WO2019230881A1 - スペーサ粒子、接着剤及び接着構造体 - Google Patents

スペーサ粒子、接着剤及び接着構造体 Download PDF

Info

Publication number
WO2019230881A1
WO2019230881A1 PCT/JP2019/021518 JP2019021518W WO2019230881A1 WO 2019230881 A1 WO2019230881 A1 WO 2019230881A1 JP 2019021518 W JP2019021518 W JP 2019021518W WO 2019230881 A1 WO2019230881 A1 WO 2019230881A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
particles
spacer
spacer particles
adherend
Prior art date
Application number
PCT/JP2019/021518
Other languages
English (en)
French (fr)
Inventor
恭幸 山田
沙織 上田
高橋 英之
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980036545.9A priority Critical patent/CN112236495B/zh
Priority to JP2019564553A priority patent/JP7316223B2/ja
Priority to CN202210997617.XA priority patent/CN115322743B/zh
Priority to KR1020207033882A priority patent/KR102599329B1/ko
Priority to KR1020237037700A priority patent/KR102718610B1/ko
Publication of WO2019230881A1 publication Critical patent/WO2019230881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to spacer particles having good compression characteristics.
  • the present invention also relates to an adhesive and an adhesive structure using the spacer particles.
  • Various adhesives are used to bond the two adherends.
  • a spacer may be blended in the adhesive.
  • anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known as materials for electrically connecting the electrodes.
  • anisotropic conductive material conductive particles are dispersed in a binder.
  • the anisotropic conductive material electrically connects electrodes of various adherends such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain an anisotropic conductive adhesive structure. It is used for.
  • the layer formed of the anisotropic conductive material functions as an adhesive layer.
  • a spacer may be used as a gap control material.
  • the liquid crystal display element is configured by arranging liquid crystal between two glass substrates.
  • an adhesive is used for bonding two glass substrates.
  • a spacer may be used as a gap control material.
  • Patent Document 1 discloses an organic coated metal plate having an adhesive layer on one side or both sides and containing spacer beads for adjusting the thickness of the adhesive layer in the adhesive layer.
  • the said adhesive layer is comprised from resin which expresses adhesive force by heating to adhesion temperature.
  • the adhesive layer has a thickness of 0.5 ⁇ m to 100 ⁇ m.
  • the adherend When a conventional spacer is used for an adhesive structure in order to obtain an adhesive structure in which two adherends are bonded, the adherend may be damaged by an impact during bonding. In the conventional spacer, the spacer does not sufficiently contact the adherend, and a sufficient gap control effect may not be obtained.
  • heating may be performed to cure the thermosetting component or to sinter the metal atom-containing particles.
  • internal stress may be generated due to shrinkage of the thermosetting component or the like. Since the generated internal stress causes a crack or the like in the adhesive layer, it is necessary to relax the internal stress. With conventional spacers, it is difficult to sufficiently relax the generated stress.
  • the ratio of the compression elastic modulus at 30% compression at 200 ° C. to the compression elastic modulus at 30% compression at 25 ° C. is 0.5 or more and 0.9 or less. Spacer particles are provided.
  • the ratio of the compression recovery rate at 200 ° C. to the compression recovery rate at 25 ° C. is 0.4 or more and 0.8 or less.
  • the compression recovery rate at 200 ° C. is 20% or more.
  • the spacer particle is used to obtain an adhesive.
  • an adhesive containing the above-described spacer particles and an adhesive component.
  • the adhesive component includes a thermosetting component, and the adhesive is a thermosetting adhesive.
  • the adhesive component includes metal atom-containing particles that can be sintered by heating.
  • the apparatus includes a first adherend, a second adherend, and an adhesive layer that bonds the first adherend and the second adherend.
  • An adhesive structure is provided in which the material of the adhesive layer includes the spacer particles described above.
  • the ratio of the compression elastic modulus at 30% compression at 200 ° C. to the compression elastic modulus at 30% compression at 25 ° C. is 0.5 or more and 0.9 or less. Since the spacer particle according to the present invention has the above-described configuration, it is possible to suppress the adherend from being scratched, to control the gap with high accuracy, and to relieve stress effectively.
  • FIG. 1 is a cross-sectional view showing an example of an adhesive structure using spacer particles according to the present invention.
  • FIG. 2 is a cross-sectional view showing another example of an adhesive structure using spacer particles according to the present invention.
  • the ratio of the compression elastic modulus at 30% compression at 200 ° C. to the compression elastic modulus at 30% compression at 25 ° C. is 0.5 or more and 0.9 or less.
  • the spacer particles according to the present invention have the above-described configuration, it is possible to suppress the adherend from being scratched, to control the gap with high accuracy, and to effectively relieve stress.
  • the compression elastic modulus is relatively high at room temperature (25 ° C.), and the compression elastic modulus is relatively low during heating (200 ° C.).
  • the compression elastic modulus is relatively low when the adherend is bonded under heating and pressure conditions, so that the impact during bonding As a result, the adherend is prevented from being damaged by, for example, and the spacer particles can sufficiently contact the adherend. Further, after bonding, the compression elastic modulus of the spacer particles becomes relatively high, so that a sufficient gap control effect can be obtained.
  • heating may be performed to cure the thermosetting component or to sinter the metal atom-containing particles.
  • internal stress may be generated in the adhesive layer due to shrinkage of the thermosetting component or the like. Since the generated internal stress causes cracks and the like, it is preferable to remove the internal stress.
  • Examples of the method for removing the internal stress include a method of heat-treating the adhesive layer.
  • the spacer particles according to the present invention have the above-described configuration, the compression elastic modulus is relatively low during heating (200 ° C.). For this reason, even if internal stress is generated by heating, the internal stress of the adhesive layer can be effectively relieved by the deformation of the spacer particles. As a result, the occurrence of cracks and the like in the adhesive layer can be effectively suppressed.
  • the compression elastic modulus of when compressed 30% at 25 ° C. of the spacer particles (30% K value (25)) is preferably 3000N / mm 2 or more, more preferably 4000 N / mm 2 or more, preferably 8000 N / mm 2 or less, more preferably 7000 N / mm 2 or less.
  • the compression elastic modulus can be controlled by the following method. A method of changing the number of functional groups serving as reaction starting points in the spacer particle material. A method of changing a ratio of a unit exhibiting high elasticity and a unit exhibiting low elasticity in the spacer particle material.
  • a method of changing the polymerization temperature during the production of the spacer particles includes a phenyl group and an isobornyl group.
  • Examples of the unit exhibiting low elasticity include a (meth) acryloyl group.
  • the compression elastic modulus (30% K value (200)) when the spacer particles are compressed by 30% at 200 ° C. is preferably 1500 N / mm 2 or more, more preferably 2000 N / mm 2 or more, and preferably 5000 N / mm. mm 2 or less, more preferably 4000 N / mm 2 or less.
  • 30% K value (200) is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the damage to the adherend and to relieve the stress more effectively. it can.
  • the compression elastic modulus (30% K value (25) of 30% compression at 25 degreeC of the compression elastic modulus (30% K value (200)) when 30% compression at 200 degreeC is carried out. ))) (30% K value (200) / 30% K value (25)) is 0.5 or more and 0.9 or less.
  • the ratio (30% K value (200) / 30% K value (25)) is 0.50 or more and 0.90 or less.
  • the ratio (30% K value (200) / 30% K value (25)) is preferably 0.8 or less, more preferably 0.7 or less, preferably 0.55 or more, more preferably 0.8. 6 or more.
  • the ratio (30% K value (200) / 30% K value (25)) is preferably 0.80 or less, more preferably 0.70 or less, preferably 0.55 or more, more preferably 0.60 or more.
  • the ratio (30% K value (200) / 30% K value (25)) is not less than the above lower limit and not more than the above upper limit, the adherend can be further prevented from being damaged, and the gap can be further reduced. It is possible to control with higher accuracy and to relieve stress more effectively.
  • the compression elastic modulus (30% K value (25) and 30% K value (200)) of the spacer particles can be measured as follows.
  • one spacer particle was placed on a smooth indenter end face of a cylinder (diameter 100 ⁇ m, made of diamond) under conditions of 25 ° C. or 200 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. Compress.
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression modulus (30% K value (25) and 30% K value (200)) can be determined by the following equation.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression elastic modulus (30% K value (25) and 30% K value (200)) of the spacer particles is the compression elastic modulus (30% K value (25) of 50 spacer particles selected arbitrarily. And 30% K value (200)) is preferably calculated by arithmetic averaging.
  • the above-mentioned compression elastic modulus represents the hardness of the spacer particles universally and quantitatively. By using the compression modulus, the hardness of the spacer particles can be expressed quantitatively and uniquely.
  • the compression recovery rate (compression recovery rate (25)) at 25 ° C. of the spacer particles is preferably 40% or more, more preferably 50% or more, preferably 90% or less, more preferably 80% or less.
  • compression recovery rate (25) is not less than the lower limit and not more than the upper limit, the adherend can be further prevented from being damaged, and the gap can be controlled with higher accuracy.
  • the compression recovery rate (compression recovery rate (200)) at 200 ° C. of the spacer particles is preferably 20% or more, more preferably 30% or more, preferably 70% or less, more preferably 60% or less.
  • compression recovery rate (200) is not less than the above lower limit and not more than the above upper limit, the stress can be alleviated more effectively.
  • the ratio of the compression recovery rate (compression recovery rate (200)) of the spacer particles at 200 ° C. to the compression recovery rate (compression recovery rate (25)) of the spacer particles at 25 ° C. is expressed as a ratio (compression recovery rate (200)). / Compression recovery rate (25)).
  • the ratio (compression recovery rate (200) / compression recovery rate (25)) is preferably 0.9 or less, more preferably 0.8 or less, still more preferably 0.7 or less, and preferably 0.3 or more. More preferably, it is 0.4 or more, and more preferably 0.5 or more.
  • the ratio (compression recovery rate (200) / compression recovery rate (25)) is preferably 0.90 or less, more preferably 0.80 or less, still more preferably 0.70 or less, and preferably is 0.00. 30 or more, more preferably 0.40 or more, and further preferably 0.50 or more.
  • the ratio (compression recovery rate (200) / compression recovery rate (25)) is not less than the above lower limit and not more than the above upper limit, the adherend can be further prevented from being damaged, and the gap can be further increased. The accuracy can be controlled, and the stress can be more effectively relieved.
  • the compression recovery rate of the spacer particles can be measured as follows.
  • the spacer particle Scatter the spacer particles on the sample stage. For each dispersed spacer particle, using a micro-compression tester, the spacer particle is 30% in the center direction of the spacer particle at 25 ° C. or 200 ° C. on the end surface of a cylindrical indenter (diameter 100 ⁇ m, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the use of the spacer particles is not particularly limited.
  • the spacer particles are suitably used for various applications.
  • the spacer particles are preferably used for obtaining an adhesive.
  • the spacer particles are preferably used as a spacer.
  • the spacer particles are preferably used as a spacer in the adhesive.
  • Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer.
  • the above spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of an adhesive layer bonding two adherends.
  • the spacer particles are preferably used as spacers for liquid crystal display elements, and are preferably used as peripheral sealing agents for liquid crystal display elements.
  • the spacer particles preferably function as a spacer. Since the spacer particles have good compressive deformation characteristics, when the spacer particles are arranged between the substrates using the spacer particles as spacers, the spacer particles are efficiently arranged between the substrates. Furthermore, since the spacer particles can suppress scratches on the liquid crystal display element member and the like, display defects are unlikely to occur in the liquid crystal display element using the liquid crystal display element spacer.
  • the spacer particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the spacer particles can be used as an alternative to rubber or a spring.
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”
  • (meth) acryl means one or both of “acryl” and “methacryl”.
  • (Meth) acryloyl means one or both of “acryloyl” and “methacryloyl”.
  • the material of the spacer particles is not particularly limited.
  • the material of the spacer particles may be an organic material or an inorganic material.
  • organic material examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, phenol formaldehyde resin, and melamine Formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Polyether ether ketone, polyether sulfo , Divinylbenzene polymer, and divinylbenzene copolymer, and the like.
  • polyolefin resins such as polyethylene, polypropylene
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the compression characteristics of the spacer particles can be easily controlled within a suitable range, the material of the spacer particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable.
  • the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And the monomer.
  • non-crosslinkable monomers examples include vinyl compounds such as styrene monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meta) as (meth) acrylic compounds ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl Alkyl (meth)
  • cross-linkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-divinyloxybutane, and divinylsulfone as a vinyl compound; tetramethylolmethanetetra (meth) acrylate as a (meth) acryl compound.
  • the spacer particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group.
