WO2020042459A1 - 空调设备 - Google Patents

空调设备 Download PDF

Info

Publication number
WO2020042459A1
WO2020042459A1 PCT/CN2018/122460 CN2018122460W WO2020042459A1 WO 2020042459 A1 WO2020042459 A1 WO 2020042459A1 CN 2018122460 W CN2018122460 W CN 2018122460W WO 2020042459 A1 WO2020042459 A1 WO 2020042459A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
air
phase change
heat exchanger
refrigerant
Prior art date
Application number
PCT/CN2018/122460
Other languages
English (en)
French (fr)
Inventor
刘和成
岳宝
林晨
大森宏
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2020042459A1 publication Critical patent/WO2020042459A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F5/0021Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using phase change material [PCM] for storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present application relates to the field of air conditioning, and in particular, to an air conditioning device.
  • the prior art proposes a solution for condensing by using an energy storage material and a heat exchanger for heat exchange in an air conditioner.
  • the air conditioner operates in a refrigeration operation for a period of time. After time, it is necessary to regenerate the heat storage material, but the latent heat of the energy storage material is large and the natural regeneration speed is slow, which directly results in a long cooling interval of the air-conditioning equipment and reduces the user experience.
  • an object of the present application is to provide an air conditioner.
  • an embodiment of the present application provides an air-conditioning apparatus including: a first heat exchanger, which is an air-cooled heat exchanger, and has a first interface and a second interface through which refrigerant enters and exits; a phase-change energy storage exchange The heat device has a third interface and a fourth interface for the refrigerant to enter and exit.
  • the phase change energy storage heat exchange device is configured to allow the refrigerant to circulate, and to absorb and store the heat of the refrigerant flowing through it; the refrigerant pipeline, and The first interface and the third interface are in communication; the compressor is a variable frequency compressor having an exhaust port and an air return port; and a reversing device is connected to the exhaust port, the air return port, and the second port.
  • the interface and the fourth interface are connected, and the reversing device is configured to communicate the exhaust port with the fourth interface and communicate the return port with the second interface; the reversing device further And configured to communicate the air return port with the fourth interface, and communicate the exhaust port with the second interface.
  • a switching device can be used to control the switching between the cooling mode and the regeneration mode.
  • the compressor sucks air from the phase-change energy storage heat exchange device and discharges it to the first heat exchanger.
  • the refrigerant evaporates in the phase change energy storage heat exchange device, so that the phase change energy storage heat exchange device stores the cooling capacity released by the refrigerant to achieve regeneration, and because the compressor is a variable frequency compressor, Adjusting the operating frequency of the compressor can further control the regeneration rate, so that the regeneration cycle can be freely and flexibly adjusted, which overcomes the bad experience of existing products with long regeneration cycles and inconvenient control, and in this design, the compressor can also be adjusted by The operating frequency is used to control the work efficiency of the refrigerant in each heat release stage of the regeneration process of the phase-change energy storage heat-exchange device and the compressor's work efficiency of the refrigerant in the same period basically matches and maintains high efficiency, thereby improving the phase-change energy storage heat transfer
  • the device's heat exchange efficiency for the cooling capacity of the refrigerant reduces the heat exchange loss and realizes shortening the regeneration period while taking into account the promotion of air conditioning equipment in the regeneration mode. OK energy efficiency purposes, the product in order
  • FIG. 1 is a schematic structural diagram of an air conditioner in a cooling mode according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an air conditioner in a regeneration mode according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an exploded structure of a phase change energy storage device according to an embodiment of the present application.
  • first heat exchanger 110 first heat exchanger, 111 first interface, 112 second interface, 120 second heat exchanger, 121 third interface, 122 fourth interface, 130 container parts, 131 shell cavity, 132 plug channels, 140 fans, 150 compressor, 151 exhaust port, 152 return port, 160 reversing device, 171 first capillary, 172 first check valve, 173 second capillary, 174 second check valve.
  • the air-conditioning equipment includes a first heat exchanger 110, a phase-change energy storage heat-exchange device, a refrigerant pipe, a compressor 150, and a reversing device 160.
  • the first heat exchanger 110 is an air-cooled heat exchanger, and has a first interface 111 and a second interface 112 for the refrigerant to enter and exit; a phase change energy storage heat exchange device has a third interface 121 for the refrigerant to enter and exit, and Fourth interface 122.
  • the phase-change energy storage heat-exchange device is configured to allow the refrigerant to circulate, and absorb and store the heat of the refrigerant flowing through it; the refrigerant pipeline is in communication with the first interface 111 and the third interface 121; the compressor 150 It is a variable frequency compressor and has an exhaust port 151 and a return port 152.
  • the reversing device 160 is connected to the exhaust port 151, the return port 152, the second interface 112 and the fourth interface 122.
  • the reversing device 160 is configured as The exhaust port 151 is in communication with the fourth interface 122, and the return port 152 is in communication with the second interface 112.
  • the reversing device 160 is further configured to switch the return port 152 to the fourth interface 122 and allow the exhaust The port 151 is in communication with the second interface 112.
  • the switching device 160 can be used to switch between the cooling mode and the regeneration mode.
  • the switching device 160 communicates the exhaust port 151 with the fourth interface 122 and The air return port 152 is in communication with the second interface 112; in the regeneration mode, the reversing device 160 communicates the air return port 152 with the fourth interface 122 and the exhaust port 151 is in communication with the second interface 112.
  • the compressor 150 sucks air from the phase change energy storage heat exchange device and exhausts it to the first heat exchanger 110.
  • the refrigerant evaporates in the phase change energy storage heat exchange device, so that
  • the phase-change energy storage heat exchange device stores the cooling capacity released by the refrigerant for regeneration, and since the compressor 150 is an inverter compressor, the regeneration rate can be further controlled by adjusting the operating frequency of the compressor 150, and the regeneration cycle can be free and flexible.
  • Local regulation which overcomes the bad experience of existing products with long regeneration cycles and inconvenient control, and in this design, the heat of the regeneration process of the phase-change energy storage heat exchanger can be controlled by adjusting the operating frequency of the compressor 150.
  • the work efficiency of the refrigerant is basically matched with the work efficiency of the compressor 150 to the refrigerant at the same time and is maintained at a high efficiency, thereby improving the heat exchange efficiency of the phase change energy storage heat exchange device for the refrigerant cooling capacity, reducing heat exchange losses, and shortening.
  • the purpose of improving the energy efficiency of air-conditioning equipment operation in the regeneration mode is also taken into account, so as to achieve product energy saving and emission reduction.
  • phase change energy storage heat exchange device has small temperature fluctuations in the phase change zone
  • setting the phase change energy storage heat exchange device and the refrigerant to perform phase change energy storage heat exchange can maintain the stability of the evaporation temperature and the condensation temperature, and it is also beneficial to control the air conditioning equipment. Run at ideal evaporation temperature and condensation temperature, realize approximate Carnot cycle, and improve the cooling efficiency of air-conditioning equipment.
  • the operating frequency of the compressor 150 when the exhaust port 151 is in communication with the fourth interface 122 is lower than the operating frequency of the compressor 150 when the exhaust port 152 is in communication with the second interface 112.
  • the reversing device 160 communicates the exhaust port 151 with the fourth interface 122 and communicates the return port 152 with the second interface 112; in the regeneration mode, the reversing device 160 communicates the return port 152 It communicates with the fourth interface 122 and communicates the exhaust port 151 with the second interface 112.
  • the operating frequency of the compressor 150 in the cooling mode is lower than the operating frequency of the compressor 150 in the regeneration mode.
  • the compressor 150 is controlled to operate at a high frequency to increase the regeneration rate and shorten the regeneration time.
  • the cooling mode by reducing the frequency of the compressor 150, the operating cycle of the cooling mode is extended accordingly, thereby increasing the proportion of the duration of the cooling cycle on the overall time axis and improving the continuity of the cooling, thereby improving the user experience of the product.
  • the phase change energy storage of the heat exchange device has the characteristics of large latent heat and stable temperature. After reducing the operating frequency of the compressor 150 in the cooling mode, not only will the problem of insufficient cooling capacity not be caused, but the phase change energy storage can be more fully used.
  • the heat exchange device has the characteristics of good phase change energy storage temperature stability to correspondingly guarantee the indoor refrigeration temperature stability, and avoid problems such as low indoor refrigeration temperature and rigidity of the refrigeration, so as to improve the comfort of the product, and this application uses phase change energy storage.
