WO2019239552A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2019239552A1
WO2019239552A1 PCT/JP2018/022771 JP2018022771W WO2019239552A1 WO 2019239552 A1 WO2019239552 A1 WO 2019239552A1 JP 2018022771 W JP2018022771 W JP 2018022771W WO 2019239552 A1 WO2019239552 A1 WO 2019239552A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
change rate
unit
rate data
Prior art date
Application number
PCT/JP2018/022771
Other languages
English (en)
French (fr)
Inventor
勝治 今城
柳澤 隆行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/022771 priority Critical patent/WO2019239552A1/ja
Priority to JP2018558446A priority patent/JP6537747B1/ja
Publication of WO2019239552A1 publication Critical patent/WO2019239552A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the present invention relates to a laser radar device for calculating a distance to a distance measuring object.
  • Patent Document 1 discloses an object detection device that calculates a distance to an object to be detected.
  • the object detection device disclosed in Patent Document 1 calculates a cross-correlation value between a transmission pattern signal output from a transmitter and an output signal of a receiver, and uses the cross-correlation value to detect an object to be detected. The distance is calculated.
  • the object detection device disclosed in Patent Document 1 always performs a cross-correlation value calculation process regardless of whether the output signal of the receiver is reflected light of an object to be detected. That is, the object detection apparatus disclosed in Patent Document 1 performs the cross-correlation value calculation process even when the cross-correlation value does not need to be calculated originally, such as when the output signal of the receiver is ambient light. are doing. Therefore, the object detection device disclosed in Patent Document 1 has a problem that the processing load for calculating the cross-correlation value is large.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a laser radar device that can restrict the execution of the correlation value calculation process and the distance calculation process.
  • a laser radar device includes a transmission signal generation unit that generates a transmission signal whose amplitude changes with time, converts the transmission signal into transmission light, and irradiates the transmission light toward a distance measuring object.
  • a light irradiating unit, a reflected light receiving unit that receives transmission light reflected by the object to be measured as reflected light, and outputs a reception signal of the reflected light, and a signal value indicating the amplitude value of the transmission signal is first
  • a first sampling unit that repeatedly samples the signal value of the transmission signal during a period that is equal to or greater than the threshold value, and a signal value of the reception signal during a period when the signal value that indicates the amplitude value of the reception signal is equal to or greater than the second threshold value
  • a second sampling unit that repeatedly samples, a correlation for calculating a correlation value between a plurality of signal values sampled by the first sampling unit and a plurality of signal values sampled by the second sampling unit When the calculation unit and the correlation value are greater than or equal to the third
  • the first sampling unit that repeatedly samples the signal value of the transmission signal during the period in which the signal value indicating the amplitude value of the transmission signal is equal to or greater than the first threshold value, and the amplitude value of the reception signal
  • a second sampling unit that repeatedly samples the signal value of the received signal during a period in which the signal value indicated is equal to or greater than the second threshold
  • the correlation value calculation unit is a plurality of signals sampled by the first sampling unit The correlation value between the value and a plurality of signal values sampled by the second sampling unit is calculated, and the distance calculation unit emits the transmission light from the light irradiation unit when the correlation value is greater than or equal to the third threshold value.
  • the laser radar device was configured to calculate the distance to the distance measurement object from the time difference between the measured time and the time when the reflected light was received by the reflected light receiving unit. Therefore, the laser radar device according to the present invention can restrict the execution of the correlation value calculation process and the distance calculation process.
  • FIG. 1 is a configuration diagram illustrating a laser radar device according to a first embodiment. It is explanatory drawing which shows the waveform of the signal output from each component in the laser radar apparatus shown in FIG.
  • FIG. 3A is an explanatory diagram illustrating sampling of the signal value s Tx, n by the A / D converter 14, and
  • FIG. 3B is a transmission light T in which the reflected light RL received by the receiving antenna 9 is reflected by the measurement object.
  • FIG. 3C is an explanatory diagram showing sampling of the signal value s Rx, m by the A / D converter 17 when L
  • FIG. 3C shows the A / D when the reflected light RL received by the receiving antenna 9 is disturbance light.
  • FIG. 6 is a configuration diagram illustrating a laser radar device according to a second embodiment. It is explanatory drawing which shows the relationship between signal value s Tx, n , threshold value Th a -Th d, and digital value DTx, n . It is explanatory drawing which shows an example of the signal which the multi-value comparator 31 inputs / outputs.
  • FIG. 6 is a configuration diagram showing a laser radar device according to a third embodiment. 3 is a configuration diagram showing the inside of a correlation value calculation unit 18.
  • FIG. 1 is a configuration diagram illustrating a laser radar device according to the first embodiment.
  • the transmission signal generation unit 1 includes a clock source 2 and a pattern generation unit 3.
  • the transmission signal generation unit 1 generates a transmission signal whose amplitude changes with time and outputs the transmission signal to each of the light irradiation unit 4 and the first sampling unit 12.
  • the clock source 2 oscillates a clock signal and outputs the clock signal to each of the pattern generation unit 3 and the distance calculation unit 22.
  • the pattern generation unit 3 generates a transmission signal whose amplitude changes with the passage of time in synchronization with the clock signal output from the clock source 2, and uses the transmission signal as the light source drive circuit 5, the comparator 13, and the A / D. Output to each of the converters 14.
  • the light irradiation unit 4 includes a light source driving circuit 5, a light source 6, and a transmission antenna 7.
  • the light irradiation unit 4 converts the transmission signal output from the transmission signal generation unit 1 into transmission light, and irradiates the transmission light toward the object to be measured.
  • the light source driving circuit 5 is a circuit that outputs transmission light, which is modulated light, from the light source 6 by controlling the modulation of light output from the light source 6 according to the signal value of the transmission signal output from the pattern generation unit 3. is there.
  • the light source 6 is a light source that outputs transmission light to the transmission antenna 7.
  • the transmission antenna 7 is an antenna that irradiates transmission light toward a distance measuring object.
  • the reflected light receiving unit 8 includes a receiving antenna 9, a photodetector 10, and a current amplifier 11.
  • the reflected light receiving unit 8 receives the transmission light reflected by the distance measuring object as reflected light after the transmission light is irradiated from the transmission antenna 7, and outputs the received signal of the reflected light to the second sampling unit 15.
  • the receiving antenna 9 is an antenna that receives transmission light reflected by a distance measuring object as reflected light.
  • the photodetector 10 detects the reflected light received by the receiving antenna 9 and outputs a detection signal of the reflected light to the current amplifier 11.
  • the current amplifier 11 amplifies the detection signal output from the photodetector 10 and outputs the amplified detection signal to each of the comparator 16 and the A / D converter 17 as a reception signal.
  • the first sampling unit 12 includes a comparator 13 and an analog-digital converter (hereinafter referred to as “A / D converter”) 14.
  • the first sampling unit 12 repeatedly samples the signal value of the transmission signal during a period in which the signal value indicating the amplitude value of the transmission signal generated by the transmission signal generation unit 1 is equal to or greater than the first threshold Th 1 .
  • the comparator 13 compares the signal value of the transmission signal output from the pattern generator 3, a first and a threshold value Th 1.
  • the comparator 13 outputs a high level signal to the A / D converter 14 if the signal value of the transmission signal is equal to or greater than the first threshold Th 1 , and the signal value of the transmission signal is less than the first threshold Th 1 .
  • the first threshold value Th 1 is may be those stored in the internal memory of the comparator 13, or may be externally applied.
  • the A / D converter 14 repeatedly samples the signal value of the transmission signal output from the pattern generation unit 3 at a constant sampling period while the high level signal is output from the comparator 13.
  • the A / D converter 14 converts each sampled signal value into a digital value, and stores the digital value in the memory 19.
  • the second sampling unit 15 includes a comparator 16 and an A / D converter 17.
  • Second sampling unit 15 in a signal value indicating the amplitude value of the received signal output from the reflected light receiving part 8 is a second threshold value Th 2 or more periods, repeatedly sampling the signal value of the received signal.
  • Comparator 16 compares the signal value of the received signal output from the current amplifier 11, and a second threshold value Th 2.
  • the comparator 16 outputs a high level signal to the A / D converter 17 if the signal value of the received signal is equal to or greater than the second threshold Th 2 , and the signal value of the received signal is less than the second threshold Th 2 . If there is, a low level signal is output to the A / D converter 17.
  • the second threshold Th 2 may be stored in the internal memory of the comparator 16 or may be given from the outside.
  • the A / D converter 17 repeatedly samples the signal value of the reception signal output from the current amplifier 11 at a constant sampling period during the period when the high level signal is output from the comparator 16.
  • the A / D converter 17 converts each sampled signal value into a digital value, and stores the digital value in the memory 20.
  • the correlation value calculation unit 18 includes a memory 19, a memory 20, and a correlation value calculation circuit 21.
  • the correlation value calculation unit 18 calculates a correlation value between the plurality of signal values sampled by the first sampling unit 12 and the plurality of signal values sampled by the second sampling unit 15.
  • the memory 19 is a recording medium that stores digital values respectively output from the A / D converter 14.
  • the memory 20 is a recording medium that stores digital values respectively output from the A / D converter 17.
  • the correlation value calculation circuit 21 calculates first change rate data indicating a time change rate between a plurality of digital values stored in the memory 19, and between the plurality of digital values stored in the memory 20.
  • the second change rate data indicating the time change rate is calculated.
  • the correlation value calculation circuit 21 calculates a correlation value between the first change rate data and the second change rate data, and outputs the correlation value to the distance calculation unit 22.
  • the distance calculation unit 22 is realized by, for example, a time digital conversion circuit (TDC: Time-to-Digital Converter).
  • TDC Time-to-Digital Converter
  • the distance calculation unit 22 adds the respective processing times in the pattern generation unit 3, the light source driving circuit 5, and the light source 6 to the time when the clock signal is output from the clock source 2, so that the transmission light is emitted from the transmission antenna 7.
  • the calculated time is calculated.
  • the distance calculation unit 22 acquires the time when the high-level signal is first output from the comparator 16.
  • the distance calculation unit 22 subtracts the processing time in the photodetector 10, the current amplifier 11, and the comparator 16 from the time when the high-level signal is first output from the comparator 16, thereby reflecting the reflected light by the receiving antenna 9. Calculates the time when is received.