  • the polymerization method is not particularly limited, and includes known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization.
  • Another polymerization method includes suspension polymerization in the presence of a radical polymerization initiator.
  • examples of the inorganic material include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda lime glass, and alumina silicate glass.
  • the spacer particles may be formed of only the organic material, may be formed of only the inorganic material, or may be formed of both the organic material and the inorganic material.
  • the spacer particles are preferably formed only from the organic material. In this case, the compression characteristics of the spacer particles can be easily controlled within a suitable range, and the spacer particles can be used more suitably depending on the use of the spacer.
  • the spacer particles may be organic / inorganic hybrid particles.
  • the spacer particles may be core-shell particles.
  • examples of the inorganic material that is a material of the spacer particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal. Although it does not specifically limit as spacer particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the spacer particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • organic core material the above-described organic materials can be used.
  • an inorganic material that is the material of the spacer particles described above can be used.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the particle diameter of the spacer particles is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the spacer particles can be more suitably used depending on the use of the spacer.
  • the particle diameter of the spacer particles is particularly preferably 10 ⁇ m or more and 110 ⁇ m or less.
  • the particle diameter of the spacer particles means the diameter when the spacer particles are spherical, and when the spacer particles have a shape other than the true spherical shape, the particle diameter is assumed to be a true sphere corresponding to the volume. Means diameter.
  • the particle diameter of the spacer particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle diameter of the spacer particles can be measured by an arbitrary particle size distribution measuring device. For example, it can be measured using a particle size distribution measuring device using principles such as laser light scattering, change in electric resistance value, image analysis after imaging.
  • the particle size of the approximately 100,000 spacer particles is measured using a particle size distribution measuring device (“Mutizer 4” manufactured by Beckman Coulter, Inc.), and the average particle size is determined. Examples include a calculation method.
  • the coefficient of variation (CV value) of the particle diameter of the spacer particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the spacer particles can be used more suitably depending on the use of the spacer.
  • the CV value is represented by the following formula.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of spacer particle diameter Dn: Average value of spacer particle diameter
  • the aspect ratio of the spacer particles is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
  • the aspect ratio indicates a major axis / minor axis.
  • the above aspect ratio is obtained by observing 10 arbitrary spacer particles with an electron microscope or an optical microscope, taking the maximum diameter and the minimum diameter as the major axis and the minor axis, respectively, and calculating the average value of the major axis / minor axis of each spacer particle. It is preferable to obtain by:
  • the adhesive according to the present invention includes the spacer particles described above and an adhesive component.
  • the spacer particles are preferably used by being dispersed in an adhesive component, and are preferably used for obtaining an adhesive dispersed in the adhesive component.
  • the adhesive can, for example, adhere two adherends.
  • the adhesive is preferably used to form an adhesive layer that adheres two adherends. Further, the adhesive is preferably used for controlling the gap by the adhesive layer with high accuracy or for relaxing the stress of the adhesive layer.
  • the adhesive component examples include a photocurable component, a thermosetting component, and metal atom-containing particles that can be sintered by heating.
  • the adhesive component preferably includes a thermosetting component.
  • adhesion can be performed by a thermoset.
  • the adhesive is preferably a thermosetting adhesive.
  • the adhesive component may contain a photocurable component.
  • adhesion can be performed by a photocured cured product.
  • the adhesive may be a photocurable adhesive.
  • the adhesive component preferably contains metal atom-containing particles that can be sintered by heating.
  • adhesion can be performed by a sintered product sintered by heating.
  • the adhesive may contain conductive particles or may not contain conductive particles.
  • the adhesive may be used for conductive connection or may not be used for conductive connection.
  • the adhesive may be used for anisotropic conductive connection or may not be used for anisotropic conductive connection.
  • the adhesive may not be a conductive material, and may not be an anisotropic conductive material.
  • the adhesive may be used for a liquid crystal display element or may not be used for a liquid crystal display element.
  • the content of the spacer particles in 100% by weight of the adhesive is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. Hereinafter, it is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the spacer particles is not less than the above lower limit and not more than the above upper limit, the spacer particles can more effectively exhibit the function as a spacer.
  • thermosetting component is not particularly limited.
  • the adhesive may contain a thermosetting compound and a thermosetting agent as the thermosetting component.
  • the adhesive preferably contains a thermosetting compound and a thermosetting agent as the thermosetting component.
  • the adhesive preferably contains a curing accelerator as a thermosetting component.
  • thermosetting component thermosetting compound
  • the thermosetting compound is not particularly limited.
  • the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • the thermosetting compound is preferably an epoxy compound or an episulfide compound, and more preferably an epoxy compound.
  • the thermosetting compound preferably contains an epoxy compound. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.
  • the above epoxy compound is a compound having at least one epoxy group.
  • the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds.
  • Fluorene type epoxy compound phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type
  • examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton.
  • the said epoxy compound only 1 type may be used and 2 or more types may be used together.
  • thermosetting component preferably contains an epoxy compound
  • thermosetting compound preferably contains an epoxy compound
  • the content of the thermosetting compound in 100% by weight of the adhesive is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. , Preferably 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the adhesive layer can be formed more satisfactorily, and the spacer particles more effectively function as a spacer. can do.
  • thermosetting component thermosetting agent
  • the said thermosetting agent is not specifically limited.
  • the thermosetting agent thermosets the thermosetting compound.
  • examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents and other thiol curing agents, acid anhydride curing agents, thermal cation initiators (thermal cation curing agents), and thermal radical generators. Is mentioned.
  • thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • the imidazole curing agent is not particularly limited.
  • Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6.
  • the thiol curing agent is not particularly limited.
  • Examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.
  • the amine curing agent is not particularly limited.
  • examples of the amine curing agent include hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5] undecane, bis (4 -Aminocyclohexyl) methane, metaphenylenediamine, diaminodiphenylsulfone and the like.
  • the acid anhydride curing agent is not particularly limited and can be widely used as long as it is an acid anhydride used as a curing agent for a thermosetting compound such as an epoxy compound.
  • the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride.
  • Phthalic acid anhydride maleic anhydride, nadic anhydride, methyl nadic anhydride, glutaric anhydride, succinic anhydride, glycerin bistrimellitic anhydride monoacetate, and ethylene glycol bistrimellitic anhydride
  • Acid anhydride curing agent trifunctional acid anhydride curing agent such as trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, methylcyclohexene tetracarboxylic acid anhydride, polyazeline acid anhydride, etc. 4 or more functional acid anhydrides Curing agents.
  • thermal cation initiator is not particularly limited.
  • examples of the thermal cation initiator include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents.
  • examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate.
  • Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
  • examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.
  • the heat radical generator is not particularly limited.
  • the thermal radical generator include azo compounds and organic peroxides.
  • the azo compound include azobisisobutyronitrile (AIBN).
  • AIBN azobisisobutyronitrile
  • the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less.
  • the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the adhesive.
  • the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
  • the adhesive may contain a curing accelerator.
  • the said hardening accelerator is not specifically limited.
  • the curing accelerator preferably acts as a curing catalyst in the reaction between the thermosetting compound and the thermosetting agent.
  • the curing accelerator preferably acts as a curing catalyst in the reaction of the thermosetting compound.
  • the said hardening accelerator only 1 type may be used and 2 or more types may be used together.
  • the curing accelerator examples include phosphonium salts, tertiary amines, tertiary amine salts, quaternary onium salts, tertiary phosphines, crown ether complexes, amine complex compounds, and phosphonium ylides.
  • the curing accelerator includes imidazole compound, isocyanurate of imidazole compound, dicyandiamide, dicyandiamide derivative, melamine compound, melamine compound derivative, diaminomaleonitrile, diethylenetriamine, triethylenetetramine, tetraethylenepentamine.
  • Amine compounds such as bis (hexamethylene) triamine, triethanolamine, diaminodiphenylmethane, organic acid dihydrazide, 1,8-diazabicyclo [5,4,0] undecene-7, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, boron trifluoride, boron trifluoride-amine complex compound, and triphenylphosphine, tricyclohexylphosphine, tributylphosphine Emissions and organophosphorus compounds such as methyl diphenyl phosphine.
  • Amine compounds such as bis (hexamethylene) triamine, triethanolamine, diaminodiphenylmethane, organic acid dihydrazide, 1,8-diazabicyclo [5,4,0] undecene-7, 3,9-bis (3-aminopropyl) -2,4,8,10-tetra
  • the phosphonium salt is not particularly limited.
  • the phosphonium salts include tetranormal butylphosphonium bromide, tetranormal butylphosphonium O, O-diethyldithiophosphoric acid, methyltributylphosphonium dimethyl phosphate, tetranormal butylphosphonium benzotriazole, tetranormal butylphosphonium tetrafluoroborate, and tetranormal borates. And butylphosphonium tetraphenylborate.
  • the content of the curing accelerator is appropriately selected so that the thermosetting compound is cured well.
  • the content of the curing accelerator with respect to 100 parts by weight of the thermosetting compound is preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight. Less than parts by weight.
  • the thermosetting compound can be cured well.
  • the adhesive preferably includes a plurality of metal atom-containing particles.
  • the metal atom-containing particles include metal particles and metal compound particles.
  • the metal compound particle includes a metal atom and an atom other than the metal atom.
  • Specific examples of the metal compound particles include metal oxide particles, metal carbonate particles, metal carboxylate particles, and metal complex particles.
  • the metal compound particles are preferably metal oxide particles.
  • the metal oxide particles are sintered after becoming metal particles by heating at the time of adhesion in the presence of a reducing agent.
  • the metal oxide particles are metal particle precursors.
  • the metal carboxylate particles include metal acetate particles.
  • the metal constituting the metal particle and the metal oxide particle examples include silver, copper, and gold. Silver or copper is preferred, and silver is particularly preferred. Therefore, the metal particles are preferably silver particles or copper particles, and more preferably silver particles.
  • the metal oxide particles are preferably silver oxide particles or copper oxide particles, and more preferably silver oxide particles. When silver particles and silver oxide particles are used, there are few residues after bonding and the volume reduction rate is very small. Examples of the silver oxide in the silver oxide particles include Ag 2 O and AgO.
  • the metal atom-containing particles are preferably sintered by heating at less than 400 ° C.
  • the temperature at which the metal atom-containing particles are sintered (sintering temperature) is more preferably 350 ° C. or lower, and preferably 300 ° C. or higher.
  • sintering temperature is more preferably 350 ° C. or lower, and preferably 300 ° C. or higher.
  • the thermal decomposition temperature of the spacer particles is higher than the melting point of the metal atom-containing particles.
  • the thermal decomposition temperature of the spacer particles is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and most preferably 50 ° C. or higher than the melting point of the metal atom-containing particles.
  • a reducing agent is used when the metal atom-containing particles are metal oxide particles.
  • the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like.
  • the said reducing agent only 1 type may be used and 2 or more types may be used together.
  • the alcohol compound examples include alkyl alcohols. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol.
  • the alcohol compound is not limited to a primary alcohol type compound, but a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol, and an alcohol compound having a cyclic structure can also be used. Further, as the alcohol compound, a compound having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. Moreover, you may use compounds, such as a citric acid, ascorbic acid, and glucose, as said alcohol compound.
  • Examples of the carboxylic acid compound include alkyl carboxylic acids.
  • Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid.
  • Examples include acids, octadecanoic acid, nonadecanoic acid and icosanoic acid.
