择这些用于生产的设备后,生产工序将按照每一生产步骤中选择的设备到下一生产步骤中选择的设备的顺序进行,直至最后一个生产步骤中选择的设备。这种生产工序中采用的设备的顺序被称为生产设备路径。例如,一个可能的生产设备路径为M10-M20-M30-M40-M50。在上述示例中,一种可以存在2×2×3×2共24条生产设备路径。
对于工厂中的操作团队,一个重要的任务是选择哪条生产设备路径来执行生产工序。正确的生产设备路径的选择对于满足商业目标是至关重要的,例如降低生产花费、按时交付以及降低库存量。
然而,对于操作团队来说,选择优化的生产设备路径是有挑战的。通常,生产设备路径的选择是基于工厂的高度简化的环境(例如,所有设备均能使用)手动或者通过软件的支持做出的。当执行生产时,由于实际操作中的复杂性,所选择的生产设备 路径的效率通常无法达到预期。
发明内容
本申请实施例提供了确定生产设备路径的方法、装置、系统、存储介质、处理器和终端,以至少解决现有技术中难以确定优化的生产设备路径的问题。
根据本申请实施例的一个方面,提供了确定生产设备路径的方法,包括:将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;根据排序条件和仿真结果对多个生产设备路径排序;以及根据排序确定优化的生产设备路径。
以这样的方式,选择的生产设备路径可以符合工厂的生产设备的实际情况,提供准确的所需的生产设备路径。
根据本申请的示例性实施例,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率包括:根据运行数据计算一个或多个生产设备的可用率,运行数据表示一个或多个生产设备被占用或能使用的信息。
以这样的方式,提供仿真生产设备路径的虚拟设备的可用率。
根据本申请的示例性实施例,根据排序确定优化的生产设备路径包括:确定多个生产设备路径中排序最高的生产设备路径为优化的生产设备路径。
以这样的方式,根据生产需要提供优化的生产设备路径。
根据本申请的示例性实施例,该方法还包括:在根据排序确定优化的生产设备路径前,筛选符合约束条件的多个生产设备路径作为确定优化的生产设备路径的基础。
以这样的方式,进一步选择根据生产需要的优化的生产设备路径。
根据本申请的示例性实施例,该方法还包括:从生产设备的现有数据或者通过物联网获取运行数据。
以这样的方式,便于获取生产设备的运行数据。
根据本申请的示例性实施例,该方法还包括:根据运行数据持续更新虚拟设备的可用率。
以这样的方式,保证仿真生产设备路径始终符合生产设备的实际情况。
根据本申请的示例性实施例,生产相关数据包括生产时间和/或生产花费。
以这样的方式,提供为生产设备路径排序的基本条件。
根据本申请实施例的另一个方面,提供了确定生产设备路径的装置,包括:配置单元,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;路径计算单元,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;仿真单元,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;排序单元,根据排序条件和仿真结果对多个生产设备路径排序;以及确定单元,根据排序确定优化的生产设备路径。
以这样的方式,选择的生产设备路径可以符合工厂的生产设备的实际情况,提供确定准确的所需的生产设备路径的装置。
根据本申请的示例性实施例,该装置还包括:运行信息提取单元,根据运行数据计算一个或多个生产设备的可用率,运行数据表示一个或多个生产设备被占用或能使用的信息。
以这样的方式,提供仿真生产设备路径的虚拟设备的可用率。
根据本申请的示例性实施例,该装置还包括:运行数据获取单元,从生产设备的现有数据或者通过物联网获取运行数据。
以这样的方式,便于获取生产设备的运行数据。
根据本申请的示例性实施例,该装置还包括:可用率更新单元,根据运行数据持续更新虚拟设备的可用率。
以这样的方式,保证仿真生产设备路径始终符合生产设备的实际情况。
根据本申请的示例性实施例,确定单元确定排序最高的生产设备路径为优化的生产设备路径。
以这样的方式,根据生产需要提供优化的生产设备路径。
根据本申请的示例性实施例,该装置还包括:筛选单元,在确定单元根据排序确定优化的生产设备路径前,筛选符合约束条件的多个生产设备路径作为确定优化的生产设备路径的基础。
以这样的方式,进一步选择根据生产需要的优化的生产设备路径。
根据本申请的另一个实施例,提供了确定生产设备路径的系统,包括:一个或多个生产设备;以及确定生产设备路径的装置,包括:配置单元,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;路径计算单元,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;仿真单元,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;排序单元,根据排序条件和仿真结果对多个生产设备路径排序;以及确定单元,根据排序确定优化的生产设备路径。
