WO2019238562A1 - Verfahren zur herstellung von vinylacetat - Google Patents

Verfahren zur herstellung von vinylacetat Download PDF

Info

Publication number
WO2019238562A1
WO2019238562A1 PCT/EP2019/064951 EP2019064951W WO2019238562A1 WO 2019238562 A1 WO2019238562 A1 WO 2019238562A1 EP 2019064951 W EP2019064951 W EP 2019064951W WO 2019238562 A1 WO2019238562 A1 WO 2019238562A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
oxygen
reactor
acetic acid
vinyl acetate
Prior art date
Application number
PCT/EP2019/064951
Other languages
English (en)
French (fr)
Inventor
Willibald Dafinger
Brigitte PATSCH
Günther RUDOLF
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2019238562A1 publication Critical patent/WO2019238562A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds

Definitions

  • the invention relates to a process for the production of vinyl acetate, a gaseous mixture comprising ethylene, acetic acid and oxygen being reacted in a reactor in a heterogeneously catalyzed, continuous gas phase process in the presence of a support catalyst, the gas mixture leaving the reactor is worked up, with a partial stream being discharged for the recovery of ethylene, and the remaining gas mixture being returned to the reactor after being loaded again with ethylene, acetic acid and oxygen.
  • Vinyl acetate monomer can be produced in a continuous process by recycling the purified product stream (cycle gas process). In this case, he responds in a terogen catalyzed gas phase reaction of ethylene with acetic acid and oxygen over catalysts, which generally contain Palladi ⁇ implement and alkali metal salts on a support material and may be additionally doped with more gold.
  • catalysts which generally contain Palladi ⁇ implement and alkali metal salts on a support material and may be additionally doped with more gold.
  • NEN in ERAL ⁇ a Pd / Au catalyst mixture is used with potassium acetate as a pro ⁇ engine.
  • the ethylene conversion is generally 5 to 20%, the acetic acid conversion 20 to 60% and the oxygen conversion up to 90%.
  • a gas mixture consisting predominantly of ethylene, carbon dioxide, ethane, nitrogen and oxygen is circulated in the production of vinyl acetate.
  • the circulating gas is mixed with the educts acetic acid, ethylene and oxygen in front of the fixed bed tube reactor and brought to reaction temperature by means of heat exchangers operated with heating steam.
  • reaction products vinyl acetate and water and unreacted acetic acid are condensed out and fed to further workup.
  • the condensed products vinyl acetate and water and unreacted acetic acid can be separated from one another in a multi-stage distillation process, which is usually operated with heating steam.
  • the cycle gas is optionally compressed, the starting materials are added again, and it is passed into the reactor for gas phase oxidation.
  • ethylene and oxygen introduce inert substances which are difficult to remove, but which increasingly reduce the selectivity of the reaction when they are returned to the reactor and enriched in the cycle gas.
  • Argon is introduced via oxygen
  • ethane is introduced via ethylene.
  • These inerts must continuously be removed from the system, otherwise their enrichment in the ethylene-containing cycle gas would inhibit the reaction.
  • ethylene is the largest part of the Kreisgasgemi with 60 to 70% by volume, the inert removal is generally accompanied by a significant ethylene loss of about 1 to 4% by volume of the quantity to be fed.
  • WO 2005/100296 A1 proposes to discharge part of the ethylene-containing cycle gas and to use it in other processes for converting ethylene, for example in the production of acetaldehyde or acetic acid.
  • WO 2001/000559 A1 describes a process for removing by-products and inerts, the cycle gas being washed in an absorption column or an absorption container and the inerts being discharged.
  • a common method for purifying the cycle gas from inert gases is the very energy-intensive low temperature distillation of the ethylene-containing cycle gas for the separation of ethane and argon before recycling the ethylene-containing cycle gas into the reactor.
  • the object was therefore to provide a process which leads to vinyl acetate monomer with high selectivity without the disadvantages mentioned.
  • the invention relates to a process for the production of vinyl acetate, in which a gaseous mixture containing ethylene, acetic acid and oxygen in the presence of a Stromka talysators in a reactor brought to reaction in a heterogeneously catalyzed, continu ⁇ ous gas phase process, which is worked up leaving the reactor gas mixture , with a partial stream being discharged for the recovery of ethylene, and the remaining gas mixture being returned to the reactor after being loaded again with ethylene, acetic acid and oxygen, characterized in that oxygen with a proportion of ⁇ 1000 vol.ppm argon is used.
  • the heterogeneously catalyzed, continuous gas phase reaction is preferably carried out in a tubular reactor, preferably made of stainless steel, which is charged with a fixed bed catalyst.
  • a fixed bed catalyst In general, this is a fixed bed tube bundle reactor with several thousand, usually 2,000 to 20,000, tightly packed and generally vertically arranged cylindrical tubes.
  • pipes with a length of 4 m to 10 m and an inner diameter of generally 20 mm to 50 mm are generally used.
  • the spaces between the pipes themselves, and the pipes and the container are flowed through for example by a water / steam mixture for cooling (boiling water cooling).