  • the carboxylic acid compound is not limited to a primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid, and a carboxyl compound having a cyclic structure can also be used.
  • Examples of the amine compound include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine and icodecylamine.
  • the amine compound may have a branched structure.
  • Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine.
  • the amine compound is not limited to a primary amine type compound, and a secondary amine type compound, a tertiary amine type compound, and an amine compound having a cyclic structure can also be used.
  • the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group or a ketone group, or an organic substance such as a carboxylic acid metal salt. While the carboxylic acid metal salt is used as a precursor of metal particles, it also contains an organic substance, so that it is also used as a reducing agent for metal oxide particles.
  • the content of the reducing agent is preferably 1 part by weight or more, more preferably 10 parts by weight or more, preferably 1000 parts by weight or less, more preferably 500 parts by weight with respect to 100 parts by weight of the metal oxide particles. Hereinafter, it is more preferably 100 parts by weight or less.
  • the content of the reducing agent is not less than the above lower limit, the metal atom-containing particles can be sintered more densely. As a result, heat dissipation and heat resistance in the adhesive layer formed by the sintered body of the metal atom-containing particles are also increased.
  • the reducing agent tends to aggregate at the time of adhesion and voids are likely to occur in the adhesive layer.
  • the carboxylic acid metal salt By using the carboxylic acid metal salt, the carboxylic acid metal salt is not melted by heating at the time of adhesion, so that generation of voids can be suppressed.
  • a metal compound containing an organic substance may be used as the reducing agent.
  • the adhesive containing metal atom-containing particles preferably contains a binder.
  • the binder is not particularly limited.
  • the thermosetting component mentioned above is mentioned, Furthermore, a solvent etc. are mentioned.
  • the solvent examples include water and organic solvents. From the viewpoint of further improving the removability of the solvent, the solvent is preferably an organic solvent.
  • the organic solvent include alcohol compounds such as ethanol; ketone compounds such as acetone, methyl ethyl ketone, and cyclohexanone; aromatic hydrocarbon compounds such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, and methylcarbitol.
  • Glycol ether compounds such as butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol Acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate , Dipropylene glycol monomethyl ether acetate, ester compounds such as propylene carbonate; octane, aliphatic hydrocarbon compounds decane; and petroleum ether, petroleum solvents such as naphtha.
  • the adhesive preferably contains an epoxy compound.
  • the content of the metal atom-containing particles is preferably larger than the content of the spacer particles.
  • the amount is preferably 10% by weight or more, and more preferably 20% by weight or more.
  • the content of the spacer particles is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less.
  • the stress in the adhesive layer can be more effectively relaxed.
  • the gap can be controlled with higher accuracy.
  • the content of the metal atom-containing particles is preferably 0.3% by weight or more, more preferably 3% by weight or more, and preferably 50% by weight or less. Preferably it is 40 weight% or less.
  • the content of the metal atom-containing particles is not less than the above lower limit and not more than the above upper limit, the adhesive strength is effectively increased and the connection resistance is further decreased.
  • An adhesive structure can be obtained by adhering an adherend using the adhesive described above.
  • the adhesive structure includes a first adherend, a second adherend, and an adhesive layer that adheres the first adherend and the second adherend.
  • the material of the adhesion layer includes the spacer particles described above.
  • the material of the adhesive layer is preferably the above-described adhesive.
  • the adhesive layer is preferably formed of the above-described adhesive.
  • FIG. 1 is a cross-sectional view showing an example of an adhesive structure using spacer particles according to the present invention.
  • An adhesive structure 11 shown in FIG. 1 includes a first adherend 12, a second adherend 13, and an adhesive layer that bonds the first adherend 12 and the second adherend 13. 14.
  • the adhesive layer 14 includes the spacer particles 1 described above.
  • the spacer particles 1 are in contact with both the first adherend 12 and the second adherend 13.
  • the spacer particles 1 control the gap of the adhesive layer 14.
  • the spacer particle 1 is used as a gap control spacer.
  • the adhesive layer 14 includes spacer particles 1A that differ from the spacer particles 1 only in particle diameter.
  • the spacer particles 1 ⁇ / b> A are not in contact with both the first adherend 12 and the second adherend 13.
  • the spacer particles 1A are used as stress relaxation spacers. In FIG. 1, for convenience of illustration, the spacer particles 1 and 1A are shown schematically.
  • the adhesive layer 14 is formed of the above-described adhesive.
  • the adhesive layer 14 is formed of the thermosetting adhesive, the adhesive layer 14 is formed by curing the thermosetting component, and is formed of a cured product of the thermosetting component.
  • the first adherend may have a first electrode on the surface.
  • the second adherend may have a second electrode on the surface.
  • the first electrode and the second electrode may be electrically connected by conductive particles or the like included in the adhesive layer.
  • the adhesive layer may contain conductive particles.
  • the adhesive may contain conductive particles.
  • the manufacturing method of the said adhesion structure is not specifically limited.
  • a method for producing an adhesive structure a method in which the adhesive is disposed between a first adherend and a second adherend to obtain a laminate, and then the laminate is heated and pressurized. Etc.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 Pa to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 ° C. to 220 ° C.
  • the pressure applied to connect the electrode of the flexible printed board, the electrode disposed on the resin film, and the electrode of the touch panel is about 9.8 ⁇ 10 4 Pa to 1.0 ⁇ 10 6 Pa.
  • the adherend include electronic components such as power semiconductor elements.
  • the power semiconductor element is used for a rectifier diode, a power transistor, a thyristor, a gate turn-off thyristor, a triac, and the like.
  • Examples of the power transistor include a power MOSFET and an insulated gate bipolar transistor.
  • Examples of the material for the power semiconductor element include Si, SiC, and GaN.
  • the adherend is preferably an electronic component. At least one of the first adherend and the second adherend is preferably a power semiconductor element.
  • the adhesive structure is preferably a semiconductor device.
  • the adherend is preferably a flexible substrate or an adherend in which electrodes are arranged on the surface of a resin film.
  • the adherend is preferably a flexible substrate, and is preferably an adherend in which electrodes are disposed on the surface of a resin film.
  • the flexible substrate is a flexible printed substrate or the like, the flexible substrate generally has electrodes on the surface.
  • the electrode provided on the adherend examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the adherend may be a glass substrate.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • the spacer particles can be suitably used as a spacer for a liquid crystal display element.
  • the first adherend may be a first liquid crystal display element member.
  • the second adherend may be a second liquid crystal display element member.
  • the adhesive layer has the first liquid crystal display element member and the second liquid crystal display element member in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a seal portion that seals the outer periphery.
  • the spacer particles can also be used as a sealant for liquid crystal display elements.
  • the first liquid crystal display element member, the second liquid crystal display element member, the first liquid crystal display element member, and the second liquid crystal display element member face each other.
  • a sealing portion that seals the outer periphery of the first liquid crystal display element member and the second liquid crystal display element member.
  • the liquid crystal display element includes a liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member inside the seal portion. In this liquid crystal display element, a liquid crystal dropping method is applied, and the seal portion is formed by thermosetting a sealing agent for a liquid crystal dropping method.
  • FIG. 2 is a cross-sectional view showing another example of an adhesive structure using spacer particles according to the present invention.
  • the bonding structure is a liquid crystal display element 21.
  • the liquid crystal display element 21 has a pair of transparent glass substrates 22.
  • the transparent glass substrate 22 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 23 is formed on the insulating film in the transparent glass substrate 22. Examples of the material of the transparent electrode 23 include ITO.
  • the transparent electrode 23 can be formed by patterning, for example, by photolithography.
  • An alignment film 24 is formed on the transparent electrode 23 on the surface of the transparent glass substrate 22. Examples of the material of the alignment film 24 include polyimide.
  • a liquid crystal 25 is sealed between the pair of transparent glass substrates 22.
  • a plurality of spacer particles 1 are arranged between the pair of transparent glass substrates 22.
  • the spacer particle 1 is used as a spacer for a liquid crystal display element.
  • the spacing between the pair of transparent glass substrates 22 is controlled by the plurality of spacer particles 1 and is kept constant.
  • a sealant 26 is disposed between the edges of the pair of transparent glass substrates 22.
  • the sealing agent 26 prevents the liquid crystal 25 from flowing out.
  • the sealant 26 includes spacer particles 1A that differ from the spacer particles 1 only in particle diameter. In FIG. 2, the spacer particles 1 and 1A are schematically shown for convenience of illustration.
  • the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
  • Example 1 Production of spacer particles Polystyrene particles having an average particle diameter of 0.8 ⁇ m were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
  • NIPER BW benzoyl peroxide
  • the emulsion was further added to the mixed solution in the separable flask and stirred for 4 hours to absorb the monomer in the seed particles, thereby obtaining a suspension containing seed particles in which the monomer was swollen.
  • a power semiconductor element in which Ni / Au plating was applied to the adherend surface was prepared as a first adherend.
  • An aluminum nitride substrate was prepared as the second adherend.
  • the adhesive was applied on the second adherend to a thickness of about 30 ⁇ m to form an adhesive layer. Thereafter, the first adherend was laminated on the adhesive layer to obtain a laminate. The obtained laminate was heated at 300 ° C. for 10 minutes to sinter the silver particles contained in the adhesive layer, thereby producing an adhesive structure (power semiconductor element device).
  • Example 2 When producing spacer particles, except that 150 parts by weight of divinylbenzene was changed to 75 parts by weight of divinylbenzene and 75 parts by weight of tetramethylolmethanetetraacrylate, and the particle diameter of the spacer particles was changed to 3.01 ⁇ m, In the same manner as in Example 1, spacer particles, an adhesive, and an adhesive structure were obtained.
  • Example 3 Spacer particles, an adhesive, and an adhesive structure were obtained in the same manner as in Example 1 except that when the spacer particles were produced, the particle diameter of the spacer particles was changed to 30.5 ⁇ m.
  • Example 3 An adhesive and an adhesive structure were obtained in the same manner as in Example 1 except that silica particles (particle diameter: 3.00 ⁇ m) were used as the spacer particles.
  • Example 4 In preparing the spacer particles, 150 parts by weight of divinylbenzene was changed to 90 parts by weight of isobornyl acrylate, 30 parts by weight of 1,6-hexanediol dimethacrylate, and 30 parts by weight of tetramethylolmethane tetraacrylate, In addition, the particle size of the spacer particles was changed to 3.00 ⁇ m. Except for these changes, spacer particles, an adhesive, and an adhesive structure were obtained in the same manner as in Example 1.
  • Example 5 In preparing the spacer particles, 150 parts by weight of divinylbenzene was changed to 112.5 parts by weight of divinylbenzene and 37.5 parts by weight of PEG200 # diacrylate, and the particle diameter of the spacer particles was set to 3.02 ⁇ m. Except having changed, it carried out similarly to Example 1, and obtained the spacer particle
  • Example 6 In preparing the spacer particles, 150 parts by weight of divinylbenzene was changed to 105 parts by weight of divinylbenzene, 30 parts by weight of PEG200 # diacrylate, and 15 parts by weight of tetrametrolemethanetetraacrylate, and the particles of spacer particles The diameter was changed to 2.75 ⁇ m. Except for these changes, spacer particles, an adhesive, and an adhesive structure were obtained in the same manner as in Example 1.
  • compression recovery rate of spacer particles For the obtained spacer particles, the compression recovery rate at 25 ° C (compression recovery rate (25)) and the compression recovery rate at 200 ° C (compression recovery rate (200)) were determined as described above. Was measured using a micro-compression tester (“Fischerscope H-100” manufactured by Fischer). From the measurement results obtained, the ratio of compression recovery rate (200) to compression recovery rate (25) (compression recovery rate (200) / compression recovery rate (25)) was calculated.
  • Adhesive strength With respect to the obtained bonded structure, the adhesive strength at 260 ° C. was measured using a mount strength measuring device (“Bonding Tester PTR-1100” manufactured by Reska). The shear speed was set to 0.5 mm / sec, and measurement was performed by applying a horizontal load to the bonded portion between the second adherend and the adhesive layer. The adhesive strength was determined according to the following criteria.
  • Shear strength is 150 N / cm 2 or more ⁇ : Shear strength is 100 N / cm 2 or more and less than 150 N / cm 2 ⁇ : Shear strength is less than 100 N / cm 2
  • the obtained bonded structure was subjected to cross-sectional polishing, and whether or not a crack was generated in the adhesive layer of the bonded structure was observed using a scanning electron microscope.
  • the stress relaxation characteristics were determined according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Liquid Crystal (AREA)