以这样的方式,选择的生产设备路径可以符合工厂的生产设备的实际情况,提供确定准确的所需的生产设备路径的系统。
根据本申请的另一个实施例,提供了存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行根据上述任意一项的方法。
根据本申请的另一个实施例,提供了处理器,处理器用于运行程序,其中,程序运行时执行根据上述任意一项的方法。
根据本申请的另一个实施例,提供了终端,包括:一个或多个处理器、存储器以及一个或多个程序,其中,一个或多个程序被存储在存储器中,并且被配置为由一个或多个处理器执行,一个或多个程序执行根据上述任意一项的方法。
根据本申请的另一个实施例,还提供了计算机程序产品,该计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,该计算机可执行指令在被执行时使至少一个处理器执行根据上述任一项所述的方法。
根据本申请实施例的方法可以在存储介质、处理器和终端通过程序实现,从而确定准确的所需的生产设备路径。
在本申请实施例中,提供了将虚拟设备配置为符合实际生产设备的可用率从而计算生产设备路径并根据排序条件对生产设备路径排序,以确定优化的生产设备路径的方案,从而提供符合工厂实际情况的仿真结果,准确确定满足生产需求的优化的生产设备路径。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图 中:
图1是根据本申请实施例的确定生产设备路径的方法的流程图;
图2是根据本申请的示例性实施例的确定生产设备路径的方法的流程图;
图3是根据本申请实施例的确定生产设备路径的装置的框图;
图4是根据本申请示例性实施例的确定生产设备路径的装置的框图;
图5是根据本申请实施例的确定生产设备路径的系统的框图;
图6是根据本申请示例性实施例的确定生产设备路径的系统的框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块或单元。
生产设备路径的计算方法可以采用设备虚拟模型来进行仿真。在设备虚拟模型中,与实际生产设备对应地设置有多个虚拟设备,每个虚拟设备代表一个实际生产设备,在虚拟模型中,虚拟设备执行对应的生产设备的处理,从而仿真生产设备。这种对生产设备的仿真可以用来提供生产工序的仿真结果,以确定每条生产设备路径进行生产工序需要的生产时间或生产花费等生产相关数据。然而,在这样的仿真中,以虚拟设备对生产设备的仿真得到的仿真结果不能真实反映实际生产工序的生产相关数据,因为生产设备可能因为需要生产其他产品而不能保证100%的可用率,因此仿真结果会与实际情况出现偏差。
例如,对上述生产产品P100的虚拟模型进行配置以进行生产工序的仿真,设备的配置如下表。
设备名 可用率(百分比)
M10 100.00
M11 100.00
M20 100.00
M21 100.00
M30 100.00
M31 100.00
M32 100.00
M40 100.00
M41 100.00
M50 100.00
表1
采用该虚拟模型,找出符合以下生产需求的优化的生产设备路径:
-产品数量为100;
-生产时间最短。
对全部生产设备路径(共24条)进行仿真,得到根据生产时间排序的如下仿真结果(示出生产时间最短的15条路径的结果):
路径名 生产时间
10 20:29:30.0000
22 20:30:30.0000
9 20:32:30.0000
21 20:33:30.0000
4 20:33:30.0000
16 20:34:30.0000
3 20:36:30.0000
15 20:37:30.0000
8 1:01:29:30.0000
20 1:01:30:30.0000
7 1:01:32:30.0000
19 1:01:33:30.0000
2 1:01:33:30.0000
14 1:01:34:30.0000
1 1:01:36:30.0000
…… ……
表2
从上表可知,最优的生产设备路径为路径10,如表2第2行所示,生产时间为20:29:30.0000,即20小时29分钟30秒。此生产设备路径为M10-M21-M31-M41-M50。
然而,由于实际生产中设备不一定能够具备100%的可用率,根据上述仿真结果得出的最优的生产设备路径会与实际的最优生产设备路径不同。
根据本申请实施例,提供了确定生产设备路径的方法。图1是根据本申请实施例的确定生产设备路径的方法的流程图。根据本申请实施例的确定生产设备路径的方法包括:
步骤S101,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备。在本申请实施例中,仿真对应生产设备的虚拟设备被配置为生产设备的可用率,在仿真过程中,虚拟设备将按照符合生产设备实际可用率的状态运行,以准确仿真生产工序。
例如,根据生产设备的可用率配置虚拟设备的可用率如下表。
设备名 可用率(百分比)
M10 50.00
M11 40.00
M20 50.00
M21 55.00
M30 50.00
M31 30.00
M32 40.00
M40 30.00
M41 35.00
M50 60.00
表3
