WO2022198944A1 - 温度调节装置、空调系统、控制方法和可读存储介质 - Google Patents

温度调节装置、空调系统、控制方法和可读存储介质 Download PDF

Info

Publication number
WO2022198944A1
WO2022198944A1 PCT/CN2021/119389 CN2021119389W WO2022198944A1 WO 2022198944 A1 WO2022198944 A1 WO 2022198944A1 CN 2021119389 W CN2021119389 W CN 2021119389W WO 2022198944 A1 WO2022198944 A1 WO 2022198944A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
heat exchanger
port
outdoor air
Prior art date
Application number
PCT/CN2021/119389
Other languages
English (en)
French (fr)
Inventor
丁云霄
苏林
颜利波
雷海涛
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2022198944A1 publication Critical patent/WO2022198944A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application belongs to the technical field of temperature adjustment, and in particular relates to a temperature adjustment device, an air conditioning system, a control method and a readable storage medium.
  • Data centers operate year-round and continuously generate large amounts of heat. In order to cool the data center and dissipate heat, it needs to consume a lot of energy, and the energy consumption of cooling and heat dissipation accounts for about 30% of the total energy consumption of the data center. In addition, the heat generated by the operation of the data center is a rich waste heat resource. At present, some data centers in the industry use indirect evaporative cooling technology to cool down and dissipate heat, and also have the function of waste heat recovery, but their structure is complex, the number of components is large, and the space is large.
  • the embodiments according to the present application aim to improve at least one of the technical problems existing in the prior art or the related art.
  • an object of the embodiments according to the present application is to provide a temperature adjustment device.
  • Another object of the embodiments according to the present application is to provide an air conditioning system.
  • Another object of the embodiments according to the present application is to provide a control method.
  • Another object of the embodiments according to the present application is to provide another temperature adjustment device.
  • Another object of embodiments according to the present application is to provide a readable storage medium.
  • an embodiment of the first aspect of the present application provides a temperature adjustment device, comprising: an evaporative cooling module, comprising: a heat exchange core for heat exchange between indoor air and outdoor air, the heat exchange core It has an indoor air supply port and an outdoor air outlet;
  • the compression module includes: a compressor; a first heat exchanger is arranged on one side of the indoor air supply port, and the first heat exchanger is connected with the suction port of the compressor; the first throttling component , the first end of the first throttling member is connected to the first heat exchanger; the second heat exchanger is located on one side of the outdoor air outlet; the second throttling member, the first end of the second throttling member is connected to the first The second heat exchanger is connected;
  • the reversing valve has a first interface, a second interface and a third interface, the first interface is connected with the exhaust port of the compressor, the second interface is connected with the second heat exchanger, and the third interface is connected with The suction port of the compressor is
  • An embodiment according to a second aspect of the present application provides an air conditioning system, comprising: the temperature adjustment device according to the above-mentioned first aspect.
  • An embodiment according to a third aspect of the present application provides a control method for the temperature adjustment device of the first aspect, including: acquiring an ambient temperature and a user's heat demand; and determining the temperature adjustment according to the ambient temperature and the user's heat demand The operating mode of the device.
  • An embodiment according to the fourth aspect of the present application provides another temperature adjustment device, including: a memory and a processor, wherein the memory stores programs or instructions that can be executed on the processor, and the processor executes the program or instructions to achieve The steps of the control method of the above-mentioned third aspect.
  • An embodiment according to a fifth aspect of the present application provides a readable storage medium on which programs or instructions are stored, and when the program or instructions are executed by a processor, the steps of the control method of the third aspect are implemented.
  • an evaporative cooling module and a compression module are provided, and the compression module includes a reversing valve, which is switched through the interface of the reversing valve and controls the first throttling member and the second throttling member It can realize different functions of the compression module, which can not only ensure the cooling and heat dissipation of the heat source, but also make full use of the heat of the heat source to exchange heat through the third heat exchanger and the heat exchange medium to realize the waste heat recovery of the heat source.
  • the heat source when the outdoor temperature is low, the heat source can be cooled and dissipated directly through the evaporative cooling module, and the compression module can provide the heat of its refrigerant to the third heat exchanger to heat the heat exchange medium and realize the full utilization of thermal energy.
  • the temperature adjustment device provided by the embodiment of the present application on the basis of the conventional evaporative cooling module and compression module, only needs to add a small number of components such as a reversing valve and a second throttling component to realize the waste heat recovery of the heat source.
  • the temperature adjustment device provided by the embodiment of the present application has a simpler structure, less space occupation, lower equipment cost, and more accurate residual heat temperature control. The waste heat discharged from the heat source can be more fully recovered.
  • FIG. 1 is a schematic diagram of the working principle of a temperature adjustment device according to an embodiment provided by the present application
  • FIG. 2 is a schematic diagram of the working principle of a temperature adjusting device according to another embodiment provided by the present application.
  • FIG. 3 is a schematic diagram of the working principle of a temperature adjustment device according to another embodiment provided by the present application.
  • FIG. 4 is a schematic diagram of the working principle of a temperature adjustment device according to another embodiment provided by the present application.
  • FIG. 5 is a schematic structural block diagram of a temperature adjusting device according to an embodiment provided by the present application.
  • FIG. 6 is a schematic structural block diagram of an air conditioning system according to an embodiment provided by the present application.
  • FIG. 7 is a schematic structural block diagram of a temperature adjustment device according to another embodiment provided by the present application.
  • FIG. 8 is a schematic work flow diagram of a control method according to an embodiment provided by the present application.
  • FIG. 9 is a schematic work flow diagram of a control method according to an embodiment provided by the present application.
  • 10 temperature adjustment device 100 evaporative cooling module, 102 heat exchange core, 104 indoor return air outlet, 106 indoor air supply outlet, 108 outdoor air inlet, 110 outdoor air outlet, 112 sprinkler outlet, 114 water pipe, 116 water pump, 118 water connection Disc, 140 Compression Module, 142 Compressor, 144 Reversing Valve, 150 First Heat Exchanger, 152 First Throttle Part, 154 First Fan, 160 Second Heat Exchanger, 162 Second Throttle Part, 164 Section Two fans, 170 third heat exchangers, 172 third throttling components, 174 refrigerant pipelines, 176 water channels, 180 capillaries, 20 air conditioning systems, 200 shells, 300 storages, 302 processors.
  • a temperature adjustment device 10 including an evaporative cooling module 100 and a compression module 140 .
  • the evaporative cooling module 100 mainly uses outdoor cold air and water to exchange heat for indoor hot air for cooling
  • the compression module 140 mainly uses refrigerant for cooling or heating.
  • the evaporative cooling module 100 includes a heat exchange core 102 , and the heat exchange core 102 has an indoor air supply port 106 and an outdoor air outlet 110 .
  • the heat exchange core 102 is used for heat exchange between the indoor air and the outdoor air, so as to facilitate the heat exchange and cooling of the hot air caused by the indoor heat source through the outdoor cold air.
  • the indoor air heated by the heat source can be exchanged with the lower temperature outdoor cold air in the heat exchange core 102 heat, which reduces the temperature of the indoor air.
  • the cooled indoor air can be returned to the room through the indoor air supply port 106, thereby providing a relatively lower temperature environment for the indoor heat source, so that the heat source can cool down and dissipate heat in real time.
  • the heated outdoor air is returned to the outdoors through the outdoor air outlet 110, thereby bringing the heat of the heat source to the external environment. In this way, when the outdoor temperature is low, the heat source can be cooled and dissipated directly through the heat exchange between the outdoor air and the indoor air, without the need to use compression refrigeration, which is conducive to energy saving and consumption reduction.
  • the compression module 140 includes a compressor 142 , a first heat exchanger 150 , a second heat exchanger 160 , a first throttle member 152 , a second throttle member 162 , a reversing valve 144 and a third heat exchanger 170 .
  • the compressor 142 has a discharge port and a suction port.
  • the first heat exchanger 150 is arranged on one side of the indoor air supply port 106 of the heat exchange core 102 to facilitate indoor air supply through the indoor air supply port 106 to perform heat exchange.
  • the first heat exchanger 150 is also connected to the suction port of the compressor 142 .
  • the first end a of the first throttle member 152 is connected to the first heat exchanger 150 , and the second end b of the first throttle member 152 is connected to the second end f of the third heat exchanger 170 .
  • the second heat exchanger 160 is disposed on one side of the outdoor air outlet 110 of the heat exchange core 102 .
  • the first end c of the second throttle member 162 is connected to the second heat exchanger 160 , and the second end d of the second throttle member 162 is connected to the second end f of the third heat exchanger 170 .
  • the reversing valve 144 has a first port i, a second port j, and a third port k.
  • the first port i of the reversing valve 144 is connected to the discharge port of the compressor 142
  • the second port j is connected to the second heat exchanger 160
  • the third port k is connected to the suction port of the compressor 142 .
  • the first end e of the third heat exchanger 170 is connected to the exhaust port of the compressor 142
  • the second end f of the third heat exchanger 170 is connected to the second end b of the first throttle member 152
  • the second end f of the heat exchanger 170 is also connected to the second end d of the second throttle member 162, and the third heat exchanger 170 is used for exchanging heat with the heat exchange medium.
  • the temperature adjustment device 10 is provided with an evaporative cooling module 100 and a compression module 140, and the compression module 140 includes a reversing valve 144, which is switched through the interface of the reversing valve 144, and the first throttling component 152,
  • the control of the second throttling component 162 can realize different functions of the compression module 140, which can not only ensure the cooling and heat dissipation of the heat source, but also make full use of the heat of the heat source to heat the heat exchange medium through the third heat exchanger 170. Waste heat recovery from heat sources.
  • the evaporative cooling module 100 can directly cool the heat source and dissipate heat, and the compression module 140 can provide the heat of its refrigerant to the third heat exchanger 170 to heat the heat exchange medium and realize thermal energy. full use.
  • the temperature adjustment device 10 provided by the embodiment of the present application, on the basis of the conventional evaporative cooling module 100 and the compression module 140, only needs to add a small number of components such as the reversing valve 144 and the second throttling component 162 to realize the heat source. Waste heat recovery.
  • the temperature adjustment device 10 Compared with the evaporative cooling device in the related art, the temperature adjustment device 10 provided by the embodiment of the present application has a simpler structure, a smaller space occupation, lower equipment cost, and more accurate waste heat temperature control. , the waste heat discharged from the heat source can be more fully recovered.
  • the temperature adjustment device 10 can have a variety of different operating modes.
  • the heat source when the outdoor ambient temperature is low, the heat source can be cooled and dissipated by evaporative cooling, or the heat source can be cooled and dissipated by completely natural cooling, while the heat generated by the compression module 140 and the recovered waste heat of the heat source can be completely supplied to the third heat exchanger 170 .
  • the temperature adjustment device 10 adopts the mode of complete natural cooling + waste heat recovery, that is, the first operation mode, where natural cooling is performed while waste heat recovery is performed. It can be understood that when the indoor air supply temperature is less than or equal to the indoor air supply set temperature, the mode of complete natural cooling + waste heat recovery can be maintained all the time. As shown in FIG.
  • the second port j and the third port k of the reversing valve 144 are connected to make the second heat exchanger 160
  • the second throttling member 162 is opened and the first throttling member 152 is closed.
  • the high-temperature and high-pressure refrigerant generated by the operation of the compressor 142 is discharged from the exhaust port of the compressor 142 and then flows into the third heat exchanger 170 to exchange heat with the heat exchange medium.
  • the heat exchange medium is water
  • hot water can be provided to users through heat exchange.
  • the heat exchange medium is air, it can directly heat the user through heat exchange.
  • the refrigerant After the refrigerant exchanges heat with the heat exchange medium, the temperature decreases, and since the first throttling member 152 is closed, it can only flow to the second throttling member 162 . After being depressurized by the second throttling component 162 , the refrigerant becomes a liquid with low temperature and low pressure, and enters the second heat exchanger 160 . Since the second heat exchanger 160 is disposed at the outdoor air outlet 110, at this time, the air discharged from the outdoor air outlet 110 has undergone heat exchange with the indoor hot air, and the temperature rises.
  • the air outlet 110 When the air outlet 110 is discharged, it exchanges heat with the refrigerant liquid whose temperature has been reduced in the second heat exchanger 160, so as to transfer the heat of the heat source absorbed from the indoor hot air to the cooling in the second heat exchanger 160.
  • the refrigerant increases the temperature of the refrigerant.
  • the refrigerant in the second heat exchanger 160 flows to the reversing valve 144 after being heated up by heat exchange.
  • the second port j of the reversing valve 144 is communicated with the third port k, so that the refrigerant flows to the suction port of the compressor 142 through the second port j and the third port k, thereby returning the residual heat to the compressor 142 .
  • the waste heat is brought into the third heat exchanger 170 by the high temperature and high pressure refrigerant discharged from the compressor 142, so as to realize the recovery and utilization of the waste heat.
  • the cooling and heat dissipation of a heat source is completely realized by the exchange of outdoor cold air and indoor hot air.
  • the heat is brought to the outdoor air through the indoor air, and the outdoor air transfers heat to the refrigerant.
  • the compressor 142 and the third heat exchanger 170 transfer heat to the heat exchange medium, thereby realizing heat recovery.
  • Such a temperature adjustment device 10 can not only realize the cooling and heat dissipation of the heat source, but also can recycle the heat generated by the heat source. At the same time, the number of additional components is small, and the space occupied is small. Under the premise of satisfying the indoor air supply temperature and cooling capacity requirements , can make full use of the heat of the heat source, which is conducive to energy saving and consumption reduction.