Abstract

被着体の傷付きを抑制し、ギャップを高精度に制御でき、かつ、応力を効果的に緩和することができるスペーサ粒子を提供する。 本発明に係るスペーサ粒子は、200℃における30%圧縮したときの圧縮弾性率の、25℃における30%圧縮したときの圧縮弾性率に対する比が、0.5以上0.9以下である。

Description

スペーサ粒子、接着剤及び接着構造体
 本発明は、良好な圧縮特性を有するスペーサ粒子に関する。また、本発明は、上記スペーサ粒子を用いた接着剤及び接着構造体に関する。
 2つの被着体を接着するために、様々な接着剤が用いられている。また、該接着剤により形成される接着層の厚みを均一にし、2つの被着体の間隔を制御するために、接着剤にスペーサが配合されることがある。
 また、電極間を電気的に接続する材料として、異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップ等の様々な被着体の電極間を電気的に接続し、異方性導電接着構造体を得るために用いられている。得られる異方性導電接着構造体においては、上記異方性導電材料により形成される層は、接着層として機能する。このような用途に用いられる異方性導電材料においても、ギャップ制御材として、スペーサが用いられることがある。
 また、液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板を貼り合せるために、接着剤が用いられている。また、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材としてスペーサが用いられることがある。
 下記の特許文献1には、片面又は両面に接着層を有し、該接着層中に接着層厚みを調整するためのスペーサビーズを含有する有機被覆金属板が開示されている。上記接着層は、接着温度に加熱することにより接着力を発現する樹脂から構成される。上記接着層の厚みは、0.5μm~100μmである。
特開2004-122745号公報
 2つの被着体が接着された接着構造体を得るために、従来のスペーサを接着構造体に用いると、接着時の衝撃等により被着体が傷付くことがある。従来のスペーサでは、スペーサが被着体に十分に接触せず、十分なギャップ制御効果が得られないことがある。
 また、2つの被着体を接着する際には、熱硬化性成分を硬化させたり、金属原子含有粒子を焼結させたりするために加熱が行われることがある。加熱が行われると、熱硬化性成分等の収縮により内部応力が発生することがある。発生した内部応力は、接着層におけるクラック等の要因となるため、内部応力を緩和する必要がある。従来のスペーサでは、発生した応力を十分に緩和することは困難である。
 本発明の目的は、被着体の傷付きを抑制し、ギャップを高精度に制御でき、かつ、応力を効果的に緩和することができるスペーサ粒子を提供することである。また、本発明の目的は、上記スペーサ粒子を用いた接着剤及び接着構造体を提供することである。
 本発明の広い局面によれば、200℃における30%圧縮したときの圧縮弾性率の、25℃における30%圧縮したときの圧縮弾性率に対する比が、0.5以上0.9以下である、スペーサ粒子が提供される。
 本発明に係るスペーサ粒子のある特定の局面では、200℃における圧縮回復率の、25℃における圧縮回復率に対する比が、0.4以上0.8以下である。
 本発明に係るスペーサ粒子のある特定の局面では、200℃における圧縮回復率が、20%以上である。
 本発明に係るスペーサ粒子のある特定の局面では、前記スペーサ粒子は、接着剤を得るために用いられる。
 本発明の広い局面によれば、上述したスペーサ粒子と、接着性成分とを含む、接着剤が提供される。
 本発明に係る接着剤のある特定の局面では、前記接着性成分が、熱硬化性成分を含み、接着剤は、熱硬化性接着剤である。
 本発明に係る接着剤のある特定の局面では、前記接着性成分が、加熱により焼結可能な金属原子含有粒子を含む。
 本発明の広い局面によれば、第1の被着体と、第2の被着体と、前記第1の被着体及び前記第2の被着体を接着している接着層とを備え、前記接着層の材料が、上述したスペーサ粒子を含む、接着構造体が提供される。
 本発明に係るスペーサ粒子では、200℃における30%圧縮したときの圧縮弾性率の、25℃における30%圧縮したときの圧縮弾性率に対する比は、0.5以上0.9以下である。本発明に係るスペーサ粒子では、上記の構成が備えられているので、被着体の傷付きを抑制し、ギャップを高精度に制御でき、かつ、応力を効果的に緩和することができる。
図1は、本発明に係るスペーサ粒子を用いた接着構造体の一例を示す断面図である。 図2は、本発明に係るスペーサ粒子を用いた接着構造体の他の例を示す断面図である。
 以下、本発明を詳細に説明する。
 (スペーサ粒子)
 本発明に係るスペーサ粒子では、200℃における30%圧縮したときの圧縮弾性率の、25℃における30%圧縮したときの圧縮弾性率に対する比は、0.5以上0.9以下である。
 本発明に係るスペーサ粒子では、上記の構成が備えられているので、被着体の傷付きを抑制し、ギャップを高精度に制御でき、かつ、応力を効果的に緩和することができる。
 本発明に係るスペーサ粒子では、上記の構成が備えられているので、常温(25℃)では圧縮弾性率が比較的高く、加熱時(200℃)では圧縮弾性率が比較的低い。例えば、本発明に係るスペーサ粒子を接着構造体を得るために用いると、加熱及び加圧条件により被着体が接着される際には、圧縮弾性率が比較的低くなるため、接着時の衝撃等による被着体の傷付きが抑制され、スペーサ粒子が被着体に十分に接触することができる。また、接着後には、スペーサ粒子の圧縮弾性率が比較的高くなるので、十分なギャップ制御効果を得ることができる。
 また、2つの被着体を接着する接着層を形成する際には、熱硬化性成分を硬化させたり、金属原子含有粒子を焼結させたりするために加熱が行われることがある。加熱が行われると、上記熱硬化性成分等の収縮により上記接着層に内部応力が発生することがある。発生した内部応力はクラック等の原因となるため、内部応力は除去することが好ましい。内部応力を除去する方法としては、上記接着層を加熱処理する方法等が挙げられる。しかしながら、上記接着層の材料として、熱硬化性成分や金属原子含有粒子を含む接着剤等が用いられていると、加熱処理によっても十分に内部応力を除去することは困難である。本発明に係るスペーサ粒子では、上記の構成が備えられているので、加熱時(200℃)では圧縮弾性率が比較的低い。このため、加熱により内部応力が発生したとしても、スペーサ粒子が変形することで、接着層の内部応力を効果的に緩和することができる。結果として、接着層におけるクラック等の発生を効果的に抑制することができる。
 上記スペーサ粒子の25℃における30%圧縮したときの圧縮弾性率(30%K値(25))は、好ましくは3000N/mm以上、より好ましくは4000N/mm以上であり、好ましくは8000N/mm以下、より好ましくは7000N/mm以下である。上記30%K値(25)が、上記下限以上及び上記上限以下であると、ギャップをより一層高精度に制御することができる。なお、上記圧縮弾性率は、以下の方法により制御することができる。上記スペーサ粒子の材料において、反応起点となる官能基数を変える方法。上記スペーサ粒子材料において、高弾性を示すユニットと低弾性を示すユニットとの比率を変える方法。上記スペーサ粒子の作製時に、重合温度を変える方法。上記高弾性を示すユニットとしては、フェニル基及びイソボルニル基等が挙げられる。上記低弾性を示すユニットとしては、(メタ)アクリロイル基等が挙げられる。
 上記スペーサ粒子の200℃における30%圧縮したときの圧縮弾性率(30%K値(200))は、好ましくは1500N/mm以上、より好ましくは2000N/mm以上であり、好ましくは5000N/mm以下、より好ましくは4000N/mm以下である。上記30%K値(200)が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができ、応力をより一層効果的に緩和することができる。
 本発明に係るスペーサ粒子では、200℃における30%圧縮したときの圧縮弾性率(30%K値(200))の、25℃における30%圧縮したときの圧縮弾性率(30%K値(25))に対する比(30%K値(200)/30%K値(25))は、0.5以上0.9以下である。具体的には、上記比(30%K値(200)/30%K値(25))は、0.50以上0.90以下である。上記比(30%K値(200)/30%K値(25))は、好ましくは0.8以下、より好ましくは0.7以下であり、好ましくは0.55以上、より好ましくは0.6以上である。また、上記比(30%K値(200)/30%K値(25))は、好ましくは0.80以下、より好ましくは0.70以下であり、好ましくは0.55以上、より好ましくは0.60以上である。上記比(30%K値(200)/30%K値(25))が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層抑制することができ、ギャップをより一層高精度に制御することができ、かつ、応力をより一層効果的に緩和することができる。
 上記スペーサ粒子における上記圧縮弾性率(30%K値(25)及び30%K値(200))は、以下のようにして測定できる。
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃又は200℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下でスペーサ粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(30%K値(25)及び30%K値(200))を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記スペーサ粒子における上記圧縮弾性率(30%K値(25)及び30%K値(200))は、任意に選択された50個のスペーサ粒子の上記圧縮弾性率(30%K値(25)及び30%K値(200))を算術平均することにより、算出することが好ましい。
 30%K値(25)及び30%K値(200)(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:スペーサ粒子が30%圧縮変形したときの荷重値(N)
 S:スペーサ粒子が30%圧縮変形したときの圧縮変位(mm)
 R:スペーサ粒子の半径(mm)
 上記圧縮弾性率は、スペーサ粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、スペーサ粒子の硬さを定量的かつ一義的に表すことができる。
 上記スペーサ粒子の25℃における圧縮回復率(圧縮回復率(25))は、好ましくは40%以上、より好ましくは50%以上であり、好ましくは90%以下、より好ましくは80%以下である。上記圧縮回復率(25)が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層抑制することができ、ギャップをより一層高精度に制御することができる。
 上記スペーサ粒子の200℃における圧縮回復率(圧縮回復率(200))は、好ましくは20%以上、より好ましくは30%以上であり、好ましくは70%以下、より好ましくは60%以下である。上記圧縮回復率(200)が、上記下限以上及び上記上限以下であると、応力をより一層効果的に緩和することができる。