在如表3配置虚拟设备的可用率后,虚拟模型中的虚拟设备符合实际生产设备的状态,虚拟模型成为该生产工序的生产设备的生产数字双胞胎(Production Digital Twin)。
步骤S103,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序。根据生产工序中所有能够使用的设备,按照生产步骤,从第一个生产步骤使用的设备到下一个生产步骤使用的设备直至最后一个生产步骤使用的设备,计算出多条生产设备路径。例如,第一个生产步骤中,可以采用M10或M11,则将M10设为在一条生产设备路径中,将M11设备在另一条生产设备路径中。在M10的生产设备路径中,其下一路径点可以是M20或者M21,再下一路径点可以是M30、M31或M32,再下一路径点可以是M40或M41,最终路径点是M50。每个路径点的选择会形成一条不同的生产设备路径。
步骤S105,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据。虚拟设备被根据生产设备的可用率配置后,再进行生产工序的仿真,虚拟设备根据被配置的可用率运行,为每条生产设备路径生成仿真结果,仿真结果例如包括每条生产设备路径进行生产工序所需的生产时间的生产相关数据。例如,依旧找出符合以下生产需求的优化的生产设备路径:
-产品数量为100;
-生产时间最短。
仿真过程将根据每条生产设备路径生成生产100个产品所需的生产时间。
步骤S107,根据排序条件和仿真结果对多个生产设备路径排序。如上得到每条生产设备路径的仿真结果后,为了找出生产时间最短的生产设备路径,将生产时间作为排序条件,采用仿真结果中的生产时间数据,为生产设备路径进行排序,如下表所示(示出生产时间最短的15条路径的结果)。
路径名 生产时间
8 2:06:14:31.4647
20 2:06:37:06.5387
2 2:07:06:32.3767
14 2:08:10:22.7528
7 2:18:10:16.6136
1 2:18:20:28.7039
19 2:18:21:09.2370
13 2:18:36:07.9118
10 2:22:01:02.0695
22 2:22:05:24.9855
16 2:22:40:41.9454
4 2:22:40:41.9454
9 3:02:39:32.2039
21 3:02:50:26.7080
3 3:02:54:03.5375
…… ……
表4
根据表4可以看出,经过根据生产设备的可用率配置虚拟设备的可用率后,得到 的生产时间的排序结果与未配置可用率的结果不同。
步骤S109,根据排序确定优化的生产设备路径。对于生产时间最短的生产需求,可以看出按照生产时间排序后,能够确定生产时间最短的生产设备路径为路径8。路径8中的设备为M10-M21-M30-M41-M50。
以这样的方式,选择的生产设备路径可以符合工厂的生产设备的实际情况,提供准确的所需的生产设备路径。
根据本申请的示例性实施例,还提供了计算生产设备的可用率然后进行生产设备路径的确定的方法。图2是根据本申请的示例性实施例的确定生产设备路径的方法的流程图。如图2所示,根据本申请的示例性实施例,在进行确定生产设备路径前,进行步骤S201,从生产设备的现有数据或者通过物联网获取运行数据。生产设备的现有数据可以是生产设备已知的运行数据。物联网可用于直接从生产设备获得其运行数据。然后,进行步骤S203,根据运行数据计算一个或多个生产设备的可用率,其中,运行数据表示一个或多个生产设备被占用或能使用的信息。生产设备在生产其他产品时被占用,此时不能用作生产另一产品的生产设备,而当生产设备空闲时,可以使用。或者,生产设备可能由于故障、维修或其他工厂环境中可能出现的原因在一定时间内不能参与产品的生产,使得只有在部分时间内可以使用。生产设备的可用率可以是生产设备能够参与该产品的生产的实际生产时间与全部生产过程时间的比值(百分比)。由此,基于此运行数据,能够计算生产设备能被使用的可用率。以这样的方式,提供仿真生产设备路径的虚拟设备的可用率。
接着,进行步骤:
步骤S205将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率;
步骤S207,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;
步骤S209,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;
步骤S211,根据排序条件和仿真结果对多个生产设备路径排序。
上述步骤与图1所示的步骤S101—S107一致,用于采用可用率配置虚拟设备,进行生产工序的仿真,并对生产设备路径进行排序(例如按照生产时间从短到长或者生产花费从少到多的顺序),在此不再赘述。
经过排序后,可以直观看到生产设备路径对应的生产相关数据按照预定的顺序排序的列表。接着进行步骤S213,根据排序确定优化的生产设备路径。生产设备路径中的设备顺序可以显示在显示器上供人员参考。
对于不同的生产需求,可以以不同的方式根据上述排序确定优化的生产设备路径。
