WO2019233069A1 - 一种空调器的除霜控制方法、装置、存储介质 - Google Patents

一种空调器的除霜控制方法、装置、存储介质 Download PDF

Info

Publication number
WO2019233069A1
WO2019233069A1 PCT/CN2018/119782 CN2018119782W WO2019233069A1 WO 2019233069 A1 WO2019233069 A1 WO 2019233069A1 CN 2018119782 W CN2018119782 W CN 2018119782W WO 2019233069 A1 WO2019233069 A1 WO 2019233069A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature value
air conditioner
preset
preset temperature
compressor
Prior art date
Application number
PCT/CN2018/119782
Other languages
English (en)
French (fr)
Inventor
樊明月
王录娥
牛巧宁
崔俊
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019233069A1 publication Critical patent/WO2019233069A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the present invention relates to the technical field of air conditioners, and in particular, to a defrost control method, device, and storage medium of an air conditioner.
  • the indoor heat exchanger may freeze under low temperature and high humidity.
  • the lowest temperature flow path will be selected to place the defrosting temperature sensor to achieve the purpose of frost protection of the indoor heat exchanger through temperature monitoring.
  • the indoor heat exchanger is unevenly distributed, and the position of the defrost temperature sensor is not the lowest point of the heat exchanger, it will cause the failure of detecting the defrost, and the phenomenon of continuous freezing of the indoor heat exchanger will be caused. Frost is not protected.
  • Embodiments of the present invention provide a defrosting control method, device, and storage medium of an air conditioner, which are intended to solve the technical problems of uneven frost and unprotected frost when the indoor heat exchanger is unevenly distributed.
  • a brief summary is given below. This summary is not a general overview, nor is it intended to identify key / important constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner, and the minimum temperature of the plurality of temperature sensors is obtained by Value, and according to the minimum temperature value, control the compressor of the air conditioner to operate to defrost the indoor heat exchanger, which can more accurately control the compressor to perform defrost, and solve indoor heat exchange
  • the shunt is uneven, there is a problem that the frost is not removed and the frost is not protected.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner, and the control method includes:
  • the compressor of the air conditioner is controlled to operate according to the minimum temperature value to defrost the indoor heat exchanger.
  • a defrost control device for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner, and the control device includes:
  • a first acquisition module configured to acquire a lowest temperature value among a plurality of the temperature sensors
  • a control module is configured to control the compressor of the air conditioner to perform an operation according to the minimum temperature value, so as to defrost the indoor heat exchanger.
  • an apparatus for controlling defrost of an air conditioner for an air conditioner includes:
  • a memory storing the processor-executable instructions
  • the processor is configured to:
  • the compressor of the air conditioner is controlled to operate according to the minimum temperature value to defrost the indoor heat exchanger.
  • a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the implementation of the Defrost control method.
  • the compressor can be more accurately controlled to perform the defrosting action, and when the indoor heat exchanger has uneven flow distribution, there is frost Does not remove, frost does not protect the problem.
  • FIG. 1 is a schematic flowchart illustrating a defrost control method of an air conditioner according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a defrosting control method for an air conditioner according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a defrosting control method for an air conditioner according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram of a defrost control device for an air conditioner according to an exemplary embodiment
  • Fig. 5 is a schematic structural diagram of a defrosting control device for an air conditioner according to an exemplary embodiment.
  • connection should be understood in a broad sense unless otherwise specified and limited, for example, it may be a fixed connection, a detachable connection, or an integrated It can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal connection of two components.
  • installation and “connection” should be understood in a broad sense unless otherwise specified and limited, for example, it may be a fixed connection, a detachable connection, or an integrated It can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal connection of two components.
  • connection should be understood in a broad sense unless otherwise specified and limited, for example, it may be a fixed connection, a detachable connection, or an integrated It can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal connection of two components.
  • FIG. 1 is a flowchart illustrating a defrosting control method of an air conditioner according to an exemplary embodiment.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner.
  • the control method includes the following steps:
  • S102 Control the compressor of the air conditioner to operate according to the minimum temperature value to defrost the indoor heat exchanger.