  • the heat exchange device can use the phase change for energy storage in the phase change energy storage heat exchange device
  • the temperature is lower than that of general cooling air to increase the amount of work performed by the refrigerant, thereby reducing the compression work required by the compressor 150 for the refrigerant in this mode, and reducing the compression operation energy of the air conditioning equipment in the cooling mode.
  • the air-conditioning equipment in this design has a shorter regeneration cycle of the phase-change energy storage heat-exchange device and a better refrigeration continuity effect. It can also reduce the regeneration cycle and extend the refrigeration cycle while achieving the indoor refrigeration temperature stability. It also avoids the rigid cooling situation where the cooling temperature is relatively low, which makes the reconciliation between the regeneration mode and the cooling mode better, the product has higher energy efficiency, and the user experience is also better.
  • the compressor 150 operates at a frequency within a preset low-frequency interval
  • the compressor When the exhaust port 151 is in communication with the second interface 112 (specifically, for example, when the air conditioner is operating in a regeneration mode), the compressor is operated at a frequency within a preset high-frequency section.
  • the preset low frequency section has a lower frequency value than the preset high frequency section.
  • the compressor 150 when the air-conditioning equipment is operated in the cooling mode, the compressor 150 operates at a frequency within a preset low-frequency interval.
  • the controller such as a microprocessor, a central module, etc.
  • the control detects the air-conditioning equipment.
  • the control controls the operating frequency of the compressor 150 to float within a preset low frequency range.
  • the phase change energy storage heat exchange device performs phase change energy storage, the heat exchange efficiency with the refrigerant can be higher, and the temperature stability is good, which can ensure The system has high-efficiency condensation and stable condensation temperature.
  • the operating frequency of the compressor 150 is controlled to float within the preset low frequency range.
  • the frequency of the compressor 150 does not fluctuate too much with other factors such as room temperature.
  • this can help maintain the internal thermal conductivity of the phase change material and the heat absorption of the phase change material to the refrigerant.
  • the efficiency is basically balanced, so that the heat exchange efficiency between the phase change material and the refrigerant can be basically stabilized in an efficient state corresponding to the preset low frequency range, which improves the energy efficiency of the air conditioning equipment, and is beneficial to protect the phase change material and avoid phase change.
  • the internal heat conduction efficiency of the material lags behind the heat transfer efficiency between the material and the refrigerant, causing local overheating and other undesirable conditions, improving product reliability, and also enabling the phase change material to absorb heat to drive the phase change energy storage heat exchange device to perform work and compression on the refrigerant condensation.
  • the compressor 150 achieves a good adaptation and coordination of the refrigerant compression work.
  • the compressor 150 when the amount of work performed by the condensation is large, the compressor 150 can be correspondingly smaller to avoid unnecessary waste of energy, which is beneficial to maximize the efficiency of resource utilization and also avoids the cooling effect. Too extreme rigidity and good comfort, so as to improve comfort while achieving the goal of comprehensively improving the energy efficiency of air conditioning equipment operation; when the air conditioning equipment operation regeneration mode is set, the compressor 150 operates at a frequency within a preset high frequency range Specifically, for example, the controller of the air conditioner detects that the current operation mode of the air conditioner is a regeneration mode, or When the controller detects an instruction from an operation terminal (such as an air-conditioning equipment operation panel, remote control, mobile phone terminal, computer terminal, etc.) to control the regeneration mode of the air-conditioning equipment, the controller accordingly controls the compressor 150 to preset The frequency operation in the low frequency range, so that the heat absorption rate of the refrigerant by the phase change energy storage and heat exchange device in the cooling mode is generally lower than the heat release rate of the phase change energy storage and heat exchange device in the regeneration mode
  • the reversing device 160 includes a four-way valve. More specifically, the four-way valve is in communication with the exhaust port 151, the return port 152, the second interface 112, and the fourth interface 122.
  • the on-off valve is internally switched to control the exhaust port 151 and the fourth interface 122 to be conductive, and the control air return port 152 and the second interface 112 are connected to each other.
  • the four-way valve is internally switched to control the air return port 152 and the fourth interface. 122 is turned on, and the control exhaust port 151 and the second interface 112 are turned on.
  • the structure is simple, and the control is accurate and reliable.
  • the phase-change energy storage heat-exchange device includes a phase-change material and a second heat exchanger 120.
  • the second heat exchanger 120 is capable of circulating refrigerant, and has the third interface 121 for the refrigerant to enter and exit. With the fourth interface 122, the second heat exchanger 120 and the phase change material can exchange heat, so that the phase change material absorbs and stores the heat of the refrigerant flowing through the second heat exchanger 120.
  • the phase change material is a solid-liquid phase change material or a vapor-liquid phase change material.
  • phase change material it is further preferred to use ice as the phase change material to improve the phase change heat capacity and save the volume.
  • the application of phase change materials in cold storage of air conditioning systems has been studied, but compared with other phase change materials Because of the low evaporating temperature required for ice storage (0 ° C below the freezing point of water), the energy storage density of phase change materials (phase transition temperature between 5-50 ° C) higher than the freezing point and suitable for refrigeration systems is far. Cold storage density lower than ice (approximately 330kJ / L), if applied in a refrigeration system with a cooling capacity greater than 1kW, the volume is too large, which affects the compactness of the product.
  • This application uses ice as a phase change material for phase change thermal capacity and volume Compactness is guaranteed. Of course, this is only the preferred solution of this design, and those skilled in the art can also make corresponding adjustments to the types of phase change materials according to requirements.
  • the phase-change energy storage heat-exchange device has a container member 130, and the phase-change material is contained in the container member 130, wherein the second heat exchanger 120 and the container The pieces 130 are connected by a detachable connection structure, so that the second heat exchanger 120 and the container piece 130 can be assembled or disassembled.
  • the product in addition to using the regeneration mode to regenerate the phase change material, can also choose to remove the container member 130 from the second heat exchanger 120 and place it in a position suitable for its regeneration (such as in a refrigerator or a cool Environment), promote the natural regeneration of the phase change material in the container part 130 using the environment, and even replace it with a new container part 130 or replace the phase change material in the container part 130 to achieve regeneration and sustainable sustainable refrigeration. purpose.
  • the container member 130 can be removed, and the liquid phase change material in the container member 130 can be exported and replaced with a solid phase change material, so that the air conditioning equipment can Run in cooling mode again.
  • the container part 130 containing the liquid phase change material can also be placed in a well-ventilated environment to naturally dissipate heat and cool the phase change material, so that the phase change material changes from a liquid phase to a solid phase. Recycling, etc., lower energy consumption.
  • the container member 130 includes a shell cavity 131 and a phase-change material filled in the shell cavity 131.
  • the detachable connection structure includes a plug-in channel 132 formed on the shell cavity 131.
  • the heat exchanger 120 includes a heat exchange tube, and the heat exchange tube can be inserted into the plug-in channel 132 and can be withdrawn from the plug-in channel 132 to achieve attachment and detachment between the second heat exchanger 120 and the container member 130.
  • the shell cavity 131 is provided with a plug-in channel 132 so that the shell cavity 131 and the heat exchanger tube of the second heat exchanger 120 form a detachable assembly in a plug-in form, which has a simple structure, convenient processing, and easy disassembly and use.
  • Advantages, and the form in which the heat exchange tube and the insertion channel 132 are plugged in this structure can help to increase the effective corresponding area of the phase change material in the heat exchange tube and the shell cavity 131, and improve the heat dissipation efficiency of the heat exchange tube.
  • the phase change material when ice is not used as the phase change material, the phase change material preferably uses a phase change material having a phase change temperature of 15 ° C to 40 ° C. Those skilled in the art can satisfy the phase from the existing phase change materials.
  • the phase change material with a change temperature of 15 ° C to 40 ° C is specifically selected, and is not listed here one by one.
  • phase change temperature of the phase change material is 15 ° C to 40 ° C, it can be beneficial to improve the regeneration mode of the equipment and The harmony between the cooling modes enables the air-conditioning equipment to operate at a higher efficiency in its regeneration mode and cooling mode, and improves the overall operation energy efficiency of the whole machine, which is conducive to promoting product energy saving and emission reduction. More preferably, the phase change temperature of the phase change material is 17 ° C to 30 ° C, and even more preferably, the phase change temperature of the phase change material is 20 ° C to 25 ° C.