  • the distance calculation unit 22 receives the reflected light from the time when the transmission light is emitted from the transmission antenna 7 and the reception antenna 9.
  • the distance to the object to be measured is calculated from the time difference from the determined time.
  • the third threshold Th 3 may be stored in the internal memory of the distance calculation unit 22 or may be given from the outside.
  • FIG. 2 is an explanatory diagram showing waveforms of signals output from the respective components in the laser radar apparatus shown in FIG.
  • the clock source 2 oscillates a clock signal C as shown in FIG. 2 and outputs the clock signal C to each of the pattern generation unit 3 and the distance calculation unit 22.
  • the pattern generation unit 3 When receiving the clock signal C from the clock source 2, the pattern generation unit 3 generates a transmission signal Tx whose amplitude changes with the passage of time in synchronization with the clock signal C.
  • the pattern generation unit 3 outputs the transmission signal Tx to each of the light source driving circuit 5, the comparator 13, and the A / D converter 14. Each time the transmission signal Tx is output, the pattern generation unit 3 may generate a transmission signal Tx having a different amplitude change, or may generate the same transmission signal Tx each time.
  • the light source driving circuit 5 When the light source driving circuit 5 receives the transmission signal Tx from the pattern generation unit 3, the light source driving circuit 5 controls the modulation of the light output from the light source 6 according to the signal value of the transmission signal Tx.
  • the light source 6 is controlled by the light source driving circuit 5 to output transmission light TL as shown in FIG.
  • the transmission antenna 7 irradiates the distance measuring object with the transmission light TL output from the light source 6.
  • the transmission light T L emitted from the transmission antenna 7 is reflected by the distance measurement object, and the reflected light R L of the transmission light T L arrives at the reception antenna 9.
  • the receiving antenna 9 receives the reflected light RL .
  • the photodetector 10 detects the reflected light RL received by the receiving antenna 9 and outputs a detection signal of the reflected light RL to the current amplifier 11.
  • the current amplifier 11 receives the detection signal of the reflected light RL from the photodetector 10, the current amplifier 11 amplifies the detection signal of the reflected light RL , and uses the amplified detection signal as the reception signal Rx, and the comparator 16 and A / D conversion To each of the devices 17.
  • the comparator 13 receives the transmission signal Tx from the transmission signal generation unit 1, compares the threshold value Th 1 signal value and the first transmission signal Tx. The comparator 13 is transmitted if the signal value of the signal Tx is the first threshold value Th 1 or more, and outputs a high level signal to the A / D converter 14, the threshold Th 1 signal values are first transmission signal Tx If it is less, a low level signal is output to the A / D converter 14.
  • FIG. 3 is an explanatory diagram showing sampling of signal values by the A / D converter 14 and sampling of signal values by the A / D converter 17.
  • FIG. 3A is an explanatory diagram showing sampling of the signal value s Tx, n by the A / D converter 14.
  • black circles indicate signal values s Tx, n sampled by the A / D converter 14.
  • the A / D converter 14 converts each sampled signal value s Tx, n into a digital value D Tx, n and stores each digital value D Tx, n in the memory 19.
  • Comparator 16 receives the received signal Rx from the current amplifier 11 is compared with the threshold value Th 2 signal value and the second reception signal Rx.
  • the comparator 16 outputs a high level signal to the A / D converter 17 if the signal value of the reception signal Rx is equal to or greater than the second threshold Th 2 , and the signal value of the reception signal Rx is equal to the second threshold Th 2. If it is less, a low level signal is output to the A / D converter 17.
  • FIG. 3B is an explanatory diagram showing sampling of the signal value s Rx, m by the A / D converter 17 when the reflected light RL received by the receiving antenna 9 is the transmitted light TL reflected by the measurement object. It is.
  • FIG. 3C is an explanatory diagram showing sampling of the signal value s Rx, m by the A / D converter 17 when the reflected light RL received by the receiving antenna 9 is disturbance light.
  • FIG. 3C black circles indicate signal values s Rx, m sampled by the A / D converter 17.
  • the A / D converter 17 converts each sampled signal value s Rx, m into a digital value D Rx, m , and stores each digital value D Rx, m in the memory 20.
  • a signal sequence of signal values s Rx, m in the received signal Rx when the reflected light RL received by the receiving antenna 9 is the transmitted light TL reflected by the measurement object is as shown in FIGS. 3A and 3B. Further, it is similar to the signal sequence of the signal value s Tx, n in the transmission signal Tx. As shown in FIGS. 3A and 3C, the signal sequence s Rx, m in the reception signal Rx when the reflected light RL received by the reception antenna 9 is disturbance light is a signal value s in the transmission signal Tx. It is not similar to the signal sequence of Tx, n .
  • the sampling period Sp 2 in the A / D converter 17 may be the same as or different from the sampling period Sp 1 in the A / D converter 14. Light intensity of the reflected light R L is, under clear conditions be lower than the light intensity of the transmission light T L, for example, by the same ratio as the reduction ratio of light intensity, the sampling period Sp 2 is than the sampling period Sp 1 May be small.
  • the correlation value calculation circuit 21 acquires N digital values D Tx, n stored in the memory 19. As shown in the following formula (1), the correlation value calculation circuit 21 obtains first change rate data dD Tx indicating each of the time change rates dD Tx, n between two adjacent digital values at the sampling time. calculate.
  • dD Tx dD Tx, 1 , dD Tx, 2 ,..., dD Tx, N ⁇ 1 (1)
  • dD Tx, 1 (D Tx, 2 -D Tx, 1 ) / Sp 1
  • dD Tx, 2 (D Tx, 3 -D Tx, 2 ) / Sp 1 :
  • dD Tx, N ⁇ 1 (D Tx, N ⁇ D Tx, N ⁇ 1 ) / Sp 1
  • the correlation value calculation circuit 21 obtains M digital values DRx, m stored in the memory 20. Correlation value calculation circuit 21, as shown in the following equation (2), the time rate of change dD Rx, second rate of change that indicates the respective m between the sampling time of two digital values D Rx, m next Data dD Rx is calculated.
  • the correlation value calculation circuit 21 calculates a correlation value cor between the first change rate data dD Tx and the second change rate data dD Rx, and outputs the correlation value cor to the distance calculation unit 22.
  • the correlation value cor for example, a correlation coefficient between the first change rate data dD Tx and the second change rate data dD Rx as shown in the following equation (3) can be used.
  • Correlation coefficient Cov (dD Tx , dD Rx ) / (SD 1 (dD Tx ) ⁇ (SD 2 (dD Rx )) (3)
  • Cov (dD Tx , dD Rx ) is a covariance between the first change rate data dD Tx and the second change rate data dD Rx .
  • SD 1 (dD Tx ) is a standard deviation of the first change rate data dD Tx
  • SD 2 (dD Rx ) is a standard deviation of the second change rate data dD Rx .
  • the distance calculation unit 22 When the distance calculation unit 22 receives the clock signal C from the clock source 2, the distance calculation unit 22 refers to an internal clock or an external clock and acquires the time t c1 when the clock signal C is output from the clock source 2.
  • the distance calculation unit 22 adds the processing times T p1 of the pattern generation unit 3, the light source drive circuit 5, and the light source 6 to the time t c1 as shown in the following formula (4), thereby transmitting the antenna 7.
  • t T t c1 + T p1 (4)
  • the processing time T p1 may be stored in the internal memory of the distance calculation unit 22 or may be given from the outside.
  • the distance calculation unit 22 refers to an internal clock or an external clock, and obtains a time t c2 when a high-level signal is first output from the comparator 16 after the clock signal C is output from the clock source 2.
  • the distance calculation unit 22 subtracts each processing time T p2 in the photodetector 10, the current amplifier 11 and the comparator 16 from the time t c2 as shown in the following equation (5), so that the reception antenna 9 A time t R when the reflected light RL is received is calculated.
  • t R t c2 ⁇ T p2 (5)
  • the processing time T p2 may be stored in the internal memory of the distance calculation unit 22 or may be given from the outside.
  • Distance calculating unit 22 receives the correlation value cor from the correlation value calculation circuit 21 compares the threshold Th 3 correlation value cor third. If the correlation value cor is equal to or greater than the third threshold Th 3 , the distance calculation unit 22 may cause the reflected light RL received by the receiving antenna 9 to be the transmitted light TL reflected by the measurement object. Qualify as high. Then, the distance calculation unit 22, the time difference between the time t T of the transmission light T L is irradiated from the transmission antenna 7, a time t R of the reflected light R L is received by the receiving antenna 9
  • the distance calculation unit 22 Since the process itself for calculating the distance from the time difference
  • the first embodiment described above includes the first sampling unit 12 that repeatedly samples the signal value of the transmission signal during the period in which the signal value indicating the amplitude value of the transmission signal is equal to or greater than the first threshold, and the amplitude of the reception signal. And a second sampling unit 15 that repeatedly samples the signal value of the received signal during a period in which the signal value indicating the value of is equal to or greater than the second threshold. Then, the correlation value calculation unit 18 calculates a correlation value between the plurality of signal values sampled by the first sampling unit 12 and the plurality of signal values sampled by the second sampling unit 15.
  • the laser radar device when the distance calculation unit 22 has a correlation value equal to or greater than the third threshold, the time between when the transmission light is irradiated from the light irradiation unit 4 and when the reflected light is received by the reflected light reception unit 8
  • the laser radar device was configured to calculate the distance to the object to be measured from the difference. Therefore, the laser radar apparatus can restrict the execution of the correlation value calculation process and the distance calculation process.
  • the first sampling unit 12 repeatedly samples the signal value of the transmission signal during a period in which the signal value of the transmission signal generated by the transmission signal generation unit 1 is equal to or greater than the first threshold. Therefore, since the signal value sampled by the first sampling unit 12 is limited to the signal value during the period that is equal to or greater than the first threshold value, the storage capacity of the memory 19 is larger than when the signal value is always sampled. Can be small.
  • the second sampling unit 15 repeatedly samples the signal value of the received signal during a period in which the signal value of the received signal output from the reflected light receiving unit 8 is equal to or greater than the second threshold value. Therefore, since the signal value sampled by the second sampling unit 15 is limited to the signal value during the period that is equal to or greater than the second threshold value, the storage capacity of the memory 20 is larger than when the signal value is always sampled. Can be small.
  • the correlation value calculation unit 18 includes memories 19 and 20 and a correlation value calculation circuit 21.
  • the correlation value calculation unit 18 only needs to be able to calculate the correlation value cor between the first change rate data dD Tx and the second change rate data dD Rx, and may be configured as shown in FIG.
  • FIG. 8 is a configuration diagram showing the inside of the correlation value calculation unit 18.
  • a differentiation circuit 51 is a circuit that calculates a differential waveform of the waveform indicated by each digital value DTx, n output from the A / D converter 14 and outputs the differential waveform to the zero-cross circuit 52.
  • the zero cross circuit 52 is a circuit that detects the timing at which the differential waveform output from the differentiation circuit 51 crosses zero.
  • the counter 53 outputs a pulse signal to the coincidence calculation circuit 57 when the zero crossing timing is detected by the zero cross circuit 52.
