WO2019237705A1 - 移动空调 - Google Patents
移动空调 Download PDFInfo
- Publication number
- WO2019237705A1 WO2019237705A1 PCT/CN2018/122409 CN2018122409W WO2019237705A1 WO 2019237705 A1 WO2019237705 A1 WO 2019237705A1 CN 2018122409 W CN2018122409 W CN 2018122409W WO 2019237705 A1 WO2019237705 A1 WO 2019237705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interface
- heat exchanger
- refrigerant
- air conditioner
- mobile air
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 201
- 238000004146 energy storage Methods 0.000 claims abstract description 147
- 238000001816 cooling Methods 0.000 claims abstract description 73
- 238000004891 communication Methods 0.000 claims description 144
- 230000008859 change Effects 0.000 claims description 73
- 238000001514 detection method Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 15
- 239000012071 phase Substances 0.000 description 66
- 238000004378 air conditioning Methods 0.000 description 22
- 230000008929 regeneration Effects 0.000 description 20
- 238000011069 regeneration method Methods 0.000 description 20
- 238000001704 evaporation Methods 0.000 description 18
- 230000008020 evaporation Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 238000009833 condensation Methods 0.000 description 13
- 230000005494 condensation Effects 0.000 description 13
- 230000008901 benefit Effects 0.000 description 12
- 238000005057 refrigeration Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/001—Compression cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/022—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/032—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/0326—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0017—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
- F24F5/0021—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using phase change material [PCM] for storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/37—Capillary tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/04—Arrangements for portability
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/12—Details or features not otherwise provided for transportable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2515—Flow valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present application relates to the field of air conditioners, and in particular, to a mobile air conditioner.
- an object of the present application is to provide a mobile air conditioner.
- an embodiment of the present application provides a mobile air conditioner, including: a first heat exchanger having a first interface and a second interface for refrigerant to enter and exit; a phase change energy storage heat exchange device including a second A heat exchanger and a phase change energy storage working medium, and the second heat exchanger and the phase change energy storage working medium can exchange heat, the second heat exchanger has a third interface for the refrigerant to enter and exit, and Four interfaces; a first refrigerant pipeline connected to the first interface and the third interface; a second refrigerant pipeline connected to the second interface and the fourth interface.
- the second heat exchanger exchanges heat with the phase-change energy-storing working medium, which is heat-exchanged by air cooling with respect to the second heat exchanger in the existing mobile air conditioner, and the heat exchange is performed through a thick connection pipe
- the heat emitted by the second heat exchanger in this design is absorbed by the phase-change energy storage working medium, so there is no need to drain the heat through a thick connection pipe, so that the use of mobile air conditioners is more It has the advantages of flexibility and convenience, and the phase change energy storage working medium can directly absorb the heat of the second heat exchanger for storage.
- the mobile air conditioner generates less heat to the indoor environment during the indoor cooling process, and the energy efficiency of the cooling operation is more efficient. High, the indoor cooling efficiency is also higher, and the cooling experience is better.
- the second heat exchanger changes from air-cooled heat exchange to phase-change energy storage working medium heat exchange, which is helpful to improve the silent performance of the product, especially It is suitable for rest and office occasions, so that the convenience and comfort advantages of mobile air conditioning can be brought into full play.
- the mobile air conditioner in the above embodiment provided by the present application may also have the following additional technical features:
- the first refrigerant pipeline includes: a first communication branch, which is in communication with the first interface and the third interface, and the first communication branch is in conduction, and the first interface Connected to the third interface.
- a first communication branch is provided and the first interface is connected to the third interface in a conducting state.
- the refrigerant discharged from the third interface can be directly discharged into the first heat exchanger for evaporation through the first interface by using the first communication branch, so that the refrigerant enters the first No throttling is required in front of a heat exchanger, so that the refrigerant does not produce a rigid cooling effect during the evaporation process in the first heat exchanger, and the cold air is softer and more comfortable, especially when there is no need to rapidly cool the room or the demand for refrigeration High conditions can improve cooling comfort, and the condensation load at the second heat exchanger is small in this mode.
- phase-change energy storage working medium This can make full use of the characteristics of the phase-change energy storage working medium to maintain a stable temperature in the phase-change temperature range to enhance evaporation.
- the stability of the temperature and the condensing temperature is conducive to maintaining the comfort of the room temperature, and the utilization of the cold capacity of the phase change energy storage working medium is higher, which is helpful to ensure the high efficiency of the mobile air conditioner.
- the first communication branch is conducted when the temperature of the refrigerant flowing out of the third interface is lower than the current room temperature and the temperature difference is at least 3 ° C.
- the first communication branch is conducted, so that the refrigerant passes through the second heat exchanger and the phase change storage.
- the working medium is heat-exchanged and is cooled to 3 ° C lower than room temperature, it is not necessary to throttle the refrigerant.
- the refrigerant directly enters the first heat exchanger for evaporation, it can ensure that the first heat exchanger has sufficient driving force for temperature difference. It can meet the indoor cooling demand and can reduce the condensation load at the second heat exchanger.
- the corresponding range of phase change energy storage medium can be wider.
- the phase change energy storage medium and the second heat exchanger The heat exchange efficiency is higher, and the cooling capacity utilization rate of the phase-change energy storage working medium is also higher. The energy loss of the entire mobile air conditioner is reduced, and the operation energy efficiency is higher.
- the detection result is fed back to the controller of the mobile air conditioner.
- one or more temperature sensors are used to detect the current room temperature and the detection result is fed back to the controller of the mobile air conditioner.
- the controller determines whether it is satisfied by using a comparator or a built-in program
- the temperature of the refrigerant flowing out from the third interface is lower than the current room temperature and the temperature difference is greater than or equal to 3 ° C. If it is, the controller controls the first communication branch to be turned on to respond. If not, the mobile air conditioner is based on the setting mode or the default.
- the first connected branch in the mode can be operated in the on or off state.
- the first refrigerant pipeline includes the first communication branch
- the temperature of the refrigerant flowing out of the third interface is lower than the current room temperature, and the temperature difference is 3 ° C or more and 10 ° or less At ° C, the first communication branch is turned on.
- the first refrigerant pipeline includes: a first one-way throttle branch, which is in communication with the first interface and the third interface, and the first one-way throttle branch is configured To throttling the refrigerant from the second heat exchanger to the first heat exchanger.
- a first one-way throttling branch is provided for throttling the refrigerant from the second heat exchanger to the first heat exchanger, which is different from the refrigerant transmission function of the first communication branch.
- the first one-way throttling branch sends the refrigerant to the first heat exchanger after throttling.
- the first unidirectional throttling branch and the first communication branch may be Set up in parallel or other forms. Due to the difference in flow resistance, when the first communication branch is turned on, the refrigerant discharged from the second heat exchanger will be mainly discharged to the first heat exchanger along the first communication branch. When the circuit is closed (that is, non-conducting), the refrigerant discharged from the second heat exchanger will be discharged to the first heat exchanger along the first one-way throttling branch, which can realize the first one-way throttling according to the cooling demand. Switch between the branch and the first connected branch.
- the first refrigerant pipeline further includes: a second unidirectional throttling branch, which is in communication with the first interface and the third interface, and the second unidirectional throttling branch is configured as Throttling the refrigerant from the first heat exchanger to the second heat exchanger.
- setting a second one-way throttling branch can throttle the refrigerant from the first heat exchanger to the second heat exchanger, so that when the mobile air conditioner runs for a period of time, the phase change accumulates.
- the design can control the refrigerant system to enable the mobile air conditioner to complete the phase change storage medium.
- the regeneration operation is specifically different from the cooling operation conditions in which the second heat exchanger acts as a condenser and provides the refrigerant to the first heat exchanger to make the first heat exchanger work as an evaporator.
- the first heat exchanger is used as the condenser and the second heat exchanger is used as the evaporator.
- the refrigerant discharged from the first heat exchanger passes through the second unidirectional After throttling the throttling branch, it enters the second heat exchanger for evaporation and heat absorption, so that the phase change energy storage working medium is absorbed by the second heat exchanger for active regeneration and cold storage, so that the user does not need to replace the phase change energy storage work.
- phase change energy storage working medium is naturally cooled and regenerated, making the product more comfortable and convenient to use, and the use of mobile air conditioning has the characteristics of mobile convenience.
- the mobile air conditioner can be transferred to the outdoor or other The indoor environment has a small impact. In this way, the condensation heat dissipation of the first heat exchanger does not cause discomfort, and the user experience is better.
- the first one-way throttling branch and the second one-way throttling branch are configured to satisfy: a pressure drop of the refrigerant after being throttled by the first one-way throttling branch is less than A pressure drop after the second one-way throttling branch is throttled.
- the throttling pressure drop of the first one-way throttling branch designed to play a throttling effect in the cooling mode is smaller than the throttling of the second one-way throttling branch to play a throttling effect in the energy storage mode.
- Pressure drop in this way, no deep throttling will occur in the cooling mode, that is, compared with the second one-way throttling branch, the first one-way throttling branch will not have deep throttling, which is ideal for indoors
- the effect of maintaining the evaporation temperature is better, and no rigid cooling effect is produced.
- the cold air is softer and more comfortable. It can also reduce the condensation load at the second heat exchanger under refrigeration conditions.
- the heat exchange efficiency between the phase change energy storage working medium and the second heat exchanger is higher, and the cooling capacity utilization rate of the phase change energy storage working medium is higher.
- the energy loss of the entire mobile air conditioner is reduced.
- Small, running energy efficiency is higher, and for energy storage conditions, the throttling depth of the second unidirectional throttling branch is large, so that the regeneration process of phase change energy storage working fluid is accelerated, the regeneration cycle is shortened, which can help reduce regeneration Energy loss in the process, and Low cold storage temperature can better meet the condensation needs of the second heat exchanger under refrigeration conditions.
- the design of the phase change energy storage working medium has different cooling and regeneration cycles, which can comprehensively promote the mobile air-conditioning system. The promotion of energy efficiency will help improve the energy efficiency of mobile air conditioners.
- the mobile air conditioner further includes: a temperature detection unit configured to detect a temperature of the phase change energy storage working medium, and upon detecting that the temperature of the phase change energy storage working medium rises to the first A first signal is issued under a preset limit; the controller is electrically connected to the temperature detection unit, and the controller is configured to respond to the first signal by issuing a first instruction, the first instruction being used for Triggering the mobile air conditioner to stop running in a cooling mode, or the controller is configured to respond according to the first signal by issuing a second instruction, the second instruction being used to trigger a reminder device to perform a reminder function.
- the mobile air conditioner is stopped to operate the cooling mode, or the reminder device is controlled to perform a reminder function (such as a buzzer sounds and a flash light flashes).
- a reminder function such as a buzzer sounds and a flash light flashes.
- the first preset limit is 8 ° C to 20 ° C.
- the first preset limit is set to 8 ° C to 20 ° C.
- the first preset limit is 8 ° C to 15 ° C.
- Controlling the mobile air-conditioning equipment to end the cooling mode or issuing a reminder can help to ensure that the mobile air-conditioning operation energy efficiency is maintained at a preset better state, at least to ensure that the first heat exchanger has a sufficient temperature difference driving force to ensure indoor cooling Efficiency, avoid low-efficiency operation, and improve resource utilization efficiency.
- those skilled in the art can further determine the first preset limit in the range of 8 ° C to 20 ° C based on the specific type of phase change energy storage working medium.
- the temperature change of the phase-change energy storage working medium in the phase-change zone is small and basically stable, and it is a sensible heat state above the phase-change temperature, and a significant temperature rise will occur as the condensation process progresses.
- the specific value of the limit is set, it is better to make the first preset limit as close as possible to the phase change temperature of the phase change energy storage working medium.
- the temperature detection unit may be further configured to issue a second signal when it is detected that the temperature of the phase-change energy storage working medium drops to a second preset limit
- the controller may further It is configured to respond according to the second signal by issuing a third instruction, and the third instruction is used to trigger the mobile air conditioner to stop running the energy storage mode.
- the mobile air conditioner by controlling the mobile air conditioner to stop the energy storage mode when the temperature of the phase-change energy-storing working medium is detected to reach the second preset limit, the temperature of the phase-change energy-storing working medium can reach the second preset limit for regeneration work
- the completed reference realizes that the regeneration operation is automatically ended after the regeneration of the phase-change energy storage working medium is completed to avoid unnecessary energy waste.
- the second preset limit is -10 ° C to -4 ° C.
- the second preset limit is set to -10 ° C to -4 ° C, and the second preset limit is used as the node to end the energy storage mode.
- This temperature interval can basically ensure that the phase change energy storage working medium completes regeneration. , Can avoid unnecessary waste of energy, reduce product operating costs, and preferably, those skilled in the art can further determine the second preset limit in the range of -10 ° C to -4 ° C based on the specific type of phase change energy storage working medium, In this way, the temperature of the phase-change energy storage working medium is not too low, which results in a stiff cooling effect. The refrigeration experience is better, and for the product, the energy loss for cold storage and cold storage is relatively low. low cost.
- the second refrigerant pipeline includes: a second communication branch, which is in communication with the second interface and the fourth interface, and the height of the second heat exchanger is higher than The first heat exchanger enables the refrigerant in the second heat exchanger to be gravity-fed to the first heat exchanger along the first communication branch.
- the second communication branch connects the second interface of the first heat exchanger as the refrigerant outlet and the fourth interface of the second heat exchanger as the refrigerant inlet.
- the first heat exchange Heat exchanger, the second heat exchanger, the first communication branch and the second communication branch form a loop, wherein the height of the second heat exchanger is higher than that of the first heat exchanger, and after the second heat exchanger is condensed,
- the refrigerant can use the potential energy of gravity to sink automatically and be sent to the first heat exchanger for evaporation along the first connecting branch. In the first heat exchanger, the refrigerant will spontaneously rise and move after evaporation and vaporization.