  • phase change temperature is the critical temperature when the phase change material transitions between different phases.
  • a phase change material solid phase to liquid phase (liquid phase to solid phase change)
  • the critical temperature at the time of the phase) can be understood as the critical temperature when the liquid phase change material changes from the liquid phase to the vapor phase (the same goes for the vapor phase to the liquid phase).
  • the air conditioner is a mobile air conditioner. It can be understood that in the traditional mobile air conditioner, air-cooled heat exchange is used at the second heat exchanger 120 and the thick air pipe is used to discharge the hot air away from the mobile. In the location of the air conditioner, the setting of the thick connecting pipe will reduce the mobility of the mobile air conditioner and affect the user experience. In this solution, the phase change material is used to absorb heat and condense at the second heat exchanger 120, thereby eliminating external heat dissipation.
  • the thick connection pipe can make the use of mobile air conditioner more convenient and flexible, and the heat released by the second heat exchanger 120 of the mobile air conditioner when it is cooled indoors will not be transferred to the room, and the cooling experience is good.
  • the mobile air conditioner can be flexibly transferred to the outdoor or other places that will not affect the user experience, so that the mobile air conditioner operates in the regeneration mode.
  • the regeneration cycle can be greatly shortened by increasing the frequency of the compressor 150.
  • the product that is quickly regenerated can be returned to the room and used for refrigeration again after the refrigeration is temporarily stopped, the indoor refrigeration environment is maintained, and the use of the product is improved. .
  • the refrigerant pipeline includes a first unidirectional throttling branch, and the first unidirectional throttling branch is in communication with the first interface 111 and the third interface 121 and is used to connect
  • the refrigerant from the phase-change energy storage heat exchange device is throttled and then sent to the first heat exchanger 110, more specifically, the refrigerant from the second heat exchanger 120 is throttled and sent to the first heat exchanger 110, where
  • the evaporation efficiency at the first heat exchanger 110 can be improved, thereby improving the refrigeration efficiency and ensuring that the user's demand for refrigeration efficiency is met.
  • the refrigerant pipeline further includes a second unidirectional throttling branch, and the second unidirectional throttling branch is in communication with the first interface 111 and the third interface 121 and is configured to connect the
  • the refrigerant of a heat exchanger 110 is throttled and then sent to a phase-change energy storage heat exchange device. More specifically, the refrigerant from the first heat exchanger 110 is throttled and sent to the second heat exchanger 120.
  • the second unidirectional throttling branch is used to throttle the refrigerant and send it to the first
  • the second heat exchanger 120 can improve the evaporation efficiency at the second heat exchanger 120, improve the regeneration efficiency of the phase change material, and achieve the purpose of shortening the regeneration cycle.
  • the pressure drop after the throttling of the refrigerant through the first one-way throttling branch is smaller than the pressure drop after throttling by the second one-way throttling branch.
  • the length to the throttling capillary is shorter than the length of the throttling capillary on the second one-way throttling branch, or for example, to control the throttling valve of the first one-way throttling branch to throttling.
  • the opening degree is larger than the opening degree of the throttle valve that plays a throttling role on the second one-way throttling branch and the like.
  • the throttling pressure drop of the first one-way throttling branch that is designed to play a throttling effect in the cooling mode is smaller than the throttling pressure of the second one-way throttling branch that plays a throttling effect in the regeneration mode
  • the first one-way throttling branch will not have deep throttling, which is ideal for indoor evaporation.
  • the temperature maintenance effect is better, no rigid cooling effect is produced, the cold air is softer and more comfortable, and the condensation load at the second heat exchanger 120 in the cooling mode can be reduced.
  • phase change materials can be correspondingly wider, and at the same time,
  • the heat exchange efficiency between the phase change material and the second heat exchanger 120 is higher, and the cooling capacity utilization rate of the phase change material is also higher. In this way, the energy loss of the entire air conditioning equipment is reduced, and the operation energy efficiency is higher.
  • the throttling depth of the second one-way throttling branch is large. In this way, the regeneration process of the phase change material is accelerated, and the regeneration cycle is shortened. This can help reduce the energy loss in the regeneration process, and can achieve a lower phase change material.
  • Cold storage temperature It can better meet the condensation requirements of the second heat exchanger 120 under refrigeration conditions.
  • the design of the phase change material has different cooling and regeneration cycles, which can comprehensively promote the air conditioning equipment to improve energy efficiency, which is beneficial to Realize the improvement of energy efficiency of air-conditioning equipment.
  • the refrigerant pipeline further includes a communication branch (not shown in the figure).
  • the communication branch is in communication with the first interface 111 and the third interface 121.
  • the first interface 111 and the third interface 121 are connected, and more specifically, a parallel relationship is formed between the communication branch and the first unidirectional throttling branch.
  • connection branch in the air-conditioning equipment cooling mode, when it is detected that the temperature of the refrigerant at the third interface 121 of the second heat exchanger 120 is lower than room temperature and has a certain temperature difference, the connection branch can be used to discharge the third interface 121
  • the refrigerant is directly discharged into the first heat exchanger 110 through the first interface 111 for evaporation, and the refrigerant does not need to be throttled before entering the first heat exchanger 110, so that the refrigerant does not undergo an evaporation process in the first heat exchanger 110.
  • the cooling comfort can be improved, and the condensation at the second heat exchanger 120 in this mode
  • the load is small, so that the characteristics of the phase change material in the phase change temperature range can be fully utilized to improve the stability of the evaporation temperature and the condensation temperature, which is beneficial to maintaining the room temperature comfort, and the utilization of the phase change material cooling capacity is higher. It is conducive to ensuring the efficient operation of air-conditioning equipment.
  • the communication branch includes a refrigerant pipe connected to the first interface 111 and the third interface 121, and the refrigerant pipe is provided with a valve for controlling its on or off.
  • the air conditioner is a mobile air conditioner, and specifically includes a first heat exchanger 110, a second heat exchanger 120, a phase change material, a fan 140, a compressor 150, a reversing device 160, and the like.
  • the first heat exchanger 110 is an air-cooled heat exchanger, and the fan 140 is used to drive airflow to exchange heat with the first heat exchanger 110.
  • the phase change material is disposed on the surface of the second heat exchanger 120 and can exchange heat with the second heat exchanger 120.
  • the first heat exchanger 110 has two interfaces for circulating refrigerant, which are a first interface 111 and a second interface 112, and one of the first interface 111 and the second interface 112 is for the refrigerant to enter the first heat exchanger.
  • the refrigerant inlet of 110 and the other is the refrigerant outlet for refrigerant discharge.
  • the first interface 111 and second interface 112 and The refrigerant inlet and the refrigerant outlet are distinguished, and the swap understanding is performed when the refrigeration and regeneration conditions are switched.
  • the second heat exchanger 120 has two interfaces for refrigerant circulation, which are a third interface 121 and a fourth interface 122.
  • the third interface 121 and the fourth interface 122 can be similarly understood with the first interface 111 and the second interface 112 described above.
  • the compressor 150 is a variable frequency compressor, that is, a compressor whose operating frequency can be understood by those skilled in the art.
  • the compressor 150 has an exhaust port 151 and a return port 152.
  • the reversing device 160 is a four-way valve.
  • the valve includes four ports. Two ports of the four-way valve correspond to the return port 152 and the exhaust port 151 of the compressor 150. The other two ports of the four-way valve correspond to the fourth port 122 of the second heat exchanger 120.
  • the second interface 112 of the first heat exchanger 110 as shown in FIG. 1, when the air-conditioning equipment is operating in a cooling mode, the four-way valve controls the exhaust port 151 and the fourth interface 122 of the second heat exchanger 120 to conduct electricity.
  • the control air return port 152 communicates with the second interface 112 of the first heat exchanger 110. As shown in FIG. 2, when the air-conditioning equipment operates in the regeneration mode, the four-way valve controls the return air port 152 and the second heat exchanger 120. The fourth interface 122 is connected to each other, and the control exhaust port 151 is connected to the second interface 112 of the first heat exchanger 110.
  • the first interface 111 of the first heat exchanger 110 and the third interface 121 of the second heat exchanger 120 are connected by a refrigerant pipe.
