WO2019235096A1 - ブラシレスモータ - Google Patents

ブラシレスモータ Download PDF

Info

Publication number
WO2019235096A1
WO2019235096A1 PCT/JP2019/017571 JP2019017571W WO2019235096A1 WO 2019235096 A1 WO2019235096 A1 WO 2019235096A1 JP 2019017571 W JP2019017571 W JP 2019017571W WO 2019235096 A1 WO2019235096 A1 WO 2019235096A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
electromagnetic force
brushless motor
motor
overhang
Prior art date
Application number
PCT/JP2019/017571
Other languages
English (en)
French (fr)
Inventor
竜 大堀
直樹 塩田
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201980033903.0A priority Critical patent/CN112154592A/zh
Publication of WO2019235096A1 publication Critical patent/WO2019235096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to the reduction of electromagnetic force in the thrust direction generated in a brushless motor, and more particularly to a technology for reducing electromagnetic force in the thrust direction in a brushless motor having a skew structure.
  • FIG. 10A is an explanatory diagram showing the relationship between the inclination angle of the magnetic poles and the number of magnetic poles
  • FIG. 10B shows the relationship between the number of magnetic poles and the PP (peak-to-peak) value of the thrust electromagnetic force. It is explanatory drawing shown.
  • the magnetic pole inclination angle ⁇ m is Dm as the magnet outer diameter
  • ⁇ s (mechanical angle) as the skew angle
  • Lm the magnet axial length.
  • the skew angle (electrical angle) is made constant in a motor of 2 poles 3 slots (2P3S) ⁇ n (integer) specification, (a) 4 poles (6 slots: 4P6S), (A) 6 poles (9 In a motor with each specification of slot: 6P9S) and (c) 8 poles (12 slots: 8P12S), the skew angle ⁇ s (mechanical angle) is the least common multiple of the number of poles and the number of slots (A: 12, A: 18, C). : 24) increases as it decreases, and ⁇ m also increases.
  • the thrust electromagnetic force is an axial component of the force in the rotational direction caused by the skew, and therefore increases when the magnetic pole inclination angle ⁇ m is large. For this reason, as shown in FIG. 10B, the ripple of the thrust electromagnetic force becomes larger as the specification having the smallest common multiple of the number of poles and the number of slots becomes larger. -About 5 times difference in P value occurs.
  • FIG. 11A is an explanatory diagram showing the magnitude of the thrust electromagnetic force when a rare earth magnet is used and when a non-rare earth magnet is used
  • FIG. 11B is a diagram illustrating the rotation angle (mechanical angle) and the thrust electromagnetic force.
  • the rare earth magnet has a thrust electromagnetic force about 3.5 times larger than that of the non-rare earth magnet, and its fluctuation is also large. For this reason, a motor using a rare earth magnet also increases thrust vibration, and is likely to generate sound and vibration.
  • the brushless motor of the present invention includes a stator core in which six teeth extending radially inward are formed along the circumferential direction, and a winding housed in a slot formed between the adjacent teeth wound around the teeth.
  • a brush provided with a stator, and a rotor provided with a magnet that is rotatably arranged radially inward of the stator and has four magnetic poles formed along the circumferential direction. Is formed of a ring magnet using a rare earth magnet, and the ring magnet has a skew structure in which the switching position of the magnetic poles is shifted in the rotational direction along the axial direction, and the shaft of the stator core is provided at both axial ends.
  • a first overhang portion and a second overhang portion extending in the axial direction from each of the end portions in the direction The structure is characterized in that the skew angle is set to an electrical angle of 30 ° to 50 °, and the first and second overhang portions have different extension amounts with respect to the axial end portion of the stator core.
  • the skew angle is set to an electrical angle of 30 ° to 50 °, and the axial direction from the axial end of the stator core to each of the both axial end portions of the magnet.
  • An overhang portion extending to the center is provided.
  • a magnet having a magnetic orientation of polar orientation magnetized so that a magnetic pole is formed only on the outer peripheral surface may be used. Thereby, the ripple of thrust electromagnetic force is further suppressed.
  • the ratio OH 2 / the ratio of the extension amount OH 1 of the first overhang portion formed on one end side of the ring magnet to the extension amount OH 2 of the second overhang portion formed on the other end side of the ring magnet. OH1 may be set to 1.5 to 2.5. Thereby, the ripple of thrust electromagnetic force is effectively suppressed.
  • the skew angle is set to 30 ° to 50 °, and the axial end portions of the stator core are respectively disposed at both axial end portions of the magnet. Since the overhang portion extending in the axial direction is provided, the thrust electromagnetic force generated by the skew structure and its PP value can be reduced. As a result, even in a brushless motor using a rare earth magnet, it is possible to suppress the thrust electromagnetic force and its ripple.
  • (A) is explanatory drawing which showed the magnitude
  • (b) is the relationship between a rotation angle (mechanical angle) and thrust electromagnetic force. It is explanatory drawing shown.
  • An object of the following embodiments is to reduce the thrust electromagnetic force of a brushless motor having a skew structure, in particular, the thrust electromagnetic force of a motor having a specification having a small least common multiple of the number of poles and the number of slots and its ripple.
  • FIG. 1 is a cross-sectional view showing a configuration of a motor unit 1 using a brushless motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a brushless motor used in the motor unit of FIG.
  • a motor unit 1 shown in FIG. 1 includes a brushless motor 2 (hereinafter abbreviated as “motor 2”) and a speed reduction mechanism (transmission mechanism) 3.
  • the motor unit 1 is used as a driving source for a sunroof, a wiper device, a power window, a power seat and the like of an automobile, for example.
  • the rotation of the rotating shaft 4 of the motor 2 is shifted within the speed reduction mechanism unit 3 and is output from the output shaft 5 to the outside of the unit.
  • the motor 2 is a brushless motor, and is composed of a stator 11 and a rotor 12 rotatably disposed in the stator 11 as shown in FIGS.
  • the stator 11 includes a motor housing 13 and a stator core 14.
  • the motor housing 13 is formed in a bottomed cylindrical shape, and the stator core 14 is fixed to the inner surface of the motor housing 13.
  • the stator core 14 is formed by laminating a plurality of plates made of a magnetic material, and includes a yoke portion 15 and teeth 16.
  • the yoke part 15 has a hexagonal outer shape, and the teeth 16 project radially from the yoke part 15 toward the radially inner side (center direction).
  • six teeth 16 are provided along the circumferential direction.
  • a slot 17 is formed between adjacent teeth 16.
  • a winding 18 is wound around the outer periphery of the tooth 16, and the winding 18 is accommodated in the slot 17.
  • the winding 18 is wound by concentrated winding, and three-phase winding
  • a rotor 12 is inserted inside the stator 11.
  • the rotor 12 includes a rotating shaft 4 and a magnet 19 fixed to the rotating shaft 4.
  • One end side of the rotating shaft 4 (one end on the motor side) is rotatably supported by a bearing 21 disposed at an end portion of the motor housing 13.
  • the magnet 19 is magnetized to 4 poles, and the motor 2 is a brushless motor having a 4 pole 6 slot (4P6S) configuration.
