WO2019235738A1 - 연료전지 차량용 응축수 배출장치 - Google Patents

연료전지 차량용 응축수 배출장치 Download PDF

Info

Publication number
WO2019235738A1
WO2019235738A1 PCT/KR2019/005205 KR2019005205W WO2019235738A1 WO 2019235738 A1 WO2019235738 A1 WO 2019235738A1 KR 2019005205 W KR2019005205 W KR 2019005205W WO 2019235738 A1 WO2019235738 A1 WO 2019235738A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
fuel cell
cooling
condensate
cell stack
Prior art date
Application number
PCT/KR2019/005205
Other languages
English (en)
French (fr)
Inventor
공임모
정길성
성기수
이은미
Original Assignee
자동차부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자동차부품연구원 filed Critical 자동차부품연구원
Priority to CN201980052171.XA priority Critical patent/CN112534612B/zh
Publication of WO2019235738A1 publication Critical patent/WO2019235738A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a condensate discharge device for a fuel cell vehicle, and more particularly, to a condensate discharge device for a fuel cell vehicle that can prevent the air from freezing by reaching the ground after the reaction with the fuel cell becomes condensed water.
  • a fuel cell vehicle which is generally an environmentally friendly vehicle, is a next-generation vehicle that uses a fuel cell as an energy source and drives a driving motor using electric power generated from the fuel cell to enable driving.
  • the condensate is discharged from the cathode to the outside of the stack and supplied to the humidifier.
  • the humidifier a part of the condensate contained in the exhaust gas is used to humidify the air supplied from the outside, and the rest is discharged to the outside of the stack.
  • An object of the present invention is to provide a condensate discharge device for a fuel cell vehicle which can be prevented from reaching the ground and freezing after reacting with the fuel cell to become condensate by the fuel cell. .
  • Condensate discharge device for a fuel cell vehicle includes: a fuel cell stack; An air providing unit supplying air to the fuel cell stack and discharging air passing through the fuel cell stack; And a condensate converting unit which is formed in the air providing unit and converts the condensed water passing through the air providing unit to be converted into water vapor.
  • the air providing unit provides a pipe passing through the fuel cell stack; A supply inlet formed at one end of the supply pipe part and into which external air is introduced; And a supply discharge part formed at the other end of the supply pipe part to discharge air and water vapor passing through the fuel cell stack part to the outside, wherein the condensate converting part is disposed between the fuel cell stack part and the supply discharge part. It is characterized in that it is disposed on the providing pipe portion.
  • the condensate discharge device for a fuel cell vehicle may further include: a cooling unit configured to guide cooling water to circulate through the fuel cell stack unit, wherein the condensate conversion unit is connected to the cooling unit and heats the air providing unit. It is characterized by.
  • the condensate conversion unit is characterized in that the heat pump.
  • the condensate discharge device for a fuel cell vehicle may further include: a heat exchanger connecting the cooling unit and the air providing unit and exchanging the cooling unit and the air providing unit.
  • the cooling unit comprises a cooling pipe unit for guiding the coolant to circulate through the fuel cell stack; An ion filter part formed in the cooling tube part to remove metal ions of the cooling water; A bypass pipe part connected to both ends of the cooling pipe part and bypassing the ion filter part; And an adjusting unit which senses the ion conductivity of the ion filter unit and controls the amount of cooling water passing through the bypass pipe unit.
  • the control unit is attached to any one or more of the ion filter unit and the cooling tube portion control detection unit for detecting the ion conductivity of the cooling water; An adjustment control unit for receiving a detection signal of the adjustment detection unit; And an adjustment valve unit which opens and closes the bypass pipe part by the control of the adjustment control unit.
  • the control unit further comprises an adjustment battery unit for supplying power to the adjustment control unit.
  • the control unit further comprises an adjustment transmission unit for transmitting a detection signal of the adjustment detection unit received from the adjustment control unit to an external device.
  • the cooling unit is disposed in the cooling tube portion to guide the movement to the ion filter unit after passing through the fuel cell stack portion controlled heat exchange unit for cooling the cooling water; And a pump unit disposed in the cooling tube unit for inducing the movement to the fuel cell stack unit after passing through the ion filter unit and forcibly transferring the cooling water.
  • the condensate conversion unit converts the condensate into water vapor, thereby preventing road freezing by winter condensate discharge.
  • the condensate conversion unit uses a cooling unit for cooling the fuel cell stack unit as a heat source, thereby reducing energy consumption of the condensate conversion unit.
