WO2019230102A1 - アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 - Google Patents
アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 Download PDFInfo
- Publication number
- WO2019230102A1 WO2019230102A1 PCT/JP2019/008786 JP2019008786W WO2019230102A1 WO 2019230102 A1 WO2019230102 A1 WO 2019230102A1 JP 2019008786 W JP2019008786 W JP 2019008786W WO 2019230102 A1 WO2019230102 A1 WO 2019230102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- actuator
- wire
- wires
- heating
- band
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D9/00—Open-work fabrics
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/22—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/20—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C1/00—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
- D04C1/02—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C1/00—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
- D04C1/06—Braid or lace serving particular purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N10/00—Electric motors using thermal effects
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/54—Heating elements having the shape of rods or tubes flexible
- H05B3/56—Heating cables
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Definitions
- the present invention relates to an actuator device, an actuator band, and a method for manufacturing the actuator band.
- Patent Document 1 discloses coiled and non-coiled nanofiber twisted yarn, polymer fiber twist and tension actuator.
- Non-patent Documents 1 and 2 disclose coiled polymer fibers formed from linear low density polyethylene. According to Non-Patent Documents 1 and 2, the coiled polymer fiber is shrunk by heating and restored by heat dissipation.
- Patent Document 2 discloses an actuator that can contract in the axial direction.
- Patent Document 1 discloses an example in which a plurality of coiled polymer fibers are arranged to obtain an arbitrary generated force.
- Maki Hiraoka et al. "High stretchability and polymer chain morphology of coiled polymer actuators", 24th Polymer Materials Forum Lecture Proceedings, Vol. 24, 39 (Released on November 15, 2015) Maki Hiraoka et. Al. ”“ Power-efficient low-temperament Woven coiled fiber actuator for wearable applications ”, Scientific Reports volume 6, Article number: 16358 (36358)
- a loss such as a movement being restricted by friction or entanglement between the fibers may occur.
- the contraction rate of the coiled polymer fiber that is, the fiber made of polymer is larger.
- An object of the present invention is to provide an actuator device, an actuator band, and a method for manufacturing the actuator band that have a large ratio of contraction rate to initial tension.
- an actuator device includes an actuator band and a control device, wherein the actuator band includes a plurality of actuator single wires, and the plurality of actuator single wires.
- the actuator band includes a plurality of actuator single wires, and the plurality of actuator single wires.
- the plurality of actuator single wires Are assembled, knitted or woven, one end of the plurality of actuator single wires is joined to each other, the other end of the plurality of actuator single wires is joined to each other, and the plurality of actuator single wires
- the actuator wire is contracted by heating and restored by heat dissipation, and one end of the mesh heating element is joined to one end of the actuator wire, and the mesh heating element The other end is joined to the other end of
- the actuator band according to one embodiment of the present invention is an actuator band including a plurality of single actuator wires, and the plurality of single actuator wires are assembled, knitted, or woven.
- One end of each of the plurality of actuator single wires is joined to each other, and each of the plurality of actuator single wires covers an actuator wire and a side surface of the actuator wire, and
- the actuator wire is formed of a polymer fiber, and the fiber is twisted around its long axis, and the fiber is a cylinder. Folded to have a coil shape, the actuator wire is heated The one end of the mesh heating element is joined to one end of the actuator wire, and the other end of the mesh heating element is joined to the other end of the actuator wire. Yes.
- the actuator band manufacturing method includes the following steps.
- the present invention provides an actuator device, an actuator band, and a method for manufacturing the actuator band having a large ratio of contraction rate to initial tension.
- FIG. 1 It is sectional drawing which shows another example of the actuator single line which concerns on embodiment. It is sectional drawing which shows another example of the actuator single line which concerns on embodiment. It is a schematic diagram which shows the actuator band which concerns on embodiment. It is a figure which shows the state by which the actuator band which concerns on embodiment is not heated. It is a figure which shows the state by which the actuator band which concerns on embodiment is heated. It is a schematic diagram of the testing apparatus used for a heating test. 6 is a schematic diagram showing an actuator device according to Comparative Example 1. FIG.
- FIG. 1 is a schematic diagram showing an actuator device according to an embodiment.
- the actuator device 60 according to the embodiment includes an actuator band 1 and a control device 5.
- the actuator band 1 includes a plurality of actuator single wires 13a and 13b.
- the actuator device 60 will be described.
- FIG. 2A is a schematic diagram showing actuator single wires 13a and 13b according to the embodiment.
- FIG. 2B is a cross-sectional view of the actuator single wires 13a and 13b according to the embodiment.
- FIG. 2B is a cross-sectional view of the cut surface including the line 2B-2B shown in FIG. 2A.
- the actuator single wires 13a and 13b are provided on the side surfaces of the actuator wire 11 and the actuator wire 11 formed by twisting two coiled polymer fibers 111a and 111b together.
- a net-like heating element 12 is formed by a plurality of heating wires 21a and 21b.
- the actuator single wires 13a and 13b are referred to as the actuator single wire 13 without distinction
- the heating wires 21a and 21b are referred to as the heating wire 21 without distinction
- both the coiled polymer fibers 111a and 111b are referred to.
- the coiled polymer fiber 111 may be called without distinction.
- actuator wire 11 and “heating element 12” used in the present specification correspond to the terms “fiber” and “temperature control device” used in Patent Document 3, respectively.
- the actuator wire 11 can be composed of a coiled polymer fiber 111 (see FIG. 3) formed of linear low density polyethylene.
- the actuator wire 11 is contracted by heating and restored by heat dissipation.
- the actuator wire 11 when the actuator wire 11 applied with a load of 10 MPa at one end thereof is heated to 90 degrees Celsius, the actuator wire 11 contracts by about 23%. When the actuator wire 11 is cooled to room temperature, the actuator wire 11 is restored to its original length. As disclosed in Patent Document 3, the actuator wire 11 can be heated to a temperature of, for example, 30 degrees Celsius or more and 100 degrees Celsius or less.
- the material of the coiled polymer fiber 111 is not limited to linear low density polyethylene, and may be a polymer having anisotropic thermal expansion characteristics.
- the material of the coiled polymer fiber 111 include polyethylene (for example, low density polyethylene or high density polyethylene), nylon (for example, nylon 6, nylon 6, 6, nylon 12), polyester, or elastomer (for example, , Silicon rubber).
- polyethylene for example, low density polyethylene or high density polyethylene
- nylon for example, nylon 6, nylon 6, 6, nylon 12
- polyester for example, polyester 6, or elastomer (for example, , Silicon rubber).
- FIG. 3 is a schematic diagram showing the actuator wire 11 according to the embodiment.
- the actuator wire 11 can be composed of at least one coiled polymer fiber 111.
- the actuator wire 11 may be composed of two coiled polymer fibers 111a and 111b integrated so as to be twisted together.
- the actuator wire 11 may be composed of two or more coiled polymer fibers 111a and 111b that are twisted and twisted around the major axis.
- the actuator wire 11 includes two or more coiled polymer fibers 111 such that the side surface of one twisted coiled polymer fiber 111a is in contact with the side surface of another twisted coiled polymer fiber 111b. It can be formed by twisting.
- the coiled polymer fiber 111 is folded so as to have a cylindrical coil shape (spiral shape) by being twisted around the long axis. As described in Patent Document 3, the coiled polymer fiber 111 satisfies the following formula (I).
- D represents the average diameter of the cylindrical coil of the coiled polymer fiber 111
- d represents the diameter of the coiled polymer fiber 111. Because of this relationship, the displacement rate of the actuator wire 11 can be increased.
- the average diameter D is obtained by subtracting the diameter d of the coiled polymer fiber 111 from the outer diameter D1 of the cylindrical coil.
- the net-like heating element 12 covers the side surface of the actuator wire 11.
- the net-like heating element 12 is preferably cylindrical so as to include the actuator wire 11 therein.
- the net-like heating element 12 includes a plurality of heating wires 21a and 21b.
- the net-like heating element 12 is formed by assembling, knitting, or weaving a plurality of heating wires 21a and 21b.
- FIG. 4 is a cross-sectional view showing the heating wire 21 according to the embodiment.
- the heating wire 21 includes a non-conductive elastic yarn 51 serving as a core yarn, and a metal wire 52 covered around the elastic yarn 51.
- the heating wire 21 is manufactured by a known covering processing machine using the elastic yarn 51 as a core yarn and the metal wire 52 as a sheath yarn.
- the covering means that the metal wire 52 is wound around the elastic yarn 51 in the S direction or the Z direction.
- the heating wire 21 in which the metal wire 52 is wound around the elastic yarn 51 is referred to as a single covering heating wire. Note that the metal wire 52 alone may be used as the heating wire 21.
- FIG. 5 is a schematic diagram showing a net-like heating element 12 included in the actuator single wire 13 according to the embodiment.
- the net-like heating element 12 can be formed of a plurality of heating wires 21a and 21b. It is desirable that the plurality of heating wires 21a and 21b intersect each other such that the heating element 12 has a net shape as a whole.
- the net-like heating element 12 shown in FIGS. 2A and 5 is formed by assembling a plurality of heating wires 21a and 21b.
- the heating element 12 may be formed by knitting a plurality of heating wires 21 or may be formed by weaving the plurality of heating wires 21.
- each heating wire 21 is configured by covering the elastic yarn 51 with the metal wire 52 as a sheath yarn, and may have a coil (ie, spiral) shape.
- Each heating wire 21 may have a thread shape.
- FIG. 6 is a schematic diagram showing another example of the net-like heating element 12 according to the embodiment.
- each heating wire 21 has a rectangular wave shape, and the plurality of heating wires 21 are knitted so as to form a net-like heating element 12.
- the heating wire 21 knitted in this way may be wound around the outer surface of the actuator wire 11.
- Each heating wire 21a, 21b may have a shape of an elongated plate (that is, a belt shape).
- the plurality of heating wires 21 a and 21 b are woven so as to be spirally wound around the outer surface of the actuator wire 11.
- the heating wires 21 a and 21 b woven in this way may be wound around the outer surface of the actuator wire 11.
- FIG. 9A is a cross-sectional view showing another example of the actuator single wire 13 according to the embodiment.
- a single actuator wire 13 shown in FIG. 9A is formed by one actuator wire 11 formed by one coiled polymer fiber 111 and three heating wires 21 provided around one actuator wire 11. ing. Around the actuator wire 11, three heating wires 21 are arranged evenly at almost equal angular intervals.
- FIG. 9B is a cross-sectional view showing another example of the actuator single wire 13 according to the embodiment.
- one actuator wire 11 is illustrated by one circle.
- the actuator single wire 13 is formed by an actuator wire 11 formed by twisting two coiled polymer fibers and four heating wires 21 provided around the actuator wire 11.
- four heating wires 21 are arranged evenly at almost equal angular intervals.
- the plurality of heating wires 21 are evenly arranged around the actuator wire 11, whereby the actuator wire 11 can be heated more uniformly. As a result, a high contraction rate of the actuator band 1 can be realized.
- the actuator band 1 includes a plurality of actuator single wires 13a and 13b.
- the actuator band 1 shown in FIG. 1 has a group formed by a plurality of actuator single wires 13a and 13b intersecting each other.
- the actuator band 1 is formed by a flat string of nine actuator single wires 13.
- the actuator band 1 may be formed by a round string made of a plurality of single actuator wires 13.
- a first connector 4a is provided at one end of the plurality of actuator single wires 13a and 13b.
- the first connector 4 a is bonded to one end of the actuator band 1.