  • the magnet 19 is a permanent magnet (rare earth magnet) using a rare earth element such as neodymium, dysprosium, or samarium.
  • the magnet outer peripheral surface 19a is arranged so as to face the tip end surface 16a of the tooth 16, and the motor 2 has an SPM (Surface Permanent Magnet) type configuration.
  • the magnet 19 is a polar anisotropic ring magnet that is magnetized so that its polarity changes along the circumferential direction.
  • FIG. 3 is an explanatory view showing a magnetized form of the magnet.
  • the magnet 19 is a pole-oriented magnet in which the magnetic poles N and S are formed only on the magnet outer peripheral surface 19a.
  • the magnet 19 has magnetic poles formed only on the magnet outer peripheral surface 19 a facing the stator 11.
  • FIG. 4 is an explanatory diagram showing a skew structure in the magnet 19.
  • the magnetic pole boundary line P is inclined along the axial direction, and the angle ⁇ between the start point Q1 and the end point Q2 of the magnetic pole boundary line P is a skew angle.
  • the skew angle ⁇ is set in the range of 30 ° to 50 ° (electrical angle). Note that either point Q1 or point Q2 may be the start point or the end point.
  • the speed reduction mechanism unit 3 includes a worm 6 formed on the rotating shaft 4 and a worm wheel (driven gear) 6 that meshes with a worm (drive gear) 5.
  • the speed reduction mechanism unit 3 is disposed in a gear case 22 formed of synthetic resin or aluminum die casting. As shown in FIG. 1, one end opening side of the motor housing 13 is fixed to the gear case 22.
  • the rotating shaft 4 of the motor 2 extends into the gear case 22.
  • the rotating shaft 4 is rotatably supported by a bearing 23 and a bearing 24 provided in the gear case 22.
  • the worm wheel 7 is fixed to the output shaft 5.
  • the output shaft 5 rotates together with the worm wheel 7.
  • FIG. 5 is an explanatory diagram showing the relationship between the rotor 12 and the stator 11. As shown in FIG. 5, overhang portions (a first overhang portion 31 and a second overhang portion 32) are provided at both axial ends of the magnet 19. The overhang portions 31 and 32 extend in the axial direction without facing the stator core 14.
  • the thrust electromagnetic force and its PP value are reduced by setting the asymmetric first and second overhang portions 31 and 32 while adopting the skew structure. Therefore, the ripple of the thrust electromagnetic force due to the PP value is also reduced.
  • the thrust electromagnetic force is almost zero, whereas when an asymmetric overhang portion is provided, a constant thrust electromagnetic force is always generated in a certain direction. As a result, the thrust electromagnetic force generated by the skew is canceled out, and the thrust electromagnetic force and its PP value are reduced.
  • FIG. 6 is an explanatory diagram showing the relationship between the skew angle ⁇ (electrical angle) and the PP value of the thrust electromagnetic force in the motor 2 having a 4-pole 6-slot configuration.
  • FIG. 7 is an explanatory diagram showing the relationship between the overhang amount ratio (OH2 / OH1) and the PP value of the thrust electromagnetic force in the motor.
  • the PP value of the thrust electromagnetic force in the motor having the 4P6S configuration takes a minimum value when the skew angle ⁇ is 40 °.
  • FIG. 8 is an explanatory diagram showing the relationship between the magnetic orientation of the magnet and the PP value of the thrust electromagnetic force when the first and second overhang portions 31 and 32 are set.
  • the thrust electromagnetic force is lower when the magnet 19 is in the polar orientation than in the radial orientation.
  • the PP value of the thrust electromagnetic force can be suppressed to almost half as compared with the radial orientation.
  • the thrust electromagnetic force generated by the skew is generated by converting the electromagnetic force (torque) in the rotation direction into the thrust force by the skew. Therefore, if the torque ripple is small, the thrust electromagnetic force ripple is also small. Therefore, considering the torque ripple of the motor, the magnitude of the torque ripple is “radial orientation magnet> polar orientation magnet”. Therefore, it is presumed that the ripple magnitude (PP value) of the thrust electromagnetic force also becomes “radial orientation> polar orientation” as shown in FIG.
  • the broken line is obtained by extracting only the thrust electromagnetic force generated only by the overhang portion.
  • the alternate long and short dash line is obtained by extracting only the thrust electromagnetic force generated only by the portion where the magnet 19 and the stator 11 face each other (non-overhang portion) (broken line / dashed line: the vertical axis is the right scale).
  • the solid line is a combination of the two, and indicates the thrust electromagnetic force of the motor according to the present invention (the vertical axis is the left scale).
  • the thrust electromagnetic force indicated by the broken line and the alternate long and short dash line is approximately in antiphase. Therefore, the solid thrust electromagnetic force obtained by synthesizing these is small because both cancel each other, and the rotational fluctuation is small. As shown in FIG. 9, in order to reduce the synthetic thrust electromagnetic force and suppress fluctuations, it is necessary to finely adjust the cancellation balance between the broken line and the alternate long and short dash line.
  • the thrust electromagnetic force generated by the skew structure and its PP value can be reduced in the motor having the 4-pole 6-slot configuration. Even in the case of using, it is possible to suppress the thrust electromagnetic force and its PP value. As a result, it is possible to reduce the thrust electromagnetic force while suppressing the occurrence of torque ripple and cogging by the skew structure. Further, since the PP value of the thrust electromagnetic force is also reduced, the fluctuation (ripple) of the thrust electromagnetic force can be suppressed and the thrust position of the rotor can be stabilized. As a result, for example, it is possible to suppress noise and vibration caused by discontinuity of meshing teeth in a speed reduction mechanism such as a worm, and it is possible to suppress motor noise and vibration.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • a polar anisotropic magnet is used as the magnet 19
  • a magnetic pole is formed only on the outer peripheral surface of the magnet.
  • a pole-oriented magnet magnetized is also possible to use a pole-oriented magnet magnetized as described above.
  • the brushless motor in which the magnet 19 is fixed to the rotating shaft 4 is shown.
  • the present invention is not limited to a mode in which the magnet is directly fixed to the rotating shaft, but via a rotor core or the like.
  • the present invention can also be applied to a brushless motor in which a magnet is attached to a rotating shaft.
  • the motor 2 has an SPM configuration in which the magnet 19 is directly opposed to the stator core 14, the present invention is also applied to a motor having an IPM (Interior Permanent Magnet) configuration in which a steel rotor core is provided on the rotor side and a magnet is embedded on the inner side.
  • IPM Interior Permanent Magnet
  • the magnet is “fixed to the rotating shaft” means not only the form in which the magnet is directly fixed to the rotating shaft, but also the inner or outer periphery of the rotor core attached to the rotating shaft, etc.
  • the meaning includes a form in which a magnet is fixed to a rotating shaft via a rotor core or the like.
  • the brushless motor according to the present invention can be widely applied not only to an in-vehicle motor of an automobile but also to an electric motor used for home appliances, industrial machines and the like.