  • the condensate discharge device for a fuel cell vehicle may reduce energy consumption of the condensate conversion unit by preheating the condensate that is transferred to the condensate conversion unit by transferring the waste heat of the cooling unit.
  • FIG. 1 is a view schematically showing a condensate discharge device for a fuel cell vehicle according to an embodiment of the present invention.
  • FIG. 2 is a view schematically illustrating a condensate conversion unit connected to a cooling unit in FIG. 1.
  • FIG. 3 is a view schematically illustrating a heat exchanger connecting the air providing unit and the cooling unit in FIG. 2.
  • a fuel cell vehicle condensate discharge device 1 includes a fuel cell stack 10, an air supply unit 20, and a condensate conversion unit 30. .
  • the fuel cell stack 10 generates electric energy from an electrochemical reaction of a reaction gas. Hydrogen may be provided as a fuel for the electrochemical reaction of the fuel cell stack 10.
  • the air providing unit 20 supplies the air including oxygen, which is an oxidizing agent, required for the electrochemical reaction to the fuel cell stack 10.
  • the air providing unit 20 discharges air and condensed water that has passed through the fuel cell stack 10 to the outside.
  • the condensate conversion unit 30 is formed in the air providing unit 20, and converts the condensate water passing through the air providing unit 20 to water vapor.
  • the condensate conversion unit 30 may be mounted to the air providing unit 20, and when power is applied, the condensate converting unit 30 may convert the condensed water passing through the air providing unit 20 into water vapor by heating the air providing unit 20. .
  • the air providing unit 20 includes a providing pipe part 21, a providing inlet part 22, and an providing outlet part 23.
  • the supply pipe part 21 passes through the fuel cell stack part 10, and outside air flows through the supply inlet part 22 formed at one end of the supply pipe part 21, and the other end of the supply pipe part 21. Air is discharged to the outside through the provision outlet 23 formed in the.
  • the air introduced through the supply inlet 22 may supply air to the fuel cell stack 10 through the supply pipe 21.
  • the air having completed the reaction through the fuel cell stack 10 may be discharged to the outside through the supply outlet 23.
  • the condensate conversion unit 30 is disposed in the supply pipe portion 21 formed between the fuel cell stack 10 and the supply outlet (23).
  • the condensate conversion unit 30 may heat the condensate generated while passing through the fuel cell stack 10 to convert it into a water vapor state. As a result, the air and the water vapor are discharged to the outside through the provision outlet 23, thereby preventing the formation of ice sheets due to the fall of condensate in winter.
  • FIG. 2 is a view schematically illustrating a condensate conversion unit connected to a cooling unit in FIG. 1.
  • the condensate discharge device 1 for a fuel cell vehicle may further include a cooling unit 40.
  • the cooling unit 40 may induce the cooling water to circulate through the fuel cell stack 10, and the condensate conversion unit 30 is connected to the cooling unit 40 to provide air. Study 20 can be heated.
  • the cooling unit 40 includes a cooling tube unit 41, an ion filter unit 42, a bypass tube unit 43, and an adjusting unit 44.
  • the cooling pipe part 41 may induce the cooling water to circulate through the fuel cell stack 10.
  • the ion filter part 42 is formed in the cooling tube part 41 and can remove the metal ion of cooling water.
  • the bypass pipe portion 43 may be connected to both ends of the cooling pipe portion 41, and bypass the ion filter portion 42.
  • the adjusting unit 44 may control the amount of cooling water passing through the bypass pipe part 43 by detecting the ion conductivity of the ion filter part 42. That is, the passage area of the bypass pipe part 43 is adjusted according to the ion conductivity of the ion filter part 42, and correspondingly, the amount of cooling water passing through the ion filter part 42 may be adjusted.
  • a control heat exchanger 45 may be disposed in the cooling tube part 41 that guides the fuel cell stack 10 to move to the ion filter part 42, thereby cooling the cooling water.
  • a pump unit 46 may be disposed in the cooling pipe part 41 that guides the fuel cell stack 10 to move after passing through the ion filter part 42, thereby forcibly transferring the cooling water.
  • the adjusting unit 44 may include an adjustment detecting unit 441, an adjustment control unit 442, and an adjustment valve unit 443.
  • the adjustment detecting unit 441 may be mounted on at least one of the ion filter unit 42 and the cooling tube unit 41 to detect the ion conductivity of the cooling water.
  • the adjustment control unit 442 may receive the detection signal of the adjustment detection unit 441, and control the adjustment valve unit 443 to open and close the bypass pipe unit 43.
  • an opening area of the bypass pipe part 43 for allowing the coolant to pass through the bypass pipe part 43 may vary according to the ion conductivity of the cooling water.