 上記スペーサ粒子の200℃における圧縮回復率(圧縮回復率(200))の、上記スペーサ粒子の25℃における圧縮回復率(圧縮回復率(25))に対する比を、比(圧縮回復率(200)/圧縮回復率(25))とする。上記比(圧縮回復率(200)/圧縮回復率(25))は、好ましくは0.9以下、より好ましくは0.8以下、さらに好ましくは0.7以下であり、好ましくは0.3以上、より好ましくは0.4以上、さらに好ましくは0.5以上である。また、上記比(圧縮回復率(200)/圧縮回復率(25))は、好ましくは0.90以下、より好ましくは0.80以下、さらに好ましくは0.70以下であり、好ましくは0.30以上、より好ましくは0.40以上、さらに好ましくは0.50以上である。上記比(圧縮回復率(200)/圧縮回復率(25))が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層抑制することができ、ギャップをより一層高精度に制御することができ、かつ、応力をより一層効果的に緩和することができる。
 上記スペーサ粒子の圧縮回復率は、以下のようにして測定できる。
 試料台上にスペーサ粒子を散布する。散布されたスペーサ粒子1個について、微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃又は200℃で、スペーサ粒子の中心方向に、スペーサ粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
 上記スペーサ粒子の用途は特に限定されない。上記スペーサ粒子は、様々な用途に好適に用いられる。上記スペーサ粒子は、接着剤を得るために用いられることが好ましい。上記スペーサ粒子は、スペーサとして用いられることが好ましい。上記スペーサ粒子は、上記接着剤において、スペーサとして用いられることが好ましい。上記スペーサの使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップのギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの被着体を接着している接着層の応力緩和等に用いることができる。
 上記スペーサ粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記スペーサ粒子は、スペーサとして機能することが好ましい。上記スペーサ粒子は、良好な圧縮変形特性を有するので、上記スペーサ粒子をスペーサとして用いて基板間に配置する場合に、上記スペーサ粒子が、基板間に効率的に配置される。さらに、上記スペーサ粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子において、表示不良が生じ難くなる。
 さらに、上記スペーサ粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記スペーサ粒子を用いることができる。
 以下、スペーサ粒子の他の詳細を説明する。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリロイル」は「アクリロイル」と「メタクリロイル」との一方又は双方を意味する。
 (スペーサ粒子の他の詳細)
 上記スペーサ粒子の材料は特に限定されない。上記スペーサ粒子の材料は、有機材料であってもよく、無機材料であってもよい。
 上記有機材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記スペーサ粒子の圧縮特性を好適な範囲に容易に制御できるので、上記スペーサ粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記スペーサ粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。
 上記スペーサ粒子は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記の重合方法としては特に限定されず、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。
 上記無機材料としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。
 上記スペーサ粒子は、上記有機材料のみにより形成されていてもよく、上記無機材料のみにより形成されていてもよく、上記有機材料と上記無機材料との双方により形成されていてもよい。上記スペーサ粒子は、上記有機材料のみにより形成されていることが好ましい。この場合には、上記スペーサ粒子の圧縮特性を好適な範囲に容易に制御することができ、上記スペーサ粒子をスペーサの用途により一層好適に使用可能になる。
 上記スペーサ粒子は、有機無機ハイブリッド粒子であってもよい。上記スペーサ粒子は、コアシェル粒子であってもよい。上記スペーサ粒子が有機無機ハイブリッド粒子である場合に、上記スペーサ粒子の材料である無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成されたスペーサ粒子としては特に限定されないが、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られるスペーサ粒子等が挙げられる。上記有機無機ハイブリッド粒子としては、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。上記スペーサ粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
 上記有機コアの材料としては、上述した有機材料等が挙げられる。
 上記無機シェルの材料としては、上述したスペーサ粒子の材料である無機物等が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
 上記スペーサ粒子の粒子径は、好ましくは1μm以上、より好ましくは3μm以上であり、好ましくは300μm以下、より好ましくは150μm以下である。上記スペーサ粒子の粒子径が、上記下限以上及び上記上限以下であると、スペーサ粒子をスペーサの用途により一層好適に使用可能になる。上記スペーサ粒子をスペーサとして用いる観点からは、上記スペーサ粒子の粒子径は、10μm以上110μm以下であることが特に好ましい。
 上記スペーサ粒子の粒子径は、上記スペーサ粒子が真球状である場合には直径を意味し、上記スペーサ粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。スペーサ粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。スペーサ粒子の粒子径は、任意の粒度分布測定装置により測定することができる。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定装置等を用いて測定することができる。さらに具体的には、スペーサ粒子の粒子径の測定方法として、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個のスペーサ粒子の粒子径を測定し、平均粒子径を算出する方法等が挙げられる。
 上記スペーサ粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下である。上記CV値が、上記上限以下であると、スペーサ粒子をスペーサの用途により一層好適に使用可能になる。
 上記CV値は、下記式で表される。
 CV値(%)=(ρ/Dn)×100
 ρ:スペーサ粒子の粒子径の標準偏差
 Dn:スペーサ粒子の粒子径の平均値
 上記スペーサ粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。上記アスペクト比は、任意のスペーサ粒子10個を電子顕微鏡又は光学顕微鏡にて観察し、最大径と最小径をそれぞれ長径、短径とし、各スペーサ粒子の長径/短径の平均値を算出することにより求めることが好ましい。
 (接着剤)
 本発明に係る接着剤は、上述したスペーサ粒子と、接着性成分とを含む。上記スペーサ粒子は、接着性成分中に分散されて用いられることが好ましく、接着性成分中に分散された接着剤を得るために用いられることが好ましい。
 上記接着剤は、例えば、2つの被着体を接着可能である。上記接着剤は、2つの被着体を接着する接着層を形成するために用いられることが好ましい。さらに、上記接着剤は、上記接着層によるギャップを高精度に制御するため、又は上記接着層の応力を緩和するために用いられることが好ましい。
 上記接着性成分としては、光硬化性成分、熱硬化性成分、及び加熱により焼結可能な金属原子含有粒子等が挙げられる。
 上記接着性成分は、熱硬化性成分を含むことが好ましい。この場合には、熱硬化した硬化物によって、接着を行うことができる。上記接着剤は、熱硬化性接着剤であることが好ましい。
 上記接着剤成分は、光硬化性成分を含んでいてもよい。この場合には、光硬化した硬化物によって、接着を行うことができる。上記接着剤は、光硬化性接着剤であってもよい。
 上記接着性成分は、加熱により焼結可能な金属原子含有粒子を含むことが好ましい。この場合には、加熱によって焼結した焼結物によって、接着を行うことができる。
 上記接着剤は、導電性粒子を含んでいてもよく、導電性粒子を含んでいなくてもよい。上記接着剤は、導電接続に用いられてもよく、導電接続に用いられなくてもよい。上記接着剤は、異方導電接続に用いられてもよく、異方導電接続に用いられなくてもよい。上記接着剤は、導電材料でなくてもよく、異方性導電材料でなくてもよい。上記接着剤は、液晶表示素子に用いられてもよく、液晶表示素子に用いられなくてもよい。
 上記接着剤100重量%中、上記スペーサ粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記スペーサ粒子の含有量が、上記下限以上及び上記上限以下であると、上記スペーサ粒子がスペーサとしての機能をより一層効果的に発揮することができる。
 (熱硬化性成分)
 上記熱硬化性成分は特に限定されない。上記接着剤は、上記熱硬化性成分として、熱硬化性化合物及び熱硬化剤とを含んでいてもよい。接着剤をより一層良好に硬化させるために、上記接着剤は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。接着剤をより一層良好に硬化させるために、上記接着剤は、熱硬化性成分として硬化促進剤を含むことが好ましい。
 (熱硬化性成分:熱硬化性化合物)
 上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。熱硬化性接着剤の硬化性及び粘度をより一層良好にする観点からは、上記熱硬化性化合物としては、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
 熱硬化性接着剤の硬化性及び粘度をより一層良好にする観点からは、上記熱硬化性成分はエポキシ化合物を含むことが好ましく、上記熱硬化性化合物はエポキシ化合物を含むことが好ましい。
 上記接着剤100重量%中、上記熱硬化性化合物の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、上記接着層をより一層良好に形成することができ、上記スペーサ粒子がスペーサとしての機能をより一層効果的に発揮することができる。
 (熱硬化性成分:熱硬化剤)
 上記熱硬化剤は特に限定されない。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
 上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
 上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
 上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
 上記熱カチオン開始剤は特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
 上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
 上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、接着剤を十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