  • the tubes of the tube reactors are filled with commercially available supported catalysts as fixed bed catalysts.
  • Supported catalysts based on an inorganic support material such as titanium oxide, silicon oxide or aluminum oxide, which are generally coated with palladium and gold in combination with an activator component such as potassium acetate, are commercially available.
  • These supported catalysts can be in various shapes, for example spheres, cylinders or rings, the dimensions of which are adapted to the tubes used and generally have lengths of 1 mm to 10 mm or diameters of 1 mm to 20 mm.
  • the reactor is charged with ethylene, oxygen and acetic acid for starting, or with the cycle gas loaded with ethylene, oxygen and acetic acid in continuous operation.
  • the amounts of starting materials to be used are known per se to the person skilled in the art.
  • Ethylene is generally used in excess for stoichiometric ratio to acetic acid used.
  • the upper limit of the amount of oxygen is the ignition limit in the cycle gas.
  • oxygen is used in a proportion of 1000 vol. -ppm argon, preferably 200 to 950 vol. -ppm argon supplied.
  • the gas phase reaction is carried out at a pressure of preferably 7 to 15 bar abs. and carried out at a temperature of preferably 130 ° C to 200 ° C.
  • the reaction temperature is set, for example, by means of boiling water cooling at a pressure of 1 to 30 bar abs., Preferably 8 to 14 bar abs.
  • steam at a temperature of 120 ° C to 185 ° C at a pressure of 1 to 10 bar abs., Preferably 2.5 to 5 bar abs. , educated .
  • the product gas stream emerging from the reactor essentially contains vinyl acetate, ethylene, acetic acid, water and CO 2 .
  • the reaction products vinyl acetate and water and unreacted acetic acid are preferably condensed out of the cycle gas in a so-called pre-dewatering column after the reaction and fed to further workup.
  • Uncondensed product essentially ethylene, C0 2 and vinyl acetate, can be removed at the top of the pre-dewatering column and washed in an acetic acid scrubber (cycle scrubber) to remove residual vinyl acetate.
  • the top product of the pre-dewatering column (cycle gas), or at least a part of it, can be cleaned of the carbon dioxide formed in a C0 2 scrubber.
  • a proportion of 0.2 to 1.5% by volume, preferably 0.3 to 0.7% by volume, of the circulating gas essentially containing ethylene is removed in order to recover the ethylene and remove inert substances (purge gas).
  • the cycle gas is then compressed, if necessary, and it is re-combined with the starting materials ethylene, acetic acid and oxygen. sets, and returned to the reactor for gas phase oxidation.
  • the condensed products vinyl acetate and water as well as unreacted acetic acid can be separated from one another in a multi-stage distillation process, which is usually operated with heating steam.
  • the usual distillation steps for the recovery of vinyl acetate and acetic acid are pre-dewatering column, azeotropic column, dewatering column, pure VAM column, as well as columns for residue processing and for the separation of low and high boilers.
  • the cycle gas is then loaded with ethylene, acetic acid and oxygen and then fed back to the fixed-bed tube reactor.
  • the enrichment of the circulating gas with acetic acid is usually carried out by means of a heating agent heated with heating steam.
  • the oxygen can be added by means of a mixing nozzle.
  • the selectivity of the reaction according to Comparative Example 1 and Example 2 was measured over a period of 200 hours.
  • a commercially available spherical supported catalyst made of bentonite with a diameter of 5.5 mm was used as the catalyst, each containing 2.0% by weight of palladium, 2.0% by weight of gold and 3.0% by weight of potassium based on the total weight of the shaped catalyst body, was impregnated.
  • the catalysts were (length reactor ⁇ 6000 mm inner diameter 33 mm) in a temperature-controlled with oil flow reactor filled and at an absolute pressure of 9.5 bar, a temperature of 130 ° C to 180 ° C, measured in the catalyst bed, and a Jardingeschwindig ⁇ speed (GHSV) 3000-4000 N 3 / (m 3 ⁇ h) with the following composition ⁇ reduction of the cycle gas tested: 65 vol .-% ethene, 10 vol .-% Koh ⁇ dioxide, 13 vol. -% acetic acid and 8 vol .-% oxygen, the rest was methane, ethane, nitrogen.
  • GHSV Horgeschwindig ⁇ speed
  • the oxygen used in Comparative Example 1 had an argon content of 2500 vol. Ppm.
  • oxygen with an argon content of 900 vol. -ppm used.
  • the reaction products were analyzed at the outlet of the reactor using online gas chromatography. Carbon dioxide, which is generated in particular by the combustion of ethylene, was also determined and used to assess the selectivity. The results are summarized in Table 1.
  • RZA space-time yield in grams of vinyl acetate monomer per hour and liter of catalyst (g (VAM) / I (cat) x h)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Vinylacetat, wobei in einem heterogen katalysierten, kontinuierlichen Gasphasenprozess ein gasförmiges Gemisch enthaltend Ethylen, Essigsäure und Sauerstoff in Gegenwart eines Trägerkatalysators in einem Reaktor zur Reaktion gebracht wird, das den Reaktor verlassende Gasgemisch aufgearbeitet wird, wobei ein Teilstrom zur Rückgewinnung von Ethylen ausgeschleust wird, und das verbleibende Gasgemisch nach erneuter Beladung mit Ethylen, Essigsäure und Sauerstoff in den Reaktor zurückgeführt wird, dadurch gekennzeichnet, dass Sauerstoff mit einem Anteil von ≤ 1000 Vol.-ppm Argon eingesetzt wird.