  • the amount of cooling water passing through the bypass pipe part 43 and the amount of cooling water passing through the ion filter part 42 may be inversely proportional to each other.
  • the adjustment detecting unit 441 may be mounted to the ion filter unit 42 to be an electrode terminal for detecting a current of the ion filter unit 42.
  • one or more adjustment sensing unit 441 may be mounted to the cooling tube unit 41 to be an electrode terminal for detecting a current.
  • the control valve part 443 may close the bypass pipe part 43.
  • the control valve unit 443 may open the bypass pipe unit 30. That is, the flow rate of the cooling water passing through the ion filter unit 42 can be adjusted according to the ion conductivity of the cooling water, thereby minimizing the flow resistance and rapidly lowering the ion conductivity of the cooling water.
  • the adjusting unit 44 may further include an adjusting battery unit 444.
  • the adjustment battery unit 444 may supply power to the adjustment control unit 442.
  • the control battery unit 444 may improve fuel efficiency by blocking energy consumption of the fuel cell stack 10 for driving the control controller 442.
  • the adjusting unit 44 may further include an adjusting transmission unit 445.
  • the adjustment transmission unit 445 may transmit the detection signal of the adjustment detection unit 441 received by the adjustment control unit 442 to the external device 100.
  • the condensate conversion unit 30 may be a heat pump.
  • the condensate conversion unit 30 is connected to the cooling tube part 41 disposed between the regulating heat exchange part 45 and the ion filter part 42 and uses the heat of the cooling tube part 41 as a heat source, but uses additional energy.
  • the condensed water passing through the providing pipe part 21 may be heated to be converted into water vapor.
  • the condensate conversion unit 30 may be connected to the cooling tube part 41 disposed between the fuel cell stack 10 and the control heat exchanger 45 to reduce the use of additional energy by using a high temperature heat source.
  • FIG. 3 is a view schematically illustrating a heat exchanger connecting the air providing unit and the cooling unit in FIG. 2.
  • the condensate discharge device 1 for a fuel cell vehicle may further include a heat exchanger 50.
  • the heat exchanger 50 may connect the cooling unit 40 and the air providing unit 20 and heat exchange the cooling unit 40 and the air providing unit 20.
  • one end portion of the heat exchange part 50 is connected to the cooling tube part 41 disposed between the fuel cell stack part 10 and the regulating heat exchange part 45, and the other end part is provided with the fuel cell stack part 10. It may be connected to the providing pipe portion 21 disposed between the outlet portion (23).
  • the heat exchange part 50 is made of a thermally conductive material, it is possible to heat the condensate passing through the supply pipe portion 21 by transferring the heat of the cooling pipe portion 41 to the supply pipe portion 21 without providing additional energy. .
  • the condensed water is preheated before being moved to the condensed water converting unit 30 by the heat exchanger 50, thereby reducing energy consumption in the condensed water converting unit 30.
  • the outside air introduced through the supply inlet 22 passes through the fuel cell stack 10 through the supply pipe 21.
  • the fuel cell stack 10 may generate electricity by performing an electrochemical reaction by hydrogen provided by air and fuel provided by the provision pipe 21.
  • the condensed water conversion unit 30 is mounted on the supply pipe unit 21 disposed between the fuel cell stack 10 and the supply outlet 23 to heat the supply pipe unit 21.
  • the condensate is converted into water vapor and discharged to the outside, thereby preventing freezing of the road due to winter condensate fall.
  • the condensate conversion unit 30 is connected to the cooling unit 40 that cools the fuel cell stack 10 and used as a heat source, thereby reducing energy consumption for converting condensate into water vapor.
  • the energy consumption of the condensed water conversion unit 30 for converting the condensed water into water vapor may be further reduced by the heat exchanger 50 that transfers the heat of the cooling pipe 41 to the providing pipe 21.
  • the condensate conversion unit 30 converts the condensate into water vapor, thereby preventing road freezing by winter condensate discharge.
  • the condensate conversion unit 30 cools the fuel cell stack 10 and then uses the heated cooling unit 40 as a heat source. The energy consumption of the converter 30 can be reduced.
  • the heat exchange unit 50 transfers the waste heat of the cooling unit 40 to preheat the condensate moved to the condensate conversion unit 30, condensate water.
  • the energy consumption of the converter 30 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 연료전지 차량용 응축수 배출장치에 관한 것으로, 연료전지 스택부와, 연료전지 스택부에 공기를 공급하고 연료전지 스택부를 통과한 공기를 배출하는 공기제공부와, 공기제공부에 형성되고 공기제공부를 통과하는 응축수를 가열하여 수증기로 변환시키는 응축수변환부를 포함하여, 겨울철 응축수 배출에 의한 빙판 생성을 방지할 수 있다.

