WO2019237328A1 - 一种用餐厨废料制备生物柴油的方法 - Google Patents

一种用餐厨废料制备生物柴油的方法 Download PDF

Info

Publication number
WO2019237328A1
WO2019237328A1 PCT/CN2018/091477 CN2018091477W WO2019237328A1 WO 2019237328 A1 WO2019237328 A1 WO 2019237328A1 CN 2018091477 W CN2018091477 W CN 2018091477W WO 2019237328 A1 WO2019237328 A1 WO 2019237328A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
preparing biodiesel
biodiesel
kitchen waste
preparing
Prior art date
Application number
PCT/CN2018/091477
Other languages
English (en)
French (fr)
Inventor
刘若天
王建利
卢轼浚
赵君颖
Original Assignee
世界家庭用具制品厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界家庭用具制品厂有限公司 filed Critical 世界家庭用具制品厂有限公司
Priority to PCT/CN2018/091477 priority Critical patent/WO2019237328A1/zh
Publication of WO2019237328A1 publication Critical patent/WO2019237328A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/04Refining fats or fatty oils by chemical reaction with acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/06Refining fats or fatty oils by chemical reaction with bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/12Refining fats or fatty oils by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B13/00Recovery of fats, fatty oils or fatty acids from waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • the invention relates to a method for producing biodiesel from fats and oils, food wastes and related waste oils.
  • Biodiesel is one of the value-added products obtained from food waste, such as edible oil used in restaurants and hotels and grease waste separated from food waste are raw materials for the production of biodiesel.
  • the technologies for producing biodiesel from clean feedstocks around the world are quite mature, but none of these technologies are native, so these technologies are not optimized for Hong Kong food waste oil.
  • the dietary habits of the high meat diet in Hong Kong lead to the recovery of waste oil with high oil content and high animal fat content. If you obtain high yield and high purity biodiesel from these complex food wastes, you need to operate the production conditions to modify.
  • Biodiesel is a fatty acid methyl ester produced by the transesterification of triglycerides with methanol under the action of a basic or acidic catalyst:
  • the edible oils on the market are refined, so generally the content of impurities is very low.
  • the pure edible oil is directly used for the transesterification reaction, the high-yield fatty acid methyl ester can be obtained without the pretreatment of the raw oil, and only a simple post-treatment, such as washing, can be used to obtain high-quality biodiesel. .
  • a simple post-treatment such as washing
  • the waste cooking oil and grease waste collected from the local area have the characteristics of high acid value, high water content, and many impurities. Therefore, in order to produce qualified biodiesel (European standard EN14214) in Hong Kong on a large scale, it is necessary to modify the production line for source oil pretreatment and crude product purification.
  • the present invention provides a modified method for preparing biodiesel suitable for dining and kitchen waste in Hong Kong.
  • the modified biodiesel production process includes degumming to remove gum, and an alkaline catalyst is used under ultrasound.
  • the transesterification reaction is carried out, the residual free fatty acid of crude biodiesel is removed in the alkaline refining process, and the biodiesel conforming to EN14214 standard is refined under reduced pressure.
  • Step 1 The collected kitchen waste is first filtered to remove solid impurities
  • Step 2 Liquid-liquid separation removes and removes wastewater, and the resulting oil is a feedstock oil for preparing biodiesel;
  • Step 3 The raw material oil needs to be processed by a degumming process to remove the gelatin containing phospholipids and other impurities (calcium, magnesium, iron, and other trace metals).
  • Phospholipids are lipids composed of two hydrophobic fatty acid tails and a hydrophilic phosphate ester head connected by glycerol molecules. Glia are substances that must be removed from crude oil because gums cause:
  • Step 4 The degummed oil is then transferred to a transesterification reactor to produce fatty acid methyl esters (FAME):
  • FAME fatty acid methyl esters
  • the transesterification reaction requires 3 molar equivalents of methanol and 1 molar source oil, but an excess of Methanol to ensure the completion of the reaction: the amount of methanol used depends on the choice of the basic catalyst, and generally ranges from 6-10 molar equivalents of crude oil.
  • the added catalysts are homogeneous and heterogeneous basic catalysts, such as potassium hydroxide, sodium methoxide, and calcium oxide, which can be used as catalysts for the transesterification reaction.
  • the application uses ultrasonic assisted transesterification reaction.
  • the power of the ultrasonic wave is 250-350W and the frequency is 28-34kHz.
  • the preferred power and frequency are set at 300W and 30kHz.
  • the cavitation effect of the ultrasonic wave is improved. Mass transfer, conversion rate, and reaction rate shorten the reaction time and increase product yield.
  • the reaction temperature is controlled at 55-60 ° C to maintain the best conversion effect to obtain crude diesel products.
  • fatty acid methyl esters can be obtained from triglycerides with a high conversion rate.
  • Step 5 The crude product is washed with water to remove excess methanol, alkaline catalyst and glycerin. Due to the high acid value of the raw oil, the crude product will also contain a high concentration of fatty acids. In the case of a high acid value, the crude product needs to be alkali-refined through a sodium hydroxide solution (concentration: 10%, the amount is 5% by weight). In order to reduce the acid value, the biodiesel after alkali refining needs to be subjected to vacuum distillation to obtain high-quality biodiesel.
  • the crude product is bubbled with nitrogen to replace the air in it, and then the vacuum distillation is performed under the protection of nitrogen, which can prevent the biodiesel from being oxidized by the residual air at high temperature, so as to obtain high-quality biodiesel.
  • the pressure during the distillation is controlled between -50 and -60 kPa.
  • the beneficial effect of the invention is that it is suitable for the treatment of kitchen waste oil with high oil content and high animal fat content in Hong Kong, and the biodiesel meeting the EN14214 standard is refined.
  • KOH potassium hydroxide
  • the other reaction steps are the same as in Example 1.
  • the difference is that the transesterification reaction using sodium methoxide as the catalyst in this case: Sodium methoxide (0.12 molar equivalent of degummed oil) was dissolved in methanol (6 molar equivalent of degummed oil) and added to the reactor first. After that, the degummed oil (3 tons) was added to the reactor and mixed with a methanol solution of sodium methoxide. Under ultrasonic (30kHz), stirring and 55-60 ° C, the reaction mixture was transesterified. After 60 minutes of reaction, it was allowed to stand overnight. Crude biodiesel was separated from the reaction mixture to obtain the standard EN14214 (fatty acid methyl ester content). Not less than 96.5%) of biodiesel products.
  • EN14214 fatty acid methyl ester content
  • the other reaction steps are the same as in Example 1, except that the transesterification reaction using calcium oxide (CaO) as a catalyst in this case.
  • CaO calcium oxide
  • methanol 10 molar equivalents of degummed oil
  • degummed oil 3 tons was added to the reactor and calcium oxide and methanol were mixed.
  • the reaction mixture was transesterified under ultrasonic (30 kHz), stirring and a temperature of 55-60 ° C. After 3 hours of reaction, it was allowed to stand overnight. Crude biodiesel is separated from the reaction mixture to obtain a biodiesel product that meets the standard EN14214 (fatty acid methyl ester content is not less than 96.5%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Fats And Perfumes (AREA)