- one end of the cylindrical heating element 12 is joined to one end of the plurality of actuator wires 11.
- a second connector 4b is provided on the other end of the actuator band 1.
- the second connector 4 b is bonded to the other end of the actuator band 1.
- the other end of the cylindrical heating element 12 is joined to the other ends of the plurality of actuator wires 11.
- the first connector 4a and the second connector 4b are electrically connected to the control device 5 via electric wires, respectively.
- the first connector 4a and the second connector 4b are, for example, crimp terminals.
- Examples of the crimp terminal include a fork crimp terminal and a ring crimp terminal.
- the crimp terminal is preferably made of metal. Thereby, the heat from the heating element 12 can be dissipated by the first connector 4 a and the second connector 4 b, and burning at both ends of the actuator band 1 can be suppressed.
- the control device 5 supplies electric power to the mesh heating element 12 and heats the mesh heating element 12.
- the control device 5 may include a power source for supplying power to the mesh heating element 12.
- the electric power supplied to the net-like heating element 12 is alternating current or direct current.
- the control device 5 can further include a switch. While the switch is on, power is supplied to the net-like heating element 12. When the switch is off, power is not supplied to the net-like heating element 12.
- the heating wire 21 is obtained using the elastic yarn 51 as a core yarn and the metal wire 52 as a sheath yarn.
- the heating wire 21 is assembled around the side surface of the actuator wire 11 to obtain the actuator single wire 13 including the actuator wire 11 and the net-like heating element 12 covering the surface thereof.
- the actuator single wire 13 is formed by a known string making machine.
- the string making machine includes a bobbin and a pulley. From the bobbin, the actuator wire 11 to which tension is applied is supplied. The actuator wire 11 is guided by a pulley. Thereafter, the actuator wire 11 is wound together with the plurality of heating wires 21 while the plurality of heating wires 21 are supplied around the side surface of the actuator wire 11 via the wavy track and the spindle. In this way, an actuator single wire 13 including the actuator wire 11 and the net-like heating element 12 covering the side surface thereof is obtained.
- the actuator single wire 13 formed by the above method is wound around a bobbin.
- the actuator band 1 can also be produced by “knitting” or “weaving” the actuator single wire 13, for example.
- the actuator band 1 may be formed by a round stringing machine.
- a flat string is composed of a plurality of wires using an odd number of bobbins
- a round string is composed of a plurality of wires using an even number of bobbins.
- the odd number of bobbins may include empty bobbins.
- the even number of bobbins may include empty bobbins.
- the actuator band 1 is cut to a desired length.
- the length along the first axis x1 direction from one end of the actuator band 1 to the other end is longer than the length (width) in the second axis x2 direction orthogonal to the first axis x1 direction.
- the actuator band 1 is cut (see FIG. 10). That is, the first axis x1 direction is the longitudinal direction of the actuator band 1, and the second axis x2 direction is the short direction of the actuator band 1.
- the first connector 4a and the second connector 4b are attached to both ends of the actuator band 1 cut to a desired length. Thereby, the actuator member 68 is assembled. Each of the first connector 4a and the second connector 4b is electrically connected to the control device 5 via an electric wire. In this way, the actuator device 60 is manufactured.
- a weight 6 is connected to the second connector 4 b on one end side of the actuator band 1 via an electric wire W. Due to the weight 6, the actuator band 1 is given a predetermined tension and is in a tensioned state. In other words, a tension along the first axis x1 direction is applied to the actuator band 1 by the weight 6.
- FIG. 10 is a schematic diagram showing the actuator band 1 according to the embodiment.
- FIG. 11A is a diagram illustrating a state in which the actuator band 1 according to the embodiment is not heated
- FIG. 11B is a diagram illustrating a state in which the actuator band 1 is heated.
- the actuator band 1 when an initial tension is applied in a state where the actuator band 1 is not heated, the actuator band 1 has a substantially rhombus shape whose group is long in the direction of the first axis x1 of the actuator band 1 as shown in FIG. And become stretched. At this time, the length of the actuator band 1 in the first axis x1 direction is L0 (see FIG. 11A).
- the plurality of actuator single wires 13a and 13b intersect with each other to form a set. Specifically, the axis A1 along the actuator single line 13a is inclined at an angle ⁇ 1 with respect to the first axis x1, and the axis A2 along the actuator single line 13b is inclined at an angle ⁇ 2 with respect to the first axis x1.
- the crossing angle straddling the first axis x1 is ( ⁇ 1 + ⁇ 2)
- the crossing angle straddling the second axis x2 is (180 ° ⁇ 1 ⁇ ⁇ 2).
- the initial tension applied along the first axis x1 direction of the actuator band 1 is along the axis A1 along the actuator single wire 13a and the actuator single wire 13b.
- the initial tension distributed along the direction parallel to each of the axes A2 and applied to each actuator single line 13a, 13b is averaged.
- the initial tension is applied to the actuator single wires 13a and 13b almost uniformly.
- the actuator wire 11 contracts due to thermal strain, and the set of the actuator band 1 is deformed.
- the intersection angle straddling the first axis x1 is larger than the aforementioned intersection angle ( ⁇ 1 + ⁇ 2), and the intersection angle straddling the second axis x2 is greater than the aforementioned intersection angle (180 ° ⁇ 1 ⁇ 2).
- the set is deformed so as to be smaller.
- the length of the actuator band 1 is shortened along the direction of the first axis x1.
- the length of the actuator band 1 in the first axis x1 direction is L1 ( ⁇ L0).
- the actuator band 1 expands and contracts due to the deformation of the set, the movement of expansion and contraction is not hindered at the point where the actuator single wires 13a and 13b intersect each other. This effect can be obtained even when the fabric of the actuator band 1 is a stitch or a weave.
- the heating wires 21a and 21b have small rigidity and elasticity.
- the present inventors obtained a coiled polymer fiber 111.
- the inventors twisted two coiled polymer fibers 111 to obtain an actuator wire 11.
- the actuator wire 11 is composed of two coiled polymer fibers 111 twisted together. In other words, the side surface of one twisted coiled polymer fiber 111a is in contact with the side surface of another twisted coiled polymer fiber 111b.
- the inventors used a string making machine to coat the side surface of the actuator wire 11 with a net-like heating element 12 composed of four heating wires 21 to obtain a single actuator wire 13.
- the inventors of the present invention performed a flat string using nine actuator single wires 13 to obtain an actuator band 1. Then, the actuator band 1 was cut to obtain an actuator band 1 having a length of about 70 mm.
- the metal first connector 4 a was joined to one end of the actuator band 1 using a caulking tool. Similarly, the metal second connector 4 b was bonded to the other end of the actuator band 1. In this way, the inventors obtained the actuator member 68. And the heating test was done with respect to the actuator band 1, and the expansion-contraction state of the actuator band 1 was observed.
- FIG. 12 is a schematic diagram of a test apparatus 100 used for the heating test.
- the test apparatus 100 includes a fixed plate 7, a pulley 31, a mirror 32, a radiation thermometer 15, and a laser displacement meter 14.
- the first connector 4 a was fixed using a fixing plate 7.
- the pulley 31 is a pulley that guides the electric wire W attached to the second connector 4 b on the other end side of the actuator band 1.
- the actuator band 1 is arranged substantially horizontally by the fixing plate 7 and the pulley 31.
- a weight 6 of 500 g is attached to the electric wire W. Due to the initial tension by the weight 6, the actuator band 1 is extended (see, for example, FIG. 11A).
- the second connector 4b of the actuator band 1 is movable along the direction of the first axis x1 based on the expansion and contraction of the actuator band 1.
- the mirror 32 is attached to the second connector 4b of the actuator band 1, and moves in the first axis x1 direction in conjunction with the movement of the second connector 4b.
- the mirror surface of the mirror 32 is provided along a direction orthogonal to the first axis x1, and the laser displacement meter 14 is disposed at a position facing the mirror surface of the mirror 32.
- a trade name “LK-080” manufactured by Keyence Corporation was used as the laser displacement meter 14, a trade name “LK-080” manufactured by Keyence Corporation was used.
- the laser displacement meter 14 measures the displacement of the second connector 4b by irradiating the mirror 32 with laser light and detecting the laser light reflected by the mirror 32. That is, the laser displacement meter 14 measures the displacement of the actuator band 1.
- the radiation thermometer 15 is disposed at a position where infrared or visible light emitted from the actuator band 1 can be detected, and measures the temperature of the actuator band 1 based on the detected infrared or visible light.
- a product name “FSV-210” manufactured by Apiste was used as the radiation thermometer 15 .
- the inventors of the present invention supplied a current of 420 mA and a power of 1 W to the mesh heating element 12 using the control device 5 for 30 seconds. At this time, the temperature of the side surface of the actuator band 1 reached approximately 70 degrees Celsius. By this heating, the actuator band 1 contracted in the first axis x1 direction. Thereafter, the supply of power to the mesh heating element 12 was stopped, and a cooling time of 90 seconds was provided. In this way, the actuator band 1 was naturally cooled until the side surface of the actuator band 1 became 30 degrees Celsius or less.
- the actuator band 1 was extended and restored in the direction of the first axis x1 by this heat radiation. As the actuator band 1 contracted and restored, the mirror 32 repeatedly moved in the longitudinal direction of the actuator band 1. The movement of the actuator band 1 was measured by measuring this movement using the laser displacement meter 14.
- Table 1 shows the load per actuator single line 13 (M1) and the contraction amount and contraction rate (C) of the actuator band 1 when heating and cooling are repeated three times.
- the shrinkage rate (C) is defined by the following mathematical formula (IA).
- L0 indicates the length of the actuator band 1 to which initial tension (initial load) is applied before heating, that is, the length of the actuator band during cooling
- L1 indicates the length of the actuator band 1 during heating.
- Table 1 shows the degree of contraction (C / M1) in a unit load obtained by dividing the contraction rate (C) by the load per actuator single wire 13 (M1).
- the degree of shrinkage (C / M1) at the unit load is a value representing the shrinkage rate by the unit load so that the calculated shrinkage rate C can be compared, and it is preferably as large as possible.
- This degree of shrinkage (C / M1) has a correlation with the ratio of shrinkage to the initial tension.
- the actuator single wire 13 may be referred to as a “single wire”.
- the shrinkage rate (C) was the largest when the load (M1) per single wire was 44.4 g, and the maximum shrinkage rate (C) was 7.7%. Further, the degree of shrinkage (C / M1) was the largest when the load per single wire (M1) was 33.3 g, and the maximum degree of shrinkage (C / M1) was 0.22.
- Comparative Example 1 an actuator band 501 in which five actuator single wires 13 are arranged in parallel with an interval between them is used.
- the actuator device 500 of Comparative Example 1 one end of the actuator single wire 13 having a length of 120 mm was fixed to the band jig 120, and the other end of the actuator single wire 13 was fixed to the band jig 121.
- One end and the other end of the actuator single wire 13 were connected to the control device 5 by conducting wires provided on the band jigs 120 and 121.
- An initial tension was applied to the actuator single wire 13 using the weight 6.
- 150 g of weight 6 and 200 g of weight 6 were used, respectively.
- the controller 5 was supplied with a current of 158 mA and a power of 0.8 W for 90 seconds to the net-like heating element 12 to heat the five actuator single wires 13. At this time, the temperature of the side surface of the actuator single wire 13 reached approximately 70 degrees Celsius. Thereafter, the supply of power to the net-like heating element 12 was stopped, and a cooling time of 90 seconds was provided. In this way, the actuator was naturally cooled until the side surface of the actuator single wire 13 became 30 degrees Celsius or less. The temperature of the single actuator wire 13 arranged at the center among the five single actuator wires 13 was monitored.