对于生产一定数量的产品所需时间最短的生产需求,可以采用生产时间作为排序条件。在步骤S209完成后,得到仿真结果,仿真结果中显示出各条生产设备路径对应的生产时间,在步骤S211,基于仿真结果示出的生产时间,可以按照生产时间从短到长的顺序对生产设备路径排序,确定生产设备路径的排序中示出的排序最高的生产设备路径为生产时间最短的生产设备路径,即满足生产需求的优化的生产设备路径。
作为另一个实例,对于生产一定数量的产品所需花费最短的生产需求,可以采用生产花费作为排序条件。在步骤S209完成后,得到仿真结果,仿真结果中显示出各条生产设备路径对应的生产花费,在步骤S211,基于仿真结果示出的生产花费,可以按照生产花费从少到多的顺序对生产设备路径排序,确定生产设备路径的排序中示出的排序最高的生产设备路径为生产花费最短的生产设备路径,即满足生产需求的优化的生产设备路径。
根据本申请的示例性实施例,生产相关数据包括生产时间和/或生产花费,也可以包含其他生产工序中涉及的数据,将理解,也可以采用其他生产相关数据作为对生产设备路径排序的排序条件,只需将生产工序中关注的数据作为排序条件,则在排序后可以确定需要的优化的生产设备路径。
此外,根据本申请实施例,可以采用约束条件进一步筛选优化的生产设备路径。例如,仅选择所有生产设备路径中的一部分,而未选择的部分不满足生产需求。以下以示例的方式示出进一步筛选优化的生产设备路径的方法,在根据排序确定优化的生产设备路径前,筛选符合约束条件的多个生产设备路径作为确定优化的生产设备路径的基础。
对于生产需求为:
-在预定时间8小时前完成生产,以保证产品交付;
-不在预定时间24小时前完成生产,以降低库存,减少库存费用。
在仿真生产工序后,按照到预定时间的剩余时间从短到长的顺序(排序条件)对生产设备路径排序,同时示出其他生产相关数据(例如生产时间和生产花费),例如如下表所示:
路径名 生产时间 到预定时间的剩余时间 生产花费
17 3:15:51:59.4504 -6:51:59.4504 46400.0000000001
23 3:15:34:56.9153 -6:34:56.9153 43999.9999999999
5 3:15:32:49.2146 -6:32:49.2146 45400.0000000001
11 3:15:22:22.9393 -6:22:22.9393 42999.9999999999
18 3:14:42:24.1791 -5:42:24.1791 44999.9999999999
6 3:14:42:24.1791 -5:42:24.1791 44000.0000000001
24 3:14:36:21.0215 -5:36:21.0215 42600
12 3:14:29:15.1019 -5:29:15.1019 41600
15 3:03:03:36.7727 5:56:23.2273 54400
3 3:02:54:03.5375 6:05:56.4625 53400
21 3:02:50:26.7080 6:09:33.2920 51999.9999999999
9 3:02:39:32.2039 6:20:27.7961 51000
16 2:22:40:41.9454 10:19:18.0546 53000
4 2:22:40:41.9454 10:19:18.0546 52000
22 2:22:05:24.9855 11:54:35.0145 50600
10 2:22:01:02.0695 10:58:57.9305 49600.0000000001
13 2:18:36:07.9118 14:23:52.0882 51400
19 2:18:21:09.2370 14:38:50.7630 48999.9999999999
1 2:18:20:28.7039 14:39:31.2961 50399.9999999999
7 2:18:10:16.6136 14:49:43.3864 47999.9999999998
14 2:08:10:22.7528 1:00:49:37.2472 49999.9999999999
2 2:07:06:32.3767 1:01:53:27.6233 48999.9999999999
20 2:06:37:06.5387 1:02:22:53.4613 47600
8 2:06:14:31.4647 1:02:45:28.5353 46599.9999999999
表5
如表5,排序条件为到预定时间的剩余时间从短到长(或生产时间从长到短),若需要在预定时间8小时前完成生产,且不在预定时间24小时前完成生产,则以到预定时间的剩余时间长于8小时且短于24小时作为约束条件,可以看出表5中的生产设备路径16到7及之间的生产设备路径满足生产需求。再根据表5,确定生产设备路径16为第一条满足生产需求的生产设备路径,作为优化的生产设备路径。
以这样的方式,进一步选择根据生产需要的优化的生产设备路径。以上仅是进一步筛选优化的生产设备路径的一个实例,也可以根据不同的生产需求选择不同的约束条件和排序条件确定优化的生产设备路径。
