WO2021093310A1 - 空调防冻结保护的方法及装置、空调 - Google Patents

空调防冻结保护的方法及装置、空调 Download PDF

Info

Publication number
WO2021093310A1
WO2021093310A1 PCT/CN2020/093276 CN2020093276W WO2021093310A1 WO 2021093310 A1 WO2021093310 A1 WO 2021093310A1 CN 2020093276 W CN2020093276 W CN 2020093276W WO 2021093310 A1 WO2021093310 A1 WO 2021093310A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wind speed
freezing
air conditioner
superheat
Prior art date
Application number
PCT/CN2020/093276
Other languages
English (en)
French (fr)
Inventor
马玉奇
郭蕾
李红
贾丽萍
罗欢
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021093310A1 publication Critical patent/WO2021093310A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, such as methods and devices for anti-freezing protection of air conditioners, and air conditioners.
  • air conditioners are becoming more and more intelligent.
  • the air conditioner in order to prevent the evaporator from freezing or liquid refrigerant entering the compressor due to the low temperature of the evaporator when the air conditioner is running in the cooling or dehumidifying mode, the compressor is usually protected from freezing.
  • the anti-freezing protection may include: setting multiple anti-freezing protection temperatures, and when the coil sensor detects that different anti-freezing protection temperatures are reached, different processing stages of the anti-freezing protection are entered, and the compressor is reduced in frequency or stopped. When the coil temperature rises to a different recovery temperature, the refrigeration or dehumidification operation is resumed.
  • the evaporator branch usually has N channels (N ⁇ 2), and the internal unit evaporator coil usually has only one.
  • the embodiments of the present disclosure provide a method, a device, and an air conditioner for anti-freezing protection of an air conditioner, so as to solve the technical problem of low accuracy of the air conditioner's anti-freezing protection.
  • the method includes:
  • the wind speed of the fan is increased from the first wind speed to the second wind speed to obtain The difference between the current return air temperature and the current coil temperature is determined as the first degree of superheat and saved;
  • the difference between the acquired current return air temperature and the current coil temperature is determined as the second degree of superheat.
  • the preset anti-freezing protection temperature is adjusted, and the anti-freezing protection operation is performed according to the adjusted preset anti-freezing protection temperature .
  • the device includes:
  • the obtaining module is configured to obtain the current coil temperature of the air conditioner
  • the lifting module is configured to increase the wind speed of the fan from the first wind speed to the condition that the absolute value of the difference between the current coil temperature and the preset anti-freezing protection temperature is less than a first set value For the second wind speed, the difference between the acquired current return air temperature and the current coil temperature is determined as the first degree of superheat and saved;
  • the first protection module is configured to determine the difference between the acquired current return air temperature and the current coil temperature as the second degree of superheat when the fan is running at the second wind speed, and When the absolute value of the superheat difference between the first degree of superheat and the second degree of superheat is greater than the second set value, the preset anti-freezing protection temperature is adjusted, and the preset anti-freezing protection temperature is adjusted according to the adjusted preset anti-freezing temperature. Protect the temperature and perform anti-freezing protection operation.
  • the device includes a processor and a memory storing program instructions
  • the device includes: a processor and a memory storing program instructions
  • the processor is configured to execute the program instructions, Perform the above-mentioned air conditioning anti-freezing protection method
  • the air conditioner includes the above-mentioned anti-freezing protection device for the air conditioner.
  • the method, device and air conditioner for anti-freezing protection of an air conditioner provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the wind speed of the air conditioner fan can be increased to increase the air volume, and if the superheat degree changes greatly after the air volume increases, it is determined that the evaporator of the air conditioner is unevenly divided. , Need to adjust the preset anti-freeze protection temperature, so that according to the adjusted preset anti-freeze protection temperature, when the corresponding anti-freeze protection strategy is executed, the risk of evaporator freezing can be reduced, and the accuracy of the air conditioner's anti-freeze protection can be improved , It also further improves the intelligence of the air conditioner.
  • FIG. 1 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an anti-freezing protection device for an air conditioner provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an anti-freezing protection device for an air conditioner provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic structural diagram of an anti-freezing protection device for an air conditioner provided by an embodiment of the present disclosure.
  • the air conditioner has an anti-freezing protection function.
  • the corresponding anti-freezing protection strategy is not executed immediately, but the air-conditioning fan wind speed is increased to increase the air volume. , If the air volume increases and the superheat has a large change, it can be determined that the air conditioner's evaporator has uneven distribution.
  • the preset anti-freeze protection temperature in the anti-freeze protection strategy it is necessary to adjust the preset anti-freeze protection temperature in the anti-freeze protection strategy, and according to the adjusted preset anti-freeze protection temperature To protect the temperature, when the corresponding anti-freezing protection strategy is implemented, the risk of evaporator freezing or the poor performance of the air conditioner can be reduced, the accuracy of the air conditioner's anti-freezing protection is improved, and the intelligence of the air conditioner is further improved.
  • Fig. 1 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure. As shown in Figure 1, the process of air conditioning anti-freezing protection can include:
  • Step 101 Obtain the current coil temperature of the air conditioner.
  • the evaporator of the air conditioner usually has N channels (N ⁇ 2), while the internal evaporator coil usually has only one.
  • the coil temperature can be collected in real time or regularly, and the temperature collected each time is the current disk.
  • the tube temperature can be collected by the corresponding temperature sensor.
  • Step 102 When the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature is less than the first set value, increase the wind speed of the fan from the first wind speed to the second wind speed to obtain The difference between the current return air temperature and the current coil temperature is determined as the first superheat and saved.
  • the air conditioner has an anti-freezing function.
  • the relevant air-conditioning anti-freezing protection strategy when the current temperature reaches the preset anti-freezing protection temperature, the corresponding anti-freezing protection strategy can be executed.
  • Table 1 shows the corresponding relationship between the coil temperature range formed by a preset anti-freezing protection temperature and the anti-freezing protection strategy in an embodiment of the present disclosure.
  • the first temperature, the second temperature, the third temperature, and the fourth temperature are all preset anti-freezing protection temperatures.
  • the first temperature is less than the second temperature
  • the second temperature is less than the third temperature
  • the third temperature is less than the fourth temperature. temperature.
  • each anti-freeze protection strategy implemented by the air conditioner is related to the corresponding preset anti-freeze protection temperature.
  • the coil temperature reaches the corresponding preset anti-freeze protection temperature, and the corresponding anti-freeze protection strategy is executed.
  • there are many specific strategies in the anti-freeze protection function of the air conditioner but no matter which one, each anti-freeze protection strategy is related to the preset anti-freeze protection temperature.
  • the current coil temperature reaches the preset anti-freeze protection Temperature, you can carry out the corresponding treatment.
  • the difference between the current coil temperature and the preset anti-freeze protection temperature is within a certain range, it can be determined that the current coil temperature reaches the preset temperature.
  • the difference between the current coil temperature and the preset anti-freeze protection temperature may be positive or negative.
  • the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature can be combined with a The set value is compared, that is, the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature is less than the first set value, and it can be determined that the current coil temperature reaches the preset anti-freeze protection temperature.
  • the first setting value can be 0.1, 0.2, 0.3, or 0.5, etc., which can be specifically determined according to the performance parameters of the air conditioner and the operating mode.