Description

Verfahren zur Herstellung von Vinylacetat
Die Erfindung betrifft ein Verfahren zur Herstellung von Vinyl - acetat, wobei in einem heterogen katalysierten, kontinuierli chen Gasphasenprozess ein gasförmiges Gemisch enthaltend Ethyl en, Essigsäure und Sauerstoff in Gegenwart eines Trägerkataly sators in einem Reaktor zur Reaktion gebracht wird, das den Re aktor verlassende Gasgemisch aufgearbeitet wird, wobei ein Teilstrom zur Rückgewinnung von Ethylen ausgeschleust wird, und das verbleibende Gasgemisch nach erneuter Beladung mit Ethylen, Essigsäure und Sauerstoff in den Reaktor zurückgeführt wird.
Vinylacetat-Monomer (VAM) kann in einem kontinuierlichen Ver fahren unter Rückführung des aufgereinigten Produktstromes her gestellt werden (Kreisgas-Prozess) . Dabei reagiert in einer he terogen katalysierten Gasphasenreaktion Ethylen mit Essigsäure und Sauerstoff an Katalysatoren, welche im Allgemeinen Palladi¬ um- und Alkalimetallsalze auf einem Trägermaterial enthalten und zusätzlich noch mit Gold dotiert sein können. Im Allgemei¬ nen wird ein Pd/Au-Katalysatorgemisch mit Kaliumacetat als Pro¬ motor eingesetzt.
Die Edukte Ethylen, Sauerstoff und Essigsäure werden in einer exothermen Reaktion (VAM: DBH = - 176 kJ/mol) , im Allgemei¬ nen bei einem Überdruck von 7 bis 15 bar und, je nach Laufzeit des Katalysators, bei einer Temperatur von im Allgemeinen von 130 °C bis 200°C, in einem Festbettröhrenreaktor, aber auch Flu¬ idbettreaktoren, zu Vinylacetat umgesetzt: C2H4 + CH3COOH + 02 -> CH3COOCH=CH2 + H20
Hauptnebenreaktion ist dabei die Ethylen-Totaloxidation zu C02 : C2H4 + 3 02 -> 2 C02 + 2 H20 (C0 :
Figure imgf000002_0001
= - 1322 kJ/mol) Der Ethylenumsatz liegt im Allgemeinen bei 5 bis 20 %, der Es sigsäureumsatz bei 20 bis 60 % und der Sauerstoffumsatz bei bis zu 90 %.
Wegen des unvollständigen Umsatzes von Ethylen wird bei der Herstellung von Vinylacetat ein überwiegend aus Ethylen, Koh lendioxid, Ethan, Stickstoff und Sauerstoff bestehendes Gasge misch {= Kreisgas) im Kreis geführt. Das Kreisgas wird vor dem Festbettröhrenreaktor mit den Edukten Essigsäure, Ethylen und Sauerstoff versetzt und mittels mit Heizdampf betriebenen Wär metauschern auf Reaktionstemperatur gebracht.
Nach der Reaktion werden die Reaktionsprodukte Vinylacetat und Wasser und nicht umgesetzte Essigsäure auskondensiert und der weiteren Aufarbeitung zugeführt. Zur weiteren Aufarbeitung des Kondensats können die auskondensierten Produkte Vinylacetat und Wasser sowie nicht umgesetzte Essigsäure in einem mehrstufigen, üblicherweise mit Heizdampf betriebenen, Destillationsprozess voneinander getrennt werden. Das Kreisgas wird gegebenenfalls verdichtet, erneut mit den Edukten versetzt, und in den Reaktor zur Gasphasenoxidation geleitet.
Aufgrund des hohen Aufwands zur Aufarbeitung des bei der Gas- phasenoxidation entstehenden Gemisches wird eine möglichst hohe Selektivität angestrebt. Je höher der Anteil an Vinylacetat- Monomer und je geringer die Nebenproduktbildung, beispielsweise Kohlendioxid und Ethylacetat, umso einfacher und kostengünsti ger wird der Aufarbeitungsprozess.