  • the differentiation circuit 54 is a circuit that calculates a differential waveform of the waveform indicated by each digital value DRx, m output from the A / D converter 17 and outputs the differential waveform to the zero-cross circuit 55.
  • the zero cross circuit 55 is a circuit that detects the timing at which the differential waveform output from the differentiation circuit 54 crosses zero. When the zero crossing timing is detected by the zero cross circuit 55, the counter 56 outputs a pulse signal to the coincidence calculation circuit 57.
  • the coincidence calculation circuit 57 calculates the coincidence between the signal train of the pulse signal output from the counter 53 and the signal train of the pulse signal output from the counter 56, and uses the coincidence as a correlation value cor to calculate the distance calculation unit 22. Output to.
  • the differentiating circuit 51 calculates a differential waveform of the waveform indicated by each digital value DTx, n and outputs the differentiated waveform to the zero-cross circuit 52. To do.
  • the zero-cross circuit 52 receives the differential waveform from the differentiation circuit 51, the zero-cross circuit 52 detects the timing at which the differential waveform zero-crosses.
  • the zero cross circuit 52 outputs a detection signal k 1 to the counter 53 when detecting the timing at which the differential waveform zero crosses.
  • the counter 53 receives the detection signal k 1 from the zero cross circuit 52, the counter 53 outputs a pulse signal to the coincidence calculation circuit 57.
  • the differentiating circuit 54 When the differentiating circuit 54 receives each digital value DRx, m from the A / D converter 17, it calculates the differential waveform of the waveform indicated by each digital value DRx, m and outputs the differentiated waveform to the zero cross circuit 55. To do.
  • the zero cross circuit 55 receives the differential waveform from the differentiation circuit 54, the zero cross circuit 55 detects the timing at which the differential waveform zero-crosses.
  • the zero cross circuit 55 outputs a detection signal k 2 to the counter 56 when detecting the timing at which the differential waveform zero crosses. Each time the counter 56 receives the detection signal k 2 from the zero cross circuit 55, it outputs a pulse signal to the coincidence calculation circuit 57.
  • the coincidence calculation circuit 57 calculates the coincidence between the two signal sequences by comparing the signal sequence of the pulse signal output from the counter 53 with the signal sequence of the pulse signal output from the counter 56.
  • the degree is output to the distance calculation unit 22 as a correlation value cor. Since the process for calculating the degree of coincidence is a known technique, detailed description thereof is omitted.
  • Embodiment 2 a laser radar device in which the second sampling unit 15 includes a multi-value comparator 31 and a change rate calculation circuit 32 will be described.
  • FIG. 4 is a block diagram showing a laser radar device according to the second embodiment.
  • the multi-value comparator 31 repeatedly samples the signal value of the reception signal Rx output from the current amplifier 11, compares the sampled signal value with a plurality of threshold values, converts the signal value into a digital value, and outputs a plurality of values.
  • the digital value is output to the change rate calculation circuit 32.
  • the change rate calculation circuit 32 calculates second change rate data dD Rx indicating a time change rate between the plurality of digital values during a period in which the plurality of digital values are received from the multi-value comparator 31.
  • the change rate data dD Rx is stored in the memory 33.
  • the correlation value calculation unit 18 includes a memory 19, a memory 33, and a correlation value calculation circuit 34.
  • the memory 33 is a recording medium that stores the second change rate data dD Rx output from the change rate calculation circuit 32.
  • the correlation value calculation circuit 34 calculates first change rate data dD Tx indicating a time change rate between a plurality of digital values stored in the memory 19.
  • the correlation value calculation circuit 34 calculates a correlation value cor between the first change rate data dD Tx and the second change rate data dD Rx stored in the memory 33, and outputs the correlation value cor to the distance calculation unit 22. To do.
  • the multi-value comparator 31 stores a plurality of different threshold values.
  • the multi-value comparator 31 stores the threshold Th a , the threshold Th b , the threshold Th c, and the threshold Th d .
  • the thresholds Th a to Th d are compared.
  • the multi-value comparator 31 If s Rx, m ⁇ Th a , the multi-value comparator 31 outputs a digital value (0) having a signal level of zero to the change rate calculation circuit 32 as the digital value DRx, m . If Th a ⁇ s Rx, m ⁇ Th b , the multi-value comparator 31 changes a digital value (1) larger than the digital value (0) as the digital value D Rx, m as shown in FIG. It outputs to the rate calculation circuit 32. If Th b ⁇ s Rx, m ⁇ Th c , the multi-value comparator 31 changes the digital value (2) larger than the digital value (1) as the digital value D Rx, m as shown in FIG. It outputs to the rate calculation circuit 32.
  • the multi-value comparator 31 changes the digital value (3) larger than the digital value (2) as the digital value D Rx, m as shown in FIG. It outputs to the rate calculation circuit 32. If Th d ⁇ s Rx, m , the multi-value comparator 31 uses a digital value (4) larger than the digital value (3) as the digital value D Rx, m as shown in FIG. 32.
  • FIG. 5 is an explanatory diagram showing the relationship among the signal value s Rx, m , the threshold values Th a to Th d, and the digital value D Rx, m .
  • FIG. 6 is an explanatory diagram showing an example of signals input / output by the multi-value comparator 31.
  • the correlation value calculation circuit 34 calculates first change rate data dD Tx in the same manner as the correlation value calculation circuit 21 shown in FIG.
  • the correlation value calculation circuit 34 acquires the second change rate data dD Rx stored in the memory 33, and similarly to the correlation value calculation circuit 21 shown in FIG. 1, the first change rate data dD Tx and the second change rate data dD Rx
  • the correlation value cor with the change rate data dD Rx is calculated, and the correlation value cor is output to the distance calculation unit 22.
  • Distance calculating unit 22 receives the correlation value cor from the correlation value calculation circuit 34 compares the threshold Th 3 correlation value cor third. If the correlation value cor is greater than or equal to the third threshold Th 3 , the distance calculation unit 22 calculates the distance to the distance measurement object as in the first embodiment. Here, the distance calculation unit 22 calculates the distance to the object to be measured. If the change rate calculation circuit 32 receives the clock signal C output from the clock source 2, it can calculate the distance to the distance measurement object in the same manner as the distance calculation unit 22. The distance calculation unit 22 may acquire the distance calculated by the change rate calculation circuit 32, and output the distance to the outside when the correlation value cor is equal to or greater than the third threshold Th3.
  • the second sampling unit 15 converts each sampled signal value into a digital value, and calculates second change rate data indicating a time change rate between a plurality of digital values. are doing. Then, the correlation value calculation unit 18 calculates first change rate data indicating a time change rate between the plurality of signal values sampled by the first sampling unit 12, and the first change rate data and the second change rate data are calculated.
  • the laser radar device was configured to calculate a correlation value with the second change rate data calculated by the sampling unit 15. Therefore, similarly to the laser radar apparatus of the first embodiment, the laser radar apparatus can restrict the execution of the correlation value calculation process and the distance calculation process.
  • Embodiment 3 a laser radar apparatus in which the first sampling unit 12 includes a multi-value comparator 41 and a change rate calculation circuit 42 will be described.
  • FIG. 7 is a configuration diagram illustrating a laser radar device according to the third embodiment. 7, the same reference numerals as those in FIGS. 1 and 4 indicate the same or corresponding parts, and thus the description thereof is omitted.
  • the multi-value comparator 41 repeatedly samples the signal value of the transmission signal Tx output from the pattern generation unit 3, compares the sampled signal value with a plurality of threshold values, converts the signal value into a digital value, Are output to the change rate calculation circuit 42.
  • the change rate calculation circuit calculates first change rate data dD Tx indicating a time change rate between a plurality of digital values during a period in which the plurality of digital values are received from the multi-value comparator 41, and the first change rate data dD Tx is calculated.
  • the change rate data dD Tx is stored in the memory 43.
  • the correlation value calculation unit 18 includes a memory 43, a memory 33, and a correlation value calculation circuit 44.
  • the memory 43 is a recording medium that stores the first change rate data dD Tx output from the change rate calculation circuit 42.
  • the correlation value calculation circuit 44 calculates a correlation value cor between the first change rate data dD Tx stored in the memory 43 and the second change rate data dD Rx stored in the memory 33, and the correlation value cor Is output to the distance calculation unit 22.
  • the pattern generation unit 3 outputs a transmission signal Tx whose amplitude changes with time to each of the light source driving circuit 5 and the multi-value comparator 41.
  • the multi-value comparator 41 stores a plurality of different threshold values.
  • Each of the threshold values Th ′ a to Th ′ d may be the same value as each of the threshold values Th a to Th d stored by the multi-value comparator 31 or may be different.
  • the multi-value comparator 41 If s Tx, n ⁇ Th ′ a , the multi-value comparator 41 outputs a digital value (0) having a signal level of zero to the change rate calculation circuit 42 as the digital value D Tx, n . If Th ′ a ⁇ s Tx, n ⁇ Th ′ b , the multi-value comparator 41 sets a digital value (1) larger than the digital value (0) to the change rate calculation circuit 42 as the digital value D Tx, n. Output. If Th ′ b ⁇ s Tx, n ⁇ Th ′ c , the multi-value comparator 41 sets a digital value (2) larger than the digital value (1) to the change rate calculation circuit 42 as the digital value D Tx, n. Output.
  • the multi-value comparator 41 sets a digital value (3) larger than the digital value (2) to the change rate calculation circuit 42 as the digital value D Tx, n. Output. If Th ′ d ⁇ s Tx, n , the multi-value comparator 41 outputs a digital value (4) larger than the digital value (3) to the change rate calculation circuit 42 as the digital value D Tx, n .
  • the change rate calculation circuit 42 stores the first change rate data dD Tx in the memory 43.
  • the correlation value calculation circuit 44 acquires the first change rate data dD Tx stored in the memory 43 and acquires the second change rate data dD Rx stored in the memory 33. Similar to the correlation value calculation circuit 21 shown in FIG. 1, the correlation value calculation circuit 44 calculates a correlation value cor between the first change rate data dD Tx and the second change rate data dD Rx, and calculates the correlation value cor. Output to the distance calculator 22.
  • Distance calculating unit 22 receives the correlation value cor from the correlation value calculation circuit 44 compares the threshold Th 3 correlation value cor third. If the correlation value cor is greater than or equal to the third threshold Th 3 , the distance calculation unit 22 calculates the distance to the distance measurement object as in the first embodiment.
  • the first sampling unit 12 converts each sampled signal value into a digital value, and calculates first change rate data indicating a time change rate between a plurality of digital values.
  • the second sampling unit 15 converts each sampled signal value to a digital value, and calculates second change rate data indicating a time change rate between the plurality of digital values.
  • the correlation value calculation unit 18 calculates a correlation value between the first change rate data calculated by the first sampling unit 12 and the second change rate data calculated by the second sampling unit 15.
  • a laser radar device was configured. Therefore, similarly to the laser radar apparatus of the first embodiment, the laser radar apparatus can restrict the execution of the correlation value calculation process and the distance calculation process.
  • the present invention is suitable for a laser radar device that calculates the distance to the object to be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