  • the corresponding anti-freeze protection strategy when the current coil temperature reaches the preset anti-freeze protection temperature, the corresponding anti-freeze protection strategy is not executed immediately, but it is necessary to increase the air volume of the fan and then determine whether or not it is based on the overheating of the air conditioner. Implement the corresponding anti-freeze protection strategy.
  • the compressor rises at a speed of 1HZ/10 seconds, but operates normally, and still performs cooling or defrosting.
  • the superheat degree is the difference between the return air temperature and the coil temperature. Therefore, the current return air temperature needs to be obtained.
  • the current coil temperature has been obtained in the above steps. Therefore, when the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature is less than the first set value, the current return air obtained at this time The difference between the temperature and the current coil temperature is determined as the first degree of superheat and saved.
  • the first degree of superheat ⁇ t1 Th1-Tp1.
  • Th1 and Tp1 are the current return air temperature and the current coil temperature obtained when the fan is running at the first wind speed, and when the current return air temperature is collected, the current coil temperature still needs to reach the preset antifreeze protection temperature.
  • the first wind speed is the current wind speed of the corresponding fan when the current coil temperature reaches the preset anti-freeze protection temperature.
  • An increase wind speed range can be preset, so that the sum between the current wind speed and the increase wind speed range is the first Two wind speed.
  • Step 103 When the fan is running at the second wind speed, determine the obtained difference between the current return air temperature and the current coil temperature as the second degree of superheat, which is between the first degree of superheat and the second degree of superheat When the absolute value of the overheating difference is greater than the second set value, the preset anti-freezing protection temperature is adjusted, and the anti-freezing protection operation is performed according to the adjusted preset anti-freezing protection temperature.
  • the air conditioner After the air conditioner increases the air volume, that is, after the fan runs at the second wind speed, the coverage of the heat exchange effect of the air conditioner can be immediately increased. Generally, if there is uneven distribution of the evaporator in the air conditioner, when the air volume increases, the distribution will be uneven. The degree will continue to increase, resulting in greater changes in overheating. Therefore, it is still necessary to determine the overheating first.
  • the current coil temperature obtained in step 101 is also necessary to obtain the current return air temperature, that is, the current coil temperature and the current return air temperature are obtained when the fan is running at the second wind speed.
  • the difference between the current return air temperature and the current coil temperature is determined as the second degree of superheat.
  • the second degree of superheat ⁇ t2 Th2-Tp2, where Th2 and Tp2 are respectively the current return air temperature and the current coil temperature obtained when the fan is running at the second wind speed.
  • the anti-freezing protection strategy needs to be adjusted. Preset the anti-freeze protection temperature, and then perform the corresponding anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature.
  • the distribution is uneven, and the preset anti-freeze protection temperature in the anti-freeze protection strategy needs to be adjusted at this time.
  • the preset anti-freezing protection temperature needs to be increased to the first set temperature.
  • the first set temperature and the second set temperature can be determined according to the performance parameters of the air conditioner and the installation environment.
  • the first set temperature and the second set temperature may be equal or unequal.
  • the anti-freeze protection operation can be performed according to the adjusted preset anti-freeze protection temperature.
  • Table 2 is the corresponding relationship between the coil temperature range formed by the adjusted preset anti-freezing protection temperature and the anti-freezing protection strategy in the embodiment of the present disclosure.
  • the preset anti-freezing protection temperature has been adjusted.
  • the compressor can be executed at 1HZ/ Decrease strategy of 10 seconds. That is, during the operation of the air conditioner, the coil temperature is obtained in real time or regularly, and then the obtained coil temperature is determined, corresponding to the coil temperature range, which is formed according to the adjusted preset anti-freezing protection temperature , And then determine the corresponding anti-freeze protection strategy and implement it.
  • the corresponding anti-freeze protection strategy is not executed immediately, but the air speed of the air conditioner fan is increased to increase the air volume. If there is a large change in heat, it can be determined that the evaporator of the air conditioner has uneven distribution.
  • the preset anti-freeze protection temperature in the anti-freeze protection strategy needs to be adjusted, and the corresponding preset anti-freeze protection temperature is executed according to the adjusted preset anti-freeze protection temperature.
  • the anti-freezing protection strategy can reduce the risk of evaporator freezing or the poor performance of the air conditioner, improve the accuracy of the air conditioner's anti-freeze protection, and further improve the intelligence of the air conditioner.
  • the anti-freezing protection operation is performed according to the preset anti-freezing protection temperature.
  • the corresponding anti-freezing protection strategy can be determined according to Table 1, and run.
  • the running time will be recorded. If the recorded running time is more than five minutes than the set time, the wind speed of the fan can be increased to the third wind speed, and the high wind operation of the fan can be used. Increase the evaporation pressure of the evaporator, thereby reducing the risk of icing. In this way, while ensuring the cooling or dehumidification effect of the air conditioner, the risk of icing of the evaporator is further reduced, and the accuracy of the anti-freezing protection of the air conditioner is also improved. Further improve the intelligence of the air conditioner.
  • the air conditioner fan runs at the second wind speed, whether it is to perform anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature, or to perform anti-freeze protection operation according to the original preset anti-freeze protection temperature, it is necessary to change The wind speed of the fan is reduced from the second wind speed to the first wind speed. That is, when the anti-freeze protection operation is performed, the wind speed of the fan is reduced from the second wind speed to the first wind speed, so that the fan resumes normal operation without high wind detection.
  • the air conditioner has an anti-freezing protection function, and can store the corresponding relationship between the coil temperature range formed by the preset anti-freezing protection temperature and the anti-freezing protection strategy as shown in Table 1.
  • Fig. 2 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure. As shown in Figure 2, the process of air conditioning anti-freezing protection can include:
  • Step 201 Obtain the current coil temperature of the air conditioner.
  • the current coil temperature of the air conditioner can be obtained in real time or regularly.
  • Step 202 Is the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature less than 0.5? If yes, go to step 203, otherwise, go to step 204.
  • the first set value is 0.5
  • the preset anti-freezing protection temperature may be the first temperature, the second temperature, the third temperature, or the fourth temperature.
  • Step 203 Increase the wind speed of the air conditioning fan from the first wind speed to the second wind speed, and obtain the current return air temperature, determine the difference between the current return air temperature and the current coil temperature as the first superheat ⁇ t1 and save , Go back to step 201.
  • Step 204 Determine whether the wind speed of the fan is the second wind speed? If yes, go to step 205, otherwise, go back to step 201.
  • the wind speed is the second wind speed, that is, the air volume is increased. Therefore, the anti-freezing protection strategy needs to be adjusted according to the difference between the overheating.
  • Step 205 Obtain the current return air temperature, and determine the difference between the current return air temperature and the current coil temperature as the second degree of superheat ⁇ t2.
  • Step 206 Determine whether the absolute value of the superheat difference ⁇ t between the first degree of superheat ⁇ t1 and the second degree of superheat ⁇ t2 is greater than the second set value? If yes, go to step 207; otherwise, go to step 211.
  • Step 207 Determine whether the overheating difference ⁇ t is greater than 0? If yes, go to step 208; otherwise, go to step 209.