  • the refrigerant pipe includes a first one-way throttling branch and a first Two one-way throttling branches, where the first one-way throttling branch is in communication with the first interface 111 and the third interface 121, which specifically includes the implementation of the third interface 121 of the second heat exchanger 120 to switch to the first
  • the first interface 111 of the heater 110 is a first check valve 172 which conducts one-way communication and reverses the cutoff, and a first capillary tube 171 for performing a throttling function.
  • the second one-way throttling branch is connected to the first interface 111 and the third.
  • the interface 121 communicates with each other, and specifically includes a second check valve 174 that realizes one-way communication and reverse cutoff from the first interface 111 of the first heat exchanger 110 to the third interface 121 of the second heat exchanger 120, and is used to play
  • the length of the second capillary tube 173 and the first capillary tube 171 is shorter than that of the second capillary tube 173, so that the pressure drop of the refrigerant after throttling through the first one-way throttling branch is smaller than that through the second one-way throttling branch.
  • the pressure drop after the flow, so that the cooling mode and the regeneration mode are at the optimal evaporation temperature and condensation temperature. Down operation to improve cycle efficiency.
  • the air-conditioning equipment when the air-conditioning equipment is operating in a cooling mode, the air-conditioning equipment is moved to an indoor environment that requires refrigeration. At this time, the solenoid of the four-way valve is in a power-off state. As shown in FIG. The air port 151 communicates with the second heat exchanger 120, and the return air port 152 of the compressor 150 communicates with the first heat exchanger 110. At this time, the second heat exchanger 120 is the condenser of the system, and the first heat exchanger 110 is the system. In the evaporator, the refrigerant absorbs the indoor heat through the first heat exchanger 110 to achieve the cooling effect.
  • the refrigerant in the first heat exchanger 110 enters the compressor 150 along the air return port 152 of the compressor 150 through the four-way valve and is compressed. After the compressor 150 is compressed, it enters the second heat exchanger 120 through the four-way valve. The heat emitted by the second heat exchanger 120 is absorbed by the phase change material. Because the temperature change of the phase change material in the phase change area is small, It can ensure that the condensation temperature of air-conditioning equipment is stable, and at the same time, the phase change material changes from solid to liquid when the heat absorption of the phase change material reaches a certain level.
  • the compressor 150 runs at a lower frequency, but the frequency can be adjusted in a preset low frequency range, so that the user can choose different cooling power.
  • the preset low frequency range is relative to the preset high frequency range. To ensure that the value in the preset low-frequency range is lower than the value in the preset high-frequency range, and it is placed in its specific value range.
  • Those skilled in the art can comprehensively design the phase change material and the air temperature and other parameters for appropriate design. The adjustment of the speed is not described in detail here.
  • the fan 140 operates at a lower frequency in the cooling mode.
  • the air-conditioning equipment when the air-conditioning equipment is running in the regeneration mode, the air-conditioning equipment is moved to the outdoor environment. At this time, the four-way valve solenoid is energized. As shown in FIG. 2, the exhaust port 151 of the compressor 150 and the first The heat exchanger 110 is in communication, and the air return port 152 of the compressor 150 is in communication with the second heat exchanger 120. At this time, the second heat exchanger 120 is a condenser of the system, and the first heat exchanger 110 is a system evaporator.
  • the refrigerant absorbs the heat storage of the phase-change material through the second heat exchanger 120, so that the phase-change material changes from a liquid state to a solid state, that is, the heat can be stored again to realize the regeneration of the phase-change material. Subsequently, the The refrigerant enters the compressor 150 along the return port 152 of the compressor 150 through the four-way valve, and is compressed in the compressor 150 and enters the first heat exchanger 110 through the four-way valve.