- the gaseous refrigerant in the upward movement can rise along the second communication branch and return to the second heat exchanger to complete the refrigerant cycle, thereby forming a refrigerant cycle that is automatically driven by the thermosiphon effect, without the need to rely on a circulating pump, compressor, etc.
- the driver drives the refrigerant to further save energy consumption, and at the same time, the problem of driving noise can be basically avoided, and the comfort of the product is improved accordingly.
- the second refrigerant pipeline includes: a second communication branch, which is in communication with the second interface and the fourth interface, and the first communication branch and the second communication branch At least one of the paths is connected with a driving member configured to drive the refrigerant flow.
- a pumping driving member such as a circulating pump to realize the driving of the refrigerant flow has a significant improvement effect in terms of noise and driving energy consumption compared to the form of compressor driving.
- the second refrigerant pipeline includes: a compressor having an exhaust port and an air return port; a four-way valve connected to the exhaust port, the air return port, the second interface, and The fourth interface is in communication, and the four-way valve is configured to control conduction between the exhaust port and the fourth interface, and to control communication between the return port and the second interface.
- the pass valve may also be configured to control the communication between the air return port and the fourth interface, and control the communication between the exhaust port and the second interface.
- the four-way valve controls the communication between the exhaust port and the fourth port in the first state, and controls the communication between the return port and the second port to form a refrigerant refrigeration circuit.
- the The air conditioner operates in the cooling mode.
- the four-way valve controls the conduction between the return air port and the fourth interface, and controls the conduction between the exhaust port and the second interface, which can form a refrigerant energy storage circuit (similar to mobile Heating circuit of air conditioner), at this time, mobile air conditioner operates in energy storage mode.
- the second refrigerant pipeline includes: a compressor having a return air port and an exhaust port; a first return air pipe communicating with the return air port and the fourth interface, and the first A third valve is connected to the return pipe, and the third valve is configured to turn on or off the first return pipe; a second return pipe is in communication with the return port and the second interface, and the second A fourth valve is connected to the return pipe, and the fourth valve is configured to turn on or off the second return pipe; a first exhaust pipe is in communication with the exhaust port and the fourth interface, and the A fifth valve is connected to the first exhaust pipe, and the fifth valve is configured to turn on or off the first exhaust pipe; and a second exhaust pipe is in communication with the exhaust port and the second interface.
- a sixth valve is connected to the second exhaust pipe, and the sixth valve is configured to turn on or off the second exhaust pipe.
- the third valve and the sixth valve are in an on state, and the fourth valve and the fifth valve are in an off state, which can form a refrigerant energy storage circuit (similar to the heating circuit of a mobile air conditioner).
- the fourth valve and the fifth valve are in an on state, and the third valve and the sixth valve are in an off state, which can form a refrigerant refrigeration circuit.
- the mobile air conditioner operates in a cooling mode.
- the compressor is provided with an interface, and the interface is configured for the compressor to be electrically connected to an external power source.
- the mobile air conditioner further includes a battery, and the battery is electrically connected to the compressor and supplies power to the compressor.
- the second heat exchanger includes at least one of a coiled tube heat exchanger, a finned tube heat exchanger, and a rotary fin heat exchanger.
- the first one-way throttle branch includes at least one of a capillary tube, an electronic expansion valve, and a thermal expansion valve.
- the second one-way throttle branch includes at least one of a capillary tube, an electronic expansion valve, and a thermal expansion valve.
- FIG. 1 is a schematic structural diagram of a mobile air conditioner in a cooling mode according to an embodiment of the present application
- FIG. 2 is a schematic structural diagram of a mobile air conditioner in a heating mode according to an embodiment of the present application
- FIG. 3 is a schematic structural diagram of a mobile air conditioner in a siphon mode according to an embodiment of the present application
- FIG. 4 is a schematic structural diagram of a mobile air conditioner according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a mobile air conditioner in a siphon mode according to an embodiment of the present application.
- first heat exchanger 11 first interface, 12 second interface, 20 phase change energy storage heat exchange device, 21 third interface, 22 fourth interface, 41 first capillary, 42 first check valve, 43th Two capillary tubes, 44 second check valve, 51 first communication branch, 52 second communication branch, 60 compressor, 61 exhaust port, 62 return port, 70 four-way valve, 81 first return pipe, 811th Three valves, 82 second return pipe, 821 fourth valve, 83 first exhaust pipe, 831 fifth valve, 84 second exhaust pipe, 841 sixth valve, 90 fan.
- a mobile air conditioner provided by an embodiment of the present application includes a first heat exchanger 10, a phase-change energy storage heat exchange device 20, a first refrigerant pipe, and a second refrigerant pipe.
- the first heat exchanger 10 has a first interface 11 and a second interface 12 for refrigerant to enter and exit;
- a phase change energy storage heat exchange device 20 includes a second heat exchanger and a phase change energy storage working medium, and the second The heat exchanger can exchange heat with the phase-change energy storage working medium.
- the second heat exchanger has a third interface 21 and a fourth interface 22 for the refrigerant to enter and exit.
- the first refrigerant pipeline is connected to the first interface 11 and the third interface. 21 connection; the second refrigerant pipe is connected to the second interface 12 and the fourth interface 22.
- the phase-change energy-storage heat-exchange device 20 may have a container, and the second heat exchanger is accommodated in the container.
- the container contains the phase-change energy-storage working medium, and the phase-change energy-storage working medium in the container and the second
- the heat exchanger can perform heat exchange by direct contact convection heat transfer or heat transfer between the two through a heat conducting member.
- the second heat exchanger exchanges heat with the phase-change energy-storing working medium, which is heat-exchanged by air cooling with respect to the second heat exchanger in the existing mobile air conditioner, and the heat exchange is performed through a thick connection pipe.
- the heat emitted by the second heat exchanger in this design is absorbed by the phase-change energy storage working medium, so there is no need to drain the heat through a thick connection pipe, so that the use of mobile air conditioners is more It has the advantages of flexibility and convenience, and the phase change energy storage working medium can directly absorb the heat of the second heat exchanger for storage.
- the mobile air conditioner generates less heat to the indoor environment during the indoor cooling process, and the energy efficiency of the cooling operation is more efficient. High, the indoor cooling efficiency is also higher, and the cooling experience is better.
- the second heat exchanger changes from air-cooled heat exchange to phase-change energy storage working medium heat exchange, which is helpful to improve the silent performance of the product, especially It is suitable for rest and office occasions, so that the convenience and comfort advantages of mobile air conditioning can be brought into full play.
- the phase change energy storage working medium is also called a phase change material.
- the phase change energy storage working medium has a small temperature fluctuation in the phase change region.
- the phase change energy storage working medium is used to exchange heat with the second heat exchanger. In terms of air-cooled heat exchange, it can not only achieve energy storage heat transfer, reduce the heat dissipation of the second heat exchanger to the environment, but also has the advantages of high heat exchange efficiency and good temperature stability, which is conducive to controlling mobile air-conditioning operation at ideal evaporation. Temperature and condensing temperature to improve the cooling efficiency of mobile air conditioners.
- the first refrigerant pipeline is a piping system for refrigerant circulation and work
- the second refrigerant pipeline is a piping system for refrigerant circulation and work.
- the first refrigerant pipeline includes a first communication branch 51, the first communication branch 51 communicates with the first interface 11 and the third interface 21, and the first communication The branch 51 is turned on, and the first interface 11 and the third interface 21 are connected.
- the first communication branch 51 when the first communication branch 51 is turned on, it plays a communication role similar to the refrigerant pipe.
- the first communication branch 51 may include a refrigerant pipe and a control for turning on or off the refrigerant pipe.
- the first communication branch 51 can be used to connect the first The refrigerant discharged from the three interfaces 21 is directly discharged into the first heat exchanger 10 through the first interface 11 for evaporation, and the refrigerant does not need to be throttled before entering the first heat exchanger 10, so that the refrigerant is in the first heat exchanger 10 During the evaporation process, the rigid cooling effect is not produced, and the cold air is softer and more comfortable.
- the cooling comfort can be improved, and the second change in this mode
- the condensing load at the heater is small. This can make full use of the characteristics of the phase-change energy storage working medium to maintain a stable temperature in the phase-change temperature range. Improve the stability of the evaporation temperature and the condensation temperature, which is beneficial to maintaining the room temperature comfort and the phase change.
- the utilization rate of energy storage refrigerant is higher, which helps to ensure the efficiency of mobile air conditioning.
- the first refrigerant pipeline includes a first one-way throttling branch, and the first one-way throttling branch and the first interface 11 and The third interface 21 is in communication, and the first one-way throttling branch is configured to throttle the refrigerant from the second heat exchanger to the first heat exchanger 10.
- the first one-way throttling branch specifically includes a one-way guide from the second heat exchanger to the first heat exchanger 10 (that is, from the third interface 21 to the first interface 11).
- the first non-return valve 42 and the first capillary 41 are used to reduce the pressure.
- the refrigerant pressure drop on the first capillary 41 can be reflected by the length of the first capillary 41, and the two are positively related.
- the first capillary 41 can also be replaced with an electronic expansion valve, a thermal expansion valve, etc. It can be understood that when an electronic expansion valve or a thermal expansion valve is used, the pressure drop of the refrigerant on the electronic expansion valve and the thermal expansion valve can pass through the expansion valve. The degree of opening is reflected, and the two are positively related.
- a first unidirectional throttling branch is provided for throttling the refrigerant from the second heat exchanger to the first heat exchanger 10, which is different from the refrigerant transmission function of the first communication branch 51 Among them, the first one-way throttling branch throttles the refrigerant and sends it to the first heat exchanger 10, so that when the user has a high demand for cooling efficiency, or when the user needs to quickly cool down the room, the refrigerant can be cooled. After throttling, it is discharged to the first heat exchanger 10 for evaporation, which can improve the cooling efficiency and meet the user's demand for cooling efficiency.
- the first refrigerant pipeline includes a first communication branch 51 and a first unidirectional throttling branch, and the first communication branch 51 and the first unidirectional throttling The branches are arranged in parallel.
- the one-way throttling branch is in communication with the first interface 11 and the third interface 21.
- the first one-way throttling branch is configured to throttle the refrigerant from the second heat exchanger to the first heat exchanger 10.
- the refrigerant discharged from the second heat exchanger is mainly discharged to the first heat exchanger 10 along the first communication branch 51, and when the first communication branch 51 is turned off (that is, non-conducting), the second heat exchange
- the refrigerant discharged from the radiator is discharged to the first heat exchanger 10 along the first one-way throttling branch, and the first one-way throttling branch and the first communication branch 51 can be switched and used according to the cooling demand.
- the first refrigerant pipeline further includes a second unidirectional throttling branch, and the second unidirectional throttling branch is connected to the first interface 11 and the third The interface 21 is in communication, and the second one-way throttling branch is configured to throttle the refrigerant from the first heat exchanger 10 to the second heat exchanger.
- the second one-way throttling branch includes a one-way guide from the first heat exchanger 10 to the second heat exchanger (that is, from the first interface 11 to the third interface 21).
- the second non-return valve 44 which is in the reverse direction and the second capillary tube 43 for reducing the flow.
- the refrigerant pressure drop on the second capillary tube 43 can be reflected by the length of the second capillary tube 43 and the two are positively related.
- the second capillary 43 can also be replaced with an electronic expansion valve, a thermal expansion valve, etc. It can be understood that when an electronic expansion valve or a thermal expansion valve is used, the refrigerant pressure drop on the electronic expansion valve and the thermal expansion valve can pass through the expansion valve. The degree of opening is reflected, and the two are positively related.
- the first heat exchanger 10 is used as the condenser and the second heat exchanger is used as the evaporator.
- the refrigerant discharged from the heat exchanger 10 is throttled by the second one-way throttling branch, and then enters the second heat exchanger for evaporative heat absorption, thereby realizing active regeneration of the phase-change energy storage working medium absorbed by the second heat exchanger. Cold storage.
- the mobile air conditioner can be transferred to the outdoor or other places with a small impact on the indoor environment. In this way, the condensation heat dissipation amount of the first heat exchanger 10 will not cause discomfort and user experience. Degree is better.
- the first refrigerant pipeline includes a first unidirectional throttling branch and a second unidirectional throttling branch, wherein the refrigerant is connected by the first unidirectional throttling branch
- the pressure drop after the flow is smaller than the pressure drop after being throttled by the second one-way throttle branch.
- the first one-way throttling branch will not have deep throttling.
- the first one-way throttling branch is shallower. The degree of throttling is better for maintaining the ideal evaporation temperature in the room, and does not produce a rigid cooling effect.
- the cold air is softer and more comfortable.
- the condensation load at the second heat exchanger can be reduced.
- the corresponding selection range is wider, meanwhile, the heat exchange efficiency between the phase change energy storage working medium and the second heat exchanger is higher, and the cooling capacity utilization rate of the phase change energy storage working medium is also higher. In this way, the entire mobile air conditioner The energy loss is reduced and the operating energy efficiency is higher.
- the throttling depth of the second one-way throttling branch is large. In this way, the regeneration process of the phase change energy storage working medium is accelerated, and the regeneration cycle is shortened.
- phase change storage fluid Differences promote an integrated mobile air conditioning can enhance the energy efficiency toward the direction of advance, which will help achieve mobile air-conditioning energy efficiency upgrade.
- the first refrigerant pipeline includes a first communication branch 51, and when the temperature of the refrigerant flowing out of the third interface 21 is lower than the current room temperature and the temperature difference is 3 ° C or more
- the first communication branch 51 is turned on. In this way, when the refrigerant is cooled to a temperature of more than 3 ° C lower than room temperature through heat exchange between the second heat exchanger and the phase-change energy storage working medium, it is not necessary to throttle the refrigerant even if the refrigerant directly enters the first heat exchanger 10 for evaporation. It can ensure that there is sufficient driving force for temperature difference at the first heat exchanger 10 to meet the indoor cooling demand, and it can reduce the condensation load at the second heat exchanger.