送信信号の振幅の値を示す信号値が第1の閾値以上である期間中、送信信号の信号値を繰り返しサンプリングする第1のサンプリング部(12)と、受信信号の振幅の値を示す信号値が第2の閾値以上である期間中、受信信号の信号値を繰り返しサンプリングする第2のサンプリング部(15)とを設けている。そして、相関値算出部(18)が、第1のサンプリング部(12)によりサンプリングされた複数の信号値と、第2のサンプリング部(15)によりサンプリングされた複数の信号値との相関値を算出する。また、距離算出部(22)が、相関値が第3の閾値以上であるとき、光照射部(4)から送信光が照射された時刻と、反射光受信部(8)により反射光が受信された時刻との時刻差から、測距対象物までの距離を算出するように、レーザレーダ装置を構成した。

Description

レーザレーダ装置
 この発明は、測距対象物までの距離を算出するレーザレーダ装置に関するものである。
 以下の特許文献1には、検出対象の物体までの距離を算出する物体検出装置が開示されている。
 特許文献1に開示されている物体検出装置は、送信機から出力された送信パターン信号と受信機の出力信号との相互相関値を算出し、相互相関値を用いて、検出対象の物体までの距離を算出している。
特開2014-232069号公報
 特許文献1に開示されている物体検出装置は、受信機の出力信号が検出対象の物体の反射光であるか否かにかかわらず、常に相互相関値の算出処理を実施している。
 即ち、特許文献1に開示されている物体検出装置は、受信機の出力信号が外乱光である場合など、本来、相互相関値を算出する必要がない場合でも、相互相関値の算出処理を実施している。
 したがって、特許文献1に開示されている物体検出装置は、相互相関値の算出処理負荷が大きいという課題があった。
 この発明は上記のような課題を解決するためになされたもので、相関値の算出処理の実施及び距離の算出処理の実施をそれぞれ制限することができるレーザレーダ装置を得ることを目的とする。
 この発明に係るレーザレーダ装置は、時間の経過に伴って振幅が変化する送信信号を生成する送信信号生成部と、送信信号を送信光に変換し、送信光を測距対象物に向けて照射する光照射部と、測距対象物によって反射された送信光を反射光として受信し、反射光の受信信号を出力する反射光受信部と、送信信号の振幅の値を示す信号値が第1の閾値以上である期間中、送信信号の信号値を繰り返しサンプリングする第1のサンプリング部と、受信信号の振幅の値を示す信号値が第2の閾値以上である期間中、受信信号の信号値を繰り返しサンプリングする第2のサンプリング部と、第1のサンプリング部によりサンプリングされた複数の信号値と、第2のサンプリング部によりサンプリングされた複数の信号値との相関値を算出する相関値算出部と、相関値が第3の閾値以上であるとき、光照射部から送信光が照射された時刻と、反射光受信部により反射光が受信された時刻との時刻差から、測距対象物までの距離を算出する距離算出部とを備えるようにしたものである。
 この発明によれば、送信信号の振幅の値を示す信号値が第1の閾値以上である期間中、送信信号の信号値を繰り返しサンプリングする第1のサンプリング部と、受信信号の振幅の値を示す信号値が第2の閾値以上である期間中、受信信号の信号値を繰り返しサンプリングする第2のサンプリング部とを設け、相関値算出部が、第1のサンプリング部によりサンプリングされた複数の信号値と、第2のサンプリング部によりサンプリングされた複数の信号値との相関値を算出し、距離算出部が、相関値が第3の閾値以上であるとき、光照射部から送信光が照射された時刻と、反射光受信部により反射光が受信された時刻との時刻差から、測距対象物までの距離を算出するように、レーザレーダ装置を構成した。したがって、この発明に係るレーザレーダ装置は、相関値の算出処理の実施及び距離の算出処理の実施をそれぞれ制限することができる。
実施の形態1によるレーザレーダ装置を示す構成図である。 図1に示すレーザレーダ装置におけるそれぞれの構成要素から出力される信号の波形を示す説明図である。 図3Aは、A/D変換器14による信号値sTx,nのサンプリングを示す説明図、図3Bは、受信アンテナ9により受信された反射光Rが測定対象物に反射された送信光TであるときのA/D変換器17による信号値sRx,mのサンプリングを示す説明図、図3Cは、受信アンテナ9により受信された反射光Rが外乱光であるときのA/D変換器17による信号値sRx,mのサンプリングを示す説明図である。 実施の形態2によるレーザレーダ装置を示す構成図である。 信号値sTx,nと閾値Th~Thとデジタル値DTx,nとの関係を示す説明図である。 多値コンパレータ31が入出力する信号の一例を示す説明図である。 実施の形態3によるレーザレーダ装置を示す構成図である。 相関値算出部18の内部を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1によるレーザレーダ装置を示す構成図である。
 図1において、送信信号生成部1は、クロック源2及びパターン生成部3を備えている。
 送信信号生成部1は、時間の経過に伴って振幅が変化する送信信号を生成して、送信信号を光照射部4及び第1のサンプリング部12のそれぞれに出力する。
 クロック源2は、クロック信号を発振し、クロック信号をパターン生成部3及び距離算出部22のそれぞれに出力する。
 パターン生成部3は、クロック源2から出力されたクロック信号に同期して、時間の経過に伴って振幅が変化する送信信号を生成し、送信信号を光源駆動回路5、コンパレータ13及びA/D変換器14のそれぞれに出力する。
 光照射部4は、光源駆動回路5、光源6及び送信アンテナ7を備えている。
 光照射部4は、送信信号生成部1から出力された送信信号を送信光に変換し、送信光を測距対象物に向けて照射する。
 光源駆動回路5は、パターン生成部3から出力された送信信号の信号値に従って、光源6から出力される光の変調を制御することで、光源6から変調光である送信光を出力させる回路である。
 光源6は、送信光を送信アンテナ7に出力する光源である。
 送信アンテナ7は、送信光を測距対象物に向けて照射するアンテナである。
 反射光受信部8は、受信アンテナ9、光検出器10及び電流アンプ11を備えている。
 反射光受信部8は、送信アンテナ7から送信光が照射されたのち、測距対象物によって反射された送信光を反射光として受信し、反射光の受信信号を第2のサンプリング部15に出力する。
 受信アンテナ9は、測距対象物によって反射された送信光を反射光として受信するアンテナである。
 光検出器10は、受信アンテナ9により受信された反射光を検出し、反射光の検出信号を電流アンプ11に出力する。
 電流アンプ11は、光検出器10から出力された検出信号を増幅し、増幅後の検出信号を受信信号としてコンパレータ16及びA/D変換器17のそれぞれに出力する。
 第1のサンプリング部12は、コンパレータ13及びアナログデジタル変換器(以下、「A/D変換器」と称する)14を備えている。
 第1のサンプリング部12は、送信信号生成部1により生成された送信信号の振幅の値を示す信号値が第1の閾値Th以上である期間中、送信信号の信号値を繰り返しサンプリングする。
 コンパレータ13は、パターン生成部3から出力された送信信号の信号値と、第1の閾値Thとを比較する。
 コンパレータ13は、送信信号の信号値が第1の閾値Th以上であれば、ハイレベルの信号をA/D変換器14に出力し、送信信号の信号値が第1の閾値Th未満であれば、ローレベルの信号をA/D変換器14に出力する。
 第1の閾値Thは、コンパレータ13の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 A/D変換器14は、コンパレータ13からハイレベルの信号が出力されている期間中、パターン生成部3から出力された送信信号の信号値を一定のサンプリング周期で繰り返しサンプリングする。
 A/D変換器14は、サンプリングしたそれぞれの信号値をデジタル値に変換し、それのデジタル値をメモリ19に格納する。
 第2のサンプリング部15は、コンパレータ16及びA/D変換器17を備えている。
 第2のサンプリング部15は、反射光受信部8から出力された受信信号の振幅の値を示す信号値が第2の閾値Th以上である期間中、受信信号の信号値を繰り返しサンプリングする。
 コンパレータ16は、電流アンプ11から出力された受信信号の信号値と、第2の閾値Thとを比較する。
 コンパレータ16は、受信信号の信号値が第2の閾値Th以上であれば、ハイレベルの信号をA/D変換器17に出力し、受信信号の信号値が第2の閾値Th未満であれば、ローレベルの信号をA/D変換器17に出力する。
 第2の閾値Thは、コンパレータ16の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 A/D変換器17は、コンパレータ16からハイレベルの信号が出力されている期間中、電流アンプ11から出力された受信信号の信号値を一定のサンプリング周期で繰り返しサンプリングする。
 A/D変換器17は、サンプリングしたそれぞれの信号値をデジタル値に変換し、それのデジタル値をメモリ20に格納する。
 相関値算出部18は、メモリ19、メモリ20及び相関値算出回路21を備えている。