为保证仿真生产工序时虚拟设备能有效反应生产设备的状态,根据本申请的示例性实施例,该方法还包括:根据运行数据持续更新虚拟设备的可用率。每次进行生产工序的仿真前,均进行虚拟设备可用率的更新,保证仿真生产设备路径始终符合生产设备的实际情况。
根据本申请实施例,提供了确定生产设备路径的装置。图3是根据本申请实施例的确定生产设备路径的装置的框图。如图3所示,确定生产设备路径的装置1包括:配置单元11,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;路径计算单元13,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;仿真单元15,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;排序单元17,根据排序条件和仿真结果对多个生产设备路径排序;以及确定单元19,根据排序确定优化的生产设备路径。上述装置1及其内部单元执行如图1所示的确定生产设备路径的方法,在此不再赘述。以这样的方式,提供确定准确的所需的生产设备路径的装置。
根据本申请的示例性实施例,该装置1还包括:运行信息提取单元21,根据运行数据计算一个或多个生产设备的可用率,运行数据表示一个或多个生产设备被占用或能使用的信息,以提供仿真生产设备路径的虚拟设备的可用率。该装置还包括:运行数据获取单元23,从生产设备的现有数据或者通过物联网获取运行数据,便于获取生产设备的运行数据;可用率更新单元25,根据运行数据持续更新虚拟设备的可用率,保证仿真生产设备路径始终符合生产设备的实际情况;筛选单元27,在确定单元根据排序确定优化的生产设备路径前,筛选符合约束条件的多个生产设备路径作为确定优 化的生产设备路径的基础,进一步选择根据生产需要的优化的生产设备路径。运行信息提取单元21、运行数据获取单元23、可用率更新单元25、筛选单元27执行如图2所示的确定生产设备路径的方法以及上述根据生产需求确定生产设备路径的方法,在此不再赘述。
根据本申请的实施例,提供了确定生产设备路径的系统。图5是根据本申请实施例的确定生产设备路径的系统的框图。如图5所示,系统3包括:一个或多个生产设备5;以及确定生产设备路径的装置1,包括:配置单元13,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的生产设备的可用率,虚拟设备仿真对应的生产设备;路径计算单元13,根据一个或多个虚拟设备计算多条生产设备路径,每个生产设备路径表示生产工序所采用的生产设备的顺序;仿真单元15,根据一个或多个虚拟设备的可用率并且基于每个生产设备路径生成仿真结果,仿真结果表示每条生产设备路径的生产相关数据;排序单元17,根据排序条件和仿真结果对多个生产设备路径排序;以及确定单元19,根据排序确定优化的生产设备路径。
根据本申请的示例性实施例,提供了确定生产设备路径的系统。图6是根据本申请示例性实施例的确定生产设备路径的系统的框图。如图6所示,系统3中的装置1还包括:运行信息提取单元21,根据运行数据计算一个或多个生产设备的可用率,运行数据表示一个或多个生产设备被占用或能使用的信息,以提供仿真生产设备路径的虚拟设备的可用率。该装置还包括:运行数据获取单元23,从生产设备的现有数据或者通过物联网获取运行数据,便于获取生产设备的运行数据;可用率更新单元25,根据运行数据持续更新虚拟设备的可用率,保证仿真生产设备路径始终符合生产设备的实际情况;筛选单元27,在确定单元根据排序确定优化的生产设备路径前,筛选符合约束条件的多个生产设备路径作为确定优化的生产设备路径的基础,进一步选择根据生产需要的优化的生产设备路径。运行数据获取单元23从一个或多个生产设备5获取运行数据后将运行数据发送到运行信息提取单元21,运行信息提取单元21根据运行数据计算一个或多个生产设备的可用率,配置单元13使用可用率配置虚拟设备,仿真单元15根据配置的虚拟设备和路径计算单元13计算的多条生产设备路径生成仿真结果,仿真结果可以包括根据生产设备路径的生产工序需要的时间和生产花费,然后排序单元17根据生产需求作为排序条件对生产设备路径排序,确定单元19根据排序确定优化的生产设备路径。
根据本申请的另一个实施例,提供了存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述根据排序确定优化的生产设备路径的方法。
根据本申请的另一个实施例,提供了处理器,处理器用于运行程序,其中,程序运行时执行上述根据排序确定优化的生产设备路径的方法。
根据本申请的另一个实施例,提供了终端,包括:一个或多个处理器、存储器以及一个或多个程序,其中,一个或多个程序被存储在存储器中,并且被配置为由一个或多个处理器执行,一个或多个程序执行上述根据排序确定优化的生产设备路径的方法。
根据本申请的另一个实施例,还提供了计算机程序产品,该计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,该计算机可执行指令在被执行时使至少一个处理器执行上述根据排序确定优化的生产设备路径的方法。
根据本申请实施例的方法可以在存储介质、处理器和终端通过程序实现,从而确定准确的所需的生产设备路径。在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