  • Step 208 Increase the preset anti-freezing protection temperature by 2°, and go to step 210.
  • Step 209 Decrease the preset anti-freezing protection temperature by 2°, and go to step 210.
  • Step 210 Perform an anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature.
  • Table 3 shows the corresponding relationship between the coil temperature range formed by the adjusted preset anti-freezing protection temperature and the anti-freezing protection strategy in the embodiment of the present disclosure.
  • the preset anti-freeze protection temperature may be adjusted, the corresponding relationship between the coil temperature range formed by the adjusted preset anti-freeze protection temperature and the anti-freeze protection strategy is shown in Table 3. Then the preset anti-freeze protection temperature is reached after the coil temperature is adjusted. After freezing the protection temperature, according to Table 3, the corresponding anti-freezing protection strategy can be determined and run.
  • Step 211 Perform anti-freeze protection operation according to the preset anti-freeze protection temperature.
  • the absolute value of ⁇ t is less than or equal to the second set value. According to Table 1, the corresponding anti-freezing protection strategy can be determined and run.
  • the wind speed of the air conditioner fan can be increased to increase the air volume, and the evaporation of the air conditioner can be determined when the superheat degree changes greatly after the air volume increases.
  • the evaporator has uneven distribution and needs to adjust the preset anti-freeze protection temperature.
  • the risk of evaporator icing can be reduced and the risk of icing of the evaporator can be reduced.
  • the accuracy of the anti-freezing protection of the air conditioner also further improves the intelligence of the air conditioner.
  • the air conditioner has an anti-freezing protection function.
  • Fig. 3 is a schematic flowchart of an anti-freezing protection method for an air conditioner in an embodiment of the present disclosure. As shown in Figure 3, the process of air conditioning anti-freezing protection can include:
  • Step 301 Obtain the current coil temperature of the air conditioner.
  • the current coil temperature of the air conditioner can be obtained in real time or regularly.
  • Step 302 Is the absolute value of the difference between the current coil temperature and the preset anti-freezing protection temperature less than 0.8? If yes, go to step 303; otherwise, go to step 304.
  • Step 303 Increase the wind speed of the air conditioning fan from the first wind speed to the second wind speed, and obtain the current return air temperature, and determine the difference between the current return air temperature and the current coil temperature as the first superheat ⁇ t1 and save it . Return to step 301.
  • the first wind speed is the current wind speed of the corresponding fan when the current coil temperature reaches the preset anti-freezing protection temperature
  • the second wind speed is the sum of the first wind speed and the preset lifting wind speed range.
  • Step 304 Determine the wind speed of the fan to run at the second wind speed? If yes, go to step 305, otherwise, go back to step 301.
  • Step 305 Obtain the current return air temperature, and determine the difference between the current return air temperature and the current coil temperature as the second degree of superheat ⁇ t2.
  • Judgment 306 Is the absolute value of the superheat difference ⁇ t between the first superheat degree ⁇ t1 and the second superheat degree ⁇ t2 greater than the second set value? If yes, go to step 307; otherwise, go to step 314.
  • Step 307 Determine whether the overheating difference ⁇ t is greater than 0? If yes, go to step 308; otherwise, go to step 309.
  • Step 308 Increase the preset anti-freezing protection temperature by 2°, and go to step 310.
  • Step 309 Decrease the preset anti-freezing protection temperature by 2°, and go to step 311.
  • Step 310 Perform an anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature, and reduce the wind speed of the fan from the second wind speed to the first wind speed.
  • Step 311 Perform anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature, reduce the wind speed of the fan from the second wind speed to the first wind speed, and record that after the preset anti-freeze protection temperature is reduced by 2°, the air conditioner Running time.
  • Step 312 Determine whether the running time is greater than 5 minutes? If yes, go to step 313, otherwise, go back to step 311.
  • Step 313 Increase the wind speed of the fan from the first wind speed to the third wind speed.
  • Step 314 Perform an anti-freeze protection operation according to the preset anti-freeze protection temperature, and reduce the wind speed of the fan from the second wind speed to the first wind speed.
  • the wind speed of the air conditioner fan can be increased to increase the air volume, and the evaporation of the air conditioner can be determined when the superheat degree changes greatly after the air volume increases. If the evaporator has uneven distribution, it is necessary to adjust the preset anti-freeze protection temperature. In this way, according to the adjusted preset anti-freeze protection temperature, when the corresponding anti-freeze protection strategy is implemented, the risk of icing of the evaporator can be reduced, and, When the evaporator coil is in a flow path with a large amount of cold media liquid separation, the high wind operation of the fan can increase the evaporation pressure of the evaporator. In this way, while ensuring the cooling or dehumidification effect of the air conditioner, it further reduces the evaporator structure. Therefore, the accuracy of the anti-freezing protection of the air conditioner can be improved, and the intelligence of the air conditioner can be further improved.
  • a device for air conditioner anti-freezing protection can be constructed.
  • Fig. 4 is a schematic structural diagram of an anti-freezing protection device for an air conditioner provided by an embodiment of the present disclosure.
  • the air conditioner anti-freezing protection device includes: an acquisition module 410, a lifting module 420, and a first protection module 430.
  • the obtaining module 410 is configured to obtain the current coil temperature of the air conditioner.
  • the lifting module 420 is configured to increase the wind speed of the fan from the first wind speed to the second wind speed when the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature is less than the first set value , The difference between the obtained current return air temperature and the current coil temperature is determined as the first superheat degree and saved.
  • the first protection module 430 is configured to determine the obtained difference between the current return air temperature and the current coil temperature as the second degree of superheat when the fan is running at the second wind speed.
  • the preset anti-freezing protection temperature is adjusted, and the anti-freezing protection operation is performed according to the adjusted preset anti-freezing protection temperature.
  • the first protection module 430 includes:
  • the first adjustment unit is configured to increase the preset anti-freezing protection temperature by the first set temperature when the absolute value of the superheat difference is greater than the second set value, and the first degree of superheat is greater than the second degree of superheat.
  • the second adjustment unit is configured to lower the preset anti-freezing protection temperature by the second set temperature when the absolute value of the superheat difference is greater than the second set value and the first degree of superheat is lower than the second degree of superheat.
  • the device further includes: a recording lifting module configured to record the operating time after the preset anti-freezing protection temperature is lowered by the second set temperature; when the operating time is greater than the set time, the fan The wind speed is increased to the third wind speed; among them, the third wind speed is greater than the first wind speed.
  • a recording lifting module configured to record the operating time after the preset anti-freezing protection temperature is lowered by the second set temperature; when the operating time is greater than the set time, the fan The wind speed is increased to the third wind speed; among them, the third wind speed is greater than the first wind speed.
  • it further includes: a second protection module configured to operate according to the preset anti-freezing protection temperature when the fan is running at the second wind speed and the absolute value of the overheating difference is less than or equal to the second set value , Perform anti-freezing protection operation.
  • a second protection module configured to operate according to the preset anti-freezing protection temperature when the fan is running at the second wind speed and the absolute value of the overheating difference is less than or equal to the second set value , Perform anti-freezing protection operation.
  • the device further includes a lowering module configured to reduce the wind speed of the fan from the second wind speed to the first wind speed when performing anti-freezing protection operation.
  • the air conditioner has an anti-freezing protection function.