- Table 2 shows the load per actuator single wire 13 (M1), the contraction amount and contraction rate (C) of the actuator band 501 for the third heating and cooling, and the contraction degree (C / M1) per unit load. Show.
- the shrinkage rate (C) was the largest when the load (M1) per single wire was 30 g, and the maximum shrinkage rate (C) was 3.1%.
- the degree of shrinkage (C / M1) was the largest when the load per single wire (M1) was 30 g, and the maximum degree of shrinkage (C / M1) was 0.10.
- the contraction degree (C / M1) of the actuator band 501 of the comparative example 1 is smaller than the contraction degree (C / M1) of the actuator band 501 of the present embodiment. This is probably because a uniform load was not applied to all of the five actuator single wires 13 and the temperature of the five actuator single wires 13 was not uniform.
- the actuator band 1 is formed by assembling the actuator single wires 13 so as to intersect each other. For this reason, a uniform load is easily applied to the actuator band 1, and the entire temperature of the actuator band 1 is easily made uniform. Thereby, the actuator band 1 with a large ratio of the shrinkage rate with respect to the initial tension can be obtained.
- an actuator member was produced in the same manner as in the Example, except that an actuator band (not shown) having only one actuator single wire 13 was used.
- the length of the actuator single wire 13 was about 50 mm.
- a weight 6 and a 50 g weight 6 were used.
- a current of 110 mA and a power of 0.34 W were supplied to the mesh heating element 12 for 10 seconds to heat the actuator single wire 13.
- the temperature of the side surface of the actuator single wire 13 reached approximately 70 degrees Celsius.
- the supply of power to the net-like heating element 12 was stopped, and a cooling time of 30 seconds was provided. In this way, the actuator was naturally cooled until the side surface of the actuator single wire 13 became 30 degrees Celsius or less.
- Table 3 shows the load per actuator single wire 13 (M1), the contraction amount and contraction rate (C) of the actuator band when heating and cooling are repeated three times, and the contraction degree (C / M1).
- the contraction rate (C) is the largest when the load (M1) per single wire is 50 g, and the maximum contraction rate (C) is 7. It was 6%.
- the degree of shrinkage (C / M1) was the largest when the load (M1) per single wire was 40 g, and the maximum degree of shrinkage (C / M1) was 0.18.
- the actuator band 1 of this example has the same contraction rate C and contraction degree (C / M1) as compared with the single actuator wire 13 of Comparative Example 2. Yes.
- the displacement direction displaced by heating and cooling one actuator single line 13 as in Comparative Example 2 is a direction along the longitudinal direction of the single actuator line 13. Therefore, when the actuator single wire 13 is disposed at an angle ⁇ 1 (FIG. 10) with respect to the first axis x1 as in this embodiment, the displacement amount of the actuator band 1 in the first axis x1 direction is (the axis of the actuator single wire). It is normally considered that the displacement is reduced by (displacement in the A1 direction) ⁇ (1 ⁇ cos ⁇ 1).
- the contraction rate C and the contraction degree (C / M1) are equivalent to the case of the single actuator wire 13. This is presumably because the actuator band 1 has a structure in which tension is applied in the direction of the first axis x1 in a state where a plurality of single actuator wires 13 are assembled to intersect.
- the present invention can be applied to an actuator device used as an artificial muscle.
- the actuator device 60 includes the actuator band 1. And the control device 5, wherein the actuator band 1 includes a plurality of single actuator wires 13, and the plurality of single actuator wires 13 are assembled, knitted, or woven. One end of each of the plurality of single actuator wires 13 is joined to the other end of each of the plurality of single actuator wires 13, and each of the plurality of single actuator wires 13 covers the actuator wire 11 and the side surface of the actuator wire 11.
- the actuator wire 11 is formed of a polymer fiber (coiled polymer fiber) 111, and the fiber 111 extends around the long axis thereof.
- Twisted, fiber 111 is folded to have the shape of a cylindrical coil and
- the heater wire 11 is shrunk by heating and restored by heat dissipation, and one end of the mesh heating element 12 is joined to one end of the actuator wire 11, and the other end of the mesh heating element 12 is the other end of the actuator wire 11.
- the control device 5 is used to supply power for heating the mesh heating element 12 to the mesh heating element 12, and the actuator band 1 has a tension along its longitudinal direction. By being heated in the applied state, it contracts along the longitudinal direction.
- the actuator band 1 which concerns on embodiment is the actuator band 1 which comprises the several actuator single wire 13, Comprising: The several actuator single wire 13 is assembled
- the actuator wire 11 is formed of a polymer fiber 111, and the fiber 111 is twisted around its long axis, and includes a net-like heating element 12 having a plurality of heating wires 21.
- the fiber 111 is folded so as to have a cylindrical coil shape.
- the data wire 11 is contracted by heating and restored by heat dissipation.
- One end of the net-like heating element 12 is joined to one end of the actuator wire 11, and the other end of the net-like heating element 12 is connected to the other end of the actuator wire 11. It is joined to the end.
- the manufacture of the actuator band 1 is a method for manufacturing the actuator band 1 and includes the following steps.
- B) A net-like heating element 12 is provided on the side surface of the actuator wire 11 to provide an actuator.
- a plurality of actuator single wires 13 are assembled, knitted, or woven to form the actuator band 1, so that, for example, a plurality of actuator single wires 13 are arranged at intervals in parallel to form an actuator band.
- the actuator band 1 having a large ratio of the contraction rate to the initial tension can be provided.
- the plurality of actuator single wires may intersect each other.
- the actuator band 1 is formed so that the plurality of actuator single wires 13 intersect with each other, for example, compared to the case where the actuator bands are formed by arranging the plurality of actuator single wires 13 in parallel without intersecting.
- the actuator band 1 having a large ratio of the contraction rate to the initial tension can be provided.
- each of the plurality of heating wires 21 includes a non-conductive elastic yarn 51 and a metal wire 52, and the metal wire 52 may be wound around the elastic yarn 51 in a spiral shape.
- the heating wire 21 in which the metal wire 52 is wound around the elastic yarn 51 is used, the contact area between the metal wire 52 and the actuator wire 11 can be increased, and the thermal efficiency can be increased. .
- the actuator band 1 with a large ratio of the shrinkage rate with respect to the initial tension can be provided.
- each of the plurality of heating wires 21 may be spirally wound around the side surface of the actuator wire 11, and the plurality of heating wires 21 may be assembled so as to form a net-like heating element 12.
- the net-like heating element 12 can be brought into close contact with the actuator wire 11, and the thermal efficiency can be improved.
- the actuator band 1 with a large ratio of the shrinkage rate with respect to the initial tension can be provided.
- a plurality of heating wires 21 may be assembled clockwise.
- the heating wire 21 can be made difficult to come off from the actuator wire 11.
- a plurality of heating wires 21 may be assembled counterclockwise.
- the heating wire 21 can be made difficult to come off from the actuator wire 11.
- each of the plurality of heating wires 21 has a rectangular wave shape, and the plurality of heating wires 21 having the rectangular wave shape may be knitted so as to form a net-like heating element 12. Good.
- the net-like heating element 12 can be brought into close contact with the actuator wire 11, and the thermal efficiency can be improved.
- the actuator band 1 with a large ratio of the shrinkage rate with respect to the initial tension can be provided.
- each of the plurality of heating wires 21 may be woven around the side surface of the actuator wire 11 in a spiral manner, and the plurality of heating wires 21 may be woven so as to form a net-like heating element 12.
- the net-like heating element 12 can be brought into close contact with the actuator wire 11, and the thermal efficiency can be improved.
- the actuator band 1 with a large ratio of the shrinkage rate with respect to the initial tension can be provided.
- the fiber 111 is made of linear low-density polyethylene and satisfies the following formula (I).
- D represents the average diameter of the cylindrical coil
- d represents the diameter of the fiber
- first connector 4a and the second connector 4b are provided, and a plurality of actuator single wires 13 are provided. Are connected to each other by the first connector 4a, the other ends of the plurality of actuator single wires 13 are connected to each other by the second connector 4b, and one end of the net-like heating element 12 is connected to the first connector. The other end of the net-like heating element may be joined to the other end of the actuator wire 11 by the second joining tool 4b.
- one end of the plurality of heating wires 21 and the plurality of actuator wires 11 is joined by the first joining tool 4a, and the other ends of the plurality of heating wires 21 and the plurality of actuator wires 11 are joined by the second joining tool 4b.
- the first joint 4a and the second joint 4b are made of metal, heat from the heating wire 21 can be radiated by the first joint 4a and the second joint 4b, and the actuator band 1 Burnout at both ends can be suppressed.
- the net-like heating element 12 is a braid
- the net-like heating element may be a woven fabric or a knitted fabric.
- the case where the length along the 1st axial direction from the one end of the actuator band 1 to the other end is longer than the length (width) of the 2nd axial direction orthogonal to a 1st axial direction.
- the width may be greater than or equal to the length in the first axial direction.