Abstract

一种用餐厨废料制备生物柴油的方法,本发明涉及一种从油脂、食品废料及相关废油制备生物柴油的生产方法。本发明的技术方案如下:一种用餐厨废料制备生物柴油的方法,所述的方法包括如下步骤:(1)对除去餐厨废料中固体杂质和水的原料油进行脱胶处理;(2)生产脂肪酸甲酯;(3)所述的粗产物除杂。本发明的有益效果在于,适合香港地区具有高油含量和高动物脂肪含量特点的餐厨废油的处理,提炼出符合EN14214标准的生物柴油。

Description

一种用餐厨废料制备生物柴油的方法 技术领域
本发明涉及一种从油脂、食品废料及相关废油制备生物柴油的生产方法。
背景技术
食物垃圾在香港是一个严重的问题,2012年,超过3000吨的食物废物被当作城市固体废物处理,并每天弃置于堆填区,由于香港的空间有限,把垃圾堆放于填埋场将不再是一种可持续的方案。因此,回收食品废弃物制备有价值的产品是处理问题的一种可行方案。
生物柴油是从食品垃圾中获得的增值产品之一,如餐馆和酒店中使用过的食用油和从食品废弃物中分离来的油脂废物是生产生物柴油的原料。在世界各地从清洁的原料油制备生物柴油的技术已经相当成熟,但这些技术都不是土生土长的,所以这些技术不是针对香港食品废油的优化技术。香港高肉饮食的饮食习惯导致回收的废油具有高油含量和高动物脂肪含量的特点,如果从这些复杂的食品废料得到高收率、高纯度的生物柴油,就需要对生产过程的操作条件进行修改。
生物柴油是甘油三酯与甲醇在碱性或酸性催化剂作用下进行酯交换反应生成的脂肪酸甲酯:
Figure PCTCN2018091477-appb-000001
市面上出售的食用油都经过精炼的,所以一般杂质含量很低。直接使用纯正食用油进行酯交换反应时,原料油不需要前处理的情况下也能得出高产量的 脂肪酸甲脂,而且只需简单的后处理,例如水洗,便能得到高质量的生物柴油。但是食用油经过煮食后,会被肉类的动物脂肪再污染;高温的烹调法也会加速油的降解。所以,由于从本地收集的废食用油和油脂废物具有高酸价、高水含量、和杂质多的特点。因此,在香港要大规模生产合格(欧洲标准EN14214)的生物柴油,对源油预处理和粗产物纯化的生产线进行修改是非常必要的。
发明内容
为克服上述提到的缺陷,本发明提供一种修改的适合香港地区的用餐厨废料制备生物柴油的方法:经修改的生物柴油的生产过程包括脱胶以去除胶质,在超声下使用碱性催化剂进行酯交换反应,碱炼过程去除粗生物柴油的残留游离脂肪酸和减压蒸馏提炼出符合EN14214标准的生物柴油。
本发明的具体步骤如下:
步骤一:收集的餐厨废料先经过过滤去除固体杂质;
步骤二:液-液分离除去除废水,由此产生的油是制备生物柴油的原料油;
步骤三:原料油需要通过脱胶工艺进行处理,以除去含有磷脂和其他杂质(钙、镁、铁,等微量金属)混合而成的胶质。
磷脂是由两个疏水性脂肪酸尾和由甘油分子连接的亲水性磷酸酯头组成的脂类,胶质是原油中必须除去的物质,因为胶质会导致:
1,使得原料油乳化;
2、可以在碱性介质中水解,与酯交换化反应竞争;
3、胶质的存在增加了生产线中的工作量和试剂。
使用85%的浓磷酸,用量为原料油油重的0.4%-0.7%,优选0.5%,搅拌,使浓磷酸和原料油完全混合,其作用是将非水化磷脂(NHP)变成水合形式;然后在氯化钠水溶液存在和轻微加热(50-60℃)下搅拌,使水化磷脂进行沉降,静 置过夜后通过液-液分离得到脱胶油。
步骤四:脱胶油之后被转移到酯交换反应器来生产脂肪酸甲酯(FAME):从理论上讲,酯交换反应需要3摩尔当量的甲醇与1摩尔的源油,但是本申请中使用过量的甲醇来确保反应的完成:所用甲醇的量取决于碱性催化剂的选择,一般为原油的6-10摩尔当量不等。加入的催化剂为均相和非均相的碱性催化剂,如氢氧化钾、甲醇钠和钙的氧化物,可作为酯交换反应的催化剂。为了更好充分的反应,本申请采用超声波辅助进行酯交换反应,超声波的功率为250-350W,频率为28-34kHz,优选的功率和频率设定在300W和30kHz,超声波的空化效应提高了传质、转化率、反应速率,缩短了反应时间,提高了产品产量。反应的温度控制在55-60℃以维持最佳的转换效果,得到柴油粗产物。