Problematisch ist auch, dass über die Edukte Ethylen und Sauer stoff Inertstoffe eingeschleust werden, welche schwer abtrenn bar sind, aber bei der Rückführung in den Reaktor und der An reicherung im Kreisgas die Selektivität der Reaktion zunehmend vermindern. Über den Sauerstoff wird Argon eingeschleppt, über Ethylen wird Ethan eingeschleppt. Diese Inerten müssen kontinu- ierlich aus dem System entfernt werden, sonst würde deren An reicherung im ethylenhaltigen Kreisgas die Reaktion hemmen. Da Ethylen mit 60 bis 70 Vol-% den größten Teil des Kreisgasgemi sches darstellt, geht die Inertenentfernung im allgemeinen mit einem deutlichen Ethylenverlust von etwa 1 bis 4 Vol-% der zu geführten Menge einher.
Zur Vermeidung der Ethylenverluste wird in der WO 2005/100296 Al vorgeschlagen, einen Teil des ethylenhaltigen Kreisgases auszuschleusen und in anderen Verfahren zur Umsetzung von Ethy len, beispielsweise bei der Herstellung von Acetaldehyd oder Essigsäure, einzusetzen. In der WO 2001/000559 Al wird ein Ver fahren zur Entfernung von Nebenprodukten und Inerten beschrie ben, wobei das Kreisgas in einer Absorptionskolonne oder einem Absorptionsbehälter gewaschen wird und die Inerten ausge schleust werden. Ein gängiges Verfahren zur Reinigung des Kreisgases von Inerten ist die sehr energieaufwändige Tieftem peraturdestillation des ethylenhaltigen Kreisgases zur Abtren nung von Ethan und Argon vor der Rückführung des ethylenhalti gen Kreisgases in den Reaktor.
Es bestand daher die Aufgabe ein Verfahren zur Verfügung zu stellen, welches mit hoher Selektivität zu Vinylacetat-Monomer führt, ohne die genannten Nachteile aufzuweisen.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Vinylacetat, wobei in einem heterogen katalysierten, kontinu¬ ierlichen Gasphasenprozess ein gasförmiges Gemisch enthaltend Ethylen, Essigsäure und Sauerstoff in Gegenwart eines Trägerka talysators in einem Reaktor zur Reaktion gebracht wird, das den Reaktor verlassende Gasgemisch aufgearbeitet wird, wobei ein Teilstrom zur Rückgewinnung von Ethylen ausgeschleust wird, und das verbleibende Gasgemisch nach erneuter Beladung mit Ethylen, Essigsäure und Sauerstoff in den Reaktor zurückgeführt wird, dadurch gekennzeichnet, dass Sauerstoff mit einem Anteil von < 1000 Vol.-ppm Argon eingesetzt wird.
Vorzugsweise wird die heterogen katalysierte, kontinuierliche Gasphasenreaktion in einem, vorzugsweise aus Edelstahl gefer tigten, Röhrenreaktor durchgeführt, welcher mit einem Festbett katalysator beschickt ist. Im Allgemeinen ist das ein Festbett- Rohrbündelreaktor mit mehreren tausend, üblicherweise 2000 bis 20000, dicht gepackten und im Allgemeinen vertikal angeordne ten, zylinderförmigen Rohren. Für den großtechnischen Einsatz werden dazu im Allgemeinen Rohre mit einer Länge von 4 m bis 10 m und einem inneren Durchmesser von im Allgemeinen 20 mm bis 50 mm eingesetzt. Die Zwischenräume zwischen den Rohren selbst, und den Rohren und dem Behälter, werden zur Kühlung beispiels weise von einem Wasser/Wasserdampf-Gemisch durchströmt (Siede wasserkühlung) .