根据本申请的方案选择的生产设备路径符合工厂中的实际情况,因为虚拟设备可以仿真生产设备的可用率情况。在根据本申请方案选择优化的生产设备路径后,能够有效减少生产时间和生产花费,这种确定优选生产设备路径的方法节约了人力,并且结果准确。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理单元或模块,即可以位于一个地方,或者也可以分布到多个网络单元或模块上。可以根据实际的需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元或模块可以集成在一个处理单元或模块中,也可以是各个单元或模块单独物理存在,也可以两个或两个以上单元或模块集成在一个单元或模块中。上述集成的单元或模块既可以采用硬件的形式实现,也可以采用软件功能单元或模块的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (18)

  1. 确定生产设备路径的方法,其特征在于,包括:
    将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的所述生产设备的可用率,所述虚拟设备仿真对应的所述生产设备;
    根据一个或多个虚拟设备计算多条生产设备路径,每个所述生产设备路径表示生产工序所采用的所述生产设备的顺序;
    根据一个或多个所述虚拟设备的可用率并且基于每个所述生产设备路径生成仿真结果,所述仿真结果表示每条生产设备路径的生产相关数据;
    根据排序条件和所述仿真结果对多个所述生产设备路径排序;以及
    根据排序确定优化的生产设备路径。
  2. 根据权利要求1所述的方法,其特征在于,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的所述生产设备的可用率包括:
    根据运行数据计算一个或多个生产设备的可用率,所述运行数据表示一个或多个所述生产设备被占用或能使用的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,根据排序确定优化的生产设备路径包括:
    确定多个所述生产设备路径中排序最高的生产设备路径为优化的生产设备路径。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    在根据排序确定优化的生产设备路径前,筛选符合约束条件的多个所述生产设备路径作为确定优化的生产设备路径的基础。
  5. 根据权利要求2所述的方法,其特征在于,还包括:
    从所述生产设备的现有数据或者通过物联网获取所述运行数据。
  6. 根据权利要求2所述的方法,其特征在于,还包括:
    根据所述运行数据持续更新所述虚拟设备的可用率。
  7. 根据权利要求1或2所述的方法,其特征在于:
    所述生产相关数据包括生产时间和/或生产花费。
  8. 确定生产设备路径的装置,其特征在于,包括:
    配置单元,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的所述生产设备的可用率,所述虚拟设备仿真对应的所述生产设备;
    路径计算单元,根据一个或多个虚拟设备计算多条生产设备路径,每个所述生产设备路径表示生产工序所采用的所述生产设备的顺序;
    仿真单元,根据一个或多个所述虚拟设备的可用率并且基于每个所述生产设备路径生成仿真结果,所述仿真结果表示每条生产设备路径的生产相关数据;
    排序单元,根据排序条件和所述仿真结果对多个所述生产设备路径排序;以及
    确定单元,根据排序确定优化的生产设备路径。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    运行信息提取单元,根据运行数据计算一个或多个生产设备的可用率,所述运行数据表示一个或多个所述生产设备被占用或能使用的信息。
  10. 根据权利要求8或9所述的装置,其特征在于,还包括:
    运行数据获取单元,从所述生产设备的现有数据或者通过物联网获取所述运行数据。
  11. 根据权利要求8或9所述的装置,其特征在于,还包括:
    可用率更新单元,根据所述运行数据持续更新所述虚拟设备的可用率。
  12. 根据权利要求8或9所述的装置,其特征在于:
    所述确定单元确定排序最高的生产设备路径为优化的生产设备路径。
  13. 根据权利要求12所述的装置,其特征在于,还包括:
    筛选单元,在所述确定单元根据排序确定优化的生产设备路径前,筛选符合约束条件的多个所述生产设备路径作为确定优化的生产设备路径的基础。
  14. 确定生产设备路径的系统,其特征在于,包括:
    一个或多个生产设备;以及
    确定生产设备路径的装置,包括:
    配置单元,将与一个或多个生产设备对应的一个或多个虚拟设备的可用率配置为对应的所述生产设备的可用率,所述虚拟设备仿真对应的所述生产设备;