 相関値算出部18は、第1のサンプリング部12によりサンプリングされた複数の信号値と、第2のサンプリング部15によりサンプリングされた複数の信号値との相関値を算出する。
 メモリ19は、A/D変換器14からそれぞれ出力されたデジタル値を記憶する記録媒体である。
 メモリ20は、A/D変換器17からそれぞれ出力されたデジタル値を記憶する記録媒体である。
 相関値算出回路21は、メモリ19に記憶されている複数のデジタル値の間の時間変化率を示す第1の変化率データを算出するとともに、メモリ20に記憶されている複数のデジタル値の間の時間変化率を示す第2の変化率データを算出する。
 相関値算出回路21は、第1の変化率データと第2の変化率データとの相関値を算出し、相関値を距離算出部22に出力する。
 距離算出部22は、例えば、時間デジタル変換回路(TDC:Time-to-Digital Converter)によって実現される。
 距離算出部22は、クロック源2からクロック信号が出力された時刻に、パターン生成部3、光源駆動回路5及び光源6におけるそれぞれの処理時間を加算することで、送信アンテナ7から送信光が照射された時刻を算出する。
 距離算出部22は、クロック源2からクロック信号が出力されたのち、コンパレータ16から最初にハイレベルの信号が出力された時刻を取得する。
 距離算出部22は、コンパレータ16から最初にハイレベルの信号が出力された時刻から、光検出器10、電流アンプ11及びコンパレータ16におけるそれぞれの処理時間を減算することで、受信アンテナ9により反射光が受信された時刻を算出する。
 距離算出部22は、相関値算出回路21から出力された相関値が第3の閾値Th以上であるとき、送信アンテナ7から送信光が照射された時刻と、受信アンテナ9により反射光が受信された時刻との時刻差から測距対象物までの距離を算出する。
 第3の閾値Thは、距離算出部22の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 次に、図1に示すレーザレーダ装置の動作について説明する。
 図2は、図1に示すレーザレーダ装置におけるそれぞれの構成要素から出力される信号の波形を示す説明図である。
 まず、クロック源2は、図2に示すようなクロック信号Cを発振し、クロック信号Cをパターン生成部3及び距離算出部22のそれぞれに出力する。
 パターン生成部3は、クロック源2からクロック信号Cを受けると、クロック信号Cに同期して、時間の経過に伴って振幅が変化する送信信号Txを生成する。
 パターン生成部3は、送信信号Txを光源駆動回路5、コンパレータ13及びA/D変換器14のそれぞれに出力する。
 パターン生成部3は、送信信号Txを出力する毎に、振幅の変化が異なる送信信号Txを生成するようにしてもよいし、毎回、同じ送信信号Txを生成するようにしてもよい。
 光源駆動回路5は、パターン生成部3から送信信号Txを受けると、送信信号Txの信号値に従って、光源6から出力される光の変調を制御する。
 光源6は、光源駆動回路5によって制御されることで、図2に示すような送信光Tを送信アンテナ7に出力する。
 送信アンテナ7は、光源6から出力された送信光Tを測距対象物に向けて照射する。
 送信アンテナ7から照射された送信光Tは、測距対象物に反射され、送信光Tの反射光Rが受信アンテナ9に到来してくる。
 受信アンテナ9は、反射光Rを受信する。
 光検出器10は、受信アンテナ9により受信された反射光Rを検出し、反射光Rの検出信号を電流アンプ11に出力する。
 電流アンプ11は、光検出器10から反射光Rの検出信号を受けると、反射光Rの検出信号を増幅し、増幅後の検出信号を受信信号Rxとして、コンパレータ16及びA/D変換器17のそれぞれに出力する。
 コンパレータ13は、送信信号生成部1から送信信号Txを受けると、送信信号Txの信号値と第1の閾値Thとを比較する。
 コンパレータ13は、送信信号Txの信号値が第1の閾値Th以上であれば、ハイレベルの信号をA/D変換器14に出力し、送信信号Txの信号値が第1の閾値Th未満であれば、ローレベルの信号をA/D変換器14に出力する。
 A/D変換器14は、コンパレータ13からハイレベルの信号が出力されている期間中、パターン生成部3から出力された送信信号Txの信号値sTx,n(n=1,2,・・・,N)をサンプリング周期Spで繰り返しサンプリングする。
 図3は、A/D変換器14による信号値のサンプリング及びA/D変換器17による信号値のサンプリングを示す説明図である。
 図3Aは、A/D変換器14による信号値sTx,nのサンプリングを示す説明図である。
 図3Aにおいて、黒丸は、A/D変換器14によりサンプリングされた信号値sTx,nを示している。図3Aでは、N=14の例を示している。
 A/D変換器14は、サンプリングしたそれぞれの信号値sTx,nをデジタル値DTx,nに変換し、それぞれのデジタル値DTx,nをメモリ19に格納する。
 コンパレータ16は、電流アンプ11から受信信号Rxを受けると、受信信号Rxの信号値と第2の閾値Thとを比較する。
 コンパレータ16は、受信信号Rxの信号値が第2の閾値Th以上であれば、ハイレベルの信号をA/D変換器17に出力し、受信信号Rxの信号値が第2の閾値Th未満であれば、ローレベルの信号をA/D変換器17に出力する。
 A/D変換器17は、コンパレータ16からハイレベルの信号が出力されている期間中、電流アンプ11から出力された受信信号Rxの信号値sRx,m(m=1,2,・・・,M)をサンプリング周期Spで繰り返しサンプリングする。
 図3Bは、受信アンテナ9により受信された反射光Rが測定対象物に反射された送信光TであるときのA/D変換器17による信号値sRx,mのサンプリングを示す説明図である。
 図3Cは、受信アンテナ9により受信された反射光Rが外乱光であるときのA/D変換器17による信号値sRx,mのサンプリングを示す説明図である。
 図3B及び図3Cにおいて、黒丸は、A/D変換器17によりサンプリングされた信号値sRx,mを示している。図3Bでは、M=14の例を示しており、図3Cでは、M=8の例を示している。
 A/D変換器17は、サンプリングしたそれぞれの信号値sRx,mをデジタル値DRx,mに変換し、それぞれのデジタル値DRx,mをメモリ20に格納する。
 受信アンテナ9により受信された反射光Rが測定対象物に反射された送信光Tである場合の受信信号Rxにおける信号値sRx,mの信号列は、図3A及び図3Bに示すように、送信信号Txにおける信号値sTx,nの信号列と類似している。
 受信アンテナ9により受信された反射光Rが外乱光である場合の受信信号Rxにおける信号値sRx,mの信号列は、図3A及び図3Cに示すように、送信信号Txにおける信号値sTx,nの信号列と類似していない。
 A/D変換器17におけるサンプリング周期Spは、A/D変換器14におけるサンプリング周期Spと同じであってもよいし、異なっていてもよい。
 反射光Rの光強度が、送信光Tの光強度よりも低下することが明らかな状況下では、例えば、光強度の低下比率と同じ比率だけ、サンプリング周期Spがサンプリング周期Spよりも小さくてもよい。
 相関値算出回路21は、メモリ19に記憶されているN個のデジタル値DTx,nを取得する。
 相関値算出回路21は、以下の式(1)に示すように、サンプリング時刻が隣の2つのデジタル値の間の時間変化率dDTx,nのそれぞれを示す第1の変化率データdDTxを算出する。
 dDTx=dDTx,1,dDTx,2,・・・,dDTx,N-1     (1)
 dDTx,1=(DTx,2-DTx,1)/Sp
 dDTx,2=(DTx,3-DTx,2)/Sp
      :
 dDTx,N-1=(DTx,N-DTx,N-1)/Sp
 また、相関値算出回路21は、メモリ20に記憶されているM個のデジタル値DRx,mを取得する。
 相関値算出回路21は、以下の式(2)に示すように、サンプリング時刻が隣の2つのデジタル値DRx,mの間の時間変化率dDRx,mのそれぞれを示す第2の変化率データdDRxを算出する。
 dDRx=dDRx,1,dDRx,2,・・・,dDRx,M-1     (2)
 dDRx,1=(DRx,2-DRx,1)/Sp
 dDRx,2=(DRx,3-DRx,2)/Sp
      :
 dDRx,M-1=(DRx,M-DRx,M-1)/Sp
 相関値算出回路21は、第1の変化率データdDTxと第2の変化率データdDRxとの相関値corを算出し、相関値corを距離算出部22に出力する。
 相関値corとしては、例えば、以下の式(3)に示すような、第1の変化率データdDTxと第2の変化率データdDRxとの相関係数を用いることができる。
 相関係数=Cov(dDTx,dDRx)/(SD(dDTx)×(SD(dDRx))
             (3)
 式(3)において、Cov(dDTx,dDRx)は、第1の変化率データdDTxと第2の変化率データdDRxとの共分散である。
 SD(dDTx)は、第1の変化率データdDTxの標準偏差、SD(dDRx)は、第2の変化率データdDRxの標準偏差である。
 距離算出部22は、クロック源2からクロック信号Cを受けると、内蔵時計又は外部の時計を参照して、クロック源2からクロック信号Cが出力された時刻tc1を取得する。