Die Rohre der Röhrenreaktoren sind mit handelsüblichen Träger katalysatoren als Festbettkatalysatoren befüllt. Handelsüblich sind Trägerkatalysatoren auf Basis eines anorganischen Träger materials wie Titanoxid, Siliciumoxid oder Aluminiumoxid, wel che im Allgemeinen mit Palladium und Gold in Kombination mit einer Aktivatorkomponente wie Kaliumacetat beschichtet sind. Diese Trägerkatalysatoren können in unterschiedlicher Formge stalt vorliegen, beispielsweise als Kugeln, Zylinder oder Rin ge, wobei deren Abmessungen den verwendeten Rohren angepasst sind und im Allgemeinen Längen von 1 mm bis 10 mm bzw. Durch messer von 1 mm bis 20 mm aufweisen.
Bei dem erfindungsgemäßen Verfahren wird der Reaktor zum Anfah ren mit Ethylen, Sauerstoff und Essigsäure beschickt bzw. im kontinuierlichen Betrieb mit dem mit Ethylen, Sauerstoff und Essigsäure beladenen Kreisgas beschickt. Die dabei einzusetzen den Mengen an Edukten sind dem Fachmann an sich bekannt. Ethyl en wird im Allgemeinen im Überschuß zum stöchiometrischen Ver- hältnis zu Essigsäure eingesetzt. Die Sauerstoffmenge ist nach oben durch die Zündgrenze im Kreisgas limitiert. Im erfindungs gemäßen Verfahren wird Sauerstoff mit einem Anteil von 1000 Vol . -ppm Argon, vorzugsweise 200 bis 950 Vol . -ppm Argon zuge führt .
Die Gasphasenreaktion wird bei einem Druck von vorzugsweise 7 bis 15 bar abs . und bei einer Temperatur von vorzugsweise 130°C bis 200°C durchgeführt. Die Reaktionstemperatur wird beispiels weise mittels Siedewasserkühlung bei einem Druck von 1 bis 30 bar abs., vorzugsweise 8 bis 14 bar abs., eingestellt. Dabei wird Wasserdampf mit einer Temperatur von 120°C bis 185°C bei einem Druck von 1 bis 10 bar abs., vorzugsweise 2,5 bis 5 bar abs . , gebildet .
Wegen der unvollständig verlaufenden Gasphasenreaktion enthält der aus dem Reaktor austretende Produktgasstrom im Wesentlichen Vinylacetat, Ethylen, Essigsäure, Wasser und C02. Die Reakti onsprodukte Vinylacetat und Wasser und nicht umgesetzte Essig säure werden nach der Reaktion vorzugsweise in einer sogenann ten Vorentwässerungskolonne aus dem Kreisgas auskondensiert und der weiteren Aufarbeitung zugeführt. Nicht auskondensiertes Produkt, im Wesentlichen Ethylen, C02 und Vinylacetat, kann am Kopf der Vorentwässerungskolonne entnommen werden und in einem mit Essigsäure betriebenen Wäscher (Kreisgaswäscher) zur Ent fernung von restlichem Vinylacetat gewaschen werden. Das Kopf- produkt der Vorentwässerungskolonne (Kreisgas) , oder zumindest eine Teilmenge davon, kann in einem C02-Wäscher vom gebildeten Kohlendioxid gereinigt werden. Ein Anteil von 0,2 bis 1,5 Vol.%, vorzugsweise von 0,3 bis 0,7 Vol.%, des im Wesentlichen Ethylen enthaltenden Kreisgases wird zur Rückgewinnung des Ethylens und Entfernung von Inerten ausgeschleust (Purgegas) .
Das Kreisgas wird anschließend gegebenenfalls verdichtet, er neut mit den Edukten Ethylen, Essigsäure und Sauerstoff ver- setzt, und in den Reaktor zur Gasphasenoxidation zurückgelei tet .
Zur weiteren Aufarbeitung des Kondensats aus der Vorentwässe rungskolonne können die auskondensierten Produkte Vinylacetat und Wasser sowie nicht umgesetzte Essigsäure in einem mehrstu figen, üblicherweise mit Heizdampf betriebenem, Destillations - prozess voneinander getrennt werden. Die üblichen Destillati onsschritte zur Gewinnung des Vinylacetats und der Essigsäure sind Vorentwässerungskolonne, Azeotropkolonne, Entwässerungsko lonne, Rein-VAM-Kolonne, sowie Kolonnen zur Rückstandsaufarbei tung und zur Leichtsieder- und Hochsieder-Abtrennung .