Abstract

ブラシレスモータ2は4極6スロット構成となっており、ステータ11と、スキュー構造を備えたロータ12を有している。マグネット19の軸方向両端部には、第1及び第2オーバーハング部31,32が設けられている。各オーバーハング部31,32は、ステータコア14の軸方向端部からのオーバーハング量OH1,OH2が異なっている。マグネット19には希土類磁石が使用され、その磁気配向は極配向となっている。スキュー角θを30°~50°(電気角)に設定すると共に、オーバーハング量の比OH2/OH1を1.5~2.5に設定する。

Description

ブラシレスモータ
 本発明は、ブラシレスモータに発生するスラスト方向の電磁力の低減に関し、特に、スキュー構造を備えたブラシレスモータにおけるスラスト方向の電磁力低減技術に関する。
 従来より、ブラシレスモータ(以下、モータと略記する)のトルクリップルやコギングを低減する手段として、磁極の極性が切り替わる位置(磁極境界位置)を、軸方向に沿って回転方向にずらす、いわゆるスキュー構造が知られている。スキュー構造のモータは、トルクリップルやコギングが低減される一方、磁極境界位置が傾斜しているため、磁気的な吸引反発による回転力の軸方向成分によって、スラスト方向に力(回転軸延伸方向に沿った力:スラスト電磁力)が発生する。
特開2009-213282号公報
 スラスト電磁力がモータ内に生じると、その増減(リップル)により、スラスト方向に振動が生じる。その結果、例えば、ギヤ変速機構を備えたモータでは、スラスト振動によってギヤの噛み合い状態が不連続となり、これが音や振動の発生原因となる。特に、スラスト電磁力やそのリップルは、磁極数の少ないモータにおいて顕著である。さらに、磁力の大きい希土類元素を用いた磁石(以下、希土類磁石と称する)を用いると、それらがさらに増大する。
 図10(a)は、磁極の傾き角と磁極数の関係を示す説明図、同図(b)は、磁極数とスラスト電磁力のP-P(peak‐to‐peak)値との関係を示す説明図である。図10(a)から分かるように、磁極の傾き角θmは、マグネット外径をDm、スキュー角をθs(機械角)、マグネット軸方向長をLmとすると、
   θm=tan-1[{Dm×π×(θs/360)}/Lm]
にて表すことができる。この場合、機械角のスキュー角θsは、電気角のスキュー角を一定にした場合、磁極数が増加するに従い小さくなる。
 したがって、2極3スロット(2P3S)×n(整数)仕様のモータにて、スキュー角(電気角)を一定にすると、(ア)4極(6スロット:4P6S)、(イ)6極(9スロット:6P9S)、(ウ)8極(12スロット:8P12S)の各仕様のモータでは、スキュー角θs(機械角)は、極数とスロット数の最小公倍数(ア:12,イ:18,ウ:24)が小さくなるにつれて大きくなり、θmもまた大きくなる。そして、スラスト電磁力は、スキューによって生じる、回転方向の力の軸方向成分であることから、磁極の傾き角θmが大きいと大きくなる。このため、図10(b)に示すように、極数とスロット数の最小公倍数が小さい仕様ほどスラスト電磁力のリップルが大きくなり、4極仕様と8極仕様のモータでは、スラスト電磁力のP-P値に約5倍もの違いが生じる。
 また、磁極用のマグネットとして、磁束密度の大きい希土類磁石を用いると、フェライト磁石等の非希土類元素を用いた磁石(以下、非希土類磁石と称する)を用いた場合に比して、磁気吸引と反発が強まる。このため、希土類磁石の使用により、モータが小型化、高出力化されるものの、スラスト電磁力がさらに大きくなり、そのリップルも大きくなってしまう。図11(a)は、希土類磁石を用いた場合と非希土類磁石を用いた場合のスラスト電磁力の大きさを示した説明図、同図(b)は、回転角(機械角)とスラスト電磁力の関係を示す説明図である。図11から分かるように、希土類磁石は非希土類磁石に比べて、スラスト電磁力が約3.5倍程度大きく、しかもその変動も大きい。このため、希土類磁石を用いたモータは、スラスト振動も大きくなり、音や振動が発生し易くなる。
 本発明のブラシレスモータは、径方向内側に向かって延びるティースが周方向に沿って6個形成されたステータコアと、前記ティースに巻装され隣接する前記ティース間に形成されるスロットに収容される巻線と、を備えるステータと、前記ステータの径方向内側に回転自在に配置され、周方向に沿って4個の磁極が形成されたマグネットを備えるロータと、を有するブラシレスモータであって、前記マグネットは、希土類磁石を用いたリングマグネットにて形成され、前記リングマグネットは、磁極の切り替わり位置が軸方向に沿って回転方向にずれるスキュー構造を有すると共に、その軸方向両端部に、前記ステータコアの軸方向端部のそれぞれから軸方向に延出された第1オーバーハング部と第2オーバーハング部を有し、前記スキュー構造は、スキュー角が電気角30°~50°に設定され、前記第1及び第2オーバーハング部は、前記ステータコアの軸方向端部に対するそれぞれの延出量を互いに異にすることを特徴とする。