- the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Resistance Heating (AREA)
Abstract
本開示は、初期張力に対する収縮率の割合が大きいアクチュエータ装置を提供する。本開示に係るアクチュエータ装置(60)は、アクチュエータバンド(1)、および制御装置(5)を具備する。アクチュエータバンド(1)は、複数のアクチュエータ単線(13)が、組まれ、編まれ、または織られることで形成される。複数のアクチュエータ単線(13)の各々は、アクチュエータワイヤ(11)、およびアクチュエータワイヤ(11)の側面を被覆する網状の発熱体(12)、を具備する。アクチュエータワイヤ(11)は、高分子からなる繊維(111)から形成され、繊維(111)は、その長軸の周りに沿って捩られており、繊維(111)は、円筒状のコイルの形状を有するように折りたたまれている。制御装置(5)は、網状の発熱体(12)を加熱するための電力を供給する。アクチュエータバンド(1)は、加熱されることにより、長手方向に沿って収縮する。
Description
本発明は、アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法に関する。
特許文献1は、コイル状及び非コイル状ナノファイバー撚糸、ポリマーファイバーのねじり及び引張アクチュエータを開示している。平岡牧らは、非特許文献1及び2において、直鎖状低密度ポリエチレンから形成されているコイル状ポリマー繊維を開示している。非特許文献1及び2によれば、当該コイル状ポリマー繊維は、加熱により縮み、かつ放熱により復元する。特許文献2は、軸方向に収縮可能なアクチュエータを開示している。また、特許文献1は、コイル状ポリマー繊維を複数並べて任意の発生力を得る例を開示している。
平岡牧ら、「コイル状ポリマーアクチュエータの高伸縮性とポリマー鎖のモルフォロジー」、第24回ポリマー材料フォーラム講演予稿集、第24巻、第39頁(公開日:2015年11月15日)
Maki Hiraoka et. al. "Power-efficient low-temperature woven coiled fibre actuator for wearable applications" Scientific Reports volume 6, Article number: 36358 (2016)
1本のコイル状ポリマー繊維の収縮による仕事量には上限がある。そこで、複数のコイル状ポリマー繊維を並べて複合化することにより、アクチュエータ装置として必要な仕事量を得る場合がある。
例えば、複数のコイル状ポリマー繊維を複合化して互いに重ねた場合、繊維同士の摩擦や絡まりによって動きを束縛されるなどのロスが発生することがある。
また、複数のコイル状ポリマー繊維には適切な初期張力を等しく印加し、かつ適切な熱を等しく印加する必要があるが、それらが不均一な場合、アクチュエータ装置の仕事量などが低下する。特に、初期張力が印加される方向は、コイル状ポリマー繊維が収縮する方向と逆であるので、初期張力によってコイル状ポリマー繊維の収縮による仕事量のロスが生じる。したがって、一定の収縮率でコイル状ポリマー繊維を加熱により収縮させる場合、初期張力は小さいほど好ましい。
一方で、アクチュエータ装置の仕事量を増やすためには、コイル状ポリマー繊維、すなわち高分子からなる繊維の収縮率は大きいほど好ましい。
本発明の目的は、初期張力に対する収縮率の割合が大きいアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法を提供することである。
上記課題を解決するために、本発明の一態様に係るアクチュエータ装置は、アクチュエータバンド、および制御装置を具備し、ここで、前記アクチュエータバンドは、複数のアクチュエータ単線を具備し、前記複数のアクチュエータ単線は、組まれ、編まれ、または織られており、前記複数のアクチュエータ単線の一端は、互いに接合されており、前記複数のアクチュエータ単線の他端は、互いに接合されており、前記複数のアクチュエータ単線の各々は、アクチュエータワイヤ、および前記アクチュエータワイヤの側面を被覆しかつ複数の電熱線を具備する網状の発熱体、を具備し、前記アクチュエータワイヤは、高分子からなる繊維から形成され、前記繊維は、その長軸の周りに沿って捩られており、前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、前記アクチュエータワイヤは、加熱により縮み、かつ放熱により復元し、前記網状の発熱体の一端は、前記アクチュエータワイヤの一端に接合されており、前記網状の発熱体の他端は、前記アクチュエータワイヤの他端に接合されており、前記制御装置は、前記網状の発熱体を加熱するための電力を前記網状の発熱体に供給するために用いられ、かつ前記アクチュエータバンドは、その長手方向に沿って張力が印加された状態で加熱されることにより、前記長手方向に沿って収縮する。
また、本発明の一態様に係るアクチュエータバンドは、複数のアクチュエータ単線を具備するアクチュエータバンドであって、前記複数のアクチュエータ単線は、組まれ、編まれ、または織られており、前記複数のアクチュエータ単線の一端は、互いに接合されており、前記複数のアクチュエータ単線の他端は、互いに接合されており、前記複数のアクチュエータ単線の各々は、アクチュエータワイヤ、および前記アクチュエータワイヤの側面を被覆し、かつ複数の電熱線を具備する網状の発熱体を具備し、前記アクチュエータワイヤは、高分子からなる繊維から形成され、前記繊維は、その長軸の周りに沿って捩られており、前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、前記アクチュエータワイヤは、加熱により縮み、かつ放熱により復元し、前記網状の発熱体の一端は、前記アクチュエータワイヤの一端に接合されており、かつ前記網状の発熱体の他端は、前記アクチュエータワイヤの他端に接合されている。
また、本発明の一態様に係るアクチュエータバンドの製造方法は、以下の工程を具備する。(a)加熱により縮み、かつ放熱により復元するアクチュエータワイヤを形成する工程、ここで、前記アクチュエータワイヤは、高分子からなる複数の繊維が互いに撚られることで形成され、前記繊維は、その長軸の周りに沿って捩られており、かつ前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、(b)前記アクチュエータワイヤの側面に網状の発熱体を設けてアクチュエータ単線を得る工程、かつ(c)複数の前記アクチュエータ単線を組んで、編んで、または織って、前記アクチュエータバンドを得る工程。
本発明は、初期張力に対する収縮率の割合が大きいアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法を提供する。
以下、本発明の実施形態が図面を参照しながら詳細に説明される。
図1は、実施形態に係るアクチュエータ装置を示す模式図である。図1に示すように、実施形態によるアクチュエータ装置60は、アクチュエータバンド1および制御装置5を具備している。アクチュエータバンド1は、複数のアクチュエータ単線13a、13bを具備している。以下、アクチュエータ装置60について説明する。
[アクチュエータ単線]
図2Aは、実施の形態に係るアクチュエータ単線13a、13bを示す模式図である。図2Bは、実施の形態に係るアクチュエータ単線13a、13bの断面図である。図2Bは、図2Aに示す2B-2B線を含む切断面を見た断面図である。図2Aおよび図2Bに示すように、アクチュエータ単線13a、13bは、2本のコイル状ポリマー繊維111a、111bが互いに撚り合わされることで形成されたアクチュエータワイヤ11と、アクチュエータワイヤ11の側面に設けられた網状の発熱体12とを具備している。網状の発熱体12は、複数の電熱線21a、21bによって形成されている。
図2Aは、実施の形態に係るアクチュエータ単線13a、13bを示す模式図である。図2Bは、実施の形態に係るアクチュエータ単線13a、13bの断面図である。図2Bは、図2Aに示す2B-2B線を含む切断面を見た断面図である。図2Aおよび図2Bに示すように、アクチュエータ単線13a、13bは、2本のコイル状ポリマー繊維111a、111bが互いに撚り合わされることで形成されたアクチュエータワイヤ11と、アクチュエータワイヤ11の側面に設けられた網状の発熱体12とを具備している。網状の発熱体12は、複数の電熱線21a、21bによって形成されている。
なお、以下、アクチュエータ単線13a、13bの双方を区別せずにアクチュエータ単線13と呼び、電熱線21a、21bの双方を区別せずに電熱線21と呼び、コイル状ポリマー繊維111a、111bの双方を区別せずにコイル状ポリマー繊維111と呼ぶ場合がある。
[アクチュエータワイヤ]
アクチュエータワイヤ11の詳細は、本特許出願に先行する特許文献3を参照されたい。特許文献3(すなわち、特許第6111438号公報)及び特許文献3に対応する米国特許出願公開2015/245145号明細書は、本願に参照として援用される。また、アクチュエータワイヤ11については、非特許文献1に開示されている。
アクチュエータワイヤ11の詳細は、本特許出願に先行する特許文献3を参照されたい。特許文献3(すなわち、特許第6111438号公報)及び特許文献3に対応する米国特許出願公開2015/245145号明細書は、本願に参照として援用される。また、アクチュエータワイヤ11については、非特許文献1に開示されている。
本明細書において用いられる用語「アクチュエータワイヤ11」及び「発熱体12」は、それぞれ、特許文献3において用いられる用語「繊維」および「温度調節装置」に対応する。
特許文献3に開示されているように、アクチュエータワイヤ11は、直鎖状低密度ポリエチレンから形成されているコイル状ポリマー繊維111(図3参照)から構成され得る。アクチュエータワイヤ11は、加熱により縮み、かつ放熱により復元する。
一例として、10MPaの加重をその一端に印加されたアクチュエータワイヤ11が摂氏90度に加熱されると、アクチュエータワイヤ11は23%ほど縮む。アクチュエータワイヤ11が室温まで冷却されると、アクチュエータワイヤ11は元の長さになるように復元する。特許文献3にも開示されているように、アクチュエータワイヤ11は、例えば、摂氏30度以上摂氏100度以下の温度に加熱され得る。なお、コイル状ポリマー繊維111の材質は、直鎖状低密度ポリエチレンに限られず、異方性熱膨張特性がある高分子でもよい。
コイル状ポリマー繊維111の材質のその他の例は、ポリエチレン(例えば、低密度ポリエチレン、または、高密度ポリエチレン)、ナイロン(例えば、ナイロン6、ナイロン6,6、ナイロン12)、ポリエステル、またはエラストマー(例えば、シリコンゴム)でもよい。
図3は、実施の形態に係るアクチュエータワイヤ11を示す模式図である。アクチュエータワイヤ11は、少なくとも1本のコイル状ポリマー繊維111から構成され得る。例えば、図3では、アクチュエータワイヤ11は、互いに撚り合わされるように一体化された2本のコイル状ポリマー繊維111a、111bから構成され得る。具体的には、アクチュエータワイヤ11は、互いに長軸の周りに沿って捻られて撚り合わされた2本以上のコイル状ポリマー繊維111a、111bから構成され得る。言い換えれば、アクチュエータワイヤ11は、捻られた1本のコイル状ポリマー繊維111aの側面に、捻られた他のコイル状ポリマー繊維111bの側面が接するように、2本以上のコイル状ポリマー繊維111を捻ることで形成され得る。
なお、コイル状ポリマー繊維111は、長軸の周りに沿って捻られることで、円筒状のコイルの形状(螺旋状の形状)を有するように折りたたまれている。特許文献3にも記載されているように、コイル状ポリマー繊維111は、以下の式(I)を満たしている。
D/d<1 (I)
ここで、Dは、コイル状ポリマー繊維111の円筒状のコイルの平均直径を表し、dはコイル状ポリマー繊維111の直径を表している。この関係性であるために、アクチュエータワイヤ11の変位率を高くすることができる。平均直径Dは、円筒状のコイルの外径D1からコイル状ポリマー繊維111の直径dを減算することにより得られる。
[網状の発熱体]
図2Aおよび図2Bに示すように、網状の発熱体12は、アクチュエータワイヤ11の側面を被覆している。網状の発熱体12は、アクチュエータワイヤ11を内部に含むように、筒状であることが望ましい。網状の発熱体12は、複数の電熱線21a、21bから構成されている。網状の発熱体12は、複数の電熱線21a、21bを組む、編む、または織ることによって、形成される。