Ein derartiger Aufarbeitungsprozess zur Aufarbeitung des aus dem Reaktor austretenden Produktgasstromes ist beispielsweise in der WO 2011/089070 Al beschrieben, deren diesbezügliche An gaben Teil der Anmeldung sind (incorporated by reference) .
Das Kreisgas wird dann wieder mit Ethylen, Essigsäure und Sau erstoff beladen und anschließend wieder dem Festbettröhrenreak tor zugeführt. Die Anreicherung des Kreisgases mit Essigsäure erfolgt üblicherweise mittels eines mit Heizdampf geheizten Es sigsäuresättigers. Die Zugabe des Sauerstoffs kann mittels ei ner Mischdüse erfolgen.
Mit dem erfindungsgemäßen Verfahren erhält man im großtechni schen Betrieb eine Verbesserung der Ethylen-Selektivität von bis zu 1,5 % (Prozentpunkte). Bei einer Anlagenkapazität von 100.000 t/y entspricht dies einer Kapazitätssteigerung von 5000 bis 8000 to/y Vinylacetat-Monomer. Aufgrund der verbesserten Selektivität ist der Ethylenanteil im Produktgasstrom entspre chend erhöht, was den Energieaufwand zur Purgegasaufbereitung entsprechend reduziert. Der höhere Ethylenanteil im Kreisgas, verbunden mit dem erfindungsgemäß geringeren Argonanteil im Kreisgas, verringert auch deutlich den Anteil des Kreisgases, welcher zur Inertenentfernung ausgeschleust werden muss.
Beispiele :
In den folgenden Beispielen wurde die Selektivität, welche man mit Sauerstoff mit einem Argongehalt > 1000 Vol . -ppm erhält (Vergleichsbeispiel 1) , mit der verglichen, welche man mit Sau erstoff mit einem Argongehalt < 1000 Vol . -ppm Argon erhält (Beispiel 2 ) .
Messung der Selektivitäten für Vergleichsbeispiel 1 und Bei spiel 2 :
Die Selektivität der Reaktion gemäß dem Vergleichsbeispiel 1 und dem Beispiel 2 wurden über die Dauer von 200 Stunden gemes sen. Als Katalysator wurde ein handelsüblicher, kugelförmiger Trägerkatalysator aus Bentonit mit einem Durchmesser von 5,5 mm eingesetzt, welcher mit 2,0 Gew. -% Palladium, 2,0 Gew.-% Gold und 3,0 Gew. -% Kalium, jeweils bezogen auf das Gesamtgewicht des Katalysator-Formkörpers, imprägniert war. Die Katalysatoren wurden in einen mit Öl temperierten Strömungsreaktor (Reaktor¬ länge 6000 mm, Innendurchmesser 33 mm) gefüllt und bei einem absoluten Druck von 9,5 bar, einer Temperatur von 130°C bis 180°C, gemessen im Katalysatorbett, und einer Raumgeschwindig¬ keit (GHSV) von 3000 - 4000 N 3/ (m3*h) mit folgender Zusammen¬ setzung des Kreisgases geprüft: 65 Vol.-% Ethen, 10 Vol.-% Koh¬ lendioxid, 13 Vol . - % Essigsäure und 8 Vol.-% Sauerstoff, Rest war Methan, Ethan, Stickstoff.
Der in Vergleichsbeispiel 1 eingesetzte Sauerstoff hatte einen Argonanteil von 2500 Vol. -ppm. In Beispiel 2 wurde Sauerstoff mit einem Argonanteil von 900 Vol . -ppm verwendet. Die Reaktionsprodukte wurden am Ausgang des Reaktors mittels Online-Gaschromatographie analysiert. Kohlendioxid, das insbe sondere durch die Verbrennung von Ethylen gebildet wird, wurde ebenfalls bestimmt und zur Beurteilung der Selektivität heran- gezogen. Die Ergebnisse sind in Tabelle 1 zusammengefasst.
Tabelle 1: Beispiel Argonanteil Selektivität RZA*
V.bsp. 1 0,25 % 92,0 % 900
Beispiel 2 0,09 % 93,5 % 940
* RZA = Raum- Zeit-Ausbeute in Gramm Vinylacetatmonomer pro Stunde und Liter Katalysator (g (VAM) /I (Kat) x h)