 本発明にあっては、4極6スロット構成のモータにおいて、スキュー角を電気角30°~50°に設定しつつ、マグネットの軸方向両端部のそれぞれに、ステータコアの軸方向端部から軸方向に延出したオーバーハング部を設ける。これにより、スキュー構造によって生じるスラスト電磁力を低減でき、希土類磁石を用いた場合でも、スラスト電磁力が抑制される。その結果、スキュー構造によってトルクリップルやコギングの発生を抑えつつ、スラスト電磁力やそのリップルも低減される。
 前記ブラシレスモータにおいて、前記リングマグネットとして、外周面のみに磁極が形成されるように着磁された極配向の磁気配向を有するマグネットを用いても良い。これにより、スラスト電磁力のリップルがさらに抑制される。
 また、前記リングマグネットの一端側に形成された第1オーバーハング部の延出量OH1と、前記リングマグネットの他端側に形成された第2オーバーハング部の延出量OH2との比OH2/OH1を1.5~2.5に設定しても良い。これにより、スラスト電磁力のリップルが効果的に抑制される。
 本発明のブラシレスモータによれば、4極6スロット構成のブラシレスモータにおいて、スキュー角を電気角30°~50°に設定しつつ、マグネットの軸方向両端部のそれぞれに、ステータコアの軸方向端部から軸方向に延出したオーバーハング部を設けたので、スキュー構造によって生じるスラスト電磁力やそのP-P値を低減できる。その結果、希土類磁石を用いたブラシレスモータにおいても、スラスト電磁力やそのリップルを抑制することが可能となる。
本発明の一実施の形態であるモータユニットの構成を示す断面図である。 図1のモータユニットに使用されているブラシレスモータの構成を示す断面図である。 マグネットの着磁形態を示す説明図である。 マグネットのスキュー構造を示す説明図である。 ロータとステータの関係を示す説明図である。 4極6スロット構成のモータにおけるスキュー角θ(電気角)とスラスト電磁力のP-P値との関係を示す説明図である。 4極6スロット構成のモータにおけるオーバーハング量の比とスラスト電磁力のP-P値との関係を示す説明図である。 マグネットの磁気配向とスラスト電磁力のP-P値との関係を示す説明図である。 極配向、スキュー角40°、オーバーハング量の比=2とした場合におけるロータ回転角とスラスト電磁力との関係を示す説明図である。 (a)は、磁極の傾き角と磁極数の関係を示す説明図、(b)は、磁極数とスラスト電磁力のP-P値との関係を示す説明図である。 (a)は、希土類磁石を用いた場合と非希土類磁石を用いた場合のスラスト電磁力の大きさを示した説明図、(b)は、回転角(機械角)とスラスト電磁力の関係を示す説明図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。以下の実施形態の目的は、スキュー構造を備えたブラシレスモータのスラスト電磁力、特に、極数とスロット数の最小公倍数の小さい仕様のモータのスラスト電磁力やそのリップルを低減させることにある。
 図1は、本発明の一実施の形態であるブラシレスモータを用いたモータユニット1の構成を示す断面図である。図2は、図1のモータユニットに使用されているブラシレスモータの構成を示す断面図である。図1のモータユニット1は、ブラシレスモータ2(以下、モータ2と略記する)と、減速機構部(変速機構)3とから構成されている。モータユニット1は、例えば、自動車のサンルーフやワイパ装置、パワーウインド、パワーシートなどの駆動源として使用される。モータユニット1では、モータ2の回転軸4の回転は減速機構部3内にて変速され、出力軸5からユニット外に出力される。
 モータ2はブラシレスモータであり、図1,2に示すように、ステータ11と、ステータ11内に回転自在に配置されたロータ12とから構成されている。ステータ11は、モータハウジング13と、ステータコア14を備えている。モータハウジング13は有底筒状に形成され、ステータコア14はモータハウジング13の内面に固定されている。ステータコア14は、磁性体にて形成されたプレートを複数枚積層して形成され、ヨーク部15と、ティース16とから構成されている。ヨーク部15は外形が六角形に形成され、ティース16はヨーク部15から径方向内側(中心方向)に向かって放射状に突設されている。モータ2では、ティース16は周方向に沿って6個設けられている。隣接するティース16の間はスロット17となっている。ティース16の外周には巻線18が巻装されており、巻線18はスロット17内に収容されている。巻線18は、集中巻きにて巻装されており、3相の巻線がΔ結線にて接続されている。
 ステータ11の内側にはロータ12が挿入されている。ロータ12は、回転軸4と、回転軸4に固定されたマグネット19とを備えている。回転軸4の一端側(モータ側の一端)は、モータハウジング13の端部に配された軸受21によって回転自在に支持されている。マグネット19は4極に着磁されており、モータ2は、4極6スロット(4P6S)構成のブラシレスモータである。マグネット19には、ネオジウムや、ジスプロシウム、サマリウムなどの希土類元素を用いた永久磁石(希土類磁石)が用いられている。マグネット外周面19aは、ティース16の先端面16aに対向するように配されており、モータ2は、SPM(Surface Permanent Magnet)型の構成となっている。