  • the outdoor ambient temperature is low, which means that the outdoor inlet air temperature is lower than the critical temperature of the outdoor inlet air.
  • the outdoor inlet air temperature may include the outdoor inlet air dry bulb temperature and the outdoor inlet air wet bulb temperature, and either of these two temperatures is less than or equal to the critical value, that is, the outdoor inlet air dry bulb temperature is less than or equal to the outdoor inlet air critical dry bulb temperature.
  • the bulb temperature, or the outdoor air inlet wet bulb temperature is less than or equal to the outdoor air inlet critical wet bulb temperature, and either of the two is consistent, it can be regarded as the outdoor air inlet temperature is less than or equal to the outdoor air inlet critical temperature value, that is, the aforementioned outdoor ambient temperature lower case.
  • the temperature of the indoor supply air may be greater than the set temperature of the indoor supply air, or the outdoor air cannot cool the indoor return air to the required temperature after the heat exchange of the heat exchange core, for example, the indoor supply air set
  • the operation mode of the temperature adjustment device 10 needs to be replaced, and the mode of compression refrigeration combined with waste heat recovery is adopted, and the first heat exchanger 150 is used for supplementary refrigeration, so that the indoor air supply temperature can meet the requirements.
  • the second throttling member 162 is closed, the first throttling member 152 is opened, and the second port j and the third port k of the reversing valve 144 disconnect.
  • the refrigerant After the refrigerant flows out from the exhaust port of the compressor 142, it first enters the third heat exchanger 170 to exchange heat with the heat exchange medium to lower the temperature, and the temperature of the heat exchange medium increases. Then, the refrigerant flows to the first throttling member 152 , and then flows to the first heat exchanger 150 to exchange heat with the indoor air, taking away the heat of the indoor heat source, and finally flows back to the compressor 142 .
  • the outdoor ambient temperature is higher than the critical value.
  • the wet bulb temperature of the outdoor inlet air is greater than the critical wet bulb temperature of the outdoor inlet air.
  • the evaporative cooling module 100 can still be used for cooling, and the compression cooling can be operated at the same time for assistance, that is, the mode of vapor compression cooling + waste heat recovery, or vapor compression cooling. +Part of the waste heat recovery mode, which can be determined according to the user's demand for heat.
  • the vapor compression cooling + waste heat can be used. recycling pattern.
  • the compressor 142 is turned on to supplement refrigeration, and the indoor return air flowing out of the heat exchange core 102 continues to cool down.
  • the second port j and the third port k of the reversing valve 144 are connected. Both the first throttle member 152 and the second throttle member 162 are opened.
  • the refrigerant After the refrigerant is discharged from the discharge port of the compressor 142, it flows to the third heat exchanger 170, where it exchanges heat with the heat exchange medium, so as to provide heat to the user through the heat exchange medium.
  • the heat exchange in the third heat exchanger 170 is completed, the refrigerant flows in two paths.
  • the residual heat transferred by the exhaust air is returned to the compressor 142, and after being compressed by the compressor 142, the residual heat brought back by the two refrigerants is transferred to the heat exchange medium at the third heat exchanger 170 in the next cycle.
  • the first heat exchanger 150 and the second heat exchanger 160 recover waste heat from indoor supply air and outdoor exhaust air, respectively. It can be seen from this that since the heat exchange of the first heat exchanger 150 is not enough to meet the needs of users, waste heat is recovered from the first heat exchanger 150 and the second heat exchanger 160 at the same time, so as to recover more waste heat and improve the waste heat recovery rate, and try to meet the heat demand of users.
  • the outdoor air inlet wet bulb temperature is greater than the outdoor air inlet critical wet bulb temperature, and the heat demand of the user is small, that is, the heat demanded by the user is less than the heat supply of the temperature adjustment device, and only part of the waste heat needs to be recovered for use.
  • the mode of vapor compression refrigeration + partial waste heat recovery is adopted.
  • the compressor 142 In the vapor compression refrigeration + partial waste heat recovery mode, the compressor 142 still needs to be turned on to perform supplementary cooling, which facilitates recovery of part of the waste heat, and the excess heat is discharged to the outdoor environment through the outdoor air outlet 110 . As shown in FIG. 2 , the first port i and the second port j of the reversing valve 144 are connected, and the second port j and the third port k are disconnected. After the refrigerant flows out of the exhaust port of the compressor 142, it still flows to the third heat exchanger 170 all the way.
  • the first heat exchanger 150 exchanges heat with the indoor air discharged from the indoor air supply port 106 , takes away part of the heat from the heat source, and then returns to the suction port of the compressor 142 .
  • the other refrigerant after flowing out from the exhaust port of the compressor 142, flows to the second heat exchanger 160 through the first port and the second port j of the reversing valve 144, and exits the outdoor at the second heat exchanger 160.
  • the air discharged from the tuyere 110 exchanges heat, and is then depressurized by the second throttling member 162, and flows to the first throttling member 152. After being depressurized again together with the refrigerant flowing out of the discharge port of the compressor 142, it flows to the first throttling member 152.
  • Heater 150 exchanges heat and flows back to compressor 142 .
  • first throttling component 152 and/or the second throttling component 162 include at least any one of the following: a manual expansion valve, a floating ball expansion valve, a thermal expansion valve, and an electronic expansion valve.
  • the opening of at least one of the first throttle member 152 and the second throttle member 162 is adjustable.
  • the third heat exchanger 170 can be adjusted Control of heat exchange medium temperature.
  • the compression module 140 also includes a controller.
  • the controller is connected to the first throttling member 152 and/or the second throttling member 162 , and is used to control the opening degree of the first throttling member 152 and/or the second throttling member 162 .
  • the controller can automatically adjust the openings of the first throttling component 152 and the second throttling component 162 according to the ambient temperature and the heat demand of the user, so as to meet the requirements of the heat source for cooling and heat dissipation, Automatic and precise control of the temperature of the heat exchange medium of the third heat exchanger 170 can be achieved.
  • controller can also be connected to the compressor 142, so that the power of the compressor 142 can be adjusted by the controller to adjust the temperature of the heat exchange medium, which is beneficial to increase the temperature adjustment means.
  • the compression module 140 further includes a plurality of temperature sensors. Specifically, the compression module 140 further includes a first temperature sensor and a second temperature sensor, and both the first temperature sensor and the second temperature sensor are connected to the controller.
  • the first temperature sensor is used to acquire the temperature of the outdoor air intake, for example, the dry bulb temperature and/or the wet bulb temperature of the outdoor air intake.
  • the second temperature sensor is used to acquire the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170 .
  • the controller is also used to control the operation mode of the temperature adjustment device 10 according to the outdoor air intake temperature and the heat demand of the user.
  • the user's heat demand may be directly input by the user, or may be roughly determined according to some parameters. For example, according to the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170, the heat demand of the user is determined. It can be understood that, the lower the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170, the greater the heat demand of the user. As long as a critical temperature of the heat exchange medium is set, the heat demand of the user can be roughly determined. Specifically, when the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170 is less than or equal to the critical temperature of the heat exchange medium, it is determined that the user's heat demand is large, and generally all the waste heat is recovered. When the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170 is greater than the critical temperature of the heat exchange medium, and it is determined that the heat demand of the user is small, the waste heat is generally partially recovered.
  • the controller is further configured to control the opening degree of the first throttling member 152 and/or the second throttling member 162 according to the outdoor air intake temperature and the temperature of the heat exchange medium at the inlet end of the third heat exchanger 170 .
  • the cooling effect of the evaporative cooling module 100 is also poor, and the compressor 142 is often required to supplement cooling. Therefore, by detecting the outdoor ambient temperature, the operation mode of the equipment can be flexibly adjusted according to the outdoor temperature in a timely manner, thereby improving the cooling and heat dissipation effect and the waste heat recovery effect, which is conducive to energy saving and consumption reduction.
  • the pressure and temperature of the refrigerant can be adjusted, so as to realize the adjustment of the waste heat recovery effect and the temperature of the heat exchange medium, which is convenient for Waste heat recovery can also ensure the user's demand for heat.
  • the compression module further includes a third temperature sensor.
  • the third temperature sensor is connected to the controller.
  • the third temperature sensor is used to obtain the indoor supply air temperature.
  • more reference data can be provided when determining the operating mode of the temperature adjusting device 10 . For example, if the outdoor air inlet dry bulb temperature is less than or equal to the critical outdoor air inlet dry bulb temperature, but the indoor air supply temperature is greater than the indoor air supply critical temperature, it means that there may be a problem with the pipeline, and only relying on natural evaporative cooling cannot achieve the desired temperature. For the purpose of cooling down the heat source and dissipating heat, it is necessary to adjust the operating mode of the temperature adjustment device 10 to increase compression and refrigeration.
  • the compression module 140 further includes a third throttle component 172 .
  • the second end h of the third throttle member 172 is connected to the second end b of the first throttle member 152, and the second end h of the third throttle member 172 is also connected to the second end d of the second throttle member 162,
  • the first end g of the third throttle member 172 is connected to the second end f of the third heat exchanger 170 .
  • the refrigerant flowing out of the third heat exchanger 170 is depressurized first through the third throttling member 172, and then flows to the first throttling member 152 and the second throttling member 162 for a second reduction. pressure, which is beneficial to enhance the blood pressure reduction effect.
  • the third throttling component 172 is completely closed, and the second port j and the third port k of the reversing valve 144 are connected. At this time, the compression system is only responsible for cooling indoor air supply and no longer provides waste heat to the outside. At this time, the system operation mode is similar to that of conventional indirect evaporative cooling units.
  • the opening degree of the third throttle member 172 can also be adjusted. In this way, by comprehensively controlling the first throttling component 152 , the second throttling component 162 , the third throttling component 172 and the compressor 142 , more precise control of the temperature of the heat exchange medium can be achieved.
  • the opening of the third throttle member 172 is manually controlled.
  • the third throttling component 172 is connected to the controller, so that the opening degree of the third throttling component 172 can be controlled by the controller, so as to improve the convenience of the operation of the device.
  • the compression module 140 further includes the first fan 154 and/or the second fan 164 .
  • the first fan 154 is disposed on the side of the first heat exchanger 150 close to the indoor air supply port 106 .
  • the first fan 154 is used to drive indoor air flow.
  • the second fan 164 is disposed on the side of the second heat exchanger 160 close to the outdoor air outlet 110 .
  • the second fan 164 is used to drive the flow of outdoor air.
  • the indoor air flow can be accelerated and the heat exchange efficiency of the first heat exchanger 150 can be improved.
  • the arrangement of the second fan 164 can speed up the flow of outdoor air and improve the heat exchange efficiency of the second heat exchanger 160 .
  • the controller is also connected to the first fan 154 and/or the second fan 164 .
  • the heat exchange efficiency of the first heat exchanger 150 and the second heat exchanger 160 can be adjusted, so that the heat exchange temperature of the heat exchange medium can also be adjusted to a certain extent.
  • the methods and means for temperature control of the heat exchange medium are further increased, which is beneficial to control the temperature of the heat exchange medium more precisely.
  • the reversing valve 144 also has a fourth port l.
  • the compression module 140 also includes a capillary tube 180 . One end of the capillary tube 180 is connected to the suction port of the compressor 142, and the other end of the capillary tube 180 is connected to the fourth port 1.
  • the other end of the capillary tube 180 is connected to the fourth port of the reversing valve 144.
  • the suction port and the exhaust port of the compressor 142 can be communicated through the capillary tube 180. mouth.
  • most of the refrigerant can flow to the third heat exchanger 170, and a small part of the refrigerant can also flow directly back to the suction port of the compressor 142 through the first port i and the fourth port l. .
  • the first port can also have refrigerant circulating, which is beneficial to keep the first port i and the fourth port l in the refrigerant circulation all the time, and avoid oil accumulation and accumulation in the circuit. fluid causing system failure.
  • the third heat exchanger 170 includes a refrigerant pipeline 174, and the refrigerant pipeline 174 is used as a flow path of the refrigerant.
  • the third heat exchanger 170 may further include a heat exchange medium flow path, such as a water path 176 .
  • the heat exchange medium may be air
  • the third heat exchanger 170 has only refrigerant pipes, and the air directly exchanges heat with the refrigerant pipes instead of exchanging heat through the pipes.
  • the water in the water path 176 exchanges heat with the refrigerant in the refrigerant pipeline 174, and the device provides hot water to the user.
  • the heat exchange medium is air
  • the air exchanges heat with the refrigerant in the refrigerant pipeline 174, and the device provides heating to the user.
  • the third heat exchanger 170 may be provided with a water circuit 176 and an air circuit at the same time, and the water and the air exchange heat with the heat exchange medium at the same time, so that the device can not only provide hot water to users, but also provide users with hot water. Heating provides more convenience for the use of equipment.
  • the heat exchange core 102 includes a first flow channel and a second flow channel.
  • the first flow channel has an indoor air return port 104 and an indoor air supply port 106 that communicate with each other, and is used as a flow channel for indoor air.
  • the second flow channel has an outdoor air inlet 108 and an outdoor air outlet 110 communicated with each other, and serves as a flow channel for outdoor air.
  • Independent first flow channels and second flow channels are provided in the heat exchange core 102, the indoor air flows in the first flow channel, and the outdoor air flows in the second flow channel, so that the indoor air only exchanges heat with the outdoor air, without any other exchange.
