WO2019232779A1 - 样品调整控制装置 - Google Patents

样品调整控制装置 Download PDF

Info

Publication number
WO2019232779A1
WO2019232779A1 PCT/CN2018/090407 CN2018090407W WO2019232779A1 WO 2019232779 A1 WO2019232779 A1 WO 2019232779A1 CN 2018090407 W CN2018090407 W CN 2018090407W WO 2019232779 A1 WO2019232779 A1 WO 2019232779A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
transmission
rod
sample stage
pivotally connected
Prior art date
Application number
PCT/CN2018/090407
Other languages
English (en)
French (fr)
Inventor
王家宏
施光亮
Original Assignee
立盟系统科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立盟系统科技股份有限公司 filed Critical 立盟系统科技股份有限公司
Priority to PCT/CN2018/090407 priority Critical patent/WO2019232779A1/zh
Publication of WO2019232779A1 publication Critical patent/WO2019232779A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the invention relates to the technical field of sample adjustment, and in particular to a sample adjustment control device.
  • Surface science is a science that studies the microstructure of the surface of an object, including the study of understanding different interfaces. Some macro phenomena can be explained by understanding the characteristics of interfaces. Therefore, surface science is very important for applications in semiconductor processes, magnetic materials, superconductors, and fuel cells.
  • Photoelectron spectroscopy is a surface science analysis technique that can be used to observe the surface element composition of objects, experimental formulas of pure substances, and impurity elements in mixtures, and then analyze the surface of materials under specific conditions.
  • an excitation light source such as vacuum ultraviolet or X-ray
  • the electrons in the test object will be excited to emit photoelectrons.
  • an excitation light source such as vacuum ultraviolet or X-ray
  • Physical quantities such as intensity can be used to understand the nature of the object to be measured.
  • such measurements usually need to be performed in a vacuum environment.
  • the experimenter when performing surface measurements, the experimenter sometimes needs to adjust the position of the object to be measured, such as the swing angle or the entire object to be rotated by 180 or 360 degrees for measurement, but in the atmospheric environment
  • the drive system used in the observation instrument is not suitable for high vacuum environments due to the limitation of the problem of graying due to the lubricant. Therefore, the driving components used in the photoelectron spectrometer must use an ultra-high vacuum-compatible adjustment device.
  • the disadvantages of the current device for adjusting the test object used in the photoelectron spectrometer in the prior art include: it is difficult to weld heterogeneous metal materials in a vacuum, and when the test object is rotated, the rotation center is not the center of the test object. After the rotation angle, the x-axis and y-axis of the rotation axis must be adjusted to return to the center of the sample stage. The adjustment is time-consuming and easily leads to errors in the measurement of the object to be measured, or the object to be rotated or rotated.
  • the driving component of the rotation and ejection is usually the same driving component, it is easy to cause that when the sample stage is operated, the driving component may be driven by the previously rotated angle or the ejection distance. Stuck without adjustment, making the drive assembly inoperable and impossible to measure.
  • the tightness between the components of the test device's adjustment device is not good, which may cause measurement inaccuracies, seal damage and even damage the entire mechanism.
  • the present invention discloses a sample adjustment control device, the main purpose of which is to use different components to replace the existing technology, using only one component such as The bevel gear can simultaneously perform the function of ejecting and rotating the sample stage, so that the use of different components for rotation and the sample stage can avoid technical problems that may occur when the sample stage is ejected or pushed in.
  • Another object of the present invention is to provide a sample adjustment control device, which uses a rotation adjustment unit to control the bevel gear in a direction of plus or minus 180 degrees when the sample stage is ejected and the swing angle is 0 degrees.
  • the swing angle adjustment unit uses the gear drive shaft to adjust the swing angle of the sample stage to plus or minus 15 degrees when the sample stage is ejected, so that the ejection and angle of the sample stage Rotation or swing angle is controlled by different units.
  • the present invention provides a sample adjustment control device that can be operated in a vacuum environment.
  • the sample adjustment control device includes a control section, a center rod, a transmission rod fixing seat, a gas hose assembly, a sample unit, and an ejection adjustment.
  • the unit wherein the control part is provided with a first control handle, a second control handle and a third control handle; the center rod has an upper end and a bottom end, and the upper end is pivotally connected to the control portion; the transmission rod fixing seat has a through hole, and the center rod can be worn A through hole is provided, and the transmission fixing seat is pivotally connected to the center rod; the gas hose assembly has an upper end and a bottom end, the gas hose assembly is provided at the bottom end of the center rod, and the upper end of the gas hose assembly is connected by a connecting block The bottom end of the center rod is pivotally connected, and the bottom end of the gas hose assembly is also pivotally connected with a cooling block with a through hole; the sample unit includes a sample stage and a sample support plate, and the sample stage is horizontally The sample rotating shaft passes through the through hole of the cooling block, and is pivotally connected with the rotating shaft top rod through the first gear transmission shaft in the horizontal direction through the through block of the cooling block, and the upper end of the sample support plate is