 (熱硬化性成分:硬化促進剤)
 上記接着剤は硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物の反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化促進剤としては、ホスホニウム塩、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、アミン錯体化合物及びホスホニウムイリド等が挙げられる。具体的には、上記硬化促進剤としては、イミダゾール化合物、イミダゾール化合物のイソシアヌル酸塩、ジシアンジアミド、ジシアンジアミドの誘導体、メラミン化合物、メラミン化合物の誘導体、ジアミノマレオニトリル、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノールアミン、ジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン化合物、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、三フッ化ホウ素、三フッ化ホウ素-アミン錯体化合物、並びに、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン及びメチルジフェニルホスフィン等の有機リン化合物等が挙げられる。
 上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO,O-ジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
 上記熱硬化性化合物が良好に硬化するように、上記硬化促進剤の含有量は適宜選択される。上記熱硬化性化合物100重量部に対する上記硬化促進剤の含有量は、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、上記熱硬化性化合物を良好に硬化させることができる。
 (金属原子含有粒子)
 上記接着剤は、複数の金属原子含有粒子を含むことが好ましい。上記金属原子含有粒子としては、金属粒子及び金属化合物粒子等が挙げられる。上記金属化合物粒子は、金属原子と、該金属原子以外の原子とを含む。上記金属化合物粒子の具体例としては、金属酸化物粒子、金属の炭酸塩粒子、金属のカルボン酸塩粒子及び金属の錯体粒子等が挙げられる。上記金属化合物粒子は、金属酸化物粒子であることが好ましい。例えば、上記金属酸化物粒子は、還元剤の存在下で接着時の加熱で金属粒子となった後に焼結する。上記金属酸化物粒子は、金属粒子の前駆体である。上記金属のカルボン酸塩粒子としては、金属の酢酸塩粒子等が挙げられる。
 上記金属粒子及び上記金属酸化物粒子を構成する金属としては、銀、銅及び金等が挙げられる。銀又は銅が好ましく、銀が特に好ましい。従って、上記金属粒子は、好ましくは銀粒子又は銅粒子であり、より好ましくは銀粒子である。上記金属酸化物粒子は、好ましくは酸化銀粒子又は酸化銅粒子であり、より好ましくは酸化銀粒子である。銀粒子及び酸化銀粒子を用いた場合には、接着後に残渣が少なく、体積減少率も非常に小さい。上記酸化銀粒子における酸化銀としては、AgO及びAgOが挙げられる。
 上記金属原子含有粒子は、400℃未満の加熱で焼結することが好ましい。上記金属原子含有粒子が焼結する温度(焼結温度)は、より好ましくは350℃以下、好ましくは300℃以上である。上記金属原子含有粒子が焼結する温度が、上記下限以上又は上記上限未満であると、焼結を効率的に行うことができ、さらに焼結に必要なエネルギーを低減し、かつ環境負荷を小さくすることができる。
 上記スペーサ粒子がスペーサとしての機能をより一層効果的に発揮する観点からは、上記スペーサ粒子の熱分解温度が、上記金属原子含有粒子の融点よりも高いことが好ましい。上記スペーサ粒子の熱分解温度が、上記金属原子含有粒子の融点よりも、10℃以上高いことが好ましく、30℃以上高いことがより好ましく、50℃以上高いことが最も好ましい。
 上記金属原子含有粒子が金属酸化物粒子である場合に、還元剤が用いられることが好ましい。上記還元剤としては、アルコール化合物(アルコール性水酸基を有する化合物)、カルボン酸化合物(カルボキシ基を有する化合物)及びアミン化合物(アミノ基を有する化合物)等が挙げられる。上記還元剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アルコール化合物としては、アルキルアルコールが挙げられる。上記アルコール化合物の具体例としては、例えば、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール及びイコシルアルコール等が挙げられる。また、上記アルコール化合物としては、1級アルコール型化合物に限られず、2級アルコール型化合物、3級アルコール型化合物、アルカンジオール及び環状構造を有するアルコール化合物も使用可能である。さらに、上記アルコール化合物として、エチレングリコール及びトリエチレングリコール等多数のアルコール基を有する化合物を用いてもよい。また、上記アルコール化合物として、クエン酸、アスコルビン酸及びグルコース等の化合物を用いてもよい。
 上記カルボン酸化合物としては、アルキルカルボン酸等が挙げられる。上記カルボン酸化合物の具体例としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸及びイコサン酸等が挙げられる。また、上記カルボン酸化合物は、1級カルボン酸型化合物に限られず、2級カルボン酸型化合物、3級カルボン酸型化合物、ジカルボン酸及び環状構造を有するカルボキシル化合物も使用可能である。
 上記アミン化合物としては、アルキルアミン等が挙げられる。上記アミン化合物の具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン及びイコデシルアミン等が挙げられる。また、上記アミン化合物は分岐構造を有していてもよい。分岐構造を有するアミン化合物としては、2-エチルヘキシルアミン及び1,5-ジメチルヘキシルアミン等が挙げられる。上記アミン化合物は、1級アミン型化合物に限られず、2級アミン型化合物、3級アミン型化合物及び環状構造を有するアミン化合物も使用可能である。
 上記還元剤は、アルデヒド基、エステル基、スルホニル基又はケトン基等を有する有機物であってもよく、カルボン酸金属塩等の有機物であってもよい。カルボン酸金属塩は金属粒子の前駆体としても用いられる一方で、有機物を含有しているために、金属酸化物粒子の還元剤としても用いられる。
 上記金属酸化物粒子100重量部に対して、上記還元剤の含有量は、好ましくは1重量部以上、より好ましくは10重量部以上であり、好ましくは1000重量部以下、より好ましくは500重量部以下、さらに好ましくは100重量部以下である。上記還元剤の含有量が、上記下限以上であると、上記金属原子含有粒子をより一層緻密に焼結させることができる。この結果、上記金属原子含有粒子の焼結体によって形成された接着層における放熱性及び耐熱性も高くなる。
 上記金属原子含有粒子の焼結温度(接着温度)よりも低い融点を有する還元剤を用いると、接着時に凝集し、接着層にボイドが生じやすくなる傾向がある。カルボン酸金属塩の使用により、該カルボン酸金属塩は接着時の加熱により融解しないため、ボイドの発生を抑制できる。なお、カルボン酸金属塩以外にも有機物を含有する金属化合物を還元剤として用いてもよい。
 接着強度をより一層効果的に高める観点、及び応力負荷時のクラックの発生をより一層効果的に抑制する観点からは、金属原子含有粒子を含む接着剤は、バインダーを含むことが好ましい。上記バインダーは特に限定されない。上記バインダーとしては、上述した熱硬化性成分が挙げられ、更に溶媒等が挙げられる。
 上記溶媒としては、水及び有機溶剤等が挙げられる。溶媒の除去性をより一層高める観点からは、上記溶媒は、有機溶剤であることが好ましい。上記有機溶剤としては、エタノール等のアルコール化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン化合物;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素化合物;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル化合物;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル化合物;オクタン、デカン等の脂肪族炭化水素化合物;並びに石油エーテル、ナフサ等の石油系溶剤等が挙げられる。
 接着強度をより一層効果的に高める観点、及び応力負荷時のクラックの発生をより一層効果的に抑制する観点からは、上記接着剤は、エポキシ化合物を含むことが好ましい。
 本発明のスペーサ粒子による効果がより一層効果的に発揮されるので、金属原子含有粒子を含む接着剤において、上記金属原子含有粒子の含有量は、上記スペーサ粒子の含有量よりも多いことが好ましく、10重量%以上多いことが好ましく、20重量%以上多いことが好ましい。
 金属原子含有粒子を含む接着剤100重量%中、上記スペーサ粒子の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは50重量%以下、より好ましくは30重量%以下である。上記スペーサ粒子の含有量が、上記下限以上及び上記上限以下であると、接着層における応力をより一層効果的に緩和することができる。上記スペーサ粒子の含有量が、上記下限以上及び上記上限以下であると、ギャップをより一層高精度に制御することができる。
 金属原子含有粒子を含む接着剤100重量%中、上記金属原子含有粒子の含有量は、好ましくは0.3重量%以上、より好ましくは3重量%以上であり、好ましくは50重量%以下、より好ましくは40重量%以下である。上記金属原子含有粒子の含有量が、上記下限以上及び上記上限以下であると、接着強度が効果的に高くなり、接続抵抗がより一層低くなる。
 (接着構造体)
 上述した接着剤を用いて、被着体を接着することにより、接着構造体を得ることができる。
 上記接着構造体は、第1の被着体と、第2の被着体と、上記第1の被着体及び上記第2の被着体を接着している接着層とを備える。上記接着構造体では、上記接着層の材料が、上述したスペーサ粒子を含む。上記接着層の材料が、上述した接着剤であることが好ましい。上記接着層が、上述した接着剤により形成されていることが好ましい。
 図1は、本発明に係るスペーサ粒子を用いた接着構造体の一例を示す断面図である。
 図1に示す接着構造体11は、第1の被着体12と、第2の被着体13と、第1の被着体12及び第2の被着体13を接着している接着層14とを備える。
 接着層14は、上述したスペーサ粒子1を含む。スペーサ粒子1は、第1の被着体12と第2の被着体13との双方に接している。スペーサ粒子1は、接着層14のギャップを制御している。スペーサ粒子1は、ギャップ制御用スペーサとして用いられている。接着層14は、スペーサ粒子1と粒子径のみが異なるスペーサ粒子1Aを含む。スペーサ粒子1Aは、第1の被着体12と第2の被着体13との双方に接していない。スペーサ粒子1Aは、応力緩和用スペーサとして用いられている。図1では、図示の便宜上、スペーサ粒子1及び1Aは略図的に示されている。
 接着層14は、上述した接着剤により形成されている。接着層14が上記熱硬化性接着剤により形成されている場合、接着層14は、熱硬化性成分を硬化させることにより形成されており、熱硬化性成分の硬化物により形成されている。
 上記第1の被着体は、第1の電極を表面に有していてもよい。上記第2の被着体は、第2の電極を表面に有していてもよい。上記第1の電極と上記第2の電極とが、上記接着層に含まれる導電性粒子等により電気的に接続されていてもよい。上記接着層は、導電性粒子を含んでいてもよい。上記接着剤は、導電性粒子を含んでいてもよい。