図2Aおよび図2Bに示すように、網状の発熱体12は、アクチュエータワイヤ11の側面を被覆している。網状の発熱体12は、アクチュエータワイヤ11を内部に含むように、筒状であることが望ましい。網状の発熱体12は、複数の電熱線21a、21bから構成されている。網状の発熱体12は、複数の電熱線21a、21bを組む、編む、または織ることによって、形成される。
図4は、実施の形態に係る電熱線21を示す断面図である。図4に示すように、電熱線21は、芯糸となる非導電性の弾性糸51と、弾性糸51の周囲にカバーリングされた金属ワイヤ52とを備えている。具体的には、電熱線21は、弾性糸51を芯糸、金属ワイヤ52を鞘糸として、周知のカバーリング加工機によって製造される。ここでカバーリン
グとは、弾性糸51に対して金属ワイヤ52をS方向またはZ方向に巻きつけることを言う。本実施の形態のように、金属ワイヤ52が弾性糸51に対して一重に巻かれている電熱線21は、シングルカバーリング電熱線と称される。なお、金属ワイヤ52単体を電熱線21として用いてもよい。
グとは、弾性糸51に対して金属ワイヤ52をS方向またはZ方向に巻きつけることを言う。本実施の形態のように、金属ワイヤ52が弾性糸51に対して一重に巻かれている電熱線21は、シングルカバーリング電熱線と称される。なお、金属ワイヤ52単体を電熱線21として用いてもよい。
図5は、実施の形態に係るアクチュエータ単線13が備える網状の発熱体12を示す模式図である。図5に示すように、網状の発熱体12は、複数の電熱線21a、21bから形成され得る。複数の電熱線21a、21bは、発熱体12が全体として網の形状を有するように、互いに交差することが望ましい。例えば図2Aおよび図5に示す網状の発熱体12は、複数の電熱線21a、21bが組まれることで形成されている。なお、発熱体12は、複数の電熱線21が編まれることで形成されてもよいし、複数の電熱線21が織られることで形成されていてもよい。
図5では、2本の電熱線21aおよび2本の電熱線21bが、アクチュエータワイヤ11の外側面に螺旋状に巻き付くように組まれ、アクチュエータワイヤ11の外側面を被覆する網状の発熱体12を構成している。例えば、電熱線21aは右回りに組まれ、電熱線21bは左回りに組まれている。すなわち、電熱線21aおよび電熱線21bは、アクチュエータワイヤ11を中心として互いに逆回りとなるように組まれている。なお、発熱体12は、3本以上の電熱線21が組まれて構成されることが望ましい。各電熱線21は、前述したように、それぞれ、弾性糸51の周囲に、鞘糸として金属ワイヤ52をカバーリングして構成され、コイル(すなわち、螺旋)の形状を有し得る。また、各電熱線21は、糸の形状を有し得る。
図6は、実施の形態に係る網状の発熱体12の他の一例を示す模式図である。図6に示すように、各電熱線21は矩形波状の形状を有し、複数の電熱線21が、網状の発熱体12を形成するように、編まれている。このように編まれた電熱線21が、アクチュエータワイヤ11の外側面に巻き付けられていてもよい。
図7および図8は、実施の形態に係る網状の発熱体12の他の一例を示す模式図である。各電熱線21a、21bは、細長い板(すなわち、帯状)の形状を有し得る。複数の電熱線21a、21bは、アクチュエータワイヤ11の外側面に螺旋状に巻き付くように織られる。このように織られた電熱線21a、21bが、アクチュエータワイヤ11の外側面に巻き付けられていてもよい。
図9Aは、実施の形態に係るアクチュエータ単線13の他の一例を示す断面図である。図9Aに示すアクチュエータ単線13は、1本のコイル状ポリマー繊維111によって形成されている一つのアクチュエータワイヤ11と、一つのアクチュエータワイヤ11の周囲に設けられた3本の電熱線21とによって形成されている。アクチュエータワイヤ11の周囲には、ほぼ等角度間隔で均等に3本の電熱線21が配置されている。
図9Bは、実施の形態に係るアクチュエータ単線13の他の一例を示す断面図である。図9Bでは、便宜上、一つのアクチュエータワイヤ11を一つの円で図示している。アクチュエータ単線13は、2本のコイル状ポリマー繊維が互いに撚り合わされることで形成されたアクチュエータワイヤ11と、アクチュエータワイヤ11の周囲に設けられた4本の電熱線21とによって形成されている。アクチュエータワイヤ11の周囲には、ほぼ等角度間隔で均等に4本の電熱線21が配置されている。
図9Aおよび図9Bに示すように、アクチュエータワイヤ11の周囲に複数の電熱線21が均等に配置されることで、アクチュエータワイヤ11をより均一に加熱することができる。この結果、アクチュエータバンド1の高い収縮率を実現することができる。
[アクチュエータバンド]
図1に示すように、アクチュエータバンド1は、複数本のアクチュエータ単線13a、13bを具備する。図1に示すアクチュエータバンド1は、複数本のアクチュエータ単線13a、13bが互いに交差することで組目が形成されている。例えばアクチュエータバンド1は、9本のアクチュエータ単線13の平打ち製紐によって形成される。なお、アクチュエータバンド1は、複数のアクチュエータ単線13の丸打ち製紐によって形成されてもよい。
図1に示すように、アクチュエータバンド1は、複数本のアクチュエータ単線13a、13bを具備する。図1に示すアクチュエータバンド1は、複数本のアクチュエータ単線13a、13bが互いに交差することで組目が形成されている。例えばアクチュエータバンド1は、9本のアクチュエータ単線13の平打ち製紐によって形成される。なお、アクチュエータバンド1は、複数のアクチュエータ単線13の丸打ち製紐によって形成されてもよい。
複数本のアクチュエータ単線13a、13bの一端には、第一接合具4aが設けられている。この第一接合具4aは、アクチュエータバンド1の一端に接合されている。この接合によって、筒状の発熱体12の一端が、複数のアクチュエータワイヤ11の一端に接合されている。アクチュエータバンド1の他端には、第二接合具4bが設けられている。この第二接合具4bは、アクチュエータバンド1の他端に接合されている。この接合によって、筒状の発熱体12の他端が複数のアクチュエータワイヤ11の他端に接合されている。第一接合具4aおよび第二接合具4bは、それぞれ電線を介して制御装置5に電気的に接続されている。第一接合具4aおよび第二接合具4bは、例えば圧着端子である。圧着端子としては、例えばフォーク圧着端子またはリング圧着端子が挙げられる。圧着端子は、金属製であることが望ましい。これにより、発熱体12からの熱を第一接合具4aおよび第二接合具4bで放熱することができ、アクチュエータバンド1の両端の焼損を抑制することができる。
[制御装置]
制御装置5は、網状の発熱体12に電力を供給し、網状の発熱体12を加熱する。制御装置5は、網状の発熱体12に電力を供給するための電源を具備し得る。網状の発熱体12に供給される電力は、交流または直流である。制御装置5は、さらにスイッチを具備し得る。スイッチがオンである間には、網状の発熱体12に電力が供給される。スイッチがオフである場合には、網状の発熱体12に電力は供給されない。
制御装置5は、網状の発熱体12に電力を供給し、網状の発熱体12を加熱する。制御装置5は、網状の発熱体12に電力を供給するための電源を具備し得る。網状の発熱体12に供給される電力は、交流または直流である。制御装置5は、さらにスイッチを具備し得る。スイッチがオンである間には、網状の発熱体12に電力が供給される。スイッチがオフである場合には、網状の発熱体12に電力は供給されない。
[アクチュエータバンドの製造方法]
次にアクチュエータバンド1の製造方法について説明する。
次にアクチュエータバンド1の製造方法について説明する。
まず、カバーリング加工機を用いて、弾性糸51を芯糸とし、金属ワイヤ52を鞘糸として電熱線21を得る。
次に、アクチュエータワイヤ11の側面の周りに電熱線21を組み、アクチュエータワイヤ11およびその表面を被覆する網状の発熱体12を具備するアクチュエータ単線13を得る。
アクチュエータ単線13は、周知の製紐機によって形成される。製紐機は、ボビンおよび滑車を備えている。ボビンからは、張力が印加されたアクチュエータワイヤ11が供給される。アクチュエータワイヤ11は、滑車によりガイドされる。その後、波状軌道およびスピンドルを介してアクチュエータワイヤ11の側面の周囲に複数の電熱線21が供給されながら、アクチュエータワイヤ11は複数の電熱線21と共に巻き上げられる。このようにして、アクチュエータワイヤ11と、その側面を被覆している網状の発熱体12とを具備するアクチュエータ単線13が得られる。上記方法により形成されたアクチュエータ単線13は、ボビンに巻き取られる。
次に、周知の平打ち製紐機において、アクチュエータ単線13が巻き取られた9本のボビンを用いて、9本のアクチュエータ単線13を組み、アクチュエータバンド1を作製す
る。なお、アクチュエータバンド1は、アクチュエータ単線13を、例えば、「編む」、または、「織る」ことによっても作製できる。なお、アクチュエータバンド1は、丸打ち製紐機で形成されてもよい。
る。なお、アクチュエータバンド1は、アクチュエータ単線13を、例えば、「編む」、または、「織る」ことによっても作製できる。なお、アクチュエータバンド1は、丸打ち製紐機で形成されてもよい。
一般に平打ち製紐では、奇数個のボビンを用いて複数の線材を帯状に組み、丸打ち製紐では、偶数個のボビンを用いて複数の線材を円筒状に組む。平打ち製紐において、奇数個のボビンは、空ボビンを含んでいてもよい。丸打ち製紐において、偶数個のボビンは、空ボビンを含んでいてもよい。空ボビンを加えることで、アクチュエータ装置60として必要な仕事量に合わせてアクチュエータ単線13の本数を選択することができる。空ボビンの代わりに、ダミーとなる糸が巻きつけられたボビンを用いて複数の線材を組むことも可能である。この場合、偏りがない組目、すなわち、均一な組目を形成できる。ダミーとなる線材はなるだけ細い方がよい。ダミーとなる線材が細いほど、ダミーとなる線材による、アクチュエータバンド1の仕事量のロスを小さくすることができる。
その後、アクチュエータバンド1は、所望の長さに切断される。本実施の形態では、アクチュエータバンド1の一端から他端までの第一軸x1方向に沿う長さが、第一軸x1方向に直交する第二軸x2方向の長さ(幅)よりも長くなるように、アクチュエータバンド1が切断されている(図10参照)。つまり、第一軸x1方向はアクチュエータバンド1の長手方向であり、第二軸x2方向はアクチュエータバンド1の短手方向である。
所望の長さに切断されたアクチュエータバンド1の両端は、第一接合具4aおよび第二接合具4bが取り付けられる。これにより、アクチュエータ部材68が組み立てられる。第一接合具4a及び第二接合具4bのそれぞれは、電線を介して制御装置5に電気的に接続される。このようにして、アクチュエータ装置60が製造される。
[アクチュエータ装置の動作]
次にアクチュエータ装置60の動作について説明する。図1に示すようにアクチュエータバンド1における一端側の第二接合具4bに対しては、電線Wを介しておもり6が連結されている。このおもり6によってアクチュエータバンド1は、所定の張力が付与され、ピンと張った状態となる。言い換えれば、アクチュエータバンド1には、おもり6によって第一軸x1方向に沿う張力が付与されている。
次にアクチュエータ装置60の動作について説明する。図1に示すようにアクチュエータバンド1における一端側の第二接合具4bに対しては、電線Wを介しておもり6が連結されている。このおもり6によってアクチュエータバンド1は、所定の張力が付与され、ピンと張った状態となる。言い換えれば、アクチュエータバンド1には、おもり6によって第一軸x1方向に沿う張力が付与されている。
図10は、実施の形態に係るアクチュエータバンド1を示す模式図である。図11Aは、実施の形態に係るアクチュエータバンド1が加熱されていない状態を示す図であり、図11Bは、アクチュエータバンド1が加熱されている状態を示す図である。
まず、アクチュエータバンド1が加熱されていない状態において初期張力が印加されると、図10に示すように、アクチュエータバンド1は、組目がアクチュエータバンド1の第一軸x1方向に長い略菱形状になり、伸びた状態になる。このときのアクチュエータバンド1の第一軸x1方向の長さはL0である(図11A参照)。複数本のアクチュエータ単線13a、13bは、互いに交差し、組目を形成している。具体的には、アクチュエータ単線13aに沿う軸A1は、第一軸x1に対して角度θ1傾いており、アクチュエータ単線13bに沿う軸A2は、第一軸x1に対して角度θ2傾いている。例えば、アクチュエータ単線13aおよび13bが交差することによって形成される交差角のうち、第一軸x1を跨ぐ交差角は(θ1+θ2)であり、第二軸x2を跨ぐ交差角は(180°-θ1-θ2)である。