Description

연료전지 차량용 응축수 배출장치
본 발명은 연료전지 차량용 응축수 배출장치에 관한 것으로서, 보다 상세하게는 공기가 연료전지와 반응하여 응축수가 된 후 지면에 도달하여 동결되는 것을 방지할 수 있는 연료전지 차량용 응축수 배출장치에 관한 것이다.
일반적으로 친환경 자동차인 연료전지 차량은 연료전지를 에너지원으로 하고, 연료전지에서 발생한 전력을 이용하여 구동모터를 구동시켜 주행이 가능토록 하는 차세대 자동차이다.
이러한 연료전지 차량이 주행에 필요한 전력을 발생시키기 위해서 연료전지의 스택에서는 응축수가 발생하고, 안정적으로 연료전지가 작동되도록 하기 위해서, 연료전지 스택에서 발생한 응축수를 외부로 배출해주어야 한다.
즉, 종래기술에 따른 연료전지 차량의 응축수 배출구조를 살펴보면, 연료전지 스택의 캐소드에서 발생한 응축수의 일부는 전해질막을 통과하여 애노드로 이동한 후, 스택 외부로 배출되어 워터트랩에 일단 포집되고, 일정량에 도달하면 배출밸브의 개방에 의해 차량 외부로 배출된다.
한편, 대부분의 응축수는 캐소드에서 스택 외부로 배출되어 가습장치로 공급된다. 가습장치에서 배기가스에 포함된 응축수의 일부는 외부에서 공급되는 공기의 가습에 이용되고, 나머지는 스택 외부로 배출된다.
종래에는 연료전지 차량에서 배기관을 통해 응축수가 배출되므로, 겨울철에 응축수가 지면에서 동결되어 차량 사고를 유발하는 문제점이 있다. 따라서, 이를 개선할 필요성이 요청된다.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1776334호(2017.09.01. 등록, 발명의 명칭 : 연료전지 차량용 연료전지 스택의 응축수 배출구조)에 게시되어 있다.
본 발명은 상기와 같은 문제점들을 개선하기 위해 안출된 것으로서, 공기가 연료전지와 반응하여 응축수가 된 후 지면에 도달하여 동결되는 것을 방지할 수 있는 연료전지 차량용 응축수 배출장치를 제공하는데 그 목적이 있다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는: 연료전지 스택부; 상기 연료전지 스택부에 공기를 공급하고, 상기 연료전지 스택부를 통과한 공기를 배출하는 공기제공부; 및 상기 공기제공부에 형성되고, 상기 공기제공부를 통과하는 응축수를 가열하여 수증기로 변환시키는 응축수변환부;를 포함하는 것을 특징으로 한다.
상기 공기제공부는 상기 연료전지 스택부를 통과하는 제공관부; 상기 제공관부의 일단부에 형성되고, 외부 공기가 유입되는 제공유입부; 및 상기 제공관부의 타단부에 형성되고, 상기 연료전지 스택부를 통과하는 공기 및 수증기를 외부로 배출하는 제공유출부;를 포함하고, 상기 응축수변환부는 상기 연료전지 스택부와 상기 제공유출부 사이에 형성되는 상기 제공관부에 배치되는 것을 특징으로 한다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는: 냉각수가 상기 연료전지 스택부를 통과하여 순환되도록 유도하는 냉각부;를 더 포함하고, 상기 응축수변환부는 상기 냉각부와 연결되고, 상기 공기제공부를 가열하는 것을 특징으로 한다.
상기 응축수변환부는 히트펌프인 것을 특징으로 한다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는: 상기 냉각부와 상기 공기제공부를 연결하고, 상기 냉각부와 상기 공기제공부를 열교환하는 열교환부;를 더 포함하는 것을 특징으로 한다.
상기 냉각부는 냉각수가 상기 연료전지 스택부를 통과하여 순환되도록 유도하는 냉각관부; 상기 냉각관부에 형성되고, 냉각수의 금속이온을 제거하는 이온필터부; 상기 냉각관부에 양단부가 연결되고, 상기 이온필터부를 우회하는 우회관부; 및 상기 이온필터부의 이온전도도를 감지하여 상기 우회관부를 통과하는 냉각수량을 컨트롤하는 조절부;를 포함하는 것을 특징으로 한다.
상기 조절부는 상기 이온필터부와 상기 냉각관부 중 어느 하나 이상에 장착되어 냉각수의 이온전도도를 감지하는 조절감지부; 상기 조절감지부의 감지신호를 수신하는 조절제어부; 및 상기 조절제어부의 제어로 상기 우회관부를 개폐하는 조절밸브부;를 포함하는 것을 특징으로 한다.
상기 조절부는 상기 조절제어부에 전원을 공급하는 조절배터리부;를 더 포함하는 것을 특징으로 한다.
상기 조절부는 상기 조절제어부에서 수신한 상기 조절감지부의 감지신호를 외부장비로 전송하는 조절전송부;를 더 포함하는 것을 특징으로 한다.
상기 냉각부는 상기 연료전지 스택부를 통과한 후 상기 이온필터부로 이동되도록 유도하는 상기 냉각관부에 배치되어 냉각수를 냉각시키는 조절열교환부; 및 상기 이온필터부를 통과한 후 상기 연료전지 스택부로 이동되도록 유도하는 상기 냉각관부에 배치되어 냉각수를 강제로 이송하는 펌프부;를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는 응축수변환부가 응축수를 수증기로 변환시켜 줌으로써, 겨울철 응축수 배출에 의한 도로 빙결을 방지할 수 있다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는 응축수변환부가 연료전지 스택부를 냉각시키는 냉각부를 열원으로 이용함으로서, 응축수변환부의 에너지 소모를 줄일 수 있다.