 マグネット19には、周方向に沿って極性が変わるように着磁された極異方性のリングマグネットが使用されている。図3は、マグネットの着磁形態を示す説明図である。図3(a)に示すように、マグネット19は、マグネット外周面19aのみに磁極N,Sが形成される極配向マグネットである。図3(b)のような、磁界の方向が放射状となるラジアル配向のマグネット41とは異なり、マグネット19では、ステータ11と対向するマグネット外周面19aのみに磁極が形成されている。
 モータ2では、マグネット19の磁極境界線Pが、軸方向に沿って径方向にずれるスキュー着磁がなされている。図4は、マグネット19におけるスキュー構造を示す説明図である。図4に示すように、マグネット19では、磁極境界線Pが軸方向に沿って傾斜しており、磁極境界線Pの始点Q1と終点Q2の間の角度θがスキュー角となっている。モータ2では、スキュー角θは、30°~50°(電気角)の範囲に設定されている。なお、点Q1と点Q2は、何れが始点でも終点でも良い。
 減速機構部3は、回転軸4に形成されたウォーム6と、ウォーム(駆動ギヤ)5と噛合するウォームホイール(被動ギヤ)6とから構成されている。減速機構部3は、合成樹脂やアルミダイカストにて形成されたギヤケース22内に配置されている。図1に示すように、ギヤケース22には、モータハウジング13の一端開口側が固定されている。モータ2の回転軸4は、ギヤケース22内に延伸している。回転軸4は、ギヤケース22内に設けられたベアリング23と軸受24によって回転自在に支持されている。ウォームホイール7は、出力軸5に固定されている。出力軸5は、ウォームホイール7と共に回転する。
 モータ2では、ロータ12側のマグネット19の軸方向長Lmが、ステータ11側のステータコア14の軸方向長Lcよりも長くなっている。図5は、ロータ12とステータ11の関係を示す説明図である。図5に示すように、マグネット19の軸方向両端部には、オーバーハング部(第1オーバーハング部31,第2オーバーハング部32)がそれぞれ設けられている。オーバーハング部31,32は、ステータコア14と対向することなく軸方向に延出されている。
 モータ2においては、一端側の第1オーバーハング部31のオーバーハング量(延出量)OH1と、他端側の第2オーバーハング部32のオーバーハング量OH2が異なっている。すなわち、第1及び第2オーバーハング部31,32は、軸方向に非対称に設けられている。また、第2オーバーハング部32のオーバーハング量OH2は、第1オーバーハング部31のオーバーハング量OH1よりも大きくなっている(OH1<OH2)。ここでは、OH2はOH1の1.5~2.5倍の大きさとなっている(OH2/OH1=1.5~2.5)。
 モータ2では、スキュー構造を採用しつつ、非対称の第1及び第2オーバーハング部31,32を設定することにより、スラスト電磁力やそのP-P値が低減される。したがって、P-P値に起因するスラスト電磁力のリップルもまた低減される。オーバーハング部なし(かつ、スキューなし)の場合、スラスト電磁力がほぼ0であるのに対し、非対称なオーバーハング部を設けると、常に一定方向に一定のスラスト電磁力が発生する。その結果、スキューによって生じるスラスト電磁力が相殺され、スラスト電磁力やそのP-P値が低減する。
 図6は、4極6スロット構成のモータ2における、スキュー角θ(電気角)とスラスト電磁力のP-P値との関係を示す説明図である。図7は、同モータにおける、オーバーハング量の比(OH2/OH1)とスラスト電磁力のP-P値との関係を示す説明図である。図6に示すように、発明者らの解析によれば、4P6S構成のモータにおけるスラスト電磁力のP-P値は、スキュー角θが40°のとき極小値を取ることが分かった。また、オーバーハング量の比との関係では、図7に示すように、スラスト電磁力のP-P値は、オーバーハング量の比が2(OH2/OH1=2)のとき極小値を取ることも分かった。
 一方、スラスト電磁力のP-P値について、マグネット19の磁気配向との関係を調べたところ、次のような関係が判明した。図8は、第1及び第2オーバーハング部31,32を設定した場合における、マグネットの磁気配向とスラスト電磁力のP-P値との関係を示す説明図である。図8に示すように、第1及び第2オーバーハング部31,32を設けた場合、マグネット19を極配向とした方が、ラジアル配向の場合よりもスラスト電磁力が低くなることが分かった。発明者らの解析によれば、マグネット19を極配向とすることにより、ラジアル配向に比して、スラスト電磁力のP-P値をほぼ半分に抑えられる。
 ここで、スキューにより発生するスラスト電磁力は、前述のように、回転方向の電磁力(トルク)がスキューによってスラスト方向の力に変換されることにより生じる。したがって、トルクのリップルが小さければ、スラスト電磁力のリップルもまた小さくなる。そこで、モータのトルクリップルを考えると、トルクリップルの大きさは「ラジアル配向マグネット>極配向マグネット」となる。このため、スラスト電磁力のリップルの大きさ(P-P値)もまた、図8に示すように、「ラジアル配向>極配向」となるものと推察される。
 図9は、極配向、スキュー角40°、オーバーハング量の比(OH2/OH1)=2とした場合における、ロータ回転角とスラスト電磁力との関係を示す説明図である。図9において、破線は、オーバーハング部のみによって生じるスラスト電磁力だけを抽出したものである。また、一点鎖線は、マグネット19とステータ11が対向している部分(非オーバーハング部)のみによって生じるスラスト電磁力だけを抽出したものである(破線・一点鎖線:縦軸は右側スケール)。さらに、実線は、前記両者を合成したものであり、本発明によるモータのスラスト電磁力を示している(縦軸は左側スケール)。
 図9に示すように、破線と一点鎖線で示されたスラスト電磁力は、概ね逆位相となっている。したがって、これらを合成した実線のスラスト電磁力は、両者が相殺し合って小さく、回転変動も少なくなっている。図9のように、合成スラスト電磁力を小さく、変動も少なく抑えるには、破線と一点鎖線の相殺バランスを微妙に調整する必要がある。
 そこで、前述のような各要素の解析結果に基づいて検討を行い、発明者らは、図9のようなバランスの良い結果を得た。すなわち、希土類磁石を用いた4極6スロット構成のモータでは、
 (1)マグネットを極配向とし、
 (2)スキュー角θを30°~50°(電気角)、好ましくは40°に設定し、
 (3)非対称のオーバーハング部を設けると共に、各オーバーハング量の比を1.5~2.5、好ましくは2に設定する、
ことにより、スラスト電磁力やそのP-P値を低減させることが可能となることが分かった。
 したがって、上述の(1)~(3)の構成を採用することにより、4極6スロット構成のモータにおいて、スキュー構造によって生じるスラスト電磁力やそのP-P値を低減することができ、希土類磁石を用いた場合でも、スラスト電磁力やそのP-P値を抑制することが可能となる。その結果、スキュー構造によってトルクリップルやコギングの発生を抑えつつ、スラスト電磁力の低減を図ることが可能になる。また、スラスト電磁力のP-P値も低減されることから、スラスト電磁力の変動(リップル)が抑えられ、ロータのスラスト位置を安定させることができる。これにより、例えば、ウォーム等の減速機構における歯の噛み合い不連続などから生じる音や振動を抑えることができ、モータの音や振動を抑制することが可能となる。
 本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前述の実施形態では、マグネット19に極異方性のマグネットを用いた例を示したが、マグネット19として極等方性のマグネットを使用し、該マグネットをその外周面のみに磁極が形成されるように着磁した極配向マグネットとしても良い。また、前述の実施形態では、マグネット19が回転軸4に固定されているブラシレスモータを示したが、本発明は、回転軸にマグネットが直接固定されている形態のみならず、ロータコア等を介して回転軸にマグネットを取り付ける形態のブラシレスモータにも適用可能である。さらに、モータ2では、マグネット19をステータコア14に直接対向させるSPM構成としたが、ロータ側に鋼製のロータコアを設け、その内側にマグネットを埋設したIPM(Interior Permanent Magnet)構成のモータにも本発明は適用可能である。
 なお、本発明において、マグネットが「回転軸に固定」されている、とは、回転軸に直接マグネットが固定されている形態のみならず、回転軸に取り付けたロータコア等の内部あるいは外周部など、ロータコア等を介して回転軸にマグネットを固定する形態も含んだ意味である。
 本発明によるブラシレスモータは、自動車の車載モータのみならず、家電製品や産業機械等に使用される電動モータにも広く適用可能である。
 1  モータユニット         2  ブラシレスモータ
 3  減速機構部           4  回転軸
 5  出力軸             6  ウォーム
 7  ウォームホイール       11  ステータ
12  ロータ            13  モータハウジング
14  ステータコア         15  ヨーク部
16  ティース           16a 先端面
17  スロット           18  巻線
19  マグネット          19a マグネット外周面
21  軸受             22  ギヤケース
23  ベアリング          24  軸受
31  第1オーバーハング部     32  第2オーバーハング部
41  マグネット          Lc  ステータコア軸方向長
Lm  マグネット軸方向長      θm  磁極境界線傾き角
θs  スキュー角
OH1 第1オーバーハング部オーバーハング量
OH2 第2オーバーハング部オーバーハング量
P   磁極境界線          Q1  磁極境界線の始点
Q2  磁極境界線の終点       X   スラスト方向