このように複数本のアクチュエータ単線13a、13bが互いに交差することで、アクチュエータバンド1の第一軸x1方向に沿って印加された初期張力が、アクチュエータ単線13aに沿う軸A1およびアクチュエータ単線13bに沿う軸A2のそれぞれに平行な
方向に沿って分散され、各アクチュエータ単線13a、13bに印加される初期張力は平均化される。この結果、各アクチュエータ単線13a、13bに対してほぼ均一に初期張力が印加される。
方向に沿って分散され、各アクチュエータ単線13a、13bに印加される初期張力は平均化される。この結果、各アクチュエータ単線13a、13bに対してほぼ均一に初期張力が印加される。
次に、アクチュエータバンド1が加熱されると、図11Bに示すように、アクチュエータワイヤ11が熱歪により収縮し、アクチュエータバンド1の組目が変形する。具体的には、第一軸x1を跨ぐ交差角が、前述した交差角(θ1+θ2)よりも大きくなり、第二軸x2を跨ぐ交差角が、前述した交差角(180°-θ1-θ2)よりも小さくなるように組目が変形する。これによりアクチュエータバンド1は、第一軸x1方向に沿って、長さが短くなる。このときのアクチュエータバンド1の第一軸x1方向の長さはL1(<L0)である。アクチュエータバンド1は、組目の変形により伸縮するため、アクチュエータ単線13a、13bが互いに交差する点において伸縮の動きが阻害されない。この効果は、アクチュエータバンド1の布目が編目、または、織目の場合でも得られる。
なお、網状の発熱体12がアクチュエータワイヤ11の伸縮に追随して均一に変形するためには、電熱線21a、21bは剛性が小さく弾性を有することが望ましい。アクチュエータ装置60において、アクチュエータバンド1に印加される初期張力は小さいほどよく、かつ、加熱時のアクチュエータバンド1の収縮率は大きいほどよい。言い換えると、アクチュエータバンド1は、初期張力に対する収縮率の割合が大きいほどよい。
[実施例]
以下、本発明に係る実施例について説明する。
以下、本発明に係る実施例について説明する。
(アクチュエータワイヤの製造)
特許文献3の開示内容に従って、本発明者らはコイル状ポリマー繊維111を得た。次に、本発明者らは、2本のコイル状ポリマー繊維111を捻り、アクチュエータワイヤ11を得た。図3に示すように、アクチュエータワイヤ11は、互いに撚り合わされた2本のコイル状ポリマー繊維111から構成されている。言い換えれば、捻られた1本のコイル状ポリマー繊維111aの側面は、捻られた他のコイル状ポリマー繊維111bの側面に接している。
特許文献3の開示内容に従って、本発明者らはコイル状ポリマー繊維111を得た。次に、本発明者らは、2本のコイル状ポリマー繊維111を捻り、アクチュエータワイヤ11を得た。図3に示すように、アクチュエータワイヤ11は、互いに撚り合わされた2本のコイル状ポリマー繊維111から構成されている。言い換えれば、捻られた1本のコイル状ポリマー繊維111aの側面は、捻られた他のコイル状ポリマー繊維111bの側面に接している。
(電熱線の製造)
ポリエステルからなるモノフィラメント(東レ株式会社製、繊維の太さ:10デニール)が弾性糸51として用いられた。弾性糸51の周りに金属ワイヤ52(日本精線株式会社 商品名「ステンレス鋼線」 材質「SUS 316L」 直径寸法「0.030mm」)がS撚り(撚り数:2950T/m)に組まれた。このようにして、本発明者らは電熱線21を得た。
ポリエステルからなるモノフィラメント(東レ株式会社製、繊維の太さ:10デニール)が弾性糸51として用いられた。弾性糸51の周りに金属ワイヤ52(日本精線株式会社 商品名「ステンレス鋼線」 材質「SUS 316L」 直径寸法「0.030mm」)がS撚り(撚り数:2950T/m)に組まれた。このようにして、本発明者らは電熱線21を得た。
(アクチュエータ単線の製造)
本発明者らは、製紐機を用いて、アクチュエータワイヤ11の側面を4本の電熱線21からなる網状の発熱体12により被覆し、アクチュエータ単線13を得た。
本発明者らは、製紐機を用いて、アクチュエータワイヤ11の側面を4本の電熱線21からなる網状の発熱体12により被覆し、アクチュエータ単線13を得た。
(アクチュエータバンドの製造)
本発明者らは、9本のアクチュエータ単線13を用いて、平打ち製紐を行い、アクチュエータバンド1を得た。そして当該アクチュエータバンド1を切断し、約70mmの長さを有するアクチュエータバンド1を得た。
本発明者らは、9本のアクチュエータ単線13を用いて、平打ち製紐を行い、アクチュエータバンド1を得た。そして当該アクチュエータバンド1を切断し、約70mmの長さを有するアクチュエータバンド1を得た。
(接合具による接合)
加締め工具を用いて、金属製の第一接合具4aは、アクチュエータバンド1の一端に接合された。同様に、金属製の第二接合具4bは、アクチュエータバンド1の他端に接合さ
れた。このようにして、本発明者らは、アクチュエータ部材68を得た。そして、アクチュエータバンド1に対して加熱試験を行い、アクチュエータバンド1の伸縮状態を観察した。
加締め工具を用いて、金属製の第一接合具4aは、アクチュエータバンド1の一端に接合された。同様に、金属製の第二接合具4bは、アクチュエータバンド1の他端に接合さ
れた。このようにして、本発明者らは、アクチュエータ部材68を得た。そして、アクチュエータバンド1に対して加熱試験を行い、アクチュエータバンド1の伸縮状態を観察した。
(加熱試験)
次に、アクチュエータバンド1に対する加熱試験について説明する。図12は、加熱試験に用いられる試験装置100の模式図である。試験装置100は、固定板7、滑車31、鏡32、放射温度計15及びレーザ変位計14を備えている。
次に、アクチュエータバンド1に対する加熱試験について説明する。図12は、加熱試験に用いられる試験装置100の模式図である。試験装置100は、固定板7、滑車31、鏡32、放射温度計15及びレーザ変位計14を備えている。
第一接合具4aは、固定板7を用いて固定された。滑車31は、アクチュエータバンド1の他端側の第二接合具4bに取り付けられた電線Wをガイドする滑車である。固定板7及び滑車31によって、アクチュエータバンド1は、略水平に配置されている。電線Wには、例えば500gのおもり6が取り付けられている。このおもり6による初期張力により、アクチュエータバンド1は伸長した状態となる(例えば図11A参照)。アクチュエータバンド1の第二接合具4bは、当該アクチュエータバンド1の伸縮に基づいて第一軸x1方向に沿って移動自在となっている。
鏡32は、アクチュエータバンド1の第二接合具4bに取り付けられており、当該第二接合具4bの移動に連動して第一軸x1方向に移動するようになっている。鏡32の鏡面は、第一軸x1に直交する方向に沿って設けられており、この鏡32の鏡面に対向する位置にレーザ変位計14が配置されている。レーザ変位計14としては、キーエンス社製の商品名「LK-080」を用いた。レーザ変位計14は、鏡32に対してレーザ光を照射し、鏡32を反射したレーザ光を検出することで、第二接合具4bの変位を計測する。つまり、レーザ変位計14は、アクチュエータバンド1の変位を計測する。
放射温度計15は、アクチュエータバンド1が放出する赤外線または可視光を検出可能な位置に配置されており、検出した赤外線または可視光に基づいてアクチュエータバンド1の温度を測定する。放射温度計15としては、Apiste製、商品名「FSV-210」を用いた。
本発明者らは、制御装置5を用いて、網状の発熱体12に420mAの電流、1Wの電力を30秒間供給した。このとき、アクチュエータバンド1の側面の温度がおよそ摂氏70度に到達した。この加熱により、アクチュエータバンド1は、第一軸x1方向に収縮した。その後、網状の発熱体12に電力の供給を停止し、90秒間の冷却時間を設けた。このようにして、アクチュエータバンド1の側面が摂氏30度以下になるまで自然に冷却した。
この放熱により、アクチュエータバンド1は、第一軸x1方向に伸び、復元した。アクチュエータバンド1の収縮および復元と共に、鏡32は、アクチュエータバンド1の長手方向に繰り返し移動した。この移動をレーザ変位計14を用いて計測することで、アクチュエータバンド1の伸縮を計測した。
1回目の加熱試験において、300gのおもり6が用いられた。アクチュエータバンド1は、9本のアクチュエータ単線13を具備する。したがって、このとき、1本のアクチュエータ単線13あたりの荷重(M1)は、33.3g(=300g/9本)であった。加熱試験において、アクチュエータバンド1の加熱および冷却が3回繰り返された。
2回目の加熱試験は、400gのおもり6が用いられたこと以外は、1回目の加熱試験と同様に行われた。このとき、1本のアクチュエータ単線13あたりの荷重(M1)は、44.4g(=400g/9本)であった。
3回目の加熱試験は、500gのおもり6が用いられたこと以外は、1回目の加熱試験と同様に行われた。このとき、1本のアクチュエータ単線13あたりの荷重(M1)は、55.6g(=500g/9本)であった。
表1は、1本のアクチュエータ単線13あたりの荷重(M1)と、加熱及び冷却が3回繰り返されたときのアクチュエータバンド1の収縮量および収縮率(C)を示す。収縮率(C)は、以下の数式(IA)で定義される。
C=|L1-L0|/L0×100 (IA)
ここで、L0は加熱前において初期張力(初期荷重)が印加されたアクチュエータバンド1の長さ、すなわち冷却時のアクチュエータバンドの長さを示し、L1は加熱時のアクチュエータバンド1の長さを示す。
また、表1は、収縮率(C)を1本のアクチュエータ単線13あたりの荷重(M1)で割った単位荷重における収縮度合(C/M1)を示す。単位荷重における収縮度合(C/M1)は、算出した収縮率Cを比較できるように収縮率を単位荷重で表した値であり、大きいほど好ましい。この収縮度合(C/M1)は、初期張力に対する収縮率の割合と相関性を有する。なお、以下において、アクチュエータ単線13を「単線」と呼ぶ場合がある。
実施例のアクチュエータバンド1では、収縮率(C)は、単線1本あたりの荷重(M1)が44.4gのときに最も大きく、最大の収縮率(C)が7.7%であった。また、収縮度合(C/M1)は、単線1本あたりの荷重(M1)が33.3gのときに最も大きく、最大の収縮度合(C/M1)は0.22であった。
(比較例1)
ここで、本実施例のアクチュエータ装置60の効果を説明するため、比較例1のアクチュエータ装置500が説明される。
ここで、本実施例のアクチュエータ装置60の効果を説明するため、比較例1のアクチュエータ装置500が説明される。
比較例1では、5本のアクチュエータ単線13が並列に間隔をあけて配置されたアクチュエータバンド501を用いた。比較例1のアクチュエータ装置500では、長さを120mmに揃えたアクチュエータ単線13の一端をバンド冶具120に固定し、アクチュエータ単線13の他端をバンド冶具121に固定した。アクチュエータ単線13の一端および他端は、バンド冶具120、121に設けた導線により制御装置5に接続された。また、アクチュエータ単線13には、おもり6を用いて初期張力を印加された。1回目の加熱試験および2回目の加熱試験において、それぞれ、150gのおもり6および200gの
おもり6が用いられた。
おもり6が用いられた。
そして、制御装置5に、網状の発熱体12に158mAの電流、0.8Wの電力を90秒間供給し、5本のアクチュエータ単線13を加熱した。このとき、アクチュエータ単線13の側面の温度がおよそ摂氏70度に到達した。その後、網状の発熱体12に対する電力の供給を停止し、90秒間の冷却時間を設けた。このようにして、アクチュエータ単線13の側面が摂氏30度以下になるまで自然に冷却した。5本のアクチュエータ単線13のうち中心に配置されたアクチュエータ単線13の温度がモニターされた。
表2に、1本のアクチュエータ単線13あたりの荷重(M1)、加熱及び冷却の3回目のアクチュエータバンド501の収縮量および収縮率(C)、および、単位荷重における収縮度合(C/M1)を示す。
比較例1のアクチュエータバンド501では、収縮率(C)は、単線1本あたりの荷重(M1)が30gのときに最も大きく、最大の収縮率(C)が3.1%であった。また、収縮度合(C/M1)は、単線1本あたりの荷重(M1)が30gのときに最も大きく、最大の収縮度合(C/M1)は0.10であった。
このように比較例1のアクチュエータバンド501の収縮度合(C/M1)は、本実施例のアクチュエータバンド501の収縮度合(C/M1)よりも小さい。これは、5本のアクチュエータ単線13の全てに均一な荷重が印加されなかったこと、また、5本のアクチュエータ単線13の温度が均一でなかったことが原因として考えられる。