  • the top plate is pivoted to the center rod and is arranged below the control part.
  • the ejection driving rod is fixed to the side of the center rod by the bearing seat, and the bearing seat is pivotally connected to the shaft ejection rod guide post.
  • the top shaft of the shaft is fixed to the cooling block and the shaft of the ejection plate is pivoted to the side of the sample support plate facing outward.
  • the bearing seat is also provided with a second gear transmission shaft in the horizontal direction for pivotal connection with the bevel gear.
  • the swing angle adjustment unit includes a swing angle sliding seat, a fixed seat, a swing angle transmission rod, a rotating transmission rod, an angle adjustment guide plate connection block, and an angle adjustment guide plate, wherein the swing angle slide seat is provided with a through hole perpendicular to the ground, and The center rod is passed through the through hole so that the swing angle sliding seat is arranged below the ejection top plate, and the fixed seat has a through hole and is fitted with the transmission rod fixed base in a horizontal direction.
  • the swing angle transmission rod is passed through the fixed seat.
  • the angle adjustment guide plate connection block is pivotally connected to the rotary transmission lever by using ball bearings and the angle adjustment guide plates are respectively disposed on both sides of the angle adjustment guide plate connection block, whereby the first control handle is used to control the first transmission lever. So that the first transmission lever drives the ejection plate rotating shaft so that the sample stage carrying the sample can be pushed out or pushed back in the horizontal direction, and the second control handle controls the second transmission lever, so that when the second control handle controls the second When the lever is moved, the second transmission lever drives the bevel gear to adjust the rotation angle of the sample carrier, and the third control handle controls the third transmission lever, so that the third transmission lever controls the second gear transmission shaft to adjust the swing angle of the sample stage. angle.
  • FIG. 1 is a schematic perspective view showing a sample adjustment control device according to the technology disclosed in the present invention.
  • FIG. 2 is a schematic diagram showing a structure of a sample adjustment control device without a flange and a control part according to the technology disclosed in the present invention.
  • FIG. 3 is an exploded view showing a sample adjustment control device according to the technology disclosed in the present invention.
  • FIG. 4 is a view of the technique disclosed in the present invention, showing the first control handle of the sample adjustment control device to control the ejection lever, the second control handle to control the swing angle adjustment unit and the third control handle to control the rotation adjustment unit to adjust and control the sample Schematic diagram of platform operation.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a sample adjustment control device according to the present invention.
  • the sample adjustment control device 1 is mainly composed of a control section 3, a center rod 4, a first transmission rod 5, a second transmission rod 6, a third transmission rod 7, and a sample portion 8. 7 is behind the center rod 4, as shown in FIG. 2, and a flange 10 is provided under the control portion 3, so the upper ends of the center rod 4 and the transmission rods 5, 6, and 7 can be passed through the blue 10 respectively.
  • control unit 3 is further configured with a first control handle 31, a second control handle 32, and a third control handle 33.
  • the first control handle 31, the second control handle 32, and the third control handle 33 is also provided on the flange 10, and the first control handle 31, the second control handle 32, and the third control handle 33 are pivotally connected to the first transmission lever 5, the second transmission lever 6, and the third transmission lever 7, respectively, so that The user can use the different functions of the first control handle 31, the second control handle 32, and the third control handle 33, and adjust by controlling the actions of the first transmission lever 5, the second transmission lever 6, and the third transmission lever 7.
  • the three control handles 33 are respectively provided with scales 312 and 332 for the user to view the current tilt angle, rotation angle and rotation angle of the sample stage (not shown) of the sample section 8. Ejection distance, its detailed parts and operation will be described in the subsequent description It is clear that the scale on the second control handle 32 cannot be seen in FIG. 1.
  • the sample adjustment control device 1 disclosed in the present invention can be operated in a vacuum environment