  • the compressor can be more accurately controlled to perform the defrosting action, and the indoor heat exchanger is solved.
  • the shunt is uneven, there is a problem that the frost is not removed and the frost is not protected.
  • the number of the temperature sensors is three, which are respectively arranged at the input end position, the output end position, and the intermediate position of the coil of the indoor heat exchanger, and are divided in the indoor heat exchanger. In the case of unevenness, the minimum temperature of the coil of the indoor heat exchanger can be obtained relatively reliably.
  • Fig. 2 is a schematic flowchart of a defrosting control method for an air conditioner according to an exemplary embodiment.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner.
  • the control method includes the following steps:
  • the indoor heat exchanger is prone to frost. Therefore, only when the air conditioner is in a refrigeration condition, the minimum temperature value is obtained to control the compressor for defrosting. Can play a role in energy saving and environmental protection.
  • the minimum temperature value is between the first preset temperature value and the second preset temperature value.
  • the indoor heat exchanger may only meet the frost condition without frost.
  • the compressor performs frequency reduction operation, thereby preventing frosting of the indoor heat exchanger.
  • the range of the first preset temperature value is [-2 ° C, 0 ° C]
  • the range of the second preset temperature value is [-7 ° C,- 5 ° C].
  • the frequency dropped by the compressor and the minimum temperature value and the second preset temperature value satisfy the following relationship:
  • ⁇ f is the frequency dropped by the compressor
  • f0 is the current operating frequency of the compressor
  • T2 is the second preset temperature value
  • T0 is the minimum temperature value.
  • the indoor heat exchanger may be slightly frosted at this time, and if the duration of the state is greater than or equal to The preset shutdown time indicates that the indoor heat exchanger continues to frost, and then controls the compressor to stop for defrosting.
  • the range of the third preset temperature value is [-7 ° C, -5 ° C]
  • the range of the fourth preset temperature value is [-15 ° C,- 10 ° C].
  • the frosting condition of the indoor heat exchanger is serious at this time, and the compressor is controlled to immediately stop to perform defrosting.
  • a range of the fifth preset temperature value is [-15 ° C, -10 ° C].
  • the first preset temperature value is greater than the second preset temperature value
  • the third preset temperature value is greater than the fourth preset temperature value
  • the second preset temperature value is greater than Or equal to the third preset temperature value
  • the fourth preset temperature value is greater than or equal to the fifth preset temperature value.
  • the compressor of the air conditioner is controlled to perform defrost and defrost at a preset time by obtaining the lowest temperature value among a plurality of temperature sensors, and controlling the compressor of the air conditioner according to the judgment result of the lowest temperature value and the preset temperature value.
  • Fig. 3 is a schematic flowchart of a defrosting control method for an air conditioner according to an exemplary embodiment.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner.
  • a humidity sensor is provided at a position corresponding to the temperature sensor, and the control method includes the following steps:
  • S303 Control the compressor of the air conditioner to operate according to the minimum temperature value and the humidity value, so as to defrost the indoor heat exchanger.
  • the control unit controls The compressor performs frequency reduction operation.
  • the value range of the first preset humidity value is [45%, 90%]
  • the value value of the fourth preset humidity value is (90%, 95%).
  • the minimum temperature value is between the third preset temperature value and the fourth preset temperature value, and the humidity value is between the second preset humidity value and the fourth preset humidity value, the The duration of the state is greater than or equal to a preset shutdown time, and the compressor is controlled to stop.
  • a range of the second preset humidity value is [60%, 90%].
  • the humidity value is between the third preset humidity value and the fourth preset humidity value, and the compressor is controlled to stop.
  • the value range of the third preset humidity value is [75%, 90%].
  • the first preset humidity value is less than or equal to the second preset humidity value and is less than the fourth preset humidity value
  • the second preset humidity value is less than or equal to the first Three preset humidity values are smaller than the fourth preset humidity value
  • the third preset humidity value is less than or equal to the fourth preset humidity value and is smaller than the fourth preset humidity value.
  • the indoor heat exchanger since the frosting condition of the indoor heat exchanger is not only related to temperature, but also to humidity, for example, at a certain temperature, the indoor heat exchanger reaches the frosting condition, but the humidity value is small.
  • the indoor heat exchanger does not frost, so it is not accurate to judge the frost formation of the indoor heat exchanger only by the temperature condition.