在碱性催化剂作用下,甘油三酯制备脂肪酸甲酯可以得到很高的转化率。
步骤五:粗产物用水清洗以除去多余的甲醇、碱性催化剂和甘油。由于原料油酸值高,粗产物也会含有高浓度的脂肪酸,在高酸值的情况下,粗产物需要通过氢氧化钠溶液(浓度为10%,用量为油重的5%)进行碱炼以降低酸价,碱炼后的生物柴油需要进行减压蒸馏得到高品质的生物柴油。蒸馏前把粗产物用氮气鼓泡,置换当中的空气,之后在氮气保护下进行减压蒸馏,可以防止高温下生物柴油被残留的空气氧化,以可以得到高品质的生物柴油。蒸馏过程中压力控制在-50至-60kPa之间。收集蒸馏温度在120-240℃范围内的馏分,可以得到符合标准EN14214(脂肪酸甲酯含量不小于96.5%)的生物柴油产品。
本发明的有益效果在于,适合香港地区具有高油含量和高动物脂肪含量特点的餐厨废油的处理,提炼出符合EN14214标准的生物柴油。
具体实施方式
下面结合具体实施方式对本案做进一步的解释和说明。
实施例1
(1)收集厨余垃圾除去固体垃圾和水后,进行磷酸脱胶:磷酸(浓度为85%,油重的0.5%,约0.015吨)与原料油混合(3吨)和,搅拌15分钟,之后加入氯化钠(Nacl油重的2%,约0.06吨)的水(油重的30wt%)溶液,加热至50-60℃,搅拌20分钟。静置过夜后油水分离,之后脱胶油被加热到105℃,干燥10分钟以除去残留的水分,得到脱胶油。
(2)以氢氧化钾(KOH)为催化剂的酯交换反应:KOH(脱胶油的0.16摩尔当量)和甲醇(脱胶油的7摩尔当量)先加入反应器中溶解后,脱胶油(3吨)也被添加到反应器中,在超声波(30kHz),搅拌和55-60℃温度下,混合物进行酯交换反应,反应60分钟后,静置过夜,粗生物柴油从反应混合物中分离出来。
(3)粗生物柴油的水洗:粗产物加入水(50℃,粗产物重量的50%)搅拌30分钟,静置过夜后生物柴油与水分离。
(4)碱炼:粗生物柴油中加入NaOH溶液(10%,粗产物重量的5%)在30-40℃下搅拌20分钟。混合物进一步加热到60-65℃搅拌20分钟,加入热水(80℃,油重的1.7%),生物柴油层分离。再次加热到60-65℃,用热水(80℃,油重的20%)搅拌5分钟,静置分离水层,得到碱炼后的生物柴油。
(5)得到的脂肪酸甲酯进行减压蒸馏(-58kPa),在氮气保护下,收集液相蒸馏温度在120-240℃之间的馏分,得到符合标准EN14214(脂肪酸甲酯含量不小于96.5%)的生物柴油产品。
实施例2
其他的反应步骤和实施例1相同,不同点在于,本案以甲醇钠作为催化剂的酯交换反应:甲醇钠(脱胶油的0.12摩尔当量)溶解于甲醇(脱胶油的6摩 尔当量)先加入反应器中,之后脱胶油(3吨)被添加到反应器中和甲醇钠的甲醇溶液混合。在超声波(30kHz),搅拌和55-60℃温度下,反应混合物进行酯交换反应,反应60分钟后,静置过夜,粗生物柴油从反应混合物中分离出来,得到符合标准EN14214(脂肪酸甲酯含量不小于96.5%)的生物柴油产品。
实施例3
其他的反应步骤和实施例1相同,不同点在于,本案以氧化钙(CaO)为催化剂的酯交换反应。氧化钙(脱胶油的0.8摩尔当量)与甲醇(脱胶油的10摩尔当量)混合反应2.5小时后,脱胶油(3吨)被添加到反应器和氧化钙和甲醇混合。在超声波(30kHz),搅拌和55-60℃温度下,反应混合物进行酯交换反应,反应3小时后,静置过夜。粗生物柴油从反应混合物中分离出来,得到符合标准EN14214(脂肪酸甲酯含量不小于96.5%)的生物柴油产品。