  • this method can keep the original properties of the indoor air except the temperature. For example, in some rooms with high cleanliness requirements, indoor air and outdoor air only exchange heat, so that impurities, dust and other substances in the outdoor air will not enter the room and affect the indoor cleanliness. Or in some indoor environments that require maintaining temperature and humidity, the indoor air and the outdoor air only exchange heat, the moisture in the outdoor air will not enter the room, and the moisture in the indoor air will not be lost to the outside, so that the stability of the indoor air humidity can be maintained. .
  • the first flow channel has an interconnected indoor air return port 104 and an indoor air supply port 106, so that the indoor air heated by the heat source can enter the first flow channel from the indoor return air port 104, exchange heat with the outdoor air in the second flow channel to cool down, and then reheat. Return to the room from the indoor air supply port 106 to provide a lower temperature environment for the heat source, so as to achieve the purpose of cooling down and dissipating heat.
  • the indoor air discharged from the indoor air supply port 106 can also exchange heat with the first heat exchanger 150, further reduce the temperature, and transfer part of the waste heat to the first heat exchanger 150.
  • the refrigerant in the first heat exchanger 150 is taken away to realize the recovery of waste heat.
  • the second flow channel has an outdoor air inlet 108 and an outdoor air outlet 110 that are connected to each other, so the outdoor cold air can enter from the outdoor air inlet 108, and after heat exchange with the indoor air in the first flow channel, it is discharged from the outdoor air outlet 110, thereby It exchanges heat with the second heat exchanger 160 disposed at the outdoor air outlet 110, and transfers part of the heat to the refrigerant in the second heat exchanger 160 to realize the recovery of waste heat.
  • the second heat exchanger 160 has different functions in different operating modes. In the mode of complete natural cooling + waste heat recovery (the first operation mode) and the mode of vapor compression refrigeration + waste heat recovery (the third operation mode), the second heat exchanger 160 assumes the role of waste heat recovery; in the vapor compression refrigeration In the mode of partial waste heat recovery (the fourth operation mode), the second heat exchanger 160 assumes the role of releasing excess heat to the external environment (the total heat dissipation of the heat source minus the heat to the heat user).
  • the evaporative cooling module 100 further includes a spray port 112 , a water receiving tray 118 , a water pipe 114 and a water pump 116 .
  • the spray port 112 is used for spraying water into the second flow channel.
  • the spray port 112 is arranged on the top of the heat exchange core 102, so that the sprayed water flow naturally flows under the action of gravity, so that it can fully exchange heat with the outdoor air in the second flow channel.
  • the water receiving tray 118 is disposed at the bottom of the heat exchange core 102 so as to receive the water flowing out of the second flow channel and realize the recycling of water.
  • the water pipe 114 is connected between the water receiving tray 118 and the spray port 112, and the water pump 116 is arranged on the water pipe 114 to facilitate the extraction of the water in the water receiving tray 118.
  • the spray port 112 is directly opened on the water pipe 114 , that is, part of the water pipe 114 is disposed on the top of the heat exchange core 102 . At least one spray port 112 is opened on this part of the water pipe 114 at the top of the heat exchange core 102 .
  • the spray port 112 is arranged at the bottom of the heat exchange core 102. At this time, the spray port 112 sprays upwards and sprays a very fine water mist, which can also enter the heat exchange core under the driving of the wind. inside the body 102 .
  • the water flow injected into the second flow channel can use the absorbed heat to evaporate during heat exchange, thereby improving the cooling effect of the indoor return air. It should be pointed out that when the outdoor air temperature is very low, and the indoor air temperature can be greatly reduced without the need for water evaporation and cooling, water spraying can be omitted to save water resources and reduce the energy consumption required for water circulation. In addition, when the outdoor temperature is below zero, water can also be stopped to avoid freezing and system failure.
  • an air conditioning system 20 is provided, including the temperature adjustment device 10 according to any one of the embodiments of the first aspect above.
  • the air conditioning system 20 further includes a casing 200 , and the compressor 142 of the temperature adjusting device 10 is disposed in the casing 200 .
  • the compressor 142 is disposed in the casing 200 , so that the casing 200 can protect the compressor 142 and prevent the compressor 142 from being damaged.
  • the arrangement of the casing 200 can also reduce the operating noise of the compressor 142 and the transfer of the generated heat to the outside.
  • a control method provided according to a third aspect of the present application used in the temperature adjusting device of any one of the embodiments of the above-mentioned first aspect, includes:
  • Step S100 obtaining the ambient temperature and the user's heat demand
  • Step S102 Determine the operation mode of the temperature adjustment device according to the ambient temperature and the heat demand of the user.
  • the operation mode of the temperature adjustment device is determined according to the ambient temperature and the heat demand of the user, which is beneficial to adopt different operation modes under different ambient temperature conditions, thereby improving the operation flexibility of the temperature adjustment device.
  • the operation modes include a first operation mode, a second operation mode, a third operation mode, and a fourth operation mode.
  • the temperature adjustment device performs evaporative cooling on the heat source and performs waste heat recovery, that is, the aforementioned mode of complete natural cooling + waste heat recovery.
  • the thermostat evaporatively cools the heat source and recovers part of the waste heat.
  • the temperature adjustment device performs evaporative cooling and compression cooling on the heat source, and performs waste heat recovery, that is, the aforementioned vapor compression cooling + waste heat recovery mode.
  • the temperature adjustment device performs evaporative cooling and compression refrigeration on the heat source, and performs partial waste heat recovery, that is, the aforementioned vapor compression refrigeration + partial waste heat recovery mode.
  • the ambient temperature includes the outdoor inlet air dry bulb temperature and the outdoor inlet air wet bulb temperature.
  • the heat demand of the user is determined according to the magnitude relationship between the temperature of the heat exchange medium at the inlet end of the third heat exchanger and the critical temperature of the heat exchange medium.
  • the temperature of the heat exchange medium at the inlet end of the third heat exchanger when the heat exchange medium is water, the temperature is the return water temperature.
  • the heat exchange medium when the heat exchange medium is air, this temperature is the temperature of the return air.
  • a critical temperature of the heat exchange medium can be set to measure the heat demand of the user.
  • Control methods include:
  • Step S200 obtaining the outdoor air inlet dry bulb temperature or outdoor air inlet wet bulb temperature, and the temperature of the heat exchange medium at the inlet end of the third heat exchanger;
  • Step S202 If the outdoor air inlet dry bulb temperature is less than or equal to the outdoor air inlet critical temperature or the outdoor air inlet wet bulb temperature is less than or equal to the outdoor air inlet critical wet bulb temperature, and the temperature of the heat exchange medium at the inlet of the third heat exchanger is less than or equal to the heat exchange The critical temperature of the medium, determining that the temperature adjusting device is in the first operating mode;
  • Step S204 if the outdoor air inlet dry bulb temperature is less than or equal to the outdoor air inlet critical temperature or the outdoor air inlet wet bulb temperature is less than or equal to the outdoor air inlet critical wet bulb temperature, and the temperature of the heat exchange medium at the inlet end of the third heat exchanger is greater than the heat exchange medium critical temperature, determining that the temperature adjustment device is in the second operating mode;
  • Step S206 if the outdoor air inlet wet bulb temperature is greater than the outdoor air inlet critical wet bulb temperature, and the temperature of the heat exchange medium at the inlet end of the third heat exchanger is less than or equal to the heat exchange medium critical temperature, determine that the temperature adjustment device is the third operation mode;
  • Step S208 If the outdoor air inlet wet bulb temperature is greater than the outdoor air inlet critical wet bulb temperature, and the temperature of the heat exchange medium at the inlet end of the third heat exchanger is greater than the critical temperature of the heat exchange medium, determine that the temperature adjustment device is in the fourth operation mode.
  • the outdoor air inlet dry bulb temperature is less than or equal to the outdoor air inlet critical dry bulb temperature, or the outdoor air inlet wet bulb temperature is lower than or equal to the outdoor air inlet critical wet bulb temperature, it can be determined that the outdoor temperature is low at this time, and the outdoor environment is used.
  • the cooling capacity in the heat source can be achieved to cool down the heat source, so completely natural cooling is used to cool down and dissipate heat.
  • the temperature of the heat exchange medium at the inlet end of the third heat exchanger is less than or equal to the critical temperature of the heat exchange medium, indicating that the temperature of the return water or return air is low, which is not conducive to the user's heating or demand for hot water, so determine the user's heat
  • the demand is large, that is, the heat demanded by the user is greater than the heat supply, so all the heat generated by the heat source can be recovered.
  • the first operation mode is adopted, that is, the mode of complete natural cooling + waste heat recovery, that is, the heat exchange between outdoor air and indoor air is completely used, and the compression module is mainly used for waste heat recovery.
  • the first throttling member is closed, the second throttling member is opened, and the second port j and the third port k of the reversing valve are connected, so that the suction port of the compressor and the third port k are connected.
  • the two heat exchangers are connected.
  • the high-temperature and high-pressure refrigerant generated by the operation of the compressor is discharged from the exhaust port of the compressor, and then flows into the third heat exchanger and exchanges heat with the heat exchange medium.
  • the heat exchange medium is water
  • hot water can be provided to users through heat exchange.
  • the heat exchange medium is air, it can directly heat the user through heat exchange. After the refrigerant exchanges heat with the heat exchange medium, the temperature decreases.
  • the refrigerant becomes a liquid with low temperature and low pressure, and enters the second heat exchanger. Since the second heat exchanger is arranged at the outdoor air outlet, at this time, the air discharged from the outdoor air outlet has already exchanged heat with the indoor hot air, and the temperature rises. In this way, the outdoor air after heat exchange is discharged from the outdoor air outlet.
  • the temperature When the temperature is reduced, it exchanges heat with the refrigerant liquid whose temperature is lowered in the second heat exchanger, so that the waste heat of the heat source absorbed from the indoor hot air is transferred to the refrigerant in the second heat exchanger, so that the temperature of the refrigerant is increased. rise.
  • the refrigerant in the second heat exchanger After the refrigerant in the second heat exchanger is heated and heated, it flows to the reversing valve.
  • the second port j of the reversing valve is communicated with the third port k, so that the refrigerant flows to the suction port of the compressor through the second port j and the third port k, thereby returning the residual heat to the compressor.
  • the waste heat is brought to the third heat exchanger by the high temperature and high pressure refrigerant discharged from the compressor, so as to realize the recovery and utilization of the waste heat.
  • the data center is used as a heat source, and its cooling and heat dissipation are completely realized by the exchange of outdoor cold air and indoor hot air.
  • the refrigerant passes through the compressor and the third heat exchanger to transfer heat to the heat exchange medium, thereby realizing the recovery of waste heat.
  • Such a temperature adjustment device can not only realize the cooling and heat dissipation of the heat source, but also can recycle the waste heat generated by the heat source, and the number of added components is small and the space is occupied. It can make full use of the waste heat of the heat source, which is conducive to energy saving and consumption reduction.
  • the outdoor air inlet dry bulb temperature is less than or equal to the critical dry bulb temperature of the outdoor air inlet, or the outdoor air inlet wet bulb temperature is less than or equal to the critical temperature of the outdoor air inlet wet bulb, it means that the outdoor temperature is low, and its cooling capacity is sufficient for cooling the indoor heat source. Only natural cooling can be used.
  • the temperature adjustment device is determined to be in the second operation mode, that is, a mode in which natural cooling is adopted and part of the waste heat is recovered at the same time.
  • the difference from the first operation mode is that the opening degree of the second throttle member is smaller than that in the first operation mode.
  • the frequency of the compressor in the second operating mode is lower than the frequency of the compressor in the first operating mode.
  • the outdoor air inlet temperature is greater than the critical temperature of the outdoor air inlet, for example, the outdoor air inlet wet bulb temperature is greater than the outdoor air inlet wet bulb critical temperature, it means that the outdoor temperature is high at this time, which is not enough to completely cool down the heat source and dissipate heat, so natural cooling + Compression cooling is used to cool the heat source, that is, evaporative compression cooling.
  • the temperature adjustment device is in the third operation mode, that is, the mode of evaporation compression refrigeration + waste heat recovery.
  • the mode of closing the second throttling component and opening the first throttling component may be adopted to operate this mode. Specifically, the second throttle member is closed, the first throttle member is opened, and the second port j and the third port k of the reversing valve are disconnected. After the refrigerant flows out from the exhaust port of the compressor, it first enters the third heat exchanger and exchanges heat with the heat exchange medium to cool down, and the temperature of the heat exchange medium increases. Then, the refrigerant flows to the first throttling component, and then flows to the first heat exchanger to exchange heat with the indoor supply air, take away the waste heat of the indoor heat source, and finally flow back to the compressor.
  • the second port j and the third port k of the reversing valve are connected. Both the first throttle member and the second throttle member are opened. After the refrigerant is discharged from the discharge port of the compressor, it flows to the third heat exchanger, where it exchanges heat with the heat exchange medium, so as to provide heat to the user through the heat exchange medium. After the heat exchange of the third heat exchanger is completed, the refrigerant flows in two paths. All the way to the first throttling part, after the first heat exchanger and the indoor supply air heat exchange and heat up, it flows back to the compressor with the waste heat transferred by the indoor supply air.
  • the other path flows to the second throttling component, and after the heat exchange with the outdoor exhaust air through the second heat exchanger and the temperature rises, it flows back to the compressor through the second interface j and the third interface k of the reversing valve, so as to transmit the air from the outdoor exhaust air.
