WO2019237305A1 - 飞行模式上报方法及装置、控制策略更改方法及装置 - Google Patents

飞行模式上报方法及装置、控制策略更改方法及装置 Download PDF

Info

Publication number
WO2019237305A1
WO2019237305A1 PCT/CN2018/091283 CN2018091283W WO2019237305A1 WO 2019237305 A1 WO2019237305 A1 WO 2019237305A1 CN 2018091283 W CN2018091283 W CN 2018091283W WO 2019237305 A1 WO2019237305 A1 WO 2019237305A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
uav
flight
flight mode
base station
Prior art date
Application number
PCT/CN2018/091283
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/251,877 priority Critical patent/US20210253245A1/en
Priority to ES18922368T priority patent/ES2927572T3/es
Priority to EP18922368.8A priority patent/EP3809229B1/en
Priority to PCT/CN2018/091283 priority patent/WO2019237305A1/zh
Priority to CN201880000968.0A priority patent/CN108781112B/zh
Publication of WO2019237305A1 publication Critical patent/WO2019237305A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for reporting a flight mode, a method and device for changing a control strategy, a drone, a base station, and a computer-readable storage medium.
  • Unmanned aerial vehicle is an unmanned aerial vehicle, which is an unmanned aerial vehicle controlled by radio remote control equipment and its own program control device. Unmanned aerial vehicle is actually a general term for unmanned aerial vehicles. From the technical point of view, it can be divided into: unmanned fixed-wing aircraft, unmanned vertical take-off and landing, unmanned airship, unmanned helicopter, unmanned multi-rotor aircraft, and unmanned Para-wing machine and so on.
  • drones With the rapid development of drone technology, the reduction of costs and the improvement of functions, drones are increasingly used in all aspects of life. At present, it has been widely used in aerial photography, agriculture, plant protection, miniature selfies, express transportation, disaster rescue, observation of wildlife, monitoring of infectious diseases, mapping, news reporting, power inspection, disaster relief, film and television shooting, manufacturing romance, etc. In view of the use of the drone itself, various countries are actively expanding the application and development of drone technology in the industry.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • the fixed mode that is, the controller will plan the flight path of the drone on the controller, so that the drone can fly according to the planned route, and the controller does not need to carry out the drone at all times.
  • the other mode is dynamic mode, that is, the controller will remotely control the drone in real time through the controller at all times.
  • the fixed mode because the flight path and trajectory of the drone are fixed, the cellular network can predict which cellular network base stations the drone will pass.
  • the flight mode of UAV may change. However, how to make the base station aware of the changed flight mode is a technical problem to be solved.
  • this application discloses a method and device for reporting a flight mode, a method and device for changing a control strategy, a UAV, a base station, and a computer-readable storage medium, so that a connected (connected) UAV in a fixed mode can be used in a flight mode
  • the changed flight mode is reported to the base station in time, so that the base station changes the control strategy of the UAV in time.
  • a method for reporting a flight mode is provided, which is applied to a UAV in a first mode.
  • the method includes:
  • the sending a UAV flight mode change notification to a base station includes:
  • the media access control MAC control cell CE includes a flight mode reporting MAC CE.
  • the sending a UAV flight mode change notification to a base station through radio resource control RRC signaling includes:
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode; or
  • the second mode is a fixed mode.
  • a method for changing a control policy which is applied to a base station.
  • the method includes:
  • the control strategy for the UAV is changed according to the change of the flight mode of the UAV from the first mode to the second mode.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode; or
  • the second mode is a fixed mode.
  • a flight mode reporting device which is applied to a UAV in a first mode, and the device includes:
  • a mode change module configured to change a flight mode from the first mode to a second mode when in a connected state
  • the sending module is configured to send the UAV flight mode change notification to the base station after the mode change module changes the flight mode from the first mode to the second mode to notify the base station The UAV flight mode is changed from the first mode to the second mode.
  • the sending module includes:
  • a first sending submodule configured to send a notification of a change in the UAV's flight mode to a base station through a media access control MAC control cell CE;
  • the second sending sub-module is configured to send the UAV flight mode change notification to the base station through radio resource control RRC signaling.
  • the media access control MAC control cell CE includes a flight mode reporting MAC CE.
  • the second sending sub-module includes:
  • a first sending unit configured to send the flight mode change notification to the base station by setting a first information unit indicating a flight mode in user equipment UE auxiliary information signaling to a first preset value;
  • the second sending unit is configured to add a second information unit indicating a flight mode to the UE auxiliary information signaling, and set the newly added second information unit to a second preset value to the base station. Sending the flight mode change notification; or
  • the third sending unit is configured to send the flight mode change notification to the base station by setting a third information unit indicating a flight mode in the RRC connection reconfiguration completion signaling to a third preset value.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode; or
  • the second mode is a fixed mode.
  • a device for changing a control policy which is applied to a base station, and the device includes:
  • a receiving module configured to receive a notification of a change in the flight mode of the UAV reported by the UAV;
  • a determining module configured to determine that the flight mode of the UAV is changed from a first mode to a second mode according to the flight mode change notification received by the receiving module;
  • the changing module is configured to change a control mode of the UAV from the first mode to the second mode according to the flight mode of the UAV determined by the determining module.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode; or
  • the second mode is a fixed mode.
  • a UAV including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a base station including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the control strategy for the UAV is changed according to the change of the flight mode of the UAV from the first mode to the second mode.
  • a computer-readable storage medium having computer instructions stored thereon that, when executed by a processor, implement the steps of the above-mentioned flight mode reporting method.
  • a computer-readable storage medium having computer instructions stored thereon, which are executed by a processor to implement the steps of the above-mentioned control policy changing method.
  • the base station By changing the flight mode from the first mode to the second mode, and sending the UAV's flight mode change notification to the base station, the base station is informed that the UAV's flight mode is changed from the first mode to the second mode, so that the subsequent base stations can change the flight mode in time.
  • the UAV's control strategy provides the conditions.
  • FIG. 1A is a flowchart of a method for reporting a flight mode, according to an exemplary embodiment of the present application