それに対し本実施例では、アクチュエータ単線13が互いに交差するように組まれてアクチュエータバンド1が形成されている。このため、アクチュエータバンド1に均一な荷重が印加されやすく、また、アクチュエータバンド1の全体の温度が均一化されやすい。これにより、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を得ることができる。
(比較例2)
また、本実施例のアクチュエータ装置60の効果を説明するため、比較例2のアクチュエータ装置が説明される。
また、本実施例のアクチュエータ装置60の効果を説明するため、比較例2のアクチュエータ装置が説明される。
比較例2では、1本のアクチュエータ単線13のみを具備するアクチュエータバンド(図示省略)が用いられたこと以外は、実施例と同様にアクチュエータ部材が作製された。アクチュエータ単線13の長さは約50mmであった。
1回目の加熱試験、2回目の加熱試験、3回目の加熱試験、4回目の加熱試験、および5回目の加熱試験において、それぞれ、10gのおもり6、20gのおもり6、30gの
おもり6、40gのおもり6、および50gのおもり6が用いられた。そして、制御装置5を用いて、網状の発熱体12に110mAの電流、0.34Wの電力を10秒間供給し、アクチュエータ単線13を加熱した。このとき、アクチュエータ単線13の側面の温度がおよそ摂氏70度に到達した。その後、網状の発熱体12に対する電力の供給を停止し、30秒間の冷却時間を設けた。このようにして、アクチュエータ単線13の側面が摂氏30度以下になるまで自然に冷却した。
おもり6、40gのおもり6、および50gのおもり6が用いられた。そして、制御装置5を用いて、網状の発熱体12に110mAの電流、0.34Wの電力を10秒間供給し、アクチュエータ単線13を加熱した。このとき、アクチュエータ単線13の側面の温度がおよそ摂氏70度に到達した。その後、網状の発熱体12に対する電力の供給を停止し、30秒間の冷却時間を設けた。このようにして、アクチュエータ単線13の側面が摂氏30度以下になるまで自然に冷却した。
表3に、1本のアクチュエータ単線13あたりの荷重(M1)、加熱及び冷却が3回繰り返されたときのアクチュエータバンドの収縮量および収縮率(C)、および、単位荷重における収縮度合(C/M1)を示す。
比較例2のアクチュエータバンド、すなわち1本のアクチュエータ単線13では、収縮率(C)は、単線1本あたりの荷重(M1)が50gのときに最も大きく、最大の収縮率(C)が7.6%であった。また、収縮度合(C/M1)は、単線1本あたりの荷重(M1)が40gのときに最も大きく、最大の収縮度合(C/M1)は0.18であった。
表1および表3を見ると、本実施例のアクチュエータバンド1は、比較例2である1本のアクチュエータ単線13と比べて、同等の収縮率Cおよび収縮度合(C/M1)を有している。
ここで、本実施例と比較例2とで収縮率Cおよび収縮度合(C/M1)が同等となっていることについて検討する。比較例2のように1本のアクチュエータ単線13が加熱および冷却されることで変位する変位方向は、アクチュエータ単線13の長手方向に沿う方向である。そのため、本実施例のようにアクチュエータ単線13を第一軸x1に対して角度θ1(図10)傾けて配置した場合、アクチュエータバンド1の第一軸x1方向における変位量は、(アクチュエータ単線の軸A1方向における変位量)×(1-cosθ1)だけ低下すると普通ならば考えられる。しかしながら、表1に示すように本実施例では、収縮率Cおよび収縮度合(C/M1)が1本のアクチュエータ単線13の場合と同等になっている。これは、アクチュエータバンド1が、複数のアクチュエータ単線13が交差して組まれた状態で、第一軸x1方向に張力が印加される構造となっているからであると考えられる。
本発明は、人工筋肉として用いられるアクチュエータ装置に適用可能である。
[本発明の構成および効果]
以上のように、実施の形態に係るアクチュエータ装置60は、アクチュエータバンド1
、および制御装置5を具備し、ここで、アクチュエータバンド1は、複数のアクチュエータ単線13を具備し、複数のアクチュエータ単線13は、組まれ、編まれ、または織られており、複数のアクチュエータ単線13の一端は、互いに接合されており、複数のアクチュエータ単線13の他端は、互いに接合されており、複数のアクチュエータ単線13の各々は、アクチュエータワイヤ11、およびアクチュエータワイヤ11の側面を被覆しかつ複数の電熱線21を具備する網状の発熱体12、を具備し、アクチュエータワイヤ11は、高分子からなる繊維(コイル状ポリマー繊維)111から形成され、繊維111は、その長軸の周りに沿って捩られており、繊維111は、円筒状のコイルの形状を有するように折りたたまれており、アクチュエータワイヤ11は、加熱により縮み、かつ放熱により復元し、網状の発熱体12の一端は、アクチュエータワイヤ11の一端に接合されており、網状の発熱体12の他端は、アクチュエータワイヤ11の他端に接合されており、制御装置5は、網状の発熱体12を加熱するための電力を網状の発熱体12に供給するために用いられ、かつアクチュエータバンド1は、その長手方向に沿って張力が印加された状態で加熱されることにより、長手方向に沿って収縮する。
以上のように、実施の形態に係るアクチュエータ装置60は、アクチュエータバンド1
、および制御装置5を具備し、ここで、アクチュエータバンド1は、複数のアクチュエータ単線13を具備し、複数のアクチュエータ単線13は、組まれ、編まれ、または織られており、複数のアクチュエータ単線13の一端は、互いに接合されており、複数のアクチュエータ単線13の他端は、互いに接合されており、複数のアクチュエータ単線13の各々は、アクチュエータワイヤ11、およびアクチュエータワイヤ11の側面を被覆しかつ複数の電熱線21を具備する網状の発熱体12、を具備し、アクチュエータワイヤ11は、高分子からなる繊維(コイル状ポリマー繊維)111から形成され、繊維111は、その長軸の周りに沿って捩られており、繊維111は、円筒状のコイルの形状を有するように折りたたまれており、アクチュエータワイヤ11は、加熱により縮み、かつ放熱により復元し、網状の発熱体12の一端は、アクチュエータワイヤ11の一端に接合されており、網状の発熱体12の他端は、アクチュエータワイヤ11の他端に接合されており、制御装置5は、網状の発熱体12を加熱するための電力を網状の発熱体12に供給するために用いられ、かつアクチュエータバンド1は、その長手方向に沿って張力が印加された状態で加熱されることにより、長手方向に沿って収縮する。
また、実施の形態に係るアクチュエータバンド1は、複数のアクチュエータ単線13を具備するアクチュエータバンド1であって、複数のアクチュエータ単線13は、組まれ、編まれ、または織られており、複数のアクチュエータ単線13の一端は、互いに接合されており、複数のアクチュエータ単線13の他端は、互いに接合されており、複数のアクチュエータ単線13の各々は、アクチュエータワイヤ11、およびアクチュエータワイヤ11の側面を被覆し、かつ複数の電熱線21を具備する網状の発熱体12を具備し、アクチュエータワイヤ11は、高分子からなる繊維111から形成され、繊維111は、その長軸の周りに沿って捩られており、繊維111は、円筒状のコイルの形状を有するように折りたたまれており、アクチュエータワイヤ11は、加熱により縮み、かつ放熱により復元し、網状の発熱体12の一端は、アクチュエータワイヤ11の一端に接合されており、かつ網状の発熱体12の他端は、アクチュエータワイヤ11の他端に接合されている。
また、実施の形態に係るアクチュエータバンド1の製造は、上記アクチュエータバンド1の製造方法であって、以下の工程を具備する。(a)加熱により縮み、かつ放熱により復元するアクチュエータワイヤ11を形成する工程、ここで、アクチュエータワイヤ11は、高分子からなる複数の繊維111が互いに撚られることで形成され、繊維111は、その長軸の周りに沿って捩られており、かつ繊維111は、円筒状のコイルの形状を有するように折りたたまれており、(b)アクチュエータワイヤ11の側面に網状の発熱体12を設けてアクチュエータ単線13を得る工程、かつ(c)複数のアクチュエータ単線13を組んで、編んで、または織って、アクチュエータバンド1を得る工程。
このように、複数のアクチュエータ単線13が組まれ、編まれ、または織られてアクチュエータバンド1が形成されることで、例えば複数のアクチュエータ単線13を並列に間隔をあけて配置してアクチュエータバンドを形成した場合に比べて、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、複数のアクチュエータ単線は、互いに交差していてもよい。
このように、複数のアクチュエータ単線13が互いに交差するようにアクチュエータバンド1が形成されることで、例えば複数のアクチュエータ単線13を交差させずに並列に配置してアクチュエータバンドを形成した場合に比べて、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、複数の電熱線21の各々は非導電性の弾性糸51および金属ワイヤ52を具備し、金属ワイヤ52は、弾性糸51に螺旋状に巻き付いていてもよい。
これによれば、金属ワイヤ52が弾性糸51に対して巻き付いた電熱線21が用いられているので、金属ワイヤ52とアクチュエータワイヤ11との密着面積を高めることができ、熱効率を高めることができる。これにより、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、複数の電熱線21の各々はアクチュエータワイヤ11の側面に螺旋状に巻き付いており、かつ複数の電熱線21が、網状の発熱体12を形成するように、組まれていてもよい。
これによれば、網状の発熱体12をアクチュエータワイヤ11に密着させることができ、熱効率を高めることができる。これにより、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、複数の電熱線21が、右回りに組まれていてもよい。
これによれば、電熱線21がアクチュエータワイヤ11から外れにくいようにすることができる。
また、複数の電熱線21が、左回りに組まれていてもよい。
これによれば、電熱線21がアクチュエータワイヤ11から外れにくいようにすることができる。
また、複数の電熱線21の各々が矩形波状の形状を有しており、かつ矩形波状の形状を有する複数の電熱線21が、網状の発熱体12を形成するように、編まれていてもよい。
これによれば、網状の発熱体12をアクチュエータワイヤ11に密着させることができ、熱効率を高めることができる。これにより、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、複数の電熱線21の各々はアクチュエータワイヤ11の側面に螺旋状に巻き付いており、かつ複数の電熱線21が、網状の発熱体12を形成するように、織られていてもよい。
これによれば、網状の発熱体12をアクチュエータワイヤ11に密着させることができ、熱効率を高めることができる。これにより、初期張力に対する収縮率の割合が大きいアクチュエータバンド1を提供することができる。
また、繊維111は、直鎖状低密度ポリエチレンからなり、かつ以下の数式(I)が充足される。
D/d<1 (I)
ここで、Dは、円筒状のコイルの平均直径を表し、かつdは、繊維の直径を表す。
この関係性であるために、アクチュエータワイヤ11の変位率を高くすることができる。
また、第一接合具4aおよび第二接合具4bを具備し、複数のアクチュエータ単線13
の一端は、第一接合具4aによって互いに接合されており、複数のアクチュエータ単線13の他端は、第二接合具4bによって互いに接合されており、網状の発熱体12の一端は、第一接合具4aによってアクチュエータワイヤ11の一端に接合されており、かつ網状の発熱体の他端は、第二接合具4bによってアクチュエータワイヤ11の他端に接合されていてもよい。
の一端は、第一接合具4aによって互いに接合されており、複数のアクチュエータ単線13の他端は、第二接合具4bによって互いに接合されており、網状の発熱体12の一端は、第一接合具4aによってアクチュエータワイヤ11の一端に接合されており、かつ網状の発熱体の他端は、第二接合具4bによってアクチュエータワイヤ11の他端に接合されていてもよい。
これによれば、第一接合具4aによって複数の電熱線21と複数のアクチュエータワイヤ11の一端同士が接合され、第二接合具4bによって複数の電熱線21と複数のアクチュエータワイヤ11の他端同士が接合されているので、簡単な構成でこれらを接合することができる。特に、第一接合具4a及び第二接合具4bが金属製である場合には、電熱線21からの熱を第一接合具4a及び第二接合具4bで放熱することができ、アクチュエータバンド1の両端の焼損を抑制することができる。
[その他]