  • the waste heat is returned to the compressor. After being compressed by the compressor, the waste heat brought back by the two refrigerants will be transferred to the heat exchange medium at the third heat exchanger in the next cycle.
  • the first heat exchanger and the second heat exchanger recover waste heat from indoor supply air and outdoor exhaust air, respectively.
  • the fourth operation mode is adopted, that is, the mode of vapor compression refrigeration + partial waste heat recovery. At this time, natural cooling is combined with compression refrigeration, and part of the waste heat is recovered, and it is not necessary to recover all the waste heat.
  • the compressor in the mode of vapor compression refrigeration + partial waste heat recovery, the compressor is turned on for supplementary cooling, part of the waste heat is recovered, and the excess heat is discharged to the outdoor environment through the outdoor air outlet.
  • the first port of the reversing valve is communicated with the second port j, and the second port j and the third port k are disconnected.
  • the refrigerant flows out of the exhaust port of the compressor, it still flows to the third heat exchanger all the way, and after exchanging heat with the heat exchange medium to cool down, it flows to the first throttling part, and after being depressurized by the first throttling part, it flows to the first throttling part.
  • the heat exchanger exchanges heat with the indoor air discharged from the indoor air supply port at the first heat exchanger, takes away part of the waste heat of the heat source, and then returns to the suction port of the compressor.
  • the other refrigerant after flowing out from the exhaust port of the compressor, flows to the second heat exchanger through the first interface and the second interface j of the reversing valve, and exchanges with the air discharged from the outdoor air outlet at the second heat exchanger.
  • Heat take away part of the waste heat, and then depressurize through the second throttling component, flow to the first throttling component, and depressurize together with the refrigerant that previously flowed out of the compressor discharge port, and then flow to the first heat exchanger for heat exchange back to the compressor.
  • the outdoor air inlet temperature is greater than the critical outdoor air inlet temperature, and at the same time, the indoor air supply temperature is less than or equal to the indoor air supply critical temperature, it means that although the outdoor temperature is high, it can still meet the cooling requirements of the indoor heat source , so the natural cooling method can be continued, and compression refrigeration is not required.
  • the temperature adjustment device is in the first operation mode.
  • the heat demand of the user is small at this time, it is determined that the temperature adjustment device is in the second operation mode.
  • the outdoor air inlet dry bulb temperature is less than or equal to the outdoor air inlet critical dry bulb temperature, but the indoor air supply temperature may be greater than the indoor air supply critical temperature, indicating that there is some reason at this time, such as heat exchange.
  • the core is dirty and blocked, scaling, etc., so that although the outdoor air temperature is low, the indoor air supply temperature still does not meet the requirements.
  • the compression module should be turned on for supplementary cooling. If the user's heat demand is large at this time, it is determined that the temperature adjustment device is in the third operation mode, that is, evaporative cooling and compression cooling are performed simultaneously, and waste heat recovery is performed. If the user's heat demand is small, it is determined that the temperature adjustment device is in the fourth operation mode, and only part of the waste heat is recovered.
  • a temperature adjustment device 10 comprising: a memory 300 and a processor 302 , wherein the memory 300 stores a computer program that can be executed on the processor 302 , when the processor 302 executes the computer program, it implements the steps of the control method according to any one of the embodiments of the third aspect, so it has the beneficial effects of any of the above embodiments, which will not be repeated here.
  • An embodiment according to the fifth aspect of the present application provides a readable storage medium on which a computer program is stored, and when the computer program is executed by the processor 302, implements the steps of the control method according to any one of the foregoing third aspect embodiments Therefore, the beneficial effects of any one of the above-mentioned embodiments are provided, which will not be repeated here.
  • the temperature adjustment device 10 (ie, the indirect evaporative cooling and waste heat recovery device) according to a specific embodiment proposed in this application is used in a data room where the heat source is a data center.
  • the thermostat 10 includes an evaporative cooling module 100 and a compression module.
  • the evaporative cooling module 100 includes a heat exchange core 102 , a spray port 112 , a spray water pipe 114 , a spray water pump 116 , and a water receiving tray 118 .
  • the heat exchange core 102 includes two sets of flow channels, namely, a first flow channel and a second flow channel.
  • the hot and cold fluids respectively flow through the two groups of flow channels of the heat exchange core 102 and exchange heat.
  • the outdoor air with lower outdoor temperature or humidity enters the second flow channel of the heat exchange core 102
  • the indoor air enters the first flow channel of the heat exchange core 102 .
  • the spray water pump 116 draws water from the water receiving tray 118 and sends it to the spray port 112 through the spray water pipe 114.
  • the spray water is evenly sprayed into the inside of the heat exchange core 102, and evaporates in the second flow channel where the outdoor air is located to lift the water. Cooling effect on indoor return air. If the outdoor air temperature is very low, for the consideration of saving water resources or preventing freezing, the spray water pump 116 stops running, and the outdoor air exchanges heat with the indoor return air in a dry condition in the heat exchange core 102.
  • the vapor compression module includes a compressor 142 , a first heat exchanger 150 , a first fan 154 , a first throttle member 152 , a first heat exchanger 150 , a first fan 154 , a second throttle member 162 , and a reversing valve 144 , a long capillary 180 , and a third heat exchanger 170 .
  • the temperature adjustment device 10 has at least three operating modes, which are the mode of complete natural cooling + waste heat recovery, the mode of vapor compression refrigeration + waste heat recovery, and the mode of vapor compression refrigeration + partial waste heat recovery.
  • the mode of complete natural cooling + waste heat recovery When (To ⁇ To1 or Tow ⁇ To2), run the mode of complete natural cooling + waste heat recovery; when Tow>To2 and Th ⁇ T O 3, run the mode of vapor compression refrigeration + waste heat recovery; when Tow>To2 and When Th > T O 3, the mode of vapor compression refrigeration + partial waste heat recovery is operated.
  • the outdoor air inlet dry bulb temperature is To
  • the outdoor air inlet wet bulb temperature is Tow
  • the outdoor air inlet critical dry bulb temperature is To1 (To1>0)
  • the outdoor air inlet critical wet bulb temperature is To2 (To2>0 and To2>To1 )
  • the temperature of the heat exchange medium at the inlet end of the third heat exchanger is Th
  • the critical temperature of the heat exchange medium is T O 3 .
  • the indoor air inlet temperature that is, the supply air temperature of the data room, Tis, and the set temperature of the data room supply air is Tiset.
  • the maximum heating capacity of the device is Qh
  • the real-time heat exchange amount of the first heat exchanger 150 is Qh2
  • the real-time heat demand of the heat user is Qo.
  • the temperature adjustment device 10 of this specific embodiment makes full use of the compressor 142 and the two devices (the first heat exchanger 150 and the second heat exchanger of the vapor compression refrigeration system of the original indirect evaporative cooling unit) 160) and the first throttling component 152 (such as an electronic expansion valve), only adding a few additional components (reversing valve 144, second throttling component 162, capillary 180, etc.) and adjusting a small amount of refrigerant pipeline 174 can be very good.
  • the temperature adjustment device 10 indirect evaporative cooling and waste heat recovery device
  • a temperature adjustment device 10 proposed according to a specific embodiment of the present application includes an evaporative cooling module 100 and a vapor compression module 140 .
  • the evaporative cooling module 100 includes a heat exchange core 102 , a spray port 112 , a spray water pipe 114 , a spray water pump 116 , and a water receiving tray 118 .
  • the heat exchange core 102 includes a first flow channel and a second flow channel. The hot and cold fluids respectively flow through the two groups of flow channels of the heat exchange core 102 and exchange heat.
  • the air with lower outdoor temperature or humidity enters the second flow channel of the heat exchange core 102, and the indoor air enters the first flow channel of the heat exchange core 102.
  • the spray water pump 116 draws water from the water receiving tray 118 and sends it to the spray port 112 through the spray water pipe 114.
  • the spray water is evenly sprayed into the inside of the heat exchange core 102, and evaporates in the flow channel of the outdoor air to improve the return to the room.
  • the cooling effect of wind If the outdoor air temperature is very low, in order to save water resources or prevent freezing, the spray water pump 116 stops running, and the outdoor air exchanges heat with the indoor return air in a dry condition in the heat exchange core 102 .
  • the vapor compression module includes a compressor 142 , a first heat exchanger 150 , a first fan 154 , a first throttle member 152 , a second heat exchanger 160 , a second fan 164 , a second throttle member 162 , and a reversing valve 144 , a long capillary 180 , and a third heat exchanger 170 .
  • the indirect evaporative cooling and waste heat recovery device has at least three operating modes, which are (assuming: the outdoor air inlet dry bulb temperature is To, the outdoor air inlet wet bulb temperature is Tow, and the outdoor air inlet critical dry bulb temperature is To1 (To1>0), The critical wet bulb temperature of the outdoor air inlet is To2 (To2>0 and To2>To1), the maximum heating capacity of the device is Qh, the real-time heat exchange of the first heat exchanger 150 is Qh2, and the real-time heat demand of the heat user is Qo):
  • the throttling and depressurized refrigerant absorbs the waste heat of the outdoor outlet air in the second heat exchanger 160, and then Return to the compressor 142 through the reversing valve 144 to complete the entire waste heat recovery cycle.
  • precise control of the temperature of the hot water outlet from the third heat exchanger 170 can be achieved.
  • a very small amount of refrigerant enters the long capillary tube 180 from the discharge port of the compressor 142 through the reversing valve 144.
  • the main function is to maintain the refrigerant circulation in the circuit and avoid system failure caused by oil and liquid accumulation in the circuit.
  • the relationship between the temperature of the heat exchange medium at the inlet of the third heat exchanger and the critical temperature of the heat exchange medium is used to judge relationship to be determined.
  • the temperature Th of the heat exchange medium at the inlet end of the third heat exchanger is less than or equal to the temperature T O 3 of the heat exchange medium, that is, T h ⁇ T O 3, then the real-time heat demand of the user is greater than the heating capacity, and the heat demand of the user is large, All waste heat is recovered.
  • the heat demanded by the user in real time is less than the heating capacity, the heat demand of the user is small, and the waste heat is partially recovered.
  • the compressor 142 When Tow>To2 and Th ⁇ T O 3, the compressor 142 is turned on to supplement cooling, and the temperature of the return air of the data equipment room flowing out from the heat exchange core 102 is continued.
  • the reversing valve 144 is opened, the first throttling member 152 and the second throttling member 162 are opened, and the refrigerant discharged from the compressor 142 flows through two paths: 1 compressor 142 - third heat exchanger 170—first throttling member 152—first heat exchanger 150—reversing valve 144—compressor 142; 2 compressor 142—third heat exchanger 170—second throttling member 162— — Second heat exchanger 160 — Compressor 142 .
  • the second heat exchanger 160 and the first heat exchanger 150 recover the waste heat from the outdoor outlet air and the indoor air supply, respectively, by adjusting the frequency conversion of the compressor 142 and adjusting the opening of the first throttling member 152 and the second throttling member 162 , On the premise of meeting the requirements of the data room for the indoor air supply temperature, the control of the temperature of the hot water outlet from the third heat exchanger 170 can be realized.
  • a very small amount of refrigerant enters the long capillary tube 180 from the discharge port of the compressor 142 through the reversing valve 144.
  • the main function is to maintain the refrigerant circulation in the circuit and avoid system failure caused by oil and liquid accumulation in the circuit.
  • the reversing valve 144 is opened, the second throttling member 162 is fully closed, the first throttling member 152 is opened, and the high-temperature and high-pressure refrigerant discharged from the compressor 142 is greatly reduced. Part of it enters a third heat exchanger 170, which heats the cold water from the hot consumer into hot water.
  • the refrigerant flows out of the third heat exchanger 170, it passes through the first throttling component 152 and the first heat exchanger 150 in sequence, and the throttling and depressurized refrigerant absorbs the waste heat of the return air of the data machine room in the first heat exchanger 150, Then return to the compressor 142 to complete the entire waste heat recovery cycle.
  • the compressor 142 By adjusting the compressor 142 , the first throttling component 152 and the first fan 154 , precise control of the temperature of the hot water outlet from the third heat exchanger 170 can be achieved.
  • the compressor 142 When Tow> To2 and Th>T O 3, the compressor 142 is turned on to supplement cooling, and at the same time, heat is provided to heat users, and the excess heat generated in the data room is discharged to the outdoor environment.
  • the reversing valve 144 is closed, the first throttling member 152 is opened, the second throttling member 162 is fully opened, and the refrigerant discharged from the compressor 142 flows through two paths: 1 Compressor 142 - third change Heater 170 - first throttle member 152 - first heat exchanger 150 - compressor 142; 2 compressor 142 - reversing valve 144 - second heat exchanger 160 - second throttle member 162—first throttling member 152—first heat exchanger 150—compressor 142.
  • the first heat exchanger 150 obtains waste heat while supplying cooling for the data room. Part of the waste heat is transferred to the heat user through the third heat exchanger 170 , and another part of the excess heat is discharged to the outdoor environment through the second heat exchanger 160 .
  • the frequency conversion of the compressor 142 and adjusting the opening of the first throttling component 152 the temperature of the hot water outlet of the third heat exchanger 170 can be accurately controlled under the premise of meeting the requirements of the data room for the indoor air supply temperature.
  • a third throttling member 172 is added, through the comprehensive regulation of the compressor 142 , the first throttling member 152 , the second throttling member 162 and the third throttling member 172 , can achieve more precise control of heating temperature.
  • the above-mentioned third heat exchanger 170 is changed to an air-refrigerant heat exchanger to heat room air and directly heat the room.
  • the terms “first”, “second” and “third” are only used for the purpose of description, and cannot be construed as indicating or implying relative importance; the term “multiple” refers to two one or two or more, unless otherwise expressly limited.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the embodiments of the present application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请的实施例提供了一种温度调节装置、空调系统、控制方法和可读存储介质。温度调节装置包括:蒸发冷却模块,具有室内送风口和室外出风口;压缩模块,包括:压缩机、第一换热器、第二换热器、第三换热器、第一节流部件、第二节流部件和换向阀。第一换热器在室内送风口与室内空气换热并回收余热,第二换热器在室外出风口与室外空气换热并回收余热,压缩机排出的制冷剂在第三换热器与换热介质换热。换向阀的第一接口与压缩机的排气口连接,换向阀的第二接口与第二换热器连接,换向阀第三接口与压缩机的吸气口连接。通过本申请的技术方案,有效地回收了热源的余热,且增加的部件数量少,设备结构整体简单,空间占用少。