 上記接着構造体の製造方法は特に限定されない。接着構造体の製造方法の一例として、第1の被着体と第2の被着体との間に上記接着剤を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10Pa~4.9×10Pa程度である。上記加熱の温度は、120℃~220℃程度である。フレキシブルプリント基板の電極、樹脂フィルム上に配置された電極及びタッチパネルの電極を接続するための上記加圧の圧力は9.8×10Pa~1.0×10Pa程度である。
 上記被着体としては、具体的には、パワー半導体素子等の電子部品等が挙げられる。上記パワー半導体素子は、整流ダイオード、パワートランジスタ、サイリスタ、ゲートターンオフサイリスタ及びトライアック等に用いられる。上記パワートランジスタとしては、パワーMOSFET及び絶縁ゲートバイポーラトランジスタ等が挙げられる。上記パワー半導体素子の材料としては、Si、SiC及びGaN等が挙げられる。上記被着体は電子部品であることが好ましい。上記第1の被着体及び上記第2の被着体の内の少なくとも一方は、パワー半導体素子であることが好ましい。上記接着構造体は、半導体装置であることが好ましい。
 上記接着剤は、タッチパネルにも好適に用いられる。従って、上記被着体は、フレキシブル基板であるか、又は樹脂フィルムの表面上に電極が配置された被着体であることも好ましい。上記被着体は、フレキシブル基板であることが好ましく、樹脂フィルムの表面上に電極が配置された被着体であることが好ましい。上記フレキシブル基板がフレキシブルプリント基板等である場合に、フレキシブル基板は一般に電極を表面に有する。
 上記被着体に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記被着体がフレキシブル基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記被着体は、ガラス基板であってもよい。上記被着体がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 また、上記スペーサ粒子は、液晶表示素子用スペーサとして好適に用いることができる。上記第1の被着体は、第1の液晶表示素子用部材であってもよい。上記第2の被着体は、第2の液晶表示素子用部材であってもよい。上記接着層は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部であってもよい。
 上記スペーサ粒子は、液晶表示素子用シール剤に用いることもできる。液晶表示素子は、第1の液晶表示素子用部材と、第2の液晶表示素子用部材と、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部とを備える。液晶表示素子は、上記シール部の内側で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との間に配置されている液晶を備える。この液晶表示素子では、液晶滴下工法が適用され、かつ上記シール部が、液晶滴下工法用シール剤を熱硬化させることにより形成されている。
 図2は、本発明に係るスペーサ粒子を用いた接着構造体の他の例を示す断面図である。
 図2では、接着構造体は、液晶表示素子21である。液晶表示素子21は、一対の透明ガラス基板22を有する。透明ガラス基板22は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板22における絶縁膜上に透明電極23が形成されている。透明電極23の材料としては、ITO等が挙げられる。透明電極23は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板22の表面上の透明電極23上に、配向膜24が形成されている。配向膜24の材料としては、ポリイミド等が挙げられる。
 一対の透明ガラス基板22間には、液晶25が封入されている。一対の透明ガラス基板22間には、複数のスペーサ粒子1が配置されている。スペーサ粒子1は、液晶表示素子用スペーサとして用いられている。複数のスペーサ粒子1により、一対の透明ガラス基板22の間隔が制御されており、一定に保たれている。一対の透明ガラス基板22の縁部間には、シール剤26が配置されている。シール剤26によって、液晶25の外部への流出が防がれている。シール剤26には、スペーサ粒子1と粒子径のみが異なるスペーサ粒子1Aが含まれている。図2では、図示の便宜上、スペーサ粒子1及び1Aは略図的に示されている。
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上であり、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)スペーサ粒子の作製
 種粒子として平均粒子径0.8μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
 また、ジビニルベンゼン150重量部に、過酸化ベンゾイル(日油社製「ナイパーBW」)4重量部を添加し、ラウリル硫酸トリエタノールアミン8重量部と、エタノール100重量部と、イオン交換水1000重量部とをさらに添加し、乳化液を調製した。
 セパラブルフラスコ中の上記混合液に、上記乳化液をさらに添加し、4時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して95℃で10時間反応させ、粒子径3.08μmのスペーサ粒子を得た。
 (2)接着剤の作製
 銀粒子(平均粒子径15nm)40重量部と、ジビニルベンゼン樹脂粒子(平均粒子径30μm、CV値5%)1重量部と、上記スペーサ粒子10重量部と、溶媒であるトルエン40重量部とを配合し、混合して接着剤を作製した。
 (3)接着構造体の作製
 第1の被着体として、被着面にNi/Auめっきが施されたパワー半導体素子を用意した。第2の被着体として、窒化アルミニウム基板を用意した。
 第2の被着体上に上記接着剤を約30μmの厚みになるように塗布し、接着剤層を形成した。その後、接着剤層上に上記第1の被着体を積層して、積層体を得た。得られた積層体を300℃で10分加熱することにより、接着剤層に含まれている銀粒子を焼結させて、接着構造体(パワー半導体素子デバイス)を作製した。
 (実施例2)
 スペーサ粒子を作製する際に、ジビニルベンゼン150重量部をジビニルベンゼン75重量部及びテトラメチロールメタンテトラアクリレート75重量部に変更したこと、及びスペーサ粒子の粒子径を3.01μmに変更したこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (実施例3)
 スペーサ粒子を作製する際に、スペーサ粒子の粒子径を30.5μmに変更したこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (比較例1)
 スペーサ粒子を作製する際に、ジビニルベンゼン150重量部をジビニルベンゼン100重量部及びスチレン50重量部に変更したこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (比較例2)
 スペーサ粒子を作製せず、スペーサ粒子を用いなかったこと以外は、実施例1と同様にして、接着剤及び接着構造体を得た。
 (比較例3)
 スペーサ粒子として、シリカ粒子(粒子径3.00μm)を用いたこと以外は、実施例1と同様にして、接着剤及び接着構造体を得た。
 (実施例4)
 スペーサ粒子を作製する際に、ジビニルベンゼン150重量部を、イソボルニルアクリレート90重量部と、1,6-ヘキサンジオールジメタクリレート30重量部と、テトラメチロールメタンテトラアクリレート30重量部とに変更し、かつ、スペーサ粒子の粒子径を3.00μmに変更した。これらの変更をしたこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (実施例5)
 スペーサ粒子を作製する際に、ジビニルベンゼン150重量部を、ジビニルベンゼン112.5重量部と、PEG200#ジアクリレート37.5重量部とに変更したこと、及びスペーサ粒子の粒子径を3.02μmに変更をしたこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (実施例6)
 スペーサ粒子を作製する際に、ジビニルベンゼン150重量部を、ジビニルベンゼン105重量部と、PEG200#ジアクリレート30重量部と、テトラメトロールメタンテトラアクリレート15重量部とに変更し、かつ、スペーサ粒子の粒子径を2.75μmに変更をした。これらの変更をしたこと以外は、実施例1と同様にして、スペーサ粒子、接着剤及び接着構造体を得た。
 (評価)
 (1)スペーサ粒子の圧縮弾性率
 得られたスペーサ粒子について、25℃における30%圧縮したときの圧縮弾性率(30%K値(25))及び200℃における30%圧縮したときの圧縮弾性率(30%K値(200))を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。測定結果から、30%K値(25)及び30%K値(200)を算出した。得られた測定結果から、30%K値(200)の、30%K値(25)に対する比(30%K値(200)/30%K値(25))を算出した。
 (2)スペーサ粒子の圧縮回復率
 得られたスペーサ粒子について、25℃における圧縮回復率(圧縮回復率(25))及び200℃における圧縮回復率(圧縮回復率(200))を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。得られた測定結果から、圧縮回復率(200)の、圧縮回復率(25)に対する比(圧縮回復率(200)/圧縮回復率(25))を算出した。
 (3)接着層の厚みのばらつき
 得られた10個の接着構造体について断面研磨を行い、その断面の画像から接着層の厚みを走査型電子顕微鏡を用いて測定した。接着層の厚みのばらつきを以下の基準で判定した。
 [接着層の厚みのばらつきの判定基準]
 ○○:接着層の厚みの最大値に対する接着層の厚みの最小値の比(接着層の厚みの最小値/接着層の厚みの最大値)が0.9以上
 ○:接着層の厚みの最大値に対する接着層の厚みの最小値の比(接着層の厚みの最小値/接着層の厚みの最大値)が0.7以上0.9未満
 ×:接着層の厚みの最大値に対する接着層の厚みの最小値の比(接着層の厚みの最小値/接着層の厚みの最大値)が0.7未満
 (4)接着強度
 得られた接着構造体について、マウント強度測定装置(レスカ社製「ボンディングテスターPTR-1100」)を用いて、260℃での接着強度を測定した。なお、シェアスピードは0.5mm/secとして、第2の被着体と接着層との接着部分に水平方向の負荷をかけて測定した。接着強度を以下の基準で判定した。
 [接着強度の判定基準]
 ○○:シェア強度が150N/cm以上
 ○:シェア強度が100N/cm以上150N/cm未満
 ×:シェア強度が100N/cm未満
 (5)応力緩和特性
 得られた接着構造体について断面研磨を行い、その断面の画像から接着構造体の接着層においてクラックが発生しているか否かを、走査型電子顕微鏡を用いて観察した。応力緩和特性を以下の基準で判定した。
 [応力緩和特性の判定基準]
 ○○:クラックが発生していない
 ○:クラックが発生している(実使用上問題なし)
 ×:クラックが発生している
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、パワー半導体素子デバイスを作製した具体的な実施例を示した。異方性導電接続構造体及び液晶表示素子を得るために、実施例のスペーサ粒子を用いた場合にも、本発明の効果が奏される。
 1…スペーサ粒子
 1A…スペーサ粒子
 11…接着構造体
 12…第1の被着体
 13…第2の被着体
 14…接着層
 21…液晶表示素子
 22…透明ガラス基板
 23…透明電極
 24…配向膜
 25…液晶
 26…シール剤