 距離算出部22は、以下の式(4)に示すように、時刻tc1に、パターン生成部3、光源駆動回路5及び光源6におけるそれぞれの処理時間Tp1を加算することで、送信アンテナ7から送信光Tが照射された時刻tを算出する。
 t=tc1+Tp1  (4)
 処理時間Tp1は、距離算出部22の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 距離算出部22は、内蔵時計又は外部の時計を参照して、クロック源2からクロック信号Cが出力されたのち、コンパレータ16から最初にハイレベルの信号が出力された時刻tc2を取得する。
 距離算出部22は、以下の式(5)に示すように、時刻tc2から、光検出器10、電流アンプ11及びコンパレータ16におけるそれぞれの処理時間Tp2を減算することで、受信アンテナ9により反射光Rが受信された時刻tを算出する。
 t=tc2-Tp2  (5)
 処理時間Tp2は、距離算出部22の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 距離算出部22は、相関値算出回路21から相関値corを受けると、相関値corと第3の閾値Thとを比較する。
 距離算出部22は、相関値corが第3の閾値Th以上であれば、受信アンテナ9により受信された反射光Rが、測定対象物に反射された送信光Tである可能性が高いと認定する。
 そして、距離算出部22は、送信アンテナ7から送信光Tが照射された時刻tと、受信アンテナ9により反射光Rが受信された時刻tとの時刻差|t-t|から測距対象物までの距離を算出する。
 時刻差|t-t|から距離を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
 距離算出部22は、相関値corが第3の閾値Th未満であれば、受信アンテナ9により受信された反射光Rが、測定対象物に反射された送信光Tではなく、外乱光の可能性が高いと認定する。
 距離算出部22は、反射光Rが外乱光の可能性が高いと認定すると、測距対象物までの距離を算出する処理を実施しない。
 以上の実施の形態1は、送信信号の振幅の値を示す信号値が第1の閾値以上である期間中、送信信号の信号値を繰り返しサンプリングする第1のサンプリング部12と、受信信号の振幅の値を示す信号値が第2の閾値以上である期間中、受信信号の信号値を繰り返しサンプリングする第2のサンプリング部15とを設けている。そして、相関値算出部18が、第1のサンプリング部12によりサンプリングされた複数の信号値と、第2のサンプリング部15によりサンプリングされた複数の信号値との相関値を算出する。また、距離算出部22が、相関値が第3の閾値以上であるとき、光照射部4から送信光が照射された時刻と、反射光受信部8により反射光が受信された時刻との時刻差から、測距対象物までの距離を算出するように、レーザレーダ装置を構成した。したがって、レーザレーダ装置は、相関値の算出処理の実施及び距離の算出処理の実施をそれぞれ制限することができる。
 なお、第1のサンプリング部12は、送信信号生成部1により生成された送信信号の信号値が第1の閾値以上である期間中、送信信号の信号値を繰り返しサンプリングするようにしている。したがって、第1のサンプリング部12によりサンプリングされた信号値は、第1の閾値以上になる期間中の信号値に限られるため、常に信号値がサンプリングされる場合よりも、メモリ19の記憶容量を小さくすることができる。
 また、第2のサンプリング部15は、反射光受信部8から出力された受信信号の信号値が第2の閾値以上である期間中、受信信号の信号値を繰り返しサンプリングするようにしている。したがって、第2のサンプリング部15によりサンプリングされた信号値は、第2の閾値以上になる期間中の信号値に限られるため、常に信号値がサンプリングされる場合よりも、メモリ20の記憶容量を小さくすることができる。
 図1に示すレーザレーダ装置では、相関値算出部18が、メモリ19,20及び相関値算出回路21を備えている。
 相関値算出部18は、第1の変化率データdDTxと第2の変化率データdDRxとの相関値corを算出することができればよく、図8に示すような構成であってもよい。
 図8は、相関値算出部18の内部を示す構成図である。
 図8において、微分回路51は、A/D変換器14から出力されたそれぞれのデジタル値DTx,nが示す波形の微分波形を算出し、微分波形をゼロクロス回路52に出力する回路である。
 ゼロクロス回路52は、微分回路51から出力された微分波形がゼロクロスするタイミングを検出する回路である。
 カウンタ53は、ゼロクロス回路52によりゼロクロスするタイミングが検出されると、パルス信号を一致度算出回路57に出力する。
 微分回路54は、A/D変換器17から出力されたそれぞれのデジタル値DRx,mが示す波形の微分波形を算出し、微分波形をゼロクロス回路55に出力する回路である。
 ゼロクロス回路55は、微分回路54から出力された微分波形がゼロクロスするタイミングを検出する回路である。
 カウンタ56は、ゼロクロス回路55によりゼロクロスするタイミングが検出されると、パルス信号を一致度算出回路57に出力する。
 一致度算出回路57は、カウンタ53から出力されたパルス信号の信号列と、カウンタ56から出力されたパルス信号の信号列との一致度を算出し、一致度を相関値corとして距離算出部22に出力する。
 次に、図8に示す相関値算出部18の動作について説明する。
 微分回路51は、A/D変換器14からそれぞれのデジタル値DTx,nを受けると、それぞれのデジタル値DTx,nが示す波形の微分波形を算出し、微分波形をゼロクロス回路52に出力する。
 ゼロクロス回路52は、微分回路51から微分波形を受けると、微分波形がゼロクロスするタイミングを検出する。
 ゼロクロス回路52は、微分波形がゼロクロスするタイミングを検出すると、検出信号kをカウンタ53に出力する。
 カウンタ53は、ゼロクロス回路52から検出信号kを受ける毎に、パルス信号を一致度算出回路57に出力する。
 微分回路54は、A/D変換器17からそれぞれのデジタル値DRx,mを受けると、それぞれのデジタル値DRx,mが示す波形の微分波形を算出し、微分波形をゼロクロス回路55に出力する。
 ゼロクロス回路55は、微分回路54から微分波形を受けると、微分波形がゼロクロスするタイミングを検出する。
 ゼロクロス回路55は、微分波形がゼロクロスするタイミングを検出すると、検出信号kをカウンタ56に出力する。
 カウンタ56は、ゼロクロス回路55から検出信号kを受ける毎に、パルス信号を一致度算出回路57に出力する。
 一致度算出回路57は、カウンタ53から出力されたパルス信号の信号列と、カウンタ56から出力されたパルス信号の信号列とを比較することで、2つの信号列の一致度を算出し、一致度を相関値corとして距離算出部22に出力する。
 一致度を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
実施の形態2.
 実施の形態2では、第2のサンプリング部15が、多値コンパレータ31及び変化率算出回路32を備えているレーザレーダ装置について説明する。
 図4は、実施の形態2によるレーザレーダ装置を示す構成図である。図4において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 多値コンパレータ31は、電流アンプ11から出力された受信信号Rxの信号値を繰り返しサンプリングし、サンプリングした信号値と複数の閾値とを比較することで、信号値をデジタル値に変換し、複数のデジタル値を変化率算出回路32に出力する。
 変化率算出回路32は、多値コンパレータ31から複数のデジタル値を受けている期間中、複数のデジタル値の間の時間変化率を示す第2の変化率データdDRxを算出し、第2の変化率データdDRxをメモリ33に格納する。
 相関値算出部18は、メモリ19、メモリ33及び相関値算出回路34を備えている。
 メモリ33は、変化率算出回路32から出力された第2の変化率データdDRxを記憶する記録媒体である。
 相関値算出回路34は、メモリ19に記憶されている複数のデジタル値の間の時間変化率を示す第1の変化率データdDTxを算出する。
 相関値算出回路34は、第1の変化率データdDTxとメモリ33に記憶されている第2の変化率データdDRxとの相関値corを算出し、相関値corを距離算出部22に出力する。
 次に、図4に示すレーザレーダ装置の動作について説明する。ただし、ここでは、図1に示すレーザレーダ装置と相違している部分のみを説明する。
 多値コンパレータ31は、互いに異なる複数の閾値を記憶している。
 ここでは、説明の便宜上、多値コンパレータ31が、閾値Th、閾値Th、閾値Th及び閾値Thを記憶しているものとする。Th<Th<Th<Thである。
 多値コンパレータ31は、電流アンプ11から出力された受信信号Rxにおける異なる時刻の信号値sRx,m(m=1,2,・・・,M)をサンプリングし、信号値sRx,mと閾値Th~Thとを比較する。
 多値コンパレータ31は、sRx,m<Thであれば、デジタル値DRx,mとして、信号レベルがゼロのデジタル値(0)を変化率算出回路32に出力する。
 多値コンパレータ31は、Th≦sRx,m<Thであれば、図5に示すように、デジタル値DRx,mとして、デジタル値(0)よりも大きいデジタル値(1)を変化率算出回路32に出力する。