Claims

Patentansprüche s
Verfahren zur Herstellung von Vinylacetat, wobei in einem heterogen katalysierten, kontinuierlichen Gasphasenprozess ein gasförmiges Gemisch enthaltend Ethylen, Essigsäure und Sauerstoff in Gegenwart eines Trägerkatalysators in einem Reaktor zur Reaktion gebracht wird, das den Reaktor ver lassende Gasgemisch aufgearbeitet wird, wobei ein Teil strom zur Rückgewinnung von Ethylen ausgeschleust wird, und das verbleibende Gasgemisch nach erneuter Beladung mit Ethylen, Essigsäure und Sauerstoff in den Reaktor zurück geführt wird, dadurch gekennzeichnet, dass Sauerstoff mit einem Anteil von y 1000 Vol . -ppm Argon eingesetzt wird. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
Sauerstoff mit einem Anteil von 200 bis 950 Vol . -ppm Argon eingesetzt wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Teilstrom, welcher zur Rückgewinnung von Ethylen ausgeschleust wird, 0,2 bis 1,5 Vol. % des Ethylenanteils im den Reaktor verlassenden Gasgemisch entspricht.
PCT/EP2019/064951 2018-06-12 2019-06-07 Verfahren zur herstellung von vinylacetat WO2019238562A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018209346.6A DE102018209346A1 (de) 2018-06-12 2018-06-12 Verfahren zur Herstellung von Vinylacetat
DE102018209346.6 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019238562A1 true WO2019238562A1 (de) 2019-12-19