- phase change energy storage working medium can be correspondingly wider, and ,
- the heat exchange efficiency between the phase change energy storage working medium and the second heat exchanger is higher, and the cooling capacity utilization rate of the phase change energy storage working medium is also higher.
- the energy loss of the entire mobile air conditioner is reduced, and the operation energy efficiency is more efficient. high.
- the temperature of the refrigerant at the third interface 21 of the second heat exchanger may be detected by using one or more temperature sensors, or the pipe temperature at the third interface 21 of the second heat exchanger may be detected to reflect the third interface 21
- one or more temperature sensors can be used to detect the current room temperature and feedback the detection result to the controller of the mobile air conditioner.
- the built-in program determines whether the temperature of the refrigerant flowing out of the third interface 21 is lower than the current room temperature and the temperature difference is greater than or equal to 3 ° C. If it is, the controller controls the first communication branch 51 to be turned on to respond, and if not, the mobile air conditioner The operation can be performed based on the on or off state of the first communication branch 51 in the setting mode or the default mode.
- the first communication branch 51 is turned on.
- the mobile air conditioner further includes a temperature detection unit (such as a temperature sensor).
- the temperature detection unit is configured to detect the temperature of the phase change energy storage working medium, and when the temperature of the phase change energy storage working medium is increased to A first signal is issued at a first preset time limit; the controller is electrically connected to the temperature detection unit, and can respond to an instruction to control the mobile air conditioner to stop the cooling mode according to the first signal, or issue a trigger according to the first signal
- the reminder device responds to an instruction to execute a reminder function.
- the refrigerant flows from the third interface 21 to the first interface 11. More specifically, as shown in FIG. 1, the refrigerant is guided from the third interface 21 along the first throttle branch to the first interface 11. Or, as shown in FIGS. 3 and 5, the refrigerant is conducted from the third interface 21 to the first interface 11 along the first communication branch 51.
- the first preset limit is 8 ° C to 20 ° C, and further preferably, the first preset limit is 8 ° C to 15 ° C.
- the phase change energy storage working medium temperature is detected to reach 8 ° C to 20 ° C, the movement is controlled.
- the end of the cooling mode of the air-conditioning equipment or issuing a reminder can help to ensure that the mobile air-conditioning operation energy efficiency is maintained at a preset better state, at least to ensure that the first heat exchanger 10 has a sufficient temperature difference driving force to ensure indoor cooling efficiency
- those skilled in the art can further determine the first preset limit in the range of 8 ° C to 20 ° C based on the specific type of phase change energy storage working medium. It can be understood that the phase The temperature change of the variable energy storage medium in the phase change zone is small and basically stable, and it is a sensible heat state above the phase change temperature, and a significant temperature rise will occur as the condensation process progresses.
- the first preset For the specific value of the limit, it is better to make the first preset limit as close as possible to the phase change temperature of the phase change energy storage working medium.
- the temperature detecting unit may be further configured to issue a second signal when it is detected that the temperature of the phase-change energy storage working medium reaches a second preset limit, and the controller is configured to issue a signal for controlling the mobile air conditioner to stop running and storing energy according to the second signal. Mode command.
- the refrigerant is conducted from the first interface 11 along the second throttling branch to the third interface 21, and the temperature of the phase-change energy storage working medium is reduced to
- the second preset time limit controls the mobile air conditioner to stop running the energy storage mode.
- the temperature of the phase change energy storage medium can reach the second preset limit as a reference for the completion of regeneration work, and the regeneration can be automatically ended after the phase change energy storage medium is regenerated. Operation to avoid unnecessary waste of energy.
- the second preset limit is -10 ° C to -4 ° C, and the second preset limit is used as the node to end the energy storage mode.
- This temperature interval can basically ensure that the phase change energy storage working medium completes regeneration and can be avoided. Unnecessary energy waste reduces product operating costs.
- those skilled in the art can further determine the second preset limit in the range of -10 ° C to -4 ° C based on the specific type of phase change energy storage working medium.
- the temperature of the variable energy storage medium is not too low, which results in a rigid cooling effect. The refrigeration experience is better, and for the product, the energy loss for cold storage and cold storage is relatively low, and the operating cost is low.
- the first refrigerant pipe includes a first communication branch 51
- the second refrigerant pipe includes a second communication branch 52
- the second communication branch 52 communicates with the second interface 12 and the fourth interface 22, wherein the height of the second heat exchanger is higher than that of the first heat exchanger 10, so that the refrigerant in the second heat exchanger can be along the first communication branch 51
- the gravity is sent to the first heat exchanger 10.
- the second communication branch 52 when the second communication branch 52 is turned on, it plays a communication role similar to that of the refrigerant tube.
- the second communication branch 52 may include a refrigerant tube and a control valve for turning on or off the refrigerant tube.
- the second communication branch 52 connects the second interface 12 of the first heat exchanger 10 as the refrigerant outlet and the fourth interface 22 of the second heat exchanger as the refrigerant inlet.
- the heat exchanger 10, the second heat exchanger, the first communication branch 51 and the second communication branch 52 form a loop, wherein the height of the second heat exchanger is higher than that of the first heat exchanger 10, so that the second heat exchanger
- the refrigerant condensed in the heat exchanger can automatically sink using gravity potential energy and be sent to the first heat exchanger 10 for evaporation along the first communication branch 51.
- the refrigerant evaporates and vaporizes spontaneously. Ground-rising motion.
- the gaseous refrigerant spontaneously rising may rise along the second communication branch 52 and return to the second heat exchanger to complete the refrigerant cycle, thereby forming a refrigerant cycle that is automatically driven by the thermosiphon effect. That is, the refrigerant part of the mobile air conditioner operates in the siphon mode, without the need to drive the refrigerant with the driving components such as the circulating pump and the compressor 60, which further saves energy consumption, and can basically avoid driving noise problems, and the product comfort is improved accordingly.
- this solution is not limited to this.
- a person skilled in the art can also directly use a pumping drive such as a circulating pump to realize the driving of the refrigerant flow according to the requirements. Compared with compression, it has a noise problem and a driving energy problem. The form of driving the machine 60 also has a significant improvement effect.
- the second refrigerant pipeline includes a compressor 60 and a four-way valve 70.
- the compressor 60 has an exhaust port 61 and a return port 62; the four-way valve 70 It is in communication with the exhaust port 61, the return port 62, the second interface 12 and the fourth interface 22, wherein the four-way valve 70 is configured to control the communication between the exhaust port 61 and the fourth interface 22, and control the return port 62 and The second interface 12 is in communication with each other.
- the four-way valve 70 may also be configured to control the communication between the air return port 62 and the fourth interface 22 and control the communication between the exhaust port 61 and the second interface 12.
- the four-way valve 70 is in the first state, and controls the communication between the exhaust port 61 and the fourth interface 22, and controls the communication between the return port 62 and the second interface 12. .
- the four-way valve 70 is in the second state, and the communication between the air return port 62 and the fourth interface 22 is controlled, and the communication between the exhaust port 61 and the second interface 12 is controlled.
- the second refrigerant pipeline may further include a second communication branch 52, and the second communication branch 52 and the branch where the compressor 60 and the four-way valve 70 are located.
- the second communication branch 52 can be controlled to be turned on, and the branch where the compressor 60 and the four-way valve 70 are located is cut off.
- the second communication branch 52 When conducting, bypass the branch of the compressor 60 and the four-way valve 70 as a bypass structure. At this time, the second communication branch 52 plays a communication role between the second interface 12 and the fourth interface 22.
- the second refrigerant pipeline includes a compressor 60, a first return pipe 81, a second return pipe 82, a first exhaust pipe 83, and a second row. Trachea 84.
- the compressor 60 has an air return port 62 and an exhaust port 61; the first air return pipe 81 communicates with the air return port 62 and the fourth interface 22, and the first air return pipe 81 is connected to turn on or off the first air return pipe
- the first The exhaust pipe 83 communicates with the exhaust port 61 and the fourth interface 22, and the first exhaust pipe 83 is connected with a fifth valve 831 for turning on or off the first exhaust pipe 83;
- the second exhaust pipe 84 and The exhaust port 61 and the second interface 12 are in communication, and a sixth valve 841 is connected to the second exhaust pipe 84 for turning on or off the second exhaust pipe 84.
- the third valve 811 and the sixth valve 841 are in an on state, and the fourth valve 821 and the fifth valve 831 are in an off state, which can form a refrigerant energy storage circuit (similar to the heating circuit of a mobile air conditioner), At this time, the mobile air conditioner operates in the energy storage mode.
- the fourth valve 821 and the fifth valve 831 are in an on state, and the third valve 811 and the sixth valve 841 are in an off state, which can form a refrigerant refrigeration circuit.
- the mobile air conditioner is running. Cooling mode.
- an interface is provided on the compressor 60, and the interface is configured for the compressor 60 to be electrically connected to an external power source, for example, a power plug is provided on the compressor, and the power plug is used to connect to an external power strip.
- the external power source is electrically connected.
- the mobile air conditioner further includes a battery.
- the battery is electrically connected to the compressor 60 and supplies power to the compressor 60, which can further improve the mobility and portability of the product.
- the second heat exchanger includes at least one of a coiled tube heat exchanger, a finned tube heat exchanger, and a rotary fin heat exchanger.
- the phase-change energy storage working medium includes water and / or ice.
- the phase-change energy storage working medium can be generally understood as ice.
- the phase change energy storage solution for the phase change heat storage solution may have a low energy storage density, poor thermal conductivity, and a large phase change heat exchanger, causing the refrigerant charge and normal systems to be normal. Problems such as mismatch in running charge, etc.
- the phase-change energy storage working medium used is water, more accurately, ice, and the solid-liquid two-phase switching of water is used to achieve phase-change heat storage.
- the cold storage density (about 330kJ / L) of ice is higher, which is greater than the 220kJ / L of other phase-change energy storage working fluids, and the thermal conductivity of ice during heat exchange is 2.22W / (m ⁇ K).
- Water is 0.5W / (m ⁇ K), which are all higher than the thermal conductivity of conventional phase-change energy storage working medium 0.2W / (m ⁇ K).
- ice is used as the phase-change energy storage working medium to make the phase-change energy storage
- the overall size of the heat exchange device 20 can be reduced, and the matching performance with other components of the system can also be enhanced, which will not increase the mobile burden of the mobile air conditioner, which is beneficial to ensuring the mobility and flexibility of the mobile air conditioner.
- the mobile air conditioner includes a first heat exchanger 10, a phase-change energy storage heat-exchange device 20 (including a second heat exchanger and a phase-change energy-storage working medium that exchanges heat with the second heat exchanger), a first throttling branch, The second throttling branch, the compressor 60, the four-way valve 70, and the fan 90 for driving air to exchange heat with the first heat exchanger 10, the first heat exchanger 10 has two for the refrigerant to enter and exit the first exchange
- the interfaces of the heater 10 are the first interface 11 and the second interface 12, respectively. In the cooling mode, the first interface 11 is a refrigerant inlet, and the second interface 12 is a refrigerant outlet.
- the first interface 11 is The refrigerant outlet
- the second interface 12 is the refrigerant inlet
- the second heat exchanger has two interfaces for the refrigerant to enter and exit the second heat exchanger, which are the third interface 21 and the fourth interface 22, respectively.
- the fourth interface 22 is a refrigerant inlet
- the third interface 21 is a refrigerant outlet.
- the fourth interface 22 is a refrigerant outlet
- the third interface 21 is a refrigerant inlet.
- the second throttle branch is in communication with the first interface 11 of the first heat exchanger 10 and the third interface 21 of the second heat exchanger, and the second throttle branch includes The first interface 11 conducts a one-way non-returning second check valve 44 to the third interface 21 of the second heat exchanger, and a second capillary tube 43 for performing a throttling function.
- the first throttle branch is in communication with the first interface 11 of the first heat exchanger 10 and the third interface 21 of the second heat exchanger, and the first throttle branch includes a third interface for implementing the second heat exchanger A first one-way valve 42 that performs one-way conduction and reverse shutoff to the first interface 11 of the first heat exchanger 10 and a first capillary 41 for performing a throttling function.
- the length of the first capillary 41 is preferably shorter than the length of the second capillary 43 so that the pressure drop of the refrigerant after the first capillary 41 is throttled is smaller than the pressure drop after the second capillary 43 is throttled.
- the four-way valve 70 includes four ports, two of which correspond to the return port 62 and the exhaust port 61 of the compressor 60, and the other two ports of the four-way valve 70 correspond to the fourth port 22 and the first port of the second heat exchanger.
- the second interface 12 of a heat exchanger 10 when the mobile air conditioner is in a cooling mode, the four-way valve 70 controls the communication between the exhaust port 61 and the fourth interface 22 of the second heat exchanger, and controls the return port 62 and the first port
- the second interface 12 of a heat exchanger 10 is in communication with each other.
- the four-way valve 70 controls the communication between the air return port 62 and the fourth interface 22 of the second heat exchanger, and controls the exhaust There is communication between the air port 61 and the second interface 12 of the first heat exchanger 10.
- the phase-change energy storage medium When the phase-change energy storage medium is regenerated outdoors (mobile air-conditioning operation energy storage mode), the phase-change energy storage medium is ice as an example.
- the compressor 60 compresses the refrigerant to high temperature and high pressure.
- the four-way valve 70 is switched to the state shown in FIG. 2.
- the refrigerant discharged from the compressor 60 enters the first heat exchanger 10 and releases heat to the environment in the form of air cooling at the first heat exchanger 10.