Description

温度调节装置、空调系统、控制方法和可读存储介质
本申请要求于2021年03月24日提交到中国国家知识产权局的申请号为202110330496.9、发明名称为“温度调节装置、空调系统、控制方法和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于温度调节技术领域,具体涉及一种温度调节装置、一种空调系统、一种控制方法和一种可读存储介质。
背景技术
数据中心常年运行,持续产生大量热量。为了给数据中心降温散热,需要消耗大量能量,其降温散热的能耗约占数据中心总能耗的30%。另外,数据中心运行所产生的热量又是一种丰富的余热资源。目前行业内一些数据中心采用间接蒸发冷却技术降温散热,同时也具备余热回收功能,但是其结构复杂,部件数量多,占用空间大。
发明内容
根据本申请的实施例旨在至少改善现有技术或相关技术中存在的技术问题之一。
有鉴于此,根据本申请的实施例的一个目的在于提供一种温度调节装置。
根据本申请的实施例的另一个目的在于提供一种空调系统。
根据本申请的实施例的另一个目的在于提供一种控制方法。
根据本申请的实施例的另一个目的在于提供另一种温度调节装置。
根据本申请的实施例的另一个目的在于提供一种可读存储介质。
为了实现上述目的,根据本申请第一方面的实施例提供了一种温度调节装置,包括:蒸发冷却模块,包括:换热芯体,用于室内空气和室外空气的换热,换热芯体具有室内送风口和室外出风口;压缩模块,包括:压缩机;第一换热器,设于室内送风口的一侧,第一换热器与压缩机的吸气口相连;第一节流部 件,第一节流部件的第一端与第一换热器连接;第二换热器,设于室外出风口的一侧;第二节流部件,第二节流部件的第一端与第二换热器连接;换向阀,具有第一接口、第二接口、第三接口,第一接口与压缩机的排气口连接,第二接口与第二换热器连接,第三接口与压缩机的吸气口连接;第三换热器,第三换热器的第一端与压缩机的排气口连接,第三换热器的第二端与第一节流部件的第二端连接,第三换热器的第二端还与第二节流部件的第二端连接,第三换热器用于和换热介质进行换热。
根据本申请第二方面的实施例提供了一种空调系统,包括:如上述第一方面的温度调节装置。
根据本申请第三方面的实施例提供了一种控制方法,用于上述第一方面的温度调节装置,包括:获取环境温度、用户的热量需求;根据环境温度、用户的热量需求,确定温度调节装置的运行模式。
根据本申请第四方面的实施例提供了另一种温度调节装置,包括:存储器和处理器,其中,存储器上存储有可在处理器上运行的程序或指令,处理器执行程序或指令时实现如上述第三方面的控制方法的步骤。
根据本申请第五方面的实施例提供了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述第三方面的控制方法的步骤。
根据本申请实施例的温度调节装置,设置了蒸发冷却模块、压缩模块,且压缩模块包括有换向阀,通过换向阀的接口切换以及对第一节流部件、第二节流部件的控制,可以实现压缩模块的不同功能,既能够确保对热源进行降温散热,又可以充分利用热源的热量而通过第三换热器和换热介质进行换热,实现热源的余热回收。并且,在室外温度较低时,可以直接通过蒸发冷却模块对热源进行降温散热,而压缩模块可以将其制冷剂的热量提供给第三换热器,为换热介质加热,实现热能的充分利用。另外,本申请实施例提供的温度调节装置,在常规蒸发冷却模块、压缩模块的基础上,只需要增加换向阀、第二节流部件等少量部件,即可实现热源的余热回收。相对于相关技术中的蒸发冷却装置而言,本申请实施例提供的温度调节装置结构更简单、空间占用小、设备成本低、余热温度控制更精确,在满足为热源降温散热需求的前提下,能够更加充分地回收热源排出的余热。
根据本申请的实施例的附加方面和优点将在下面的描述部分中变得明显,或通过根据本申请的实施例的实践了解到。
附图说明
图1是根据本申请提供的一个实施例的温度调节装置的工作原理示意图;
图2是根据本申请提供的另一个实施例的温度调节装置的工作原理示意图;
图3是根据本申请提供的另一个实施例的温度调节装置的工作原理示意图;
图4是根据本申请提供的又一个实施例的温度调节装置的工作原理示意图;
图5是根据本申请提供的一个实施例的温度调节装置的结构示意框图;
图6是根据本申请提供的一个实施例的空调系统的结构示意框图;
图7是根据本申请提供的另一个实施例的温度调节装置的结构示意框图;
图8是根据本申请提供的一个实施例的控制方法的工作流程示意图;
图9是根据本申请提供的一个实施例的控制方法的工作流程示意图。
其中,图1至图7中的附图标记与部件名称之间的对应关系为:
10温度调节装置,100蒸发冷却模块,102换热芯体,104室内回风口,106室内送风口,108室外进风口,110室外出风口,112喷淋口,114水管,116水泵,118接水盘,140压缩模块,142压缩机,144换向阀,150第一换热器,152第一节流部件,154第一风机,160第二换热器,162第二节流部件,164第二风机,170第三换热器,172第三节流部件,174冷媒管路,176水路,180毛细管,20空调系统,200壳体,300存储器,302处理器。
具体实施方式
为了可以更清楚地理解根据本申请的实施例的上述目的、特征和优点,下面结合附图和具体实施方式对根据本申请的实施例进行进一步的详细描述。需要说明的是,在不冲突的情况下,根据本申请的实施例的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解根据本申请的实施 例,但是,根据本申请的实施例还可以采用其他不同于在此描述的其他方式来实施,因此,根据本申请的实施例提供的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图9描述根据本申请提供的一些实施例。
如图1至图5所示,根据本申请的实施例提供了一种温度调节装置10,包括蒸发冷却模块100和压缩模块140。蒸发冷却模块100主要利用室外冷风和水为室内热风换热制冷,压缩模块140主要利用制冷剂制冷或制热。
蒸发冷却模块100包括换热芯体102,换热芯体102具有室内送风口106和室外出风口110。换热芯体102用于室内空气和室外空气的换热,以便于通过室外的冷空气为室内热源导致的热空气换热降温。
通过设置换热芯体102,且换热芯体102具有室内送风口106和室外出风口110,这样,被热源加热的室内空气可以在换热芯体102中与温度较低的室外冷空气进行换热,使得室内空气的温度降低。降温后的室内空气可以通过室内送风口106重新回到室内,从而为室内热源提供一个相对温度更低的环境,以便于热源能够实时降温散热。而升温后的室外空气则通过室外出风口110重新回到室外,从而将热源的热量带到外部环境中。这样,在室外温度较低时,可以直接通过室外空气和室内空气的换热,实现热源的降温散热,而不需要使用压缩制冷,有利于节能降耗。
压缩模块140包括压缩机142、第一换热器150、第二换热器160、第一节流部件152、第二节流部件162、换向阀144和第三换热器170。具体地,压缩机142具有排气口和吸气口。第一换热器150设于换热芯体102的室内送风口106的一侧,以便于通过室内送风口106进行室内送风,从而进行换热。第一换热器150还与压缩机142的吸气口相连。第一节流部件152的第一端a与第一换热器150连接,第一节流部件152的第二端b与第三换热器170的第二端f连接。第二换热器160设于换热芯体102的室外出风口110的一侧。第二节流部件162的第一端c与第二换热器160连接,第二节流部件162的第二端d与第三换热器170的第二端f连接。换向阀144具有第一接口i、第二接口j、第三接口k。换向阀144的第一接口i与压缩机142的排气口连接,第二接口j与第二换热器160连接,第三接口k与压缩机142的吸气口连接。第三 换热器170的第一端e与压缩机142的排气口连接,第三换热器170的第二端f与第一节流部件152的第二端b连接,第三换热器170的第二端f还与第二节流部件162的第二端d连接,第三换热器170用于和换热介质进行换热。
根据本申请实施例的温度调节装置10,设置有蒸发冷却模块100、压缩模块140,且压缩模块140包括换向阀144,通过换向阀144的接口切换,以及对第一节流部件152、第二节流部件162的控制,可以实现压缩模块140的不同功能,既能够确保对热源进行降温散热,又可以充分利用热源的热量而通过第三换热器170为换热介质进行加热,实现热源的余热回收。并且,在室外温度较低时,可以直接通过蒸发冷却模块100对热源进行降温散热,而压缩模块140可以将其制冷剂的热量提供给第三换热器170,为换热介质加热,实现热能的充分利用。另外,本申请实施例提供的温度调节装置10,在常规蒸发冷却模块100、压缩模块140的基础上,只需要增加换向阀144、第二节流部件162等少量部件,即可实现热源的余热回收。相对于相关技术中的蒸发冷却装置而言,本申请实施例提供的温度调节装置10结构更简单、空间占用小、设备成本低、余热温度控制更精确,在满足为热源降温散热需求的前提下,能够更加充分地回收热源排出的余热。
具体地,在不同的环境条件下,通过换向阀144的接口切换,温度调节装置10可以有多种不同的运行模式。
例如,在室外环境温度较低时,通过蒸发冷却即可实现热源的降温散热,或者说是完全自然冷却的方式来为热源降温散热,而压缩模块140产生的热量和回收的热源的余热可以完全供给至第三换热器170。此时,温度调节装置10采用完全自然冷却+余热回收的模式,也就是第一运行模式,自然冷却,同时进行余热回收。可以理解地,在室内送风温度小于等于室内送风设定温度时,可以一直保持在完全自然冷却+余热回收的模式。如图1所示,在完全自然冷却+余热回收的模式下,也就是在第一运行模式下,换向阀144的第二接口j和第三接口k接通,使第二换热器160连通至压缩机142的吸气口,同时,开启第二节流部件162,关闭第一节流部件152。压缩机142工作产生的高温高压制冷剂,从压缩机142的排气口排出后,流入第三换热器170与换热介质进行换热。换热介质为水时,则可以通过换热,为用户提供热水。换热介质为空 气时,则可以通过换热,直接为用户供暖。制冷剂和换热介质换热之后,温度降低,由于第一节流部件152关闭,因而只能向第二节流部件162流动。经第二节流部件162降压之后,制冷剂变为低温低压的液体,进入第二换热器160。由于第二换热器160设置于室外出风口110,此时,室外出风口110处排出的空气已经与室内的热空气进行了换热,温度升高,这样,换热后的室外空气从室外出风口110排出时,与第二换热器160中温度降低了的制冷剂液体进行换热,从而将其从室内热空气中吸收的热源的热量,传递给第二换热器160中的制冷剂,使得制冷剂温度升高。第二换热器160中的制冷剂换热升温后,流向换向阀144。换向阀144的第二接口j和第三接口k连通,使得制冷剂经第二接口j、第三接口k,流向压缩机142的吸气口,从而将余热带回到压缩机142中。在下一次的循环中,余热被压缩机142排出的高温高压制冷剂再带入到第三换热器170中,从而实现余热的回收利用。
在上述过程中,热源,例如数据中心,其降温散热完全由室外冷空气和室内热空气的交换实现,其热量通过室内空气带给室外空气,室外空气再将热量传递给制冷剂,制冷剂经过压缩机142、第三换热器170将热量又传递给换热介质,从而实现热量的回收。这样的温度调节装置10,既能够实现热源的降温散热,又能够将热源产生的热量进行回收利用,同时增加的部件数量少,占用空间少,在满足室内送风温度和冷量需求的前提下,能够充分利用热源的热量,有利于节能降耗。
需要指出的是,室外环境温度较低,具体是指室外进风温度低于室外进风临界温度。更具体地,室外进风温度可以包括室外进风干球温度和室外进风湿球温度,这两个温度中的任意一个小于等于临界值,也即是室外进风干球温度小于等于室外进风临界干球温度,或者室外进风湿球温度小于等于室外进风临界湿球温度,这两者任一个符合,即可视为室外进风温度小于等于室外进风临界温度值,也就是前述的室外环境温度较低的情况。
在一些实施例中,可能室内送风温度大于室内送风设定温度,或者说室外空气经过换热芯体的换热后仍无法将室内回风冷却到所需要的温度,例如室内送风设定温度,这种情况下需要更换温度调节装置10的运行模式,采用压缩制冷结合余热回收的模式,利用第一换热器150进行补充制冷,使室内送风温 度达到要求。仍然如图1所示,具体地,与第一运行模式不同,此时,第二节流部件162关闭,第一节流部件152开启,换向阀144的第二接口j、第三接口k断开。制冷剂从压缩机142排气口流出后,先进入第三换热器170与换热介质进行换热降温,换热介质温度升高。然后,制冷剂流向第一节流部件152,再流至第一换热器150与室内送风进行换热,带走室内热源的热量,最后重新流回压缩机142。
另外,也有可能室外环境温度较高,大于临界值。例如室外进风湿球温度大于室外进风临界湿球温度,此时仍然可以采用蒸发冷却模块100进行制冷,同时运行压缩制冷进行辅助,也就是采用蒸汽压缩制冷+余热回收的模式,或者蒸汽压缩制冷+部分余热回收的模式,具体可根据用户对热量的需求而定。
举例而言,室外进风湿球温度大于室外进风临界湿球温度,且用户的热量需求大,也就是用户所需要的热量大于温度调节装置10的供热量,则可以采用蒸汽压缩制冷+余热回收的模式。
具体地,在蒸汽压缩制冷+余热回收的模式下,开启压缩机142补充制冷,对从换热芯体102流出的室内回风继续降温。具体地,如图1所示,在该模式下,换向阀144的第二接口j、第三接口k连通。第一节流部件152和第二节流部件162均开启。制冷剂从压缩机142的排气口排出后,流向第三换热器170,在第三换热器170与换热介质进行换热,以通过换热介质向用户提供热量。在第三换热器170换热完成后,制冷剂分为两路流动。一路流向第一节流部件152,经过第一换热器150与室内送风换热升温后,带着室内送风传递的余热流回压缩机142。另一路流向第二节流部件162,经第二换热器160与室外排风换热升温后,经换向阀144的第二接口j、第三接口k流回压缩机142,从而将室外排风传递的余热带回压缩机142,经过压缩机142压缩后,再将两路制冷剂带回的余热,在下一次循环时,将热量传递给第三换热器170处的换热介质。第一换热器150和第二换热器160分别从室内送风和室外排风回收余热。由此可知,由于第一换热器150的换热量不足以满足用户需求,因此从第一换热器150、第二换热器160两处同时回收余热,从而回收更多的余热,提升余热回收率,并尽量满足用户的热量需求。
室外进风湿球温度大于室外进风临界湿球温度,且用户的热量需求小时, 也就是用户需求的热量小于温度调节装置的供热量,只需要回收部分余热进行利用即可,此时则可以采用蒸汽压缩制冷+部分余热回收的模式。
在蒸汽压缩制冷+部分余热回收的模式下,仍然需要开启压缩机142进行补充制冷,并便于回收部分余热,多余热量则通过室外出风口110排放到室外环境中。如图2所示,换向阀144的第一接口i和第二接口j连通,第二接口j和第三接口k断开。制冷剂从压缩机142的排气口流出后,一路仍然流向第三换热器170,在与换热介质换热降温后,流向第一节流部件152,经第一节流部件152降压后,流向第一换热器150,在第一换热器150处与室内送风口106排出的室内空气换热,带走热源的部分热量,然后再回到压缩机142的吸气口。另一路制冷剂,在从压缩机142的排气口流出后,经换向阀144的第一接口、第二接口j流向第二换热器160,在第二换热器160处与室外出风口110排出的空气换热,然后经第二节流部件162降压,流向第一节流部件152,与之前从压缩机142排气口流出的制冷剂一起再次降压后,流向第一换热器150换热后流回压缩机142。