본 발명에 따른 연료전지 차량용 응축수 배출장치는 열교환부가 냉각부의 폐열을 전달하여 응축수변환부로 이동되는 응축수를 선가열함으로써, 응축수변환부의 에너지 소모를 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치를 개략적으로 나타내는 도면이다.
도 2는 도 1에서 냉각부와 연결된 응축수변환부를 개략적으로 나타내는 도면이다.
도 3은 도 2에서 공기제공부와 냉각부를 연결하는 열교환부를 개략적으로 나타내는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 연료전지 차량용 응축수 배출장치의 실시예를 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치를 개략적으로 나타내는 도면이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 연료전지 스택부(10)와, 공기제공부(20)와, 응축수변환부(30)를 포함한다.
연료전지 스택부(10)는 반응가스의 전기화학 반응으로부터 전기에너지를 발생시킨다. 이러한 연료전지 스택부(10)의 전기화학 반응을 위해 수소가 연료로 제공될 수 있다.
공기제공부(20)는 연료전지 스택부(10)에 전기화학 반응에 필요한 산화제인 산소를 포함하는 공기를 공급한다. 또한, 공기제공부(20)는 연료전지 스택부(10)를 통과한 공기 및 응축수를 외부로 배출한다.
응축수변환부(30)는 공기제공부(20)에 형성되고, 공기제공부(20)를 통과하는 응축수를 가열하여 수증기로 변환시킨다. 일 예로, 응축수변환부(30)는 공기제공부(20)에 장착되고, 전원이 인가되면 공기제공부(20)를 가열하여 공기제공부(20)를 통과하는 응축수를 수증기로 변환시킬 수 있다.
본 발명의 일 실시예에 따른 공기제공부(20)는 제공관부(21)와, 제공유입부(22)와, 제공유출부(23)를 포함한다. 제공관부(21)는 연료전지 스택부(10)를 통과하고, 제공관부(21)의 일단부에 형성되는 제공유입부(22)를 통해 외부 공기가 유입되며, 제공관부(21)의 타단부에 형성되는 제공유출부(23)를 통해 공기가 외부로 배출된다.
일 예로, 제공유입부(22)를 통해 유입된 공기는 제공관부(21)를 통해 연료전지 스택부(10)에 공기를 공급할 수 있다. 그리고, 연료전지 스택부(10)를 통해 반응이 완료된 공기는 제공유출부(23)를 통해 외부로 배출될 수 있다.
한편, 응축수변환부(30)는 연료전지 스택부(10)와 제공유출부(23) 사이에 형성되는 제공관부(21)에 배치된다. 이러한 응축수변환부(30)는 연료전지 스택부(10)를 통과하면서 발생되는 응축수를 가열하여 수증기 상태로 변환시킬 수 있다. 이로 인해 제공유출부(23)를 통해 공기 및 수증기가 외부로 배출됨으로써, 겨울철 응축수 낙하에 의한 빙판 생성을 방지할 수 있다.
도 2는 도 1에서 냉각부와 연결된 응축수변환부를 개략적으로 나타내는 도면이다. 도 2를 참조하면, 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 냉각부(40)를 더 포함할 수 있다.
본 발명이 일 실시예에 따른 냉각부(40)는 냉각수가 연료전지 스택부(10)를 통과하여 순환되도록 유도할 수 있으며, 응축수변환부(30)는 냉각부(40)와 연결되어 공기제공부(20)를 가열할 수 있다.
일 예로, 냉각부(40)는 냉각관부(41)와, 이온필터부(42)와, 우회관부(43)와, 조절부(44)를 포함한다. 냉각관부(41)는 냉각수가 연료전지 스택부(10)를 통과하여 순환되도록 유도할 수 있다. 이온필터부(42)는 냉각관부(41)에 형성되고, 냉각수의 금속이온을 제거할 수 있다. 우회관부(43)는 냉각관부(41)에 양단부가 연결되고, 이온필터부(42)를 우회할 수 있다. 조절부(44)는 이온필터부(42)의 이온전도도를 감지하여 우회관부(43)를 통과하는 냉각수량을 컨트롤할 수 있다. 즉, 이온필터부(42)의 이온전도도에 따라 우회관부(43)의 통과 면적이 조절되고, 이에 대응되어 이온필터부(42)를 통과하는 냉각수량이 조절될 수 있다.
그 외, 연료전지 스택부(10)를 통과한 후 이온필터부(42)로 이동되도록 유도하는 냉각관부(41)에는 조절열교환부(45)가 배치되어 냉각수를 냉각시킬 수 있다. 그리고, 이온필터부(42)를 통과한 후 연료전지 스택부(10)로 이동되도록 유도하는 냉각관부(41)에는 펌프부(46)가 배치되어 냉각수를 강제로 이송시킬 수 있다.
한편, 조절부(44)는 조절감지부(441)와, 조절제어부(442)와, 조절밸브부(443)를 포함할 수 있다. 조절감지부(441)는 이온필터부(42)와 냉각관부(41) 중 어느 하나 이상에 장착되어 냉각수의 이온전도도를 감지할 수 있다. 조절제어부(442)는 조절감지부(441)의 감지신호를 수신하고, 우회관부(43)를 개폐하는 조절밸브부(443)를 제어할 수 있다.
일 예로, 냉각수의 이온전도도에 따라 우회관부(43)로 냉각수가 통과하기 위한 우회관부(43)의 개방면적이 달라질 수 있다. 그리고, 우회관부(43)를 통과하는 냉각수량과 이온필터부(42)를 통과하는 냉각수량은 반비례할 수 있다.