  • the sample stage 82 with the sample to be measured is sent to the vacuum environment by a transfer rod (not shown in the figure) during the operation.
  • the sample adjustment control device 1 is also placed in this vacuum environment, and a sample stage 82 having a sample to be measured is set on the sample section 8, wherein the sample adjustment control device 1 is a structure below the flange 10. It is placed in a vacuum environment such as a vacuum chamber or a vacuum measurement room, and the control part 3 and the first control handle 31, the second control handle 32, and the third control handle 33 above the flange 10 are in an atmospheric environment.
  • the purpose is to allow the user to adjust the operation of the sample stage 82 by the first control handle 31, the second control handle 32, and the third control handle 33 on the control unit 3 in the atmospheric environment.
  • a filling port 2 is also provided on the flange 10, and the filling port is used to introduce a liquid fluid as required by the user.
  • the liquid fluid may be liquid nitrogen, so the liquid is liquid.
  • Nitrogen can be introduced into the center rod 4 of the sample adjustment control device 1 through the filling port, so that liquid nitrogen can be passed from the upper end of the sample adjustment control device 1 through the center rod 4 down to the sample portion 8, and the sample stage of the sample portion 8
  • the sample to be tested (not shown in the figure) on 82 is used for cooling or cooling. In one embodiment, when liquid sample nitrogen is used to cool the sample stage 82, the temperature of the sample stage 82 can reach minus 170 degrees Celsius. .
  • the sample stage in order to heat the sample to be tested, can be heated by connecting a resistor and being energized, or a heating device (not shown in the figure) such as a thermal resistor or a thermistor can be installed beside the sample stage 82.
  • a heating device such as a thermal resistor or a thermistor can be installed beside the sample stage 82.
  • the bias heating device or the heating filament device wherein the heating of the sample stage 82 by the heating filament is for heating by thermal radiation.
  • the heating temperature of the sample stage 82 can be as high as 800 ° C or more, and a temperature monitoring device can be provided on the sample stage 82 to monitor the temperature of the sample stage 82 in real time.
  • the material of the sample stage 82 has characteristics of high temperature resistance, low temperature resistance, and high heat. It can be made of oxygen-free copper and stainless steel.
  • the material of the sample stage can be changed to different materials.
  • the material of the sample stage can be made of oxygen-free copper.
  • oxygen-free copper has good thermal conductivity and no magnetism, its thermal expansion coefficient is small, so the instantaneous change in temperature will not be caused by rapid expansion or contraction.
  • the material of the sample stage is damaged or broken, and the gap between the component joints will not be caused by the large change in volume.
  • the oxygen-free copper itself is not magnetic, so it will not interfere with the electronic signal during measurement when adjusting or observing the sample to be measured. It is worth mentioning that if the sample stage needs to be heated to a higher degree, you can choose stainless steel, tungsten or molybdenum with higher melting points.
  • FIG. 2 is a schematic structural diagram of the sample adjustment control device disclosed in the present invention and FIG. 3 is an exploded view of the sample adjustment control device of FIG. 2.
  • the flange 10 and the first control handle 31, the second control handle 32, and the third control handle 33 of the control unit 3 in FIG. 1 are omitted.
  • some fixing components such as screws or washers required for pivoting between the components are omitted, and these fixing components are well-known parts required when the components and the components are to be pivoted. , And do not state more in the following description.
  • the sample adjustment control device 1 includes a center rod 4, a first transmission rod 5, a second transmission rod 6, and a third transmission rod 7, and an upper end to a bottom end of the sample adjustment control device 1 (ie, the Y direction) (From top to bottom) also includes an ejection top plate 52, a swing angle slide assembly 62 composed of a first swing angle slide 721 and a second swing angle slide 722, a first transmission rod fixing base 42, and a second transmission rod
  • the round through hole allows the center rod 4 to pass through the middle of the swing angle slide 72, the first transmission rod fixing base 42, the second transmission rod fixing base 44, and the connecting block 46, and the first transmission rod 5 and the first
  • the two transmission rods 6 are respectively disposed on both sides of the center rod 4 (that is, in the Y direction) and pass through the through holes on the ejection top plate 52, the first transmission rod fixing base 42, and the second transmission rod fixing base 44 (not in (Shown in the figure), fixed by ejecting the top plate 52, the first transmission rod fixing base 42, the second transmission rod fixing base 44, and the third transmission
  • the lever 7 is provided at a position in the Z direction based on the center lever 4.
  • the first transmission lever 5, the second transmission lever 6, and the third transmission lever 7 correspond to a triangular arrangement position corresponding to the positions provided on the center lever 4.