Claims (3)

  1.  径方向内側に向かって延びるティースが周方向に沿って6個形成されたステータコアと、前記ティースに巻装され隣接する前記ティース間に形成されるスロットに収容される巻線と、を備えるステータと、
     前記ステータの径方向内側に回転自在に配置され、周方向に沿って4個の磁極が形成されたマグネットを備えるロータと、を有するブラシレスモータであって、
     前記マグネットは、希土類磁石を用いたリングマグネットにて形成され、
     前記リングマグネットは、磁極の切り替わり位置が軸方向に沿って回転方向にずれるスキュー構造を有すると共に、その軸方向両端部に、前記ステータコアの軸方向端部のそれぞれから軸方向に延出された第1オーバーハング部と第2オーバーハング部を有し、
     前記スキュー構造は、スキュー角が電気角30°~50°に設定され、
     前記第1及び第2オーバーハング部は、前記ステータコアの軸方向端部に対するそれぞれの延出量を互いに異にすることを特徴とするブラシレスモータ。
  2.  請求項1記載のブラシレスモータにおいて、
     前記リングマグネットは、外周面のみに磁極が形成されるように着磁された極配向の磁気配向を有することを特徴とするブラシレスモータ。
  3.  請求項1又は2記載のブラシレスモータにおいて、
     前記リングマグネットの一端側に形成された第1オーバーハング部の延出量OH1と、前記リングマグネットの他端側に形成された第2オーバーハング部の延出量OH2との比OH2/OH1が1.5~2.5に設定されていることを特徴とするブラシレスモータ。
PCT/JP2019/017571 2018-06-08 2019-04-25 ブラシレスモータ WO2019235096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980033903.0A CN112154592A (zh) 2018-06-08 2019-04-25 无刷马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109899 2018-06-08
JP2018109899A JP2019213417A (ja) 2018-06-08 2018-06-08 ブラシレスモータ