Claims (8)

  1.  200℃における30%圧縮したときの圧縮弾性率の、25℃における30%圧縮したときの圧縮弾性率に対する比が、0.5以上0.9以下である、スペーサ粒子。
  2.  200℃における圧縮回復率の、25℃における圧縮回復率に対する比が、0.4以上0.8以下である、請求項1に記載のスペーサ粒子。
  3.  200℃における圧縮回復率が、20%以上である、請求項1又は2に記載のスペーサ粒子。
  4.  接着剤を得るために用いられる、請求項1~3のいずれか1項に記載のスペーサ粒子。
  5.  請求項1~4のいずれか1項に記載のスペーサ粒子と、
     接着性成分とを含む、接着剤。
  6.  前記接着性成分が、熱硬化性成分を含み、
     接着剤は、熱硬化性接着剤である、請求項5に記載の接着剤。
  7.  前記接着性成分が、加熱により焼結可能な金属原子含有粒子を含む、請求項5又は6に記載の接着剤。
  8.  第1の被着体と、
     第2の被着体と、
     前記第1の被着体及び前記第2の被着体を接着している接着層とを備え、
     前記接着層の材料が、請求項1~4のいずれか1項に記載のスペーサ粒子を含む、接着構造体。
PCT/JP2019/021518 2018-05-31 2019-05-30 スペーサ粒子、接着剤及び接着構造体 WO2019230881A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980036545.9A CN112236495B (zh) 2018-05-31 2019-05-30 间隔物粒子、粘接剂和粘接结构体
JP2019564553A JP7316223B2 (ja) 2018-05-31 2019-05-30 スペーサ粒子、接着剤及び接着構造体
CN202210997617.XA CN115322743B (zh) 2018-05-31 2019-05-30 间隔物粒子、粘接剂和粘接结构体
KR1020207033882A KR102599329B1 (ko) 2018-05-31 2019-05-30 스페이서 입자, 접착제 및 접착 구조체
KR1020237037700A KR102718610B1 (ko) 2018-05-31 2019-05-30 스페이서 입자, 접착제 및 접착 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104566 2018-05-31
JP2018104566 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230881A1 true WO2019230881A1 (ja) 2019-12-05

Family

ID=68698898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021518 WO2019230881A1 (ja) 2018-05-31 2019-05-30 スペーサ粒子、接着剤及び接着構造体

Country Status (5)

Country Link
JP (1) JP7316223B2 (ja)
KR (1) KR102599329B1 (ja)
CN (2) CN115322743B (ja)
TW (1) TWI802704B (ja)
WO (1) WO2019230881A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083524A (ja) * 1999-09-09 2001-03-30 Canon Inc スペーサー付カラーフィルタとその製造方法、該製造方法に用いるビーズ入りスペーサー形成材、該カラーフィルタを用いた液晶素子
JP2009158712A (ja) * 2007-12-26 2009-07-16 Sekisui Chem Co Ltd 電子部品用接着剤
JP2011198953A (ja) * 2010-03-18 2011-10-06 Sekisui Chem Co Ltd 電子部品積層体の製造方法
JP2013214417A (ja) * 2012-04-02 2013-10-17 Hitachi Chemical Co Ltd 回路接続材料、回路部材接続構造体及び回路部材接続構造体の製造方法
WO2017155116A1 (ja) * 2016-03-10 2017-09-14 積水化学工業株式会社 半導体実装用接着剤及び半導体センサ
JP2018080325A (ja) * 2016-11-04 2018-05-24 積水化学工業株式会社 基材粒子、導電性粒子、導電材料、接続材料及び接続構造体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083528A (ja) * 1999-09-13 2001-03-30 Canon Inc 液晶素子及びその製造方法及びスペーサー付き基板及びその製造方法
JP4374203B2 (ja) 2002-08-08 2009-12-02 新日本製鐵株式会社 接着安定性に優れた有機被覆金属板および接着方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083524A (ja) * 1999-09-09 2001-03-30 Canon Inc スペーサー付カラーフィルタとその製造方法、該製造方法に用いるビーズ入りスペーサー形成材、該カラーフィルタを用いた液晶素子
JP2009158712A (ja) * 2007-12-26 2009-07-16 Sekisui Chem Co Ltd 電子部品用接着剤
JP2011198953A (ja) * 2010-03-18 2011-10-06 Sekisui Chem Co Ltd 電子部品積層体の製造方法
JP2013214417A (ja) * 2012-04-02 2013-10-17 Hitachi Chemical Co Ltd 回路接続材料、回路部材接続構造体及び回路部材接続構造体の製造方法
WO2017155116A1 (ja) * 2016-03-10 2017-09-14 積水化学工業株式会社 半導体実装用接着剤及び半導体センサ
JP2018080325A (ja) * 2016-11-04 2018-05-24 積水化学工業株式会社 基材粒子、導電性粒子、導電材料、接続材料及び接続構造体

Also Published As

Publication number Publication date
JP7316223B2 (ja) 2023-07-27
TW202006049A (zh) 2020-02-01
CN112236495A (zh) 2021-01-15
KR102599329B1 (ko) 2023-11-07
JPWO2019230881A1 (ja) 2021-04-22
KR20210015805A (ko) 2021-02-10
CN115322743B (zh) 2024-03-15
CN112236495B (zh) 2022-08-30
TWI802704B (zh) 2023-05-21
CN115322743A (zh) 2022-11-11
KR20230156169A (ko) 2023-11-13

Similar Documents

Publication Publication Date Title
CN109643662B (zh) 芯片粘结膏和半导体装置
JP6875130B2 (ja) 粒子、粒子材料、接続材料及び接続構造体
KR102356926B1 (ko) 반도체 실장용 접착제 및 반도체 센서
JP2024038074A (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JP6950848B2 (ja) 半導体パッケージに用いる熱伝導性組成物
JP2022069401A (ja) ペースト状組成物、高熱伝導性材料、および半導体装置
JP6927455B2 (ja) 熱伝導性組成物および半導体装置
WO2019230881A1 (ja) スペーサ粒子、接着剤及び接着構造体
KR102718610B1 (ko) 스페이서 입자, 접착제 및 접착 구조체
WO2018203500A1 (ja) 樹脂粒子、接続材料及び接続構造体
WO2013018152A1 (ja) 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、回路部材の接続構造及びその製造方法
KR20170012040A (ko) 액정 시일제 및 그것을 이용한 액정 표시 셀
KR20220047252A (ko) 수지 입자, 도전성 입자, 도전 재료 및 접속 구조체
WO2018181536A1 (ja) 接着剤組成物及び構造体
JP7392876B2 (ja) 銀含有ペーストおよび接合体
WO2021153405A1 (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
JP2012175048A (ja) 接続構造体の製造方法及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019564553

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810674

Country of ref document: EP

Kind code of ref document: A1