进一步地,第一节流部件152和/或第二节流部件162至少包括以下任意一种:手动膨胀阀、浮球式膨胀阀、热力膨胀阀、电子膨胀阀。
第一节流部件152和第二节流部件162这两者中,至少一者的开度可调。通过对压缩机142变频调节、对第一节流部件152和/或第二节流部件162开度进行调节,在满足热源对降温散热的要求的前提下,可实现第三换热器170的换热介质温度的控制。
可以理解地,压缩模块140还包括控制器。控制器与第一节流部件152和/或第二节流部件162相连,并用于控制第一节流部件152和/或第二节流部件162的开度。
通过设置控制器,并使控制器与第一节流部件152和/或第二节流部件162连接,从而无需用户手动控制第一节流部件152和第二节流部件162的开度,而是通过控制器对开度进行控制,这样可以提升温度调节装置10的操控的便利性,简化用户的操作。或者,控制器可以自动地根据环境温度情况、用户的热量需求,自动地调节第一节流部件152、第二节流部件162的开度,从而在满足热源对降温散热的要求的前提下,可实现对第三换热器170的换热介质的 温度的自动精确控制。
可以理解地,控制器还可以和压缩机142连接,以便于通过控制器调节压缩机142的功率来调节换热介质温度,有利于增加温度调节手段。
进一步地,为了精确控制室内送风温度、换热介质温度,在上述实施例的基础上,一些实施例中,压缩模块140还包括多个温度传感器。具体地,压缩模块140还包括第一温度传感器、第二温度传感器,且第一温度传感器、第二温度传感器均与控制器连接。其中,第一温度传感器用于获取室外进风温度,例如室外进风干球温度和/或湿球温度。第二温度传感器用于获取第三换热器170的进口端的换热介质的温度。控制器还用于根据室外进风温度、用户的热量需求,控制温度调节装置10的运行模式。
进一步地,用户的热量需求可以是用户直接输入,也可以根据一些参数来大致地确定。例如,根据第三换热器170的进口端的换热介质的温度,确定用户的热量需求。可以理解地,第三换热器170的进口端的换热介质的温度越低,则用户的热量需求越大。只要设置一个换热介质临界温度,即可大致地确定用户的热量需求。具体而言,在第三换热器170的进口端的换热介质的温度小于等于换热介质临界温度时,确定用户的热量需求大,则一般对余热进行全部回收。在第三换热器170的进口端的换热介质的温度大于换热介质临界温度时,确定用户的热量需求小,则一般对余热进行部分回收。
控制器还用于根据室外进风温度和第三换热器170的进口端的换热介质的温度,控制第一节流部件152和/或第二节流部件162的开度。
可以理解地,室外温度越低,蒸发冷却模块100的降温散热效果越好,同时,用户对于热量的需求往往也会越大。而室外温度较高时,蒸发冷却模块100的降温散热效果也较差,往往需要压缩机142补充制冷。因此,通过检测室外环境温度,可以及时根据室外温度情况,灵活地调节设备的运行模式,从而提升降温散热效果和余热回收效果,有利于节能降耗。另外,通过对第一节流部件152和/或第二节流部件162的开度调节,可以调节制冷剂的压力、温度,从而实现对余热回收效果、换热介质温度的调节,这样既便于余热回收,又能够确保用户对热量的需求。
在另一些实施例中,压缩模块还包括第三温度传感器。第三温度传感器和 控制器连接。第三温度传感器用于获取室内送风温度。通过设置第三温度传感器,可以在确定温度调节装置10的运行模式时,提供更多参考数据。例如,在室外进风干球温度小于等于室外进风干球临界温度,但室内送风温度却大于室内送风临界温度的情况下,说明可能是管路出了问题,只依靠自然蒸发冷却无法达到给热源降温散热的目的,因此需要调节温度调节装置10的运行模式,增加压缩制冷。
如图3所示,在上述任一个实施例中,压缩模块140还包括第三节流部件172。第三节流部件172的第二端h与第一节流部件152的第二端b,第三节流部件172的第二端h还与第二节流部件162的第二端d连接,第三节流部件172的第一端g与第三换热器170的第二端f连接。
在该实施例中,从第三换热器170流出的制冷剂,先经过第三节流部件172降压后,再流向第一节流部件152和第二节流部件162进行第二次降压,有利于提升降压效果。
在另一些实施例中,第三节流部件172完全关闭,换向阀144的第二接口j、第三接口k连通,此时压缩系统仅仅负责冷却室内送风,不再对外提供余热。此时的系统运行方式与常规间接蒸发冷却机组接近。
进一步地,第三节流部件172的开度也可调节。这样,通过对第一节流部件152、第二节流部件162、第三节流部件172以及压缩机142的综合调控,能够实现对换热介质温度更为精确的控制。
在一些实施例中,第三节流部件172通过手动控制开度。或者第三节流部件172与控制器连接,以便于通过控制器控制第三节流部件172的开度,提升设备操作的便利性。
在上述任一项实施例中,压缩模块140还包括第一风机154和/或第二风机164。第一风机154设于第一换热器150靠近室内送风口106的一侧。第一风机154用于驱动室内空气流动。第二风机164设于第二换热器160靠近室外出风口110的一侧。第二风机164用于驱动室外空气流动。
在该实施例中,通过设置第一风机154驱动室内空气,可以加快室内空气流动,提升第一换热器150的换热效率。第二风机164的设置,可以加快室外空气流动,提升第二换热器160的换热效率。
在一些实施例中,控制器还与第一风机154和/或第二风机164连接。通过调节第一风机154、第二风机164的转速,可以调节第一换热器150、第二换热器160的换热效率,从而同样可以在一定程度上调节换热介质的换热温度,进一步地增加了换热介质温度控制的方式和手段,有利于更为精确地控制换热介质的温度。
在上述任一项实施例中,换向阀144还具有第四接口l。压缩模块140还包括毛细管180。毛细管180的一端与压缩机142的吸气口连接,毛细管180的另一端与第四接口l连接。
在该实施例中,毛细管180的另一端与换向阀144的第四接口连接,只要连通第一接口i和第四接口l,就可以通过毛细管180连通压缩机142的吸气口和排气口。这样,在制冷剂从压缩机142排出后,大部分可以向第三换热器170流动,余下一小部分还可以通过第一接口i、第四接口l直接流回压缩机142的吸气口。这样,在第二接口j第三接口k连通时,第一接口也可以有制冷剂流通,有利于使第一接口i、第四接口l始终维持制冷剂循环,避免因回路内积油、积液造成系统故障。
可以理解地,在上述任一项实施例中,第三换热器170包括冷媒管路174,冷媒管路174用于作为制冷剂的流路。如图1至图3所示,第三换热器170中还可以包括换热介质的流路,例如水路176。或者气路,如图4所示,换热介质可以是空气,第三换热器170上仅有冷媒管路,空气直接和冷媒管路换热,而不是通过管路换热。在换热介质的流路为水路176时,水路176中的水与冷媒管路174中的制冷剂换热,设备向用户提供热水。换热介质为空气时,空气与冷媒管路174中的制冷剂换热,设备向用户提供暖气。
在另一些实施例中,第三换热器170中可以同时设置有水路176和气路,水、气同时和换热介质换热,这样,设备不仅可以向用户提供热水,还可以向用户提供暖气,为设备的使用提供了更多的便利性。
在上述任一项实施例中,换热芯体102包括第一流道和第二流道。第一流道具有相互连通的室内回风口104和室内送风口106,并用于作为室内空气的流道。第二流道具有相互连通的室外进风口108和室外出风口110,并用于作为室外空气的流道。
在换热芯体102中设置各自独立的第一流道和第二流道,室内空气在第一流道内流动,室外空气在第二流道内流动,这样室内空气仅仅和室外空气之间具有热量交换,而不会有其它任何交换。对于一些有特殊室内环境要求的地方,采用这种方式,可以使室内空气除了温度之外,始终保持原有性质。例如一些高洁净度要求的室内,室内空气和室外空气仅仅交换热量,这样室外空气中的杂质、灰尘等物质就不会进入到室内而影响室内洁净度。或者一些要求保持温度湿度的室内环境,室内空气和室外空气仅仅交换热量,室外空气中的水分就不会进入室内,室内空气的水分也不会流失到室外,从而可以保持室内空气湿度的稳定性。第一流道具有相互连通的室内回风口104和室内送风口106,这样可以使被热源加热的室内空气从室内回风口104进入第一流道,与第二流道中的室外空气换热降温,然后再从室内送风口106重新回到室内,为热源提供一个温度较低的环境,实现降温散热的目的。同时,由于第一换热器150设置在室内送风口106位置处,这样室内送风口106排放的室内空气还可以和第一换热器150换热,进一步地降温,并将部分余热传递给第一换热器150内的制冷剂带走,实现余热的回收。第二流道具有相互连通的室外进风口108和室外出风口110,则室外的冷空气可以从室外进风口108进入,与第一流道内的室内空气换热升温后,由室外出风口110排出,从而与设置在室外出风口110的第二换热器160进行换热,将部分热量传递给第二换热器160中的制冷剂,实现余热的回收。
需要特别指出的是,第二换热器160在不同的运行模式下,作用不同。在完全自然冷却+余热回收的模式(第一运行模式)下、以及蒸气压缩制冷+余热回收的模式(第三运行模式)下,第二换热器160承担余热回收的作用;在蒸气压缩制冷+部分余热回收的模式(第四运行模式)下,第二换热器160承担向外界环境释放多余热量(热源总散热量减去给热用户的热量)的作用。
在上述实施例中,蒸发冷却模块100还包括喷淋口112、接水盘118、水管114和水泵116。喷淋口112用于向第二流道内喷水。喷淋口112设置在换热芯体102的顶部,以便于喷出的水流在重力作用下自然流动,从而能够与第二流道内的室外空气进行充分地换热。接水盘118设置在换热芯体102的底部,以便于承接第二流道内流出的水流,实现水的循环利用。水管114连接在接水 盘118和喷淋口112之间,水泵116设置在水管114上,以便于抽取接水盘118中的水。喷淋口112可以是一个,也可以是多个。
在一些实施例中,喷淋口112直接开设在水管114上,也就是说,部分水管114设置在换热芯体102的顶部。位于换热芯体102顶部的这部分水管114上开设有至少一个喷淋口112。
在另一些实施例中,喷淋口112设置在换热芯体102的底部,此时喷淋口112朝上喷,喷出很细小的水雾,在风的带动下也能够进入换热芯体102内。
可以理解地,喷入第二流道的水流能够在换热时,利用吸收的热量进行蒸发,从而提升对室内回风的降温效果。需要指出的是,室外空气温度很低,不需要水流蒸发降温就足以大幅降低室内空气温度时,可以不进行喷水,以节省水资源,降低水流循环所需的能耗。另外,室外温度低于零度时,同样也可以不再喷水,以避免发生结冰而导致系统故障。
如图6所示,根据本申请第二方面提供了一种空调系统20,包括如上述第一方面中任一项实施例的温度调节装置10。
在该实施例中,通过采用上述第一方面中任一项实施例的温度调节装置10,从而具有了上述第一方面的全部有益效果,在此不再赘述。
进一步地,空调系统20还包括壳体200,温度调节装置10的压缩机142设于壳体200内。
在该实施例中,压缩机142设置在壳体200内,便于通过壳体200对压缩机142形成防护,避免压缩机142的损坏。另外,壳体200的设置,也可以减少压缩机142的工作噪音和产生的热量向外传递。
如图8所示,根据本申请第三方面提供的一种控制方法,用于上述第一方面中任一项实施例的温度调节装置,包括:
步骤S100:获取环境温度、用户的热量需求;
步骤S102:根据环境温度、用户的热量需求,确定温度调节装置的运行模式。
在该实施例中,根据环境温度、用户的热量需求,确定温度调节装置的运行模式,有利于在不同的环境温度条件下,采用不同的运行模式,从而提升温度调节装置运行的灵活性。
在上述实施例中,运行模式包括第一运行模式、第二运行模式、第三运行模式、第四运行模式。
在第一运行模式下,温度调节装置对热源进行蒸发冷却,并进行余热回收,也就是前述的完全自然冷却+余热回收的模式。
在第二运行模式下,温度调节装置对热源进行蒸发冷却,并进行部分余热回收。
在第三运行模式下,温度调节装置对热源进行蒸发冷却和压缩制冷,并进行余热回收,即前述的蒸汽压缩制冷+余热回收的模式。
在第四运行模式下,温度调节装置对热源进行蒸发冷却和压缩制冷,并进行部分余热回收,即前述的蒸汽压缩制冷+部分余热回收的模式。
如图9所示,在一些实施例中,环境温度包括室外进风干球温度、室外进风湿球温度。用户的热量需求,根据第三换热器进口端的换热介质的温度和换热介质临界温度之间的大小关系来确定。第三换热器的进口端的换热介质的温度,在换热介质为水的时候,该温度即回水温度。在换热介质为空气时,该温度即回风的温度。回水或回风的温度越低,则用户的热量需求越大。因此,可以设定一个换热介质临界温度来衡量用户的热量需求,在第三换热器的进口端的换热介质的温度大于换热介质临界温度时,确定用户的热量需求小;在第三换热器的进口端的换热介质的温度小于等于换热介质临界温度时,确定用户的热量需求大。控制方法包括:
步骤S200:获取室外进风干球温度或室外进风湿球温度、第三换热器的进口端的换热介质的温度;
步骤S202:若室外进风干球温度小于等于室外进风临界温度或室外进风湿球温度小于等于室外进风临界湿球温度,且第三换热器的进口端的换热介质的温度小于等于换热介质临界温度,确定温度调节装置为第一运行模式;
步骤S204:若室外进风干球温度小于等于室外进风临界温度或室外进风湿球温度小于等于室外进风临界湿球温度,且第三换热器的进口端的换热介质的温度大于换热介质临界温度,确定温度调节装置为第二运行模式;
步骤S206:若室外进风湿球温度大于室外进风临界湿球温度,且第三换热器的进口端的换热介质的温度小于等于换热介质临界温度,确定温度调节装 置为第三运行模式;
步骤S208:若室外进风湿球温度大于室外进风临界湿球温度,且第三换热器的进口端的换热介质的温度大于换热介质临界温度,确定温度调节装置为第四运行模式。
在该实施例中,在室外进风干球温度小于等于室外进风临界干球温度,或室外进风湿球温度小于等于室外进风临界湿球温度,可以确定此时室外温度较低,利用室外环境中的冷量即可实现对热源进行降温散热的目的,因此采用完全自然冷却的方式进行降温散热。同时,第三换热器的进口端的换热介质的温度小于等于换热介质临界温度,说明回水或回风的温度较低,不利于用户取暖或者对热水的需求,因此确定用户的热量需求大,即用户需求的热量大于供热量,因此可以对热源产生的热量进行全部回收。综上,采用第一运行模式,即完全自然冷却+余热回收的模式,也就是完全利用室外空气与室内空气进行换热,而压缩模块主要用于余热回收。
具体地,在第一运行模式下,第一节流部件关闭,第二节流部件开启,并接通换向阀的第二接口j和第三接口k,使得压缩机的吸气口和第二换热器连通。在该模式下,压缩机工作产生的高温高压制冷剂,从压缩机排气口排出后,流入第三换热器和换热介质进行换热。换热介质为水时,则可以通过换热,为用户提供热水。换热介质为空气时,则可以通过换热,直接为用户供暖。制冷剂和换热介质换热之后,温度降低。由于第一节流部件关闭,因此只能向第二节流部件流动。经第二节流部件降压之后,制冷剂变为低温低压的液体,进入第二换热器。由于第二换热器设置在室外出风口,此时,室外出风口处排出的空气已经与室内的热空气进行了换热,温度升高,这样,换热后的室外空气从室外出风口排出时,与第二换热器中温度降低了的制冷剂液体进行换热,从而将其从室内热空气吸收的热源的余热,传递给了第二换热器中的制冷剂,使制冷剂温度升高。第二换热器中的制冷剂换热升温后,流向换向阀。换向阀的第二接口j和第三接口k连通,使得制冷剂经第二接口j、第三接口k,流向压缩机的吸气口,从而将余热带回到压缩机中。在下一次的循环中,余热被压缩机排出的高温高压制冷剂再带到第三换热器中,从而实现余热的回收利用。