  • Fig. 4 is a schematic structural diagram of a defrosting control device for an air conditioner according to an exemplary embodiment.
  • This optional embodiment provides a defrost control device for an air conditioner.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner, and the control device includes:
  • a first acquisition module 1 is configured to acquire a lowest temperature value among a plurality of the temperature sensors.
  • the control module 2 is configured to control the compressor of the air conditioner to perform operations according to the minimum temperature value, so as to defrost the indoor heat exchanger.
  • control module 2 is configured to:
  • the first preset temperature value is greater than the second preset temperature value
  • the third preset temperature value is greater than the fourth preset temperature value
  • the second preset temperature value is greater than or equal to
  • the third preset temperature value is greater than or equal to the fifth preset temperature value.
  • the compressor can be more accurately controlled to perform the defrosting action, and the indoor heat exchanger is solved.
  • the shunt is uneven, there is a problem that the frost is not removed and the frost is not protected.
  • Fig. 5 is a schematic structural diagram of a defrosting control device for an air conditioner according to an exemplary embodiment.
  • a defrost control method for an air conditioner is provided.
  • a plurality of temperature sensors are provided on a coil of an indoor heat exchanger of the air conditioner.
  • a humidity sensor is provided at a position corresponding to the temperature sensor, and the control device includes:
  • a first acquisition module 1 is configured to acquire a lowest temperature value among a plurality of the temperature sensors.
  • the second acquisition module 3 is configured to acquire a humidity value of a humidity sensor corresponding to a temperature sensor having a lowest temperature value.
  • a control module 2 is configured to control the compressor of the air conditioner to operate according to the minimum temperature value and the humidity value, so as to defrost the indoor heat exchanger.
  • control module 2 is specifically configured to:
  • the minimum temperature value is between the third preset temperature value and the fourth preset temperature value, and the humidity value is between the second preset humidity value and the fourth preset humidity value, the The duration of the state is greater than or equal to a preset shutdown time, and the compressor is controlled to stop;
  • the humidity value is between the third preset humidity value and the fourth preset humidity value, and the compressor is controlled to stop.
  • the air conditioner is controlled based on the minimum temperature value and the humidity value of the humidity sensor corresponding to the temperature sensor having the minimum temperature value, and controlling the air conditioner according to the minimum temperature value and the humidity value
  • the operation of the compressor can more accurately control the compressor to perform the defrosting action, which solves the problems of frost and defrosting when the indoor heat exchanger is unevenly distributed.
  • an air conditioner defrost control device for an air conditioner, including:
  • a memory storing the processor-executable instructions
  • the processor is configured to:
  • the compressor of the air conditioner is controlled to operate according to the minimum temperature value to defrost the indoor heat exchanger.
  • the processor is configured to:
  • the first preset temperature value is greater than the second preset temperature value
  • the third preset temperature value is greater than the fourth preset temperature value
  • the second preset temperature value is greater than or equal to
  • the third preset temperature value is greater than or equal to the fifth preset temperature value.
  • the compressor can be more accurately controlled to perform a defrosting action, and the indoor heat exchanger When the shunt is uneven, there is a problem that the frost is not removed and the frost is not protected.
  • a non-transitory computer-readable storage medium including instructions may be executed by a processor to implement the method described above.
  • the non-transitory computer-readable storage medium may be a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic tape, and an optical storage device.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, a program segment, or a part of code, which contains one or more components for implementing a specified logical function Executable instructions.
  • the functions labeled in the blocks may also occur in a different order than those labeled in the drawings. For example, two consecutive blocks may actually be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagrams and / or flowcharts, and combinations of blocks in the block diagrams and / or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or action. , Or it can be implemented with a combination of dedicated hardware and computer instructions.
  • the present invention is not limited to the processes and structures that have been described above and shown in the drawings, and various modifications and changes can be made without departing from the scope thereof. The scope of the invention is only limited by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的除霜控制方法、装置、存储介质,所述除霜控制方法,包括:获取多个温度传感器中的最低温度值;根据最低温度值,控制空调器的压缩机进行动作,以对室内换热器进行除霜。解决了空调器室内换热器分流不均时,有霜不除,结霜不保护的问题。