    路径计算单元,根据一个或多个虚拟设备计算多条生产设备路径,每个所述生产设备路径表示生产工序所采用的所述生产设备的顺序;
    仿真单元,根据一个或多个所述虚拟设备的可用率并且基于每个所述生产设备路径生成仿真结果,所述仿真结果表示每条生产设备路径的生产相关数据;
    排序单元,根据排序条件和所述仿真结果对多个所述生产设备路径排序;以及
    确定单元,根据排序确定优化的生产设备路径。
  15. 存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行根据权利要求1至7中任意一项所述的方法。
  16. 处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行根据权利要求1至7中任意一项所述的方法。
  17. 终端,包括:一个或多个处理器、存储器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置为由所述一个或多个处理器执行,所述一个或多个程序执行根据权利要求1至7中任意一项所述的方法。
  18. 计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1至7中任一项所述的方法。
PCT/CN2018/092014 2018-06-20 2018-06-20 确定生产设备路径的方法、装置、系统、存储介质和终端 WO2019241932A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/092014 WO2019241932A1 (zh) 2018-06-20 2018-06-20 确定生产设备路径的方法、装置、系统、存储介质和终端
CN201880092555.XA CN112041864A (zh) 2018-06-20 2018-06-20 确定生产设备路径的方法、装置、系统、存储介质和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092014 WO2019241932A1 (zh) 2018-06-20 2018-06-20 确定生产设备路径的方法、装置、系统、存储介质和终端

Publications (1)

Publication Number Publication Date
WO2019241932A1 true WO2019241932A1 (zh) 2019-12-26

Family

ID=68983106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092014 WO2019241932A1 (zh) 2018-06-20 2018-06-20 确定生产设备路径的方法、装置、系统、存储介质和终端

Country Status (2)

Country Link
CN (1) CN112041864A (zh)
WO (1) WO2019241932A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112966876B (zh) * 2021-03-19 2024-04-12 北京京东振世信息技术有限公司 订单的生产调度方法、装置、电子设备及可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760902A (zh) * 2005-11-11 2006-04-19 杭州电子科技大学 一种流程工业拟实优化调度系统的方法
CN102436236A (zh) * 2011-10-26 2012-05-02 奇瑞汽车股份有限公司 一种用于规划生产线的方法和装置
CN106709628A (zh) * 2016-11-24 2017-05-24 广州赛意信息科技股份有限公司 一种生产排程方法及系统
CN206848800U (zh) * 2017-05-26 2018-01-05 厦门汇利伟业科技有限公司 基于虚拟现实和工业物联网的在线监控系统
CN107657360A (zh) * 2017-08-16 2018-02-02 浙江力太科技有限公司 一种工业物联网中实时数据协同的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188580A (ja) * 1997-12-24 1999-07-13 Toshiba Corp ワークの加工方法
US7512454B1 (en) * 2002-05-31 2009-03-31 Advanced Micro Devices, Inc. Display unit with processor and communication controller
CN102054355B (zh) * 2011-01-07 2013-05-01 同济大学 适用于大规模交通流仿真的虚拟车辆路由方法
CN104809523A (zh) * 2015-05-07 2015-07-29 北京理工大学 一种基于决策块与蜂群算法的工件生产路径搜索方法