在上述过程中,以数据中心为例,数据中心作为热源,其降温散热完全由 室外冷空气和室内热空气的交换实现,其热量通过室内空气带给室外空气,室外空气再将热量传递给制冷剂,制冷剂经过压缩机、第三换热器将热量又传递给换热介质,从而实现余热的回收。这样的温度调节装置,既能够实现热源的降温散热,又能够将热源产生的余热进行回收利用,而且增加的部件数量少,占用空间少,在满足室内送风温度和冷量需求的前提下,能够充分利用热源的余热,有利于节能降耗。
需要指出,通过关闭第一节流部件,开启第二节流部件的方式来实现完全自然冷却+余热回收的模式。
若室外进风干球温度小于等于室外进风临界干球温度,或者室外进风湿球温度小于等于室外进风湿球临界温度,说明室外温度较低,其冷量足以用于室内热源的降温散热,因此可以仅采用自然冷却的方式。如果此时第三换热器的进口端的换热介质的温度,也就是回水或回风的温度大于换热介质临界温度,则确定用户热量需求小,用户需要的热量小于供热量,因此只需要对余热进行部分回收,确定温度调节装置为第二运行模式,也就是采用自然冷却,同时进行部分余热回收的模式。在第二运行模式下,与第一运行模式的不同之处在于,第二节流部件的开度小于第一运行模式下的开度。或者压缩机在第二运行模式下的频率,小于压缩机在第一运行模式下的频率。
若室外进风温度大于室外进风临界温度,例如室外进风湿球温度大于室外进风湿球临界温度,说明此时室外温度较高,不足以完全实现对热源的降温散热,因此可以采用自然冷却+压缩冷却的方式来为热源降温,也就是采用蒸发压缩制冷。同时,若用户的热量需求大,或者说第三换热器的进口端的换热介质的温度,小于等于换热介质临界温度,说明此时回水或回风的温度较低,需要较多热量补充,因此对热源产生的热量进行全部的回收,从而确定在上述情况下,温度调节装置为第三运行模式,也就是蒸发压缩制冷+余热回收的模式。
在第三运行模式下,可以采用关闭第二节流部件,开启第一节流部件的方式来运行该模式。具体地,第二节流部件关闭,第一节流部件开启,换向阀的第二接口j、第三接口k断开。制冷剂从压缩机排气口流出后,先进入第三换热器和换热介质换热降温,换热介质温度升高。然后,制冷剂流向第一节流部件,再流至第一换热器与室内送风换热,带走室内热源的余热,最后重新流回 压缩机。
或者采用另一种方式:换向阀的第二接口j、第三接口k连通。第一节流部件和第二节流部件均开启。制冷剂从压缩机的排气口排出后,流向第三换热器,在第三换热器与换热介质换热,以通过换热介质向用户提供热量。在第三换热器换热完成后,制冷剂分为两路流动。一路流向第一节流部件,经过第一换热器与室内送风换热升温后,带着室内送风传递的余热流回压缩机。另一路流向第二节流部件,经第二换热器与室外排风换热升温后,经换向阀的第二接口j、第三接口k流回压缩机,从而将室外排风传递的余热带回压缩机,经过压缩机压缩后,再将两路制冷剂带回的余热,在下一次循环时,将热量传递给第三换热器处的换热介质。第一换热器和第二换热器分别从室内送风和室外排风回收余热。由上可知,由于第一换热器的换热量不足以满足用户需求,因此从第一换热器、第二换热器两处同时回收余热,从而回收更多的余热,提升余热回收率,并尽量满足用户的热量需求。
若室外进风湿球温度大于室外进风临界湿球温度,且第三换热器的进口端的换热介质的温度大于换热介质临界温度时,也就是说用户的热量需求小,不需要回收过多的余热。因此,在这种情况下,采用第四运行模式,也就是蒸汽压缩制冷+部分余热回收的模式,此时自然冷却结合压缩制冷,并进行部分余热回收,不需要对全部余热进行回收。具体而言,在蒸汽压缩制冷+部分余热回收的模式下,开启压缩机进行补充制冷,回收部分余热,多余热量通过室外出风口排放到室外环境中。换向阀的第一接口和第二接口j连通,第二接口j和第三接口k断开。制冷剂从压缩机的排气口流出后,一路仍然流向第三换热器,和换热介质换热降温后,流向第一节流部件,经第一节流部件降压后,流向第一换热器,在第一换热器处与室内送风口排出的室内空气换热,带走热源的部分余热,然后再回到压缩机的吸气口。另一路制冷剂,从压缩机的排气口流出后,经换向阀的第一接口、第二接口j流向第二换热器,在第二换热器处与室外出风口排出的空气换热,带走部分余热,然后经第二节流部件降压,流向第一节流部件,与之前从压缩机排气口流出的制冷剂一起再次降压后,流向第一换热器换热后流回压缩机。
在一些实施例中,若室外进风温度大于室外进风临界温度,同时,室内送 风温度小于等于室内送风临界温度,说明此时虽然室外温度较高,但仍然能够满足室内热源降温的需求,因此可以继续采取自然冷却的方式,不需要压缩制冷,同时,用户的热量需求大,则确定温度调节装置为第一运行模式。相应地,如果此时用户的热量需求小,则确定温度调节装置为第二运行模式。
需要说明的是,在一些情况下,室外进风干球温度小于等于室外进风临界干球温度,但是室内送风温度可能会大于室内送风临界温度,说明此时存在某种原因,例如换热芯体脏堵、结垢等,导致虽然室外气温较低,但室内送风温度仍不满足要求。此时应开启压缩模块进行补充制冷。如果此时用户的热量需求大,则确定温度调节装置为第三运行模式,即蒸发冷却和压缩制冷同时进行,并进行余热回收。如果用户的热量需求小,则确定温度调节装置为第四运行模式,仅回收部分余热。
如图7所示,根据本申请第四方面的实施例提供了一种温度调节装置10,包括:存储器300和处理器302,其中,存储器300上存储有可在处理器302上运行的计算机程序,处理器302执行计算机程序时实现如上述第三方面中任一项实施例的控制方法的步骤,故而具有上述任一项实施例的有益效果,在此不再赘述。
根据本申请第五方面的实施例提供了一种可读存储介质,其上存储有计算机程序,计算机程序被处理器302执行时实现如上述第三方面中任一项实施例的控制方法的步骤,故而具有上述任一项实施例的有益效果,在此不再赘述。
根据本申请提出的一个具体实施例的温度调节装置10(即间接蒸发冷却与余热回收装置),用于热源为数据中心的数据机房。温度调节装置10包括蒸发冷却模块100和压缩模块。
蒸发冷却模块100包括换热芯体102、喷淋口112、喷淋水管114、喷淋水泵116、接水盘118。换热芯体102包括第一流道和第二流道这两组流道。
冷热流体分别流经换热芯体102的两组流道并发生热量交换。蒸发冷却模块100工作时,室外温度或湿度较低的室外空气进入换热芯体102的第二流道,室内空气进入换热芯体102的第一流道。喷淋水泵116从接水盘118抽水并通过喷淋水管114输送至喷淋口112,喷淋水被均匀喷洒至换热芯体102内部,并在室外空气所在的第二流道内蒸发以提升对室内回风的降温效果。若室外气 温很低,出于节约水资源或防止结冰的考虑,喷淋水泵116停止运行,室外空气在换热芯体102内以干工况与室内回风换热。
蒸气压缩模块包括压缩机142、第一换热器150、第一风机154、第一节流部件152、第一换热器150、第一风机154、第二节流部件162、换向阀144、长毛细管180、第三换热器170。
温度调节装置10具有至少三种运行模式,分别为完全自然冷却+余热回收的模式、蒸气压缩制冷+余热回收的模式、蒸气压缩制冷+部分余热回收的模式。当(To≤To1或Tow≤To2)时,运行完全自然冷却+余热回收的模式;当Tow>To2且T h≤T O3时,运行蒸气压缩制冷+余热回收的模式;当Tow>To2且T h>T O3时,运行蒸气压缩制冷+部分余热回收的模式。其中,室外进风干球温度为To,室外进风湿球温度为Tow,室外进风临界干球温度为To1(To1>0),室外进风临界湿球温度为To2(To2>0且To2>To1),第三换热器的进口端的换热介质的温度为T h,换热介质临界温度为T O3。室内进风温度,也就是数据机房送风温度Tis,数据机房送风设定温度为Tiset。该装置最大供热能力为Qh,第一换热器150实时换热量为Qh2,热用户实时需热量为Qo。
本具体实施例的有益效果:本具体实施例的温度调节装置10,充分利用原间接蒸发冷却机组的蒸气压缩制冷系统的压缩机142、两器(第一换热器150和第二换热器160)和第一节流部件152(例如电子膨胀阀),仅额外增加少数部件(换向阀144、第二节流部件162、毛细管180等)和调整少量冷媒管路174即可实现很好的余热回收效果,该温度调节装置10(间接蒸发冷却与余热回收装置)的结构更简单、空间占用小、设备成本低、余热温度控制更精确,在满足数据机房送风温度和冷量需求的前提下,尽可能充分回收数据机房排出的余热。
如图5所示,根据本申请具体实施例提出的一种温度调节装置10,包括蒸发冷却模块100和蒸气压缩模块140。
蒸发冷却模块100包括换热芯体102、喷淋口112、喷淋水管114、喷淋水泵116、接水盘118。换热芯体102包括第一流道和第二流道。冷热流体分别流经换热芯体102的这两组流道并发生热量交换。蒸发冷却模块100工作时,室外温度或湿度较低的空气进入换热芯体102的第二流道,室内空气进入换热 芯体102的第一流道。喷淋水泵116从接水盘118抽水并通过喷淋水管114输送至喷淋口112,喷淋水被均匀喷洒至换热芯体102内部,并在室外空气的流道内蒸发以提升对室内回风的降温效果。若室外气温很低,出于节约水资源或防止结冰的考虑,喷淋水泵116停止运行,室外空气在换热芯体102内以干工况与室内回风换热。
蒸气压缩模块包括压缩机142、第一换热器150、第一风机154、第一节流部件152、第二换热器160、第二风机164、第二节流部件162、换向阀144、长毛细管180、第三换热器170。
间接蒸发冷却与余热回收装置具有至少三种运行模式,分别为(假设:室外进风干球温度为To,室外进风湿球温度为Tow,室外进风临界干球温度为To1(To1>0),室外进风临界湿球温度为To2(To2>0且To2>To1),该装置最大供热能力为Qh,第一换热器150实时换热量为Qh2,热用户实时需热量为Qo):
(1)完全自然冷却+余热回收的模式:
当(To≤To1或Tow≤To2)时,此时为完全自然冷却状态,压缩机142不用于对室内送风降温,压缩式制冷制热模块工作于余热回收状态。在该模式下,换向阀144开启,第二节流部件162开启,第一节流部件152全关,压缩机142排出的高温高压制冷剂的绝大部分进入第三换热器170,将来自热用户的冷水加热成热水。制冷剂从第三换热器170流出后依次通过第二节流部件162、第二换热器160,经过节流降压的制冷剂在第二换热器160中吸收室外出风余热,之后经过换向阀144回到压缩机142,完成整个余热回收循环。通过对压缩机142变频调节、对第二节流部件162开度调节,可实现第三换热器170热水出水温度的精确控制。
另外,有极少量制冷剂从压缩机142排气口通过换向阀144进入长毛细管180,主要作用使该回路始终维持制冷剂循环,避免因回路内积油、积液造成系统故障。
对于用户的热量需求,或者说用户实时需热量Qo和装置最大供热能力为Qh之间的关系判断,以第三换热器的进口端的换热介质的温度和换热介质临界温度之间的关系来确定。第三换热器的进口端的换热介质的温度T h小于等 于换热介质温度T O3,即T h≤T O3,则用户实时需要的热量大于供热能力,用户的热量需求大,余热全部回收。
T h>T O3,则用户实时需要的热量小于供热能力,用户的热量需求小,余热部分回收。
(2)蒸气压缩制冷+余热回收的模式:
当Tow>To2且T h≤T O3时,开启压缩机142补充制冷,对从换热芯体102流出的数据机房回风继续降温。在该模式下,换向阀144开启,第一节流部件152和第二节流部件162开启,压缩机142排出的制冷剂分两条路径流动:①压缩机142——第三换热器170——第一节流部件152——第一换热器150——换向阀144——压缩机142;②压缩机142——第三换热器170——第二节流部件162——第二换热器160——压缩机142。第二换热器160和第一换热器150分别从室外出风和室内送风回收余热,通过对压缩机142变频调节、对第一节流部件152和第二节流部件162开度调节,在满足数据机房对室内送风温度要求的前提下,可实现第三换热器170热水出水温度的控制。
另外,有极少量制冷剂从压缩机142排气口通过换向阀144进入长毛细管180,主要作用使该回路始终维持制冷剂循环,避免因回路内积油、积液造成系统故障。
另外,在该模式下,还存在另外一种运行方式:换向阀144开启,第二节流部件162全关,第一节流部件152开启,压缩机142排出的高温高压制冷剂的绝大部分进入第三换热器170,将来自热用户的冷水加热成热水。制冷剂从第三换热器170流出后依次通过第一节流部件152、第一换热器150,经过节流降压的制冷剂在第一换热器150中吸收数据机房回风余热,之后回到压缩机142,完成整个余热回收循环。通过对压缩机142、第一节流部件152、第一风机154调节,可实现第三换热器170热水出水温度的精确控制。
(3)蒸气压缩制冷+部分余热回收的模式:
当Tow>To2且T h>T O3时,开启压缩机142补充制冷,并同时向热用户提供热量,数据机房产生的多余热量排放至室外环境中。在该模式下,换向阀144关闭,第一节流部件152开启,第二节流部件162全开,压缩机142排出的制冷剂分两条路径流动:①压缩机142——第三换热器170——第一节流部 件152——第一换热器150——压缩机142;②压缩机142——换向阀144——第二换热器160——第二节流部件162——第一节流部件152——第一换热器150——压缩机142。第一换热器150为数据机房供冷的同时获得余热,余热一部分通过第三换热器170传递给热用户,另一部分多余的热量通过第二换热器160排放至室外环境。通过对压缩机142变频调节、对第一节流部件152开度调节,在满足数据机房对室内送风温度要求的前提下,可实现第三换热器170热水出水温度的精确控制。
如图4所示,在上述实施例的基础上,增加第三节流部件172,通过压缩机142、第一节流部件152、第二节流部件162和第三节流部件172的综合调控,能够实现供热温度更精确的控制。
如图4所示,将上述第三换热器170改为空气-制冷剂换热器,加热房间空气,直接给房间供暖。
以上结合附图详细说明了根据本申请提供的实施例,通过上述实施例,有效地回收了热源的余热,且增加的部件数量少,设备结构整体简单,空间占用少。
在根据本申请的实施例中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在根据本申请的实施例中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于根据本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为根据本申请的优选实施例而已,并不用于限制根据本申请的实施例,对于本领域的技术人员来说,根据本申请的实施例可以有各种更改和变化。 凡在根据本申请的实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在根据本申请的实施例的保护范围之内。