보다 구체적으로, 조절감지부(441)는 이온필터부(42)에 장착되어 이온필터부(42)의 전류를 검출하는 전극단자가 될 수 있다. 그 외, 조절감지부(441)는 냉각관부(41)에 하나 이상 장착되어 전류를 검출하는 전극단자가 될 수 있다.
만일, 이온필터부(42)의 이온전도도가 설정값 보다 높은 경우, 조절밸브부(443)는 우회관부(43)를 폐쇄할 수 있다. 그리고, 이온필터부(42)의 이온전도도가 설정값 보다 낮은 경우, 조절밸브부(443)는 우회관부(30)를 개방할 수 있다. 즉, 냉각수의 이온전도도에 따라 이온필터부(42)를 통과하는 냉각수의 유량을 조절할 수 있어서, 유동 저항을 최소화하고 냉각수의 이온전도도를 신속하게 낮출 수 있다.
조절부(44)는 조절배터리부(444)를 더 포함할 수 있다. 조절배터리부(444)는 조절제어부(442)에 전원을 공급할 수 있다. 이러한 조절배터리부(444)는 조절제어부(442) 구동을 위한 연료전지 스택부(10)의 에너지 소비를 차단하여 연비를 향상시킬 수 있다.
또한, 조절부(44)는 조절전송부(445)를 더 포함할 수 있다. 조절전송부(445)는 조절제어부(442)에서 수신한 조절감지부(441)의 감지신호를 외부장비(100)로 전송할 수 있다.
한편, 응축수변환부(30)는 히트펌프가 사용될 수 있다. 이러한 응축수변환부(30)는 조절열교환부(45)와 이온필터부(42) 사이에 배치되는 냉각관부(41)와 연결되고, 냉각관부(41)의 열을 열원으로 하되, 추가 에너지를 사용하여 제공관부(21)를 통과하는 응축수가 수증기로 변환되도록 가열할 수 있다. 그 외, 응축수변환부(30)는 연료전지 스택부(10)와 조절열교환부(45) 사이에 배치되는 냉각관부(41)와 연결되어 고온의 열원을 이용하여 추가 에너지 사용을 줄일 수 있다.
도 3은 도 2에서 공기제공부와 냉각부를 연결하는 열교환부를 개략적으로 나타내는 도면이다. 도 3을 참조하면, 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 열교환부(50)를 더 포함할 수 있다.
열교환부(50)는 냉각부(40)와 공기제공부(20)를 연결하고, 냉각부(40)와 공기제공부(20)를 열교환할 수 있다.
일 예로, 열교환부(50)는 일단부가 연료전지 스택부(10)와 조절열교환부(45) 사이에 배치되는 냉각관부(41)와 연결되고, 타단부가 연료전지 스택부(10)와 제공유출부(23) 사이에 배치되는 제공관부(21)와 연결될 수 있다. 이러한 열교환부(50)는 열전도성 재질을 포함하여 이루어지고, 추가 에너지 제공 없이 냉각관부(41)의 열을 제공관부(21)로 전달하여 제공관부(21)를 통과하는 응축수를 가열할 수 있다. 이러한 열교환부(50)에 의해 응축수변환부(30)로 이동되기 전 응축수가 선가열되어 응축수변환부(30)에서의 에너지 소모를 줄일 수 있다.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치의 작동을 설명하면 다음과 같다.
제공유입부(22)를 통해 유입된 외부 공기는 제공관부(21)를 통해 연료전지 스택부(10)를 통과한다. 이러한 제공관부(21)에서 제공되는 공기 및 연료로 제공되는 수소에 의해 연료전지 스택부(10)는 전기화학 반응을 하여 전기를 생산할 수 있다.
한편, 연료전지 스택부(10)를 통과한 공기 중에는 응축수가 생성되고, 공기와 응축수는 제공관부(21)를 통해 이동된 후 제공유출부(23)를 통해 외부로 배출된다.
한편, 연료전지 스택부(10)와 제공유출부(23) 사이에 배치되는 제공관부(21)에는 응축수변환부(30)가 장착되어 제공관부(21)를 가열한다. 이로 인해 응축수는 수증기로 변환되어 외부로 배출됨으로써, 겨울철 응축수 낙하에 의한 도로 빙결을 방지할 수 있다.
응축수변환부(30)는 연료전지 스택부(10)를 냉각시키는 냉각부(40)와 연결되어 열원으로 사용함으로써, 응축수를 수증기로 변환시키기 위한 에너지 소모를 줄일 수 있다. 그리고, 냉각관부(41)의 열을 제공관부(21)로 전달하는 열교환부(50)에 의해 응축수를 수증기로 변환시키기 위한 응축수변환부(30)의 에너지 소모를 추가로 줄일 수 있다.
본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 응축수변환부(30)가 응축수를 수증기로 변환시켜 줌으로써, 겨울철 응축수 배출에 의한 도로 빙결을 방지할 수 있다.
본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 응축수변환부(30)가 연료전지 스택부(10)를 냉각시킨 후 가열된 냉각부(40)를 열원으로 이용함으로서, 응축수변환부(30)의 에너지 소모를 줄일 수 있다.
본 발명의 일 실시예에 따른 연료전지 차량용 응축수 배출장치(1)는 열교환부(50)가 냉각부(40)의 폐열을 전달하여 응축수변환부(30)로 이동되는 응축수를 선가열함으로써, 응축수변환부(30)의 에너지 소모를 줄일 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (10)