  • a gas hose assembly 22 provided at the bottom end of the center rod 4 is connected to the center rod 4 through an engaging block 46.
  • Guide plates 462 and 464 are also pivotally provided on the side of the connecting block 4 in the X direction, so that the connecting block 46 and the gas hose assembly 22 can be accommodated in the accommodation space formed by the guide plate 462.
  • the second transmission stalk 6 is also pivotally connected to the side of the guide plate 462 facing outward, and is pivotally connected to the bottom end of the ejection plate rotation shaft 54 to the bottom end of the gas hose assembly 22 and the sample stage 8.
  • FIG. 3 is an exploded view of the structure of FIG. 2. From FIG. 3, the structure of FIG. 2 is shown in an exploded view.
  • a cooling block 9 is pivotally connected below the gas hose assembly 22, and the cooling block 9 is provided with a through hole in the Z direction. 92.
  • the sample stage 82 is pivotally connected to the first gear 84 through the rotating shaft 83 and is disposed in the through hole 92 of the cooling block 9.
  • the other side of the cooling block 9 (that is, the side opposite to the sample stage 82) is borrowed.
  • the pivot pin 85 is pivotally connected to the pivot pin 86.
  • a bevel gear 641, a bearing 642, and a gear transmission shaft 643 are sequentially provided in the Z direction from the left toward the bearing seat 64 in a horizontal direction (that is, Z (Direction) is pivotally mounted on the bearing seat 64.
  • Z Direction
  • the through hole of 65 in the Y direction is pivotally connected to the rotation transmission shaft 66, and the rotation transmission shaft 66 is pivoted in the bearing seat 64 on the left side of the aforementioned figure and is pivotally fixed in the bearing seat 64 through the bearing 662.
  • the transfer mode of the sample stage 82 is transferred from the side to a vacuum environment by a transfer rod (not shown in the figure), such as a vacuum reaction chamber.
  • a transfer rod such as a vacuum reaction chamber.
  • the swing angle of the sample portion 8 of the sample adjustment control device 1 needs to be 0 degrees, and the sample portion 8 needs to be ejected.
  • the sample stage 82 is fixed on the sample adjustment control device 1, and the first control lever 5 is controlled by the first control handle 31, that is, the transmission lever is ejected.
  • the first control handle 31 rotates the first transmission lever 5 Then, the ejection plate rotating shaft 54 is driven, and the sample stage 82 is ejected or the sample stage 82 is attached to the sample part 8 (that is, returned to the original position), that is, the sample stage 82 is moved back and forth in the Z direction; when the second control lever 32 is used to control the second transmission lever 6 to control the sample portion 8, the second transmission lever 6 drives the bevel gear 641 to adjust the rotation angle of the sample stage 82.
  • the swing angle of the sample stage 82 should be 0 degrees (that is, in a horizontal direction) and the sample stage 82 should be ejected, so that the second control handle 32 can be adjusted.
  • the second transmission rod 6 is controlled to rotate the sample stage 82 by plus or minus 180 degrees or 360 degrees.
  • the third control handle 33 controls the third transmission lever 7, that is, the swing angle transmission lever, so that the third transmission lever 7 controls the second gear transmission shaft to adjust the swing angle of the sample stage 82.
  • the swing angle of the sample stage 82 is plus or minus 15 degrees, and when the swing angle of the sample stage 82 is adjusted, the sample stage 82 needs to be grounded.
  • the first control handle 31 is first controlled to drive the sample portion 8 by the first transmission lever 5 so that the sample stage 82 Push away from the sample section 8 (that is, the arrow in the left direction in FIG. 4), and if the first control handle 31 is rotated in the opposite direction, the sample stage 82 is retracted to fit the sample section 8 (the arrow is right).
  • the second control handle 32 is controlled to drive the second transmission lever 6 to drive the bevel gear 641, and the bevel gear 641 is used to rotate the sample stage 82, that is, the rotation angle of R2 or R1 in the figure.
  • the first control handle 31 is also used to push the sample stage 82 away from the sample portion 8 and is grounded, and then controlled by the third control handle 33
  • the third transmission lever 7 drives the swing angle transmission lever, so that the third transmission lever 7 controls the second gear transmission shaft to adjust the swing angle of the sample stage 82, that is, R3 as shown in FIG. 4; and when When heating or cooling the sample on the sample stage 82, the angle of the sample stage 82 should be 0 degrees (that is, parallel to the horizontal plane) and the sample stage 82 should be ejected. Therefore, in the present invention, the functions of using the bevel gear to simultaneously rotate and eject are solved in the prior art.
  • Different control levers are used to drive different transmission rods to adjust the sample stage differently. Before the sample stage 82 is pushed out of the sample section 8, the sample stage 82 is rotated, and the sample stage 82 is stuck on a technical problem that the sample section 8 cannot be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种样品调整控制装置,利用顶出调整单元用以控制顶出传动杆,使得顶出传动杆带动顶出板转轴让承载有样品的样品载台可以在水平准方向前后顶出或是推入、摆角调整单元控制摆角传动杆,使得当第二控制把手控制摆角传动杆时,摆角传动杆带动伞齿轮而调整样品载台的摆角角度及旋转调整单元控制旋转传动杆、使得旋转传动杆控制第二齿轮传动轴用以调整样品载台的旋转角度,使得样品载台的顶出及角度旋转或是摆角由不同的单元来控制。