  • FIG. 1B is a schematic structural diagram of reporting a media access control control cell in a flight mode according to an exemplary embodiment of the present application
  • Fig. 2 is a flow chart showing a method for changing a control strategy according to an exemplary embodiment of the present application
  • FIG. 3 is a signaling flowchart of a method for changing a control policy, according to an exemplary embodiment of the present application
  • Fig. 4 is a block diagram of a device for reporting a flight mode according to an exemplary embodiment
  • Fig. 5 is a block diagram showing another flight mode reporting device according to an exemplary embodiment
  • Fig. 6 is a block diagram illustrating another flight mode reporting device according to an exemplary embodiment
  • Fig. 7 is a block diagram of a control strategy changing device according to an exemplary embodiment
  • Fig. 8 is a block diagram illustrating a device for reporting a flight mode according to an exemplary embodiment
  • Fig. 9 is a block diagram illustrating a device suitable for controlling a policy change according to an exemplary embodiment.
  • FIG. 1A is a flowchart of a method for reporting a flight mode according to an exemplary embodiment of the present application. This embodiment is described from the UAV side in a first mode. As shown in FIG. 1A, the method for reporting a flight mode includes:
  • step S101 when in the connected state, the flight mode is changed from the first mode to the second mode.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode.
  • the first mode when the first mode is a dynamic mode, the second mode is a fixed mode.
  • step S102 a UAV flight mode change notification is sent to the base station to notify the base station that the UAV flight mode is changed from the first mode to the second mode.
  • the UAV flight mode change notification can be sent to the base station in multiple ways.
  • the UAV flight mode change notification can be sent to the base station in the following ways:
  • Method 1 A UAV flight mode change notification is sent to a base station through a media access control (MAC) control cell (CE).
  • MAC media access control
  • CE control cell
  • the MAC CE may include a flight mode report MAC (CE, Flight Control Report, MAC, Control Element, FMR, MAC, CE).
  • FMR MAC and CE can be shown in Figure 1B, where R is a reserved bit and FM is used to indicate the flight mode. For example, when the value of FM is 1, it indicates that the flight mode is changed to a fixed mode. The value of FM is When 0, it means the flight mode is changed to dynamic mode. The value here is only an example. In practical applications, it can be flexibly set.
  • the sending of a UAV flight mode change notification to a base station through RRC signaling may include the following methods:
  • the first information unit indicating the flight mode in the UEAssistance Information signaling is set to a first preset value to send a flight mode change notification to the base station.
  • the first information unit is an existing information unit in the UE auxiliary information signaling, and the first preset value can be flexibly set according to requirements, such as a null value, or 0 or 1, etc.
  • the flight mode of the UAV is changed to a dynamic mode
  • the flight mode of the UAV is changed to a fixed mode
  • a second information unit indicating a flight mode is added to the UE auxiliary information signaling, and the flight mode change notification is sent to the base station by setting the newly added second information unit to a second preset value.
  • the second information unit is not an existing information unit in the UE auxiliary information signaling, and the second preset value can be flexibly set according to needs, such as a null value, or 0 or 1.
  • the UAV's flight mode is changed to dynamic mode. If the value of the second information unit is 0 or there is no second information unit in the UEAssistanceInformation signaling, it means The UAV's flight mode was changed to fixed mode.
  • Method 23 Send the flight mode change notification to the base station by setting the third information unit indicating the flight mode in the RRC Connection Reconfiguration Complete signaling to the third preset value.
  • the third preset value can be flexibly set according to requirements, such as a null value, or 0 or 1.
  • the flight mode of the UAV is changed to a dynamic mode
  • the flight mode of the UAV is changed to a fixed mode
  • this embodiment can send a UAV flight mode change notification to the base station through various RRC signaling, and the implementation means are flexible and diverse.
  • the flight mode is changed from the first mode to the second mode, and a flight mode change notification of the UAV is sent to the base station, so that the base station learns that the flight mode of the UAV is changed from the first mode to the second mode.
  • the base station changed the control strategy of this UAV in time to provide conditions.
  • FIG. 2 is a flowchart illustrating a method for changing a control policy according to an exemplary embodiment of the present application. This embodiment is described from the UE side. As shown in FIG. 2, the method includes:
  • step S201 a UAV flight mode change notification reported by the UAV UAV is received.
  • step S202 it is determined that the flight mode of the UAV is changed from the first mode to the second mode according to the flight mode change notification.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode.
  • the first mode when the first mode is a dynamic mode, the second mode is a fixed mode.
  • step S203 the control strategy for the UAV is changed according to the flight mode of the UAV from the first mode to the second mode.
  • the flight path information in the fixed mode may no longer be used as auxiliary information to improve the mobile performance of the UAV.
  • FIG. 3 is a signaling flowchart of a method for changing a control policy according to an exemplary embodiment of the present application. This embodiment is described from the perspective of interaction between a UAV and a base station. As shown in FIG. 3, the method includes:
  • step S301 when in the connected state, the UAV changes the flight mode from the first mode to the second mode.
  • the first mode may be a fixed mode
  • the second mode may be a dynamic mode
  • step S302 the UAV sends a UAV flight mode change notification to the base station.
  • step S303 the base station receives a UAV flight mode change notification reported by the UAV.
  • step S304 the base station determines that the flight mode of the UAV is changed from the first mode to the second mode according to the flight mode change notification.
  • step S305 the base station changes the UAV control strategy according to the UAV's flight mode from the first mode to the second mode.
  • a flight mode change notification of the UAV is sent to the base station, so that the base station can know that the UAV flight mode is changed from the first
  • the mode is changed to the second mode, and the control strategy of the UAV can be changed in time.
  • Fig. 4 is a block diagram of a device for reporting a flight mode according to an exemplary embodiment.
  • the device may be located in a UAV.
  • the device includes a mode changing module 41 and a sending module 42.
  • the mode changing module 41 is configured to change the flight mode from the first mode to the second mode when in the connected state.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode.
  • the first mode when the first mode is a dynamic mode, the second mode is a fixed mode.
  • the sending module 42 is configured to send a UAV flight mode change notification to the base station after the mode change module 41 changes the flight mode from the first mode to the second mode to notify the base station that the UAV flight mode is changed from the first mode to the second mode.