- the refrigerant discharged from the radiator 10 is throttled and cooled to a temperature lower than 0 ° C through the second check valve 44 and the second capillary 43.
- the first capillary 41 circuit has no refrigerant flowing due to the cutoff effect of the first check valve 42 and passes through the second
- the refrigerant after throttling the capillary tube 43 absorbs the heat of ice through the second heat exchanger in the phase-change energy-storage heat-exchange device 20 to allow the water in the phase-change energy-storage heat-exchange device 20 to freeze into ice, thereby achieving ice storage operation, and then the refrigerant It flows back to the compressor 60. In this process, ice is produced in the phase-change energy-storage heat-exchange device 20.
- a temperature detection unit (such as a temperature sensor) can be placed in the water of the phase-change energy-storage heat-exchange device 20 to detect the temperature.
- the controller controls the mobile air conditioner to stop running in the energy storage mode.
- the compressor 60 stops and the mobile air conditioner enters the heat preservation mode; or if the user needs to use it directly, the compressor 60 does not stop.
- the through valve 70 is switched to the state shown in FIG. 1 and enters the indoor cooling mode. It can be understood that, in order to ensure the cold storage capacity, the phase-change energy storage heat exchange device 20 may be tightly insulated when necessary.
- the compressor 60 acts as a gas circulation pump and operates at extremely low power.
- the four-way valve 70 is switched to the state shown in Fig. 1, and the refrigerant is in the entire piping system.
- the second heat exchanger releases heat to the ice in the phase-change energy storage heat exchange device 20, and the refrigerant condenses into a low-temperature liquid, and then relies on gravity and the pump of the compressor 60
- the heat is absorbed by the indoor hot air through the first one-way valve 42 and the first capillary 41 into the first heat exchanger 10 to complete the evaporation, thereby achieving the purpose of cooling the indoor air.
- the first capillary 41 is shorter than the second capillary 43.
- the first capillary 41 can meet the requirement that the temperature of the refrigerant drops to 3 ° C to 10 ° C lower than the normal room temperature after throttling. That is, of course, it is also possible to replace the first capillary 41 with an expansion valve, control the opening degree of the expansion valve to change with the current room temperature, and reduce the temperature of the refrigerant to 3 ° C to 10 ° C lower than the current room temperature after the expansion valve is throttled.
- the cooling operation mode is stopped to remind the user of the need Carry out the re-ice storage operation.
- the mobile air conditioner in this embodiment further includes a first communication branch 51 and a second communication branch 52, and the first communication branch 51 communicates with the third interface 21 of the second heat exchanger. Communicates with the first interface 11 of the first heat exchanger 10, and the second communication branch 52 communicates with the second interface 12 of the first heat exchanger 10 and the fourth interface 22 of the second heat exchanger, so that the first communication branch
- the first throttling branch is bypassed by the first communication branch 51
- the refrigerant preferentially passes the first communication branch 51 at the third interface 21 of the second heat exchanger and the first heat exchanger 10 Circulation between the first interface 11, the branch of the four-way valve 70 and the compressor 60 is bypassed by the second communication branch 52, and the first communication branch 51, the second communication branch 52, and the first heat exchanger 10 and the second heat exchanger form a loop.
- the corresponding specific working conditions are: the refrigerant in the phase-change energy storage heat-exchange device 20 is fully heat-exchanged with ice through the second heat exchanger, and when the refrigerant in the second heat-exchanger in the phase-change energy storage heat-exchange device 20 has been When the temperature is lowered to 3 ° C to 10 ° C lower than the room temperature, the first throttling branch in the foregoing specific embodiment 1 may be omitted (the first communication branch 51 is controlled to be turned on to bypass the first throttling branch ), After the refrigerant is discharged from the second heat exchanger, it can directly enter the first heat exchanger 10 along the first communication branch 51 to absorb heat and evaporate.
- the second heat exchanger is designed to be located on the upper side of the first heat exchanger 10, so that after the refrigerant is condensed into a liquid in the second heat exchanger in the phase-change energy storage heat exchange device 20, Relying on the potential energy of gravity along the first communication branch 51 to actively settle into the first heat exchanger 10, in the first heat exchanger 10, the hot gas formed after the refrigerant absorbs and evaporates rises and enters the phase change energy storage heat exchange device 20
- the second heat exchanger continues to release heat and condense to form a refrigerant cycle, as shown in FIG. 3. Therefore, the position of the phase change energy storage heat exchange device 20 in the system needs to be slightly higher than the position of the first heat exchanger 10.
- the advantage of the solution is that the air-conditioning operation does not need to rely on energy-consuming components such as a circulating pump, which saves energy and eliminates the noise problem of the pump.
- the difference from the foregoing specific embodiment 1 is that the four-way valve 70 is not included in this embodiment, and the component used to replace the four-way valve 70 is the first air return pipe 81 and the third valve 811 and the second valve thereon.
- the compressor 60 has an air return port 62 and an exhaust port 61; the first air return pipe 81 communicates with the air return port 62 and the fourth interface 22, and the first air return pipe 81 is connected to a first air return pipe 81 for turning on or off the first air return pipe 81.
- the second return pipe 82 communicates with the return port 62 and the second interface 12, and the second return pipe 82 is connected with a fourth valve 821 for turning on or off the second return pipe 82;
- the first exhaust pipe 83 is in communication with the exhaust port 61 and the fourth interface 22, and the first exhaust pipe 83 is connected with a fifth valve 831 for turning on or off the first exhaust pipe 83;
- the second exhaust pipe 84 and the exhaust port 61 and the second interface 12 communicate with each other, and the second exhaust pipe 84 is connected to a sixth valve 841 for turning on or off the second exhaust pipe 84.
- the mobile air conditioner is controlled to switch to the energy storage mode, and the fourth valve 821 and the fifth valve
- the mobile air conditioner is controlled to switch to the cooling mode, which has the advantages of simple structure and convenient assembly.