  1. 연료전지 스택부;
    상기 연료전지 스택부에 공기를 공급하고, 상기 연료전지 스택부를 통과한 공기를 배출하는 공기제공부; 및
    상기 공기제공부에 형성되고, 상기 공기제공부를 통과하는 응축수를 가열하여 수증기로 변환시키는 응축수변환부;를 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  2. 제 1항에 있어서, 상기 공기제공부는
    상기 연료전지 스택부를 통과하는 제공관부;
    상기 제공관부의 일단부에 형성되고, 외부 공기가 유입되는 제공유입부; 및
    상기 제공관부의 타단부에 형성되고, 상기 연료전지 스택부를 통과하는 공기 및 수증기를 외부로 배출하는 제공유출부;를 포함하고,
    상기 응축수변환부는 상기 연료전지 스택부와 상기 제공유출부 사이에 형성되는 상기 제공관부에 배치되는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  3. 제 1항에 있어서,
    냉각수가 상기 연료전지 스택부를 통과하여 순환되도록 유도하는 냉각부;를 더 포함하고,
    상기 응축수변환부는 상기 냉각부와 연결되고, 상기 공기제공부를 가열하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  4. 제 3항에 있어서,
    상기 응축수변환부는 히트펌프인 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  5. 제 3항에 있어서,
    상기 냉각부와 상기 공기제공부를 연결하고, 상기 냉각부와 상기 공기제공부를 열교환하는 열교환부;를 더 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  6. 제 3항에 있어서, 상기 냉각부는
    냉각수가 상기 연료전지 스택부를 통과하여 순환되도록 유도하는 냉각관부;
    상기 냉각관부에 형성되고, 냉각수의 금속이온을 제거하는 이온필터부;
    상기 냉각관부에 양단부가 연결되고, 상기 이온필터부를 우회하는 우회관부; 및
    상기 이온필터부의 이온전도도를 감지하여 상기 우회관부를 통과하는 냉각수량을 컨트롤하는 조절부;를 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  7. 제 6항에 있어서, 상기 조절부는
    상기 이온필터부와 상기 냉각관부 중 어느 하나 이상에 장착되어 냉각수의 이온전도도를 감지하는 조절감지부;
    상기 조절감지부의 감지신호를 수신하는 조절제어부; 및
    상기 조절제어부의 제어로 상기 우회관부를 개폐하는 조절밸브부;를 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  8. 제 7항에 있어서, 상기 조절부는
    상기 조절제어부에 전원을 공급하는 조절배터리부;를 더 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  9. 제 7항에 있어서, 상기 조절부는
    상기 조절제어부에서 수신한 상기 조절감지부의 감지신호를 외부장비로 전송하는 조절전송부;를 더 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
  10. 제 6항에 있어서, 상기 냉각부는
    상기 연료전지 스택부를 통과한 후 상기 이온필터부로 이동되도록 유도하는 상기 냉각관부에 배치되어 냉각수를 냉각시키는 조절열교환부; 및
    상기 이온필터부를 통과한 후 상기 연료전지 스택부로 이동되도록 유도하는 상기 냉각관부에 배치되어 냉각수를 강제로 이송하는 펌프부;를 더 포함하는 것을 특징으로 하는 연료전지 차량용 응축수 배출장치.
PCT/KR2019/005205 2018-06-08 2019-04-30 연료전지 차량용 응축수 배출장치 WO2019235738A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980052171.XA CN112534612B (zh) 2018-06-08 2019-04-30 用于燃料电池车辆的冷凝物排放装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180066383A KR102010287B1 (ko) 2018-06-08 2018-06-08 연료전지 차량용 응축수 배출장치
KR10-2018-0066383 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235738A1 true WO2019235738A1 (ko) 2019-12-12