Claims (21)

  1. 一种温度调节装置,其中,包括:
    蒸发冷却模块,包括:
    换热芯体,用于室内空气和室外空气换热,所述换热芯体具有室内送风口和室外出风口;
    压缩模块,包括:
    压缩机,具有排气口和吸气口;
    第一换热器,设于所述室内送风口的一侧,所述第一换热器与所述压缩机的吸气口相连;
    第一节流部件,所述第一节流部件的第一端与所述第一换热器连接;
    第二换热器,设于所述室外出风口的一侧;
    第二节流部件,所述第二节流部件的第一端与所述第二换热器连接;
    换向阀,具有第一接口、第二接口、第三接口,所述第一接口与所述压缩机的排气口连接,所述第二接口与所述第二换热器连接,所述第三接口与所述压缩机的吸气口连接;
    第三换热器,所述第三换热器的第一端与所述压缩机的排气口连接,所述第三换热器的第二端与所述第一节流部件的第二端连接,所述第三换热器的第二端还与所述第二节流部件的第二端连接,所述第三换热器用于和换热介质换热。
  2. 根据权利要求1所述的温度调节装置,其中,
    所述第一节流部件和/或所述第二节流部件的开度可调。
  3. 根据权利要求2所述的温度调节装置,其中,所述压缩模块还包括:
    控制器,与所述第一节流部件和/或所述第二节流部件相连,用于控制所述第一节流部件和/或所述第二节流部件的开度。
  4. 根据权利要求3所述的温度调节装置,其中,所述压缩模块还包括:
    第一温度传感器,用于获取室外进风温度,所述第一温度传感器与所述控制器相连;
    所述控制器还用于根据所述室外进风温度和用户的热量需求,控制所述温度调节装置的运行模式。
  5. 根据权利要求4所述的温度调节装置,其中,所述压缩模块还包括:
    第二温度传感器,用于获取所述第三换热器的进口端的换热介质的温度,所述第二温度传感器与所述控制器相连;
    所述控制器还用于根据所述室外进风温度和所述第三换热器的进口端的换热介质的温度,控制所述温度调节装置的运行模式。
  6. 根据权利要求1至5中任一项所述的温度调节装置,其中,所述压缩模块还包括:
    第三节流部件,所述第三节流部件的第二端与所述第一节流部件的第二端连接,所述第三节流部件的第二端还与所述第二节流部件的第二端连接,所述第三节流部件的第一端与所述第三换热器的第二端连接。
  7. 根据权利要求1至5中任一项所述的温度调节装置,其中,所述压缩模块还包括:
    第一风机,设于所述第一换热器靠近所述室内送风口的一侧;和/或
    第二风机,设于所述第二换热器靠近所述室外出风口的一侧。
  8. 根据权利要求1至5中任一项所述的温度调节装置,其中,所述压缩模块还包括:
    毛细管,所述毛细管的一端与所述压缩机的吸气口连接;
    所述换向阀还具有第四接口,所述第四接口与所述毛细管的另一端连接。
  9. 根据权利要求1至5中任一项所述的温度调节装置,其中,
    所述第三换热器包括:冷媒管路,用于作为制冷剂的流路。
  10. 根据权利要求9所述的温度调节装置,其中,所述第三换热器还包括:
    水路,用于作为水的流路,所述冷媒管路中的制冷剂与所述水路中的水换热。
  11. 根据权利要求1至5中任一项所述的温度调节装置,其中,
    所述换热芯体包括:
    第一流道,具有相互连通的室内回风口和所述室内送风口,所述第一流道用于作为室内空气的流道;
    第二流道,具有相互连通的室外进风口和所述室外出风口,所述第二流道用于作为室外空气的流道。
  12. 根据权利要求11所述的温度调节装置,其中,所述蒸发冷却模块还包括:
    喷淋口,用于向所述第二流道内喷水;
    接水盘,用于承接所述第二流道内流出的水;
    水管,所述水管的一端与所述喷淋口连接,所述水管的另一端与所述接水盘连接;
    水泵,设于所述水管上,所述水泵用于驱动所述接水盘内的水向所述喷水口流动。
  13. 一种空调系统,其中,包括:
    如权利要求1至12中任一项所述的温度调节装置。
  14. 一种控制方法,用于权利要求1至12中任一项所述的温度调节装置,其中,包括:
    获取环境温度、用户的热量需求;
    根据所述环境温度、所述用户的热量需求,确定所述温度调节装置的运行模式。
  15. 根据权利要求14所述的控制方法,其中,
    所述运行模式包括:第一运行模式、第二运行模式、第三运行模式、第四运行模式;
    在所述第一运行模式下,所述温度调节装置对热源进行蒸发冷却,并进行余热回收;
    在所述第二运行模式下,所述温度调节装置对热源进行蒸发冷却,并进行部分余热回收;
    在所述第三运行模式下,所述温度调节装置对热源进行蒸发冷却和压缩制冷,并进行余热回收;
    在所述第四运行模式下,所述温度调节装置对热源进行蒸发冷却和压缩制冷,并进行部分余热回收。
  16. 根据权利要求15所述的控制方法,其中,
    所述环境温度包括室外进风干球温度、室外进风湿球温度;
    所述用户的热量需求,根据第三换热器的进口端的换热介质的温度和换热 介质临界温度之间的大小关系确定;
    所述获取环境温度、用户的热量需求,具体包括:
    获取所述室外进风干球温度或所述室外进风湿球温度、第三换热器的进口端的换热介质的温度;
    所述根据所述环境温度、所述用户的热量需求,确定所述温度调节装置的运行模式,具体包括:
    若所述室外进风干球温度小于等于室外进风临界干球温度或所述室外进风湿球温度小于等于室外进风临界湿球温度,同时,所述第三换热器的进口端的换热介质的温度小于等于换热介质临界温度,确定所述温度调节装置为第一运行模式;
    若所述室外进风干球温度小于等于室外进风临界干球温度或所述室外进风湿球温度小于等于室外进风临界湿球温度,同时,所述第三换热器的进口端的换热介质的温度大于换热介质临界温度,确定所述温度调节装置为第二运行模式;
    若所述室外进风湿球温度大于室外进风临界湿球温度,同时,所述第三换热器的进口端的换热介质的温度小于等于换热介质临界温度,确定所述温度调节装置为第三运行模式;
    若所述室外进风湿球温度大于室外进风临界湿球温度,同时,所述第三换热器的进口端的换热介质的温度大于换热介质临界温度,确定所述温度调节装置为第四运行模式。
  17. 根据权利要求15或16所述的控制方法,其中,
    在所述第一运行模式或所述第二运行模式下,控制第一节流部件关闭,第二节流部件开启,并连通换向阀的第二接口和第三接口;
    所述第二节流部件在所述第二运行模式下的开度,小于所述第二节流部件在所述第一运行模式下的开度;和/或
    压缩机在所述第二运行模式下的频率,小于所述压缩机在所述第一运行模式下的频率。
  18. 根据权利要求15或16所述的控制方法,其中,
    在所述第三运行模式下,控制第一节流部件开启,第二节流部件关闭,并 断开换向阀的第二接口和第三接口;或
    在所述第三运行模式下,控制所述第一节流部件和所述第二节流部件开启,并连通换向阀的第二接口和第三接口。
  19. 根据权利要求15或16所述的控制方法,其中,
    在所述第四运行模式下,控制第一节流部件和所述第二节流部件开启,并连通换向阀的第二接口和第一接口。
  20. 一种温度调节装置,其中,包括:
    存储器和处理器,其中,所述存储器上存储有可在所述处理器上运行的程序或指令,所述处理器执行所述程序或指令时实现如权利要求14至19中任一项所述的控制方法的步骤。
  21. 一种可读存储介质,其上存储有程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求14至19中任一项所述的控制方法的步骤。
PCT/CN2021/119389 2021-03-24 2021-09-18 温度调节装置、空调系统、控制方法和可读存储介质 WO2022198944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110330496.9 2021-03-24
CN202110330496.9A CN114517942A (zh) 2021-03-24 2021-03-24 温度调节装置、空调系统、控制方法和可读存储介质

Publications (1)

Publication Number Publication Date
WO2022198944A1 true WO2022198944A1 (zh) 2022-09-29

Family

ID=81594323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119389 WO2022198944A1 (zh) 2021-03-24 2021-09-18 温度调节装置、空调系统、控制方法和可读存储介质

Country Status (2)

Country Link
CN (1) CN114517942A (zh)
WO (1) WO2022198944A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102945A1 (en) * 2021-06-10 2022-12-14 Huawei Digital Power Technologies Co., Ltd. Composite refrigeration system and data center

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200269B (zh) * 2022-07-20 2024-03-22 合肥美的暖通设备有限公司 一种制冷系统、冷却机组及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119547A (ja) * 2010-12-02 2012-06-21 Shinryo Corp サーバ室の空調システム
CN103512274A (zh) * 2013-10-11 2014-01-15 无锡同方人工环境有限公司 带生活热水的超低能耗住宅用多功能空气调节装置
CN104406328A (zh) * 2014-10-13 2015-03-11 北京佳诚佳信科技有限公司 一种空气源同制冷热水节能回收机组
CN110230864A (zh) * 2019-06-03 2019-09-13 北京晶海科技有限公司 空调器、其新风热泵循环管路以及热回收控制系统和方法
CN111140950A (zh) * 2019-12-23 2020-05-12 南京壹格软件技术有限公司 一种数据中心间接蒸发冷却系统及控制方法
CN111520794A (zh) * 2019-02-01 2020-08-11 北京京东尚科信息技术有限公司 热回收供热系统
CN211345639U (zh) * 2019-10-12 2020-08-25 西安工程大学 结合蒸发冷却和溴化锂吸收式制冷的数据中心用空调系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205655422U (zh) * 2016-03-21 2016-10-19 深圳市英维克科技股份有限公司 相变换热和压缩制冷复合冷却系统
CA3081986A1 (en) * 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
CN110411059B (zh) * 2019-08-28 2024-01-23 珠海格力电器股份有限公司 一种双蒸发温度热泵系统、空调器及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119547A (ja) * 2010-12-02 2012-06-21 Shinryo Corp サーバ室の空調システム
CN103512274A (zh) * 2013-10-11 2014-01-15 无锡同方人工环境有限公司 带生活热水的超低能耗住宅用多功能空气调节装置
CN104406328A (zh) * 2014-10-13 2015-03-11 北京佳诚佳信科技有限公司 一种空气源同制冷热水节能回收机组
CN111520794A (zh) * 2019-02-01 2020-08-11 北京京东尚科信息技术有限公司 热回收供热系统
CN110230864A (zh) * 2019-06-03 2019-09-13 北京晶海科技有限公司 空调器、其新风热泵循环管路以及热回收控制系统和方法
CN211345639U (zh) * 2019-10-12 2020-08-25 西安工程大学 结合蒸发冷却和溴化锂吸收式制冷的数据中心用空调系统
CN111140950A (zh) * 2019-12-23 2020-05-12 南京壹格软件技术有限公司 一种数据中心间接蒸发冷却系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102945A1 (en) * 2021-06-10 2022-12-14 Huawei Digital Power Technologies Co., Ltd. Composite refrigeration system and data center

Also Published As

Publication number Publication date
CN114517942A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN205678804U (zh) 一种带有自然冷却功能的风冷冷水机组和空调器
CN203615671U (zh) 一种机柜服务器散热用前板系统
CN104676796B (zh) 空调系统及其控制方法
WO2016058280A1 (zh) 一种复合式制冷多联空调系统及其控制方法
WO2022198944A1 (zh) 温度调节装置、空调系统、控制方法和可读存储介质
CN102798184B (zh) 一种热管热泵复合系统
WO2019015407A1 (zh) 一种能够同时实现对cpu芯片和服务器进行散热的系统
WO2018145366A1 (zh) 一种机柜服务器用液冷热管散热系统及其控制方法
CN105135739A (zh) 多功能热泵型蒸发式冷凝空调机组
CN110454897A (zh) 一种蒸发冷却-太阳能吸收式制冷空调系统
CN107327994A (zh) 一种风冷型带蒸发冷却功能的热管空调机组
CN102563947B (zh) 一种热管热泵组合型制冷装置
CN102589183B (zh) 一种热管热泵组合型制冷装置
CN208967906U (zh) 一种双蒸发器空气能高温热泵热水机组
CN205119549U (zh) 多功能热泵型蒸发式冷凝空调机组
WO2020151112A1 (zh) 一种间接蒸发冷冷源泵喷淋控制方法及控制装置
Sun et al. Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers
CN214413341U (zh) 一种数据中心的散热系统
CN207599917U (zh) 间接蒸发供冷装置
CN206895121U (zh) 一种能够同时实现对cpu芯片和服务器进行散热的系统
CN105916361A (zh) 一种适用于通信机柜的低耗淋水式热管散热成套设备
CN111121200A (zh) 一种空调系统
CN206695406U (zh) 一种具有自动追踪太阳功能的太阳能热泵集成控制系统
CN105258379A (zh) 热泵型太阳能蒸发式冷凝空调机组
CN109028410A (zh) 一种热管空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11202305013S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE