WO2019233039A1 - 精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备 - Google Patents

精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备 Download PDF

Info

Publication number
WO2019233039A1
WO2019233039A1 PCT/CN2018/116294 CN2018116294W WO2019233039A1 WO 2019233039 A1 WO2019233039 A1 WO 2019233039A1 CN 2018116294 W CN2018116294 W CN 2018116294W WO 2019233039 A1 WO2019233039 A1 WO 2019233039A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit
satellite
low
precise
navigation
Prior art date
Application number
PCT/CN2018/116294
Other languages
English (en)
French (fr)
Inventor
穆旭成
Original Assignee
北京未来导航科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京未来导航科技有限公司 filed Critical 北京未来导航科技有限公司
Priority to RU2020139108A priority Critical patent/RU2759392C1/ru
Priority to US15/734,341 priority patent/US11733395B2/en
Priority to CA3102293A priority patent/CA3102293C/en
Priority to AU2018426707A priority patent/AU2018426707B2/en
Priority to EP18921730.0A priority patent/EP3805803A4/en
Priority to KR1020207035109A priority patent/KR102448573B1/ko
Priority to JP2020568475A priority patent/JP7054270B2/ja
Publication of WO2019233039A1 publication Critical patent/WO2019233039A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • G01S19/115Airborne or satellite based pseudolites or repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems

Definitions

  • the present application relates to satellite navigation technology, for example, to a positioning method and device for precise single-point positioning and real-time dynamic combination (PPP-RTK).
  • PPP-RTK real-time dynamic combination
  • the ground-based augmentation system broadcasts the non-difference comprehensive correction information to correct the corresponding error at the rover, so as to achieve the rapid separation of the ambiguity parameter and the position parameter.
  • the ambiguity parameter can be fixed within several epochs. However, the requirements for the density of ground-based monitoring networks are high, and they are often suitable for low-dynamic users.
  • This application proposes a positioning method and equipment of Precise Point-Position-Real-Time Kinematic (PPP-RTK), which utilizes the fast-moving characteristics of low-orbit satellites to broadcast navigation signals, and simultaneously uses multiple systems to increase navigation.
  • PPP-RTK Precise Point-Position-Real-Time Kinematic
  • the number of satellite observations comprehensively improve the geometric structure of user observation space, in areas with ground-based enhanced monitoring networks, use regional comprehensive error information to correct user observation errors, reduce the user's precise positioning initialization time, and implement a low-orbit constellation navigation enhancement system through a unified model Seamless switching between PPP and Real-Time Kinematic (RTK) services.
  • a PPP-RTK positioning method based on a low-orbit constellation navigation enhancement system provided in this application includes: step S11, step S12, and step S13 (or step S13 ').
  • step S11 when a direct signal transmitted by a multi-system navigation satellite and a low-orbit constellation is detected, the original observation data is determined.
  • step S12 the enhanced navigation satellite information and the precise orbit and precision clock offset of the low-orbit satellite are received.
  • step S13 a precise single-point positioning is performed by using the enhanced information of the navigation satellite, the precise orbit and precision clock difference of the low-orbit satellite, and the original observation data.
  • step S13 ' upon receiving the ground-based enhanced comprehensive error correction information, a precision single point for ground-based enhancement is performed using the navigation satellite enhanced information, the low-orbit satellite precise orbit and precision clock difference, the original observation data, and the ground-based enhanced comprehensive error correction information. Positioning.
  • the determining the original observation data when detecting the direct transmission signals broadcasted by the multi-system navigation satellite and the low-orbit constellation includes: when detecting the direct-transmission signals broadcast by the multi-system navigation satellite and the low-orbit constellation. , Tracking the direct transmission signal to determine a tracking duration; when the tracking duration is greater than a preset duration, measuring the direct transmission signal to determine original observation data.
  • the navigation satellite includes at least one of a US Global Positioning System (GPS), China Beidou, EU Galileo, and Russia Global Satellite Navigation System (GLONASS).
  • GPS Global Positioning System
  • GLONASS Russia Global Satellite Navigation System
  • the navigation satellite enhancement information includes at least one of the following: navigation satellite precision orbit and clock difference, navigation satellite phase fractional deviation correction number, low orbit satellite phase fractional deviation correction number, and ionospheric model parameters information.
  • the raw observation data includes at least one of the following: navigation satellite and low-orbit satellite pseudo-range observation data, navigation satellite and low-orbit satellite carrier phase observation data, and navigation satellite and low-orbit satellite Doppler observation data.
  • the processing mode for precise single-point positioning includes at least one of the following: a low-orbit satellite enhanced ambiguity floating-point solution mode and a low-orbit satellite enhanced ambiguity fixed-solution mode.
  • the ground-based enhanced comprehensive error correction information includes at least one of the following: a non-difference pseudo-range observation synthesis error and a non-difference carrier phase observation synthesis error.
  • An embodiment of the present application provides a device, including:
  • At least one processor At least one processor
  • a memory connected in communication with the at least one processor
  • the memory stores instructions executable by the at least one processor, the instructions are executed by the at least one processor, and the method according to any one of the foregoing is performed.
  • An embodiment of the present application provides a computer-readable storage medium, where the storage medium includes a stored program, and when the program runs, executes any of the foregoing precise single-point positioning and real-time dynamic combination methods.
  • An embodiment of the present application provides a processor, and the processor is configured to run a program, and when the program runs, execute any one of the methods of precise single-point positioning and real-time dynamic combination described above.
  • the PPP-RTK positioning method based on the low-orbit constellation navigation enhanced system provided in this application can seamlessly switch between a ground-based enhanced monitoring network area and other regions around the world, and adopts a unified precise single-point positioning mode for calculation. Realize real-time initialization in areas with ground-based enhanced monitoring networks, even single-epoch initialization, centimeter-level positioning accuracy, and near-real-time initialization in other regions around the world, positioning accuracy to the decimeter level, or even centimeter level.
  • the PPP-RTK positioning method based on the LEO constellation navigation enhanced system provided in this application can obtain near real-time precise positioning, speed measurement and timing results worldwide, and can obtain real-time centimeter-level positioning, speed measurement and timing results in ground-based enhanced areas. Seamlessly switch between ground-based and non-ground-enhanced global regions.
  • FIG. 1 shows a method flowchart of a PPP-RTK positioning method based on a low-orbit constellation navigation enhanced system according to an embodiment of the present application
  • Fig. 2 shows a schematic diagram of the implementation principle of the PPP-RTK positioning method based on a low-orbit constellation navigation enhanced system according to an embodiment of the present application.
  • FIG. 3 shows a flowchart of a specific method for PPP-RTK positioning based on a low-orbit constellation navigation enhanced system according to another embodiment of the present application
  • FIG. 4 shows a structural block diagram of a device provided by an embodiment of the present application.
  • navigation signals including navigation satellite navigation signals and low-orbit satellite navigation signals
  • FIG. 1 shows a method flowchart of a PPP-RTK positioning method based on a low-orbit constellation navigation enhanced system according to an embodiment of the present application.
  • a PPP-RTK positioning method based on a low-orbit constellation navigation enhanced system includes the following steps S11, S12, and S13 (or step S13 ').
  • step S11 when a direct signal transmitted by a multi-system navigation satellite and a low-orbit constellation is detected, the original observation data is determined.
  • step S12 the enhanced navigation satellite information and the precise orbit and precision clock offset of the low-orbit satellite are received.
  • step S13 a precise single-point positioning is performed by using the enhanced information of the navigation satellite, the precise orbit and precision clock difference of the low-orbit satellite, and the original observation data.
  • step S13 ' upon receiving the ground-based enhanced comprehensive error correction information, a precision single point for ground-based enhancement is performed using the navigation satellite enhanced information, the low-orbit satellite precise orbit and precision clock difference, the original observation data, and the ground-based enhanced comprehensive error correction information. Positioning.
  • the PPP-RTK positioning method uses the fast-moving characteristics of low-orbit satellites to broadcast navigation signals, and simultaneously uses multiple systems to increase the number of navigation satellite observations, comprehensively improve the geometric configuration of user observation space, and can achieve near real-time initialization globally. .
  • the method effectively reduces the density of ground-based enhanced monitoring network deployment, corrects user observation errors by receiving comprehensive error information such as the ionosphere and troposphere in the current area, and uses a unified PPP calculation In processing mode, real-time initialization is possible.
  • FIG. 2 is a schematic diagram showing an implementation principle of the PPP-RTK positioning method according to an embodiment of the present application.
  • the processing process is shown in FIG. 3 and includes steps 201 to 210.
  • step 201 a navigation direct transmission signal broadcast by a multi-system navigation satellite and a low-orbit constellation is received, and the direct transmission signal is captured and tracked.
  • step 202 at each epoch, a measurement is performed on the direct navigation signals to generate pseudorange, carrier phase, and Doppler observation data.
  • step 203 on the premise of stable signal tracking, demodulate the message parameters of the direct transmitted signal of the LEO satellite to obtain the enhanced information of the navigation satellite and the precise orbit and clock difference of the LEO satellite. Difference, phase fractional deviation, and global ionospheric model parameters.
  • determining the original observation data includes: The direct signal is tracked to determine the tracking time; when the tracking time is longer than a preset time, the direct signal is measured to determine the original observation data.
  • step 204 the observation equation is established using the original observation data, and a satellite navigation system is used as a reference.
  • the observation data of other satellite navigation systems and low-orbit satellites are normalized to obtain a unified time reference observation equation.
  • observation correction is performed using the enhanced information of the navigation satellite and the precise orbit and clock offset of the low-orbit satellite.
  • step 207 if in the ground-based enhancement area, the non-difference comprehensive correction information broadcast by the ground-based monitoring network is received through the communication link.
  • step 208 the error correction parameters of the approximate position of the user with respect to each navigation satellite and the low-orbit satellite are calculated according to the received non-difference comprehensive correction information.
  • step 209 the observation data is corrected using the enhanced information of the navigation satellite, the precise orbit of the low-orbit satellite, the clock difference, and the error correction parameters calculated above.
  • step 210 a precise single-point positioning mode is used for positioning processing, and PPP-RTK positioning, timing and speed measurement results, and carrier phase ambiguity parameters based on the low-orbit constellation navigation enhanced system are obtained.
  • the PPP-RTK positioning method provided in this application uses the fast-moving characteristics of low-orbit satellites to broadcast navigation signals, and simultaneously uses multiple systems to increase the number of navigation satellite observations and comprehensively improve the user's observation space geometry, which can obtain near real-time precise positioning, Speed measurement and timing results.
  • Real-time centimeter-level positioning, speed measurement, and timing results can be obtained in ground-based enhancement areas, and seamlessly switch between ground-based enhancement areas and non-ground-based enhanced global areas.
  • the main processes of fast PPP processing in the global area based on the LEO constellation navigation enhanced system are:
  • the original observation data generated by the receiver receiving the navigation signal includes multi-constellation and multi-frequency point pseudo-range, carrier phase, and Doppler observation data.
  • the pseudo-range and carrier phase observation equations can be expressed as follows:
  • G stands for satellite navigation system and low-orbit enhancement system
  • h i, r , ⁇ i, r the carrier carrier phase channel delay and the initial phase deviation, respectively;
  • the receiver and satellite ends are respectively expressed as:
  • the dual-frequency observation data is used to construct a non-ionospheric combined observation to eliminate the first-order ionospheric delay effect and reduce unknown parameters.
  • the specific combination model is:
  • the receiver clock difference parameter absorbs the channel delay of the pseudorange at the receiver end, and the channel delay is related to the signal, so different systems correspond to different receiver clock differences Therefore, the corresponding observation equations of LEO satellites and other satellite navigation systems can be rewritten as:
  • GLONASS uses frequency division multiple access technology.
  • the receiver pseudo-range channel delays generated by satellite signals of different frequencies are different, resulting in different absorption by the receiver clock difference. Differences can be approximated as being included in the residuals. Therefore, these variables are no longer reflected in the observation model.
  • precision satellite orbit products use a uniform space reference reference
  • precision satellite clock difference products use a uniform time reference. Therefore, there is no problem in the observation model that the coordinate reference or the time reference is not uniform.
  • precision satellite clock difference products are generated using combined ionospheric observations, including satellite-side pseudorange channel delays.
  • the tropospheric delay can usually be divided into two parts: dry and wet.
  • the dry component can be corrected by the model, and the wet component can be estimated as the parameter to be estimated.
  • the oblique delay can be projected to the zenith direction using a mapping function, and only one zenith wet delay is estimated.
  • V is the observation residual
  • A is the coefficient matrix
  • ⁇ X is the unknown vector including receiver coordinate correction, receiver clock error, tropospheric zenith wet delay, and carrier phase ambiguity
  • L is the calculation vector.
  • Kalman filtering is used for comprehensive PPP processing. In filtering, it is necessary to provide a suitable random model of observations and a dynamic model of state vectors.
  • the stochastic model describes the statistical characteristics of the observations, and is usually expressed by the variance covariance matrix of the observations. From the observation equation, it can be seen that the observations of the deionized ionospheric combination observations are linear combinations of the original observations. Assuming that the observations at different frequencies are not related, the initial variance of the observations of the ionospheric combination observations can be calculated by the law of error propagation. The specific variance can be defined as a function of the initial variance and the satellite altitude angle. Assuming that the observations of different satellites and different systems are irrelevant, and that the observations of different types, that is, the pseudo-range and phase observations are not related, the variance covariance matrix of the observations can be obtained.
  • the static receiver coordinates can be expressed as constants
  • the dynamic receiver coordinates and the receiver clock difference can be expressed as random walks or first-order Gaussian Markov processes
  • the tropospheric zenith wet delay can be expressed as random walks.
  • the carrier phase ambiguity parameter can be expressed as a constant, and then the state equation is obtained.
  • X is estimated to be the coordinates of the receiver to correct poor receiver clock parameters
  • [Phi] is the state transition matrix
  • w k-1 is a state transition noise.
  • the fast-moving characteristics of the low-orbit satellites greatly improve the user's observation geometry, thereby greatly reducing the PPP initialization time.
  • the receiver performs plane fitting modeling on the comprehensive error correction information of at least three ground-based enhancement stations in the surroundings based on the approximate position, and uses the local error correction information obtained by interpolation to refine the user's pseudorange and carrier phase observations.
  • the corresponding observation equations of LEO satellites and other satellite navigation systems can be written as:
  • the unknown variables in the equation include receiver position coordinates, receiver clock difference, receiver channel delay, and carrier phase ambiguity parameters.
  • Using the single-difference between satellites can further eliminate the receiver clock difference and channel delay.
  • the linearization strategy and parameter estimation method are used to estimate the receiver position and fix the carrier phase ambiguity.
  • the fast-moving characteristics of LEO satellites greatly improve the user's observation geometry, so that under the same initialization time and positioning accuracy requirements, the density of the ground enhanced monitoring network can be significantly increased. Reduce and reduce the cost of monitoring network construction.
  • the global and ground-based enhanced regional low-orbit constellation enhanced fast speed measurement and timing calculation processing are similar to the positioning processing, and are not repeated here.
  • the PPP-RTK positioning method provided in the embodiment of the present application broadcasts a direct navigation signal through a low-orbit satellite, and comprehensively improves the user's observation space geometric configuration by using the fast-moving characteristics of the low-orbit satellite. Enhancing the area, correcting the user's observation error by further receiving the comprehensive error information of the current area, and adopting a unified calculation processing mode with PPP, the initialization time is further shortened to real time. This method can effectively reduce the ground deployment density of the enhanced monitoring network, and realize the seamless switching of PPP and RTK services of multi-system enhanced LEO constellation through a unified model.
  • FIG. 4 is a structural block diagram of a device provided by this embodiment.
  • the device provided by this embodiment may include a processor 401 and a memory 403, and may further include a communications interface 402 and a bus 404.
  • the processor 401, the communication interface 402, and the memory 403 can complete communication with each other through the bus 404.
  • the communication interface 402 may be used for information transmission.
  • the processor 801 may call a logic instruction in the memory 403 to execute the positioning method of the precise single-point positioning and the real-time dynamic combination PPP-RTK of the above embodiment.
  • the method includes: when a multi-system navigation satellite and a low-orbit constellation are detected and broadcast To determine the original observation data when receiving a direct transmission signal; receive the enhanced navigation satellite information, and the precise orbit and precision of the low orbit satellite broadcast from the LEO constellation; use the enhanced navigation satellite information, and the LEO precision orbit Perform precise single-point positioning with the precise clock difference and the original observation data; or when receiving ground-based enhanced comprehensive error correction information, use the navigation satellite enhanced information, the low-orbit satellite precise orbit, and the precise clock difference .
  • An embodiment of the present application further provides a storage medium, where the storage medium includes a stored program, and when the program runs, the method provided in the foregoing embodiment is executed, and the method includes:
  • This application further provides a processor, where the processor is configured to run a program, and the program is configured on the processor to execute the method provided by the foregoing embodiment, and the method includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种精密单点定位与实时动态组合PPP-RTK定位方法,包含:当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据(S11);接收低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差(S12);利用导航卫星增强信息、低轨卫星精密轨道和精密钟差,及原始观测数据进行精密单点定位(S13);或在接收到地基增强综合误差改正信息时,利用导航卫星增强信息、低轨卫星精密轨道和精密钟差、原始观测数据和地基增强综合误差改正信息进行地基增强的精密单点定位(S13')。还涉及一种精密单点定位与实时动态组合PPP-RTK的定位设备、计算机可读存储介质和处理器。

Description

精密单点定位与实时动态组合(PPP-RTK)的定位方法和设备
本申请要求在2018年06月04日提交中国专利局、申请号为201810564952.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星导航技术,例如涉及一种精密单点定位与实时动态组合(PPP-RTK)的定位方法和设备。
背景技术
导航卫星精密单点定位(Precise Point Positi on,PPP)的初始化和中断后重新初始化需要较长时间(30分钟以上)是限制该项技术在快速和实时动态高精度领域应用的主要因素。为了缩短初始化时间和提高定位精度,近年来提出并发展了整数模糊度固定技术,通过全球监测网实时解算和发布卫星相位小数偏差改正数,用户通过应用偏差改正数恢复非差模糊度的整数特性,进而利用相关成熟技术进行整周模糊度固定。已有研究表明,整数模糊度固定解技术可使PPP的初始化时间缩短至20分钟左右。
为了降低大气延迟误差对初始化的影响,也有学者提出顾及大气延迟约束的PPP定位方法,将利用电离层模型生成的延迟量作为观测约束信息改善解算性能,初始化时间可进一步缩短至15分钟,但依然难以满足高精度实时定位要求。为了减少收敛时间,当前主要采用地基增强系统播发非差综合改正信息的方式改正流动站处相应误差,从而达到模糊度参数与位置参数的快速分离,可在几个历元内固定模糊度参数,但是对地基监测网络布站密度要求较高,往往适用于低动态用户。
发明内容
本申请提出一种精密单点定位与实时动态组合(Precise Point Position-Real-Time Kinematic,PPP-RTK)的定位方法和设备,利用低轨卫星快速移动特性播发导航信号,同时利用多系统增加导航卫星观测数量,综合改善用户观测空间几何构型,在有地基增强监测网络地区,利用区域综合误差信息改正用户 观测误差,降低用户精密定位初始化时间,并且通过统一模型实现基于低轨星座导航增强系统的PPP和实时动态(Real-Time Kinematic,RTK)服务的无缝切换。
本申请提供的一种基于低轨星座导航增强系统的PPP-RTK定位方法,包括:步骤S11、步骤S12和步骤S13(或步骤S13’)。
在步骤S11中,当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据。
在步骤S12中,接收低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差。
在步骤S13中,利用导航卫星增强信息、低轨卫星精密轨道和精密钟差,及原始观测数据进行精密单点定位。
在步骤S13’中,在接收到地基增强综合误差改正信息时,利用导航卫星增强信息、低轨卫星精密轨道和精密钟差、原始观测数据和地基增强综合误差改正信息进行地基增强的精密单点定位。
在一实施例中,所述当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据,包括:当检测到多系统导航卫星和低轨星座播发的直发信号时,对所述直发信号进行跟踪,确定跟踪时长;当所述跟踪时长大于预设时长时,对所述直发信号进行测量,确定原始观测数据。
在一实施例中,导航卫星包含美国全球定位系统(Global Positioning System,GPS)、中国北斗、欧盟伽利略、俄罗斯全球卫星导航系统(GLOBAL NAVIGATION SATELLITE SYSTEM,GLONASS)的至少一种。
在一实施例中,导航卫星增强信息导航卫星增强信息包含下列至少其一:导航卫星精密轨道和钟差、导航卫星相位小数偏差改正数、低轨卫星相位小数偏差改正数、以及电离层模型参数信息。
在一实施例中,原始观测数据包含下列至少之一:导航卫星和低轨卫星伪距观测数据、导航卫星和低轨卫星载波相位观测数据、以及导航卫星和低轨卫星多普勒观测数据。
在一实施例中,精密单点定位的处理模式包含下列至少之一:低轨卫星增强的模糊度浮点解模式和低轨卫星增强的模糊度固定解模式。
在一实施例中,地基增强综合误差改正信息包含下列至少之一:非差伪距观测综合误差和非差载波相位观测综合误差。
本申请实施例提供了一种设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;
其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,执行上述任一项所述的方法。
本申请实施例提供了一种计算机可读存储介质,所述存储介质包括存储的程序,所述程序运行时执行上述任一项精密单点定位与实时动态组合的方法。
本申请实施例提供了一种处理器,所述处理器设置为运行程序,所述程序运行时执行上述任一项精密单点定位与实时动态组合的方法。
本申请提供的基于低轨星座导航增强系统的PPP-RTK定位方法,在有地基增强监测网络地区和全球其他地区之间可以无缝切换,采用统一的精密单点定位模式进行解算。在有地基增强监测网络地区实现实时初始化,甚至单历元初始化,定位精度厘米级,在全球其他地区实现近实时初始化,定位精度到分米级,甚至厘米级。
本申请提供的基于低轨星座导航增强系统的PPP-RTK定位方法,可在全球获得近实时的精密定位、测速和授时结果,可在地基增强区域获得实时的厘米级定位、测速和授时结果,并可在地基增强区域和非地基增强的全球区域之间进行无缝切换。
附图概述
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本申请实施例的一种基于低轨星座导航增强系统的PPP-RTK定位方法的方法流程图;
图2示出了本申请实施例的基于低轨星座导航增强系统的PPP-RTK定位方 法的实现原理示意图。
图3示出了本申请另一实施例的基于低轨星座导航增强系统的PPP-RTK定位的具体方法流程图;
图4示出了本申请实施例提供的一种设备的结构框图。
【主要组件符号说明】
100 导航星座
101 北斗导航卫星
102 GPS导航卫星
103 GLONASS导航卫星
104 其他导航系统卫星
110 低轨增强星座
111 低轨卫星
120 导航信号,包括导航卫星导航信号和低轨卫星导航信号
130 全球地区
131 使用基于低轨星座导航增强系统的PPP-RTK定位方法的导航装置
140 地基增强区域
141 地基增强监测站
142 地基增强信息播发设备
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本申请的范围完整地传达给本领域的技术人员。
图1示出了本申请实施例的一种基于低轨星座导航增强系统的PPP-RTK定位方法的方法流程图。参见图1,本申请实施例提供的基于低轨星座导航增强系统的PPP-RTK定位方法,包括以下步骤S11、步骤S12和步骤S13(或步骤S13’)。
在步骤S11中,当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据。
在步骤S12中,接收低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差。
在步骤S13中,利用导航卫星增强信息、低轨卫星精密轨道和精密钟差,及原始观测数据进行精密单点定位。
在步骤S13’中,在接收到地基增强综合误差改正信息时,利用导航卫星增强信息、低轨卫星精密轨道和精密钟差、原始观测数据和地基增强综合误差改正信息进行地基增强的精密单点定位。
本申请实施例提供的PPP-RTK定位方法,利用低轨卫星快速移动特性播发导航信号,同时利用多系统增加导航卫星观测数量,综合改善用户观测空间几何构型,可在全球范围实现近实时初始化。
在一实施例中,在有地基增强监测网络地区,该方法有效降低地面增强监测网络布站密度,通过接收当前区域的电离层、对流层等综合误差信息改正用户观测误差,在采用统一的PPP计算处理模式下,可实现实时初始化。
图2示出了本申请实施例的PPP-RTK定位方法的实现原理示意图。其处理过程如图3所示,包括:步骤201-步骤210。
在步骤201中,接收多系统导航卫星和低轨星座播发的导航直发信号,对直发信号进行捕获、跟踪。
在步骤202中,在每一历元,对导航直发信号进行测量,产生伪距、载波相位和多普勒观测数据。
在步骤203中,在信号稳定跟踪前提下,解调低轨卫星直发信号电文参数,获取导航卫星增强信息和低轨卫星精密轨道、钟差,其中导航卫星增强信息包括导航卫星精密轨道、钟差、相位小数偏差,以及全球电离层模型参数。
也即,所述当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据,包括:当检测到多系统导航卫星和低轨星座播发的直发信号时,对所述直发信号进行跟踪,确定跟踪时长;当所述跟踪时长大于预设时长时,对所述直发信号进行测量,确定原始观测数据。
在步骤204中,利用原始观测数据建立观测方程,以一种卫星导航系统为 基准,对其他卫星导航系统和低轨卫星观测数据进行归一化处理,得到统一时间基准观测方程。
在步骤206中,若在非地基增强区域,利用导航卫星增强信息和低轨卫星精密轨道、钟差进行观测改正。
在步骤207中,若在地基增强区域,通过通信链路接收地基监测网播发的非差综合改正信息。
在步骤208中,根据接收非差综合改正信息计算用户概略位置相对每颗导航卫星和低轨卫星的误差改正参数。
在步骤209中,利用导航卫星增强信息和低轨卫星精密轨道、钟差,以及上述计算的误差改正参数进行观测数据改正。
在步骤210中,采用精密单点定位模式进行定位处理,得到基于低轨星座导航增强系统的PPP-RTK定位、授时和测速结果及载波相位模糊度参数等。
本申请提供的PPP-RTK定位方法,利用低轨卫星快速移动特性播发导航信号,同时利用多系统增加导航卫星观测数量,综合改善用户观测空间几何构型,可在全球获得近实时的精密定位、测速和授时结果,可在地基增强区域获得实时的厘米级定位、测速和授时结果,并可在地基增强区域和非地基增强的全球区域之间进行无缝切换。
下面通过一个具体实施例对本申请技术方案进行详细说明。
全球区域基于低轨星座导航增强系统的快速PPP处理的主要过程为:
(1)利用原始观测数据建立观测方程
接收机接收导航信号产生的原始观测数据包含多星座多频点伪距、载波相位和多普勒观测数据,其中伪距和载波相位观测方程可表示如下:
Figure PCTCN2018116294-appb-000001
Figure PCTCN2018116294-appb-000002
式中,
G:表示卫星导航系统和低轨增强系统;
i:表示信号频率标识,i=1,2,3;
r,S:分别表示接收机和卫星标识;
Figure PCTCN2018116294-appb-000003
分别为以米为单位的伪距和载波相位观测值;
Figure PCTCN2018116294-appb-000004
为卫星到接收机的几何距离;
dt r,dt G,S:分别为接收机和卫星钟差;
Figure PCTCN2018116294-appb-000005
为对流层延迟;
Figure PCTCN2018116294-appb-000006
为频率1上的电离层延迟;
b i,r
Figure PCTCN2018116294-appb-000007
分别为接收机和卫星的伪距硬件通道延迟;
Figure PCTCN2018116294-appb-000008
为整周模糊度;
h i,r,δφ i,r:分别为接收机载波相位通道延迟和初始相位偏差;
Figure PCTCN2018116294-appb-000009
分别为卫星载波相位通道延迟和初始相位偏差;
Figure PCTCN2018116294-appb-000010
分别为伪距和载波相位观测中未模型化的残余误差。
由于载波相位通道延迟和初始相位偏差不能进行分离,通常将两个量合并,称为未校准硬件延迟,接收机和卫星端分别表示为:
B i,r=h i,r+δφ i,r                   (3)
Figure PCTCN2018116294-appb-000011
于是载波相位观测方程可以表示为:
Figure PCTCN2018116294-appb-000012
(2)构造无电离层组合观测值
利用双频观测数据构造无电离层组合观测,消除一阶电离层延迟影响,减少未知参数,具体组合模型为:
Figure PCTCN2018116294-appb-000013
Figure PCTCN2018116294-appb-000014
其中,
Figure PCTCN2018116294-appb-000015
Figure PCTCN2018116294-appb-000016
Figure PCTCN2018116294-appb-000017
Figure PCTCN2018116294-appb-000018
Figure PCTCN2018116294-appb-000019
Figure PCTCN2018116294-appb-000020
由于接收机端伪距硬件延迟会被接收机钟差吸收,因此令
Figure PCTCN2018116294-appb-000021
则上式变为
Figure PCTCN2018116294-appb-000022
Figure PCTCN2018116294-appb-000023
当多系统观测数据联合处理时,由于接收机钟差参数吸收了伪距在接收机端的通道延迟,而通道延迟又与信号相关,因此导致不同系统对应不同的接收机钟差
Figure PCTCN2018116294-appb-000024
于是低轨卫星和其他卫星导航系统对应观测方程可以改写为:
Figure PCTCN2018116294-appb-000025
Figure PCTCN2018116294-appb-000026
Figure PCTCN2018116294-appb-000027
Figure PCTCN2018116294-appb-000028
其中,
Figure PCTCN2018116294-appb-000029
为低轨卫星对应的接收机钟差,
Figure PCTCN2018116294-appb-000030
为各导航系统对应的接收机钟差。GLONASS采用频分多址技术,不同频率卫星信号产生的接收机伪距通道延迟不同,导致不同被接收机钟差完全吸收,但如果对GLONASS伪距观测值赋予较小权值时,这些通道延迟差异可近似认为包含在残差中。因此,在观测模型中不再体现这些变量。
(3)利用低轨卫星播发的导航卫星增强信息和模型进行误差改正
低轨卫星播发的增强信息中,精密卫星轨道产品均采用统一的空间坐标参考基准,精密卫星钟差产品采用统一的时间基准。因此,在观测模型中不存在坐标基准或时间基准不统一的问题。同时,精密卫星钟差产品使用消电离层组合观测值生成,包含卫星端伪距通道延迟。
另外,对流层延迟通常可以分为干分量和湿分量两部分。干分量可以通过模型进行改正,湿分量作为待估参数进行估计。为了减少待估参数的数量,可以使用映射函数将斜延迟投影到天顶方向,只估计一个天顶湿延迟。令
Figure PCTCN2018116294-appb-000031
利用提供的导航卫星增强信息,以及相对论效应、地球自转、以及天线相位中心等模型对观测方程进行改正,消去部分未知参数,同时忽略残留的卫星轨道和钟差误差,低轨卫星和其他卫星导航系统对应观测方程变为:
Figure PCTCN2018116294-appb-000032
Figure PCTCN2018116294-appb-000033
Figure PCTCN2018116294-appb-000034
Figure PCTCN2018116294-appb-000035
其中,
Figure PCTCN2018116294-appb-000036
分别为低轨卫星和其他卫星导航系统对应的映射函数,Z r为对流层天顶湿延迟。
(4)进行观测方程线性化
在接收机近似位置进行泰勒展开,舍弃二阶项,得到线性化观测方程如下:
Figure PCTCN2018116294-appb-000037
Figure PCTCN2018116294-appb-000038
Figure PCTCN2018116294-appb-000039
Figure PCTCN2018116294-appb-000040
其中,
Figure PCTCN2018116294-appb-000041
Figure PCTCN2018116294-appb-000042
Figure PCTCN2018116294-appb-000043
(x s,y s,z s)为低轨卫星和导航卫星精密轨道坐标,(x r,0,y r,0,z r,0)为接收机近似位置。于是观测方程可以简化写为:
V=AΔX+L              (23)
其中V为观测残差,A为系数矩阵,ΔX为包括接收机坐标改正、接收机钟差、对流层天顶湿延迟、载波相位模糊度在内的未知向量,L为计算向量。
(5)进行参数估计和模糊度固定处理
采用卡尔曼(Kalman)滤波进行综合PPP处理。在滤波中,需要提供合适的观测值随机模型以及状态向量动态模型。随机模型描述的是观测值的统计特性,通常用观测值的方差协方差阵表示。从观测方程可知,消电离层组合观测值是原始观测值的线性组合,假设不同频率上的观测值不相关,消电离层组合观测值的初始方差可以通 过误差传播定律计算得到。具体的方差可以定义为初始方差和卫星高度角的函数。假设不同卫星、不同系统的观测值不相关,以及不同类型的观测值,即伪距和相位观测值不相关,就可以得到观测值的方差协方差阵。
针对状态向量的动态模型,静态接收机坐标可以表示为常数,动态接收机坐标和接收机钟差可以表示为随机游走或者一阶高斯马尔科夫过程,对流层天顶湿延迟可以表示为随机游走过程,载波相位模糊度参数可以表示为常数,于是得到状态方程。
X k=Φ(t k,t k-1)X k-1+w k-1          (24)
式中,X为待估计的接收机坐标改正、接收机钟差等参数,Φ为状态转移矩阵,w k-1为状态转移噪声。综合观测方程和状态方程,可应用标准Kalman滤波过程进行参数估计。这里由于未进行卫星相位小数偏差改正,所以仅获得载波相位模糊度浮点解结果。若进一步利用低轨卫星增强信息中包含的卫星相位小数偏差改正进行观测方程改正,则可恢复模糊度的整数特性,实现模糊度固定,得到载波相位模糊度固定解结果,进一步缩短初始化时间,提高定位、测速和授时精度。
由于增加低轨星座导航直发信号观测数据,低轨卫星的快速移动特性极大提升了用户观测几何结构,从而使PPP初始化时间大幅降低。
地基增强区域基于低轨星座导航增强的PPP-RTK处理主要过程为:
在地基增强区域,全部参考站将被利用三角剖分(Delaunay)方法划分成若干三角子网,并按照基于非差改正数的网络RTK方法分别对各子网构建每颗可视卫星的综合误差改正信息,其中包括每颗卫星方向的电离层、对流层、以及与卫星相关的通道延迟,卫星钟差、卫星轨道误差,表示为:
Figure PCTCN2018116294-appb-000044
Figure PCTCN2018116294-appb-000045
Figure PCTCN2018116294-appb-000046
分别表示伪距和载波相位综合误差改正信息。
接收机根据概略位置对周边至少3个地基增强站的综合误差改正信息进行平面拟合建模,并利用内插得到的本地误差改正信息精化用户的伪距和载波相位观测值。经过改正后低轨卫星和其他卫星导航系统对应观测方程可写为:
Figure PCTCN2018116294-appb-000047
Figure PCTCN2018116294-appb-000048
Figure PCTCN2018116294-appb-000049
Figure PCTCN2018116294-appb-000050
此时方程中未知变量包括接收机位置坐标,接收机钟差、接收机通道延迟和载波相位模糊度参数,利用星间单差可进一步消除接收机钟差和通道延迟,于是可利用上面介绍的线性化处理策略和参数估计方法进行接收机位置估计和载波相位模糊度固定。
由于增加低轨星座导航直发信号观测数据,低轨卫星的快速移动特性极大提升了用户观测几何结构,从而使在相同的初始化时间和定位精度要求下,地面增强监测网络布站密度可大幅降低,降低监测网络建设成本。
全球区域和地基增强区域低轨星座增强快速测速、授时计算处理过程与定位处理过程类似,在此不再赘述。
本申请实施例提供的PPP-RTK定位方法,通过低轨卫星播发导航直发信号,利用低轨卫星快速移动特性综合改善用户观测空间几何构型,用户PPP初始化时间可缩短至准实时;在地基增强区域,通过进一步接收当前区域的综合误差信息改正用户观测误差,采用与PPP统一的计算处理模式,初始化时间进一步缩短至实时。该方法能有效降低地面增强监测网络布站密度,并通过统一模型实现低轨星座增强多系统PPP和RTK服务的无缝切换。
图4为本实施例提供的一种设备的结构框图。本实施例提供的设备可以是包括:处理器(processor)401和存储器(memory)403,还可以包括通信接口(Communications Interface)402和总线404。其中,处理器401、通信接口402、存储器403可以通过总线404完成相互间的通信。通信接口402可以用于信息传输。处理器801可以调用存储器403中的逻辑指令,以执行上述实施例的精密单点定位与实时动态组合PPP-RTK的定位方法,所述方法包括:当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据;接收所述低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差;利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差,及原始观测数据进行精密单点定位;或在接收到地基增强综合误差改正信息时,利用所述导 航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差、所述原始观测数据和所述地基增强综合误差改正信息进行地基增强的精密单点定位。
本申请实施例还提供了一种存储介质,存储介质包括存储的程序,其中,程序运行时执行上述实施例提供的方法,所述方法包括:
当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据;接收所述低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差;利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差,及原始观测数据进行精密单点定位;或在接收到地基增强综合误差改正信息时,利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差、所述原始观测数据和所述地基增强综合误差改正信息进行地基增强的精密单点定位。
本申请还提供了一种处理器,处理器设置为运行程序,其中,所述程序在所述处理器上设置为执行上述实施例提供的方法,所述方法包括:
当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据;接收所述低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差;利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差,及原始观测数据进行精密单点定位;或在接收到地基增强综合误差改正信息时,利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差、所述原始观测数据和所述地基增强综合误差改正信息进行地基增强的精密单点定位。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到多个实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行多个实施例或者实施例的某些部分所述的方法。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (10)

  1. 一种精密单点定位与实时动态组合PPP-RTK的定位方法,包括:
    当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据;
    接收所述低轨星座播发的导航卫星增强信息、以及低轨卫星精密轨道和精密钟差;
    利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差,及原始观测数据进行精密单点定位;或
    在接收到地基增强综合误差改正信息时,利用所述导航卫星增强信息、所述低轨卫星精密轨道和所述精密钟差、所述原始观测数据和所述地基增强综合误差改正信息进行地基增强的精密单点定位。
  2. 如权利要求1所述的方法,其中,所述当检测到多系统导航卫星和低轨星座播发的直发信号时,确定原始观测数据,包括:
    当检测到多系统导航卫星和低轨星座播发的直发信号时,对所述直发信号进行跟踪,确定跟踪时长;
    当所述跟踪时长大于预设时长时,对所述直发信号进行测量,确定原始观测数据。
  3. 如权利要求1所述的方法,其中,所述多系统导航卫星包含美国全球定位系统GPS、中国北斗、欧盟伽利略、俄罗斯全球卫星导航系统GLONASS的至少一种。
  4. 如权利要求1所述的方法,其中,所述导航卫星增强信息包含下列至少之一:导航卫星精密轨道和钟差、导航卫星相位小数偏差改正数、低轨卫星相位小数偏差改正数、以及电离层模型参数信息。
  5. 如权利要求1或2所述的方法,其中,所述原始观测数据包含下列至少之一:导航卫星和低轨卫星伪距观测数据、导航卫星和低轨卫星载波相位观测数据、以及导航卫星和低轨卫星多普勒观测数据。
  6. 如权利要求1所述的方法,其中,精密单点定位的处理模式包含下列至少之一:低轨卫星增强的模糊度浮点解模式和低轨卫星增强的模糊度固定解模式。
  7. 如权利要求1所述的方法,其中,地基增强综合误差改正信息包含下列 至少之一:非差伪距观测综合误差和非差载波相位观测综合误差。
  8. 一种精密单点定位与实时动态组合PPP-RTK的定位设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,实现权利要求1至6中任一项所述的方法。
  9. 一种计算机可读存储介质,所述存储介质包括存储的程序,所述程序运行时执行权利要求1至6中任一项所述的方法。
  10. 一种处理器,所述处理器设置为运行程序,所述程序在所述处理器上设置为执行权利要求1至6中任一项所述的方法。
PCT/CN2018/116294 2018-06-04 2018-11-20 精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备 WO2019233039A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2020139108A RU2759392C1 (ru) 2018-06-04 2018-11-20 Способ позиционирования и устройство позиционирования высокой точности - кинематики в реальном времени (ppp-rtk)
US15/734,341 US11733395B2 (en) 2018-06-04 2018-11-20 Precise point position and real-time kinematic (PPP-RTK) positioning method and device
CA3102293A CA3102293C (en) 2018-06-04 2018-11-20 Positioning method and device of precise point positioning-real time kinematic (ppp-rtk)
AU2018426707A AU2018426707B2 (en) 2018-06-04 2018-11-20 Precise point position and real-time kinematic (PPP-RTK) positioning method and device
EP18921730.0A EP3805803A4 (en) 2018-06-04 2018-11-20 METHOD AND DEVICE FOR POSITIONING WITH PRECISE POINT POSITION AND REAL-TIME KINEMATICS (PPP-RTK)
KR1020207035109A KR102448573B1 (ko) 2018-06-04 2018-11-20 정밀 단독 측위 및 실시간 키네마틱 조합(ppp-rtk)의 측위 방법 및 설비
JP2020568475A JP7054270B2 (ja) 2018-06-04 2018-11-20 精密単独測位とリアルタイムキネマティックを組み合わせる(ppp-rtk)の測位方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810564952.4A CN108415050B (zh) 2018-06-04 2018-06-04 一种基于低轨星座导航增强系统的ppp-rtk定位方法
CN201810564952.4 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019233039A1 true WO2019233039A1 (zh) 2019-12-12

Family

ID=63141217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116294 WO2019233039A1 (zh) 2018-06-04 2018-11-20 精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备

Country Status (9)

Country Link
US (1) US11733395B2 (zh)
EP (1) EP3805803A4 (zh)
JP (1) JP7054270B2 (zh)
KR (1) KR102448573B1 (zh)
CN (1) CN108415050B (zh)
AU (1) AU2018426707B2 (zh)
CA (1) CA3102293C (zh)
RU (1) RU2759392C1 (zh)
WO (1) WO2019233039A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896981A (zh) * 2020-07-03 2020-11-06 火眼位置数智科技服务有限公司 一种低轨导航增强定位性能评估系统和方法
CN114280915A (zh) * 2021-12-27 2022-04-05 中国科学院国家授时中心 一种天基测控授时一体化系统
CN115276769A (zh) * 2022-07-22 2022-11-01 福建鼎旸信息科技股份有限公司 一种卫星数据精准播发与服务覆盖方法及系统
EP4060384A4 (en) * 2019-12-20 2023-12-20 Xi'an Institute Of Space Radio Technology CLOUD-END ARCHITECTURE BASED PPP-RTK IMPROVEMENT METHOD AND SYSTEM

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948605B2 (en) * 2017-12-21 2021-03-16 Valeo Comfort And Driving Assistance Broadcast and utilization of precise GNSS correction data
CN108196284B (zh) * 2018-01-20 2021-07-27 中国人民解放军61540部队 一种进行星间单差模糊度固定的gnss网数据处理方法
CN109001763B (zh) 2018-06-04 2020-06-30 北京未来导航科技有限公司 一种基于低轨星座的导航增强方法及系统
CN108415050B (zh) 2018-06-04 2020-05-26 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法
CN109001786B (zh) * 2018-06-04 2020-06-16 北京未来导航科技有限公司 一种基于导航卫星和低轨增强卫星的定位方法和系统
CN109507690A (zh) * 2018-11-09 2019-03-22 中国科学院国家授时中心 基于gnss的国家标准时间亚纳秒级授时方法
CN109901206B (zh) * 2019-04-01 2023-06-13 武汉大学 一种基于低轨卫星无线电测距信号的单星定位与授时方法
US11668843B2 (en) * 2019-05-28 2023-06-06 Xona Space Systems Inc. Satellite for broadcasting clock state data
CN110187364B (zh) * 2019-06-14 2023-06-09 火眼位置数智科技服务有限公司 一种低轨导航增强精密改正数据生成、上注系统及方法
CN110488328B (zh) * 2019-07-18 2022-03-08 北京未来导航科技有限公司 低轨卫星导航增强平台的电文收发方法及系统
CN111025341B (zh) * 2019-11-22 2023-04-07 中国科学院上海天文台 卫星轨道的误差精化方法
CN113093237B (zh) * 2020-01-09 2024-06-07 中移(上海)信息通信科技有限公司 Ssr轨钟改正数质量因子实时评估方法、装置、设备及介质
CN111175789B (zh) * 2020-01-16 2022-03-04 中国民用航空总局第二研究所 地基增强系统的电离层异常监测方法、装置以及系统
CN111381259A (zh) * 2020-03-06 2020-07-07 上海卫星工程研究所 一种利用低轨卫星对北斗导航系统进行增强的方法及系统
CN111398999A (zh) * 2020-03-25 2020-07-10 中国科学院微小卫星创新研究院 基于低轨通信星座的用户终端及搜救系统
CN111551974B (zh) * 2020-05-20 2022-03-01 中国电子科技集团公司第五十四研究所 一种基于ppp-rtk的动平台编队相对定位方法
CN111965685B (zh) * 2020-07-07 2023-01-13 北京自动化控制设备研究所 一种基于多普勒信息的低轨卫星/惯性组合导航定位方法
CN112014860B (zh) * 2020-07-20 2023-07-14 中国科学院空天信息创新研究院 一种基于北斗ppp-rtk的低轨卫星时空基准建立方法
CN112068161B (zh) * 2020-09-17 2024-03-29 国网浙江省电力有限公司检修分公司 一种多路径误差削减方法及装置
CN112422222B (zh) * 2020-11-04 2023-01-10 深圳市三七智联科技有限公司 授时模组与基站的接口方法、卫星导航系统及存储介质
CN112612043A (zh) * 2020-12-10 2021-04-06 国网四川省电力公司信息通信公司 一种高速无线通信与导航定位融合的区域增强系统及方法
CN112731489A (zh) * 2020-12-11 2021-04-30 国网辽宁省电力有限公司朝阳供电公司 基于bds星基地基增强系统无缝融合的高精度定位方法
CN112946699A (zh) * 2021-01-29 2021-06-11 重庆两江卫星移动通信有限公司 通导一体低轨卫星增强gnss导航系统的方法和系统
CN112882067B (zh) * 2021-01-29 2024-05-28 重庆两江卫星移动通信有限公司 利用leo获取卫星精密轨道与钟差的方法及系统
CN115113244A (zh) * 2021-03-22 2022-09-27 千寻位置网络(浙江)有限公司 全球导航卫星系统观测值仿真方法、装置、设备及介质
CN113099381A (zh) * 2021-04-06 2021-07-09 苏州迭慧智能科技有限公司 一种天线工参智能感知仪及多功能智能感知网
CN113608248B (zh) * 2021-06-25 2023-06-13 北京建筑大学 北斗5g融合的高精度巡检人员定位方法及相关设备
CN113447971A (zh) * 2021-06-28 2021-09-28 中国科学院国家授时中心 一种leo与gnss融合精密单点定位方法及系统
US11899120B2 (en) 2021-06-30 2024-02-13 Xona Space Systems Inc. Generation and transmission of navigation signals
CN113703021B (zh) * 2021-07-29 2023-09-29 西安空间无线电技术研究所 一种基于码伪距的秒级实时高精度定位方法与系统
CN113777633A (zh) * 2021-08-23 2021-12-10 山东未来导航科技有限公司 定位方法、电子设备及计算机存储介质
CN113687402B (zh) * 2021-09-07 2024-03-19 中国电子科技集团公司第五十四研究所 一种顾及卫星轨道误差的低轨导航增强实时定位方法
US11906637B2 (en) * 2021-11-18 2024-02-20 Qualcomm Incorporated Precise point positioning (PPP)-based real time kinematic (RTK) correction
CN113866807A (zh) * 2021-12-03 2021-12-31 深圳市麦微智能电子有限公司 一种基于bds定位的高精度gnss导航系统
CN114355390B (zh) * 2021-12-06 2023-07-07 浙江时空道宇科技有限公司 一种服务端产品的故障检测方法、装置、设备及存储介质
CN114355420B (zh) * 2021-12-15 2023-05-09 中国科学院国家授时中心 一种分布式北斗位置服务中心ppp产品定位方法及装置
CN114355410B (zh) * 2021-12-15 2022-10-25 中国科学院国家授时中心 基于并行计算的卫星导航实时精密单点定位系统及方法
CN114442128B (zh) * 2021-12-20 2023-04-25 中国科学院国家授时中心 一种基于天地一体化的广域高精度定位系统及方法
CN114397683B (zh) * 2021-12-30 2023-01-13 深圳市华芯云创科技有限公司 一种北斗非差非组合ppp-rtk定位方法
CN115032883B (zh) * 2022-04-24 2023-02-28 中国科学院精密测量科学与技术创新研究院 基于北斗PPP-B2b高精度实时时间同步装置及方法
CN115085849B (zh) * 2022-06-14 2023-03-28 中国科学院国家授时中心 不依赖互联网的北斗B2b PPP精密授时方法及装置
CN115166799B (zh) * 2022-07-11 2023-07-21 中国科学院精密测量科学与技术创新研究院 顾及硬件延迟时变特征的gnss精密单点定位方法
CN115079236B (zh) * 2022-07-13 2023-02-10 中国科学院国家授时中心 通过低轨增强缩短广域非差非组合ppp-rtk定位收敛时间的方法
CN116299615B (zh) * 2022-12-15 2023-11-03 长安大学 一种实现单北斗实时ppp模糊固定的相位偏差估计方法
CN116243591B (zh) * 2023-01-28 2023-09-29 北京航空航天大学 融合UTC(k)和北斗广播星历的亚纳秒级授时方法
CN116125507A (zh) * 2023-02-16 2023-05-16 腾讯科技(深圳)有限公司 移动终端的定位方法、装置、设备及存储介质
CN116299618B (zh) * 2023-03-24 2024-03-19 中国科学院精密测量科学与技术创新研究院 基于ppp解算参数的载波相位卫星共视时间传递方法
CN116520378B (zh) * 2023-07-03 2023-09-15 武汉大学 非差rtk误差改正数确定方法、装置、设备及存储介质
CN117031502B (zh) * 2023-07-03 2024-04-30 哈尔滨工程大学 实时ppp-rtk卫星钟轨改正产品完好性监测方法
CN116893438B (zh) * 2023-09-11 2023-12-01 中国科学院国家授时中心 顾及钟差模型的低轨卫星钟差的确定方法及系统
CN117492054B (zh) * 2023-11-15 2024-04-09 武汉理工大学 区域地面站支持下低轨卫星增强的全球精密单点定位方法
CN117471511B (zh) * 2023-12-27 2024-03-08 武汉大学 通讯基站规划的星地一体化ppp-rtk精密定位服务方法及系统
CN117630982B (zh) * 2024-01-25 2024-05-14 中国科学院国家授时中心 低轨卫星下行导航信号天线pco及硬件时延的标定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176188A (zh) * 2013-03-19 2013-06-26 武汉大学 一种区域地基增强ppp-rtk模糊度单历元固定方法
CN103344978A (zh) * 2013-07-04 2013-10-09 武汉大学 一种适用于大规模用户的区域增强精密定位服务方法
CN107153209A (zh) * 2017-07-06 2017-09-12 武汉大学 一种短弧段低轨导航卫星实时精密定轨方法
CN107229061A (zh) * 2017-07-18 2017-10-03 武汉大学 一种基于低轨卫星的星地差分实时精密定位方法
CN107561568A (zh) * 2017-08-22 2018-01-09 中国科学院国家授时中心 基于统一模型的北斗非差非组合ppp‑rtk定位方法
WO2018009088A1 (en) * 2016-07-04 2018-01-11 Llc "Topcon Positioning Systems" Gnss positioning system and method using multiple processing threads
CN108415050A (zh) * 2018-06-04 2018-08-17 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812961A (en) * 1995-12-28 1998-09-22 Trimble Navigation Limited Method and reciever using a low earth orbiting satellite signal to augment the global positioning system
DE69841174D1 (de) 1997-03-21 2009-11-05 Univ R Navigationssystem mit zentimetergenauigkeit, das niedrigfliegende satelliten verwendet
US6560536B1 (en) 1999-07-12 2003-05-06 Eagle-Eye, Inc. System and method for rapid telepositioning
US6480788B2 (en) 1999-07-12 2002-11-12 Eagle-Eye, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US6725158B1 (en) 1999-07-12 2004-04-20 Skybitz, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US20040143392A1 (en) 1999-07-12 2004-07-22 Skybitz, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US6166678A (en) * 1999-09-07 2000-12-26 The United States Of America As Represented By The Secretary Of The Air Force Fourier-transform-based adaptive radio interference mitigation
US20020077099A1 (en) 2000-12-18 2002-06-20 Space Systems/Loral, Inc. Method and system for providing satellite communications
RU2262716C2 (ru) * 2003-08-06 2005-10-20 Опаленов Юрий Васильевич Способ радиолокационного зондирования и устройство для его осуществления
CA2553959C (en) * 2004-01-15 2011-05-03 The Boeing Company Methods and systems for enhanced navigational performance
US7372400B2 (en) * 2005-11-07 2008-05-13 The Boeing Company Methods and apparatus for a navigation system with reduced susceptibility to interference and jamming
US7583225B2 (en) 2006-05-18 2009-09-01 The Boeing Company Low earth orbit satellite data uplink
US7969352B2 (en) 2008-01-08 2011-06-28 The Boeing Company Global positioning system accuracy enhancement
US8260551B2 (en) 2008-01-10 2012-09-04 Trimble Navigation Limited System and method for refining a position estimate of a low earth orbiting satellite
US9121932B2 (en) 2008-01-10 2015-09-01 Trimble Navigation Limited Refining a position estimate of a low earth orbiting satellite
US9557422B1 (en) * 2012-12-11 2017-01-31 Apple Inc. Systems, methods, devices and subassemblies for creating and delivering a GNSS augmentation service
WO2015065541A1 (en) * 2013-06-27 2015-05-07 Trimble Navigation Limited Refining a position estimate of a low earth orbiting satellite
JP6318523B2 (ja) * 2013-09-30 2018-05-09 日本電気株式会社 測位システムと装置と方法並びにプログラム
EP3110695B1 (en) * 2014-02-26 2023-11-08 PNT Holdings, Inc. An improved performance and cost global navigation satellite system architecture
WO2015131064A1 (en) * 2014-02-28 2015-09-03 Hemisphere Gnss Inc. Locally enhanced gnss wide-area augmentation system
US10605926B2 (en) * 2015-06-29 2020-03-31 Deere & Company Satellite navigation receiver and method for switching between real-time kinematic mode and relative positioning mode
CN106443739B (zh) 2016-09-09 2019-03-01 清华大学 辅助增强导航方法及设备
CN106646564B (zh) 2016-10-31 2019-10-29 电子科技大学 一种基于低轨卫星增强导航方法
WO2018092193A1 (ja) * 2016-11-15 2018-05-24 三菱電機株式会社 ローカル誤差生成装置、ローカル誤差生成プログラム及び測位補強情報配信システム
RU2654237C1 (ru) * 2017-02-09 2018-05-17 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ интеграции систем и/или средств обеспечения навигационной и мониторинговой информацией и аппаратно-программный комплекс - центр компетенций
CN107390233B (zh) 2017-07-18 2020-04-17 武汉大学 一种低轨卫星导航增强电离层延迟改正参数方法
CN109001763B (zh) 2018-06-04 2020-06-30 北京未来导航科技有限公司 一种基于低轨星座的导航增强方法及系统
US11513232B2 (en) 2019-05-28 2022-11-29 Xona Space Systems Inc. Satellite for broadcasting high precision data
US11681052B2 (en) 2020-01-07 2023-06-20 All. Space Networks Limited Non-cooperative position, navigation, and timing extraction from VSAT communications signals using multi-beam phased array antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176188A (zh) * 2013-03-19 2013-06-26 武汉大学 一种区域地基增强ppp-rtk模糊度单历元固定方法
CN103344978A (zh) * 2013-07-04 2013-10-09 武汉大学 一种适用于大规模用户的区域增强精密定位服务方法
WO2018009088A1 (en) * 2016-07-04 2018-01-11 Llc "Topcon Positioning Systems" Gnss positioning system and method using multiple processing threads
CN107153209A (zh) * 2017-07-06 2017-09-12 武汉大学 一种短弧段低轨导航卫星实时精密定轨方法
CN107229061A (zh) * 2017-07-18 2017-10-03 武汉大学 一种基于低轨卫星的星地差分实时精密定位方法
CN107561568A (zh) * 2017-08-22 2018-01-09 中国科学院国家授时中心 基于统一模型的北斗非差非组合ppp‑rtk定位方法
CN108415050A (zh) * 2018-06-04 2018-08-17 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060384A4 (en) * 2019-12-20 2023-12-20 Xi'an Institute Of Space Radio Technology CLOUD-END ARCHITECTURE BASED PPP-RTK IMPROVEMENT METHOD AND SYSTEM
CN111896981A (zh) * 2020-07-03 2020-11-06 火眼位置数智科技服务有限公司 一种低轨导航增强定位性能评估系统和方法
CN114280915A (zh) * 2021-12-27 2022-04-05 中国科学院国家授时中心 一种天基测控授时一体化系统
CN115276769A (zh) * 2022-07-22 2022-11-01 福建鼎旸信息科技股份有限公司 一种卫星数据精准播发与服务覆盖方法及系统

Also Published As

Publication number Publication date
EP3805803A1 (en) 2021-04-14
AU2018426707B2 (en) 2021-12-02
US11733395B2 (en) 2023-08-22
RU2759392C1 (ru) 2021-11-12
US20210223406A1 (en) 2021-07-22
CA3102293A1 (en) 2019-12-12
CA3102293C (en) 2023-07-11
KR20210006954A (ko) 2021-01-19
JP7054270B2 (ja) 2022-04-13
CN108415050A (zh) 2018-08-17
KR102448573B1 (ko) 2022-09-27
EP3805803A4 (en) 2021-08-18
CN108415050B (zh) 2020-05-26
AU2018426707A1 (en) 2020-12-24
JP2021526643A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2019233039A1 (zh) 精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备
JP7122023B2 (ja) 高速精密測位方法及びシステム
US10281587B2 (en) Navigation satellite system positioning involving the generation of correction information
WO2019233046A1 (zh) 一种导航增强方法及系统
US10802160B2 (en) Rapid determination of precise position by aiding data
US10739471B2 (en) GNSS receiver with a capability to resolve ambiguities using an uncombined formulation
US9671501B2 (en) Global navigation satellite systems (GNSS) positioning using precise satellite data
JPWO2019233039A5 (zh)
CN111045034A (zh) 基于广播星历的gnss多系统实时精密时间传递方法及系统
Li et al. Review of PPP–RTK: Achievements, challenges, and opportunities
CN114236587A (zh) 基于北斗地基增强的网络rtk解算方法及存储介质
CN110824505B (zh) Gnss卫星接收机的偏差估计方法及系统、定位方法及终端
CN108535749B (zh) 基于cors的定位增强方法及系统、定位系统
US20160313449A1 (en) Systems, Methods, Devices And Subassemblies For Rapid-Acquisition Access To High-Precision Positioning, Navigation And/Or Timing Solutions
Liu et al. Real-time multi-constellation precise point positioning with integer ambiguity resolution
CN115356757A (zh) 一种gnss终端定位数据处理方法
CN110824521B (zh) Gnss卫星定位方法及系统、定位终端
Ehigiator-Irughe et al. Establishment of geodetic control in Jebba Dam using CSRS-PPP processing software
CN117826208A (zh) 基准站测量数据的gnss差分定位方法、系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3102293

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020568475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035109

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018426707

Country of ref document: AU

Date of ref document: 20181120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018921730

Country of ref document: EP

Effective date: 20210111