Description

样品调整控制装置 技术领域
本发明是涉及一种样品调整的技术领域,特别是有关于样品调整控制装置。
背景技术
表面科学是一种研究物体表面微结构的学问,包括了解不同的接口的研究,可以藉由对接口特性的了解来解释一些宏观的现象。因此,表面科学对于半导体制程、磁性材料、超导体、燃料电池等方面的应用是相当的重要。
光电子能谱学(photo electron specctropy,PES)是一种表面科学的分析技术,可用来观察物体的表面元素构成、纯物质的实验式、混合物内的杂质元素,进而分析特定条件下的材料表面。根据光电效应,当待测物受到真空紫外线(vacuum ultra violet)或是X射线等激发光源照射时,待测物中的电子会被激发而发射出光电子,藉由分析光电子的动能、电离能、强度等物理量,可以了解待测物本身的性质,然而这样的量测通常都需要在真空的环境下进行。
然而,在进行表面测量时,实验人员有时候需要调整待测物的位置,例如摆角角度或是将整个待测物进行180度或是360度的整体旋转来进行测量,但是在大气环境中观测仪器所使用的驱动系统中,因为含有润滑剂会灰发的问题的限制,并不适合应用于高真空的环境。因此,应用在光电子能谱仪的驱动组件必需使用超高真空兼容的调整装置。
目前现有技术中的光电子能谱仪所使用的待测物的调整装置的缺陷包括 有:在真空中异质金属材料难以焊接、在对待测物旋转时,旋转中心不是待测物的中心,造成在旋转角度之后,必需调整旋转轴的x轴及y轴才能回到样品载台的中心,调整费时又容易造成待测物量测上的误差、或是在对待测物进行旋转或是将待测物由样品载台顶出时,由于旋转与顶出的驱动组件通常是同一个驱动组件,因此容易造成在操作样品载台时,驱动组件会由于先前旋转的角度或是顶出的距离没有调整而卡住,使得驱动组件无法进行操作也无法进行量测。此外,在对于需要加热或是冷却的待测物来说,待测物的调整装置的各组件之间的密合程度不佳,可能会造成量测上的不准确、密封破坏甚至于伤害整个机构。
发明内容
有鉴于现有技术中量测待测物的调整装置的技术问题,本发明揭露了一种样品调整控制装置,其主要目的是利用在不同的组件来取代现有技术中,只利用一个组件例如伞齿轮,来同时进行样品载台顶出及旋转的功能,使得利用不同的组件来进行旋转及样品载台可以避免样品载台顶出或是推入的时候会卡住的技术问题。
本发明的另一目的在于提供一种样品调整控制装置,利用旋转调整单元在样品载台为顶出的状态时且摆角角度为0度的时候,用以控制伞齿轮在正负180度方向来旋转样品载台,而且摆角调整单元在样品载台为顶出的状态时,利用齿轮传动轴来调整样品载台的摆角角度为正负15度,使得样品载台的顶出及角度旋转或是摆角由不同的单元来控制。
根据上述目的,本发明提供一种可以在真空环境中操作的样品调整控制装置,样品调整控制装置包括:控制部、中心杆、传动杆固定座、气体软管组合件、样品单元及顶出调整单元,其中控制部上配置有第一控制把手、第二控制把手及第三控制把手;中心杆具有上端和底端,上端与控制部枢接;传 动杆固定座具有贯孔,中心杆可穿设过贯孔,且传动固定座与中心杆枢接;气体软管组合件具有上端和底端,气体软管组合件设置于中心杆的底端,气体软管组合件的上端藉由衔接块与中心杆的底端枢接,气体软管组合件的底端还枢接有具有贯孔的冷却块;样品单元,包含样品载台、样品支撑板,且样品载台藉由在水平方向的样品转轴穿设过冷却块的贯孔,并藉由水平方向的第一齿轮传动轴穿设过冷却块的贯孔后与转轴顶杆枢接,样品支撑板的上端与衔接块枢接,使得气体软管组合件及冷却块容置在样品支撑板与衔接块枢接后的容置空间内;顶出调整单元包含顶出顶板、顶出传动杆、传动杆转轴、顶出板转轴及轴承座,顶出顶板与中心杆枢接且设于控制部下方,顶出传动杆藉由轴承座固定于中心杆的侧边,且轴承座藉由转轴顶杆导柱枢接于转轴顶杆上,而与冷却块固接及顶出板转轴枢接于样品支撑板朝向外侧的那一面上,且轴承座于水平方向还设有第二齿轮传动轴用以与伞齿轮枢接;及摆角调整单元包含摆角滑动座、固定座、摆角传动杆、旋转传动杆、角度调整导板连接块、角度调整导板,其中摆角滑动座于垂直于地面方向设有贯孔,用以让中心杆穿设过贯孔使得摆角滑动座设置于顶出顶板下方,而固定座具有贯孔且与传动杆固定基座以水平方向嵌合,摆角传动杆穿设过固定座上的贯孔并同时穿设过角度调整导板连接块,而与旋转传动杆利用滚珠轴承枢接及角度调整导板分别设置于角度调整导板连接块的两侧边,藉此,第一控制把手用以控制所述第一传动杆,使得第一传动杆带动顶出板转轴让承载有样品的样品载台可以在水平方向前后顶出或是推入、第二控制把手控制第二传动杆,使得当第二控制把手控制第二动杆时,第二传动杆带动伞齿轮而调整样品载台的旋转角度及第三控制把手控制第三传动杆、使得第三传动杆控制第二齿轮传动轴用以调整样品载台的摆角角度。
附图说明
图1是根据本发明所揭露的技术,表示样品调整控制装置的立体示意图。
图2是根据本发明所揭露的技术,表示不具有法兰及控制部的样品调整控制装置的结构示意图。
图3是根据本发明所揭露的技术,表示样品调整控制装置的爆炸图。
图4是根据本发明所揭露的技术,表示样品调整控制装置的第一控制把手控制顶出传动杆、第二控制把手控制摆角调整单元及第三控制把手控制旋转调整单元来调整控制样品载台作动的示意图。
具体实施方式
为了使本发明的目的、技术特征及优点,能更为相关技术领域人员所了解,并得以实施本发明,在此配合所附的图式、具体阐明本发明的技术特征与实施方式,并列举较佳实施例进一步说明。以下文中所对照的图式,为表达与本发明特征有关的示意,并未亦不需要依据实际情形完整绘制。而关于本案实施方式的说明中涉及本领域技术人员所熟知的技术内容,亦不再加以陈述。
首先请参考图1。图1是根据本发明所揭露的样品调整控制装置的立体结构示意图。如图1所示,样品调整控制装置1主要是由控制部3、中心杆4及第一传动杆5、第二传动杆6、第三传动杆7及样品部8所构成其中第三传动轴7在中心杆4后方,如图2所示,且控制部3的下方设有法兰(flange)10,因此中心杆4及传动杆5、6、7的上端可分别穿设过法蓝10上所设置的通孔(未在图中表示)而裸露于法兰(或称轮缘)10外,并且分别与控制部3枢接,而中心杆4及第一传动杆5、第二传动杆6、第三传动杆7的另一端(下端)则是与样品部8枢接。在本发明的实施例中,控制部3还配置有第一控制把手31、第二控制把手32及第三控制把手33,因此,第一控制把手31、第二控制把手32及第三控制把手33也设置于法兰10上,且第一控制把手 31、第二控制把手32及第三控制把手33分别与第一传动杆5、第二传动杆6及第三传动杆7枢接,让使用者可以利用第一控制把手31、第二控制把手32及第三控制把手33不同的功能、并透过控制第一传动杆5、第二传动杆6及第三传动杆7的动作来调整并控制样品部8中的样品载台(未在图中表示)在平行水平面方向顶出或是推入、旋转或是摆角角度、另外于第一控制把手31、第二控制把手32及第三控制把手33上分别设有刻度表312、332可供使用者查看样品部8的样品载台(未在图中表示)的目前的摆角角度(tilt angle)、旋转角度(rotation angle)及顶出的距离,其详细的零件及操作于后续说明要说明的是由图1中无法看到第二控制把手32上的刻度表。
由于本发明所揭露的样品调整控制装置1可以在真空环境下进行操作、因此在进行操作时,将具有待测样品的样品载台82以传送杆(未在图中表示)送到真空环境下,然后再将样品调整控制装置1也置放于此真空环境下,并且将具有待测样品的样品载台82设置于样品部8上,其中样品调整控制装置1是在法兰10以下的结构置于真空环境例如真空腔或是真空量测室内,而法兰10以上的控制部3及第一控制把手31、第二控制把手32及第三控制把手33则是处于大气环境下、其目的是为了要让使用者在大气环境下,藉由控制部3上的第一控制把手31、第二控制把手32及第三控制把手33来调整控制样品载台82的动作。
此外,于法兰10上还设有填充口2,此填充口用以让使用者可以视需求来导入液态流体,若是为了要降低待测样品的温度,其液态流体可以是液态氮,因此液态氮可以由填充口导入样品调整调整控制装置1的中心杆4,让液态氮可以由样品调整控制装置1的上端经由中心杆4一直向下直到样品部8,并且对样品部8的样品载台82上的待测样品(未在图中表示)来进行降温或是冷却,于一实施例中,使用液态氮来冷却样品载台82时,其样品载台82的温度可以到达摄氏零下170度。此外,为了要对待测样品进行加热,样 品载台可以经由接上电阻并以通电的方式来加热或是在样品载台82旁安装加热装置(未在图中表示),例如热电阻、热电子偏压加热装置或加热灯丝装置,其中利用加热灯丝来对样品载台82加热是为热幅射加热。其样品载台82的加热温度可以高达摄氏800℃以上,且于样品载台82上还可以设有温度监控装置用来实时的监控样品载台82的温度。要说明的是,由于样品载台82需要承受高温800℃以上的加热温度或是低于170度的低温温度,因此样品载台82的材料同时具有耐高温、耐低温、高热的特,因此材料可以是无氧铜及不锈钢所制成。
当然,根据使用者的需求,其样品载台的材料可以更换成不同的材料,一般来说,由于无氧铜的导热热力好且不具有磁性,当待测样品所需要冷却或是加热的温度不高时,样品载台的材料可以用以无氧铜做为材质,由于无氧铜的导热能力好且不具有磁性,热膨胀系数很小因此温度瞬间的变化不会因为剧烈膨胀或是收缩而造成样品载台的材质受损或是破裂,也不会因为体积大幅度的改变而在组件接合处产生缝隙。又加上无氧铜本身没有磁性,在进行待测样品的调整或是观察时不会干扰量测时的电子讯号。值得一提的是,若当样品载台需要加热到较高度时,则可以选择熔点较高的不锈钢、钨或是钼。
接着请参考图2及图3。图2为本发明所揭露的样品调整控制装置的结构示意图及图3为图2的样品调整控制装置的爆炸图。在图2及图3中,省略了图1中的法兰10及控制部3的第一控制把手31、第二控制把手32及第三控制把手33,而是针对法兰10以下的结构来做说明。同时,在图3中省略了一些组件与组件之间枢接所需要的固定组件例如螺丝或是垫片等,这些固定组件均为众所皆知在组件与组件要枢接时所需要的零件,也不在以下说明中多加陈述。