- the mobile air conditioner includes a first heat exchanger 10, a phase-change energy storage heat-exchange device 20 (including a second heat exchanger and a phase-change energy storage working medium that exchanges heat with the second heat exchanger), a first communication branch 51, The second communication branch 52 and the fan 90 for driving the air to exchange heat with the first heat exchanger 10, the first heat exchanger 10 has two interfaces for the refrigerant to enter and exit the first heat exchanger 10, respectively.
- An interface 11 and a second interface 12 in the cooling mode, the first interface 11 is a refrigerant inlet, the second interface 12 is a refrigerant outlet, and in the energy storage mode, the first interface 11 is a refrigerant outlet, and the second interface 12 is a refrigerant
- the second heat exchanger has two interfaces for the refrigerant to enter and exit the second heat exchanger, which are the third interface 21 and the fourth interface 22 respectively.
- the fourth interface 22 is the refrigerant inlet and the third interface
- the interface 21 is a refrigerant outlet.
- the fourth interface 22 In the energy storage mode, the fourth interface 22 is a refrigerant outlet, and the third interface 21 is a refrigerant inlet.
- the first communication branch 51 communicates with the first interface 11 of the first heat exchanger 10 and the third interface 21 of the second heat exchanger.
- the third interface 21 is electrically connected to the first interface 11 of the first heat exchanger 10.
- the second communication branch 52 communicates with the second interface 12 of the first heat exchanger 10 and the fourth interface 22 of the second heat exchanger, so that the first communication branch 51, the second communication branch 52, and the first heat exchanger
- the heat exchanger 10 and the second heat exchanger form a circuit.
- the refrigerant in the phase-change energy storage heat-exchange device 20 is fully heat-exchanged with ice through the second heat exchanger, and when the refrigerant in the second heat-exchanger in the phase-change energy storage heat-exchange device 20 has been When the temperature is lowered to 3 ° C to 10 ° C lower than the room temperature, after the refrigerant is discharged from the second heat exchanger, it may directly enter the first heat exchanger 10 along the first communication branch 51 to absorb heat and evaporate.
- the second heat exchanger is positioned above the first heat exchanger 10 in height. In this way, after the refrigerant is condensed into a liquid in the second heat exchanger in the phase-change energy storage heat exchange device 20, Relying on the potential energy of gravity along the first communication branch 51 to actively settle into the first heat exchanger 10, in the first heat exchanger 10, the hot gas formed after the refrigerant absorbs and evaporates rises and enters the phase change energy storage heat exchange device 20 The second heat exchanger continues to release heat and condense to form a refrigerant cycle, as shown in FIG. 5. Therefore, the position of the phase change energy storage heat exchange device 20 in the system needs to be slightly higher than the position of the first heat exchanger 10.
- the advantage of the solution is that the air-conditioning operation does not need to rely on energy-consuming components such as a circulating pump, which saves energy and eliminates the noise problem of the pump.
- a driving member such as a pump for driving refrigerant flow may be connected to the first communication branch 51 and / or the second communication branch 52 to replace the position of the second heat exchanger.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种移动空调,包括:第一换热器(10),具有供冷媒进出的第一接口(11)及第二接口(12);相变蓄能换热装置(20),包括第二换热器及相变蓄能工质,且第二换热器与相变蓄能工质之间能换热,第二换热器具有供冷媒进出的第三接口(21)及第四接口(22);第一冷媒管路,与第一接口(11)及第三接口(21)连接;第二冷媒管路,与第二接口(12)及第四接口(22)连接。所述移动空调,制冷过程中向室内环境的产热量少,使用舒适,且无需再利用粗连接管路向室外排气,移动空调的灵活性和便利性提升。
Description
本申请要求于2018年6月12日提交中国专利局、申请号为201810602380.4、发明名称为“移动空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及空调领域,具体而言,涉及一种移动空调。
现有的移动空调具有冷量低、体积小、局部范围内降温效果比普通空调快等优点,且移动空调移动性好,可方便移动到需要制冷的空间和区域,尤其适用于无室外机安装空间的办公室、车间等场合,可实现即插即用,但在实现本申请的过程中,发明人发现现有技术存在如下问题:现有移动空调需要向外散热的粗连接管路在一定程度上限制了其使用的灵活性和便利性,成为用户的一个使用疼点。
发明内容
为了解决上述技术问题至少之一,本申请的目的在于提供一种移动空调。
为实现上述目的,本申请的实施例提供了一种移动空调,包括:第一换热器,具有供冷媒进出的第一接口及第二接口;相变蓄能换热装置,包括第二换热器及相变蓄能工质,且所述第二换热器与所述相变蓄能工质之间能换热,所述第二换热器具有供冷媒进出的第三接口及第四接口;第一冷媒管路,与所述第一接口及所述第三接口连接;第二冷媒管路,与所述第二接口及所述第四接口连接。
本申请上述实施例提供的移动空调,其第二换热器与相变蓄能工质换热,相对于现有移动空调中第二换热器风冷换热并通过粗连接管路将其散发的 热量外排的结构而言,本设计中第二换热器散发的热量被相变蓄能工质吸收,从而无需再通过粗连接管路引流对外排热,这样,移动空调的使用更具灵活性和便利性的优势,且相变蓄能工质可直接吸收第二换热器的热量进行蓄存,移动空调向室内制冷过程中向室内环境的产热量少,制冷运行的能效更高,对室内的制冷效率也更高,制冷使用体验感更好,同时,第二换热器处由风冷换热变为相变蓄能工质换热,利于提升产品的静音性能,尤其适于休息和办公场合,使移动空调便捷性、舒适性优势得到更充分地发挥。
另外,本申请提供的上述实施例中的移动空调还可以具有如下附加技术特征:
上述技术方案中,所述第一冷媒管路包括:第一连通支路,与所述第一接口及所述第三接口连通,且所述第一连通支路导通,所述第一接口与所述第三接口接通。
在本方案中,设置第一连通支路并使其在导通状态下将第一接口与第三接口接通,在移动空调制冷工况下,当检测到第二换热器的第三接口处的冷媒温度低于室温且具有一定的温差时,利用第一连通支路可以将第三接口处排出的冷媒直接经第一接口排入第一换热器中进行蒸发,而使冷媒进入第一换热器前无需经过节流,这样冷媒在第一换热器中进行蒸发过程时不会产生生硬的制冷效果,冷风更柔和舒适,尤其在无需使室内快速降温或对制冷度需求不太高的情况,可提升制冷舒适度,且这样的模式中第二换热器处的冷凝负荷小,这样可以充分利用相变蓄能工质在相变温度区间内温度能保持稳定的特点提升蒸发温度和冷凝温度的稳定性,利于维持房间温度舒适,且对相变蓄能工质冷量的利用率更高,利于保证移动空调运行高效性。
上述技术方案中,所述第一连通支路在所述第三接口流出的冷媒的温度低于当前室温,且温差至少是3℃的情况下导通。
在本方案中,设置当从第三接口流出的冷媒的温度低于当前室温,且温差大于等于3℃时,第一连通支路导通,这样,冷媒通过第二换热器与相变蓄能工质换热而被降温至比室温低3℃以上时,可无需对冷媒节流即使冷媒直接进入第一换热器进行蒸发,既能保证第一换热器处具有足够的 温差推动力满足对室内的制冷需求,且可以减轻第二换热器处的冷凝负荷,相变蓄能工质的可选择范围相应越广,同时,相变蓄能工质与第二换热器之间换热效率更高,且对相变蓄能工质的冷量利用率也更高,整个移动空调的能量损失减小,运行能效更高。
更具体如,利用一个或多个温度传感器检测第二换热器第三接口处的冷媒温度,或检测第二换热器第三接口处的管温用以反映第三接口处的冷媒温度,并将该检测结果反馈给移动空调的控制器,另外,利用一个或多个温度传感器检测当前室温并将该检测结果反馈给移动空调的控制器,控制器通过如比较器或内置程序判断是否满足从第三接口流出的冷媒的温度低于当前室温且温差大于等于3℃的条件,若是,控制器控制第一连通支路导通进行响应,若否,移动空调基于设定模式下的或默认模式下的第一连通支路导通或截止状态运行即可。
更优选地,对于所述第一冷媒管路包含有所述第一连通支路的情况,当从所述第三接口流出的冷媒的温度低于当前室温,且温差大于等于3℃小于等于10℃时,所述第一连通支路导通。
上述任一技术方案中,所述第一冷媒管路包括:第一单向节流支路,与所述第一接口及所述第三接口连通,所述第一单向节流支路配置为将来自于所述第二换热器的冷媒节流后输往所述第一换热器。
在本方案中,设置第一单向节流支路用于将来自于第二换热器的冷媒节流后输往第一换热器,不同于第一连通支路的冷媒传输功能,其中,第一单向节流支路将冷媒节流后输往第一换热器,这样,对于用户对制冷效率需求较高时,或说用户需要快速使室内降温时,可将冷媒节流后排往第一换热器进行蒸发,能提升制冷效率,满足用户制冷效率需求。
本领域技术人员可以理解的是,对于第一冷媒管路包括有第一单向节流支路和第一连通支路的情况,可将第一单向节流支路和第一连通支路以并联等形式设置,由于流阻差异,当第一连通支路导通时,第二换热器排出的冷媒会主要沿第一连通支路排往第一换热器,当第一连通支路截止(也即不导通)时,第二换热器排出的冷媒会沿第一单向节流支路排往第一换热器,可以实现根据制冷需求相应使第一单向节流支路和第一连通支路之 间切换使用。
上述技术方案中,所述第一冷媒管路还包括:第二单向节流支路,与所述第一接口及所述第三接口连通,所述第二单向节流支路配置为将来自于所述第一换热器的冷媒节流后输往所述第二换热器。
在本方案中,设置第二单向节流支路可将来自于第一换热器的冷媒节流后输往第二换热器,这样,当移动空调制冷运行一段时间后,相变蓄能工质出现吸热饱和或接近吸热饱和而需要使相变蓄能工质重新再生以恢复吸热能力时,本设计可通过控制冷媒系统来实现使移动空调完成对相变蓄能工质的再生工作,具体如,不同于第二换热器作为冷凝器向第一换热器提供冷媒使第一换热器作为蒸发器工作的制冷运行工况,而相反地,当相变蓄能工质出现吸热饱和或接近吸热饱和需要再生时,本设计中使第一换热器作为冷凝器、第二换热器作为蒸发器,第一换热器排出的冷媒经过第二单向节流支路节流后进入第二换热器进行蒸发吸热,从而实现使相变蓄能工质被第二换热器吸热进行主动再生蓄冷,这样,无需用户更换相变蓄能工质的操作,也无需用户长时间等待相变蓄能工质自然降温再生,使得产品使用更加舒适便利,且利用移动空调具有移动便利性的特点,该相变蓄能工质再生的过程中可将移动空调转移到室外或其他对室内环境影响小的地方进行,这样,第一换热器的冷凝散热量不会带来不适感,用户体验度更好。
上述技术方案中,所述第一单向节流支路和所述第二单向节流支路配置为满足:冷媒被所述第一单向节流支路节流后的压降小于被所述第二单向节流支路节流后的压降。
在本方案中,设计在制冷模式中发挥节流作用的第一单向节流支路的节流压降小于在蓄能模式中发挥节流作用的第二单向节流支路的节流压降,这样,制冷模式下不会出现深度节流,也即相对于第二单向节流支路而言,第一单向节流支路上不会出现深度节流,这对于室内的理想蒸发温度的维持效果更好,不会产生生硬的制冷效果,冷风更柔和舒适,也可以减轻制冷工况下第二换热器处的冷凝负荷,相变蓄能工质的可选择范围相应越广,同时,相变蓄能工质与第二换热器之间换热效率更高,且对相变蓄能工质的冷量利用率也 更高,这样,整个移动空调的能量损失减小,运行能效更高,而对于蓄能工况,第二单向节流支路的节流深度较大,这样,相变蓄能工质的再生进程加快,再生周期缩短,可利于降低再生过程的能量损失,且能实现相变蓄能工质较低的蓄冷温度,更能满足制冷工况下第二换热器的冷凝需求,总体来讲,通过本设计使相变蓄能工质的释冷和再生周期存在差异,能综合促使移动空调朝着提升能效方向推进,利于实现移动空调能效提升。
上述任一技术方案中,所述移动空调还包括:温度检测单元,配置为检测所述相变蓄能工质的温度,并在检测到所述相变蓄能工质的温度升高到第一预设限的情况下发出第一信号;控制器,与所述温度检测单元电连接,所述控制器配置为根据所述第一信号发出第一指令进行响应,所述第一指令用于触发所述移动空调停止运行制冷模式,或所述控制器配置为根据所述第一信号发出第二指令进行响应,所述第二指令用于触发提醒装置执行提醒功能。