Family

ID=67624279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005205 WO2019235738A1 (ko) 2018-06-08 2019-04-30 연료전지 차량용 응축수 배출장치

Country Status (3)

Country Link
KR (1) KR102010287B1 (ko)
CN (1) CN112534612B (ko)
WO (1) WO2019235738A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020089421A (ko) * 2001-03-21 2002-11-29 닛산 지도우샤 가부시키가이샤 연료 전지 시스템
KR20050027720A (ko) * 2003-09-16 2005-03-21 현대자동차주식회사 연료전지 차량의 냉각 시스템
KR20110062418A (ko) * 2009-12-03 2011-06-10 현대자동차주식회사 친환경 차량용 냉각시스템
KR20110133155A (ko) * 2010-06-04 2011-12-12 한라공조주식회사 차량용 냉각시스템
JP2014126029A (ja) * 2012-12-27 2014-07-07 Fuji Heavy Ind Ltd エンジンの排気凝縮水処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036869A (ja) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd 燃料電池システム
US7504170B2 (en) * 2004-12-29 2009-03-17 Utc Power Corporation Fuel cells evaporatively cooled with water carried in passageways
KR101776334B1 (ko) * 2011-12-07 2017-09-08 현대자동차주식회사 연료전지 차량용 연료전지 스택의 응축수 배출구조
DE102012006132A1 (de) * 2012-03-27 2013-10-02 Daimler Ag Fahrzeug mit einem Brennstoffzellensystem
KR101481233B1 (ko) * 2012-12-07 2015-01-09 현대자동차주식회사 연료전지차량의 급기장치
DE102014019482A1 (de) * 2014-12-23 2016-06-23 Daimler Ag Abluftanlage eines Brennstoffzellensystems
DE102015004720A1 (de) * 2015-04-09 2016-10-13 Daimler Ag Fahrzeug mit einem Brennstoffzellensystem
DE102016002862A1 (de) * 2016-03-09 2017-09-14 Daimler Ag Brennstoffzellensystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020089421A (ko) * 2001-03-21 2002-11-29 닛산 지도우샤 가부시키가이샤 연료 전지 시스템
KR20050027720A (ko) * 2003-09-16 2005-03-21 현대자동차주식회사 연료전지 차량의 냉각 시스템
KR20110062418A (ko) * 2009-12-03 2011-06-10 현대자동차주식회사 친환경 차량용 냉각시스템
KR20110133155A (ko) * 2010-06-04 2011-12-12 한라공조주식회사 차량용 냉각시스템
JP2014126029A (ja) * 2012-12-27 2014-07-07 Fuji Heavy Ind Ltd エンジンの排気凝縮水処理装置

Also Published As

Publication number Publication date
KR102010287B1 (ko) 2019-08-13
CN112534612A (zh) 2021-03-19
CN112534612B (zh) 2024-10-18

Similar Documents

Publication Publication Date Title
WO2014081138A1 (ko) 배터리 온도 조절 장치
US20090317694A1 (en) Temperature controller
KR101113650B1 (ko) 공급가스의 가습 성능이 향상되는 연료전지 시스템
WO2016098937A1 (ko) 베터리 온도조절 시스템
KR20070110415A (ko) 연료전지시스템
WO2010090403A2 (ko) 연료전지 시스템
WO2010090404A2 (ko) 연료전지 시스템 및 그 제어방법
EP1187242A2 (en) Fuel cell system and method for operating the same
CN108400351A (zh) 运行燃料电池系统和设定阴极运行气体的相对湿度的方法
WO2019235738A1 (ko) 연료전지 차량용 응축수 배출장치
WO2018217005A1 (ko) 연료전지 시스템
JP4114459B2 (ja) 燃料電池システム
JP4946087B2 (ja) 燃料電池システム
WO2019078473A1 (ko) 온풍 발생 기능을 갖는 저탕식 전기 온수기
WO2017007198A1 (ko) 연료전지 시스템
WO2013095026A1 (ko) 연료전지 기반의 열회수 장치 및 그 동작 방법
WO2003049221A2 (en) Fuel cell system
JP2007184111A (ja) 燃料電池システム
KR101724753B1 (ko) 전기 자동차의 냉각수 순환 장치
JP2008123840A (ja) 燃料電池システム
CA2417288A1 (en) A fuel cell system
WO2021133075A1 (ko) 가변유량을 이용한 전기자동차용 배터리 열관리 제어장치 및 방법
CN114368324B (zh) 燃料电池热管理系统及其控制方法、车辆
KR102042497B1 (ko) 연료전지 차량용 냉각장치
CN216980627U (zh) 燃料电池系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814703

Country of ref document: EP

Kind code of ref document: A1