  • the flight mode is changed from the first mode to the second mode, and a flight mode change notification of the UAV is sent to the base station, so that the base station learns that the flight mode of the UAV is changed from the first mode to the second mode.
  • the base station changed the control strategy of this UAV in time to provide conditions.
  • Fig. 5 is a block diagram of another device for reporting a flight mode according to an exemplary embodiment.
  • the sending module 42 may include: a first sending submodule 421 or the second sending sub-module 422.
  • the first sending sub-module 421 is configured to send a UAV flight mode change notification to the base station through the media access control MAC control cell CE.
  • the MAC CE may include a flight mode report MAC (CE, Flight Control Report, MAC, Control Element, FMR, MAC, CE).
  • FMR MAC and CE can be shown in Figure 1B, where R is a reserved bit and FM is used to indicate the flight mode. For example, when the value of FM is 1, it indicates that the flight mode is changed to a fixed mode. The value of FM is When 0, it means the flight mode is changed to dynamic mode. The value here is only an example. In practical applications, it can be flexibly set.
  • the second sending sub-module 422 is configured to send a UAV flight mode change notification to the base station through radio resource control RRC signaling.
  • the UAV flight mode change notification can be sent to the base station in multiple ways, and the implementation methods are flexible and diverse.
  • Fig. 6 is a block diagram of another flight mode reporting device according to an exemplary embodiment.
  • the second sending sub-module 422 may include: a first The sending unit 4221, the second sending unit 4222, or the third sending unit 4223.
  • the first sending unit 4221 is configured to send the flight mode change notification to the base station by setting the first information unit indicating the flight mode in the UE auxiliary information signaling to the first preset value.
  • the first information unit is an existing information unit in the UE auxiliary information signaling, and the first preset value can be flexibly set according to requirements, such as a null value, or 0 or 1, etc.
  • the flight mode of the UAV is changed to a dynamic mode
  • the flight mode of the UAV is changed to a fixed mode
  • the second sending unit 4222 is configured to add a second information unit indicating a flight mode to the UE auxiliary information signaling, and send the flight mode change to the base station by setting the newly added second information unit to a second preset value. Notice.
  • the second information unit is not an existing information unit in the UE auxiliary information signaling, and the second preset value can be flexibly set according to needs, such as a null value, or 0 or 1.
  • the UAV's flight mode is changed to dynamic mode. If the value of the second information unit is 0 or there is no second information unit in the UEAssistanceInformation signaling, it means The UAV's flight mode was changed to fixed mode.
  • the third sending unit 4223 is configured to send a flight mode change notification to the base station by setting the third information unit indicating the flight mode in the RRC connection reconfiguration completion signaling to a third preset value.
  • the third preset value can be flexibly set according to requirements, such as a null value, or 0 or 1.
  • the flight mode of the UAV is changed to a dynamic mode
  • the flight mode of the UAV is changed to a fixed mode
  • the UAV flight mode change notification can be sent to the base station through various RRC signaling, and the implementation methods are flexible and diverse.
  • Fig. 7 is a block diagram of a control strategy changing device according to an exemplary embodiment.
  • the device may be located in a base station. As shown in Fig. 7, the device includes a receiving module 71, a determining module 72, and a changing module 73.
  • the receiving module 71 is configured to receive a UAV flight mode change notification reported by the UAV.
  • the determination module 72 is configured to determine that the flight mode of the UAV is changed from the first mode to the second mode according to the flight mode change notification received by the receiving module 71.
  • the second mode when the first mode is a fixed mode, the second mode is a dynamic mode.
  • the first mode when the first mode is a dynamic mode, the second mode is a fixed mode.
  • the changing module 73 is configured to change the UAV's control strategy for the UAV according to the flight mode of the UAV determined by the determining module 72.
  • the flight path information in the fixed mode may no longer be used as auxiliary information to improve the mobile performance of the UAV.
  • Fig. 8 is a block diagram illustrating a device for reporting a flight mode according to an exemplary embodiment.
  • the apparatus 800 may be a user equipment such as a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input / output (I / O) interface 812, a sensor component 814, And communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing element 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • One of the processors 820 in the processing component 802 may be configured as:
  • the memory 804 is configured to store various types of data to support operation at the device 800. Examples of such data include instructions for any application or method for operating on the device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage devices or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or slide action, but also detect the duration and pressure associated with a touch or slide operation.
  • the multimedia component 808 includes a front camera and / or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and / or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I / O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons can include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 814 includes one or more sensors for providing status assessment of various aspects of the device 800.
  • the sensor component 814 can detect the on / off state of the device 800 and the relative positioning of the components, such as the display and keypad of the device 800.
  • the sensor component 814 can also detect the change of the position of the device 800 or a component of the device 800. The presence or absence of contact with the device 800, the orientation or acceleration / deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 820 of the device 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 9 is a block diagram illustrating another apparatus suitable for reporting a flight mode according to an exemplary embodiment.
  • the apparatus 900 may be provided as a base station. 9, the device 900 includes a processing component 922, a wireless transmitting / receiving component 924, an antenna component 926, and a signal processing portion unique to a wireless interface.
  • the processing component 922 may further include one or more processors.
  • One of the processors in the processing component 922 may be configured as:
  • a non-transitory computer-readable storage medium including instructions is also provided, which may be executed by the processing component 1322 of the device 1300 to complete the above-mentioned control policy changing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place. , Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative efforts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Databases & Information Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种飞行模式上报方法及装置、控制策略更改方法及装置、无人机、基站和计算机可读存储介质。其中,飞行模式上报方法包括:当处于连接态时,将飞行模式由第一模式更改为第二模式;向基站发送 UAV的飞行模式更改通知,以通知基站 UAV 的飞行模式由第一模式更改为第二模式。本公开实施例,通过将飞行模式由第一模式更改为第二模式,并向基站发送 UAV 的飞行模式更改通知,以使基站获知 UAV 的飞行模式由第一模式更改为第二模式,从而为后续基站及时更改对该 UAV 的控制策略提供了条件。

Description

飞行模式上报方法及装置、控制策略更改方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种飞行模式上报方法及装置、控制策略更改方法及装置、无人机、基站和计算机可读存储介质。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle,简称UAV)简称无人机,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。无人机实际上是无人驾驶飞行器的统称,从技术角度定义可以分为:无人固定翼机、无人垂直起降机、无人飞艇、无人直升机、无人多旋翼飞行器和无人伞翼机等。
随着无人机技术的快速发展、成本的降低以及功能的完善,无人机越来越多地应用于生活的各个方面。目前在航拍、农业、植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄、制造浪漫等等领域的应用,大大地拓展了无人机本身的用途,各个国家都在积极扩展行业应用与发展无人机技术。
为了进一步拓展无人机的应用范围,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)通过了增强支持无人机(Enhanced Support for Aerial Vehicles)的立项,旨在研究并标准化使蜂窝网络为无人机提供满足需求的服务。
无人机飞行一般有两种模式。其中一种为固定模式,也就是操控者会在控制器上规划好无人机的飞行线路,这样无人机就可以按照该规划好的路线飞行,控制器不用时时刻刻对无人机进行控制。另外一种模式为动态模式,也就是操控者会通过控制器时时刻刻地对无人机进行实时的遥控。对于固定模式,由于无人机的飞行路线和轨迹是固定的,因此,蜂窝网络可以预判无人机会经过哪些蜂窝网络基站。而在实际飞行过程中,UAV的飞行模式可能发生更改。但是,如何使基站获知更改后的飞行模式是需要解决的一个技术问题。
发明内容
有鉴于此,本申请公开了一种飞行模式上报方法及装置、控制策略更改方法及装置、UAV、基站和计算机可读存储介质,以使处于固定模式的连接(CONNECTED)态UAV可以在飞行模式发生变化时及时将更改后的飞行模式上报给基站,以便基站及时更改对该UAV的控 制策略。
根据本公开实施例的第一方面,提供一种飞行模式上报方法,应用于处于第一模式的无人机UAV,所述方法包括:
当处于连接态时,将飞行模式由所述第一模式更改为第二模式;
向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
在一实施例中,所述向基站发送所述UAV的飞行模式更改通知,包括:
通过媒体接入控制MAC控制信元CE向基站发送所述UAV的飞行模式更改通知;或者
通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知。
在一实施例中,所述媒体接入控制MAC控制信元CE包括飞行模式上报MAC CE。
在一实施例中,所述通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知,包括:
通过将用户设备UE辅助信息信令中指示飞行模式的第一信息单元设置为第一预设值来向所述基站发送所述飞行模式更改通知;或者
在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的所述第二信息单元设置为第二预设值来向所述基站发送所述飞行模式更改通知;或者
通过将RRC连接重配置完成信令中指示飞行模式的第三信息单元设置为第三预设值来向所述基站发送所述飞行模式更改通知。
在一实施例中,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
当所述第一模式为动态模式时,所述第二模式为固定模式。
根据本公开实施例的第二方面,提供一种控制策略更改方法,应用于基站,所述方法包括:
接收无人机UAV上报的所述UAV的飞行模式更改通知;
根据所述飞行模式更改通知确定所述UAV的飞行模式由第一模式更改为第二模式;
根据所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
在一实施例中,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
当所述第一模式为动态模式时,所述第二模式为固定模式。
根据本公开实施例的第三方面,提供一种飞行模式上报装置,应用于处于第一模式的无人机UAV,所述装置包括:
模式更改模块,被配置为当处于连接态时,将飞行模式由所述第一模式更改为第二模式;
发送模块,被配置为在所述模式更改模块将所述飞行模式由所述第一模式更改为所述第二模式之后,向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
在一实施例中,所述发送模块包括:
第一发送子模块,被配置为通过媒体接入控制MAC控制信元CE向基站发送所述UAV的飞行模式更改通知;或者
第二发送子模块,被配置为通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知。
在一实施例中,所述媒体接入控制MAC控制信元CE包括飞行模式上报MAC CE。
在一实施例中,所述第二发送子模块包括:
第一发送单元,被配置为通过将用户设备UE辅助信息信令中指示飞行模式的第一信息单元设置为第一预设值来向所述基站发送所述飞行模式更改通知;或者
第二发送单元,被配置为在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的所述第二信息单元设置为第二预设值来向所述基站发送所述飞行模式更改通知;或者
第三发送单元,被配置为通过将RRC连接重配置完成信令中指示飞行模式的第三信息单元设置为第三预设值来向所述基站发送所述飞行模式更改通知。
在一实施例中,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
当所述第一模式为动态模式时,所述第二模式为固定模式。
根据本公开实施例的第四方面,提供一种控制策略更改装置,应用于基站,所述装置包括:
接收模块,被配置为接收无人机UAV上报的所述UAV的飞行模式更改通知;
确定模块,被配置为根据所述接收模块接收的所述飞行模式更改通知确定所述UAV的飞 行模式由第一模式更改为第二模式;
更改模块,被配置为根据所述确定模块确定的所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
在一实施例中,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
当所述第一模式为动态模式时,所述第二模式为固定模式。
根据本公开实施例的第五方面,提供一种UAV,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
当处于连接态时,将飞行模式由第一模式更改为第二模式;
向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收无人机UAV上报的所述UAV的飞行模式更改通知;
根据所述飞行模式更改通知确定所述UAV的飞行模式由第一模式更改为第二模式;
根据所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述飞行模式上报方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述控制策略更改方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过将飞行模式由第一模式更改为第二模式,并向基站发送UAV的飞行模式更改通知,以使基站获知UAV的飞行模式由第一模式更改为第二模式,从而为后续基站及时更改对该 UAV的控制策略提供了条件。
通过根据接收的飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式,实现了可以及时获知飞行模式由第一模式更改为第二模式,并可以据此更改对UAV的控制策略。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是本申请一示例性实施例示出的一种飞行模式上报方法的流程图;
图1B是本申请一示例性实施例示出的一种飞行模式上报媒体接入控制控制信元的结构示意图;
图2是本申请一示例性实施例示出的一种控制策略更改方法的流程图;
图3是本申请一示例性实施例示出的一种控制策略更改方法的信令流程图;
图4是根据一示例性实施例示出的一种飞行模式上报装置的框图;
图5是根据一示例性实施例示出的另一种飞行模式上报装置的框图;
图6是根据一示例性实施例示出的另一种飞行模式上报装置的框图;
图7是根据一示例性实施例示出的一种控制策略更改装置的框图;
图8是根据一示例性实施例示出的一种适用于飞行模式上报装置的框图;
图9是根据一示例性实施例示出的一种适用于控制策略更改装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1A是本申请一示例性实施例示出的一种飞行模式上报方法的流程图,该实施例从处于第一模式的UAV侧进行描述,如图1A所示,该飞行模式上报方法包括:
在步骤S101中,当处于连接态时,将飞行模式由第一模式更改为第二模式。
其中,当第一模式为固定模式时,第二模式为动态模式。当第一模式为动态模式时,第二模式为固定模式。
在步骤S102中,向基站发送UAV的飞行模式更改通知,以通知基站UAV的飞行模式由第一模式更改为第二模式。
其中,可以通过多种方式向基站发送UAV的飞行模式更改通知,例如,可以通过以下几种方式向基站发送UAV的飞行模式更改通知:
方式1)通过媒体接入控制(MAC)控制信元(CE)向基站发送UAV的飞行模式更改通知。
其中,MAC CE可以包括飞行模式上报MAC CE(Flight Mode Report MAC Control Element,简称FMR MAC CE)。FMR MAC CE的格式可以如图1B所示,其中,R为预留比特,FM用于表示飞行模式,例如,FM的取值为1时,表示飞行模式更改为固定模式,FM的取值为0时,表示飞行模式更改为动态模式,此处取值仅为示例,在实际应用中,可以灵活设置。
方式2)通过无线资源控制(RRC信令)向基站发送UAV的飞行模式更改通知。
其中,通过RRC信令向基站发送UAV的飞行模式更改通知可以包括以下几种方式:
方式21)通过将UE辅助信息(UEAssistanceInformation)信令中指示飞行模式的第一信息单元设置为第一预设值来向基站发送飞行模式更改通知。
其中,第一信息单元是UE辅助信息信令中的既有信息单元,第一预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第一信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第一信息单元的取值为0,则表示该UAV的飞行模式更改为固定模式。
方式22)在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的第二信息单元设置为第二预设值来向基站发送飞行模式更改通知。
其中,第二信息单元不是UE辅助信息信令中的既有信息单元,第二预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第二信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第二信息单元的取值为0或者UEAssistanceInformation信令中没有第二信息单元,则表示该UAV的飞行模式更改为固定模式。
方式23)通过将RRC连接重配置完成(ConnectionReconfigurationComplete)信令中指示飞行模式的第三信息单元设置为第三预设值来向基站发送飞行模式更改通知。
其中,第三预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第三信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第三信息单元的取值为0,则表示该UAV的飞行模式更改为固定模式。
由此可见,该实施例可以通过多种RRC信令向基站发送UAV的飞行模式更改通知,实现手段灵活多样。
上述实施例,通过将飞行模式由第一模式更改为第二模式,并向基站发送UAV的飞行模式更改通知,以使基站获知UAV的飞行模式由第一模式更改为第二模式,从而为后续基站及时更改对该UAV的控制策略提供了条件。
图2是本申请一示例性实施例示出的一种控制策略更改方法的流程图,该实施例从UE侧进行描述,如图2所示,该方法包括:
在步骤S201中,接收无人机UAV上报的UAV的飞行模式更改通知。
在步骤S202中,根据该飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式。
其中,当第一模式为固定模式时,第二模式为动态模式。当第一模式为动态模式时,第二模式为固定模式。
在步骤S203中,根据UAV的飞行模式由第一模式更改为第二模式更改对UAV的控制策略。
例如,当基站确定UAV的飞行模式由固定模式更改为动态模式后,可以不再使用固定模式中的飞行路径信息作为提高该UAV移动性能的辅助信息。
上述实施例,通过根据接收的飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式,实现了可以及时获知飞行模式由第一模式更改为第二模式,并可以据此更改对UAV的控制策略。
图3是本申请一示例性实施例示出的一种控制策略更改方法的信令流程图,该实施例 从UAV和基站交互的角度进行描述,如图3所示,该方法包括:
在步骤S301中,当处于连接态时,UAV将飞行模式由第一模式更改为第二模式。
其中,第一模式可以为固定模式,第二模式可以为动态模式。
在步骤S302中,UAV向基站发送UAV的飞行模式更改通知。
在步骤S303中,基站接收UAV上报的UAV的飞行模式更改通知。
在步骤S304中,基站根据飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式。
在步骤S305中,基站根据UAV的飞行模式由第一模式更改为第二模式更改对UAV的控制策略。
上述实施例,通过UAV和基站之间的交互,在将飞行模式由第一模式更改为第二模式后,向基站发送UAV的飞行模式更改通知,以使基站可以获知UAV的飞行模式由第一模式更改为第二模式,并可以及时更改对该UAV的控制策略。
图4是根据一示例性实施例示出的一种飞行模式上报装置的框图,该装置可以位于UAV中,如图4所示,该装置包括:模式更改模块41和发送模块42。
模式更改模块41被配置为当处于连接态时,将飞行模式由第一模式更改为第二模式。
其中,当第一模式为固定模式时,第二模式为动态模式。当第一模式为动态模式时,第二模式为固定模式。
发送模块42被配置为在模式更改模块41将飞行模式由第一模式更改为第二模式之后,向基站发送UAV的飞行模式更改通知,以通知基站UAV的飞行模式由第一模式更改为第二模式。
上述实施例,通过将飞行模式由第一模式更改为第二模式,并向基站发送UAV的飞行模式更改通知,以使基站获知UAV的飞行模式由第一模式更改为第二模式,从而为后续基站及时更改对该UAV的控制策略提供了条件。
图5是根据一示例性实施例示出的另一种飞行模式上报装置的框图,如图5所示,在上述图4所示实施例的基础上,发送模块42可以包括:第一发送子模块421或者第二发送子模块422。
第一发送子模块421被配置为通过媒体接入控制MAC控制信元CE向基站发送UAV 的飞行模式更改通知。
其中,MAC CE可以包括飞行模式上报MAC CE(Flight Mode Report MAC Control Element,简称FMR MAC CE)。FMR MAC CE的格式可以如图1B所示,其中,R为预留比特,FM用于表示飞行模式,例如,FM的取值为1时,表示飞行模式更改为固定模式,FM的取值为0时,表示飞行模式更改为动态模式,此处取值仅为示例,在实际应用中,可以灵活设置。
第二发送子模块422被配置为通过无线资源控制RRC信令向基站发送UAV的飞行模式更改通知。
上述实施例,可以通过多种方式向基站发送UAV的飞行模式更改通知,实现手段灵活多样。
图6是根据一示例性实施例示出的另一种飞行模式上报装置的框图,如图6所示,在上述图5所示实施例的基础上,第二发送子模块422可以包括:第一发送单元4221、第二发送单元4222或者第三发送单元4223。
第一发送单元4221被配置为通过将用户设备UE辅助信息信令中指示飞行模式的第一信息单元设置为第一预设值来向基站发送飞行模式更改通知。
其中,第一信息单元是UE辅助信息信令中的既有信息单元,第一预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第一信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第一信息单元的取值为0,则表示该UAV的飞行模式更改为固定模式。
第二发送单元4222被配置为在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的第二信息单元设置为第二预设值来向基站发送飞行模式更改通知。
其中,第二信息单元不是UE辅助信息信令中的既有信息单元,第二预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第二信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第二信息单元的取值为0或者UEAssistanceInformation信令中没有第二信息单元,则表示该UAV的飞行模式更改为固定模式。
第三发送单元4223被配置为通过将RRC连接重配置完成信令中指示飞行模式的第三信息单元设置为第三预设值来向基站发送飞行模式更改通知。
其中,第三预设值可以根据需要灵活设置,例如为空值,也可以为0或1等。
例如,如果该第三信息单元的取值为1,则表示该UAV的飞行模式更改为动态模式,如果该第三信息单元的取值为0,则表示该UAV的飞行模式更改为固定模式。
上述实施例,可以通过多种RRC信令向基站发送UAV的飞行模式更改通知,实现手段灵活多样。
图7是根据一示例性实施例示出的一种控制策略更改装置的框图,该装置可以位于基站中,如图7所示,该装置包括:接收模块71、确定模块72和更改模块73。
接收模块71被配置为接收无人机UAV上报的UAV的飞行模式更改通知。
确定模块72被配置为根据接收模块71接收的飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式。
其中,当第一模式为固定模式时,第二模式为动态模式。当第一模式为动态模式时,第二模式为固定模式。
更改模块73被配置为根据确定模块72确定的UAV的飞行模式由第一模式更改为第二模式更改对UAV的控制策略。
例如,当基站确定UAV的飞行模式由固定模式更改为动态模式后,可以不再使用固定模式中的飞行路径信息作为提高该UAV移动性能的辅助信息。
上述实施例,通过根据接收的飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式,实现了可以及时获知飞行模式由第一模式更改为第二模式,并可以据此更改对UAV的控制策略。
图8是根据一示例性实施例示出的一种适用于飞行模式上报装置的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于 处理组件802和其他组件之间的交互。例如,处理部件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
处理组件802中的其中一个处理器820可以被配置为:
当处于连接态时,将飞行模式由第一模式更改为第二模式;
向基站发送UAV的飞行模式更改通知,以通知基站UAV的飞行模式由第一模式更改为第二模式。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是根据一示例性实施例示出的另一种适用于飞行模式上报装置的框图。装置900可以被提供为一基站。参照图9,装置900包括处理组件922、无线发射/接收组件924、天线组件926、以及无线接口特有的信号处理部分,处理组件922可进一步包括一个或多个处理器。
处理组件922中的其中一个处理器可以被配置为:
接收无人机UAV上报的UAV的飞行模式更改通知;
根据飞行模式更改通知确定UAV的飞行模式由第一模式更改为第二模式;
根据UAV的飞行模式由第一模式更改为第二模式更改对UAV的控制策略。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1300的处理组件1322执行以完成上述控制策略更改方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种飞行模式上报方法,其特征在于,应用于处于第一模式的无人机UAV,所述方法包括:
    当处于连接态时,将飞行模式由所述第一模式更改为第二模式;
    向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
  2. 根据权利要求1所述的方法,其特征在于,所述向基站发送所述UAV的飞行模式更改通知,包括:
    通过媒体接入控制MAC控制信元CE向基站发送所述UAV的飞行模式更改通知;或者
    通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知。
  3. 根据权利要求2所述的方法,其特征在于,所述媒体接入控制MAC控制信元CE包括飞行模式上报MAC CE。
  4. 根据权利要求2所述的方法,其特征在于,所述通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知,包括:
    通过将用户设备UE辅助信息信令中指示飞行模式的第一信息单元设置为第一预设值来向所述基站发送所述飞行模式更改通知;或者
    在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的所述第二信息单元设置为第二预设值来向所述基站发送所述飞行模式更改通知;或者
    通过将RRC连接重配置完成信令中指示飞行模式的第三信息单元设置为第三预设值来向所述基站发送所述飞行模式更改通知。
  5. 根据权利要求1所述的方法,其特征在于,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
    当所述第一模式为动态模式时,所述第二模式为固定模式。
  6. 一种控制策略更改方法,其特征在于,应用于基站,所述方法包括:
    接收无人机UAV上报的所述UAV的飞行模式更改通知;
    根据所述飞行模式更改通知确定所述UAV的飞行模式由第一模式更改为第二模式;
    根据所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
  7. 根据权利要求6所述的方法,其特征在于,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
    当所述第一模式为动态模式时,所述第二模式为固定模式。
  8. 一种飞行模式上报装置,其特征在于,应用于处于第一模式的无人机UAV,所述装置包括:
    模式更改模块,被配置为当处于连接态时,将飞行模式由所述第一模式更改为第二模式;
    发送模块,被配置为在所述模式更改模块将所述飞行模式由所述第一模式更改为所述第二模式之后,向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
  9. 根据权利要求8所述的装置,其特征在于,所述发送模块包括:
    第一发送子模块,被配置为通过媒体接入控制MAC控制信元CE向基站发送所述UAV的飞行模式更改通知;或者
    第二发送子模块,被配置为通过无线资源控制RRC信令向基站发送所述UAV的飞行模式更改通知。
  10. 根据权利要求9所述的装置,其特征在于,所述媒体接入控制MAC控制信元CE包括飞行模式上报MAC CE。
  11. 根据权利要求9所述的装置,其特征在于,所述第二发送子模块包括:
    第一发送单元,被配置为通过将用户设备UE辅助信息信令中指示飞行模式的第一信息单元设置为第一预设值来向所述基站发送所述飞行模式更改通知;或者
    第二发送单元,被配置为在UE辅助信息信令中添加一个指示飞行模式的第二信息单元,并通过将新添加的所述第二信息单元设置为第二预设值来向所述基站发送所述飞行模式更改通知;或者
    第三发送单元,被配置为通过将RRC连接重配置完成信令中指示飞行模式的第三信息单元设置为第三预设值来向所述基站发送所述飞行模式更改通知。
  12. 根据权利要求8所述的装置,其特征在于,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
    当所述第一模式为动态模式时,所述第二模式为固定模式。
  13. 一种控制策略更改装置,其特征在于,应用于基站,所述装置包括:
    接收模块,被配置为接收无人机UAV上报的所述UAV的飞行模式更改通知;
    确定模块,被配置为根据所述接收模块接收的所述飞行模式更改通知确定所述UAV的飞行模式由第一模式更改为第二模式;
    更改模块,被配置为根据所述确定模块确定的所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
  14. 根据权利要求13所述的装置,其特征在于,当所述第一模式为固定模式时,所述第二模式为动态模式;或者
    当所述第一模式为动态模式时,所述第二模式为固定模式。
  15. 一种UAV,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    当处于连接态时,将飞行模式由第一模式更改为第二模式;
    向基站发送所述UAV的飞行模式更改通知,以通知所述基站所述UAV的飞行模式由所述第一模式更改为所述第二模式。
  16. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收无人机UAV上报的所述UAV的飞行模式更改通知;
    根据所述飞行模式更改通知确定所述UAV的飞行模式由第一模式更改为第二模式;
    根据所述UAV的飞行模式由第一模式更改为第二模式更改对所述UAV的控制策略。
  17. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1-5任一项所述的飞行模式上报方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求6或7所述的控制策略更改方法的步骤。
PCT/CN2018/091283 2018-06-14 2018-06-14 飞行模式上报方法及装置、控制策略更改方法及装置 WO2019237305A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/251,877 US20210253245A1 (en) 2018-06-14 2018-06-14 Method and device for reporting flight mode and method and device for changing control strategy
ES18922368T ES2927572T3 (es) 2018-06-14 2018-06-14 Procedimiento y aparato de notificación de modo de vuelo y procedimiento y aparato de cambio de política de control
EP18922368.8A EP3809229B1 (en) 2018-06-14 2018-06-14 Flight mode report method and apparatus, and control policy change method and apparatus
PCT/CN2018/091283 WO2019237305A1 (zh) 2018-06-14 2018-06-14 飞行模式上报方法及装置、控制策略更改方法及装置
CN201880000968.0A CN108781112B (zh) 2018-06-14 2018-06-14 飞行模式上报方法及装置、控制策略更改方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091283 WO2019237305A1 (zh) 2018-06-14 2018-06-14 飞行模式上报方法及装置、控制策略更改方法及装置

Publications (1)

Publication Number Publication Date
WO2019237305A1 true WO2019237305A1 (zh) 2019-12-19

Family

ID=64029050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091283 WO2019237305A1 (zh) 2018-06-14 2018-06-14 飞行模式上报方法及装置、控制策略更改方法及装置

Country Status (5)

Country Link
US (1) US20210253245A1 (zh)
EP (1) EP3809229B1 (zh)
CN (1) CN108781112B (zh)
ES (1) ES2927572T3 (zh)
WO (1) WO2019237305A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253245A1 (en) * 2018-06-14 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for reporting flight mode and method and device for changing control strategy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100084513A1 (en) * 2008-09-09 2010-04-08 Aeryon Labs Inc. Method and system for directing unmanned vehicles
CN107409174A (zh) * 2015-03-31 2017-11-28 深圳市大疆创新科技有限公司 用于管制无人飞行器操作的系统和方法
US9836049B1 (en) * 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
CN108064360A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机的控制方法及装置
CN108781112A (zh) * 2018-06-14 2018-11-09 北京小米移动软件有限公司 飞行模式上报方法及装置、控制策略更改方法及装置
CN108885468A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息传输方法、装置、系统及存储介质
CN108886824A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息发送方法、接收方法、装置、设备及存储介质

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741376B1 (ko) * 2006-07-28 2007-07-20 지씨티 세미컨덕터 인코포레이티드 와이브로(와이맥스) 서비스에서 무선랜 서비스로핸드오프를 수행하는 방법 및 이를 사용하는 단말 장치
JP4569668B2 (ja) * 2008-05-23 2010-10-27 ソニー株式会社 無線通信装置、無線通信方法、プログラム、および無線通信システム
CN101938791A (zh) * 2009-06-30 2011-01-05 中兴通讯股份有限公司 一种实现多天线模式选择的方法及系统
KR101617918B1 (ko) * 2010-05-25 2016-05-03 텔레폰악티에볼라겟 엘엠 에릭슨(펍) 무선 통신 네트워크에서의 방법 및 배열 장치
CN102508447B (zh) * 2011-12-30 2013-09-04 北京理工大学 小型无人飞行器用双向切换系统
CN103581885A (zh) * 2012-07-20 2014-02-12 中兴通讯股份有限公司 用户设备辅助信息上报方法、装置和系统
CN103813454B (zh) * 2012-11-15 2017-08-29 上海贝尔股份有限公司 进行设备至设备通信的方法以及相应的控制方法
US9845165B2 (en) * 2014-07-16 2017-12-19 Airogistic, L.L.C. Methods and apparatus for unmanned aerial vehicle landing and launch
WO2016026023A1 (en) * 2014-08-19 2016-02-25 Aeryon Labs Inc. Secure system for emergency-mode operation, system monitoring and trusted access vehicle location and recovery
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
WO2017206032A1 (en) * 2016-05-30 2017-12-07 SZ DJI Technology Co., Ltd. Operational parameter based flight restriction
US11242143B2 (en) * 2016-06-13 2022-02-08 Skydio, Inc. Unmanned aerial vehicle beyond visual line of sight control
CN106304148B (zh) * 2016-08-11 2019-08-09 北京佰才邦技术有限公司 切换无线网接入设备的工作模式的方法
CN106325300A (zh) * 2016-10-21 2017-01-11 广东容祺智能科技有限公司 一种基于gsm‑4g通信的无人机远程状态监测与控制系统
EP3855270A1 (en) * 2016-11-14 2021-07-28 SZ DJI Technology Co., Ltd. Flight path determination
CN110651314B (zh) * 2017-03-31 2023-07-28 瑞典爱立信有限公司 用于无人交通航空器系统的增强飞行计划
CN107390715A (zh) * 2017-07-07 2017-11-24 深圳市华琥技术有限公司 一种基于无人机的喷药控制方法
WO2019050500A1 (en) * 2017-09-05 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) PLANNED CONTINUITY OF NON-PILOT AIRCRAFT CONNECTIVITY (UAV) IN UAV TRAFFIC MANAGEMENT SYSTEMS
CN107861518B (zh) * 2017-11-03 2021-05-18 深圳市道通智能航空技术股份有限公司 一种无人飞行器的控制方法和终端
US11620912B2 (en) * 2017-11-23 2023-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Flight policy determination at roaming
JP2021114635A (ja) * 2018-04-05 2021-08-05 ソニーグループ株式会社 通信装置、方法およびプログラム
US11816995B2 (en) * 2019-06-14 2023-11-14 Qualcomm Incorporated Methods and apparatuses for updating UAV status in UAS ecosystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100084513A1 (en) * 2008-09-09 2010-04-08 Aeryon Labs Inc. Method and system for directing unmanned vehicles
CN107409174A (zh) * 2015-03-31 2017-11-28 深圳市大疆创新科技有限公司 用于管制无人飞行器操作的系统和方法
US9836049B1 (en) * 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
CN108064360A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机的控制方法及装置
CN108781112A (zh) * 2018-06-14 2018-11-09 北京小米移动软件有限公司 飞行模式上报方法及装置、控制策略更改方法及装置
CN108885468A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息传输方法、装置、系统及存储介质
CN108886824A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息发送方法、接收方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809229A4 *

Also Published As

Publication number Publication date
CN108781112A (zh) 2018-11-09
EP3809229A1 (en) 2021-04-21
EP3809229A4 (en) 2021-06-02
ES2927572T3 (es) 2022-11-08
EP3809229B1 (en) 2022-09-14
CN108781112B (zh) 2021-10-26
US20210253245A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP7163414B2 (ja) 飛行経路情報の報告方法および装置、情報決定方法および装置
WO2019222926A1 (zh) 无人机控制方法、装置、基站和无人机
CN108401477B (zh) 控制无人机的方法及装置和无人机的操作方法及装置
WO2019218325A1 (zh) 控制无人机接入网络的方法和装置
WO2020042053A1 (zh) 飞行路径的配置方法及装置、飞行方法及装置和基站
CN110622616A (zh) 非活动定时器的控制方法和装置
CN109075856B (zh) 飞行路径配置方法和装置
WO2019080101A1 (zh) 信息接收、发送方法及装置、无人机和网络设备
WO2020029104A1 (zh) 传输飞行信息的方法及装置
WO2019237305A1 (zh) 飞行模式上报方法及装置、控制策略更改方法及装置
WO2023097532A1 (zh) 分组寻呼的方法、装置、通信设备及存储介质
US11770750B2 (en) Methods of obtaining and sending path information of unmanned aerial vehicle
WO2023206039A1 (zh) 身份信息发送、配置信息发送方法和装置
WO2023206040A1 (zh) 能力信息发送、能力确定方法和装置
WO2023225971A1 (zh) 配置信息接收、发送方法和装置、通信装置和存储介质
WO2023206090A1 (zh) QoS信息处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018922368

Country of ref document: EP

Effective date: 20210114