  • the refrigerant Heat is exchanged with air through the first heat exchanger 110, and then flows through the second capillary tube 173 and the second one-way valve 174, and then enters the second heat exchanger 120 after throttling, thereby forming a closed circuit heat release.
  • Regeneration cycle In this regeneration mode, the compressor 150 and the fan 140 operate at a higher frequency, so that the heat storage of the phase change material is conducted to the outdoor environment at a faster speed.
  • the compressor 150 operates at a frequency in a preset high-frequency range.
  • the fan 140 operates at a frequency higher than that of the fan 140 in the cooling mode, so as to increase the exothermic regeneration speed of the phase change material.
  • the phase change material is used to control the stability of the evaporation temperature and the condensation temperature in the phase change zone with small temperature fluctuations, so as to realize the approximate Karuo cycle, thereby improving the system efficiency.
  • the phase change temperature of the phase change material used is preferably between 15 ° C and 40 ° C.
  • the phase change can be a solid-liquid or vapor-liquid phase change material.
  • the capillary used can also be replaced by an electronic expansion valve. The expansion valve adjusts the opening degree to adjust the optimal throttling depth in the two modes.
  • a container body for accommodating a phase change material is further provided to the second heat exchanger 120 through a detachable connection structure, so that the second heat exchanger 120 and the container member 130 can be assembled. Or split.
  • the second heat exchanger 120 may be specifically an oblique tube heat exchanger (more preferably, an oblique tube without fins), and the heat exchange tube thereof is preferably integrally processed. It is convenient to assemble and separate the container body containing the phase change material and the oblique insertion heat exchanger, and it is not easy for refrigerant leakage. When the phase change material is full of heat, it can be said that the cooling effect is lower than the cooling effect. When required, the liquid phase change material in the shell cavity 131 of the container body can be exported and replaced with a solid phase change material to fill the shell cavity 131, so that the air conditioning equipment can continue to operate in the cooling mode.
  • the removed shell cavity 131 containing the liquid phase change material can also be placed in a well-ventilated environment.
  • the shell cavity 131 and the phase change material inside it naturally dissipate heat, so as to cool the phase change material and make the phase
  • the phase change material changes from a liquid phase to a solid phase to realize regeneration of the phase change material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供了一种空调设备,包括:第一换热器,为风冷换热器;相变蓄能换热装置,相变蓄能换热装置配置为能供冷媒流通,并且对流经其的冷媒的热量进行吸收和储存;冷媒管路,与第一换热器的第一接口及相变蓄能换热装置的第三接口连通;压缩机,为变频压缩机;换向装置,其与压缩机的排气口、回气口及第一换热器的第二接口、相变蓄能换热装置的第四接口连接,配置为使排气口与第四接口连通,并使回气口与第二接口连通;还可配置为使回气口与第四接口连通,并使排气口与第二接口连通。本方案提供的空调设备,其再生周期短且可自由、灵活地调控,克服了现有产品再生周期长且无法控制的问题,且能兼顾提升产品运行能效,实现节能减排。

Description

空调设备
本申请要求于2018年8月27日提交中国专利局、申请号为201810982390.5、发明名称为“空调设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调领域,具体而言,涉及一种空调设备。
背景技术
现有技术提出了一种空调设备中采用储能材料与换热器换热进行冷凝的方案,但在实现本申请的过程中,发明人发现该现有技术存在如下问题:空调设备制冷运行一段时间后需要对储能材料放热再生,但是,储能材料潜热大,自然再生速度慢,这直接导致空调设备的制冷间隔周期长,降低了用户的使用体验。
发明内容
为了解决上述技术问题至少之一,本申请的目的在于提供一种空调设备。
为实现上述目的,本申请的实施例提供了一种空调设备,包括:第一换热器,为风冷换热器,具有供冷媒进出的第一接口和第二接口;相变蓄能换热装置,具有供冷媒进出的第三接口和第四接口,所述相变蓄能换热装置配置为能供冷媒流通,并且对流经其的冷媒的热量进行吸收和储存;冷媒管路,与所述第一接口及所述第三接口连通;压缩机,为变频压缩机,其具有排气口和回气口;换向装置,与所述排气口、所述回气口、所述第二接口及所述第四接口连接,所述换向装置配置为使所述排气口与所述第四接口连通,并使所述回气口与所述第二接口连通;所述换向装置还配置为使所述回气口与所述第四接口连通,并使所述排气口与所述第二接口连 通。
本申请上述实施例提供的空调设备,利用换向装置可控制切换制冷模式和再生模式,其中,在再生模式中,压缩机从相变蓄能换热装置吸气并向第一换热器排气,整个冷媒系统回路中,冷媒在相变蓄能换热装置内蒸发,使得相变蓄能换热装置对冷媒释放的冷量进行蓄存实现再生,且由于压缩机为变频压缩机,通过调节压缩机的运行频率可进一步控制再生速率,实现再生周期可以自由、灵活地调控,克服了现有产品存在的再生周期长且不方便控制等不良体验,且本设计中也可通过调节压缩机运行频率以控制相变蓄能换热装置的再生过程的各个放热阶段中冷媒对其的做功效率与同时期压缩机对冷媒的做功效率基本匹配且维持高效,从而提升相变蓄能换热装置对冷媒冷量的换热效率,降低换热损失,实现缩短再生周期的同时兼顾提升再生模式下空调设备运行能效的目的,从而实现产品节能减排。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例所述空调设备在制冷模式下的结构示意图;
图2是本申请一个实施例所述空调设备在再生模式下的结构示意图;
图3是本申请一个实施例所述相变蓄能装置的分解结构示意图。
其中,图1至图3中的附图标记与部件名称之间的对应关系为:
110第一换热器,111第一接口,112第二接口,120第二换热器,121第三接口,122第四接口,130容器件,131壳腔,132插接通道,140风扇,150压缩机,151排气口,152回气口,160换向装置,171第一毛细管,172第一单向阀,173第二毛细管,174第二单向阀。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和 具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图3描述根据本申请一些实施例所述空调设备。
如图1和图2所示,本申请的实施例提供的空调设备,包括:第一换热器110、相变蓄能换热装置、冷媒管路、压缩机150和换向装置160。