Claims (9)

  1. 一种用餐厨废料制备生物柴油的方法,其特征在于,所述的方法包括如下步骤:
    (1)对除去餐厨废料中固体杂质和水的原料油进行脱胶处理:向原料油中加入浓磷酸将原油中的非水化磷脂变为水合形式,再加入氯化钠溶液对水合形式的磷脂进行沉降分离,得到脱胶油;
    (2)生产脂肪酸甲酯:向脱胶油中加入甲醇,同时加入碱性催化剂进行酯交换反应,得到柴油粗产物;
    (3)所述的粗产物除杂提纯:对粗产物进行碱炼脱酸,然后在进行减压蒸馏得到终产物生物柴油,蒸馏前先除去粗产物内的空气,收集蒸馏温度在120-240℃范围内的馏分,即得到生物柴油。
  2. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(1)中,浓磷酸的使用量为原料油重量的0.4%-0.7%。
  3. 如权利要求所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(1)脱胶处理时进行加热,加热温度为50-60℃。
  4. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(2)中甲醇和脱胶油的摩尔比为(6-10):1。
  5. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(2)中的碱性催化剂为氢氧化钾、甲醇钠和/或钙的氧化物。
  6. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(2)中生产脂肪酸甲酯时辅以超声波,超声波的功率为250-350W,频率为28-34kHz。
  7. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(2)中生产脂肪酸甲酯时辅以加热处理,温度维持为55-60℃。
  8. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤 (3)中的碱炼采用浓度为10%的氢氧化钠溶液,用量为油量重量为4-6%。
  9. 如权利要求1所述的一种用餐厨废料制备生物柴油的方法,其特征在于,步骤(3)中的减压蒸馏的压力控制在-50至-60kPa之间。
PCT/CN2018/091477 2018-06-15 2018-06-15 一种用餐厨废料制备生物柴油的方法 WO2019237328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091477 WO2019237328A1 (zh) 2018-06-15 2018-06-15 一种用餐厨废料制备生物柴油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091477 WO2019237328A1 (zh) 2018-06-15 2018-06-15 一种用餐厨废料制备生物柴油的方法