  • Fig. 5 is a schematic structural diagram of an anti-freezing protection device for an air conditioner provided by an embodiment of the present disclosure.
  • the air conditioner anti-freezing protection device includes: an acquisition module 410, a lifting module 420, and a first protection module 430, and may also include: a second protection including 440, a lowering module 450, and a recording lifting module 460.
  • the first protection module 430 also includes: a first adjustment unit 431 and a second adjustment unit 432.
  • the acquiring module 410 can acquire the current coil temperature of the air conditioner in real time or regularly. In this way, when the absolute value of the difference between the current coil temperature and the preset anti-freeze protection temperature is less than the first set value, that is, when the current coil temperature reaches the preset anti-freeze protection temperature, the lifting module 420 can change The wind speed of the air conditioner is increased from the first wind speed to the second wind speed, and the current return air temperature is obtained, and the difference between the current return air temperature and the current coil temperature is determined as the first superheat ⁇ t1 and saved.
  • the first protection module 430 may obtain the current return air temperature, and determine the difference between the current return air temperature and the current coil temperature as the second superheat ⁇ t2. And when the absolute value of the overheating difference ⁇ t is greater than the second set value, and ⁇ t is greater than 0, the first adjustment unit 431 may increase the preset anti-freezing protection temperature by 2°. When the absolute value of the overheat difference ⁇ t is greater than the second set value, and ⁇ t is less than 0, the second adjustment unit 432 can reduce the preset anti-freezing protection temperature by 2°.
  • the first protection module 430 can perform an anti-freeze protection operation according to the adjusted preset anti-freeze protection temperature.
  • the module 450 is lowered and the wind speed of the fan is reduced from the second wind speed to the first wind speed.
  • the recording upgrade module 460 can record the air conditioning operating time after the preset anti-freeze protection temperature is lowered by 2°, and when the recorded operating time is greater than 5 minutes, the wind speed of the fan is changed from the first The wind speed is increased to the third wind speed.
  • the second protection module 440 can perform anti-freezing protection according to the original preset anti-freezing protection temperature. Freeze protection operation.
  • the reduction module 450 also needs to reduce the wind speed of the fan from the second wind speed to the first wind speed.
  • the air-conditioning anti-freezing protection device can increase the wind speed of the air-conditioning fan and increase the air volume after the coil temperature reaches the preset anti-freezing protection temperature, and when the air volume increases, the superheat degree changes greatly. , It is determined that the evaporator of the air conditioner has uneven distribution, and the preset anti-freeze protection temperature needs to be adjusted. In this way, according to the adjusted preset anti-freeze protection temperature, the corresponding anti-freeze protection strategy can be implemented to reduce the evaporator freezing In addition, when the evaporator coil is in a flow path with more cold media, the high wind operation of the fan can increase the evaporating pressure of the evaporator.
  • the embodiment of the present disclosure provides an air conditioner anti-freezing protection device, which includes a processor and a memory storing program instructions.
  • the processor is configured to execute the aforementioned air-conditioning anti-freezing protection process when the program instructions are executed.
  • the embodiment of the present disclosure provides an anti-freezing protection device for an air conditioner, the structure of which is shown in FIG. 6 and includes:
  • a processor (processor) 100 and a memory (memory) 101 may also include a communication interface (Communication Interface) 102 and a bus 103. Among them, the processor 100, the communication interface 102, and the memory 101 can communicate with each other through the bus 103. The communication interface 102 can be used for information transmission.
  • the processor 100 can call the logic instructions in the memory 101 to execute the anti-freezing protection method of the air conditioner in any of the above embodiments.
  • logic instructions in the memory 101 can be implemented in the form of software functional units and when sold or used as independent products, they can be stored in a computer readable storage medium.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes functional applications and data processing by running the program instructions/modules stored in the memory 101, that is, realizes the air conditioner anti-freezing protection method in any of the foregoing method embodiments.
  • the memory 101 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of a terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the embodiments of the present disclosure provide an air conditioner, including any one of the above-mentioned anti-freezing protection devices for the air conditioner.
  • the embodiments of the present disclosure provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the air conditioner anti-freezing protection method in any of the above-mentioned embodiments.
  • the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer program The computer executes the anti-freezing protection method of the air conditioner in any of the above embodiments.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including one" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, then the related parts can be referred to the description of the method parts.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logic function.
  • Executable instructions may also occur in a different order than the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调防冻结保护的方法及装置、空调。该方法包括:获取空调的当前盘管温度;在所述当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将所述风机的风速从第一风速调高到第二风速,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第一过热度并保存;在所述风机以所述第二风速运行的情况下,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第二过热度,在所述第一过热度与所述第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整所述预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。提高了空调防冻结保护的准确性。

Description

空调防冻结保护的方法及装置、空调
本申请基于申请号为201911113607.X、申请日为2019年11月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及空调防冻结保护的方法及装置、空调。
背景技术
随着人工智能技术的发展,空调也越来越智能化了。空调使用时,为了防止空调在运行制冷或除湿模式时,蒸发器温度过低造成蒸发器结冰或液态制冷剂进入压缩机引起压缩机液击损坏,通常会进行防冻结保护。
目前,防冻结保护可包括:设定多个防冻结保护温度,当盘管传感器检测达到不同的防冻结保护温度时,进入防冻结保护不同处理阶段,压缩机降频或停机。待盘管温度上升至不同恢复温度时,则恢复制冷或除湿运行。但蒸发器分流通常有N路(N≥2),而内机蒸发器盘管通常只有一个,当内机蒸发器因部件、风量分布、加工一致性等差异,造成各流路分支实际温度分布存在较大差异,从而检测到的盘管温度不能反映蒸发器整体结冰情况,从而,影响制冷和除湿效果或结冰过大掉落损坏内机。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种空调防冻结保护的方法、装置和空调,以解决空调防冻结保护准确性不高的技术问题。
在一些实施例中,所述方法包括:
获取空调的当前盘管温度;
在所述当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将所述风机的风速从第一风速调高到第二风速,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第一过热度并保存;
在所述风机以所述第二风速运行的情况下,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第二过热度,在所述第一过热度与所述第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整所述预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
在一些实施例中,所述装置包括:
获取模块,被配置为获取空调的当前盘管温度;
提升模块,被配置为在所述当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将所述风机的风速从第一风速调高到第二风速,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第一过热度并保存;
第一保护模块,被配置为在所述风机以所述第二风速运行的情况下,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第二过热度,在所述第一过热度与所述第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整所述预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,所述装置包括:处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述的空调防冻结保护方法
在一些实施例中,所述空调包括:包括上述的空调防冻结保护装置。
本公开实施例提供的空调防冻结保护的方法、装置和空调,可以实现以下技术效果:
空调的盘管温度到达预设防冻结保护温度后,可将空调风机风速提升,增加风量,并在风量增加后过热度有较大变化的情况下,确定空调的蒸发器有分流不均的情况,需要调整预设防冻结保护温度,这样,根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险,提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例中一种空调防冻结保护方法的流程示意图;
图2是本公开实施例中一种空调防冻结保护方法的流程示意图;
图3是本公开实施例中一种空调防冻结保护方法的流程示意图;
图4是本公开实施例提供的一种空调防冻结保护装置的结构示意图;
图5是本公开实施例提供的一种空调防冻结保护装置的结构示意图;
图6是本公开实施例提供的一种空调防冻结保护装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在 以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
空调具有防冻结保护功能,本公开实施例中,空调的盘管温度到达预设防冻结保护温度后,并不立即执行对应的防冻结保护策略,而是将空调风机风速提升,增加风量,这样,若风量增加后过热度有较大变化,则可确定空调的蒸发器有分流不均,此时需调整防冻结保护策略中的预设防冻结保护温度,而根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险或者空调运行效果不佳的情况,提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
图1是本公开实施例中一种空调防冻结保护方法的流程示意图。如图1所示,空调防冻结保护的过程可包括:
步骤101:获取空调的当前盘管温度。
本公开实施例中,空调的蒸发器分流通常有N路(N≥2),而内机蒸发器盘管通常只有一个,可实时或定时采集盘管温度,每次采集的温度即为当前盘管温度,可通过对应的温度传感器进行采集。
步骤102:在当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将风机的风速从第一风速调高到第二风速,将获取的当前回气温度与当前盘管温度之间的差值确定为第一过热度并保存。
空调具有防冻结的功能,在相关的空调防冻结保护策略中,当前温度达到预设防冻结保护温度的时候,即可执行对应的防冻结保护策略。
表1是本公开实施例中一种预设防冻结保护温度形成的盘管温度范围与防冻结保策略的对应关系。
Figure PCTCN2020093276-appb-000001
表1
表1中,第一温度、第二温度、第三温度,第四温度都为预设防冻结保护温度,第一温度小于第二温度,第二温度小于第三温度,第三温度小于第四温度。如表1所示,空调执行的每种防冻结保策略都与对应的预设防冻结保护温度相关,盘管温度到达对应的预设 防冻结保护温度,执行对应的防冻结保护策略。当然,空调的防冻结保护功能中具体的策略有多种,但是无论哪种,每种防冻结保护策略都与预设防冻结保护温度相关,因此,若当前盘管温度到达预设防冻结保护温度,即可进行对应的处理。一般为了提高空调的容错率,若当前盘管温度与预设防冻结保护温度之间的差值在一定范围内,即可确定当前盘管温度达到预设温度。当前盘管温度与预设防冻结保护温度之间的差值可能为正值,或者负值,因此,这里可将当前盘管温度与预设防冻结保护温度之间的差值绝对值与一个设定值进行比较,即当前盘管温度与预设设防冻结保护温度之间的差值绝对值小于第一设定值,可确定当前盘管温度达到预设防冻结保温度。第一设定值可为0.1、0.2、0.3、或0.5等等这些数值,具体可根据空调的性能参数,以及运行模式来确定。
本公开实施例中,当前盘管温度达到预设防冻结保护温度时,并不立即执行对应的防冻结保护策略,而是还需通过加大风机风量后,再根据空调的过热度来确定是否执行对应的防冻结保护策略。
例如:在盘管温度下降的过程中,当前盘管温度与第四温度的差值绝对值小于0.2,即可确定当前盘管温度到达第四温度,此时并立刻执行如表1所示的压缩机以1HZ/10秒的速度上升,而是正常运行,仍然进行制冷或除霜等处理,但是,需要将空调此时正常运行的风机的风速确定为第一风速,并将风机的风速从第一风速调高到第二风速,并且还需要保存对应的过热度,过热度是回气温度与盘管温度之间的差值。因此,还需获取当前回气温度,空调运行时,压缩机会对应有排气温度和回气温度,确定了盘管温度达到了预设防冻保护温度时,即可采集回气温度,采集的温度即为当前回气温度。
上述步骤中已经获取了当前盘管温度,因此,在当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将此时获取的当前回气温度与当前盘管温度之间的差值确定为第一过热度并保存。第一过热度△t1=Th1-Tp1。Th1,Tp1分别是风机以第一风速运行的情况下获取的当前回气温度和当前盘管温度,且采集当前回气温度时,当前盘管温度还需到达预设防冻保护温度。
其中,第一风速,为当前盘管温度到达预设防冻结保护温度时,对应的风机的当前风速,可预设一个提升风速幅度,从而,当前风速与提升风速幅度之间的和即为第二风速。
步骤103:在风机以第二风速运行的情况下,将获取的当前回气温度与当前盘管温度之间的差值确定为第二过热度,在第一过热度与第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
空调增加风量后,即风机以第二风速运行后,可立刻增加空调换热作用的覆盖范围了,一般,空调中若存在蒸发器分流不均的现象,在风量增大时,分流不均的程度会继续增加,导致过热量变化会比较大。因此,仍然需要先确定过热量。
步骤101中获取的当前盘管温度,此时,还需获取当前回气温度,即当前盘管温度和当前回气温度是在风机以第二风速运行的情况下获取的,此时,可将当前回气温度与当前 盘管温度之间的差值确定为第二过热度。第二过热度△t2=Th2-Tp2,其中,Th2,Tp2分别是风机以第二风速运行的情况下获取的当前回气温度和当前盘管温度。
确定了第二过热度后,需将第二过热度与保存的第一过热度进行比较,若两者发生较大变化,则表明蒸发器分流不均,此时需调整防冻结保护策略中的预设防冻结保护温度,然后,根据调整后的预设防冻结保护温度,进行对应防冻结保护运行。
可预设一个值,即第二设定值,这样,若过热差值△t=△t1-△t2,△t的绝对值即过热差值绝对值大于第二设定值时,表明蒸发器分流不均,此时需调整防冻结保护策略中的预设防冻结保护温度。
在一些实施例中,△t的绝对值大于第二设定值情况下,若△t为正值,即第一过热度大于第二过热度时,表明蒸发器盘管在冷媒体分液偏少的流路,此时,存在蒸发器结冰过大甚至脱落的风险,需将预设防冻结保护温度提高第一设定温度。例如:预设防冻结保护温度为第二温度,此时,可将第二温度提高2°,即调整后的预设防冻结保护温度=第二温度+2。
在一些实施例中,△t的绝对值大于第二设定值情况下,若△t为负值,即第一过热度小于第二过热度时,表明蒸发器盘管在冷媒体分液偏多的流路,此时,存在空调运行效果不佳的风险,需将预设防冻结保护温度降低第二设定温度。例如:预设防冻结保护温度为第三温度,此时,可将第三温度降低2°,即调整后的预设防冻结保护温度=第三温度-2。
本公开实施例中,第一设定温度,第二设定温度可根据空调的性能参数,以及安装环境确定。第一设定温度与第二设定温度可以相等也可不相等。
当然,调整了了预设防冻结保护温度后,即可根据调整后的预设防冻结保护温度,进行防冻结保护运行。
表2是本公开实施例中一种调整后的预设防冻结保护温度形成的盘管温度范围与防冻结保策略的对应关系。
Figure PCTCN2020093276-appb-000002
表2
如表2所示,调整了预设防冻结保护温度,这样,在盘管温度逐渐下降过程中,若获取的当前盘管温度到达(第二温度+1),则可执行压缩机以1HZ/10秒的速度下降的策略。即在空调的运行过程中,实时或定时获取盘管温度,然后,确定获取的盘管温度,对应所在的盘管温度范围,该盘管温度范围是根据调整后的预设防冻结保护温度形成的,进而确定对应的防冻结保护策略,并执行。
可见,本实施例中,空调的盘管温度到达预设防冻结保护温度后,并不立即执行对应的防冻结保护策略,而是将空调风机风速提升,增加风量,这样,若风量增加后过热度有较大变化,则可确定空调的蒸发器有分流不均,此时需调整防冻结保护策略中的预设防冻结保护温度,而根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险或者空调运行效果不佳的情况,提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
当然,加大风量后,若过热量变化不大,即表明空调中蒸发器分流不均的现象不明显,此时,即可立即执行空调防冻结功能中对应的防冻结保护策略。在一些实施例中,在风机以第二风速运行,且过热差值绝对值小于或等于第二设定值的情况下,根据预设防冻结保护温度,进行防冻结保护运行。
例如:△t的绝对值小于或等于第二设定值时,即可根据表1,确定对应防冻结保护策略,并运行。
△t的绝对值大于第二设定值情况下,由于△t为负值,即第一过热度小于第二过热度,表明蒸发器盘管在冷媒体分液偏多的流路,此时,存在空调运行效果不佳的风险,通过将预设防冻结保护温度降低第二设定温度,可减少空调运行效果不佳的几率,为进行一步提高空调制冷或除湿的效果,在一些实施例中,将预设防冻结保护温度降低第二设定温度之后,还包括:记录运行时间;在运行时间大于设定时间的情况下,将风机的风速提高至第三风速;其中,第三风速大于第一风速。
例如:将预设防冻结保护温度降低2.5°后,开始记录运行时间,若记录的运行时间大于设定时间五分钟时,可将风机的风速提高至第三风速,通过风机的高风运行可以提高蒸发器的蒸发压力,从而,可降低结冰风险,这样,在保障空调的制冷或除湿的效果的同时,进一步降低了蒸发器结冰的风险,提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
当然,空调风机以第二风速运行后,无论是根据调整后预设防冻结保护温度,进行防冻结保护运行,还是根据原有的预设防冻结保护温度,进行防冻结保护运行,都需要将风机的风速从第二风速降低至第一风速。即进行防冻结保护运行时,将风机的风速从第二风速降低至第一风速,从而风机恢复正常的运行,不需要进行高风探测了。
下面将操作流程集合到具体实施例中,举例说明本发明实施例提供的空调防冻结保护过程。
本公开一实施例中,空调具有防冻结保护的功能,可保存如表1所示的预设防冻结保护温度形成的盘管温度范围与防冻结保策略的对应关系。
图2是本公开实施例中一种空调防冻结保护方法的流程示意图。如图2所示,空调防冻结保护的过程可包括:
步骤201:获取空调的当前盘管温度。
可实时或定时获取空调的当前盘管温度。
步骤202:当前盘管温度与预设防冻结保护温度之间的差值绝对值是否小于0.5?若是,执行步骤203,否则,执行步骤204。
本实施例中,第一设定值为0.5,预设防冻结保护温度可为第一温度、第二温度、第三温度、或第四温度。
步骤203:将空调风机的风速从第一风速提高至第二风速,并获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第一过热度△t1并保存,返回步骤201。
步骤204:判断风机的风速是否为第二风速?若是,执行步骤205,否则,返回步骤201。
风速为第二风速,即加大了风量,因此,需根据过热量之间差值来进行防冻结保护策略的调整。
步骤205:获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第二过热度△t2。
步骤206:判断第一过热度△t1与第二过热度△t2之间的过热差值△t绝对值是否大于第二设定值?若是,执行步骤207,否则,执行步骤211。
步骤207:判断过热差值△t是否大于0?若是,执行步骤208,否则,执行步骤209。
步骤208:将预设防冻结保护温度提高2°,转入步骤210。
步骤209:将预设防冻结保护温度降低2°,转入步骤210。
步骤210:根据调整后的预设防冻结保护温度,进行防冻结保护运行。
表3是本公开实施例中一种调整后的预设防冻结保护温度形成的盘管温度范围与防冻结保策略的对应关系。
可能调整预设防冻结保护温度之后,调整后的预设防冻结保护温度形成的盘管温度范围与防冻结保策略的对应关系如表3所示,则在盘管温度到达调整后预设防冻结保护温度后,根据表3,可确定对应的防冻结保护策略,并运行。
Figure PCTCN2020093276-appb-000003
Figure PCTCN2020093276-appb-000004
表3
步骤211:根据预设防冻结保护温度,进行防冻结保护运行。
△t绝对值小于或等于第二设定值,根据表1,可确定对应的防冻结保护策略,并运行。
可见,本实施例中,空调的盘管温度到达预设防冻结保护温度后,可将空调风机风速提升,增加风量,并在风量增加后过热度有较大变化的情况下,确定空调的蒸发器有分流不均的情况,需要调整预设防冻结保护温度,这样,根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险,提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
本公开一实施例中,空调具有防冻结保护功能。
图3是本公开实施例中一种空调防冻结保护方法的流程示意图。如图3所示,空调防冻结保护的过程可包括:
步骤301:获取空调的当前盘管温度。
可实时或定时获取空调的当前盘管温度。
步骤302:当前盘管温度与预设防冻结保护温度之间的差值绝对值是否小于0.8?若是,执行步骤303,否则,执行步骤304。
步骤303:将空调风机的风速从第一风速提高至第二风速,并获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第一过热度△t1并保存。返回步骤301。
其中,第一风速,为当前盘管温度到达预设防冻结保护温度时,对应的风机的当前风速,第二风速为第一风速与预设的提升风速幅度之和。
步骤304:判断风机的风速以第二风速运行?若是,执行步骤305,否则,返回步骤301。
步骤305:获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第二过热度△t2。
判断306:第一过热度△t1与第二过热度△t2之间的过热差值△t绝对值是否大于第二设定值?若是,执行步骤307,否则,执行步骤314。
步骤307:判断过热差值△t是否大于0?若是,执行步骤308,否则,执行步骤309。
步骤308:将预设防冻结保护温度提高2°,转入步骤310。
步骤309:将预设防冻结保护温度降低2°,转入步骤311。
步骤310:根据调整后的预设防冻结保护温度,进行防冻结保护运行,并将风机的风速从第二风速降低至第一风速。
步骤311:根据调整后的预设防冻结保护温度,进行防冻结保护运行,并将风机的风速从第二风速降低至第一风速,以及记录将预设防冻结保护温度降低2°后,空调的运行时间。
步骤312:判断运行时间是否大于5分钟?若是,执行步骤313,否则,返回步骤311。
步骤313:将风机的风速从第一风速提高至第三风速。
步骤314:根据预设防冻结保护温度,进行防冻结保护运行,并将风机的风速从第二风速降低至第一风速。
可见,本实施例中,空调的盘管温度到达预设防冻结保护温度后,可将空调风机风速提升,增加风量,并在风量增加后过热度有较大变化的情况下,确定空调的蒸发器有分流不均的情况,需要调整预设防冻结保护温度,这样,根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险,并且,蒸发器盘管在冷媒体分液偏多的流路时,通过风机的高风运行可以提高蒸发器的蒸发压力,这样,在保障空调的制冷或除湿的效果的同时,进一步降低了蒸发器结冰的风险,因此,可提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
根据上述空调防冻结保护的过程,可构建空调防冻结保护的装置。
图4是本公开实施例提供的一种空调防冻结保护装置的结构示意图。如图4所示,空调防冻结保护装置包括:获取模块410、提升模块420以及第一保护模块430。
获取模块410,被配置为获取空调的当前盘管温度。
提升模块420,被配置为在当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将风机的风速从第一风速调高到第二风速,将获取的当前回气温度与当前盘管温度之间的差值确定为第一过热度并保存。
第一保护模块430,被配置为在风机以第二风速运行的情况下,将获取的当前回气温度与当前盘管温度之间的差值确定为第二过热度,在第一过热度与第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
在一些实施例中,第一保护模块430包括:
第一调整单元,被配置为在过热差值绝对值大于第二设定值,且第一过热度大于第二过热度的情况下,将预设防冻结保护温度提高第一设定温度。
第二调整单元,被配置为在过热差值绝对值大于第二设定值,且第一过热度下于第二过热度的情况下,将预设防冻结保护温度降低第二设定温度。
在一些实施例中,该装置还包括:记录提升模块,被配置为将预设防冻结保护温度降低第二设定温度之后,记录运行时间;在运行时间大于设定时间的情况下,将风机的风速提高至第三风速;其中,第三风速大于第一风速。
在一些实施例中,还包括:第二保护模块,被配置为在风机以第二风速运行,且过热差值绝对值小于或等于第二设定值的情况下,根据预设防冻结保护温度,进行防冻结保护 运行。
在一些实施例中,该装置还包括:降低模块,被配置为进行防冻结保护运行时,将风机的风速从第二风速降低至第一风速。
下面结合具体实施例中,举例说明本发明实施例提供的空调防冻结保护装置控制空调自清洁过程。
本实施例中,空调具有防冻结保护功能。
图5是本公开实施例提供的一种空调防冻结保护装置的结构示意图。如图5所示,空调防冻结保护装置包括:获取模块410、提升模块420以及第一保护模块430,还可包括:第二保护包括440,降低模块450、记录提升模块460。而第一保护模块430中还包括:第一调整单元431和第二调整单元432。
其中,获取模块410可实时或定时获取空调的当前盘管温度。这样,当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,即当前盘管温度达到预设防冻结保护温度的时候,提升模块420可将空调的的风速从第一风速提高至第二风速,并获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第一过热度△t1并保存。
而在风机的风速以第二风速运行,第一保护模块430可获取当前回气温度,将当前回气温度与当前盘管温度之间的差值确定为第二过热度△t2。并在过热差值△t绝对值大于第二设定值,且△t大于0时,第一调整单元431可将预设防冻结保护温度提高2°。而在过热差值△t绝对值大于第二设定值,且△t小于0时,第二调整单元432可将预设防冻结保护温度降低2°。
这样,第一保护模块430可根据调整后的预设防冻结保护温度,进行防冻结保护运行。同时,降低模块450并将风机的风速从第二风速降低至第一风速。另外,若△t小于0时,记录提升模块460可记录将预设防冻结保护温度降低2°后,空调的运行时间,并在记录的运行时间大于5分钟时,将风机的风速从第一风速提高至第三风速。
当然,在风机的风速以第二风速运行,且过热差值△t绝对值小于或等于第二设定值时,第二保护模块440则可根据原有的预设防冻结保护温度,进行防冻结保护运行。而降低模块450也需将风机的风速从第二风速降低至第一风速。
可见,本实施例中,空调防冻结保护装置可在盘管温度到达预设防冻结保护温度后,可将空调风机风速提升,增加风量,并在风量增加后过热度有较大变化的情况下,确定空调的蒸发器有分流不均的情况,需要调整预设防冻结保护温度,这样,根据调整后的预设防冻结保护温度,执行对应的防冻结保护策略时,可降低蒸发器结冰的风险,并且,蒸发器盘管在冷媒体分液偏多的流路时,通过风机的高风运行可以提高蒸发器的蒸发压力,这样,在保障空调的制冷或除湿的效果的同时,进一步降低了蒸发器结冰的风险,因此,可提高了空调防冻结保护的准确性,也进一步提高了空调的智能性。
本公开实施例提供了一种空调防冻结保护装置,包括处理器和存储有程序指令的存储 器,处理器被配置为在执行程序指令时,执行上述的空调防冻结保护过程。
本公开实施例提供了一种空调防冻结保护装置,其结构如图6所示,包括:
处理器(processor)100和存储器(memory)101,还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述任一实施例的空调防冻结保护方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述任一方法实施例中的空调防冻结保护方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调,包含上述任一的空调防冻结保护装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的空调防冻结保护方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一实施例中的空调防冻结保护方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些 元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可 能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种空调防冻结保护的方法,其特征在于,所述方法包括:
    获取空调的当前盘管温度;
    在所述当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将所述风机的风速从第一风速调高到第二风速,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第一过热度并保存;
    在所述风机以所述第二风速运行的情况下,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第二过热度,在所述第一过热度与所述第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整所述预设防冻结保护温度,并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
  2. 根据权利要求1所述的方法,其特征在于,所述调整所述预设防冻结保护温度包括:
    在所述过热差值绝对值大于第二设定值,且所述第一过热度大于所述第二过热度的情况下,将所述预设防冻结保护温度提高第一设定温度;
    在所述过热差值绝对值大于第二设定值,且所述第一过热度小于所述第二过热度的情况下,将所述预设防冻结保护温度降低第二设定温度。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述预设防冻结保护温度降低第二设定温度之后,还包括:
    记录运行时间;
    在运行时间大于设定时间的情况下,将所述风机的风速提高至第三风速;
    其中,所述第三风速大于所述第一风速。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述风机以所述第二风速运行,且所述过热差值绝对值小于或等于第二设定值的情况下,根据所述预设防冻结保护温度,进行防冻结保护运行。
  5. 根据权利要求1或4所述的方法,其特征在于,所述进行防冻结保护运行时,还包括:
    将所述风机的风速从所述第二风速降低至所述第一风速。
  6. 一种空调防冻结保护的装置,其特征在于,所述装置包括:
    获取模块,被配置为获取空调的当前盘管温度;
    提升模块,被配置为在所述当前盘管温度与预设防冻结保护温度之间的差值绝对值小于第一设定值的情况下,将所述风机的风速从第一风速调高到第二风速,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第一过热度并保存;
    第一保护模块,被配置为在所述风机以所述第二风速运行的情况下,将获取的当前回气温度与所述当前盘管温度之间的差值确定为第二过热度,在所述第一过热度与所述第二过热度之间的过热差值绝对值大于第二设定值的情况下,调整所述预设防冻结保护温度, 并根据调整后的预设防冻结保护温度,进行防冻结保护运行。
  7. 根据权利要求6所述的装置,其特征在于,所述第一保护模块包括:
    第一调整单元,被配置为在所述过热差值绝对值大于第二设定值,且所述第一过热度大于所述第二过热度的情况下,将所述预设防冻结保护温度提高第一设定温度;
    第二调整单元,被配置为在所述过热差值绝对值大于第二设定值,且所述第一过热度下于所述第二过热度的情况下,将所述预设防冻结保护温度降低第二设定温度。
  8. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    第二保护模块,被配置为在所述风机以所述第二风速运行,且所述过热差值绝对值小于或等于第二设定值的情况下,根据所述预设防冻结保护温度,进行防冻结保护运行。
  9. 一种空调防冻结保护的装置,其特征在于,所述装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至5任一项所述的方法。
  10. 一种空调,其特征在于,包括如权利要求6或9所述的装置。
PCT/CN2020/093276 2019-11-14 2020-05-29 空调防冻结保护的方法及装置、空调 WO2021093310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911113607.XA CN110953689B (zh) 2019-11-14 2019-11-14 空调防冻结保护的方法及装置、空调
CN201911113607.X 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093310A1 true WO2021093310A1 (zh) 2021-05-20

Family

ID=69977298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093276 WO2021093310A1 (zh) 2019-11-14 2020-05-29 空调防冻结保护的方法及装置、空调

Country Status (2)

Country Link
CN (1) CN110953689B (zh)
WO (1) WO2021093310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289618A (zh) * 2022-08-19 2022-11-04 宁波奥克斯电气股份有限公司 空调器控制方法、装置、空调器和计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953689B (zh) * 2019-11-14 2021-08-24 合肥海尔空调器有限公司 空调防冻结保护的方法及装置、空调
CN111578415B (zh) * 2020-05-25 2021-12-21 广东美的制冷设备有限公司 辐射空调器及压缩机保护控制方法、装置
CN112556095A (zh) * 2020-11-25 2021-03-26 郑州海尔空调器有限公司 用于空调蒸发器防冻结保护的方法、装置及空调
CN114234395A (zh) * 2021-11-25 2022-03-25 青岛海尔空调器有限总公司 用于保护盘管的方法及装置、空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1924469A (zh) * 2005-09-01 2007-03-07 珠海格力电器股份有限公司 防止室内换热器冻裂的方法及使用该方法的风冷冷水机组
CN102345915A (zh) * 2011-08-02 2012-02-08 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
JP2015068614A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 冷凍装置
CN105423495A (zh) * 2015-12-16 2016-03-23 美的集团武汉制冷设备有限公司 空调器及其防冻结控制方法和装置
CN106369771A (zh) * 2016-10-31 2017-02-01 芜湖美智空调设备有限公司 空调器防冻结的控制方法及控制装置和空调器
CN108317669A (zh) * 2018-02-14 2018-07-24 青岛海尔空调器有限总公司 用于空调器的室内机防冻结控制方法
CN108317667A (zh) * 2018-01-22 2018-07-24 青岛海尔空调器有限总公司 一种空调内机结冰检测方法及装置
CN109631233A (zh) * 2018-11-27 2019-04-16 广东芬尼克兹节能设备有限公司 一种热泵除霜判断方法及系统
CN110953689A (zh) * 2019-11-14 2020-04-03 合肥海尔空调器有限公司 空调防冻结保护的方法及装置、空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116048A (en) * 1997-02-18 2000-09-12 Hebert; Thomas H. Dual evaporator for indoor units and method therefor
CN106288180B (zh) * 2016-08-12 2019-04-23 青岛海尔空调器有限总公司 一种用于空调的控制方法、装置及空调
CN106403041A (zh) * 2016-10-27 2017-02-15 青岛海尔空调器有限总公司 空调器及其控制方法
CN107152758A (zh) * 2017-05-22 2017-09-12 广东美的制冷设备有限公司 空调器防冻结保护控制方法和装置
CN109708271A (zh) * 2018-12-29 2019-05-03 广东美的暖通设备有限公司 并联外机系统的控制方法及其装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1924469A (zh) * 2005-09-01 2007-03-07 珠海格力电器股份有限公司 防止室内换热器冻裂的方法及使用该方法的风冷冷水机组
CN102345915A (zh) * 2011-08-02 2012-02-08 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
JP2015068614A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 冷凍装置
CN105423495A (zh) * 2015-12-16 2016-03-23 美的集团武汉制冷设备有限公司 空调器及其防冻结控制方法和装置
CN106369771A (zh) * 2016-10-31 2017-02-01 芜湖美智空调设备有限公司 空调器防冻结的控制方法及控制装置和空调器
CN108317667A (zh) * 2018-01-22 2018-07-24 青岛海尔空调器有限总公司 一种空调内机结冰检测方法及装置
CN108317669A (zh) * 2018-02-14 2018-07-24 青岛海尔空调器有限总公司 用于空调器的室内机防冻结控制方法
CN109631233A (zh) * 2018-11-27 2019-04-16 广东芬尼克兹节能设备有限公司 一种热泵除霜判断方法及系统
CN110953689A (zh) * 2019-11-14 2020-04-03 合肥海尔空调器有限公司 空调防冻结保护的方法及装置、空调

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289618A (zh) * 2022-08-19 2022-11-04 宁波奥克斯电气股份有限公司 空调器控制方法、装置、空调器和计算机可读存储介质
CN115289618B (zh) * 2022-08-19 2024-06-11 宁波奥克斯电气股份有限公司 空调器控制方法、装置、空调器和计算机可读存储介质

Also Published As

Publication number Publication date
CN110953689B (zh) 2021-08-24
CN110953689A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021093310A1 (zh) 空调防冻结保护的方法及装置、空调
CN109959127B (zh) 机组的控制方法及装置、空调器
CN108731224A (zh) 定频空调系统的控制方法、装置、设备及定频空调系统
CN114636225B (zh) 用于空调器冻结保护的方法及装置、空调器、存储介质
WO2020248764A1 (zh) 用于空气调节系统的控制方法、空气调节控制系统及空气调节系统
WO2021088359A1 (zh) 空调停机控制的方法及装置、空调
CN111207486A (zh) 一种空调智能化霜控制方法、计算机可读存储介质及空调
CN110469991B (zh) 用于空调除霜的控制方法、装置及空调
CN111720975A (zh) 空调器的控制方法、系统及装置
CN110736213A (zh) 用于空调除霜的控制方法、控制装置及空调
CN112050377A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN112556095A (zh) 用于空调蒸发器防冻结保护的方法、装置及空调
CN110470009B (zh) 用于空调除霜的控制方法及装置、空调
CN110470022B (zh) 用于空调除霜的控制方法及装置、空调
JP6817787B2 (ja) 空気調和機
CN110470000B (zh) 用于空调除霜的控制方法、装置及空调
CN112050367B (zh) 一种用于空调除霜的控制方法、控制装置及空调
WO2024045623A1 (zh) 用于空调防冻结的控制方法、装置、空调、存储介质
CN114234402B (zh) 用于除菌舱空调器除菌的方法及装置、除菌舱空调器
WO2021169237A1 (zh) 用于空调防冻结控制的方法及装置、空调
CN114909724A (zh) 用于空调外机降温的方法、装置、空调、存储介质
CN108592513B (zh) 冷冻冷藏装置蒸发风机控制方法和装置
CN110736208A (zh) 用于空调除霜的控制方法、控制装置及空调
CN110736216A (zh) 用于空调除霜的控制方法、控制装置及空调
CN114636224B (zh) 空调系统、用于控制空调系统的方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887718

Country of ref document: EP

Kind code of ref document: A1