具体地,第一换热器110为风冷换热器,且其具有供冷媒进出的第一接口111和第二接口112;相变蓄能换热装置具有供冷媒进出的第三接口121和第四接口122,相变蓄能换热装置配置为能供冷媒流通,并且对流经其的冷媒的热量进行吸收和储存;冷媒管路与第一接口111及第三接口121连通;压缩机150为变频压缩机,且其具有排气口151和回气口152;换向装置160与排气口151、回气口152、第二接口112及第四接口122连接,其中,换向装置160配置为使排气口151与第四接口122连通,并使回气口152与第二接口112连通;换向装置160还配置为换向装置160使回气口152与第四接口122连通,并使排气口151与第二接口112连通。
本申请上述实施例提供的空调设备,利用换向装置160可控制切换制冷模式和再生模式,具体例如,在制冷模式下,换向装置160使排气口151与第四接口122连通,并使回气口152与第二接口112连通;在再生模式下,换向装置160使回气口152与第四接口122连通,并使排气口151与第二接口112连通。其中,在再生模式中,压缩机150从相变蓄能换热装置吸气并向第一换热器110排气,整个冷媒系统回路中,冷媒在相变蓄能换热装置内蒸发,使得相变蓄能换热装置对冷媒释放的冷量进行蓄存实现再生,且由于压缩机150为变频压缩机,通过调节压缩机150的运行频率可进一步控制再生速率,实现再生周期可以自由、灵活地调控,克服了现有产品存在的再生周期长且不方便控制等不良体验,且本设计中也可通过调节压缩机150运行频率以控制相变蓄能换热装置的再生过程的各个放热阶段中冷媒对其的做功效率与同时期压缩机150对冷媒的做功效率基本匹配且维持高效,从而提升相变蓄能换 热装置对冷媒冷量的换热效率,降低换热损失,实现缩短再生周期的同时兼顾提升再生模式下空调设备运行能效的目的,从而实现产品节能减排。
且由于相变蓄能换热装置在相变区内温度波动小,设置相变蓄能换热装置与冷媒进行相变蓄能换热可以保持蒸发温度和冷凝温度的稳定,同时利于控制空调设备运行在理想的蒸发温度和冷凝温度,实现近似卡诺循环,从而提高空调设备的制冷效率。
优选地,压缩机150在排气口151与第四接口122连通的情况下的运行频率低于其在排气口152与第二接口112连通的情况下的运行频率。
举例而言,在制冷模式下,换向装置160使排气口151与第四接口122连通,并使回气口152与第二接口112连通;在再生模式下,换向装置160使回气口152与第四接口122连通,并使排气口151与第二接口112连通。
其中,压缩机150在制冷模式下的运行频率低于其在再生模式下的运行频率,这样,在再生模式下,控制压缩机150高频运行以相应提升再生速率,缩短再生耗时量,在制冷模式下,通过降低压缩机150频率,相应延长制冷模式运行周期,从而在整体时间轴上提升制冷周期时长比重,提升制冷连续性,从而提升产品的使用体验,且其中,由于相变蓄能换热装置进行相变蓄能具有潜热大、温度稳定特点,降低压缩机150在制冷模式下的运行频率后,不仅不会引起制冷量不足的问题,反之,可以更充分地利用相变蓄能换热装置进行相变蓄能温度稳定性好的特点来相应保证室内制冷温度稳定性,并避免室内制冷温度偏低、制冷生硬等问题,实现提升产品舒适度,且本申请采用相变蓄能换热装置,较之一般风冷换热形式,可利用相变蓄能换热装置内用于蓄能的相变物质较之一般散热风而言温度更低的特点来加大对冷媒的做功量,从而相应降低该模式下压缩机150对冷媒的压缩做功需求,实现降低空调设备在制冷模式下的压缩运行能耗,设计得当时甚至可实现将压缩机150在该模式下的压缩做功量的需求降至为零,使压缩机150起到对冷媒驱动作用即可,降低能耗的效果明显,进一步提升产品的节能减排效果。
总体来讲,本设计中的空调设备,相变蓄能换热装置再生周期更短,制冷连续性效果更好,且在缩短再生周期、延长制冷周期的同时,能兼顾实现其室内制冷温度稳定并避免制冷温度偏低的生硬制冷情况,使得再生模式和制冷模 式之间的调和性更好,产品能效更高,使用体验也更佳。
进一步地,在排气口151与第四接口122连通的情况下(具体例如空调设备运行制冷模式的情况),压缩机150以预设低频区间内的频率运行;
在排气口151与第二接口112连通的情况下(具体例如空调设备运行再生模式的情况),压缩机以预设高频区间内的频率运行。
可以理解的是,预设低频区间相对于预设高频区间而言频率值更低。
在本方案中,设置空调设备运行制冷模式时,压缩机150以预设低频区间内的频率运行,具体如,使空调设备的控制器(如微处理器、中央模块等)在检测到空调设备当前运行的模式为制冷模式,或者控制器检测到来自于操作终端(如空调设备操作面板、遥控器、手机终端、电脑终端等)等发出的用于控制空调设备运行制冷模式的指令时,控制器相应控制压缩机150的运行频率在预设低频区间内浮动,其中,由于相变蓄能换热装置进行相变蓄能,与冷媒换热效率可更高,且温度稳定性好,可以保证系统冷凝高效、冷凝温度稳定,以此,控制压缩机150的运行频率在预设低频区间这一范围内浮动,压缩机150频率不会随室温等其他因素有过大的波动,对于相变蓄能换热装置采用相变材料进行蓄能的情况,这可利于维持相变材料内部导热效率与相变材料向冷媒的吸热效率基本均衡,使相变材料与冷媒之间的换热效率可基本稳定在一个与该预设低频区间对应的高效状态,提升空调设备能效,且有利于对相变材料进行保护,避免相变材料内部导热效率滞后于其与冷媒之间传热效率引起局部过热等不良情况,提升产品可靠性,且也可使相变材料吸热方式驱动相变蓄能换热装置对冷媒冷凝做功和压缩机150对冷媒压缩做功达到良好的适配协调,如冷凝做功部分做功量大时,压缩机150做功可相应小些,避免不必要的能源浪费,利于资源利用效率的最大化,也避免制冷效果太过极端生硬,舒适感好,从而在实现提升舒适度的同时,实现综合提升空调设备的运行能效的目的;设置空调设备运行再生模式时,压缩机150以预设高频区间内的频率运行,具体如,空调设备的控制器在检测到空调设备当前运行的模式为再生模式,或者控制器检测到来自于操作终端(如空调设备操作面板、遥控器、手机终端、电脑终端等)等发出的用于控制空调设备运行再生模式的指令时,控制器相 应控制压缩机150以预设低频区间内的频率运行,这样,可使得制冷模式中相变蓄能换热装置对冷媒的吸热速率整体低于再生模式中相变蓄能换热装置对冷媒放热速率,使得制冷时长比重加大、再生时长比重减少,提升制冷连续性,产品使用更舒适度,且利于促使制冷模式和再生模式各自维持使之高效运行的频率,再生模式和制冷模式之间的调和性更好,产品能效更高。
优选地,换向装置160包括四通阀,更具体地,四通阀与排气口151、回气口152、第二接口112及第四接口122连通,其中,空调设备运行制冷模式时,四通阀内部切换控制排气口151与第四接口122导通,且控制回气口152与第二接口112导通;空调设备运行再生模式时,四通阀内部切换控制回气口152与第四接口122导通,且控制排气口151与第二接口112导通,该结构简单,且控制准确、可靠。
在本申请的一个实施例中,相变蓄能换热装置包括相变材料及第二换热器120,第二换热器120能供冷媒流通,并且具有供冷媒进出的该第三接口121和第四接口122,第二换热器120与相变材料之间能换热,以使得相变材料对流经第二换热器120的冷媒的热量进行吸收和储存。
上述实施例中,可选地,相变材料为固液相变材料或汽液相变材料。
本申请中进一步优选采用冰作为相变材料,起到提升相变换热能力和节省体积的目的,具体地,相变材料在空调系统蓄冷的应用已有相关研究,但较之其他相变材料,由于冰蓄冷要求的蒸发温度低(低于水的冰点0℃),但比冰点高、且适用于制冷系统的相变材料(相变温度在5-50℃之间)的储能密度远低于冰的蓄冷密度(约330kJ/L),如在冷量大于1kW的制冷系统中应用,体积偏大,影响产品的紧凑性,本申请采用冰作为相变材料相变换热能力和体积紧凑性均可得到保证。当然,这也仅是本设计的优选方案,本领域技术人员根据需求也可以对相变材料种类做相应调整。
在本申请的一个优选实施例中,如图3所示,相变蓄能换热装置具有容器件130,相变材料被容置于容器件130中,其中,第二换热器120与容器件130之间通过可拆卸连接结构相连,使第二换热器120与容器件130之间能组装或拆分。这样,使产品除了可利用再生模式实现对相变材料再 生之外,还可选择将容器件130从第二换热器120上拆下置于适宜其再生的位置处(例如冰箱中或凉爽的环境中等),促进容器件130内相变材料利用环境实现自然再生,甚至,也可通过拆卸后更换新的容器件130或更换容器件130中的相变材料实现更换再生,达到可持续制冷的目的。
具体如,相变材料蓄满热量成为液相后,可将容器件130拆下,并将容器件130中的液相相变材料导出,换成固相相变材料,从而可以使得空调设备能重新以制冷模式运行。当用户不需立即使用空调设备时,也可把含有液相相变材料的容器件130放在通风较好的环境中自然散热,冷却相变材料,使得相变材料由液相转变成固相再生等,能耗更低。
举例而言,如图3所示,容器件130包括壳腔131及填充在壳腔131内的相变材料,其中,可拆卸连接结构包括形成在壳腔131上的插接通道132,第二换热器120包括换热管,换热管能插入到插接通道132内并能退出插接通道132实现第二换热器120与容器件130之间装卸。其中,在壳腔131上设有插接通道132使壳腔131与第二换热器120的换热管形成插接形式的可拆卸装配,具有结构简单、加工方便,且拆装使用简便的优点,且本结构中换热管与插接通道132插接的形式可利于提升换热管与壳腔131中相变材料的有效对应面积,提升对换热管的散热效率。
上述任一实施例中,当没有采用冰作为相变材料时,相变材料优选采用相变温度为15℃~40℃的相变材料,本领域技术人员可从现有相变材料中满足相变温度为15℃~40℃的相变材料中进行具体选择,此处不再一一列举,其中,通过设置相变材料的相变温度为15℃~40℃,可利于提升设备再生模式和制冷模式之间的调和性,使空调设备在其再生模式和制冷模式下都能以较高的效率运行,提升整机综合运行能效,利于促进实现产品节能减排。更优选地,相变材料的相变温度为17℃~30℃,进一步优选地,相变材料的相变温度为20℃~25℃。
可以理解的是,相变温度为相变材料在不同相之间转变时的临界温度,例如,对于固液相变材料,可理解为相变材料固相转变为液相(液相转变为固相也如此)时的临界温度,对于汽液相变材料,可理解为相变材料液相转变为汽相(汽相转变为液相也如此)时的临界温度。
上述任一实施例中,优选地,空调设备为移动空调,可以理解的是,传统移动空调中,在第二换热器120处采用风冷换热并利用粗连接管将热气排放到远离移动空调的位置,该粗连接管的设置会导致移动空调的移动性降低,影响使用体验,而本方案中第二换热器120处采用相变材料吸热冷凝,从而免去了向外散热的粗连接管路,可使移动空调的使用更方便、灵活,且本移动空调向室内制冷时其第二换热器120释放的热量不会传递到室内,制冷使用体验感好,此外,相变材料再生时,可灵活地将移动空调转移到室外或其他不会影响到用户体验地方,使移动空调以再生模式运行,且本方案中可通过调高压缩机150频率可以极大地缩短再生周期,以在短暂地中止制冷后使得快速完成再生的产品可重回室内再次用于制冷,室内制冷环境得到持续,提升产品的使用体验。
上述任一实施例中,如图1所示,冷媒管路包括第一单向节流支路,该第一单向节流支路与第一接口111及第三接口121连通,用于将来自于相变蓄能换热装置的冷媒节流后输往第一换热器110,更具体如将来自于第二换热器120的冷媒节流后输往第一换热器110,其中,通过对冷媒节流可以提升第一换热器110处的蒸发效率,从而能提升制冷效率,确保满足用户制冷效率需求。
进一步地,如图2所示,冷媒管路还包括第二单向节流支路,该第二单向节流支路与第一接口111及第三接口121连通,用于将来自于第一换热器110的冷媒节流后输往相变蓄能换热装置,更具体如将来自于第一换热器110的冷媒节流后输往第二换热器120,这样,当空调设备制冷运行一段时间后相变材料出现吸热饱和或接近吸热饱和而需要使相变材料重新再生以恢复吸热能力时,利用第二单向节流支路对冷媒节流后送往第二换热器120,可以提升第二换热器120处的蒸发效率,提升对相变材料的再生效率,实现缩短再生周期的目的。
优选地,冷媒经第一单向节流支路节流后的压降小于经第二单向节流支路节流后的压降,更具体如,控制第一单向节流支路上起到节流作用的毛细管的长度短于第二单向节流支路上起到节流作用的毛细管的长度,或如,控制第一单向节流支路上起到节流作用的节流阀的开度大于第二单向 节流支路上起到节流作用的节流阀的开度等。
在本方案中,设计在制冷模式中发挥节流作用的第一单向节流支路的节流压降小于在再生模式中发挥节流作用的第二单向节流支路的节流压降,这样,制冷模式下不会出现深度节流,也即相对于第二单向节流支路而言,第一单向节流支路上不会出现深度节流,这对于室内的理想蒸发温度的维持效果更好,不会产生生硬的制冷效果,冷风更柔和舒适,也可以减轻制冷模式下第二换热器120处的冷凝负荷,相变材料的可选择范围相应越广,同时,相变材料与第二换热器120之间换热效率更高,且对相变材料的冷量利用率也更高,这样,整个空调设备的能量损失减小,运行能效更高,而对于再生模式,第二单向节流支路的节流深度较大,这样,相变材料的再生进程加快,实现缩短再生周期,可利于降低再生过程的能量损失,且能实现相变材料较低的蓄冷温度,更能满足制冷工况下第二换热器120的冷凝需求,总体来讲,通过本设计使相变材料的释冷和再生周期存在差异,能综合促使空调设备朝着提升能效方向推进,利于实现空调设备能效提升。
上述任一实施例中,冷媒管路还包括连通支路(图中未示出),具体地,连通支路与第一接口111及第三接口121连通,连通支路导通的情况下将第一接口111与第三接口121接通,更具体如,使连通支路与第一单向节流支路之间形成并联关系。
其中,在空调设备制冷模式下,当检测到第二换热器120的第三接口121处的冷媒温度低于室温且具有一定的温差时,利用连通支路可以将第三接口121处排出的冷媒直接经第一接口111排入第一换热器110中进行蒸发,而使冷媒进入第一换热器110前无需经过节流,这样冷媒在第一换热器110中进行蒸发过程时不会产生生硬的制冷效果,冷风更柔和舒适,尤其在无需使室内快速降温或对制冷度需求不太高的情况,可提升制冷舒适度,且这样的模式中第二换热器120处的冷凝负荷小,这样可以充分利用相变材料在相变温度区间内温度能保持稳定的特点提升蒸发温度和冷凝温度的稳定性,利于维持房间温度舒适,且对相变材料冷量的利用率更高,利于保证空调设备运行高效性。
具体如,连通支路包括连接第一接口111及第三接口121的冷媒管, 且该冷媒管上设有控制其导通或截止的阀门。
具体实施例1(如图1和图2所示)
空调设备为移动空调,具体包括第一换热器110、第二换热器120、相变材料、风扇140、压缩机150和换向装置160等。
第一换热器110为风冷换热器,风扇140用于驱动气流与第一换热器110换热。
相变材料设在第二换热器120表面,并能与第二换热器120换热。
第一换热器110具有两个用于供冷媒流通的接口,分别为第一接口111和第二接口112,第一接口111和第二接口112中的一个为供冷媒进入第一换热器110的冷媒入口,另一个为供冷媒排出的冷媒出口,当然,该处关于冷媒入口和冷媒出口的定义并不绝对,具体需根据制冷和再生工况对第一接口111和第二接口112及冷媒入口和冷媒出口进行区分,并在制冷和再生工况切换时进行对调理解,第二换热器120具有两个用于供冷媒流通的接口,分别为第三接口121和第四接口122,该第三接口121和第四接口122与前述中第一接口111和第二接口112可做类似理解。
压缩机150为变频压缩机,也即本领域技术人员可以理解的其运行频率可调节的压缩机,压缩机150具有排气口151和回气口152,换向装置160为四通阀,四通阀包括四个接口,四通阀的其中两个接口对应连接压缩机150的回气口152和排气口151,四通阀的另外两个接口对应连接第二换热器120的第四接口122和第一换热器110的第二接口112,如图1所示,空调设备运行制冷模式时,四通阀控制排气口151与第二换热器120的第四接口122之间导通,且控制回气口152与第一换热器110的第二接口112之间导通,如图2所示,空调设备运行再生模式时,四通阀控制回气口152与第二换热器120的第四接口122之间导通,且控制排气口151与第一换热器110的第二接口112之间导通。
另外,第一换热器110的第一接口111和第二换热器120的第三接口121之间通过冷媒管路连接,具体地,冷媒管路包括第一单向节流支路和第二单向节流支路,其中,第一单向节流支路与第一接口111及第三接口121连通,其具体包括实现由第二换热器120的第三接口121向第一换热 器110的第一接口111进行单向导通逆向截止的第一单向阀172及用于发挥节流功能的第一毛细管171,第二单向节流支路与第一接口111及第三接口121连通,其具体包括实现由第一换热器110的第一接口111向第二换热器120的第三接口121进行单向导通逆向截止的第二单向阀174及用于发挥节流功能的第二毛细管173,第一毛细管171的长度短于第二毛细管173,以使得冷媒经第一单向节流支路节流后的压降小于经第二单向节流支路节流后的压降,这样可使制冷模式和再生模式都在最佳的蒸发温度和冷凝温度下运行,从而提高循环效率。
如图1所示,当空调设备运行制冷模式时,空调设备移动到室内需要制冷的环境中,此时,四通阀的电磁线圈处于断电状态,如图1所示,压缩机150的排气口151与第二换热器120连通,压缩机150的回气口152与第一换热器110连通,此时第二换热器120为系统的冷凝器,第一换热器110为系统蒸发器,冷媒经第一换热器110吸收室内的热量以实现制冷效果,第一换热器110中的冷媒经四通阀后沿压缩机150的回气口152进入压缩机150,并在压缩机150内被压缩后经四通阀进入第二换热器120,其中,第二换热器120发出的热量被相变材料吸收,由于相变材料在相变区的温度变化很小,从而可以保证空调设备冷凝温度稳定,同时,相变材料吸热到达一定程度时由固态变成液态。在第二换热器120之后,冷媒再流经第一毛细管171和第一单向阀172,经过节流后再次进入第一换热器110,以此形成一个闭路蓄热制冷循环。该制冷模式下压缩机150以较低频率运行,但频率可以在预设低频区间内调节,实现用户选择不同的制冷功率,可以理解的是,预设低频区间相对于预设高频区间而言,保证预设低频区间内取值低于预设高频区间内取值即可,置于其具体取值范围,本领域技术人员完全可以综合相变材料、出风温度等参数的设计进行适宜的调整,在此不再详述,同样地,优选该制冷模式下风扇140以较低频率运行。
如图2所示,当空调设备运行再生模式时,空调设备移动到室外环境,此时,四通阀电磁线圈处于通电状态,如图2所示,压缩机150的排气口151与第一换热器110连通,压缩机150的回气口152与第二换热器120连通,此时,第二换热器120为系统的冷凝器,第一换热器110为系统蒸 发器。冷媒经第二换热器120吸收相变材料的储热,使得相变材料由液态变为固态,即放热可再次蓄热,实现相变材料再生,随后,第二换热器120中的冷媒经四通阀后沿压缩机150的回气口152进入压缩机150,并在压缩机150内被压缩后经四通阀进入第一换热器110,在第一换热器110中,冷媒通过第一换热器110与空气换热降温,随后,再流经第二毛细管173和第二单向阀174,经过节流后再次进入第二换热器120,以此形成一个闭路放热再生循环。该再生模式下压缩机150和风扇140以较高频率运行,以便较快的速度把相变材料的储热导到室外环境中,具体如压缩机150以预设高频区间内的频率运行,风扇140以高于其在制冷模式下的频率运行,提升相变材料的放热再生速度。
本方案中,使用相变材料在相变区温度波动小的特性控制蒸发温度和冷凝温度的稳定,以实现近似卡若循环,从而提高系统效率,另外,为了使得系统在两种模式下都以较高的效率运行,所使用相变材料的相变温度优选在15℃到40℃之间,相变可以是固液或汽液相变材料,所用的毛细管也可以用电子膨胀阀代替,电子膨胀阀通过调节开度来调整两种模式下的最佳节流深度。
具体实施例2(如图3所示)
除上述具体实施例1的特征以外,进一步设置用于容纳相变材料的容器体与第二换热器120通过可拆卸连接结构相连,使第二换热器120与容器件130之间能组装或拆分。
更具体地,如图3所示,第二换热器120可具体为斜插管式换热器(更有选为无翅片的斜插管),其换热管优选为一体式加工而成,从而方便使得包含相变材料的容器体与斜插换热器组装和分离,且不容易出现冷媒泄漏,相变材料蓄满热量时,也可以说释冷效果低于对其的释冷需求时,可将容器体的壳腔131中的液相相变材料导出,换成固相相变材料填充入壳腔131中,从而可以使得空调设备能够以制冷模式继续运行,当用户不需立即使用空调设备时,也可把拆下的含有液相相变材料的壳腔131放在通风较好的环境,壳腔131及其内相变材料自然散热,实现冷却相变材料,使得相变材料由液相转变成固相,实现相变材料再生。
在本申请中,术语“第一”、“第二”、“第三”、“第四”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种空调设备,其中,所述空调设备包括:
    第一换热器,为风冷换热器,具有供冷媒进出的第一接口和第二接口;
    相变蓄能换热装置,具有供冷媒进出的第三接口和第四接口,所述相变蓄能换热装置配置为能供冷媒流通,并且对流经其的冷媒的热量进行吸收和储存;
    冷媒管路,与所述第一接口及所述第三接口连通;
    压缩机,为变频压缩机,其具有排气口和回气口;
    换向装置,与所述排气口、所述回气口、所述第二接口及所述第四接口连接,所述换向装置配置为使所述排气口与所述第四接口连通,并使所述回气口与所述第二接口连通;
    所述换向装置还配置为使所述回气口与所述第四接口连通,并使所述排气口与所述第二接口连通。
  2. 根据权利要求1所述的空调设备,其中,
    所述压缩机在所述排气口与所述第四接口连通的情况下的运行频率低于其在所述排气口与所述第二接口连通的情况下的运行频率。
  3. 根据权利要求1或2所述的空调设备,其中,
    在所述排气口与所述第四接口连通的情况下,所述压缩机以预设低频区间内的频率运行;
    在所述排气口与所述第二接口连通的情况下,所述压缩机以预设高频区间内的频率运行。