在本方案中,通过在检测到相变蓄能工质的温度到达第一预设限时控制移动空调停止运行制冷模式,或控制提醒装置执行提醒功能(如蜂鸣器发出蜂鸣声、闪光灯闪光、语音播报器语音播报、喇叭响铃等)提醒用户需进行相变蓄能工质需要再生,其中可以理解的是,相变蓄能工质的温度越高,第二换热器处的冷凝效果会随之削弱,通过建立相变蓄能工质的温度和制冷模式运行与否或提醒装置提醒与否之间的反馈调节,可利于保证使移动空调运行能效保持在一个预设的较佳状态,避免低效率运行,提升资源利用效率。
上述技术方案中,所述第一预设限为8℃~20℃。
在本方案中,设置第一预设限为8℃~20℃,优选地,第一预设限为8℃~15℃,通过检测到相变蓄能工质温度到达8℃~20℃时控制移动空调设备结束运行制冷模式或发出提醒,可利于保证使移动空调运行能效保持在一个预设的较佳状态,至少保证第一换热器处具有充分的温差推动力以确保对室内的制冷效率,避免低效率运行,提升资源利用效率,优选地,本领域技术人员可基于相变蓄能工质具体类型在8℃~20℃区间内进一步确定第一预设限,可以理解的是,相变蓄能工质在相变区的温度变化很小,基本 稳定,而在相变温度以上时为显热状态,会随着冷凝过程的推进出现明显温升,其中,在确定第一预设限的具体数值时,使第一预设限尽可能地接近相变蓄能工质的相变温度较佳。
上述任一技术方案中,所述温度检测单元还可配置为在检测到所述相变蓄能工质的温度下降到第二预设限的情况下发出第二信号,所述控制器还可配置为根据所述第二信号发出第三指令进行响应,所述第三指令用于触发所述移动空调停止运行蓄能模式。
在本方案中,通过在检测到相变蓄能工质的温度到达第二预设限时控制移动空调停止运行蓄能模式,可以相变蓄能工质的温度到达第二预设限为再生工作完成的参照,实现在相变蓄能工质再生完成后自动结束再生操作,避免不必要的能源浪费。
上述技术方案中,所述第二预设限为-10℃~-4℃。
在本方案中,设置第二预设限为-10℃~-4℃,并以此第二预设限为结点结束蓄能模式,该温度区间基本能保证相变蓄能工质完成再生,可以避免不必要的能源浪费,降低产品运行成本,且优选地,本领域技术人员可基于相变蓄能工质具体类型在-10℃~-4℃区间内进一步确定第二预设限,这样,相变蓄能工质的温度不至于过低而带来生硬的制冷效果,制冷工况的使用体验更优异,且对于产品来讲,对于蓄冷和保冷方面能量损失也相对较低,运行成本低。
上述任一技术方案中,所述第二冷媒管路包括:第二连通支路,与所述第二接口及所述第四接口连通,且所述第二换热器的所处高度高于所述第一换热器,使得所述第二换热器中的冷媒能沿所述第一连通支路重力输往所述第一换热器。
在本方案中,主要针对于制冷模式工况,第二连通支路将第一换热器作为冷媒出口的第二接口与第二换热器作为冷媒入口的第四接口连通,第一换热器、第二换热器、第一连通支路及第二连通支路形成回路,其中,第二换热器的所处高度高于第一换热器,使第二换热器内冷凝后的冷媒可利用重力势能自动下沉并沿第一连通支路重力输往第一换热器进行蒸发,而在第一换热器中,冷媒蒸发汽化后会自发地上升运动,这时,自发上升 运动的气态冷媒可沿第二连通支路上升并回到第二换热器中完成冷媒循环,从而形成为一个通过热虹吸效应自动驱动的冷媒循环,而不需要依靠循环泵、压缩机等驱动件驱动冷媒,进一步节约能耗,同时可基本避免驱动噪音问题,产品舒适度相应提升。
上述任一技术方案中,所述第二冷媒管路包括:第二连通支路,与所述第二接口及所述第四接口连通,所述第一连通支路和所述第二连通支路中的至少之一接有驱动件,所述驱动件配置为驱动冷媒流动。
在本方案中,利用如循环泵等泵送驱动件来实现驱动冷媒流动,其在噪音问题和驱动能耗问题等方面相较于压缩机驱动的形式而言也具有明显的改善效果。
上述任一技术方案中,所述第二冷媒管路包括:压缩机,具有排气口和回气口;四通阀,与所述排气口、所述回气口、所述第二接口及所述第四接口连通,所述四通阀配置为控制所述排气口与所述第四接口之间导通,且控制所述回气口与所述第二接口之间导通,所述四通阀也可配置为控制所述回气口与所述第四接口之间导通,且控制所述排气口与所述第二接口之间导通。
更具体而言,四通阀在第一状态下控制排气口与第四接口之间导通,且控制回气口与第二接口之间导通,可形成冷媒的制冷回路,这时,移动空调运行制冷模式,四通阀在第二状态下控制回气口与第四接口之间导通,且控制排气口与第二接口之间导通,可形成冷媒的蓄能回路(类似于移动空调的制热回路),这时,移动空调运行蓄能模式。
上述任一技术方案中,所述第二冷媒管路包括:压缩机,具有回气口和排气口;第一回气管,与所述回气口及所述第四接口连通,且所述第一回气管上接有第三阀,所述第三阀配置为导通或截止所述第一回气管;第二回气管,与所述回气口及所述第二接口连通,且所述第二回气管上接有第四阀,所述第四阀配置为导通或截止所述第二回气管;第一排气管,与所述排气口及所述第四接口连通,且所述第一排气管上接有第五阀,所述第五阀配置为导通或截止所述第一排气管;第二排气管,与所述排气口及所述第二接口连通,且所述第二排气管上接有第六阀,所述第六阀配置为 导通或截止所述第二排气管。
更具体而言,第三阀和第六阀处于导通状态,第四阀和第五阀处于截止状态,可形成冷媒的蓄能回路(类似于移动空调的制热回路),这时,移动空调运行蓄能模式,第四阀和第五阀处于导通状态,第三阀和第六阀处于截止状态,可形成冷媒的制冷回路,这时,移动空调运行制冷模式。
上述任一技术方案中,所述压缩机上设有接口,所述接口配置为供所述压缩机与外部电源电连接。
上述任一技术方案中,所述移动空调还包括电池,所述电池与所述压缩机电连接,并对所述压缩机供电。
上述任一技术方案中,所述第二换热器包括盘管换热器、翅片管换热器、旋翅式换热器中的至少一个。
上述任一技术方案中,所述第一单向节流支路包括毛细管、电子膨胀阀、热力膨胀阀中的至少一个。
上述任一技术方案中,所述第二单向节流支路包括毛细管、电子膨胀阀、热力膨胀阀中的至少一个。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例所述移动空调在制冷模式下的结构示意图;
图2是本申请一个实施例所述移动空调在制热模式下的结构示意图;
图3是本申请一个实施例所述移动空调在虹吸模式下的结构示意图;
图4是本申请一个实施例所述移动空调的系统结构示意图;
图5是本申请一个实施例所述移动空调在虹吸模式下的结构示意图。
其中,图1至图5中的附图标记与部件名称之间的对应关系为:
10第一换热器,11第一接口,12第二接口,20相变蓄能换热装置,21第三接口,22第四接口,41第一毛细管,42第一单向阀,43第二毛细管,44 第二单向阀,51第一连通支路,52第二连通支路,60压缩机,61排气口,62回气口,70四通阀,81第一回气管,811第三阀,82第二回气管,821第四阀,83第一排气管,831第五阀,84第二排气管,841第六阀,90风扇。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图5描述根据本申请一些实施例所述移动空调。
如图1至图5所示,本申请的实施例提供的移动空调,包括:第一换热器10、相变蓄能换热装置20、第一冷媒管路和第二冷媒管路。
具体地,第一换热器10具有供冷媒进出的第一接口11及第二接口12;相变蓄能换热装置20,包括第二换热器及相变蓄能工质,且第二换热器与相变蓄能工质之间能换热,第二换热器具有供冷媒进出的第三接口21及第四接口22;第一冷媒管路与第一接口11及第三接口21连接;第二冷媒管路与第二接口12及第四接口22连接。
更具体如,相变蓄能换热装置20可具有容器,第二换热器容置于容器内,容器内盛装有相变蓄能工质,容器内的相变蓄能工质与第二换热器可通过直接接触对流换热或两者间通过导热件导热传热方式进行换热。
本申请上述实施例提供的移动空调,其第二换热器与相变蓄能工质换热,相对于现有移动空调中第二换热器风冷换热并通过粗连接管路将其散发的热量外排的结构而言,本设计中第二换热器散发的热量被相变蓄能工质吸收,从而无需再通过粗连接管路引流对外排热,这样,移动空调的使用更具灵活性和便利性的优势,且相变蓄能工质可直接吸收第二换热器的热量进行蓄存,移动空调向室内制冷过程中向室内环境的产热量少,制冷运行的能效更高,对室内的制冷效率也更高,制冷使用体验感更好,同时,第二换热器处 由风冷换热变为相变蓄能工质换热,利于提升产品的静音性能,尤其适于休息和办公场合,使移动空调便捷性、舒适性优势得到更充分地发挥。
更具体而言,相变蓄能工质也称相变材料,相变蓄能工质在相变区内温度波动小,利用相变蓄能工质与第二换热器换热,相对于风冷换热而言,不仅可以实现蓄能换热,减少第二换热器向环境的散热量,且具有换热效率高、温度稳定性好等优点,利于控制移动空调运行在理想的蒸发温度和冷凝温度,从而提高移动空调的制冷效率。
第一冷媒管路为供冷媒流通和工作的管路系统,第二冷媒管路为供冷媒流通和工作的管路系统。
在本申请的一个实施例中,如图5所示,第一冷媒管路包括第一连通支路51,第一连通支路51与第一接口11及第三接口21连通,且第一连通支路51导通,第一接口11与第三接口21接通。
更具体而言,第一连通支路51导通的情况下起到类似于冷媒管的连通作用,具体如,第一连通支路51可包括冷媒管和用以导通或截止冷媒管的控制阀,以在控制阀控制冷媒管导通的情况下,实现冷媒管将第一接口11与第三接口21接通。
在本方案中,在移动空调制冷工况下,当检测到第二换热器的第三接口21处的冷媒温度低于室温且具有一定的温差时,利用第一连通支路51可以将第三接口21处排出的冷媒直接经第一接口11排入第一换热器10中进行蒸发,而使冷媒进入第一换热器10前无需经过节流,这样冷媒在第一换热器10中进行蒸发过程时不会产生生硬的制冷效果,冷风更柔和舒适,尤其在无需使室内快速降温或对制冷度需求不太高的情况,可提升制冷舒适度,且这样的模式中第二换热器处的冷凝负荷小,这样可以充分利用相变蓄能工质在相变温度区间内温度能保持稳定的特点提升蒸发温度和冷凝温度的稳定性,利于维持房间温度舒适,且对相变蓄能工质冷量的利用率更高,利于保证移动空调运行高效性。
在本申请的一个实施例中,如图1、图2和图4所示,第一冷媒管路包括第一单向节流支路,第一单向节流支路与第一接口11及第三接口21连通,第一单向节流支路配置为将来自于第二换热器的冷媒节流后输往第一换热 器10。
更具体地,如图1所示,第一单向节流支路具体包括实现由第二换热器向第一换热器10(即由第三接口21向第一接口11)进行单向导通逆向截止的第一单向阀42及用于发挥节流功能的第一毛细管41,第一毛细管41上的冷媒压降可通过第一毛细管41的长度体现,且两者正相关,当然,第一毛细管41也可利用如电子膨胀阀、热力膨胀阀等替换,可以理解的是,采用电子膨胀阀、热力膨胀阀时,电子膨胀阀、热力膨胀阀上的冷媒压降可通过膨胀阀的开度体现,且两者正相关。
在本方案中,设置第一单向节流支路用于将来自于第二换热器的冷媒节流后输往第一换热器10,不同于第一连通支路51的冷媒传输功能,其中,第一单向节流支路将冷媒节流后输往第一换热器10,这样,对于用户对制冷效率需求较高时,或说用户需要快速使室内降温时,可将冷媒节流后排往第一换热器10进行蒸发,能提升制冷效率,满足用户制冷效率需求。
在本申请的一个实施例中,如图3所示,第一冷媒管路包括第一连通支路51和第一单向节流支路,第一连通支路51与第一单向节流支路并联布置,第一连通支路51与第一接口11及第三接口21连通,且第一连通支路51导通的情况下将第一接口11与第三接口21接通,第一单向节流支路与第一接口11及第三接口21连通,第一单向节流支路配置为将来自于第二换热器的冷媒节流后输往第一换热器10。
本领域技术人员可以理解的是,对于第一冷媒管路包括有第一单向节流支路和第一连通支路51的情况,由于流阻差异,当第一连通支路51导通的情况下,第二换热器排出的冷媒会主要沿第一连通支路51排往第一换热器10,当第一连通支路51截止(也即不导通)时,第二换热器排出的冷媒会沿第一单向节流支路排往第一换热器10,可以实现根据制冷需求相应使第一单向节流支路和第一连通支路51之间切换使用。
在本申请的一个实施例中,如图1至图4所示,第一冷媒管路还包括第二单向节流支路,第二单向节流支路与第一接口11及第三接口21连通,第二单向节流支路配置为将来自于第一换热器10的冷媒节流后输往第二换热器。
更具体而言,如图2所示,第二单向节流支路包括实现由第一换热器10向第二换热器(即由第一接口11向第三接口21)进行单向导通逆向截止的第二单向阀44及用于发挥节流功能的第二毛细管43,第二毛细管43上的冷媒压降可通过第二毛细管43的长度体现,且两者正相关,当然,第二毛细管43也可利用如电子膨胀阀、热力膨胀阀等替换,可以理解的是,采用电子膨胀阀、热力膨胀阀时,电子膨胀阀、热力膨胀阀上的冷媒压降可通过膨胀阀的开度体现,且两者正相关。
在本方案中,当相变蓄能工质出现吸热饱和或接近吸热饱和需要再生时,本设计中使第一换热器10作为冷凝器、第二换热器作为蒸发器,第一换热器10排出的冷媒经过第二单向节流支路节流后进入第二换热器进行蒸发吸热,从而实现使相变蓄能工质被第二换热器吸热进行主动再生蓄冷,这样,无需用户更换相变蓄能工质的操作,也无需用户长时间等待相变蓄能工质自然降温再生,使得产品使用更加舒适便利,且利用移动空调具有移动便利性的特点,该相变蓄能工质再生的过程中可将移动空调转移到室外或其他对室内环境影响小的地方进行,这样,第一换热器10的冷凝散热量不会带来不适感,用户体验度更好。
在本申请的一个实施例中,优选地,第一冷媒管路包含有第一单向节流支路和第二单向节流支路,其中,冷媒被第一单向节流支路节流后的压降小于被第二单向节流支路节流后的压降。这样,制冷模式下相对于第二单向节流支路而言,第一单向节流支路上不会出现深度节流,较之一般节流深度,第一单向节流支路处浅度节流对于室内的理想蒸发温度的维持效果更好,不会产生生硬的制冷效果,冷风更柔和舒适,同时,可以减轻第二换热器处的冷凝负荷,相变蓄能工质的可选择范围相应越广,同时,相变蓄能工质与第二换热器之间换热效率更高,且对相变蓄能工质的冷量利用率也更高,这样,整个移动空调的能量损失减小,运行能效更高,而对于蓄能工况,第二单向节流支路的节流深度较大,这样,相变蓄能工质的再生进程加快,再生周期缩短,可利于降低再生过程的能量损失,且能实现更低的相变蓄能工质的蓄冷温度,更能满足制冷工况下第二换热器处的冷凝需求,总体来讲,通过本设计使相变蓄能工质的释冷和再生周期存在差异,能综合促使移动空调朝着提升能效 方向推进,利于实现移动空调能效提升。
在本申请的一个实施例中,第一冷媒管路包含有第一连通支路51,其中,在从第三接口21流出的冷媒的温度低于当前室温,且温差大于等于3℃的情况下,第一连通支路51导通。这样,冷媒通过第二换热器与相变蓄能工质换热而被降温至比室温低3℃以上时,可无需对冷媒节流即使冷媒直接进入第一换热器10进行蒸发,既能保证第一换热器10处具有足够的温差推动力满足对室内的制冷需求,且可以减轻第二换热器处的冷凝负荷,相变蓄能工质的可选择范围相应越广,同时,相变蓄能工质与第二换热器之间换热效率更高,且对相变蓄能工质的冷量利用率也更高,整个移动空调的能量损失减小,运行能效更高。
更具体而言,可利用一个或多个温度传感器检测第二换热器第三接口21处的冷媒温度,或检测第二换热器第三接口21处的管温用以反映第三接口21处的冷媒温度,并将该检测结果反馈给移动空调的控制器,另外,可利用一个或多个温度传感器检测当前室温并将该检测结果反馈为移动空调的控制器,控制器通过如比较器或内置程序判断是否满足从第三接口21流出的冷媒的温度低于当前室温且温差大于等于3℃的条件,若是,控制器控制第一连通支路51导通进行响应,若否,移动空调基于设定模式下的或默认模式下的第一连通支路51导通或截止状态运行即可。
更优选地,当从第三接口21流出的冷媒的温度低于当前室温,且温差大于等于3℃小于等于10℃时,第一连通支路51导通。
上述任一实施例中,移动空调还包括温度检测单元(如温度传感器),温度检测单元配置为检测相变蓄能工质的温度,并当检测到相变蓄能工质的温度升高到第一预设限时发出第一信号;控制器,与温度检测单元电连接,并能根据第一信号发出用于控制移动空调停止运行制冷模式的指令进行响应,或根据第一信号发出用于触发提醒装置执行提醒功能的指令进行响应。
其中,移动空调运行制冷模式时,冷媒从第三接口21向第一接口11流动,更具体地,如图1所示,冷媒从第三接口21沿第一节流支路向第一接口11导通,或者,如图3和图5所示,冷媒从第三接口21沿第一连通 支路51向第一接口11导通。通过建立相变蓄能工质的温度和制冷模式运行与否或提醒装置提醒与否之间的反馈调节,可利于保证使移动空调运行能效保持在一个预设的较佳状态,避免低效率运行,提升资源利用效率。
优选地,第一预设限为8℃~20℃,进一步优选地,第一预设限为8℃~15℃,通过检测到相变蓄能工质温度到达8℃~20℃时控制移动空调设备结束运行制冷模式或发出提醒,可利于保证使移动空调运行能效保持在一个预设的较佳状态,至少保证第一换热器10处具有充分的温差推动力以确保对室内的制冷效率,避免低效率运行,提升资源利用效率,优选地,本领域技术人员可基于相变蓄能工质具体类型在8℃~20℃区间内进一步确定第一预设限,可以理解的是,相变蓄能工质在相变区的温度变化很小,基本稳定,而在相变温度以上时为显热状态,会随着冷凝过程的推进出现明显温升,其中,在确定第一预设限的具体数值时,使第一预设限尽可能地接近相变蓄能工质的相变温度较佳。