 多値コンパレータ31は、Th≦sRx,m<Thであれば、図5に示すように、デジタル値DRx,mとして、デジタル値(1)よりも大きいデジタル値(2)を変化率算出回路32に出力する。
 多値コンパレータ31は、Th≦sRx,m<Thであれば、図5に示すように、デジタル値DRx,mとして、デジタル値(2)よりも大きいデジタル値(3)を変化率算出回路32に出力する。
 多値コンパレータ31は、Th≦sRx,mであれば、図5に示すように、デジタル値DRx,mとして、デジタル値(3)よりも大きいデジタル値(4)を変化率算出回路32に出力する。
 図5は、信号値sRx,mと閾値Th~Thとデジタル値DRx,mとの関係を示す説明図である。
 図6は、多値コンパレータ31が入出力する信号の一例を示す説明図である。
 変化率算出回路32は、多値コンパレータ31からM個のデジタル値DRx,mが出力されている期間中、以下の式(6)に示すように、第2の変化率データdDRxを算出する。
 dDRx=dDRx,1,dDRx,2,・・・,dDRx,M-1     (6)
 dDRx,1=(DRx,2-DRx,1)/Sp
 dDRx,2=(DRx,3-DRx,2)/Sp
      :
 dDRx,M-1=(DRx,M-DRx,M-1)/Sp
 変化率算出回路32は、第2の変化率データdDRxをメモリ33に格納する。
 相関値算出回路34は、図1に示す相関値算出回路21と同様に、第1の変化率データdDTxを算出する。
 相関値算出回路34は、メモリ33に記憶されている第2の変化率データdDRxを取得し、図1に示す相関値算出回路21と同様に、第1の変化率データdDTxと第2の変化率データdDRxとの相関値corを算出し、相関値corを距離算出部22に出力する。
 距離算出部22は、相関値算出回路34から相関値corを受けると、相関値corと第3の閾値Thとを比較する。
 距離算出部22は、相関値corが第3の閾値Th以上であれば、実施の形態1と同様に、測距対象物までの距離を算出する。
 ここでは、距離算出部22が、測距対象物までの距離を算出している。変化率算出回路32は、クロック源2から出力されたクロック信号Cを受けるようにすれば、距離算出部22と同様の方法で、測距対象物までの距離を算出することができる。
 距離算出部22は、変化率算出回路32により算出された距離を取得し、相関値corが第3の閾値Th以上のとき、当該距離を外部に出力するようにしてもよい。
 以上の実施の形態2は、第2のサンプリング部15が、サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第2の変化率データを算出している。そして、相関値算出部18が、第1のサンプリング部12によりサンプリングされた複数の信号値の間の時間変化率を示す第1の変化率データを算出し、第1の変化率データと第2のサンプリング部15により算出された第2の変化率データとの相関値を算出するように、レーザレーダ装置を構成した。したがって、レーザレーダ装置は、実施の形態1のレーザレーダ装置と同様に、相関値の算出処理の実施及び距離の算出処理の実施をそれぞれ制限することができる。
実施の形態3.
 実施の形態3では、第1のサンプリング部12が、多値コンパレータ41及び変化率算出回路42を備えているレーザレーダ装置について説明する。
 図7は、実施の形態3によるレーザレーダ装置を示す構成図である。図7において、図1及び図4と同一符号は同一又は相当部分を示すので説明を省略する。
 多値コンパレータ41は、パターン生成部3から出力された送信信号Txの信号値を繰り返しサンプリングし、サンプリングした信号値と複数の閾値とを比較することで、信号値をデジタル値に変換し、複数のデジタル値を変化率算出回路42に出力する。
 変化率算出回路42は、多値コンパレータ41から複数のデジタル値を受けている期間中、複数のデジタル値の間の時間変化率を示す第1の変化率データdDTxを算出し、第1の変化率データdDTxをメモリ43に格納する。
 相関値算出部18は、メモリ43、メモリ33及び相関値算出回路44を備えている。
 メモリ43は、変化率算出回路42から出力された第1の変化率データdDTxを記憶する記録媒体である。
 相関値算出回路44は、メモリ43に記憶されている第1の変化率データdDTxとメモリ33に記憶されている第2の変化率データdDRxとの相関値corを算出し、相関値corを距離算出部22に出力する。
 次に、図7に示すレーザレーダ装置の動作について説明する。ただし、ここでは、図1及び図4に示すレーザレーダ装置と相違している部分のみを説明する。
 パターン生成部3は、時間の経過に伴って振幅が変化する送信信号Txを光源駆動回路5及び多値コンパレータ41のそれぞれに出力する。
 多値コンパレータ41は、互いに異なる複数の閾値を記憶している。
 ここでは、説明の便宜上、多値コンパレータ41は、閾値Th’、閾値Th’、閾値Th’及び閾値Th’を記憶しているものとする。
 閾値Th’~Th’のそれぞれは、多値コンパレータ31により記憶されている閾値Th~Thのそれぞれと同じ値であってもよいし、異なっていてもよい。
 多値コンパレータ41は、パターン生成部3から出力された送信信号Txにおける異なる時刻の信号値sTx,n(n=1,2,・・・,N)をサンプリングし、信号値sTx,nと閾値Th’~Th’とを比較する。
 多値コンパレータ41は、sTx,n<Th’であれば、デジタル値DTx,nとして、信号レベルがゼロのデジタル値(0)を変化率算出回路42に出力する。
 多値コンパレータ41は、Th’≦sTx,n<Th’であれば、デジタル値DTx,nとして、デジタル値(0)よりも大きいデジタル値(1)を変化率算出回路42に出力する。
 多値コンパレータ41は、Th’≦sTx,n<Th’であれば、デジタル値DTx,nとして、デジタル値(1)よりも大きいデジタル値(2)を変化率算出回路42に出力する。
 多値コンパレータ41は、Th’≦sTx,n<Th’であれば、デジタル値DTx,nとして、デジタル値(2)よりも大きいデジタル値(3)を変化率算出回路42に出力する。
 多値コンパレータ41は、Th’≦sTx,nであれば、デジタル値DTx,nとして、デジタル値(3)よりも大きいデジタル値(4)を変化率算出回路42に出力する。
 変化率算出回路42は、多値コンパレータ41からN個のデジタル値DTx,nが出力されている期間中、以下の式(7)に示すように、第1の変化率データdDTxを算出する。
 dDTx=dDTx,1,dDTx,2,・・・,dDTx,N-1     (7)
 dDTx,1=(DTx,2-DTx,1)/Sp
 dDTx,2=(DTx,3-DTx,2)/Sp
      :
 dDTx,N-1=(DTx,N-DTx,N-1)/Sp
 変化率算出回路42は、第1の変化率データdDTxをメモリ43に格納する。
 相関値算出回路44は、メモリ43に記憶されている第1の変化率データdDTxを取得し、メモリ33に記憶されている第2の変化率データdDRxを取得する。
 相関値算出回路44は、図1に示す相関値算出回路21と同様に、第1の変化率データdDTxと第2の変化率データdDRxとの相関値corを算出し、相関値corを距離算出部22に出力する。
 距離算出部22は、相関値算出回路44から相関値corを受けると、相関値corと第3の閾値Thとを比較する。
 距離算出部22は、相関値corが第3の閾値Th以上であれば、実施の形態1と同様に、測距対象物までの距離を算出する。
 以上の実施の形態3は、第1のサンプリング部12が、サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第1の変化率データを算出し、第2のサンプリング部15が、サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第2の変化率データを算出している。そして、相関値算出部18が、第1のサンプリング部12により算出された第1の変化率データと第2のサンプリング部15により算出された第2の変化率データとの相関値を算出するように、レーザレーダ装置を構成した。したがって、レーザレーダ装置は、実施の形態1のレーザレーダ装置と同様に、相関値の算出処理の実施及び距離の算出処理の実施をそれぞれ制限することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、測距対象物までの距離を算出するレーザレーダ装置に適している。
 1 送信信号生成部、2 クロック源、3 パターン生成部、4 光照射部、5 光源駆動回路、6 光源、7 送信アンテナ、8 反射光受信部、9 受信アンテナ、10 光検出器、11 電流アンプ、12 第1のサンプリング部、13 コンパレータ、14 A/D変換器、15 第2のサンプリング部、16 コンパレータ、17 A/D変換器、18 相関値算出部、19 メモリ、20 メモリ、21 相関値算出回路、22 距離算出部、31 多値コンパレータ、32 変化率算出回路、33 メモリ、34 相関値算出回路、41 多値コンパレータ、42 変化率算出回路、43 メモリ、44 相関値算出回路、51 微分回路、52 ゼロクロス回路、53 カウンタ、54 微分回路、55 ゼロクロス回路、56 カウンタ、57 一致度算出回路。

Claims (5)

  1.  時間の経過に伴って振幅が変化する送信信号を生成する送信信号生成部と、
     前記送信信号を送信光に変換し、前記送信光を測距対象物に向けて照射する光照射部と、
     前記測距対象物によって反射された前記送信光を反射光として受信し、前記反射光の受信信号を出力する反射光受信部と、
     前記送信信号の振幅の値を示す信号値が第1の閾値以上である期間中、前記送信信号の信号値を繰り返しサンプリングする第1のサンプリング部と、
     前記受信信号の振幅の値を示す信号値が第2の閾値以上である期間中、前記受信信号の信号値を繰り返しサンプリングする第2のサンプリング部と、
     前記第1のサンプリング部によりサンプリングされた複数の信号値と、前記第2のサンプリング部によりサンプリングされた複数の信号値との相関値を算出する相関値算出部と、
     前記相関値が第3の閾値以上であるとき、前記光照射部から送信光が照射された時刻と、前記反射光受信部により反射光が受信された時刻との時刻差から、前記測距対象物までの距離を算出する距離算出部と
     を備えたレーザレーダ装置。
  2.  前記相関値算出部は、
     前記第1のサンプリング部によりサンプリングされた複数の信号値の間の時間変化率を示す第1の変化率データを算出するとともに、前記第2のサンプリング部によりサンプリングされた複数の信号値の間の時間変化率を示す第2の変化率データを算出し、前記第1の変化率データと前記第2の変化率データとの相関値を算出することを特徴とする請求項1記載のレーザレーダ装置。
  3.  前記第2のサンプリング部は、
     サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第2の変化率データを算出し、
     前記相関値算出部は、
     前記第1のサンプリング部によりサンプリングされた複数の信号値の間の時間変化率を示す第1の変化率データを算出し、前記第1の変化率データと前記第2のサンプリング部により算出された第2の変化率データとの相関値を算出することを特徴とする請求項1記載のレーザレーダ装置。
  4.  前記第1のサンプリング部は、
     サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第1の変化率データを算出し、
     前記第2のサンプリング部は、
     サンプリングしたそれぞれの信号値をデジタル値に変換して、複数のデジタル値の間の時間変化率を示す第2の変化率データを算出し、
     前記相関値算出部は、
     前記第1のサンプリング部により算出された第1の変化率データと前記第2のサンプリング部により算出された第2の変化率データとの相関値を算出することを特徴とする請求項1記載のレーザレーダ装置。
  5.  前記送信信号生成部は、振幅の変化が異なる送信信号を繰り返し生成することを特徴とする請求項1記載のレーザレーダ装置。
PCT/JP2018/022771 2018-06-14 2018-06-14 レーザレーダ装置 WO2019239552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/022771 WO2019239552A1 (ja) 2018-06-14 2018-06-14 レーザレーダ装置
JP2018558446A JP6537747B1 (ja) 2018-06-14 2018-06-14 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022771 WO2019239552A1 (ja) 2018-06-14 2018-06-14 レーザレーダ装置

Publications (1)

Publication Number Publication Date
WO2019239552A1 true WO2019239552A1 (ja) 2019-12-19

Family

ID=67144689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022771 WO2019239552A1 (ja) 2018-06-14 2018-06-14 レーザレーダ装置

Country Status (2)

Country Link
JP (1) JP6537747B1 (ja)
WO (1) WO2019239552A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258690A (ja) * 2005-03-18 2006-09-28 Sanyo Electric Co Ltd 測定装置、移動体および信号処理回路
JP2006308482A (ja) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd 検出装置
JP2009281928A (ja) * 2008-05-23 2009-12-03 Toyota Motor Corp レーダ装置
JP2017138154A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 距離測定装置
JP2017166880A (ja) * 2016-03-15 2017-09-21 フュージョン有限会社 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP2018072318A (ja) * 2016-10-20 2018-05-10 三星電子株式会社Samsung Electronics Co.,Ltd. 超音波移動体検出装置、超音波移動体検出方法及び超音波移動体検出プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258690A (ja) * 2005-03-18 2006-09-28 Sanyo Electric Co Ltd 測定装置、移動体および信号処理回路
JP2006308482A (ja) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd 検出装置
JP2009281928A (ja) * 2008-05-23 2009-12-03 Toyota Motor Corp レーダ装置
JP2017138154A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 距離測定装置
JP2017166880A (ja) * 2016-03-15 2017-09-21 フュージョン有限会社 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP2018072318A (ja) * 2016-10-20 2018-05-10 三星電子株式会社Samsung Electronics Co.,Ltd. 超音波移動体検出装置、超音波移動体検出方法及び超音波移動体検出プログラム

Also Published As

Publication number Publication date
JPWO2019239552A1 (ja) 2020-06-25
JP6537747B1 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
EP3447534A1 (en) Laser ranging system and method employing time domain waveform matching technique
JP5197023B2 (ja) レーザレーダ装置
JP2005249800A (ja) 時間遅延の決定および信号シフトの決定
US9599714B2 (en) Wind measurement coherent lidar
JP5163194B2 (ja) 超音波距離センサシステム及びこれを用いた超音波距離センサ
RU2436115C2 (ru) Способ нелинейной радиолокации
US20080136703A1 (en) Equivalent time sampling radar
WO2009125843A1 (ja) 超音波伝搬時間測定システム
JP2009265009A (ja) 超音波計測装置
WO2004077668A2 (en) An apparatus and method for distance measurement with controlled modulation of emitted pulses
WO2019239552A1 (ja) レーザレーダ装置
JP6486577B1 (ja) レーザレーダ装置
US11143751B2 (en) Sound sensing with time-varying thresholds
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JP2018066669A (ja) 超音波測距装置、超音波測距方法及び超音波測距プログラム
JP4437804B2 (ja) レーダ装置および距離測定方法
JP7192959B2 (ja) 測距装置及び測距方法
KR102305079B1 (ko) 경로 손실 보상을 위한 임펄스 레이더 송수신기
JP2007101384A (ja) 直流対応光学式電圧・電界センサー及び絶縁増幅器
KR102355382B1 (ko) 라이다 시스템의 신호 분석 장치 및 방법
JPWO2020079775A1 (ja) 測距装置及び測距方法
CN110187351B (zh) 一种利用高频脉幅调制波的数字激光测距方法
KR20230083007A (ko) 레이저 신호 수신 장치 및 방법
JP2011247717A (ja) 距離センサ
JP2005156440A (ja) ドプラーレーダー装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558446

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922218

Country of ref document: EP

Kind code of ref document: A1