Publications (1)

Publication Number Publication Date
WO2019237328A1 true WO2019237328A1 (zh) 2019-12-19

Family

ID=68842421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091477 WO2019237328A1 (zh) 2018-06-15 2018-06-15 一种用餐厨废料制备生物柴油的方法

Country Status (1)

Country Link
WO (1) WO2019237328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037360A1 (en) * 2021-09-13 2023-03-16 Univice M.E Ltd Processes for manufacturing biodiesel from fatty waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129435A1 (ja) * 2005-06-03 2006-12-07 Lion Corporation 脂肪酸低級アルキルエステルの製造方法および脂肪酸低級アルキルエステルならびに軽油代替燃料
CN101906355A (zh) * 2010-08-30 2010-12-08 北京昊业怡生科技有限公司 一种利用餐厨垃圾回收油制取生物柴油的方法
CN102465058A (zh) * 2010-11-04 2012-05-23 朱建军 一种制备生物柴油的生产工艺
CN103071666A (zh) * 2012-11-23 2013-05-01 华南再生资源(中山)有限公司 餐厨垃圾全方位处理的集成化装备及产物制造方法
CN105368584A (zh) * 2014-08-20 2016-03-02 西安圣亚科技有限公司 一种生物柴油的合成工艺及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129435A1 (ja) * 2005-06-03 2006-12-07 Lion Corporation 脂肪酸低級アルキルエステルの製造方法および脂肪酸低級アルキルエステルならびに軽油代替燃料
CN101906355A (zh) * 2010-08-30 2010-12-08 北京昊业怡生科技有限公司 一种利用餐厨垃圾回收油制取生物柴油的方法
CN102465058A (zh) * 2010-11-04 2012-05-23 朱建军 一种制备生物柴油的生产工艺
CN103071666A (zh) * 2012-11-23 2013-05-01 华南再生资源(中山)有限公司 餐厨垃圾全方位处理的集成化装备及产物制造方法
CN105368584A (zh) * 2014-08-20 2016-03-02 西安圣亚科技有限公司 一种生物柴油的合成工艺及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037360A1 (en) * 2021-09-13 2023-03-16 Univice M.E Ltd Processes for manufacturing biodiesel from fatty waste

Similar Documents

Publication Publication Date Title
CN101462938A (zh) 潲水油制备混合脂肪酸的方法及混合脂肪酸的应用方法
JP2010516627A (ja) 飽和及び不飽和脂肪酸の分離方法
KR100950280B1 (ko) 바이오디젤 원료 및 그 제조방법
JPH07197047A (ja) ディーゼル燃料およびその製造方法
JP4696124B2 (ja) ソープストックからのバイオディーゼル製造
CN110894516A (zh) 一种生物法制备功能性牛油的方法
CN106675789A (zh) 一种地沟油制备低硫分生物柴油的方法
CN105001297A (zh) 一种从植物沥青中提取植物甾醇的方法
WO2019237328A1 (zh) 一种用餐厨废料制备生物柴油的方法
US20110105775A1 (en) Method of converting free fatty acid (ffa) from oil to methyl ester
CN102795960B (zh) 一种高纯度二十八烷醇、三十烷醇的规模化制备方法
CN1896204A (zh) 一种油脂连续精炼工艺
CN115261148A (zh) 低共熔溶剂在油脂脱水中的应用
CN104263509A (zh) 一种dha微藻油的脱胶方法
CN112442423B (zh) 一种脂肪酸的酶法提取工艺
CN108753434A (zh) 一种用餐厨废料制备生物柴油的方法
US6409649B1 (en) Method for commercial preparation of conjugated linoleic acid using recycled alkali transesterification catalyst
RO130689B1 (ro) Catalizator pentru obţinerea esterilor metilici ai acizilor graşi, şi procedeu pentru obţinerea acestui catalizator
JP2011148874A (ja) 脂肪酸アルキルエステルの製造方法とその製造装置
CN112795434A (zh) 一种甘油三酯型花椒籽油的加工工艺
RU201577U1 (ru) Устройство нейтрализации гидрогенизированного растительного масла
KR101985610B1 (ko) 식물성 폐유를 이용한 바이오디젤, 중유 및 절삭유의 제조방법
KR20190088287A (ko) 동물성 폐유를 이용한 바이오디젤 원료유, 중유 및 절삭유의 분리 제조방법
JP4568565B2 (ja) 遊離脂肪酸が低減された油脂の製造方法
JP2011168563A (ja) 脂肪酸アルコールエステルの製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922539

Country of ref document: EP

Kind code of ref document: A1