  4. 根据权利要求1至3中任一项所述的空调设备,其中,
    所述换向装置包括四通阀。
  5. 根据权利要求1至4中任一项所述的空调设备,其中,
    所述相变蓄能换热装置包括相变材料及第二换热器,所述第二换热器能供冷媒流通,并且具有供冷媒进出的所述第三接口和所述第四接口,所述第二换热器与所述相变材料之间能换热,以使得所述相变材料对流经所 述第二换热器的冷媒的热量进行吸收和储存。
  6. 根据权利要求5所述的空调设备,其中,
    所述相变材料的相变温度为15℃~40℃。
  7. 根据权利要求5或6所述的空调设备,其中,
    所述相变材料为固液相变材料或汽液相变材料。
  8. 根据权利要求5至7中任一项所述的空调设备,其中,
    所述相变蓄能换热装置具有容器件,所述相变材料被容置于所述容器件中,其中,所述第二换热器与所述容器件之间通过可拆卸连接结构相连,使所述第二换热器与所述容器件之间能组装或拆分。
  9. 根据权利要求1至8中任一项所述的空调设备,其中,所述冷媒管路包括:
    第一单向节流支路,与所述第一接口及所述第三接口连通,第一单向节流支路配置为将来自于所述相变蓄能换热装置的冷媒节流后输往所述第一换热器。
  10. 根据权利要求9所述的空调设备,其中,所述冷媒管路还包括:
    第二单向节流支路,与所述第一接口及所述第三接口连通,第二单向节流支路配置为将来自于所述第一换热器的冷媒节流后输往所述相变蓄能换热装置。
  11. 根据权利要求10所述的空调设备,其中,
    所述第一单向节流支路与所述第二单向节流支路配置为满足:冷媒经所述第一单向节流支路节流后的压降小于经所述第二单向节流支路节流后的压降。
  12. 根据权利要求1至11中任一项所述的空调设备,其中,所述冷媒管路还包括:
    连通支路,与所述第一接口及所述第三接口连通,所述连通支路导通的情况下将所述第一接口与所述第三接口接通。
  13. 根据权利要求1至12中任一项所述的空调设备,其中,
    所述空调设备为移动空调。
PCT/CN2018/122460 2018-08-27 2018-12-20 空调设备 WO2020042459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810982390.5A CN110864469B (zh) 2018-08-27 2018-08-27 空调设备
CN201810982390.5 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020042459A1 true WO2020042459A1 (zh) 2020-03-05

Family

ID=69644958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122460 WO2020042459A1 (zh) 2018-08-27 2018-12-20 空调设备

Country Status (2)

Country Link
CN (1) CN110864469B (zh)
WO (1) WO2020042459A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556242A (zh) * 2020-12-10 2021-03-26 珠海格力电器股份有限公司 蓄热结构、换热器组件、热泵系统及除霜方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046349A1 (fr) * 2008-10-23 2010-04-29 Valeo Systemes Thermiques Echangeur de chaleur apte à refroidir un fluide réfrigérant qui circule à l'intérieur dudit échangeur et comportant au moins un matériau à changement de phase
KR20110073764A (ko) * 2009-12-24 2011-06-30 엘지전자 주식회사 이동식 축열형 공기조화기
CN204227568U (zh) * 2014-10-28 2015-03-25 广东美的制冷设备有限公司 空调系统
CN104566649A (zh) * 2014-12-30 2015-04-29 广东美的制冷设备有限公司 空调器及其控制方法
CN105864907A (zh) * 2016-04-14 2016-08-17 青岛海尔空调电子有限公司 移动辐射换热装置
CN106524367A (zh) * 2016-12-30 2017-03-22 广东申菱环境系统股份有限公司 一种储能式移动空调
CN206338899U (zh) * 2016-12-30 2017-07-18 广东申菱环境系统股份有限公司 一种储能式移动空调
CN207196983U (zh) * 2017-07-13 2018-04-06 浙江三花智能控制股份有限公司 空调系统和具有其的空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504437B2 (ja) * 1987-01-30 1996-06-05 株式会社東芝 空調機
CN202361855U (zh) * 2011-11-15 2012-08-01 中山联昌电器有限公司 一种蓄能器及应用该蓄能器的移动空调
US9643468B2 (en) * 2014-08-13 2017-05-09 Fca Us Llc Regenerative vehicle air conditioning system
CN204421248U (zh) * 2014-12-30 2015-06-24 广东美的制冷设备有限公司 空调器
CN204730374U (zh) * 2015-05-29 2015-10-28 广东美的制冷设备有限公司 一种蓄能型空调系统
CN106369721A (zh) * 2016-10-26 2017-02-01 西安交通大学 一种家用小型蓄能空调器系统
CN106839050B (zh) * 2017-03-24 2022-05-20 江西三龙电气有限公司 一种可实现电网规模调峰的供能系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046349A1 (fr) * 2008-10-23 2010-04-29 Valeo Systemes Thermiques Echangeur de chaleur apte à refroidir un fluide réfrigérant qui circule à l'intérieur dudit échangeur et comportant au moins un matériau à changement de phase
KR20110073764A (ko) * 2009-12-24 2011-06-30 엘지전자 주식회사 이동식 축열형 공기조화기
CN204227568U (zh) * 2014-10-28 2015-03-25 广东美的制冷设备有限公司 空调系统
CN104566649A (zh) * 2014-12-30 2015-04-29 广东美的制冷设备有限公司 空调器及其控制方法
CN105864907A (zh) * 2016-04-14 2016-08-17 青岛海尔空调电子有限公司 移动辐射换热装置
CN106524367A (zh) * 2016-12-30 2017-03-22 广东申菱环境系统股份有限公司 一种储能式移动空调
CN206338899U (zh) * 2016-12-30 2017-07-18 广东申菱环境系统股份有限公司 一种储能式移动空调
CN207196983U (zh) * 2017-07-13 2018-04-06 浙江三花智能控制股份有限公司 空调系统和具有其的空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556242A (zh) * 2020-12-10 2021-03-26 珠海格力电器股份有限公司 蓄热结构、换热器组件、热泵系统及除霜方法

Also Published As

Publication number Publication date
CN110864469A (zh) 2020-03-06
CN110864469B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN104534593B (zh) 一种机房节能空调装置及制冷方法
CN102798184B (zh) 一种热管热泵复合系统
CN101545689B (zh) 空气调节装置
CN102607122A (zh) 双动力热管循环机组
TWI787989B (zh) 電動汽車集成熱管理系統及實現方法
WO2022198944A1 (zh) 温度调节装置、空调系统、控制方法和可读存储介质
CN203375582U (zh) 一种家用节能系统
CN204987335U (zh) 一种氟泵双循环自然冷源蓄冷系统的冷冻水型机房空调
WO2020042459A1 (zh) 空调设备
CN206875639U (zh) 一种办公楼综合型集中制冷系统
CN103335440A (zh) 二次节流中间完全冷却双工况制冷系统
CN206439954U (zh) 一种机房制冷用双回路水冷热管风冷空调一体机
KR101204300B1 (ko) 이원 사이클 히트펌프시스템 및 이에 따른 히트펌프시스템의 제상방법
WO2014087584A1 (ja) 冷蔵庫
CN214665328U (zh) 蒸发式冷水机组
CN112484226B (zh) 空调及其控制方法、运行控制装置及存储介质
CN204534926U (zh) 多联制冷系统
CN203478671U (zh) 双冷凝系统的空调设备
CN103335436B (zh) 一次节流中间完全冷却变流量双级压缩制冷系统
JP2012141097A (ja) 熱源システムおよびその制御方法
CN102734878A (zh) 一种专用于毛细管辐射空调系统的双温高效空气源热泵机组
CN112682976A (zh) 蒸发式冷水机组及其控制方法
CN106765782B (zh) 一种太阳能与地热能联合应用的酒窖空调系统
CN104896630A (zh) 多联制冷系统及其控制方法
CN220524386U (zh) 双冷联合热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931695

Country of ref document: EP

Kind code of ref document: A1