Publications (1)

Publication Number Publication Date
WO2019235096A1 true WO2019235096A1 (ja) 2019-12-12

Family

ID=68769991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017571 WO2019235096A1 (ja) 2018-06-08 2019-04-25 ブラシレスモータ

Country Status (3)

Country Link
JP (1) JP2019213417A (ja)
CN (1) CN112154592A (ja)
WO (1) WO2019235096A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020125338A1 (de) 2020-09-29 2022-03-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Maschine, insbesondere Antriebsmotor für ein wenigstens teilweise elektrisch betriebenes Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324925A (ja) * 2002-05-01 2003-11-14 Mitsuba Corp モータ
JP2006211801A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd 永久磁石埋込型電動機
JP2007330030A (ja) * 2006-06-07 2007-12-20 Jtekt Corp ロータのリング磁石固定構造及び電動パワーステアリング用モータ
JP2009022096A (ja) * 2007-07-11 2009-01-29 Asmo Co Ltd モータのロータ及びブラシレスモータ
JP2009213282A (ja) * 2008-03-05 2009-09-17 Mitsuba Corp ブラシレスモータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089527B2 (ja) * 2003-06-27 2008-05-28 三菱電機株式会社 永久磁石式回転電機
JP2009142024A (ja) * 2007-12-05 2009-06-25 Toyota Motor Corp リラクタンスモータ
JP6167434B2 (ja) * 2013-09-30 2017-07-26 ミネベアミツミ株式会社 ブラシレスモータ及びそのモータを用いた送風機
JP2017225319A (ja) * 2016-06-17 2017-12-21 日本電産株式会社 モータ
CN107394921A (zh) * 2017-08-22 2017-11-24 广东美芝制冷设备有限公司 电机转子、永磁同步电机和压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324925A (ja) * 2002-05-01 2003-11-14 Mitsuba Corp モータ
JP2006211801A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd 永久磁石埋込型電動機
JP2007330030A (ja) * 2006-06-07 2007-12-20 Jtekt Corp ロータのリング磁石固定構造及び電動パワーステアリング用モータ
JP2009022096A (ja) * 2007-07-11 2009-01-29 Asmo Co Ltd モータのロータ及びブラシレスモータ
JP2009213282A (ja) * 2008-03-05 2009-09-17 Mitsuba Corp ブラシレスモータ

Also Published As

Publication number Publication date
CN112154592A (zh) 2020-12-29
JP2019213417A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP4670871B2 (ja) モータ
US8053942B2 (en) Axial gap motor
US20050023919A1 (en) Permanent magnet motor
JP2009033952A (ja) 電動機
JP6280761B2 (ja) ステータコアおよび永久磁石型モータ
JP6406355B2 (ja) ダブルステータ型回転機
JP4718580B2 (ja) 永久磁石型回転電機及び電動パワーステアリング装置
JP4569632B2 (ja) モータ
WO2016175181A1 (ja) 電動モータ
WO2019235096A1 (ja) ブラシレスモータ
US20090200876A1 (en) Synchronous reluctance motor
JP2007215397A (ja) 電動機及びこれを搭載した機器
JP2011091917A (ja) 回転機の出力調節方法および回転機
JP2009296701A (ja) アキシャルギャップ型モータ
WO2019198462A1 (ja) モータ及びブラシレスワイパーモータ
KR200462692Y1 (ko) 자속 집중형 전동기
WO2019198464A1 (ja) モータ及びブラシレスワイパーモータ
JP6916133B2 (ja) ブラシレスモータ
JP2007159282A (ja) モータ
JP2013207857A (ja) ブラシレスモータ
WO2019187752A1 (ja) 電動モータ
WO2017042886A1 (ja) 永久磁石式回転電動機およびこれを用いた圧縮機
KR20090132219A (ko) 브러시리스 모터
JP2005094959A (ja) 永久磁石式回転電機
WO2019049613A1 (ja) ブラシレスモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815728

Country of ref document: EP

Kind code of ref document: A1