Family

ID=66821259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/064951 WO2019238562A1 (de) 2018-06-12 2019-06-07 Verfahren zur herstellung von vinylacetat

Country Status (2)

Country Link
DE (1) DE102018209346A1 (de)
WO (1) WO2019238562A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927712A1 (de) * 1997-12-31 1999-07-07 Praxair Technology, Inc. Verfahren zur Herstellung von Vinylacetat
WO2001000559A1 (en) 1999-06-29 2001-01-04 Celanese International Corporation Ethylene recovery system
WO2005100296A1 (de) 2004-04-15 2005-10-27 Wacker Chemie Ag Verfahren zur ethylen-rückgewinnung in einem kreisgasprozess zur herstellung von vinylacetat
WO2011089070A1 (de) 2010-01-21 2011-07-28 Wacker Chemie Ag Verfahren zur herstellung von vinylacetat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927712A1 (de) * 1997-12-31 1999-07-07 Praxair Technology, Inc. Verfahren zur Herstellung von Vinylacetat
WO2001000559A1 (en) 1999-06-29 2001-01-04 Celanese International Corporation Ethylene recovery system
WO2005100296A1 (de) 2004-04-15 2005-10-27 Wacker Chemie Ag Verfahren zur ethylen-rückgewinnung in einem kreisgasprozess zur herstellung von vinylacetat
WO2011089070A1 (de) 2010-01-21 2011-07-28 Wacker Chemie Ag Verfahren zur herstellung von vinylacetat

Also Published As

Publication number Publication date
DE102018209346A1 (de) 2019-12-12

Similar Documents

Publication Publication Date Title
DE69713515T2 (de) Verfahren zur oxidation von alkanen
EP2526082B1 (de) Verfahren zur herstellung von vinylacetat
EP1735261B1 (de) Verfahren zur ethylen-rückgewinnung in einem kreisgasprozess zur herstellung von vinylacetat
DE60018313T2 (de) Integriertes verfahren zur herstellung von vinylacetat
EP2424831B1 (de) Verfahren zur herstellung von vinylacetat
EP2751062A1 (de) Verfahren zur acetoxylierung von olefinen in der gasphase
DE10240129B4 (de) Integriertes Verfahren zur Synthese von Propylenoxid
EP3713909B1 (de) Verfahren zur herstellung von vinylacetat
WO2019238562A1 (de) Verfahren zur herstellung von vinylacetat
WO2016066703A1 (de) Verfahren zur herstellung von vinylacetat
WO2016075200A1 (de) Verfahren zur herstellung von vinylacetat
WO2008110468A1 (de) Verfahren zur herstellung von essig- und ameisensäure durch gasphasenoxidation von ethanol
EP2398585B1 (de) Verfahren zur herstellung von vinylacetat
EP0960875B1 (de) Verfahren zur Herstellung von gesättigten Carbonsäuren mit 1 bis 4 C-Atomen
WO2019072655A1 (de) Katalysator zur herstellung von vinylacetat
EP3512827A1 (de) Verfahren zur herstellung von methylisobutylketon aus aceton
EP3440048B1 (de) Verfahren zur herstellung von vinylacetat
DE2159764B2 (de) Verfahren zur kontinuierlichen herstellung und anreicherung von kohlenwasserstoffhydroperoxiden
DE102014206450A1 (de) Verfahren zur Aufreinigung von Kohlendioxid enthaltenden Prozessgasen aus der Herstellung von Vinylacetat
EP1857449A1 (de) Verfahren zur herstellung von maleinsäureanhydrid in einem mikrokanal-reaktor
DE102012205444A1 (de) Verfahren zur Herstellung von Vinylacetat
EP1307437A1 (de) Verfahren zur herstellung von 3,4-dihydro-2h-pyran
EP3388408A1 (de) Verfahren und anlage zur herstellung von butadien aus ethanol
DE2525296B1 (de) Verfahren zur herstellung von essigsaeure
WO2014128191A1 (de) Verfahren zur entfernung von sauerstoff aus c4-kohlenwasserstoffströmen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19729741

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19729741

Country of ref document: EP

Kind code of ref document: A1