如图2所示,样品调整控制装置1包括中心杆4、第一传动杆5、第二 传动杆6及第三传动杆7,而由样品调整控制装置1的上端至底端(即Y方向由上至下)还包括有顶出顶板52、由第一摆角滑动件721及第二摆角滑动件722所构成的摆角滑动组件62、第一传动杆固定座42、第二传动杆固定座44、衔接块46、轴承座64及气体软管组合件22,其中,摆角滑动件72、第一传动杆固定座42、第二传动杆固定座44、衔接块46的中间具有同心圆的中贯孔,使得中心杆4可以穿设过摆角滑动件72、第一传动杆固定座42、第二传动杆固定座44、衔接块46的中间,而第一传动杆5及第二传动杆6分别设置在中心杆4的两侧边(即Y方向)且穿设过顶出顶板52、第一传动杆固定座42、第二传动杆固定座44上的贯孔(未在图中表示),藉由顶出顶板52、第一传动杆固定座42、第二传动杆固定座44来固定,而第三传动杆7则是设置在以中心杆4为准的Z方向的位置,其穿设过第一传动固定座42及第二传动固定座44上的贯孔并穿设枢接于轴承座64,使得第一传动杆5、第二传动杆6及第三传动杆7对应于中心杆4所设置的位置为三角形的排列位置。
设置于中心杆4的底端的气体软管组合件22藉由衔接块46与中心杆4连接。且由衔接块4在X方向的侧边上还枢设有导板462、464使得衔接块46与气体软管组合件22气体软管组件22可以容置在导板462所构成的容置空间内。此外,第二传动秆6同时也枢接于导板462朝向外侧的侧面上,且与顶出板转轴54枢接于气体软管组件22的底端与样品载台8枢接。
接着请参考图3。图3为图2的结构爆炸图。由图3中,是将图2的结构以爆炸图的方式表示,首先要说明的是,于气体软管组件22下方枢接有冷却块9,此冷却块9在Z方向上设有贯孔92,样品载台82藉由转轴83与第一齿轮84枢接并设置于冷却块9的贯孔92内,而在冷却块9另一面(即相对于样品载台82的那一面)则藉由转轴顶杆85枢接于转轴顶杆86。
而于轴承座64,如图3左侧的放大图所示,于Z方向上由左朝向轴承座 64的方向依序设有伞齿轮641、轴承642及齿轮传动轴643以水平方向(即Z方向)枢设于轴承座64上。接着请参考在图3的右侧的图,与第三传动杆7穿设过第一传动杆固定座42、第二传动杆固定座44上的贯孔,并且穿设过角度调整板连接块65在Y方向上的贯孔与旋转传动轴66枢接,而旋转传动轴66则是枢设于前述图面左侧的轴承座64内并且藉由轴承662枢接固定于轴承座64内。
因此,在操作时,样品载台82的传送方式以传送杆(未在图中表示)从侧面传送至于真空环境内,例如真空反应腔体,将样品载台82定位之后再来调整x-y-z的位置以及样品载台82的旋转角度,而此时样品调整控制装置1的样品部8的摆角角度需要为0度、且样品部8需要是顶出的状态。然后,将样品载台82予以固定于样品调整控制装置1上,利用第一控制把手31控制所述第一传动杆5,即顶出传动杆,当第一控制把手31转动第一传动杆5进而带动顶出板转轴54,而将样品载台82顶出或是将样品载台82贴合于样品部8(即回复原来的位置),即推动样品载台82在Z方向往复移动;当利用第二控制把手32来控制第二传动杆6来控制样品部8时,第二传动杆6带动所述伞齿轮641而调整样品载台82的旋转角度(rotation angle),要说明的是,在调整样品载台82的旋转角度时,其样品载台82的摆角角度要为0度(即呈水平方向)且样品载台82需要是顶出的状态,使得第二控制把手32可以调整控制第二传动杆6让样品载台82以正负180度或是以360度的方式旋转。此外,第三控制把手33控制第三传动杆7,即摆动角度传动杆,使得第三传动杆7控制所述第二齿轮传动轴用以调整样品载台82的摆角角度。而样品载台82可以摆动的角度为正负15度,且在调整样品载台82的摆角角度时,样品载台82需要是接地(grounding)的状态。
因此,由图4中可以得到,当样品调整控制装置1要对样品载台82进行旋转角度R2时,先控制第一控制把手31利用第一传动杆5驱动样品部8, 使得样品载台82远离样品部8而顶出(即图4中箭头向左方向),若是将第一控制把手31旋转相反方向则是将样品载台82而缩回与样品部8贴合(箭头向右)。接着,控制第二控制把手32驱动第二传动杆6来带动伞齿轮641,并且藉由伞齿轮641来让样品载台82旋转,即图中R2或是R1的旋转角度。而当要调整样品载台82的摆角角度时,同样的利用第一控制把手31来将样品载台82顶出远离样品部8,并且为接地状态,然后再藉由第三控制把手33控制第三传动杆7来驱摆动角度传动杆,使得第三传动杆7控制所述第二齿轮传动轴用以调整样品载台82的摆角角度,即如图4中所标示的R3;而当要对在样品载台82上的样品进行加热或是冷却的操作时,其样品载台82的角度要为0度(即与水平面呈平行)且样品载台82要为顶出状态。因此,在本发明中,解决了现有技术中利用伞齿轮来同时达到旋转和顶出的功能,藉由不同的控制把手来带动不同的传动杆对样品载台进行不同的调整其可以避免在样品载台82还未顶出于样品部8时,就进行旋转,而样品载台82会卡在样品部8无法使用的技术问题。
以上所述仅为本发明之较佳实施例,并非用以限定本发明之权利范围;同时以上的描述,对于相关技术领域之专门人士应可明了及实施,因此其他未脱离本发明所揭示之精神下所完成的等效改变或修饰,均应包含在申请专利范围中。

Claims (9)

  1. 一种样品调整控制装置,其特征在于,包含:
    控制部,所述控制部配置有第一控制把手、第二控制把手及第三控制把手;中心杆,所述中心杆具有上端和底端,所述上端与所述控制部枢接;
    传动杆固定座,所述传动杆固定座具有贯孔,使得所述中心杆可穿设过所述贯孔,且所述传动固定座与所述中心杆枢接;
    气体软管组合件,所述气体软管组合件具有上端和底端,所述气体软管组合件设置于所述中心杆的所述底端,所述气体软管组合件的所述上端藉由衔接块与所述中心杆的所述底端枢接,所述气体软管组合件的所述底端还枢接有具有贯孔的冷却块;
    样品部,样品载台设置于所述样品部上,所述样品载台藉由在水平方向的样品转轴穿设过所述冷却块的所述贯孔,并藉由水平方向的第一齿轮传动轴穿设过所述冷却块的所述贯孔后与转轴顶杆枢接;
    顶出调整单元,所述顶出调整单元包含顶出顶板、第一传动杆、传动杆转轴、顶出板转轴及轴承座,所述顶出顶板与所述中心杆枢接且设于所述控制部下方,所述第一传动杆抵靠于轴承座固定于所述中心杆的侧边,且所述轴承座藉由所述转轴顶杆导柱枢接于所述转轴顶杆上,且所述轴承座于水平方向还设有第二齿轮传动轴用以与伞齿轮枢接;及
    摆角调整单元,所述摆角单元包含摆角滑动座、固定座、第三传动杆、角度调整导板连接块、角度调整导板,其中所述摆角滑动件于垂直于地面方向设有贯孔,用以让所述中心杆穿设过所述贯孔使得所述摆角滑动座设置于所述顶出顶板下方,而所述固定座与所述传动杆固定基座在水平方向嵌 合,所述第三传动杆穿设过所述固定座上的所述贯孔并同时穿设过所述角度调整导板连接块而与所述第三传动杆利用滚珠轴承枢接及所述角度调整导板分别设置于所述角度调整导板连接块的两侧边;
    藉此,所述第一控制把手用以控制所述第一传动杆,使得所述第一传动杆带动所述顶出板转轴让承载有所述样品的所述样品载台可以在水平方向前后顶出或是推入、所述第二控制把手控制所述第二传动杆,使得当所述第二控制把手控制所述第二动杆时,所述第二传动杆带动所述伞齿轮而调整所述样品载台的旋转角度及所述第三控制把手控制所述第三传动杆、使得第三传动杆控制所述第二齿轮传动轴用以调整所述样品载台的摆角角度。
  2. 如权利要求1所述的样品调整控制装置,其特征在于,所述控制部设置于法兰上,且所述第一传动杆、所述第二传动杆及所述第三传动杆的上端经由所述法兰与所述控制部枢接。
  3. 如权利要求2所述的样品调整控制装置,其特征在于,所述法兰上还配置有填充口,所述填充口用以导入液态流体。
  4. 如权利要求3所述的样品调整控制装置,其特征在于,所述液态流体为液态氮。
  5. 如权利要求1所述的样品调整控制装置,其特征在于,还包括加热装置设置在所述样品载台上。
  6. 如权利要求5所述的样品调整控制装置,其特征在于,所述加热装置为热电子偏压加热装置、热电阻或加热灯丝装置。
  7. 如权利要求1所述的样品调整控制装置,其特征在于,所述第二传动杆带动所述样品载台的所述摆角角度为正负15度及所述第三传动杆旋转所述样品载台时的所述旋转角度为正负180度。
  8. 如权利要求1所述的样品调整控制装置,其特征在于,还包含温度监控装置配置于所述样品部,所述温度监控装置用以监控所述样品载台的温度。
  9. 如权利要求8所述的样品调整控制装置,其特征在于,所述温度监控装置可以是热电耦。
PCT/CN2018/090407 2018-06-08 2018-06-08 样品调整控制装置 WO2019232779A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090407 WO2019232779A1 (zh) 2018-06-08 2018-06-08 样品调整控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090407 WO2019232779A1 (zh) 2018-06-08 2018-06-08 样品调整控制装置

Publications (1)

Publication Number Publication Date
WO2019232779A1 true WO2019232779A1 (zh) 2019-12-12

Family

ID=68769660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090407 WO2019232779A1 (zh) 2018-06-08 2018-06-08 样品调整控制装置

Country Status (1)

Country Link
WO (1) WO2019232779A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118940A (ja) * 2004-10-20 2006-05-11 Jeol Ltd 斜出射x線の検出方法及び装置
CN105403541A (zh) * 2014-09-10 2016-03-16 冠研(上海)企业管理咨询有限公司 样品调整控制器
CN105466739A (zh) * 2014-09-10 2016-04-06 冠研(上海)企业管理咨询有限公司 具有样品调整控制器的光电子能谱设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118940A (ja) * 2004-10-20 2006-05-11 Jeol Ltd 斜出射x線の検出方法及び装置
CN105403541A (zh) * 2014-09-10 2016-03-16 冠研(上海)企业管理咨询有限公司 样品调整控制器
CN105466739A (zh) * 2014-09-10 2016-04-06 冠研(上海)企业管理咨询有限公司 具有样品调整控制器的光电子能谱设备

Similar Documents

Publication Publication Date Title
JP5250470B2 (ja) 試料ホールダ,該試料ホールダの使用法、及び荷電粒子装置
JP6418747B2 (ja) 試料調製ステージ
US5417494A (en) Contactless testing of electronic materials and devices using microwaves
KR101665221B1 (ko) 시료 냉각 홀더 및 냉각원 용기
Müller-Hirsch et al. Heat transfer in ultrahigh vacuum scanning thermal microscopy
Niedermaier et al. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces
Bhattacharya et al. Temperature effects on gated silicon field emission array performance
US20240027373A1 (en) Single-crystal x-ray structure analysis apparatus and method, and sample holder unit therefor
JP2021162589A (ja) 低温電子顕微鏡法における温度監視の方法
WO2019232779A1 (zh) 样品调整控制装置
Wang et al. New ambient pressure X-ray photoelectron spectroscopy endstation at Taiwan light source
CN105403541B (zh) 样品调整控制器
CN105466739B (zh) 具有样品调整控制器的光电子能谱设备
EP3051278B1 (en) 3d thermal diffusivity
Mitchell et al. Probe current determination in analytical TEM/STEM and its application to the characterization of large area EDS detectors
US11879857B2 (en) Single-crystal X-ray structure analysis system
JP2004325267A (ja) 薄膜の残留応力測定装置並びに薄膜の残留応力測定方法
JP6164733B2 (ja) 表面観測用試料冷却装置及び表面観測装置
CN104569014A (zh) 测试全入射角下材料二次电子发射系数的方法和装置
JP4502193B2 (ja) 回路形成用カセットおよびその利用
Taylor et al. Cold stage for electron probe microanalyser
Albrecht et al. Six-circle diffractometer for surface diffraction using an in-vacuum x-ray detector
CN105468026B (zh) 具有三个自由度的样品调整控制器
Cezairliyan A millisecond-resolution pulse heating system for specific-heat measurements at high temperatures
CN105466963B (zh) 具有样品调整控制器的电子显微镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922064

Country of ref document: EP

Kind code of ref document: A1