CN106327053B (zh) * 2016-07-29 2020-07-07 西安工程大学 一种基于多模式集合的纺织工艺推荐模型的构建方法
CN107403264B (zh) * 2017-07-14 2021-09-17 沈阳工程学院 一种考虑生产设备调度计划约束的运输设备钢包路径编制方法
CN107767015A (zh) * 2017-09-05 2018-03-06 南京国际船舶设备配件有限公司 一种基于mes的生产系统
CN107767068B (zh) * 2017-11-02 2021-03-23 山东中烟工业有限责任公司 一种精益生产高级计划排产系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760902A (zh) * 2005-11-11 2006-04-19 杭州电子科技大学 一种流程工业拟实优化调度系统的方法
CN102436236A (zh) * 2011-10-26 2012-05-02 奇瑞汽车股份有限公司 一种用于规划生产线的方法和装置
CN106709628A (zh) * 2016-11-24 2017-05-24 广州赛意信息科技股份有限公司 一种生产排程方法及系统
CN206848800U (zh) * 2017-05-26 2018-01-05 厦门汇利伟业科技有限公司 基于虚拟现实和工业物联网的在线监控系统
CN107657360A (zh) * 2017-08-16 2018-02-02 浙江力太科技有限公司 一种工业物联网中实时数据协同的方法

Also Published As

Publication number Publication date
CN112041864A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN106548670B (zh) 在线教学平台及在线教学方法
CN107678946B (zh) 一种基于模型的机载嵌入式软件测试环境构建方法
CN101093518B (zh) 优化电路设计中的流水线逻辑结构布置的方法和系统
CN102722381B (zh) 优化升级任务的技术
CN107463362A (zh) 基于多个Jenkins的持续部署的方法和系统
US20150161539A1 (en) Decision support system for project managers and associated method
CN105843873A (zh) 用于管理数据建模的系统及其方法
CN105812423B (zh) 一种云系统配置方法、服务器及装置
JP4405520B2 (ja) プロジェクトの進行スケジュールを調整するためのコンピュータプログラム、コンピュータ装置及び方法
CN108874678A (zh) 一种智能程序的自动测试方法及装置
Jacobsen et al. Lean construction in a serious game using a multiplayer virtual reality environment
WO2019241932A1 (zh) 确定生产设备路径的方法、装置、系统、存储介质和终端
AU2022200139A1 (en) Adaptive training system, method and apparatus
US10313457B2 (en) Collaborative filtering in directed graph
WO2020053991A1 (ja) 製造システム設計支援装置
CN117290255A (zh) 一种基于Python和Locust框架的批量接口性能测试方法
JP2020004326A (ja) 人材育成支援システム及びプログラム
JP6887546B2 (ja) 注文を処理して応答する方法
JP7392978B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2015026329A (ja) Ict−bcp策定支援装置、ict−bcp策定支援方法およびプログラム
CN109493129B (zh) 产品智能设计的方法及装置、电子设备、存储介质
Bjerke-Gulstuen et al. High level test driven development–shift left
US11314678B2 (en) Systems and methods for providing connectivity between two or more hardware and software components
CN116957870B (zh) 临床技能考核管理系统控制方法、装置、设备及介质
JP7068218B2 (ja) プラントシミュレレータ及びプラントシミュレータの接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923044

Country of ref document: EP

Kind code of ref document: A1