Description

一种空调器的除霜控制方法、装置、存储介质
本申请基于申请号为201810573587.3、申请日为2018年6月6日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,尤其涉及一种空调器的除霜控制方法、装置、存储介质。
背景技术
空调在制冷模式运行时,在低温高湿环境下,室内换热器会产生结冰现象。在换热器的设计过程中,会选择温度最低的流路去放置除霜温度传感器,以通过温度监测达到室内换热器结霜保护的目的。但是如果室内换热器分流不均,除霜温度传感器所在位置不是换热器的最低点,就会造成检测除霜失败,会产生室内换热器持续结冰的现象,造成有霜不除,结霜不保护。
发明内容
本发明实施例提供了一种空调器的除霜控制方法、装置、存储介质,旨在解决室内换热器分流不均时,容易造成有霜不除,结霜不保护的技术问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,通过获取多个所述温度传感器中的最低温度值,并根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜,能够更精准的控制所述压缩机进行除霜,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
根据本发明实施例的第一方面,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制方法包括:
获取多个所述温度传感器中的最低温度值;
根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
根据本发明实施例的第二方面,提供了一种空调器的除霜控制装置,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制装置包括:
第一获取模块,用于获取多个所述温度传感器中的最低温度值;
控制模块,用于根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
根据本发明实施例的第三方面,提供了一种空调器除霜控制的装置,用于空调器,包括:
处理器;
存储器,其上存储有所述处理器可执行指令;
其中,所述处理器被配置为:
获取多个温度传感器中的最低温度值,其中,多个所述温度传感器设于所述空调器的室内换热器的盘管上;
根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
根据本发明实施例的第四方面,提供了一种存储介质,其上存储有计算机程序,当所述计算机程序被处理器执行时实现根据本发明实施例的第一方面所述的空调器的除霜控制方法。
本发明实施例提供的技术方案可以包括以下有益效果:
通过获取多个温度传感器中的最低温度值,并根据最低温度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出一种空调器的除霜控制方法的流程示意图;
图2是根据一示例性实施例示出的一种空调器的除霜控制方法的流程示意图;
图3是根据一示例性实施例示出的一种空调器的除霜控制方法的流程示意图;
图4是根据一示例性实施例示出的一种空调器的除霜控制装置的结构示意图;
图5是根据一示例性实施例示出的一种空调器的除霜控制装置的结构示意图。
附图标记说明:
1-第一获取模块;2-控制模块;3-第二获取模块。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化,除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、 前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体的连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
图1是根据一示例性实施例示出一种空调器的除霜控制方法的流程示意图。
该可选实施例中,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制方法包括以下步骤:
S101:获取多个所述温度传感器中的最低温度值。
S102:根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
该可选实施例中,通过获取多个温度传感器中的最低温度值,并根据最低温度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
在一些可选实施例中,所述温度传感器的数量为三个,分别设置于所述室内换热器的盘管的输入端位置、输出端位置和中间位置,在所述室内换热器分流不均的情况下,可以较为可靠的获取所述室内换热器的盘管的最低温度。
图2是根据一示例性实施例示出的一种空调器的除霜控制方法的流程示意图。
该可选实施例中,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制方法包括以下步骤:
S201:在所述空调器处于制冷工况的情形下,获取多个所述温度传感器中的最低温度值。
通常情况来看,空调器在处于制冷工况的情形下,室内换热器容易出现结霜现象,因此,只在空调器处于制冷工况下获取最低温度值,以控制压缩机进行除霜,可以起到节能环保的作用。
S202:如果所述最低温度值在第一预设温度值和第二预设温度值之间,控制所述压缩机进行降频操作。
在实际应用中,所述最低温度值在第一预设温度值和第二预设温度值之间,此时所述室内换热器可能只满足结霜条件而并未结霜,控制所述压缩机进行降频操作,即可避免所述室内换热器结霜。
在一些可选的实施例中,所述第一预设温度值的取值范围为[-2℃,0℃],所述第二预设温度值的取值范围为[-7℃,-5℃]。
在一些可选实施例中,所述压缩机所降的频率与所述最低温度值、所述第二预设温度值满足以下关系:
Δf=f0*|(T2-T0)/T0|
其中,Δf为压缩机所降的频率,f0为压缩机的当前工作频率,T2为第二预设温度值,T0为最低温度值。
S203:如果所述最低温度值在第三预设温度值和第四预设温度值之间,且该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机。
如果所述最低温度值在所述第三预设温度值和第四预设温度值之间,此时所述室内换热器可能存在轻微结霜的情况,如果该状态的持续时间大于或等于预设停机时间,说明所述室内换热器在持续结霜,则控制所述压缩机停机,以进行除霜。
在一些可选实施例中,所述第三预设温度值的取值范围为[-7℃,-5℃],所述第四预设温度值的取值范围为[-15℃,-10℃]。
S204:如果所述最低温度值小于第五预设温度值,控制所述压缩机停机。
如果所述最低温度值小于所述第五预设温度值,此时所述室内换热器 的结霜情况比较严重,控制所述压缩机马上停机,以进行除霜。
在一些可选实施例中,所述第五预设温度值的取值范围为[-15℃,-10℃]。
需要说明的是,所述第一预设温度值大于所述第二预设温度值,所述第三预设温度值大于所述第四预设温度值,所述第二预设温度值大于或等于所述第三预设温度值,所述第四预设温度值大于或等于所述第五预设温度值。
该可选实施例中,通过获取多个温度传感器中的最低温度值,并根据最低温度值与预设温度值的判断结果,控制空调器的压缩机进行降频除霜、预设时间停机除霜、立即停机除霜的不同的除霜动作,可以根据所述室内换热器的不同结霜情况进行不同的除霜操作,更加精准。
图3是根据一示例性实施例示出的一种空调器的除霜控制方法的流程示意图。
该可选实施例中,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,所述室内换热器的盘管上与所述温度传感器对应的位置设有湿度传感器,所述控制方法包括以下步骤:
S301:获取多个所述温度传感器中的最低温度值。
S302:获取与具有最低温度值的温度传感器对应的湿度传感器的湿度值。
S303:根据所述最低温度值和所述湿度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
具体的,如果所述最低温度值在第一预设温度值和第二预设温度值之间,且所述湿度值在第一预设湿度值和第四预设湿度值之间,控制所述压缩机进行降频操作。
可选的,所述第一预设湿度值的取值范围为[45%,90%],所述第四预设湿度值的取值为(90%,95%]。
如果所述最低温度值在所述第三预设温度值和第四预设温度值之间,且所述湿度值在第二预设湿度值和所述第四预设湿度值之间,该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机。
可选的,所述第二预设湿度值的取值范围为[60%,90%]。
如果所述最低温度值小于所述第五预设温度值,所述湿度值在第三预设湿度值和所述第四预设湿度值之间,控制所述压缩机停机。
可选的,所述第三预设湿度值的取值范围为[75%,90%]。
需要说明的是,所述第一预设湿度值小于或等于所述第二预设湿度值,且小于所述第四预设湿度值,所述第二预设湿度值小于或等于所述第三预设湿度值,且小于所述第四预设湿度值,所述第三预设湿度值小于或等于所述第四预设湿度值,且小于所述第四预设湿度值。
该可选实施例中,由于室内换热器的结霜条件不仅与温度有关,还与湿度相关,比如,在一定温度下,所述室内换热器达到结霜条件,但是湿度值较小,所述室内换热器并不会结霜,因此,只通过温度条件进行所述室内换热器的结霜判断,并不精准。通过获取多个温度传感器中的最低温度值及与具有最低温度值的温度传感器对应的湿度传感器的湿度值,并根据所述最低温度值和所述湿度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
图4是根据一示例性实施例示出的一种空调器的除霜控制装置的结构示意图。
该可选实施例提供了一种空调器的除霜控制装置,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制装置包括:
第一获取模块1,用于获取多个所述温度传感器中的最低温度值。
控制模块2,用于根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
具体的,所述控制模块2用于:
如果所述最低温度值在第一预设温度值和第二预设温度值之间,控制所述压缩机进行降频操作;
如果所述最低温度值在第三预设温度值和第四预设温度值之间,且该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机;
如果所述最低温度值小于第五预设温度值,控制所述压缩机停机;
其中,所述第一预设温度值大于所述第二预设温度值,所述第三预设温度值大于所述第四预设温度值,所述第二预设温度值大于或等于所述第 三预设温度值,所述第四预设温度值大于或等于所述第五预设温度值。
该可选实施例中,通过获取多个温度传感器中的最低温度值,并根据最低温度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
图5是根据一示例性实施例示出的一种空调器的除霜控制装置的结构示意图。
该可选实施例中,提供了一种空调器的除霜控制方法,所述空调器的室内换热器的盘管上设有多个温度传感器,所述室内换热器的盘管上与所述温度传感器对应的位置设有湿度传感器,所述控制装置包括:
第一获取模块1,用于获取多个所述温度传感器中的最低温度值。
第二获取模块3,用于获取与具有最低温度值的温度传感器对应的湿度传感器的湿度值。
控制模块2,用于根据所述最低温度值和所述湿度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
进一步的,所述控制模块2具体用于:
如果所述最低温度值在第一预设温度值和第二预设温度值之间,且所述湿度值在第一预设湿度值和第四预设湿度值之间,控制所述压缩机进行降频操作;
如果所述最低温度值在所述第三预设温度值和第四预设温度值之间,且所述湿度值在第二预设湿度值和所述第四预设湿度值之间,该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机;
如果所述最低温度值小于所述第五预设温度值,所述湿度值在第三预设湿度值和所述第四预设湿度值之间,控制所述压缩机停机。
该可选实施例中,通过获取多个温度传感器中的最低温度值及与具有最低温度值的温度传感器对应的湿度传感器的湿度值,并根据所述最低温度值和所述湿度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
在一些可选实施例中,提供了一种空调器除霜控制的装置,用于空调器,包括:
处理器;
存储器,其上存储有所述处理器可执行指令;
其中,所述处理器被配置为:
获取多个温度传感器中的最低温度值,其中,多个所述温度传感器设于所述空调器的室内换热器的盘管上;
根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
进一步的,所述处理器被配置为:
如果所述最低温度值在第一预设温度值和第二预设温度值之间,控制所述压缩机进行降频操作;
如果所述最低温度值在第三预设温度值和第四预设温度值之间,且该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机;
如果所述最低温度值小于第五预设温度值,控制所述压缩机停机;
其中,所述第一预设温度值大于所述第二预设温度值,所述第三预设温度值大于所述第四预设温度值,所述第二预设温度值大于或等于所述第三预设温度值,所述第四预设温度值大于或等于所述第五预设温度值。
该可选实施例中,通过获取多个温度传感器中的最低温度值,并根据最低温度值控制空调器的压缩机进行动作,能够更精准的控制压缩机进行除霜动作,解决室内换热器分流不均时,有霜不除,结霜不保护的问题。
在一些示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由处理器执行以完成前文所述的方法。上述非临时性计算机可读存储介质可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁带和光存储设备等。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述 的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应当理解的是,附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调器的除霜控制方法,其特征在于,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制方法包括:
    获取多个所述温度传感器中的最低温度值;
    根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
  2. 根据权利要求1所述的控制方法,其特征在于,
    如果所述最低温度值在第一预设温度值和第二预设温度值之间,控制所述压缩机进行降频操作;
    如果所述最低温度值在第三预设温度值和第四预设温度值之间,且该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机;
    如果所述最低温度值小于第五预设温度值,控制所述压缩机停机;
    其中,所述第一预设温度值大于所述第二预设温度值,所述第三预设温度值大于所述第四预设温度值,所述第二预设温度值大于或等于所述第三预设温度值,所述第四预设温度值大于或等于所述第五预设温度值。
  3. 根据权利要求1所述的控制方法,其特征在于,所述获取多个所述温度传感器中的最低温度值,包括:
    在所述空调器处于制冷工况的情形下,获取多个所述温度传感器中的最低温度值。
  4. 根据权利要求1所述的空调器,其特征在于,所述室内换热器的盘管上与所述温度传感器对应的位置设有湿度传感器,所述控制方法还包括:
    获取与具有最低温度值的温度传感器对应的湿度传感器的湿度值;
    根据所述湿度值和所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
  5. 一种空调器的除霜控制装置,其特征在于,所述空调器的室内换热器的盘管上设有多个温度传感器,所述控制装置包括:
    第一获取模块,用于获取多个所述温度传感器中的最低温度值;
    控制模块,用于根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
  6. 根据权利要求1所述的控制装置,其特征在于,所述第一控制模块具体用于:
    如果所述最低温度值在第一预设温度值和第二预设温度值之间,控制所述压缩机进行降频操作;
    如果所述最低温度值在第三预设温度值和第四预设温度值之间,且该状态的持续时间大于或等于预设停机时间,控制所述压缩机停机;
    如果所述最低温度值小于第五预设温度值,控制所述压缩机停机;
    其中,所述第一预设温度值大于所述第二预设温度值,所述第三预设温度值大于所述第四预设温度值,所述第二预设温度值大于或等于所述第三预设温度值,所述第四预设温度值大于或等于所述第五预设温度值。
  7. 根据权利要求1所述的控制装置,其特征在于,所述第一获取模块具体用于:在所述空调器处于制冷工况的情形下,获取多个所述温度传感器中的最低温度值。
  8. 根据权利要求1所述的控制装置,其特征在于,所述室内换热器的盘管上与所述温度传感器对应的位置设有湿度传感器,所述控制装置还包括第二获取模块,
    所述第二获取模块用于获取与具有最低温度值的温度传感器对应的湿度传感器的湿度值;
    所述控制模块还用于根据所述湿度值和所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
  9. 一种空调器除霜控制的装置,用于空调器,其特征在于,包括:
    处理器;
    存储器,其上存储有所述处理器可执行指令;
    其中,所述处理器被配置为:
    获取多个温度传感器中的最低温度值,其中,多个所述温度传感器设于所述空调器的室内换热器的盘管上;
    根据所述最低温度值,控制所述空调器的压缩机进行动作,以对所述室内换热器进行除霜。
  10. 一种存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序被处理器执行时实现如权利要求1至4中任一项所述的空调器的 除霜控制方法。
PCT/CN2018/119782 2018-06-06 2018-12-07 一种空调器的除霜控制方法、装置、存储介质 WO2019233069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810573587.3 2018-06-06
CN201810573587.3A CN108826584A (zh) 2018-06-06 2018-06-06 一种空调器的除霜控制方法、装置、存储介质

Publications (1)

Publication Number Publication Date
WO2019233069A1 true WO2019233069A1 (zh) 2019-12-12

Family

ID=64144149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119782 WO2019233069A1 (zh) 2018-06-06 2018-12-07 一种空调器的除霜控制方法、装置、存储介质

Country Status (2)

Country Link
CN (1) CN108826584A (zh)
WO (1) WO2019233069A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826584A (zh) * 2018-06-06 2018-11-16 青岛海尔空调器有限总公司 一种空调器的除霜控制方法、装置、存储介质
CN110260467B (zh) * 2019-05-28 2021-09-21 青岛海尔空调电子有限公司 空调器及其防冻结保护控制方法和控制装置
CN110186154A (zh) * 2019-05-31 2019-08-30 四川长虹空调有限公司 空调的化霜方法及装置
CN111503828A (zh) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 空调器及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982980A (zh) * 2014-04-30 2014-08-13 广东美的制冷设备有限公司 空调器换热器防冻结的控制方法及装置
CN106839325A (zh) * 2017-02-28 2017-06-13 广东美的制冷设备有限公司 空调器控制方法、装置及空调器
CN107514746A (zh) * 2017-08-04 2017-12-26 合肥美的暖通设备有限公司 除霜控制方法、装置、空调器和计算机可读存储介质
JP2018066502A (ja) * 2016-10-19 2018-04-26 株式会社富士通ゼネラル 空気調和機
CN108036471A (zh) * 2017-11-29 2018-05-15 青岛海信日立空调系统有限公司 空调器除湿控制方法
CN108036472A (zh) * 2017-11-29 2018-05-15 青岛海信日立空调系统有限公司 空调器除湿控制系统及空调器
EP3367011A1 (en) * 2017-02-28 2018-08-29 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioning system, control device, control method, and program
CN108826584A (zh) * 2018-06-06 2018-11-16 青岛海尔空调器有限总公司 一种空调器的除霜控制方法、装置、存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065699A (ja) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 冷凍サイクル装置
CN104566820B (zh) * 2014-12-26 2017-10-03 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106524389B (zh) * 2015-09-15 2020-11-10 上海海立电器有限公司 一种空调器除霜方法及其空调器
JP2017142039A (ja) * 2016-02-12 2017-08-17 三菱重工サーマルシステムズ株式会社 空気調和装置
CN107044716B (zh) * 2017-04-21 2019-10-01 广东美的暖通设备有限公司 空调除霜控制方法、空调及计算机可读存储介质
CN107101264A (zh) * 2017-04-10 2017-08-29 青岛海尔空调器有限总公司 空调系统及用于空调系统的控制方法
CN107202399B (zh) * 2017-05-17 2020-08-04 青岛海尔空调器有限总公司 空调器除霜控制方法
CN107152766B (zh) * 2017-06-08 2020-02-07 广东美的暖通设备有限公司 除霜控制方法、除霜控制装置和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982980A (zh) * 2014-04-30 2014-08-13 广东美的制冷设备有限公司 空调器换热器防冻结的控制方法及装置
JP2018066502A (ja) * 2016-10-19 2018-04-26 株式会社富士通ゼネラル 空気調和機
CN106839325A (zh) * 2017-02-28 2017-06-13 广东美的制冷设备有限公司 空调器控制方法、装置及空调器
EP3367011A1 (en) * 2017-02-28 2018-08-29 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioning system, control device, control method, and program
CN107514746A (zh) * 2017-08-04 2017-12-26 合肥美的暖通设备有限公司 除霜控制方法、装置、空调器和计算机可读存储介质
CN108036471A (zh) * 2017-11-29 2018-05-15 青岛海信日立空调系统有限公司 空调器除湿控制方法
CN108036472A (zh) * 2017-11-29 2018-05-15 青岛海信日立空调系统有限公司 空调器除湿控制系统及空调器
CN108826584A (zh) * 2018-06-06 2018-11-16 青岛海尔空调器有限总公司 一种空调器的除霜控制方法、装置、存储介质

Also Published As

Publication number Publication date
CN108826584A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019233069A1 (zh) 一种空调器的除霜控制方法、装置、存储介质
US10684055B2 (en) Sensor failure error handling
EP3978821A1 (en) Low-temperature heating activation control method for air conditioner, and air conditioner
US10215470B2 (en) Heat pump system and operation method therefor
US11639802B2 (en) Control method and device of air conditioning system and air conditioning system
CN109210696B (zh) 一种空调防冻结保护的控制方法
WO2017002618A1 (ja) 空気調和システム、制御方法及びプログラム
CN109210699B (zh) 空调防冻结保护的控制方法
CN105783182B (zh) 空调器及其控制方法和装置
CN105509387A (zh) 风冷热泵机组及其中的电子膨胀阀开度控制方法、空调
WO2020248764A1 (zh) 用于空气调节系统的控制方法、空气调节控制系统及空气调节系统
CN108195050B (zh) 一拖多空调器后备持续运转控制方法和一拖多空调器
WO2021093310A1 (zh) 空调防冻结保护的方法及装置、空调
CN110425686B (zh) 风冷模块机组化霜控制方法、计算机装置以及计算机可读存储介质
CN109425195A (zh) 冰箱温度控制方法、装置及冰箱
CN105588223B (zh) 一种室外机、除霜控制系统及方法
EP3208549B1 (en) Air conditioner
CN106813356A (zh) 一种空调系统低压保护方法
CN109869868B (zh) 一种空调多联机缺冷媒的检测方法及装置、空调器
US10746427B2 (en) Air conditioner blowing temperature estimation apparatus and computer-readable recording medium
JP6180165B2 (ja) 空気調和装置
CN112074692B (zh) 空调机
CN114608145B (zh) 用于空调器的控制方法、控制装置、空调器和存储介质
JP2013096589A (ja) 店舗集中管理装置及び空気調和機のショーケースへの影響度計測方法
EP3447405B1 (en) Air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921541

Country of ref document: EP

Kind code of ref document: A1