进一步地,温度检测单元还可配置为在检测到相变蓄能工质的温度到达第二预设限时发出第二信号,控制器配置为根据第二信号发出用于控制移动空调停止运行蓄能模式的指令进行响应。
其中,如图2所示,移动空调运行蓄能模式时,冷媒从第一接口11沿第二节流支路向第三接口21导通,通过在检测到相变蓄能工质的温度下降到第二预设限时控制移动空调停止运行蓄能模式,可以相变蓄能工质的温度到达第二预设限为再生工作完成的参照,实现在相变蓄能工质再生完成后自动结束再生操作,避免不必要的能源浪费。
优选地,第二预设限为-10℃~-4℃,并以此第二预设限为结点结束蓄能模式,该温度区间基本能保证相变蓄能工质完成再生,可以避免不必要的能源浪费,降低产品运行成本,且优选地,本领域技术人员可基于相变蓄能工质具体类型在-10℃~-4℃区间内进一步确定第二预设限,这样,相变蓄能工质的温度不至于过低而带来生硬的制冷效果,制冷工况的使用体验更优异,且对于产品来讲,对于蓄冷和保冷方面能量损失也相对较低,运行成本低。
在本申请的一个实施例中,如图3和图5所示,第一冷媒管路包含有 第一连通支路51,第二冷媒管路包括第二连通支路52,第二连通支路52与第二接口12及第四接口22连通,其中,第二换热器的所处高度高于第一换热器10,使得第二换热器中的冷媒能沿第一连通支路51重力输往第一换热器10。
更具体而言,第二连通支路52导通时起到类似于冷媒管的连通作用,具体如,第二连通支路52可包括冷媒管和用以导通或截止冷媒管的控制阀。
本设计主要针对于制冷模式工况,第二连通支路52将第一换热器10作为冷媒出口的第二接口12与第二换热器作为冷媒入口的第四接口22连通,第一换热器10、第二换热器、第一连通支路51及第二连通支路52形成回路,其中,第二换热器的所处高度高于第一换热器10,使第二换热器内冷凝后的冷媒可利用重力势能自动下沉并沿第一连通支路51重力输往第一换热器10进行蒸发,而在第一换热器10中,冷媒蒸发汽化后会自发地上升运动,这时,自发上升运动的气态冷媒可沿第二连通支路52上升并回到第二换热器中完成冷媒循环,从而形成为一个通过热虹吸效应自动驱动的冷媒循环,也即移动空调的冷媒部分以虹吸模式运行,而不需要依靠循环泵、压缩机60等驱动件驱动冷媒,进一步节约能耗,同时可基本避免驱动噪音问题,产品舒适度相应提升。
当然,本方案也并不局限于此,本领域技术人员根据需求也可直接利用如循环泵等泵送驱动件来实现驱动冷媒流动,其在噪音问题和驱动能耗问题等方面相较于压缩机60驱动的形式而言也具有明显的改善效果。
在本申请的一个实施例中,如图1和图2所示,第二冷媒管路包括压缩机60和四通阀70,压缩机60具有排气口61和回气口62;四通阀70与排气口61、回气口62、第二接口12及第四接口22连通,其中,四通阀70配置为控制排气口61与第四接口22之间导通,且控制回气口62与第二接口12之间导通,四通阀70也可配置为控制回气口62与第四接口22之间导通,且控制排气口61与第二接口12之间导通。
例如,移动空调运行制冷模式的情况下,四通阀70处于第一状态,并且控制排气口61与第四接口22之间导通,且控制回气口62与第二接口12之间导通。
移动空调运行蓄能模式的情况下,四通阀70处于第二状态,并且控制回气口62与第四接口22之间导通,且控制排气口61与第二接口12之间导通。
作为上述实施例的一个进一步优选技术方案,如图3所示,第二冷媒管路还可包括第二连通支路52,第二连通支路52与压缩机60及四通阀70所在支路并联,且在无需对冷媒压缩做功时,可控制第二连通支路52导通,压缩机60及四通阀70所在支路截止,本领域技术人员可以理解的是,第二连通支路52导通时,作为旁通结构将压缩机60及四通阀70所在支路旁通掉,这时,第二连通支路52在第二接口12和第四接口22之间起到连通作用,可适于虹吸方式驱动冷媒循环或循环泵等泵送形式驱动冷媒循环的场合,在需要对冷媒做功时,压缩机60及四通阀70所在支路导通,第二连通支路52截止即可。
在本申请的一个实施例中,如图4所示,所述第二冷媒管路包括:压缩机60、第一回气管81、第二回气管82、第一排气管83和第二排气管84。
具体地,压缩机60具有回气口62和排气口61;第一回气管81与回气口62及第四接口22连通,且第一回气管81上接有用于导通或截止第一回气管81的第三阀811;第二回气管82与回气口62及第二接口12连通,且第二回气管82上接有用于导通或截止第二回气管82的第四阀821;第一排气管83与排气口61及第四接口22连通,且第一排气管83上接有用于导通或截止第一排气管83的第五阀831;第二排气管84与排气口61及第二接口12连通,且第二排气管84上接有用于导通或截止第二排气管84的第六阀841。
更具体而言,第三阀811和第六阀841处于导通状态,第四阀821和第五阀831处于截止状态,可形成冷媒的蓄能回路(类似于移动空调的制热回路),这时,移动空调运行蓄能模式,第四阀821和第五阀831处于导通状态,第三阀811和第六阀841处于截止状态,可形成冷媒的制冷回路,这时,移动空调运行制冷模式。
上述任一实施例中,可选地,压缩机60上设有接口,该接口配置为供压缩机60与外部电源电连接,例如压缩机上设有电源插头,电源插头用于 与外部插排等外部电源进行电连接。
上述任一实施例中,可选地,移动空调还包括电池,电池与压缩机60电连接,并对压缩机60供电,可以进一步提升产品的移动性和便携性。
上述任一实施例中,可选地,第二换热器包括盘管换热器、翅片管换热器、旋翅式换热器中的至少一个。
上述任一实施例中,优选地,相变蓄能工质包括水和/或冰,在忽略固相和液相名称变化时,可以笼统地理解为相变蓄能工质为冰。就此方面,值得说明的是,针对相变蓄热方案可能存在的相变蓄能工质蓄能密度较低,导热性能差,相变换热器体积大,引起冷媒充注量和常规系统正常运行充注量不匹配等的问题,在本方案中,采用的相变蓄能工质为水,更准确来讲为冰,且利用水的固液两相切换实现相变蓄热,其中,冰的蓄冷密度(约330kJ/L)更高,大于其他相变蓄能工质的蓄能密度220kJ/L,且换热过程中冰的导热系数为2.22W/(m·K),水为0.5W/(m·K),均高于常规相变蓄能工质的导热系数0.2W/(m·K),因此,本方案中采用冰为相变蓄能工质使得相变蓄能换热装置20的整体尺寸可以获得缩减,与系统其他部件匹配性能也可得到加强,不会增加移动空调的移动负担,利于保证移动空调的移动性和灵活性。
具体实施例1(如图1和图2所示)
移动空调包括第一换热器10、相变蓄能换热装置20(包含第二换热器和与第二换热器换热的相变蓄能工质)、第一节流支路、第二节流支路、压缩机60、四通阀70和用于驱动空气与第一换热器10换热的风扇90,第一换热器10具有两个用于供冷媒进出第一换热器10的接口,分别为第一接口11和第二接口12,在制冷模式时,第一接口11为冷媒入口,第二接口12为冷媒出口,在蓄能模式时,第一接口11为冷媒出口,第二接口12为冷媒入口,第二换热器具有两个用于供冷媒进出第二换热器的接口,分别为第三接口21和第四接口22,在制冷模式时,第四接口22为冷媒入口,第三接口21为冷媒出口,在蓄能模式时,第四接口22为冷媒出口,第三接口21为冷媒入口。其中,第二节流支路与第一换热器10的第一接口11及第二换热器的第三接口21连通,且第二节流支路包括实现由第一换热器10的第一接口11向第二换热器的第三接口21进行单向导通逆向截止的第 二单向阀44及用于发挥节流功能的第二毛细管43。第一节流支路与第一换热器10的第一接口11及第二换热器的第三接口21连通,且第一节流支路包括实现由第二换热器的第三接口21向第一换热器10的第一接口11进行单向导通逆向截止的第一单向阀42及用于发挥节流功能的第一毛细管41。其中,优选第一毛细管41的长度短于第二毛细管43的长度,以使冷媒经第一毛细管41节流后的压降小于经第二毛细管43节流后的压降。
四通阀70包括四个接口,其中两个对应连接压缩机60的回气口62和排气口61,四通阀70的另外两个接口对应连接第二换热器的第四接口22和第一换热器10的第二接口12,移动空调运行制冷模式时,四通阀70控制排气口61与第二换热器的第四接口22之间导通,且控制回气口62与第一换热器10的第二接口12之间导通,移动空调运行蓄能模式时,四通阀70控制回气口62与第二换热器的第四接口22之间导通,且控制排气口61与第一换热器10的第二接口12之间导通。
在室外对相变蓄能工质进行再生时(移动空调运行蓄能模式),以相变蓄能工质为冰为例说明,如图2所示,压缩机60将冷媒压缩至高温高压,四通阀70切换到如图2所示的状态,压缩机60排出的冷媒进入第一换热器10,并在第一换热器10处以风冷形式释放热量给环境,从第一换热器10排出的冷媒经第二单向阀44、第二毛细管43节流降温至低于0℃,此时第一毛细管41回路由于第一单向阀42截止作用而无冷媒流通,经过第二毛细管43节流后的冷媒在相变蓄能换热装置20中通过第二换热器吸收冰的热量让相变蓄能换热装置20中的水凝固成冰,实现蓄冰操作,随后冷媒再流回压缩机60。以此过程实现相变蓄能换热装置20内制冰,为保证制冰量,可在相变蓄能换热装置20的水中放置温度检测单元(如温度传感器)检测温度,当所测温度达到-10℃~-4℃时控制器控制移动空调停止运行蓄能模式,蓄冰运行完成,压缩机60停机,移动空调进入保温模式;或用户如需直接使用,压缩机60不停机,四通阀70切换至图1所示状态,进入室内制冷模式,可以理解的是,为保证蓄冷量,必要时可对相变蓄能换热装置20进行严密的保温。
在室内制冷时(移动空调运行制冷模式),此时压缩机60充当气体循环泵的作用以极低功率运行,四通阀70切换至如图1所示的状态,冷媒在整个管 路系统中沿蓄能工况时的反向流动,此时第二换热器在相变蓄能换热装置20中向冰释放热量,冷媒冷凝成低温的液态,再依靠重力作用和压缩机60的泵送作用的双重作用下经第一单向阀42、第一毛细管41进入第一换热器10吸收室内热空气的热量完成蒸发,达到给室内空气降温的目的。值得注意的是,由于此时冷媒不需深度节流,因此第一毛细管41比第二毛细管43更短,第一毛细管41能满足节流后冷媒温度降到比常规室温低3℃~10℃即可,当然,也可采用膨胀阀替换第一毛细管41,控制膨胀阀开度随当前室温变化,使经膨胀阀节流后冷媒温度降到比当前室温低3℃~10℃即可。当相变蓄能换热装置20内的第一检测温度单元检测到相变蓄能换热装置20中冰或水的温度上升到8℃~20℃时,则停止制冷运行模式,提醒用户需进行重新蓄冰操作。
具体实施例2(如图3所示)
与前述具体实施例1的不同之处在于,本实施例中移动空调还包括第一连通支路51和第二连通支路52,第一连通支路51连通第二换热器的第三接口21和第一换热器10的第一接口11,第二连通支路52连通第一换热器10的第二接口12和第二换热器的第四接口22,这样,第一连通支路51导通时,第一节流支路被第一连通支路51旁通掉,冷媒优先经第一连通支路51在第二换热器的第三接口21和第一换热器10的第一接口11之间流通,四通阀70及压缩机60所在支路被第二连通支路52旁通掉,且第一连通支路51、第二连通支路52、第一换热器10及第二换热器形成回路。
对应的具体工况为:冷媒在相变蓄能换热装置20中通过第二换热器同冰充分换热,当相变蓄能换热装置20中的第二换热器内的冷媒已降温到比室温低3℃~10℃时,则前述具体实施例1中的第一节流支路可以省去(控制第一连通支路51导通以将第一节流支路旁通掉),冷媒从第二换热器排出后,直接沿第一连通支路51进入第一换热器10中吸热蒸发即可。
更优选地,设计第二换热器所处位置在第一换热器10的上侧,这样,冷媒在相变蓄能换热装置20中的第二换热器中冷凝成液体后,可依靠重力势能沿第一连通支路51主动沉降到第一换热器10中,在第一换热器10中,冷媒吸热蒸发以后形成的热气上升并进入相变蓄能换热装置20的第二换热器中继续放热冷凝形成冷媒循环,如图3所示,因此,相变蓄能换热装置20在系统 中的位置需要比第一换热器10的位置略高一些,该方案的优点在于空调运行不需要依靠循环泵等耗能部件,节约能源,同时泵的噪音问题也得以消除。
具体实施例3(如图4所示)
与前述具体实施例1的不同之处在于,本实施例中不包含四通阀70,用于替代四通阀70的部件为第一回气管81及其上的第三阀811、第二回气管82及其上的第四阀821,第一排气管83及其上的第五阀831、第二排气管84及其上的第六阀841。压缩机60具有回气口62和排气口61;第一回气管81与回气口62及第四接口22连通,且第一回气管81上接有用于导通或截止第一回气管81的第三阀811;第二回气管82与回气口62及第二接口12连通,且第二回气管82上接有用于导通或截止第二回气管82的第四阀821;第一排气管83与排气口61及第四接口22连通,且第一排气管83上接有用于导通或截止第一排气管83的第五阀831;第二排气管84与排气口61及第二接口12连通,且第二排气管84上接有用于导通或截止第二排气管84的第六阀841。
更具体而言,第三阀811和第六阀841处于导通状态,第四阀821和第五阀831处于截止状态时,实现控制移动空调切换为蓄能模式,第四阀821和第五阀831处于导通状态,第三阀811和第六阀841处于截止状态时,实现控制移动空调切换为制冷模式,具有结构简单,组装方便的优点。
具体实施例4(如图5所示)
移动空调包括第一换热器10、相变蓄能换热装置20(包含第二换热器和与第二换热器换热的相变蓄能工质)、第一连通支路51、第二连通支路52和用于驱动空气与第一换热器10换热的风扇90,第一换热器10具有两个用于供冷媒进出第一换热器10的接口,分别为第一接口11和第二接口12,在制冷模式时,第一接口11为冷媒入口,第二接口12为冷媒出口,在蓄能模式时,第一接口11为冷媒出口,第二接口12为冷媒入口,第二换热器具有两个用于供冷媒进出第二换热器的接口,分别为第三接口21和第四接口22,在制冷模式时,第四接口22为冷媒入口,第三接口21为冷媒出口,在蓄能模式时,第四接口22为冷媒出口,第三接口21为冷媒入口。其中,第一连通支路51与第一换热器10的第一接口11及第二换热器 的第三接口21连通,第一连通支路51导通时,实现由第二换热器的第三接口21向第一换热器10的第一接口11导通。第二连通支路52与第一换热器10的第二接口12及第二换热器的第四接口22连通,使第一连通支路51、第二连通支路52、第一换热器10及第二换热器形成回路。
对应的具体工况为:冷媒在相变蓄能换热装置20中通过第二换热器同冰充分换热,当相变蓄能换热装置20中的第二换热器内的冷媒已降温到比室温低3℃~10℃时,冷媒从第二换热器排出后,直接沿第一连通支路51进入第一换热器10中吸热蒸发即可。
其中,第二换热器所处位置高度上处在第一换热器10的上侧,这样,冷媒在相变蓄能换热装置20中的第二换热器中冷凝成液体后,可依靠重力势能沿第一连通支路51主动沉降到第一换热器10中,在第一换热器10中,冷媒吸热蒸发以后形成的热气上升并进入相变蓄能换热装置20的第二换热器中继续放热冷凝形成冷媒循环,如图5所示,因此,相变蓄能换热装置20在系统中的位置需要比第一换热器10的位置略高一些,该方案的优点在于空调运行不需要依靠循环泵等耗能部件,节约能源,同时泵的噪音问题也得以消除。
当然,根据需求,也可采用在第一连通支路51和/或第二连通支路52中接入用于驱动冷媒流动的泵等驱动件,以替换前述中第二换热器所处位置高度上处在第一换热器10的上侧的特征。
在本申请中,术语“第一”、“第二”、“第三”……“第六”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例” 等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (19)
- 一种移动空调,其中,所述移动空调包括:第一换热器,具有供冷媒进出的第一接口及第二接口;相变蓄能换热装置,包括第二换热器及相变蓄能工质,且所述第二换热器与所述相变蓄能工质之间能换热,所述第二换热器具有供冷媒进出的第三接口及第四接口;第一冷媒管路,与所述第一接口及所述第三接口连接;第二冷媒管路,与所述第二接口及所述第四接口连接。
- 根据权利要求1所述的移动空调,其中,所述第一冷媒管路包括:第一连通支路,与所述第一接口及所述第三接口连通,且所述第一连通支路导通,所述第一接口与所述第三接口接通。
- 根据权利要求2所述的移动空调,其中,所述第一连通支路在所述第三接口流出的冷媒的温度低于当前室温,且温差至少是3℃的情况下导通。
- 根据权利要求1至3中任一项所述的移动空调,其中,所述第一冷媒管路包括:第一单向节流支路,与所述第一接口及所述第三接口连通,所述第一单向节流支路配置为将来自于所述第二换热器的冷媒节流后输往所述第一换热器。
- 根据权利要求4所述的移动空调,其中,所述第一冷媒管路还包括:第二单向节流支路,与所述第一接口及所述第三接口连通,所述第二单向节流支路配置为将来自于所述第一换热器的冷媒节流后输往所述第二换热器。
- 根据权利要求5所述的移动空调,其中,所述第一单向节流支路和所述第二单向节流支路配置为满足:冷媒被所述第一单向节流支路节流后的压降小于被所述第二单向节流支路节流后的压降。
- 根据权利要求1至6中任一项所述的移动空调,其中,所述移动空调还包括:温度检测单元,配置为检测所述相变蓄能工质的温度,并在检测到所述相变蓄能工质的温度升高到第一预设限的情况下发出第一信号;控制器,与所述温度检测单元电连接,所述控制器配置为根据所述第一信号发出第一指令进行响应,所述第一指令用于触发所述移动空调停止运行制冷模式,或所述控制器配置为根据所述第一信号发出第二指令进行响应,所述第二指令用于触发提醒装置执行提醒功能。
- 根据权利要求7所述的移动空调,其中,所述第一预设限为8℃~20℃。
- 根据权利要求7或8所述的移动空调,其中,所述温度检测单元还可配置为在检测到所述相变蓄能工质的温度下降到第二预设限的情况下发出第二信号,所述控制器还可配置为根据所述第二信号发出第三指令进行响应,所述第三指令用于触发所述移动空调停止运行蓄能模式。
- 根据权利要求9所述的移动空调,其中,所述第二预设限为-10℃~-4℃。
- 根据权利要求2或3所述的移动空调,其中,所述第二冷媒管路包括:第二连通支路,与所述第二接口及所述第四接口连通,且所述第二换热器的所处高度高于所述第一换热器,使得所述第二换热器中的冷媒能沿所述第一连通支路重力输往所述第一换热器。
- 根据权利要求2或3所述的移动空调,其中,所述第二冷媒管路包括:第二连通支路,与所述第二接口及所述第四接口连通,所述第一连通支路和所述第二连通支路中的至少之一接有驱动件,所述驱动件配置为驱动冷媒流动。
- 根据权利要求1至12中任一项所述的移动空调,其中,所述第二冷媒管路包括:压缩机,具有排气口和回气口;四通阀,与所述排气口、所述回气口、所述第二接口及所述第四接口连通,所述四通阀配置为控制所述排气口与所述第四接口之间导通,且控制所述回气口与所述第二接口之间导通,所述四通阀也可配置为控制所述回气口与所述第四接口之间导通,且控制所述排气口与所述第二接口之间导通。
- 根据权利要求1至12中任一项所述的移动空调,其中,所述第二冷媒管路包括:压缩机,具有回气口和排气口;第一回气管,与所述回气口及所述第四接口连通,且所述第一回气管上接有第三阀,所述第三阀配置为导通或截止所述第一回气管;第二回气管,与所述回气口及所述第二接口连通,且所述第二回气管上接有第四阀,所述第四阀配置为导通或截止所述第二回气管;第一排气管,与所述排气口及所述第四接口连通,且所述第一排气管上接有第五阀,所述第五阀配置为导通或截止所述第一排气管;第二排气管,与所述排气口及所述第二接口连通,且所述第二排气管上接有第六阀,所述第六阀配置为导通或截止所述第二排气管。
- 根据权利要求13或14所述的移动空调,其中,所述压缩机上设有接口,所述接口配置为供所述压缩机与外部电源电连接。
- 根据权利要求13或14所述的移动空调,其中,所述移动空调还包括电池,所述电池与所述压缩机电连接,并对所述压缩机供电。
- 根据权利要求1至16中任一项所述的移动空调,其中,所述第二换热器包括盘管换热器、翅片管换热器、旋翅式换热器中的至少一个。
- 根据权利要求4至6中任一项所述的移动空调,其中,所述第一单向节流支路包括毛细管、电子膨胀阀、热力膨胀阀中的至少一个。
- 根据权利要求5或6所述的移动空调,其中,所述第二单向节流支路包括毛细管、电子膨胀阀、热力膨胀阀中的至少一个。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207025626A KR102460383B1 (ko) | 2018-06-12 | 2018-12-20 | 이동식 에어컨 |
EP18922915.6A EP3786537B1 (en) | 2018-06-12 | 2018-12-20 | Mobile air conditioner |
US17/112,890 US11774150B2 (en) | 2018-06-12 | 2020-12-04 | Mobile air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810602380.4 | 2018-06-12 | ||
CN201810602380.4A CN110594897B (zh) | 2018-06-12 | 2018-06-12 | 移动空调 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/112,890 Continuation US11774150B2 (en) | 2018-06-12 | 2020-12-04 | Mobile air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019237705A1 true WO2019237705A1 (zh) | 2019-12-19 |
Family
ID=68841887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/122409 WO2019237705A1 (zh) | 2018-06-12 | 2018-12-20 | 移动空调 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11774150B2 (zh) |
EP (1) | EP3786537B1 (zh) |
KR (1) | KR102460383B1 (zh) |
CN (1) | CN110594897B (zh) |
WO (1) | WO2019237705A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111412568A (zh) * | 2020-04-27 | 2020-07-14 | 合肥美的暖通设备有限公司 | 可移动的蓄热空调和可移动的蓄热空调系统 |
CN111594934B (zh) * | 2020-04-30 | 2021-05-11 | 同济大学 | 一种制冷剂直接接触式充能的无线移动空调机组 |
CN114152013B (zh) * | 2021-11-09 | 2023-08-11 | 大连理工大学 | 一种移动式水合物相变微胶囊蓄冷系统的工作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100561601B1 (ko) * | 2004-11-24 | 2006-03-20 | 주식회사 대우일렉트로닉스 | 이동형 에어컨 |
CN202361855U (zh) * | 2011-11-15 | 2012-08-01 | 中山联昌电器有限公司 | 一种蓄能器及应用该蓄能器的移动空调 |
CN203671779U (zh) * | 2013-12-09 | 2014-06-25 | 陈锐 | 家用低功耗蓄能移动空调器 |
CN105864907A (zh) * | 2016-04-14 | 2016-08-17 | 青岛海尔空调电子有限公司 | 移动辐射换热装置 |
CN206338887U (zh) * | 2016-11-16 | 2017-07-18 | 朱继扬 | 储冷式移动空调系统 |
CN206338899U (zh) * | 2016-12-30 | 2017-07-18 | 广东申菱环境系统股份有限公司 | 一种储能式移动空调 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872687A (en) * | 1969-07-11 | 1975-03-25 | Refrigeration Research | Vehicle air conditioning system |
DE3938875A1 (de) * | 1989-11-24 | 1991-05-29 | Behr Gmbh & Co | Mobiles und transportables klimageraet zur kuehlung und klimatisierung innenliegender raeume |
CN2660363Y (zh) * | 2003-09-15 | 2004-12-01 | 河南新飞电器有限公司 | 一种空调系统 |
JP4039358B2 (ja) * | 2003-11-19 | 2008-01-30 | 三菱電機株式会社 | 空気調和機 |
CN200986280Y (zh) * | 2006-12-15 | 2007-12-05 | 陈树标 | 一种移动式蓄冰空调机 |
KR20100035740A (ko) * | 2008-09-29 | 2010-04-07 | 최동각 | 인덕션 워킹코일과 잠열물질의 상변화를 이용한 실내 냉난방기 |
KR20110073764A (ko) * | 2009-12-24 | 2011-06-30 | 엘지전자 주식회사 | 이동식 축열형 공기조화기 |
CN101986051A (zh) * | 2010-11-17 | 2011-03-16 | 海尔集团公司 | 变频空调器、控制变频空调器中冷媒流量的方法 |
ES2729992T3 (es) * | 2012-05-03 | 2019-11-07 | Carrier Corp | Sistema de aire acondicionado que utiliza material de cambio de fase sobreenfriado |
KR20140087697A (ko) * | 2012-12-31 | 2014-07-09 | 한백섭 | 이동식 축냉 냉방장치 |
JP6328004B2 (ja) * | 2014-08-15 | 2018-05-23 | 株式会社大気社 | 圧縮機/ポンプ切換式の冷却装置 |
JP5821057B1 (ja) * | 2014-10-21 | 2015-11-24 | サーチウェア株式会社 | 車両 |
CN104566649B (zh) * | 2014-12-30 | 2018-03-27 | 广东美的制冷设备有限公司 | 空调器及其控制方法 |
CN104633815B (zh) * | 2015-02-02 | 2017-11-17 | 深圳市艾特网能有限公司 | 机房用空调系统及其控制方法 |
CN104896632A (zh) * | 2015-04-30 | 2015-09-09 | 东莞市兆荣节能科技有限公司 | 模块化盘管式相变材料蓄能槽及采用该蓄能槽的空调系统 |
US10443958B2 (en) * | 2016-04-25 | 2019-10-15 | Raytheon Company | Powdered metal as a sacrificial material for ultrasonic additive manufacturing |
WO2018041529A1 (en) | 2016-09-02 | 2018-03-08 | Arcelik Anonim Sirketi | Portable air conditioner |
CN106524367A (zh) * | 2016-12-30 | 2017-03-22 | 广东申菱环境系统股份有限公司 | 一种储能式移动空调 |
KR102350935B1 (ko) * | 2017-06-19 | 2022-01-12 | 엘지전자 주식회사 | 공기조화기 |
CN207196983U (zh) * | 2017-07-13 | 2018-04-06 | 浙江三花智能控制股份有限公司 | 空调系统和具有其的空调器 |
-
2018
- 2018-06-12 CN CN201810602380.4A patent/CN110594897B/zh active Active
- 2018-12-20 EP EP18922915.6A patent/EP3786537B1/en active Active
- 2018-12-20 WO PCT/CN2018/122409 patent/WO2019237705A1/zh unknown
- 2018-12-20 KR KR1020207025626A patent/KR102460383B1/ko active IP Right Grant
-
2020
- 2020-12-04 US US17/112,890 patent/US11774150B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100561601B1 (ko) * | 2004-11-24 | 2006-03-20 | 주식회사 대우일렉트로닉스 | 이동형 에어컨 |
CN202361855U (zh) * | 2011-11-15 | 2012-08-01 | 中山联昌电器有限公司 | 一种蓄能器及应用该蓄能器的移动空调 |
CN203671779U (zh) * | 2013-12-09 | 2014-06-25 | 陈锐 | 家用低功耗蓄能移动空调器 |
CN105864907A (zh) * | 2016-04-14 | 2016-08-17 | 青岛海尔空调电子有限公司 | 移动辐射换热装置 |
CN206338887U (zh) * | 2016-11-16 | 2017-07-18 | 朱继扬 | 储冷式移动空调系统 |
CN206338899U (zh) * | 2016-12-30 | 2017-07-18 | 广东申菱环境系统股份有限公司 | 一种储能式移动空调 |
Also Published As
Publication number | Publication date |
---|---|
CN110594897A (zh) | 2019-12-20 |
KR20200118148A (ko) | 2020-10-14 |
EP3786537B1 (en) | 2024-01-24 |
US20210088265A1 (en) | 2021-03-25 |
KR102460383B1 (ko) | 2022-10-27 |
EP3786537A1 (en) | 2021-03-03 |
US11774150B2 (en) | 2023-10-03 |
CN110594897B (zh) | 2021-08-27 |
EP3786537A4 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11774150B2 (en) | Mobile air conditioner | |
CN207132597U (zh) | 换热器和空调器 | |
WO2020042964A1 (zh) | 移动空调及其换热器系统 | |
WO2014067129A1 (zh) | 多联机热泵空调系统及控制多联机热泵空调系统的方法 | |
WO2014107968A1 (zh) | 一种空调系统 | |
CN104236155B (zh) | 具有冷媒过冷、除霜制热功能的空调系统及其控制方法 | |
CN205747589U (zh) | 一种换热系统及具有化霜功能的热泵系统 | |
JP2015025563A (ja) | 空気調和機 | |
CN104236177B (zh) | 一种相变蓄热、冷媒过冷热交换装置及采用其的空调系统 | |
CN103388922B (zh) | 一种双压缩机多功能空气源热泵空调系统 | |
CN107741102B (zh) | 一种带热管散热器全年运行的空气源热泵装置 | |
CN102607122A (zh) | 双动力热管循环机组 | |
CN204943957U (zh) | 一种喷气增焓风冷冷(热)水机组 | |
CN201897275U (zh) | 节能机柜空调器 | |
WO2020042459A1 (zh) | 空调设备 | |
CN203605376U (zh) | 一种一体化机房空调系统 | |
KR101961167B1 (ko) | 공기열원 축냉운전과 수열원 축냉축열 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 | |
CN216384419U (zh) | 四管制风冷冷热水机组 | |
WO2022246968A1 (zh) | 一种热泵空调装置及其实现方法 | |
CN110657604B (zh) | 热泵系统及控制方法 | |
CN203550281U (zh) | 可实现连续制热的空调系统 | |
KR101498627B1 (ko) | 공기조화기 | |
KR20140094673A (ko) | 히트 펌프 | |
CN204787086U (zh) | 一种全热回收风冷冷水或热水机组 | |
JP2001289528A (ja) | 蓄熱式冷凍空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18922915 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207025626 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018922915 Country of ref document: EP Effective date: 20201127 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |