WO2019218325A1 - 控制无人机接入网络的方法和装置 - Google Patents

控制无人机接入网络的方法和装置 Download PDF

Info

Publication number
WO2019218325A1
WO2019218325A1 PCT/CN2018/087389 CN2018087389W WO2019218325A1 WO 2019218325 A1 WO2019218325 A1 WO 2019218325A1 CN 2018087389 W CN2018087389 W CN 2018087389W WO 2019218325 A1 WO2019218325 A1 WO 2019218325A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
information
control terminal
flight path
base station
Prior art date
Application number
PCT/CN2018/087389
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/055,938 priority Critical patent/US11843446B2/en
Priority to EP18919187.7A priority patent/EP3796571B1/en
Priority to PCT/CN2018/087389 priority patent/WO2019218325A1/zh
Priority to CN201880000681.8A priority patent/CN108702203B/zh
Publication of WO2019218325A1 publication Critical patent/WO2019218325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and apparatus for controlling a drone access network.
  • the unmanned aerial vehicle is a non-manned aerial vehicle operated by radio remote control equipment and its own program control device.
  • UAV unmanned aerial vehicle
  • the application fields of drones are more and more extensive, such as aerial photography, agriculture, plant protection, micro-self-timer, express transportation, disaster relief, observation of wildlife, monitoring of infectious diseases, mapping, News reports, power inspections, disaster relief, film and television shooting and other fields.
  • 3GPP has adopted the "Enhanced LTE Support for Aerial Vehicles" project to research and standardize mobile cellular networks to provide services for UAVs to meet their needs.
  • the study found that since the current mobile cellular network mainly guarantees terrestrial coverage, the high-altitude coverage is not good enough. If it depends only on the current mobile cellular network, the performance requirements of the UAV access network cannot be met.
  • cellular network drones require additional cellular network communication modules, resulting in increased drone costs.
  • embodiments of the present disclosure provide a method and apparatus for controlling a drone to access a network, and smoothly implement the drone access to the mobile communication network without increasing the manufacturing cost of the drone.
  • a method for controlling a drone access network which is applied to a drone control terminal, and the method includes:
  • the second communication module Sending, by the second communication module, the information to be transmitted to an information receiving end, where the information receiving end includes: the unmanned aerial vehicle, or a target base station of a mobile communication network;
  • the first communication module and the second communication module are different types of communication modules, and the communication module includes: a cellular communication module and a wireless local area network WLAN communication module.
  • the method further includes:
  • the method further includes:
  • the master drone is controlled according to the collision event prediction information.
  • the flight path information of the master drone is shared with the target drone control terminal in any of the following manners:
  • the target base station is passed by using a cellular communication module.
  • the sharing the flight path information of the master drone with the target drone control terminal, and determining collision event prediction information including:
  • the sharing the flight path information of the master drone with the target drone control terminal, and determining collision event prediction information including:
  • Sending path request information for requesting an adjacent drone path where the path request information includes: controlling a terminal identifier;
  • a collision event is predicted according to flight path information of the master drone and the adjacent drone.
  • the sharing the flight path information of the master drone with the target drone control terminal, and determining collision event prediction information including:
  • collision prediction request information for requesting the target base station to predict a drone collision event
  • the collision prediction request information includes: a terminal identifier of the target drone control terminal, so that the target The base station performs collision event prediction after acquiring the flight path of the adjacent drone according to the collision prediction request information;
  • controlling the master drone according to the collision event prediction information comprises:
  • collision event prediction information indicates that a collision event may occur, adjusting flight path information of the master drone to obtain updated flight path information;
  • a method for controlling a drone access network is provided, which is applied to a base station, where the method includes:
  • the method further includes:
  • flight path request information for requesting acquisition of a flight path of an adjacent drone, the flight path request information comprising: being within a preset distance range from the drone control terminal The target identifier of the target drone control terminal;
  • the method further includes:
  • collision prediction request information for requesting prediction of a UAV collision event, where the collision prediction request information includes: a terminal identifier of the target UAV control terminal;
  • an apparatus for controlling a drone to access a network which is disposed in a drone control terminal, the apparatus comprising:
  • An information acquiring module configured to acquire, by using the first communication module, information to be transmitted between the UAV and the target base station;
  • the information forwarding module is configured to forward the information to be transmitted to the second communication module
  • the information sending module is configured to send, by the second communication module, the information to be transmitted to the information receiving end, where the information receiving end comprises: the drone or the target base station of the mobile communication network;
  • the first communication module and the second communication module are different types of communication modules, and the communication module includes: a cellular communication module and a wireless local area network WLAN communication module.
  • the device further includes:
  • a network connection module configured to access a mobile communication network covered by the target base station by using the cellular communication module
  • the UAV identification sending module is configured to send the UAV identifier of the main control UAV to the target base station, so that the target base station acquires a binding relationship between the control terminal identifier and the UAV identifier;
  • the main control drone refers to the drone currently controlled by the drone control terminal;
  • the base station identity sending module is configured to send, by using the wireless local area network communication module, the base station identifier of the target base station to the master drone.
  • the device further includes:
  • a monitoring module configured to monitor a target drone control terminal within a preset distance range
  • a path sharing module configured to share flight path information of the master drone with the target drone control terminal, and determine collision event prediction information
  • control module configured to control the master drone based on the collision event prediction information.
  • the path sharing module shares the flight path information of the master drone with the target drone control terminal in any of the following manners:
  • the target base station is passed by using a cellular communication module.
  • the path sharing module includes:
  • a path information sending submodule configured to send flight path information of the master drone to the target drone control terminal, so that the target drone control terminal determines collision event prediction information
  • a prediction information acquisition submodule configured to acquire the collision event prediction information determined by the target UAV control terminal.
  • the path sharing module includes:
  • path request information for requesting a neighboring drone path, where the path request information includes: a control terminal identifier;
  • a path information obtaining submodule configured to acquire flight path information of the adjacent drone
  • the collision event prediction submodule is configured to predict a collision event according to flight path information of the master drone and the adjacent drone.
  • the path sharing module includes:
  • a collision prediction request sub-module configured to send, to the target base station, collision prediction request information for requesting the target base station to predict a UAV collision event, where the collision prediction request information includes: the target UAV control terminal a terminal identifier, so that the target base station acquires a flight path of the adjacent drone according to the collision prediction request information, and performs collision event prediction;
  • the prediction information receiving submodule is configured to receive collision event prediction information sent by the target base station.
  • control module includes:
  • a path adjustment submodule configured to adjust flight path information of the master drone to obtain updated flight path information if the collision event prediction information indicates that a collision event may occur;
  • an update information sending submodule configured to send the updated flight path information to the master drone through the wireless local area network communication module.
  • an apparatus for controlling a drone to access a network comprising:
  • the UAV information obtaining module is configured to acquire the UAV identifier by the UAV control terminal accessing the network, and determine a binding relationship between the UAV identifier and the UAV control terminal identifier;
  • the information transmission module is configured to transmit information to the drone through the drone control terminal according to the binding relationship.
  • the device further includes:
  • a path request receiving module configured to receive flight path request information sent by the UAV control terminal for requesting acquisition of an adjacent UAV flight path, where the flight path request information includes: Controlling, by the terminal, a terminal identifier of the target drone control terminal within a preset distance range;
  • the first path information acquiring module is configured to acquire flight path information of the neighboring drone according to the terminal identifier of the target drone control terminal;
  • a path information sending module configured to send flight path information of the adjacent drone to the drone control terminal, so that the drone control terminal is based on a flight path of the adjacent drone Information is used to predict collision events.
  • the device further includes:
  • a prediction request receiving module configured to receive collision prediction request information sent by the UAV control terminal for requesting prediction of a UAV collision event, where the collision prediction request information includes: the target UAV control terminal Terminal identification;
  • a second path information acquiring module configured to acquire flight path information of the master drone sent by the drone control terminal, and a flight path of the adjacent drone from the target drone control terminal information;
  • the collision event prediction module is configured to perform collision event prediction according to flight path information of two adjacent drones, and obtain collision event prediction information;
  • the prediction information transmitting module is configured to transmit the collision event prediction information to the drone control terminal.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of any of the methods of the first aspect described above.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of any of the methods of any of the above second aspects.
  • a drone control terminal including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the second communication module Sending, by the second communication module, the information to be transmitted to an information receiving end, where the information receiving end includes: the unmanned aerial vehicle, or a target base station of a mobile communication network;
  • the first communication module and the second communication module are different types of communication modules, and the communication module includes: a cellular communication module and a wireless local area network WLAN communication module.
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the method for controlling a drone to access a mobile communication network does not require a drone to add a cellular communication module, and the drone can be connected to the mobile communication network through a drone control terminal provided with a cellular communication module.
  • the information transmission between the UAV and the target base station is realized, and the information relay is realized through the WLAN communication module, thereby making up for the defect that the mobile cellular network signal has insufficient air coverage capability.
  • FIG. 1 is a flow chart of a method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a flow chart of another method of controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an application scenario of controlling a drone to access a network according to an exemplary embodiment of the present disclosure.
  • FIG. 4 is a flow chart of another method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another application scenario for controlling a drone to access a network according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a flow chart of a method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a flow chart of another method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a flow chart of another method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a flow chart of another method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a flow chart of another method for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a flow chart showing another method of controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 13 is a block diagram of an apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 15 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • 16 is a block diagram of another apparatus for controlling a drone access network, according to an exemplary embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of another application scenario for controlling a drone to access a network according to an exemplary embodiment of the present disclosure.
  • FIG. 18 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 19 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 20 is a block diagram of an apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 21 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 22 is a block diagram of another apparatus for controlling a drone access network according to an exemplary embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a drone control terminal according to an exemplary embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of a base station according to an exemplary embodiment of the present disclosure.
  • the execution body involved in the present disclosure includes: a drone, a drone control terminal, and a base station, wherein the drone is an abbreviation of an Unmanned Aerial Vehicle (UAV), which is a program using a radio remote control device and a self-provided program.
  • UAV Unmanned Aerial Vehicle
  • a manned aircraft operated by a control unit From a technical point of view can be divided into: unmanned fixed-wing aircraft, unmanned vertical take-off and landing aircraft, unmanned airships, unmanned helicopters, unmanned multi-rotor aircraft, unmanned paraplanes and so on.
  • the drone control terminal is a terminal with the capability of a wireless remote control drone, and may be a traditional dedicated drone controller, or a user device equipped with a drone control application APP such as a smart phone or a tablet computer ( User Equipment, UE).
  • the base station may be a base station, a sub base station, or the like provided with a large-scale antenna array.
  • the UAV, the UAV control terminal and the base station are independent of each other and at the same time communicate with each other to jointly implement the technical solution provided by the present disclosure.
  • the information transmission method provided by the present disclosure may be applied to a LTE (Long Term Evolution) system, a 5G system, or a network in which LTE and a 5G system are simultaneously deployed, and the disclosure does not limit this.
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • 5G Fifth Generation
  • the disclosure does not limit this.
  • FIG. 1 is a flowchart of a method for controlling a drone access network according to an exemplary embodiment, which is applied to a drone control terminal, and the method may include:
  • step 11 the information to be transmitted between the drone and the target base station is acquired by the first communication module
  • a wireless local area network communication module such as a Bluetooth communication module, an infrared communication module, a WiFi communication module, a ZigBee communication module, etc., is disposed in the drone to enable short-range communication with the drone control terminal.
  • the drone control terminal is provided with at least two communication modules, including: a Wireless Local Area Networks (WLAN) communication module, and a cellular communication module.
  • WLAN Wireless Local Area Networks
  • the first communication module may be any one of the foregoing communication modules, depending on the application scenario.
  • the UAV transmits information to the target base station, and the first communication module is a WLAN communication module.
  • the UAV passes the information to be transmitted to the target base station through the WLAN communication module, that is, the information to be transmitted, and first transmits it to the drone control terminal.
  • the target base station is a base station corresponding to a cell network currently accessed by the UAV control terminal.
  • the target base station transmits information to the drone, and the first communication module is a cellular communication module.
  • the target base station transmits the information to be transmitted to the drone through the mobile communication network, that is, the cellular network, that is, the information to be transmitted, and first transmits it to the cellular communication module of the drone control terminal.
  • step 12 the information to be transmitted is forwarded to the second communication module
  • the drone control terminal is further provided with a second communication module, and the second communication module and the first communication module belong to different types of communication modules.
  • the second communication module may be a cellular communication module.
  • the UAV control terminal forwards the information to be transmitted sent by the UAV to the cellular communication module, and then the cellular communication module sends the information to be transmitted to the target base station.
  • the foregoing second communication module may be a WLAN communication module.
  • the UAV control terminal may forward the information from the target base station to the WLAN communication module, and then the WLAN communication module sends the information to be transmitted to the UAV.
  • step 13 the information to be transmitted is sent by the second communication module to the information receiving end, where the information receiving end includes: the drone or the target base station of the mobile communication network;
  • the UAV control terminal transmits the information to be transmitted sent by the UAV through the WALN communication module to the target base station through the cellular communication module.
  • the UAV control terminal will receive the information to be transmitted sent by the target base station through the cellular communication module, and send the information to the UAV through the WLAN communication module.
  • the method for controlling a drone to access a mobile communication network does not require a drone to add a cellular communication module, and the drone can be connected to the mobile communication network through a drone control terminal provided with a cellular communication module.
  • a drone control terminal provided with a cellular communication module.
  • the WLAN communication module to achieve information transfer, it can also make up for the lack of air coverage capability of mobile cellular network signals.
  • FIG. 2 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment.
  • the method may further include:
  • step 101 accessing, by the cellular communication module, a mobile communication network covered by the target base station;
  • the cellular communication module may initiate a network access request to the target base station covering the current cell, requesting access to the current Cell network.
  • step 102 the UAV identifier of the main control UAV is sent to the target base station, so that the target base station acquires a binding relationship between the control terminal identifier and the UAV identifier; wherein the main control is unmanned
  • the machine refers to the drone currently controlled by the drone control terminal;
  • the UAV logo of the host UAV is transmitted to the target base station, which is assumed to be the UAV U1.
  • the UAV identifier may be pre-stored information in the UAV control terminal, or may be acquired by the UAV control terminal to the UAV in real time through the WLAN communication module.
  • the target base station can establish a binding relationship between the UAV ID and the control terminal identifier. Assume that the UAV control terminal is the smart phone A. The binding relationship can be as shown in Table 1:
  • step 103 the base station identifier of the target base station is sent to the master drone through the wireless local area network communication module.
  • FIG. 3 is a schematic diagram of a scenario for controlling a drone to access a network according to an exemplary embodiment.
  • a drone control terminal such as a smart phone 200 can install a drone APP, and is provided with a WLAN communication module and a cellular communication module.
  • the smartphone 200 communicates with the target base station 300 through the mobile cellular network through the cellular communication module; the smart phone 200 transmits information between the WLAN communication module and the drone 100.
  • FIG. 4 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment. According to the foregoing embodiment of the embodiment shown in FIG. 1, the method may further include:
  • step 14 monitoring the target drone control terminal within a preset distance range
  • the UAV control terminal can realize the information interaction between the UAV and the target base station through the cellular communication module and the WLAN communication module, and can also monitor whether there are other UAV control terminals within the preset distance range. To determine if there are other drones flying nearby.
  • the smart phone A can use the related technology to detect the preset distance range, such as whether there are other drone control terminals within a radius of 500 meters, and if so, determine the target unmanned Terminal information in machine control, such as terminal identification.
  • FIG. 5 is a schematic diagram of another scenario for controlling a drone to access a network according to an exemplary embodiment, and controlling a smartphone A of the UAV U1 to detect a target drone control terminal within a preset distance range Smartphone B, which is the control terminal of the U2 U2.
  • Smartphone A and smartphone B can access the target base station 300 through the cellular communication module.
  • step 15 the flight path information of the master drone is shared with the target drone control terminal, and collision event prediction information is determined;
  • the flight path information of the master drone may be shared by using at least one of the following methods. , determine collision event prediction information:
  • the smart phone A actively shares the flight path information of the drone U1 to the smart phone B, so that the smart phone B determines the collision event prediction information.
  • FIG. 6 is a flowchart of another method for controlling a drone access network according to an exemplary embodiment.
  • the foregoing step 15 may include:
  • step 1511 the flight path information of the master drone is transmitted to the target drone control terminal, so that the target drone control terminal determines the collision event prediction information;
  • the main control drone of smart phone A is UAV U1; the main control drone of smart phone B is UAV U2, then smart phone A can pass direct connection technology such as Bluetooth communication technology, WiFi Direct Or D2D (Device-to-Device) communication technology, etc., transmits the flight path information of the UAV U1 to the smartphone B.
  • direct connection technology such as Bluetooth communication technology, WiFi Direct Or D2D (Device-to-Device) communication technology, etc.
  • the flight path information of the drone U1 is transmitted to the smart phone B through the target base station, and the smart phone B is requested to perform flight path comparison, Determine if the drone U1 may collide with the drone U2.
  • step 1512 the collision event prediction information determined by the target drone control terminal is acquired.
  • the collision event prediction information may be generated and sent to the smartphone A. Then, the smart phone A receives the collision event prediction information sent by the target drone control terminal, that is, the smart phone B, to adjust the flight path of the drone U1, or is informed that the smart phone B plans to adjust the drone U2 flight path to prevent collision events.
  • the smartphone B compares the flight path information of the UAV U1 and the UAV U2, it is determined that the UAV U1 and the UAV U2 cannot collide, and the generation may indicate that the collision does not occur.
  • the predicted information of the collision is fed back to the smartphone A.
  • the smartphone B does not feed back any information to the smartphone A after determining that the drone U1 and the drone U2 are unlikely to collide.
  • the timing can be started after the flight path information of U1 is sent. If any information fed back by the smartphone B is not received within 10 minutes within the preset duration, the drone U1 and the adjacent are determined. It is impossible for the drone U2 to collide.
  • the target drone control terminal can be triggered to predict the probability of the collision event according to the flight path information of the adjacent two drones, thereby preventing the drone collision event. Occurs and reduces the amount of calculations.
  • the smartphone A acquires the flight path information of the drone U2 and predicts the collision event.
  • FIG. 7 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment.
  • the foregoing step 15 may include:
  • step 1521 path request information for requesting a neighboring drone path is sent, where the path request information includes: a control terminal identifier;
  • the smart phone A may send the path request information for requesting the acquisition of the drone U2.
  • Flight path information that is, flight path information of the adjacent UAV U2
  • the path request information includes: a control terminal identifier.
  • the smart phone A directly sends the path request information to the smart phone B by using the direct connection technology described above;
  • the method can be applied to the scenario where the smart phone A communicates directly with the smart phone B through the WLAN communication module, so that the smart phone B can send the flight path information of the drone U2 to the smart phone A through the direct connection technology.
  • the path request information is sent to the smart phone B indirectly through the target base station;
  • the path request information further includes: a terminal identifier of the target drone control terminal, as in the above example, the terminal identifier of the smart phone B, so that the base station sends the path request information to the smart phone B through the mobile communication network.
  • the target base station is equivalent to an information relay station, and information transmission between the smart phone A and the smart phone B is realized through the mobile communication network.
  • the path request information is sent to the target base station.
  • the smart phone A may also send the path request information to the target base station through the cellular communication module if the smart phone B is determined to access the unified target base station in common.
  • the path request information further includes the terminal identifier of the smart phone B, so that the target base station acquires the flight path information of the drone U2 according to the terminal identifier of the smart phone B.
  • step 1522 acquiring flight path information of the adjacent drone
  • step 1522 also includes three implementations:
  • the acquisition mode 1 corresponds to the first mode of step 1521, and receives the flight path information of the UAV U2 transmitted by the direct connection technology, that is, the smart phone B of the target drone control terminal.
  • the acquisition mode 2 corresponds to the second mode of step 1521, and receives flight path information of the UAV U2 that is indirectly transmitted by the smart phone B through the target base station.
  • the acquisition mode 3 corresponds to the third mode of step 1521, and receives the flight path information of the UAV U2 sent by the target base station.
  • the target base station can directly transmit the flight path information of the locally stored UAV U2 to the smart phone A through the mobile communication network.
  • the time for obtaining the flight path information of the U2 U2 to the smartphone B in real time is saved.
  • step 1523 a collision event is predicted based on flight path information of the master drone and the adjacent drone.
  • the smartphone A compares with the flight path information of the master drone U1, and the flight path information includes: flight time and flight path. And so on, it is estimated whether UAV U1 and UAV U2 may collide during flight.
  • the smart phone A may further generate collision event prediction information based on the collision event prediction result, and send it to the smart phone B, so that the smart phone B adjusts the flight path of the drone U2 according to the collision event prediction information. Or, it is told that smartphone A has adjusted the flight path of drone U1.
  • Method 3 Smartphone A requests the target base station to perform collision event prediction
  • FIG. 8 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment.
  • the foregoing step 15 may include:
  • the collision prediction request information for requesting the target base station to predict a drone collision event is sent to the target base station, where the collision prediction request information includes: a terminal identifier of the target drone control terminal, So that the target base station acquires a flight path of the adjacent drone according to the collision prediction request information, and performs collision event prediction;
  • the smart phone A may send the collision prediction request information to the target base station, where the collision prediction request information includes: a smart phone
  • the terminal identifier of B requests the target base station to perform collision event prediction based on the flight path information of U1 and the flight path information of the UAV U2.
  • the method further includes: transmitting flight path information of the master drone to the target base station. Applicable to the case where the master drone flight path information has not been sent to the target base station.
  • step 1532 the collision event prediction information sent by the target base station is received.
  • the collision event prediction information sent by the target base station is received by the cellular communication module, and includes: first indication information indicating that a collision event may occur, or second indication information indicating that a collision event does not occur.
  • the different indication information may be represented by one bit in the preset downlink control signaling. For example, when the preset bit is set to 1, the first indication information is indicated; If the bit is set to 0, the second indication information is indicated, thereby achieving the purpose of saving system signaling overhead.
  • step 16 the master drone is controlled according to the collision event prediction information.
  • the collision event prediction information determined by the smartphone A may include: first indication information indicating that a collision event may occur.
  • the foregoing first indication information may further include: detailed information that may be sent a collision, such as a point in time or geographic information at which a collision is expected to occur.
  • FIG. 9 is a flowchart of another method for controlling a drone access network according to an exemplary embodiment.
  • the foregoing step 16 may include:
  • step 161 if the collision event prediction information indicates that a collision event may occur, adjusting flight path information of the master drone to obtain updated flight path information;
  • step 162 the updated flight path information is sent to the master drone through the wireless local area network communication module.
  • the UAV control terminal can timely adjust the path information of the controlled UAV according to the collision event prediction information, and send the updated flight path information to the main control UAV through the WLAN communication module, thereby avoiding the main control.
  • the man-machine collides with the adjacent drone to ensure that the drone can fly safely.
  • the collision event prediction information includes the first indication information and informs the current drone control terminal that the flight path information of the adjacent drone has been adjusted, or includes the second indication information
  • the current drone control terminal can control the drone according to the original flight path information.
  • FIG. 10 is a flowchart of a method for controlling a drone access network according to an exemplary embodiment, and the method may include the following steps:
  • step 21 the drone control terminal accessing the network acquires the drone identifier, and determines the binding relationship between the drone identifier and the drone control terminal identifier;
  • the unmanned UAV that is, the main control drone
  • the unmanned UAV can be sent to the base station through the cellular communication module.
  • the machine identifier enables the base station to maintain the binding relationship between the terminal identifier of the drone control terminal and the drone identifier of the master drone, as shown in Table 1 above.
  • step 22 according to the binding relationship, information is transmitted by the drone control terminal and the drone.
  • the base station may send information such as control information to the drone through the drone control terminal, or obtain the drone information through the drone control terminal. See the application scenario shown in Figure 3 above.
  • the base station 300 can transmit a drone U1 of a drone control terminal such as the smart phone A.
  • the flight path information and the collision prediction request information are forwarded to the target drone control terminal, such as the smart phone B, wherein the distance between the target drone control terminal and the drone control terminal does not exceed a preset distance threshold, such as 500. Meter.
  • the smartphone B is caused to predict the collision event based on the flight path information of the drone U2 and the flight path information of the drone U1.
  • the base station 300 can also send the collision event prediction information obtained by the smart phone B to the smart phone A, so that the smart phone A controls the flight path of the drone U1 through the WLAN communication module based on the collision event prediction information to ensure the unmanned person.
  • Machine U1 is flying safely.
  • FIG. 11 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment.
  • the method may further include:
  • step 2311 receiving flight path request information sent by the UAV control terminal for requesting acquisition of a flight path of an adjacent drone, the flight path request information includes: being in a control terminal with the drone The terminal identifier of the target drone control terminal within the preset distance range;
  • step 2312 acquiring flight path information of the adjacent drone according to the terminal identifier of the target drone control terminal;
  • the implementation of the above step 2312 includes two cases:
  • the preset list is queried according to the terminal identifier of the target drone control terminal, and the preset list records the correspondence between the terminal identifier and the UAV path, and determines whether the adjacent base station has stored the adjacent node.
  • the flight path information of the human machine; if stored, the path information of the locally stored adjacent drone is transmitted to the drone terminal as shown in the smartphone A in FIG.
  • the path acquisition request is sent to the target drone control terminal such as the smart phone B, and the flight path information of the UAV U2 is acquired in real time and sent to none.
  • the man-machine control terminal is the smartphone A.
  • step 2313 the flight path information of the adjacent drone is transmitted to the drone control terminal, so that the drone control terminal collides according to the flight path information of the adjacent drone Event prediction.
  • This step 2312 corresponds to an implementation of the above step 1522, and details are not described herein again.
  • FIG. 12 is a flowchart of another method for controlling a drone to access a network according to an exemplary embodiment.
  • the method may further include:
  • step 2321 receiving, by the UAV control terminal, collision prediction request information for requesting prediction of a UAV collision event, where the collision prediction request information includes: a terminal identifier of the target UAV control terminal ;
  • step 2322 acquiring flight path information of the master drone sent by the drone control terminal, and flight path information of an adjacent drone from the target drone control terminal;
  • the base station if the base station is not stored locally, it can be acquired to the drone control terminal in real time.
  • step 2323 collision event prediction is performed according to flight path information of two adjacent drones, and collision event prediction information is obtained;
  • the base station After acquiring the flight path information of two adjacent drones, the base station can estimate whether the two drones may collide. If the collision may occur, the detailed information of the collision may be further determined, such as the estimated collision time or the geographical location information, and the collision event prediction information is generated according to the above information.
  • step 2324 the collision event prediction information is transmitted to the drone control terminal.
  • the present disclosure also provides an application function implementation apparatus and an embodiment of the corresponding terminal.
  • the present disclosure provides a device for controlling a drone to access a network, which is disposed in a drone control terminal, and FIG. 13 is a device for controlling a drone access network according to an exemplary embodiment.
  • the device may include:
  • the information acquiring module 31 is configured to acquire, by using the first communication module, information to be transmitted between the UAV and the target base station;
  • the information forwarding module 32 is configured to forward the information to be transmitted to the second communication module
  • the information sending module 33 is configured to send, by the second communication module, the information to be transmitted to the information receiving end, where the information receiving end comprises: the drone or the target base station of the mobile communication network;
  • the first communication module and the second communication module are different types of communication modules, and the communication module includes: a cellular communication module and a wireless local area network WLAN communication module.
  • FIG. 14 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment of the present invention. Based on the apparatus embodiment shown in FIG. 13, the apparatus may further include:
  • the network connection module 301 is configured to access the mobile communication network covered by the target base station by using the cellular communication module;
  • the UAV ID sending module 302 is configured to send the UAV ID of the UAV to the target base station, so that the target base station acquires a binding relationship between the control terminal identifier and the UAV identifier;
  • the main control drone refers to a drone currently controlled by the drone control terminal;
  • the base station identity sending module 303 is configured to send, by using the wireless local area network communication module, the base station identifier of the target base station to the master drone.
  • FIG. 15 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment. Based on the apparatus embodiment shown in FIG. 13, the apparatus may further include:
  • the monitoring module 34 is configured to monitor a target drone control terminal within a preset distance range; wherein a distance between the target drone terminal and the drone control terminal does not exceed a preset distance range, that is, The target drone terminal is a control terminal of an adjacent drone.
  • the path sharing module 35 is configured to share the flight path information of the master drone with the target drone control terminal, and determine collision event prediction information;
  • the control module 36 is configured to control the master drone based on the collision event prediction information.
  • the path sharing module 35 may share the flight path information of the master drone with the target drone control terminal in any of the following manners:
  • the target base station is passed by using a cellular communication module.
  • FIG. 16 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment.
  • the path sharing module 35 may include:
  • the path information sending sub-module 3511 is configured to send flight path information of the master drone to the target drone control terminal, so that the target drone control terminal determines collision event prediction information;
  • the prediction information acquisition sub-module 3512 is configured to acquire the collision event prediction information determined by the target drone control terminal.
  • FIG. 17 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment.
  • the path sharing module 35 may include:
  • the path requesting sub-module 3521 is configured to send path request information for requesting a neighboring drone path, where the path request information includes: a control terminal identifier;
  • the control terminal is identified as a terminal identifier of the UAV control terminal, such as the smart phone A itself, so that the requested party can determine the address of the information receiver after obtaining the flight path information of the adjacent drone, that is, the destination address.
  • the requested party may be a target drone control terminal such as a smart phone B, or may be the target base station.
  • the path information obtaining sub-module 3522 is configured to acquire flight path information of the adjacent drone
  • the collision event prediction sub-module 3523 is configured to predict a collision event according to flight path information of the master drone and the adjacent drone.
  • FIG. 18 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment.
  • the path sharing module 35 may include:
  • the collision prediction request sub-module 3531 is configured to send, to the target base station, collision prediction request information for requesting the target base station to predict a drone collision event, where the collision prediction request information includes: the target drone control a terminal identifier of the terminal, so that the target base station acquires a flight path of the neighboring drone according to the collision prediction request information, and performs collision event prediction;
  • the collision prediction request information includes: a terminal identifier of the target drone control terminal, so that the target base station acquires flight path information of the adjacent drone according to the terminal identifier of the target drone control terminal.
  • the collision prediction request information may further include: the terminal identifier of the UAV control terminal, so that the target base station determines the flight of the main control drone of the UAV control terminal according to the terminal identifier of the UAV control terminal.
  • Path information The target base station can perform collision event prediction according to the flight path information of the master drone and the flight path information of the adjacent drone.
  • the prediction information receiving submodule 3532 is configured to receive collision event prediction information sent by the target base station.
  • FIG. 19 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment.
  • the control module 36 may include:
  • the path adjustment sub-module 361 is configured to adjust flight path information of the master drone to obtain updated flight path information if the collision event prediction information indicates that a collision event may occur;
  • the update information sending submodule 362 is configured to send the updated flight path information to the master drone through the wireless local area network communication module.
  • FIG. 20 is a block diagram of a device for controlling a drone access network according to an exemplary embodiment.
  • the device may include:
  • the UAV information obtaining module 41 is configured to acquire the UAV identifier by the UAV control terminal accessing the network, and determine a binding relationship between the UAV identifier and the UAV control terminal identifier;
  • the information transmission module 42 is configured to transmit information to the drone through the drone control terminal according to the binding relationship.
  • FIG. 21 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment.
  • the apparatus may further include:
  • the path request receiving module 4311 is configured to receive flight path request information sent by the UAV control terminal for requesting acquisition of an adjacent UAV flight path, where the flight path request information includes: The terminal control identifier of the target drone control terminal within the preset distance range; wherein the adjacent drone is a drone controlled by the target drone control terminal.
  • the first path information obtaining module 4312 is configured to acquire flight path information of the neighboring drone according to the terminal identifier of the target drone control terminal;
  • the path information sending module 4313 is configured to send flight path information of the adjacent drone to the drone control terminal, so that the drone control terminal is based on the flight of the adjacent drone
  • the path information is used to predict collision events.
  • FIG. 22 is a block diagram of another apparatus for controlling a drone to access a network according to an exemplary embodiment of the present invention. Based on the apparatus embodiment shown in FIG. 20, the apparatus may further include:
  • the prediction request receiving module 4321 is configured to receive collision prediction request information sent by the UAV control terminal for requesting prediction of a UAV collision event, where the collision prediction request information includes: the target UAV control Terminal identification of the terminal;
  • the second path information obtaining module 4322 is configured to acquire flight path information of the master drone sent by the drone control terminal, and flight of the adjacent drone from the target drone control terminal Path information
  • the collision event prediction module 4323 is configured to perform collision event prediction according to flight path information of two adjacent drones, and obtain collision event prediction information;
  • the two adjacent drones are drones respectively controlled by two adjacent drone control terminals within a preset distance range.
  • the two adjacent drone control terminals are the drone control terminal and the target drone control terminal, as shown in FIG. 5, the smart phone A and the smart phone B in the application scenario. Then, the two adjacent drones are the U1 and the U2.
  • the prediction information transmitting module 4324 is configured to transmit the collision event prediction information to the drone control terminal.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • a drone control terminal comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to:
  • the second communication module Sending, by the second communication module, the information to be transmitted to an information receiving end, where the information receiving end includes: the unmanned aerial vehicle, or a target base station of a mobile communication network;
  • the first communication module and the second communication module are different types of communication modules, and the communication module includes: a cellular communication module and a wireless local area network WLAN communication module.
  • a base station comprising: a processor; a memory for storing processor-executable instructions; wherein the processor is configured to:
  • FIG. 23 is a schematic structural diagram of a drone control terminal 2300 according to an exemplary embodiment.
  • the user equipment 2300 may be a terminal in a 5G network, and may specifically be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a wearable device, such as Smart watches, smart glasses, smart bracelets, smart running shoes, etc.
  • the drone control terminal 2300 may include one or more of the following components: a processing component 2302, a memory 2304, a power component 2306, a multimedia component 2308, an audio component 2310, an input/output (I/O) interface 2312, Sensor component 2314, and communication component 2316.
  • Processing component 2302 typically controls the overall operation of device 2300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 2302 can include one or more processors 2320 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 2302 can include one or more modules to facilitate interaction between component 2302 and other components.
  • processing component 2302 can include a multimedia module to facilitate interaction between multimedia component 2308 and processing component 2302.
  • Memory 2304 is configured to store various types of data to support operation at device 2300. Examples of such data include instructions for any application or method operating on device 2300, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 2304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 2306 provides power to various components of device 2300.
  • Power component 2306 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 2300.
  • the multimedia component 2308 includes a screen between the above-described device 2300 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor described above may sense not only the boundary of the touch or slide action but also the duration and pressure associated with the touch or slide operation described above.
  • the multimedia component 2308 includes a front camera and/or a rear camera. When the device 2300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2310 is configured to output and/or input an audio signal.
  • the audio component 2310 includes a microphone (MIC) that is configured to receive an external audio signal when the device 2300 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 2304 or transmitted via communication component 2316.
  • the audio component 2310 also includes a speaker for outputting an audio signal.
  • the I/O interface 2312 provides an interface between the processing component 2302 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 2314 includes one or more sensors for providing device 2300 with a status assessment of various aspects.
  • sensor component 2314 can detect an open/closed state of device 2300, relative positioning of components, such as the display and keyboard of device 2300, and sensor component 2314 can also detect a change in position of a component of device 2300 or device 2300, The presence or absence of user contact with device 2300, device 2300 orientation or acceleration/deceleration and temperature change of device 2300.
  • Sensor assembly 2314 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2314 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2316 is configured to facilitate wired or wireless communication between device 2300 and other devices.
  • the drone control terminal 2300 can access a wireless network based on a communication standard such as WiFi, 2G, 3G, 4G or 5G, or a combination thereof.
  • communication component 2316 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 2316 described above also includes a near field communication (NFC) module to facilitate short range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 2300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 2304 comprising instructions executable by processor 2320 of apparatus 2300 to perform the above-described Figures 1-9 A method of controlling a drone to access a network.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 24 is a schematic structural diagram of a base station 2400 according to an exemplary embodiment.
  • the base station can be applied to 2G, 3G, 4G or 5G networks, and their combined networks.
  • base station 2400 includes processing component 2422, wireless transmit/receive component 2424, antenna component 2426, and a signal processing portion specific to the wireless interface.
  • Processing component 2422 can further include one or more processors.
  • One of the processing components 2422 can be configured to:
  • non-transitory computer readable storage medium comprising instructions stored thereon with computer instructions executable by processing component 2422 of base station 2400 to perform FIGS. 10-12 A method of controlling a drone to access a network.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Telephonic Communication Services (AREA)
  • Traffic Control Systems (AREA)

Abstract

本公开提供一种控制无人机接入网络的方法和装置,其中上述方法包括:通过第一通信模块获取无人机和目标基站之间的待传输信息;将所述待传输信息转发给第二通信模块;由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。采用本公开提供的控制无人机接入网络的方法,可以在不增加无人机制造成本的情况下顺利实现无人机接入移动通信网络。

Description

控制无人机接入网络的方法和装置 技术领域
本公开涉及通信技术领域,尤其涉及一种控制无人机接入网络的方法和装置。
背景技术
无人驾驶飞机简称“无人机”(“Unmanned Aerial Vehicle,UAV”),是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。随着无人机技术的快速发展,无人机的应用领域越来越广泛,比如可以应用于航拍、农业、植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄等领域。
为了进一步拓展无人机的应用范围,3GPP通过了“Enhanced LTE Support for Aerial Vehicles”立项,旨在研究并标准化移动蜂窝网络为无人机提供满足需求的服务。但是,研究发现,由于当前移动蜂窝网络主要保证的是地面覆盖,高空覆盖做的不够好,如果仅依赖于当前的移动蜂窝网络,无法满足无人机接入网络的性能要求。另外,蜂窝网络无人机需要额外装载蜂窝网络通信模块,导致无人机成本增加。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种控制无人机接入网络的方法和装置,在不增加无人机制造成本的情况下顺利实现无人机接入移动通信网络。
根据本公开实施例的第一方面,提供了一种控制无人机接入网络的方法,应用于无人机控制终端中,所述方法包括:
通过第一通信模块获取无人机和目标基站之间的待传输信息;
将所述待传输信息转发给第二通信模块;
由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
可选地,所述方法还包括:
通过所述蜂窝通信模块接入目标基站覆盖的移动通信网络;
向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
可选地,所述方法还包括:
监测预设距离范围内的目标无人机控制终端;
与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
根据所述碰撞事件预测信息控制所述主控无人机。
可选地,采用以下任一方式,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息:
利用所述无线局域网通信模块通过直连通信方式;
利用蜂窝通信模块通过所述目标基站。
可选地,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
将所述主控无人机的飞行路径信息发送给所述目标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
可选地,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
获取所述相邻无人机的飞行路径信息;
根据所述主控无人机和所述相邻无人机的飞行路径信息,预测碰撞事件。
可选地,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
接收所述目标基站发送的碰撞事件预测信息。
可选地,所述根据碰撞事件预测信息控制所述主控无人机,包括:
若所述碰撞事件预测信息表示可能发生碰撞事件,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
根据本公开实施例的第二方面,提供了一种控制无人机接入网络的方法,应用于基站中,所述方法包括:
通过接入网络的无人机控制终端获取无人机标识,确定无人机标识与无人机控制终端标识之间的绑定关系;
根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
可选地,所述方法还包括:
接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;
根据所述目标无人机控制终端的终端标识,获取所述相邻无人机的飞行路径信息;
将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
可选地,所述方法还包括:
接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识;
获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标无人机控制终端的、相邻无人机的飞行路径信息;
根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
将所述碰撞事件预测信息发送给所述无人机控制终端。
根据本公开实施例的第三方面,提供了一种控制无人机接入网络的装置,设置于无人机控制终端中,所述装置包括:
信息获取模块,被配置为通过第一通信模块获取无人机和目标基站之间的待传输信息;
信息转发模块,被配置为将所述待传输信息转发给第二通信模块;
信息发送模块,被配置为由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
可选的,所述装置还包括:
网络连接模块,被配置为通过所述蜂窝通信模块接入目标基站覆盖的移动通信网络;
无人机标识发送模块,被配置为向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
基站标识发送模块,被配置为通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
可选的,所述装置还包括:
监测模块,被配置为监测预设距离范围内的目标无人机控制终端;
路径分享模块,被配置为与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
控制模块,被配置为根据所述碰撞事件预测信息控制所述主控无人机。
可选的,所述路径分享模块采用以下任一方式,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息:
利用所述无线局域网通信模块通过直连通信方式;
利用蜂窝通信模块通过所述目标基站。
可选的,所述路径分享模块包括:
路径信息发送子模块,被配置为将所述主控无人机的飞行路径信息发送给所述目标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
预测信息获取子模块,被配置为获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
可选的,所述路径分享模块包括:
路径请求子模块,被配置为发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
路径信息获取子模块,被配置为获取所述相邻无人机的飞行路径信息;
碰撞事件预测子模块,被配置为根据所述主控无人机和所述相邻无人机的飞行路径信息,预测碰撞事件。
可选的,所述路径分享模块包括:
碰撞预测请求子模块,被配置为向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
预测信息接收子模块,被配置为接收所述目标基站发送的碰撞事件预测信息。
可选的,所述控制模块包括:
路径调整子模块,被配置为在所述碰撞事件预测信息表示可能发生碰撞事件的情况下,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
更新信息发送子模块,被配置为通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
根据本公开实施例的第四方面,提供了一种控制无人机接入网络的装置,设置于基站中,所述装置包括:
无人机信息获取模块,被配置为通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
信息传输模块,被配置为根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
可选的,所述装置还包括:
路径请求接收模块,被配置为接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;
第一路径信息获取模块,被配置为根据所述目标无人机控制终端的终端标识,获取所述相邻无人机的飞行路径信息;
路径信息发送模块,被配置为将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
可选的,所述装置还包括:
预测请求接收模块,被配置为接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机 控制终端的终端标识;
第二路径信息获取模块,被配置为获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标无人机控制终端的、相邻无人机的飞行路径信息;
碰撞事件预测模块,被配置为根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
预测信息发送模块,被配置为将所述碰撞事件预测信息发送给所述无人机控制终端。
根据本公开实施例的第五方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面任一所述方法的步骤。
根据本公开实施例的第六方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第二方面任一所述方法的步骤。
根据本公开实施例的第七方面,提供了一种无人机控制终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
通过第一通信模块获取无人机和目标基站之间的待传输信息;
将所述待传输信息转发给第二通信模块;
由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
根据本公开实施例的第八方面,提供了一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开提供的控制无人机接入移动通信网络的方法,不需要无人机增设蜂窝通信模块,通过设置有蜂窝通信模块的无人机控制终端,可以实现无人机接入移动通信 网络,实现无人机与目标基站之间的信息传输,并通过WLAN通信模块实现信息中转,弥补移动蜂窝网络信号空中覆盖能力不足的缺陷。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本公开根据一示例性实施例示出的一种控制无人机接入网络的方法流程图。
图2是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图3是本公开根据一示例性实施例示出的一种控制无人机接入网络的应用场景示意图。
图4是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图5是本公开根据一示例性实施例示出的另一种控制无人机接入网络的应用场景示意图。
图6是本公开根据一示例性实施例示出的一种控制无人机接入网络的方法流程图。
图7是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图8是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图9是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图10是本公开根据一示例性实施例示出的一种控制无人机接入网络的方法流程图。
图11是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图。
图12是本公开根据一示例性实施例示出的另一种控制无人机接入网络的方法 流程图。
图13是本公开根据一示例性实施例示出的一种控制无人机接入网络的装置框图。
图14是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图15是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图16是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图17是本公开根据一示例性实施例示出的另一种控制无人机接入网络的应用场景示意图。
图18是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图19是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图20是本公开根据一示例性实施例示出的一种控制无人机接入网络的装置框图。
图21是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图22是本公开根据一示例性实施例示出的另一种控制无人机接入网络的装置框图。
图23是本公开根据一示例性实施例示出的一种无人机控制终端的一结构示意图。
图24是本公开根据一示例性实施例示出的一种基站的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本公开涉及的执行主体包括:无人机、无人机控制终端和基站,其中,无人机 为无人驾驶飞行器(Unmanned Aerial Vehicle,UAV)的简称,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。从技术角度可以分为:无人固定翼机、无人垂直起降机、无人飞艇、无人直升机、无人多旋翼飞行器、无人伞翼机等。无人机控制终端是具备无线遥控无人机能力的终端,可以是传统的专用无人机控制器,也可以是安装有无人机控制应用APP的终端比如智能手机、平板电脑等用户设备(User Equipment,UE)。基站可以是设置有大规模天线阵列的基站、子基站等。在具体实现过程中,无人机、无人机控制终端和基站各自独立,同时又相互联系,共同实现本公开提供的技术方案。
本公开提供的信息传输方法可以应用于LTE(Long Term Evoluttion,长期演进)系统、5G系统,或者,LTE与5G系统同时部署的网络中,本公开对此不作限制。
参见图1根据一示例性实施例示出的一种控制无人机接入网络的方法流程图,应用于无人机控制终端中,所述方法可以包括:
在步骤11中,通过第一通信模块获取无人机和目标基站之间的待传输信息;
本公开中,无人机中设置有无线局域网通信模块,如蓝牙通信模块、红外通信模块、WiFi通信模块、ZigBee通信模块等,可以与无人机控制终端之间实现近距离通信。
无人机控制终端设置有至少两种通信模块,包括:无线局域网(Wireless Local Area Networks,WLAN)通信模块、蜂窝通信模块。
根据应用场景不同,上述第一通信模块可以是上述任一通信模块。
应用场景一、无人机向目标基站传输信息,则上述第一通信模块为WLAN通信模块。无人机通过WLAN通信模块将准备发送给目标基站的信息即待传输信息,首先发送给无人机控制终端。上述目标基站为无人机控制终端当前接入的小区网络所对应的基站。
应用场景二、目标基站向无人机传输信息,则上述第一通信模块为蜂窝通信模块。目标基站通过移动通信网络即蜂窝网络将准备发送给无人机的信息即待传输信息,首先发送给无人机控制终端的蜂窝通信模块。
在步骤12中,将所述待传输信息转发给第二通信模块;
本公开中,无人机控制终端还设置有第二通信模块,该第二通信模块与上述第一通信模块属于不同类型的通信模块。
如上示例,对应上述应用场景一,该第二通信模块可以是蜂窝通信模块。无人机控制终端将无人机发送的待传输信息,转发给蜂窝通信模块,后续由该蜂窝通信模 块将上述待传输信息发送给目标基站。
对应上述应用场景二,上述第二通信模块可以是WLAN通信模块。无人机控制终端可以将来自目标基站的信息,转发给WLAN通信模块,后续由该WLAN通信模块将上述待传输信息发送给无人机。
在步骤13中,由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
如上所述,对应上述应用场景一,无人机控制终端将通过WALN通信模块接收到的、无人机发送的待传输信息,通过蜂窝通信模块发送给目标基站。
对应上述应用场景二,无人机控制终端将通过蜂窝通信模块接收到目标基站发送的待传输信息,通过WLAN通信模块发送给无人机。
可见,本公开提供的控制无人机接入移动通信网络的方法,无需无人机增设蜂窝通信模块,通过设置有蜂窝通信模块的无人机控制终端,可以实现无人机接入移动通信网络,实现无人机与目标基站之间的信息传输。通过WLAN通信模块实现信息中转,还可以弥补移动蜂窝网络信号空中覆盖能力不足。
参见图2根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,在上述图1所示示例的基础,在步骤11之前,所述方法还可以包括:
在步骤101中,通过所述蜂窝通信模块接入所述目标基站覆盖的移动通信网络;
本公开中,在无人机需要联网时,或者,无人机控制终端移动至基站覆盖的一个小区后,可以通过蜂窝通信模块向覆盖当前小区的目标基站发起网络接入请求,请求接入当前小区网络。
在步骤102中,向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
在无人机控制终端成功接入目标基站覆盖的小区网络后,向该目标基站发送主控无人机的无人机标识,假设为无人机U1。其中,上述无人机标识可以是无人机控制终端中预先存储的信息,也可以是无人机控制终端通过WLAN通信模块向无人机实时获取的。目标基站在获取到无人机标识之后,可以建立无人机标识与控制终端标识的绑定关系,假设无人机控制终端为智能手机A,上述绑定关系可以如表一所示:
控制终端标识 无人机标识
智能手机A U1
表一
在步骤103中,通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
同时,控制终端如智能手机A也可以将目标基站的基站标识,通过WLAN模块发送给主控无人机,以使无人机向目标基站发送信息。本公开中,所述主控无人机是指当前可以被所述无人机控制终端控制的无人机。参见图3根据一示例性实施例示出的一种控制无人机接入网络的场景示意图,无人机控制终端如智能手机200可以安装无人机APP,并设置有WLAN通信模块和蜂窝通信模块。智能手机200通过蜂窝通信模块与目标基站300通过移动蜂窝网络进行通信;智能手机200通过WLAN通信模块与无人机100之间传输信息。
参见图4根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,在上述图1所示实施例的基础,所述方法还可以包括:
在步骤14中,监测预设距离范围内的目标无人机控制终端;
本公开中,无人机控制终端可以通过蜂窝通信模块和WLAN通信模块实现无人机和目标基站之间信息交互的同时,还可以监测预设距离范围内是否还有其他无人机控制终端,以确定附近是否有正在飞行的其他无人机。
示例性的,仍以无人机控制终端为智能手机A为例,智能手机A可以利用相关技术探测预设距离范围比如方圆500米内是否有其他无人机控制终端,若有,确定目标无人机控制中的终端信息,比如终端标识。
参见图5根据一示例性实施例示出的另一种控制无人机接入网络的场景示意图,控制无人机U1的智能手机A,在预设距离范围内检测到目标无人机控制终端即智能手机B,该智能手机B是无人机U2的控制终端。智能手机A和智能手机B可以通过蜂窝通信模块接入目标基站300。
在步骤15中,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
本公开中,无人机控制终端如智能手机A在预设距离范围内检测到目标无人机控制终端如智能手机B之后,可以采用以下至少一种方式分享主控无人机的飞行路径信息,确定碰撞事件预测信息:
方式一、智能手机A主动向智能手机B分享无人机U1的飞行路径信息,以使智能手机B确定碰撞事件预测信息。
参见图6根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,上述步骤15可以包括:
在步骤1511中,将所述主控无人机的飞行路径信息发送给所述目标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
如上示例,假设智能手机A的主控无人机为无人机U1;智能手机B的主控无人机为无人机U2,则智能手机A可以通过直连技术如蓝牙通信技术、WiFi Direct或D2D(Device-to-Device,设备间)通信等技术,将无人机U1的飞行路径信息发送给智能手机B。或者,在智能手机A和智能手机B均接入目标基站的情况下,通过所述目标基站将无人机U1的飞行路径信息发送给智能手机B,并请求智能手机B进行飞行路径比较,以确定无人机U1是否可能会与无人机U2发生碰撞事件。
在步骤1512中,获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
在本公开一实施例中,若智能手机B通过比较无人机U1和无人机U2的飞行路径信息,预测可能发生碰撞事件,可以生成碰撞事件预测信息并发送给智能手机A。则,智能手机A接收所述目标无人机控制终端即智能手机B发送的、所述碰撞事件预测信息,以调整无人机U1的飞行路径,或者,被告知智能手机B计划调整无人机U2的飞行路径,预防碰撞事件发生。
在本公开另一实施例中,若智能手机B通过比较无人机U1和无人机U2的飞行路径信息,确定无人机U1和无人机U2不可能发生碰撞,可以生成表示不会发生碰撞的预测信息,将该预测信息反馈给智能手机A。或者,智能手机B在确定无人机U1和无人机U2不可能发生碰撞之后,不向智能手机A反馈任何信息。对于智能手机A而言,可以在发出U1的飞行路径信息之后开始计时,若在预设时长内比如10分钟之内未收到智能手机B反馈的任何信息,则确定无人机U1和相邻无人机U2不可能发生碰撞。
上述方式一,通过主动分享主控无人机的飞行路径信息,可以触发目标无人机控制终端根据相邻两个无人机的飞行路径信息预测碰撞事件发生概率,从而预防无人机碰撞事件发生,并减少计算量。
方式二,智能手机A获取无人机U2的飞行路径信息,预测碰撞事件。
参见图7根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,上述步骤15可以包括:
在步骤1521中,发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
如上示例,本公开实施例中,智能手机A在检测到控制无人机U2的智能手机B之后,可以通过以下三种方式发送路径请求信息,该路径请求信息用于请求获取无 人机U2的飞行路径信息,即相邻无人机U2的飞行路径信息,该路径请求信息包括:控制终端标识。
第一种方式,智能手机A采用上述直连技术直接向智能手机B发送路径请求信息;
该方式可以适用于智能手机A通过WLAN通信模块与智能手机B直接通信的场景中,以使智能手机B可以通过直连技术将无人机U2的飞行路径信息发送给智能手机A。
第二种方式,通过目标基站间接向智能手机B发送路径请求信息;
该方式可以适用于目标基站中没有存储智能手机B与无人机U2绑定关系的情况。此种情况下,上述路径请求信息还包括:目标无人机控制终端的终端标识,如上示例,上述智能手机B的终端标识,以便基站通过移动通信网络将上述路径请求信息发送给智能手机B。该第二种方式中,目标基站相当于信息中转站,通过移动通信网络实现智能手机A和智能手机B之间的信息传输。
第三种方式,向所述目标基站发送所述路径请求信息。
在本公开另一实施例中,智能手机A在确定智能手机B共同接入统一目标基站的情况下,还可以通过蜂窝通信模块向目标基站发送上述路径请求信息,此种情况下,与上述第二种方式类似,上述路径请求信息中还包括智能手机B的终端标识,以使目标基站根据智能手机B的终端标识获取无人机U2的飞行路径信息。
在步骤1522中,获取所述相邻无人机的飞行路径信息;
与上述步骤1521的三种方式相对应,步骤1522也包括三种实施方式:
获取方式一,与步骤1521的第一种方式相对应,接收目标无人机控制终端即智能手机B,通过直连技术发送的、无人机U2的飞行路径信息。
获取方式二,与步骤1521的第二种方式相对应,接收智能手机B通过目标基站间接发送的、无人机U2的飞行路径信息。
获取方式三、与步骤1521的第三种方式相对应,接收目标基站发送的、无人机U2的飞行路径信息。该方式中,在目标基站中存储有无人机U2的飞行路径信息的情况下,目标基站可以通过移动通信网络,直接将本地存储的、无人机U2的飞行路径信息发送给智能手机A,节约向智能手机B实时获取无人机U2的飞行路径信息的时间。
在步骤1523中,根据所述主控无人机和相邻无人机的飞行路径信息,预测碰撞事件。
如上示例,智能手机A在获取到相邻无人机即无人机U2的飞行路径信息之后,与主控无人机U1的飞行路径信息进行比较,上述飞行路径信息包括:飞行时间、飞行轨迹等信息,估算无人机U1和无人机U2在飞行过程中是否可能相撞。
在本公开另一实施例中,智能手机A还可以基于碰撞事件预测结果生成碰撞事件预测信息,发送给智能手机B,以使智能手机B根据碰撞事件预测信息调整无人机U2的飞行路径,或者,被告知智能手机A已经调整了无人机U1的飞行路径。
方式三、智能手机A请求目标基站进行碰撞事件预测
参见图8根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,上述步骤15可以包括:
在步骤1531中,向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
本公开实施例中,在智能手机A和智能手机B均通过目标基站接入移动通信网络的情况下,智能手机A可以向目标基站发送碰撞预测请求信息,该碰撞预测请求信息中包括:智能手机B的终端标识,请求目标基站基于U1的飞行路径信息和无人机U2的飞行路径信息进行碰撞事件预测。
在本公开另一实施例中,所述方法还包括:向所述目标基站发送所述主控无人机的飞行路径信息。适用于未曾向目标基站发送主控无人机飞行路径信息的情况。
在步骤1532中,接收所述目标基站发送的碰撞事件预测信息。
通过蜂窝通信模块,接收目标基站发送的碰撞事件预测信息,包括:表示可能发生碰撞事件的第一指示信息,或者,表示不会发生碰撞事件的第二指示信息。本公开一实施例中,可以通过预设下行控制信令中的1个bit表示上述不同指示信息,比如,当预设bit置为1时,表示上述第一指示信息;反之,若所述预设bit置为0,则表示上述第二指示信息,从而实现节约系统信令开销的目的。
在步骤16中,根据所述碰撞事件预测信息控制所述主控无人机。
本公开实施例中,如上所述,智能手机A确定的碰撞事件预测信息可以包括:表示可能发生碰撞事件的第一指示信息。在另一实施例中,上述第一指示信息还可以包括:可能发送碰撞的详细信息,比如预计发生碰撞的时间点或地理信息等。
基于此,参见图9根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,上述步骤16可以包括:
在步骤161中,若所述碰撞事件预测信息表示可能发生碰撞事件,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
在步骤162中,通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
本公开中,无人机控制终端可以依据碰撞事件预测信息及时调整所控无人机的路径信息,并将更新后的飞行路径信息通过WLAN通信模块发送给主控无人机,避免主控无人机与相邻无人机发生碰撞,确保无人机安全飞行。
在本公开另一实施例中,若碰撞事件预测信息包括上述第一指示信息并告知当前无人机控制终端已调相邻无人机的飞行路径信息,或者,包括上述第二指示信息,则当前无人机控制终端可以按照原飞行路径信息控制无人机。
相应的,本公开公还提供了一种控制无人机接入移动通信网络的方法,应用于基站中。参见图10根据一示例性实施例示出的一种控制无人机接入网络的方法流程图,所述方法可以包括以下步骤:
在步骤21中,通过接入网络的无人机控制终端获取无人机标识,确定无人机标识与无人机控制终端标识之间的绑定关系;
与上述图2所示实施例相对应,一个无人机控制终端接入基站覆盖的一个小区网络后,可以通过蜂窝通信模块向该基站发送所控无人机即主控无人机的无人机标识,使得基站保存无人机控制终端的终端标识与主控无人机的无人机标识之间的绑定关系,如上述表一所示。
在步骤22中,根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
基站在确定了上述绑定关系之后,即可通过无人机控制终端向所述无人机发送信息如控制信息,也可以通过所述无人机控制终端获取无人机信息。参见上述图3所示的应用场景示意图。
在图5所示的应用场景中,在一实施例中,与上述图6所述实施例相对应,基站300可以将一个无人机控制终端如智能手机A发送的主控无人机U1的飞行路径信息和碰撞预测请求信息,转发给目标无人机控制终端如智能手机B,其中,目标无人机控制终端与所述无人机控制终端之间的距离不超过预设距离阈值比如500米。以使智能手机B根据无人机U2的飞行路径信息和无人机U1的飞行路径信息预测碰撞事件。此外,基站300还可以将智能手机B获得的碰撞事件预测信息发送给智能手机A,以使智能手机A基于上述碰撞事件预测信息、通过WLAN通信模块控制无人机U1的飞 行路径,确保无人机U1安全飞行。
在与上述图7所示实施例对应的一实施例中,参见图11根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,所述方法还可以包括:
在步骤2311中,接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;
在步骤2312中,根据所述目标无人机控制终端的终端标识,获取所述相邻无人机的飞行路径信息;
上述步骤2312的实施包括两种情况:
第一种情况,根据所述目标无人机控制终端的终端标识查询预设列表,该预设列表记录了终端标识与无人机路径的对应关系,确定当前基站中是否已存储了相邻无人机的飞行路径信息;若已存储,将本地存储的相邻无人机的路径信息发送给无人机终端如图5中的智能手机A。
第二种情况,若基站中未存储相邻无人机的飞行路径信息,向目标无人机控制终端如智能手机B发送路径获取请求,实时获取无人机U2的飞行路径信息并发送给无人机控制终端即智能手机A。
在步骤2313中,将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
该步骤2312与上述步骤1522的一实施方式相对应,此处不再赘述。
在与上述图8所示实施例对应的一实施例中,参见图12根据一示例性实施例示出的另一种控制无人机接入网络的方法流程图,所述方法还可以包括:
在步骤2321中,接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识;
在步骤2322中,获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标无人机控制终端的相邻无人机的飞行路径信息;
关于两相邻无人机的飞行路径信息的获取,如上所述,若基站本地未存储,可以实时向无人机控制终端获取。
在步骤2323中,根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
基站在获取两个相邻无人机的飞行路径信息之后,可以估算两个无人机是否可 能发生碰撞。若可能发生碰撞还可以进一步确定发生碰撞的详细信息如预计碰撞时间或地理位置信息等,依据上述信息生成碰撞事件预测信息。
在步骤2324中,将所述碰撞事件预测信息发送给所述无人机控制终端。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应终端的实施例。
相应的,本公开提供了一种控制无人机接入网络的装置,设置于无人机控制终端中,参见图13根据一示例性实施例示出的一种控制无人机接入网络的装置框图,所述装置可以包括:
信息获取模块31,被配置为通过第一通信模块获取无人机和目标基站之间的待传输信息;
信息转发模块32,被配置为将所述待传输信息转发给第二通信模块;
信息发送模块33,被配置为由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
参见图14根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图13所示装置实施例的基础上,所述装置还可以包括:
网络连接模块301,被配置为通过所述蜂窝通信模块接入目标基站覆盖的移动通信网络;
无人机标识发送模块302,被配置为向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
基站标识发送模块303,被配置为通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
参见图15根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图13所示装置实施例的基础上,所述装置还可以包括:
监测模块34,被配置为监测预设距离范围内的目标无人机控制终端;其中,所述目标无人机终端与所述无人机控制终端之间的距离不超过预设距离范围,即所述目标无人机终端为相邻无人机的控制终端。
路径分享模块35,被配置为与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
控制模块36,被配置为根据所述碰撞事件预测信息控制所述主控无人机。
本公开装置实施例中,所述路径分享模块35可以采用以下任一方式,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息:
利用所述无线局域网通信模块通过直连通信方式;
利用蜂窝通信模块通过所述目标基站。
参见图16根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图15所示装置实施例的基础上,所述路径分享模块35可以包括:
路径信息发送子模块3511,被配置为将所述主控无人机的飞行路径信息发送给所述目标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
预测信息获取子模块3512,被配置为获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
参见图17根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图15所示装置实施例的基础上,所述路径分享模块35可以包括:
路径请求子模块3521,被配置为发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
所述控制终端标识为所述无人机控制终端如智能手机A自身的终端标识,以使被请求方在获取相邻无人机的飞行路径信息之后,可以确定信息接收方的地址,即目的地址。其中,所述被请求方可以是目标无人机控制终端如智能手机B,也可以是上述目标基站。
路径信息获取子模块3522,被配置为获取所述相邻无人机的飞行路径信息;
碰撞事件预测子模块3523,被配置为根据所述主控无人机和所述相邻无人机的飞行路径信息,预测碰撞事件。
参见图18根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图15所示装置实施例的基础上,所述路径分享模块35可以包括:
碰撞预测请求子模块3531,被配置为向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标 无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
其中,上述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述目标无人机控制终端的终端标识获取相邻无人机的飞行路径信息。上述碰撞预测请求信息还可以包括:所述无人机控制终端的终端标识,以使目标基站根据所述无人机控制终端的终端标识,确定无人机控制终端的主控无人机的飞行路径信息。使得目标基站可以根据上述主控无人机的飞行路径信息和相邻无人机的飞行路径信息进行碰撞事件预测。
预测信息接收子模块3532,被配置为接收所述目标基站发送的碰撞事件预测信息。
参见图19根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图15所示装置实施例的基础上,所述控制模块36可以包括:
路径调整子模块361,被配置为在所述碰撞事件预测信息表示可能发生碰撞事件的情况下,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
更新信息发送子模块362,被配置为通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
对应上述基站侧实施的控制无人机接入网络的方法,本公开还提供了一种控制无人机接入网络的装置,设置于基站中。参见图20根据一示例性实施例示出的一种控制无人机接入网络的装置框图,所述装置可以包括:
无人机信息获取模块41,被配置为通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
信息传输模块42,被配置为根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
参见图21根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图20所示装置实施例的基础上,所述装置还可以包括:
路径请求接收模块4311,被配置为接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;其中,所述相邻无人机是指被所述目标无人机控制终端控制的无人机。
第一路径信息获取模块4312,被配置为根据所述目标无人机控制终端的终端标识,获取所述相邻无人机的飞行路径信息;
路径信息发送模块4313,被配置为将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
参见图22根据一示例性实施例示出的另一种控制无人机接入网络的装置框图,在图20所示装置实施例的基础上,所述装置还可以包括:
预测请求接收模块4321,被配置为接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识;
第二路径信息获取模块4322,被配置为获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标无人机控制终端的、相邻无人机的飞行路径信息;
碰撞事件预测模块4323,被配置为根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
其中,所述两个相邻无人机是指被预设距离范围内的两个相邻无人机控制终端分别控制的无人机。本公开中,上述两个相邻无人机控制终端为所述无人机控制终端和上述目标无人机控制终端,如图5所示应用场景中的智能手机A和智能手机B。则,上述两个相邻无人机为无人机U1和无人机U2。
预测信息发送模块4324,被配置为将所述碰撞事件预测信息发送给所述无人机控制终端。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,一方面提供了一种无人机控制终端,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:
通过第一通信模块获取无人机和目标基站之间的待传输信息;
将所述待传输信息转发给第二通信模块;
由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
另一方面,提供了一种基站,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:
通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
图23是根据一示例性实施例示出的一种无人机控制终端2300的结构示意图。例如,用户设备2300可以是5G网络中的终端,可以具体为移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,可穿戴设备如智能手表、智能眼镜、智能手环、智能跑鞋等。
参照图23,无人机控制终端2300可以包括以下一个或多个组件:处理组件2302,存储器2304,电源组件2306,多媒体组件2308,音频组件2310,输入/输出(I/O)的接口2312,传感器组件2314,以及通信组件2316。
处理组件2302通常控制装置2300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2302可以包括一个或多个处理器2320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2302可以包括一个或多个模块,便于处理组件2302和其他组件之间的交互。例如,处理组件2302可以包括多媒体模块,以方便多媒体组件2308和处理组件2302之间的交互。
存储器2304被配置为存储各种类型的数据以支持在设备2300的操作。这些数据的示例包括用于在装置2300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2306为装置2300的各种组件提供电力。电源组件2306可以包括电源管理系统,一个或多个电源,及其他与为装置2300生成、管理和分配电力相关联的组件。
多媒体组件2308包括在上述装置2300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括 一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。上述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与上述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2308包括一个前置摄像头和/或后置摄像头。当设备2300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2310被配置为输出和/或输入音频信号。例如,音频组件2310包括一个麦克风(MIC),当装置2300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2304或经由通信组件2316发送。在一些实施例中,音频组件2310还包括一个扬声器,用于输出音频信号。
I/O接口2312为处理组件2302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2314包括一个或多个传感器,用于为装置2300提供各个方面的状态评估。例如,传感器组件2314可以检测到设备2300的打开/关闭状态,组件的相对定位,例如上述组件为装置2300的显示器和小键盘,传感器组件2314还可以检测装置2300或装置2300一个组件的位置改变,用户与装置2300接触的存在或不存在,装置2300方位或加速/减速和装置2300的温度变化。传感器组件2314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2316被配置为便于装置2300和其他设备之间有线或无线方式的通信。无人机控制终端2300可以接入基于通信标准的无线网络,如WiFi,2G,3G,4G或5G,或它们的组合。在一个示例性实施例中,通信组件2316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,上述通信组件2316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2300可以被一个或多个应用专用集成电路(ASIC)、 数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2304,上述指令可由装置2300的处理器2320执行以完成上述图1~图9任一所述的控制无人机接入网络的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图24所示,图24是根据一示例性实施例示出的一种基站2400的一结构示意图。该基站可以应用于2G,3G,4G或5G网络中,以及它们的组合网络。参照图24,基站2400包括处理组件2422、无线发射/接收组件2424、天线组件2426、以及无线接口特有的信号处理部分,处理组件2422可进一步包括一个或多个处理器。
处理组件2422中的其中一个处理器可以被配置为:
通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,其上存储有计算机指令,上述计算机指令可由基站2400的处理组件2422执行以完成图10~图12任一所述的控制无人机接入网络的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种控制无人机接入网络的方法,其特征在于,应用于无人机控制终端中,所述方法包括:
    通过第一通信模块获取无人机和目标基站之间的待传输信息;
    将所述待传输信息转发给第二通信模块;
    由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
    其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    通过所述蜂窝通信模块接入目标基站覆盖的移动通信网络;
    向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
    通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    监测预设距离范围内的目标无人机控制终端;
    与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
    根据所述碰撞事件预测信息控制所述主控无人机。
  4. 根据权利要求3所述的方法,其特征在于,采用以下任一方式,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息:
    利用所述无线局域网通信模块通过直连通信方式;
    利用蜂窝通信模块通过所述目标基站。
  5. 根据权利要求4所述的方法,其特征在于,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
    将所述主控无人机的飞行路径信息发送给所述目标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
    获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
  6. 根据权利要求3所述的方法,其特征在于,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
    发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
    获取所述相邻无人机的飞行路径信息;
    根据所述主控无人机和所述相邻无人机的飞行路径信息,预测碰撞事件。
  7. 根据权利要求3所述的方法,其特征在于,所述与目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息,包括:
    向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
    接收所述目标基站发送的碰撞事件预测信息。
  8. 根据权利要求3所述的方法,其特征在于,所述根据碰撞事件预测信息控制所述主控无人机,包括:
    若所述碰撞事件预测信息表示可能发生碰撞事件,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
    通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
  9. 一种控制无人机接入网络的方法,其特征在于,应用于基站中,所述方法包括:
    通过接入网络的无人机控制终端获取无人机标识,确定无人机标识与无人机控制终端标识之间的绑定关系;
    根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;
    根据所述目标无人机控制终端的终端标识,获取所述相邻无人机的飞行路径信息;
    将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识;
    获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标 无人机控制终端的、相邻无人机的飞行路径信息;
    根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
    将所述碰撞事件预测信息发送给所述无人机控制终端。
  12. 一种控制无人机接入网络的装置,其特征在于,设置于无人机控制终端中,所述装置包括:
    信息获取模块,被配置为通过第一通信模块获取无人机和目标基站之间的待传输信息;
    信息转发模块,被配置为将所述待传输信息转发给第二通信模块;
    信息发送模块,被配置为由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
    其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    网络连接模块,被配置为通过所述蜂窝通信模块接入目标基站覆盖的移动通信网络;
    无人机标识发送模块,被配置为向所述目标基站发送主控无人机的无人机标识,以使所述目标基站获取控制终端标识与无人机标识的绑定关系;其中,所述主控无人机是指所述无人机控制终端当前控制的无人机;
    基站标识发送模块,被配置为通过所述无线局域网通信模块将所述目标基站的基站标识发送给所述主控无人机。
  14. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    监测模块,被配置为监测预设距离范围内的目标无人机控制终端;
    路径分享模块,被配置为与所述目标无人机控制终端分享所述主控无人机的飞行路径信息,确定碰撞事件预测信息;
    控制模块,被配置为根据所述碰撞事件预测信息控制所述主控无人机。
  15. 根据权利要求14所述的装置,其特征在于,所述路径分享模块采用以下任一方式,与所述目标无人机控制终端分享所述主控无人机的飞行路径信息:
    利用所述无线局域网通信模块通过直连通信方式;
    利用蜂窝通信模块通过所述目标基站。
  16. 根据权利要求15所述的装置,其特征在于,所述路径分享模块包括:
    路径信息发送子模块,被配置为将所述主控无人机的飞行路径信息发送给所述目 标无人机控制终端,以使所述目标无人机控制终端确定碰撞事件预测信息;
    预测信息获取子模块,被配置为获取所述目标无人机控制终端确定的所述碰撞事件预测信息。
  17. 根据权利要求14所述的装置,其特征在于,所述路径分享模块包括:
    路径请求子模块,被配置为发送用于请求相邻无人机路径的路径请求信息,所述路径请求信息包括:控制终端标识;
    路径信息获取子模块,被配置为获取所述相邻无人机的飞行路径信息;
    碰撞事件预测子模块,被配置为根据所述主控无人机和所述相邻无人机的飞行路径信息,预测碰撞事件。
  18. 根据权利要求14所述的装置,其特征在于,所述路径分享模块包括:
    碰撞预测请求子模块,被配置为向所述目标基站发送用于请求所述目标基站预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识,以使所述目标基站根据所述碰撞预测请求信息获取所述相邻无人机的飞行路径后进行碰撞事件预测;
    预测信息接收子模块,被配置为接收所述目标基站发送的碰撞事件预测信息。
  19. 根据权利要求14所述的装置,其特征在于,所述控制模块包括:
    路径调整子模块,被配置为在所述碰撞事件预测信息表示可能发生碰撞事件的情况下,调整所述主控无人机的飞行路径信息,获得更新飞行路径信息;
    更新信息发送子模块,被配置为通过所述无线局域网通信模块将所述更新飞行路径信息发送给所述主控无人机。
  20. 一种控制无人机接入网络的装置,其特征在于,设置于基站中,所述装置包括:
    无人机信息获取模块,被配置为通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
    信息传输模块,被配置为根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
  21. 根据权利要求20所述的装置,其特征在于,所述装置还包括:
    路径请求接收模块,被配置为接收所述无人机控制终端发送的、用于请求获取相邻无人机飞行路径的飞行路径请求信息,所述飞行路径请求信息包括:与所述无人机控制终端处于预设距离范围内的目标无人机控制终端的终端标识;
    第一路径信息获取模块,被配置为根据所述目标无人机控制终端的终端标识,获 取所述相邻无人机的飞行路径信息;
    路径信息发送模块,被配置为将所述相邻无人机的飞行路径信息发送给所述无人机控制终端,以使所述无人机控制终端根据所述相邻无人机的飞行路径信息进行碰撞事件预测。
  22. 根据权利要求20所述的装置,其特征在于,所述装置还包括:
    预测请求接收模块,被配置为接收所述无人机控制终端发送的、用于请求预测无人机碰撞事件的碰撞预测请求信息,所述碰撞预测请求信息包括:所述目标无人机控制终端的终端标识;
    第二路径信息获取模块,被配置为获取所述无人机控制终端发送的主控无人机的飞行路径信息,以及来自所述目标无人机控制终端的、相邻无人机的飞行路径信息;
    碰撞事件预测模块,被配置为根据两个相邻无人机的飞行路径信息进行碰撞事件预测,获得碰撞事件预测信息;
    预测信息发送模块,被配置为将所述碰撞事件预测信息发送给所述无人机控制终端。
  23. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1~8任一所述方法的步骤。
  24. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求9~11任一所述方法的步骤。
  25. 一种无人机控制终端,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    通过第一通信模块获取无人机和目标基站之间的待传输信息;
    将所述待传输信息转发给第二通信模块;
    由所述第二通信模块将所述待传输信息发送至信息接收端,所述信息接收端包括:所述无人机,或者,移动通信网络的目标基站;
    其中,所述第一通信模块、第二通信模块为不同类型的通信模块,所述通信模块包括:蜂窝通信模块、无线局域网WLAN通信模块。
  26. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    通过接入网络的无人机控制终端获取无人机标识,确定所述无人机标识与无人机控制终端标识之间的绑定关系;
    根据所述绑定关系,通过所述无人机控制终端与所述无人机传输信息。
PCT/CN2018/087389 2018-05-17 2018-05-17 控制无人机接入网络的方法和装置 WO2019218325A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/055,938 US11843446B2 (en) 2018-05-17 2018-05-17 Method and device of controlling unmanned aerial vehicle to access network
EP18919187.7A EP3796571B1 (en) 2018-05-17 2018-05-17 Method and device for controlling unmanned aerial vehicle to access network
PCT/CN2018/087389 WO2019218325A1 (zh) 2018-05-17 2018-05-17 控制无人机接入网络的方法和装置
CN201880000681.8A CN108702203B (zh) 2018-05-17 2018-05-17 控制无人机接入网络的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087389 WO2019218325A1 (zh) 2018-05-17 2018-05-17 控制无人机接入网络的方法和装置

Publications (1)

Publication Number Publication Date
WO2019218325A1 true WO2019218325A1 (zh) 2019-11-21

Family

ID=63841501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087389 WO2019218325A1 (zh) 2018-05-17 2018-05-17 控制无人机接入网络的方法和装置

Country Status (4)

Country Link
US (1) US11843446B2 (zh)
EP (1) EP3796571B1 (zh)
CN (1) CN108702203B (zh)
WO (1) WO2019218325A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357305B (zh) * 2019-01-25 2023-08-01 深圳市大疆创新科技有限公司 可移动平台的通信方法、设备、系统及存储介质
CN111434134A (zh) * 2019-02-28 2020-07-17 深圳市大疆创新科技有限公司 通信方法、设备及存储介质
CN110177391B (zh) * 2019-06-06 2021-06-18 北京之乐时空科技有限公司 用于四轴飞行器的控制信息传输方法及系统
CN111610799A (zh) * 2020-04-30 2020-09-01 哈尔滨理工大学 一种四旋翼无人机的网络控制方法、计算机设备及存储介质
US20240212508A1 (en) * 2021-06-07 2024-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Acquisition of Flight Information for UAV Communications
CN113853008B (zh) * 2021-10-11 2024-03-12 国网四川省电力公司信息通信公司 一种无线接入点降低能耗的方法
CN117441407A (zh) * 2022-05-23 2024-01-23 北京小米移动软件有限公司 信息传输方法及装置、存储介质
WO2024031218A1 (en) * 2022-08-08 2024-02-15 Qualcomm Incorporated Protocols and signaling for unmanned aerial vehicle (uav) flight trajectory tracing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087980A1 (en) * 2008-10-02 2010-04-08 Lockheed Martin Corporation System for and method of controlling an unmanned vehicle
CN106483971A (zh) * 2015-08-27 2017-03-08 成都鼎桥通信技术有限公司 无人机数据传输方法和装置
CN106792547A (zh) * 2017-01-17 2017-05-31 北京小米移动软件有限公司 无人机呼救方法、装置、系统及无人机
CN107368095A (zh) * 2017-08-29 2017-11-21 中国人民解放军国防科技大学 一种小型固定翼无人机空中防撞系统及防撞方法
CN107734604A (zh) * 2016-08-10 2018-02-23 中国移动通信有限公司研究院 低空网络覆盖的控制装置、无人机的控制装置及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749847A (zh) 2012-06-26 2012-10-24 清华大学 多无人机协同着陆方法
US9075415B2 (en) * 2013-03-11 2015-07-07 Airphrame, Inc. Unmanned aerial vehicle and methods for controlling same
US10332405B2 (en) 2013-12-19 2019-06-25 The United States Of America As Represented By The Administrator Of Nasa Unmanned aircraft systems traffic management
US9704409B2 (en) 2014-08-05 2017-07-11 Qualcomm Incorporated Piggybacking unmanned aerial vehicle
WO2016109646A2 (en) * 2014-12-31 2016-07-07 AirMap, Inc. System and method for controlling autonomous flying vehicle flight paths
EP3152089A4 (en) * 2015-03-31 2017-08-02 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
WO2016161637A1 (en) * 2015-04-10 2016-10-13 SZ DJI Technology Co., Ltd. Method, apparatus and system of providing communication coverage to an unmanned aerial vehicle
US9927807B1 (en) 2015-07-13 2018-03-27 ANRA Technologies, LLC Command and control of unmanned vehicles using cellular and IP mesh technologies for data convergence
JP6942909B2 (ja) * 2015-07-27 2021-09-29 ジェンギスコム ホールディングス エルエルシーGenghiscomm Holdings, Llc 協調的mimoシステムにおける空中中継器
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
US9674744B2 (en) * 2015-09-17 2017-06-06 Qualcomm Incorporated Techniques for wireless communication channel management in shared frequency bands
CN105278544B (zh) * 2015-10-30 2018-05-08 小米科技有限责任公司 无人飞行器的控制方法及装置
CN108886514B (zh) 2016-04-11 2022-11-01 瑞典爱立信有限公司 基于小区广播消息的飞行路径控制
US9857791B2 (en) * 2016-05-27 2018-01-02 Qualcomm Incorporated Unmanned aerial vehicle charging station management
CN106685511A (zh) 2016-11-02 2017-05-17 北京邮电大学 一种空间信息网络架构
WO2018094578A1 (zh) * 2016-11-22 2018-05-31 深圳市大疆创新科技有限公司 无人飞行器的控制方法及地面控制端
US10340983B2 (en) * 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
CN107155007A (zh) * 2017-05-22 2017-09-12 上海青橙实业有限公司 一种通过移动终端控制无人机的系统和方法
CN111868802A (zh) * 2018-01-29 2020-10-30 交互数字专利控股公司 用于无人驾驶航空系统业务管理(utm)系统应用的移动边缘计算(mec)部署的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087980A1 (en) * 2008-10-02 2010-04-08 Lockheed Martin Corporation System for and method of controlling an unmanned vehicle
CN106483971A (zh) * 2015-08-27 2017-03-08 成都鼎桥通信技术有限公司 无人机数据传输方法和装置
CN107734604A (zh) * 2016-08-10 2018-02-23 中国移动通信有限公司研究院 低空网络覆盖的控制装置、无人机的控制装置及方法
CN106792547A (zh) * 2017-01-17 2017-05-31 北京小米移动软件有限公司 无人机呼救方法、装置、系统及无人机
CN107368095A (zh) * 2017-08-29 2017-11-21 中国人民解放军国防科技大学 一种小型固定翼无人机空中防撞系统及防撞方法

Also Published As

Publication number Publication date
US20210211185A1 (en) 2021-07-08
CN108702203B (zh) 2021-03-09
EP3796571B1 (en) 2023-08-23
EP3796571A4 (en) 2021-06-09
EP3796571A1 (en) 2021-03-24
CN108702203A (zh) 2018-10-23
US11843446B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2019218325A1 (zh) 控制无人机接入网络的方法和装置
EP3792725B1 (en) Method and apparatus for reporting flight route information, and method and apparatus for determining information
US20200380872A1 (en) Data transmission method and aparatus, and unmanned aerial vehicle
CN108401477B (zh) 控制无人机的方法及装置和无人机的操作方法及装置
CN109196794B (zh) 飞行路径的配置方法及装置、飞行方法及装置和基站
US20210295713A1 (en) Flight path configuration method and device
US20220058958A1 (en) Flight reporting method and apparatus
US11514801B2 (en) Flight control method, device and system
US20220248346A1 (en) Methods and apparatuses for processing transmission power level information, and computer storage media
WO2021007728A1 (zh) 获取系统消息的方法及装置、通信设备及存储介质
JP7135113B2 (ja) 無人航空機の経路情報を取得し伝送する方法
US11153805B2 (en) Access control execution method, device, and system
US20210253245A1 (en) Method and device for reporting flight mode and method and device for changing control strategy
CN114424595A (zh) Uav飞行控制、管控策略处理方法及装置、设备及介质
WO2023206039A1 (zh) 身份信息发送、配置信息发送方法和装置
WO2023206040A1 (zh) 能力信息发送、能力确定方法和装置
WO2024098268A1 (zh) 信息传输方法及装置、通信设备及存储介质
WO2024138418A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2023225971A1 (zh) 配置信息接收、发送方法和装置、通信装置和存储介质
CN118318498A (zh) 信息传输方法及装置、通信设备及存储介质
CN116584131A (zh) 信息处理方法及装置、通信设备及存储介质
CN115868234A (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018919187

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018919187

Country of ref document: EP

Effective date: 20201217