以上、本発明に係るアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法について、上記実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
以上、本発明に係るアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法について、上記実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
例えば、上記実施の形態では、網状の発熱体12が組物である場合を例示した。しかしながら、網状の発熱体は織物または編物であってもよい。
また、上記実施の形態では、アクチュエータバンド1の一端から他端までの第一軸方向に沿う長さが、第一軸方向に直交する第二軸方向の長さ(幅)よりも長い場合を例示した。しかしながら、アクチュエータバンドにおいては、幅が第一軸方向の長さ以上であってもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1 アクチュエータバンド
4a 第一接合具
4b 第二接合具
5 制御装置
6 おもり
7 固定板
10 基板
11 アクチュエータワイヤ
12 網状の発熱体
13a、13b アクチュエータ単線
14 レーザ変位計
15 放射温度計
21a、21b 電熱線
31 滑車
32 鏡
51 弾性糸
52 金属ワイヤ
60 アクチュエータ装置
100 試験装置
111、111a、111b コイル状ポリマー繊維
A1、A2 アクチュエータ単線に沿う軸
x1 第一軸
x2 第二軸
W 電線
4a 第一接合具
4b 第二接合具
5 制御装置
6 おもり
7 固定板
10 基板
11 アクチュエータワイヤ
12 網状の発熱体
13a、13b アクチュエータ単線
14 レーザ変位計
15 放射温度計
21a、21b 電熱線
31 滑車
32 鏡
51 弾性糸
52 金属ワイヤ
60 アクチュエータ装置
100 試験装置
111、111a、111b コイル状ポリマー繊維
A1、A2 アクチュエータ単線に沿う軸
x1 第一軸
x2 第二軸
W 電線
Claims (20)
- アクチュエータ装置であって、
アクチュエータバンド、および
制御装置
を具備し、
ここで、前記アクチュエータバンドは、複数のアクチュエータ単線を具備し、
前記複数のアクチュエータ単線は、組まれ、編まれ、または織られており、
前記複数のアクチュエータ単線の一端は、互いに接合されており、
前記複数のアクチュエータ単線の他端は、互いに接合されており、
前記複数のアクチュエータ単線の各々は、アクチュエータワイヤ、および前記アクチュエータワイヤの側面を被覆しかつ複数の電熱線を具備する網状の発熱体、を具備し、
前記アクチュエータワイヤは、高分子からなる繊維から形成され、
前記繊維は、その長軸の周りに沿って捩られており、
前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、
前記アクチュエータワイヤは、加熱により縮み、かつ放熱により復元し、
前記網状の発熱体の一端は、前記アクチュエータワイヤの一端に接合されており、
前記網状の発熱体の他端は、前記アクチュエータワイヤの他端に接合されており、
前記制御装置は、前記網状の発熱体を加熱するための電力を前記網状の発熱体に供給するために用いられ、かつ
前記アクチュエータバンドは、その長手方向に沿って張力が印加された状態で加熱されることにより、前記長手方向に沿って収縮する、
アクチュエータ装置。 - 前記複数のアクチュエータ単線は、互いに交差している
請求項1に記載のアクチュエータ装置。 - 前記複数の電熱線の各々は非導電性の弾性糸および金属ワイヤを具備し、
前記金属ワイヤは、前記弾性糸に螺旋状に巻き付いている、
請求項1または2に記載のアクチュエータ装置。 - 前記複数の電熱線の各々は前記アクチュエータワイヤの側面に螺旋状に巻き付いており、かつ
前記複数の電熱線が、前記網状の発熱体を形成するように、組まれている、
請求項1~3のいずれか1項に記載のアクチュエータ装置。 - 前記複数の電熱線が、右回りに組まれている、
請求項4に記載のアクチュエータ装置。 - 前記複数の電熱線が、左回りに組まれている、
請求項4に記載のアクチュエータ装置。 - 前記複数の電熱線の各々が矩形波状の形状を有しており、かつ
前記矩形波状の形状を有する前記複数の電熱線が、前記網状の発熱体を形成するように、編まれている、
請求項1~3のいずれか1項に記載のアクチュエータ装置。 - 前記複数の電熱線の各々はアクチュエータワイヤの側面に螺旋状に巻き付いており、かつ
前記複数の電熱線が、前記網状の発熱体を形成するように、織られている、
請求項1~3のいずれか1項に記載のアクチュエータ装置。 - 前記繊維は、直鎖状低密度ポリエチレンからなり、かつ
以下の数式(I)が充足される:
D/d<1 (I)
ここで、
Dは、前記円筒状のコイルの平均直径を表し、かつ
dは、前記繊維の直径を表す、
請求項1~8のいずれか1項に記載のアクチュエータ装置。 - 複数のアクチュエータ単線を具備するアクチュエータバンドであって、
前記複数のアクチュエータ単線は、組まれ、編まれ、または織られており、
前記複数のアクチュエータ単線の一端は、互いに接合されており、
前記複数のアクチュエータ単線の他端は、互いに接合されており、
前記複数のアクチュエータ単線の各々は、アクチュエータワイヤ、および前記アクチュエータワイヤの側面を被覆し、かつ複数の電熱線を具備する網状の発熱体を具備し、
前記アクチュエータワイヤは、高分子からなる繊維から形成され、
前記繊維は、その長軸の周りに沿って捩られており、
前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、
前記アクチュエータワイヤは、加熱により縮み、かつ放熱により復元し、
前記網状の発熱体の一端は、前記アクチュエータワイヤの一端に接合されており、かつ
前記網状の発熱体の他端は、前記アクチュエータワイヤの他端に接合されている、
アクチュエータバンド。 - 前記複数のアクチュエータ単線は、互いに交差している
請求項10に記載のアクチュエータバンド。 - 前記複数の電熱線の各々は、非導電性の弾性糸および金属ワイヤを具備し、
前記金属ワイヤは、前記弾性糸に螺旋状に巻き付いている、
請求項10または11に記載のアクチュエータバンド。 - 前記複数の電熱線の各々は前記アクチュエータワイヤの側面に螺旋状に巻き付いており、かつ
前記複数の電熱線が、前記網状の発熱体を形成するように、組まれている、
請求項10~12のいずれか1項に記載のアクチュエータバンド。 - 前記複数の電熱線が、右回りに組まれている、
請求項13に記載のアクチュエータバンド。 - 前記複数の電熱線が、左回りに組まれている、
請求項13に記載のアクチュエータバンド。 - 前記複数の電熱線の各々が矩形波状の形状を有しており、かつ
前記矩形波状の形状を有する前記複数の電熱線が、前記網状の発熱体を形成するように、編まれている、
請求項10~12のいずれか1項に記載のアクチュエータバンド。 - 前記複数の電熱線の各々はアクチュエータワイヤの側面に螺旋状に巻き付いており、かつ
前記複数の電熱線が、前記網状の発熱体を形成するように、織られている、
請求項10~12のいずれか1項に記載のアクチュエータバンド。 - 前記繊維は、直鎖状低密度ポリエチレンからなり、かつ
以下の数式(I)が充足される:
D/d<1 (I)
ここで、
Dは、前記円筒状のコイルの平均直径を表し、かつ
dは、前記繊維の直径を表す、
請求項10~17のいずれか1項に記載のアクチュエータバンド。 - 第一接合具および第二接合具を具備し、
前記複数のアクチュエータ単線の一端は、前記第一接合具によって互いに接合されており、
前記複数のアクチュエータ単線の他端は、前記第二接合具によって互いに接合されており、
前記網状の発熱体の一端は、前記第一接合具によって前記アクチュエータワイヤの一端に接合されており、かつ
前記網状の発熱体の他端は、前記第二接合具によって前記アクチュエータワイヤの他端に接合されている、
請求項10~18のいずれか1項に記載のアクチュエータバンド。 - 請求項10~19のいずれか1項に記載のアクチュエータバンドの製造方法であって、以下の工程を具備する:
(a)加熱により縮み、かつ放熱により復元するアクチュエータワイヤを形成する工程、ここで、
前記アクチュエータワイヤは、高分子からなる複数の繊維が互いに撚られることで形成され、
前記繊維は、その長軸の周りに沿って捩られており、かつ
前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、
(b)前記アクチュエータワイヤの側面に網状の発熱体を設けてアクチュエータ単線を得る工程、かつ
(c)複数の前記アクチュエータ単線を組んで、編んで、または織って、前記アクチュエータバンドを得る工程。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/935,180 US11952683B2 (en) | 2018-05-31 | 2020-07-21 | Actuator device, actuator band, and method for manufacturing actuator band |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-104383 | 2018-05-31 | ||
JP2018104383 | 2018-05-31 | ||
JP2019024082A JP2021132415A (ja) | 2018-05-31 | 2019-02-14 | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 |
JP2019-024082 | 2019-02-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/935,180 Continuation US11952683B2 (en) | 2018-05-31 | 2020-07-21 | Actuator device, actuator band, and method for manufacturing actuator band |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230102A1 true WO2019230102A1 (ja) | 2019-12-05 |
Family
ID=68696920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008786 WO2019230102A1 (ja) | 2018-05-31 | 2019-03-06 | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11952683B2 (ja) |
WO (1) | WO2019230102A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006598B2 (en) * | 2019-05-10 | 2024-06-11 | Board Of Regents, The University Of Texas System | Sheath-run artificial muscles and methods of use thereof |
US11525195B2 (en) * | 2020-05-27 | 2022-12-13 | Jhih Huei Trading Co., Ltd. | Woven textile for bag and bag |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079462A (ja) * | 2006-09-22 | 2008-04-03 | Toyota Motor Corp | アクチュエータとアクチュエータの製造方法 |
JP2012087434A (ja) * | 2010-10-20 | 2012-05-10 | Toyota Boshoku Corp | 発熱糸及びそれを用いた織編物 |
JP6111438B1 (ja) * | 2015-08-04 | 2017-04-12 | パナソニックIpマネジメント株式会社 | アクチュエータ |
JP2017118811A (ja) * | 2015-12-18 | 2017-06-29 | パナソニックIpマネジメント株式会社 | アクチュエータ、アクチュエータセットおよび収縮ベルト |
JP2018019500A (ja) * | 2016-07-27 | 2018-02-01 | 株式会社デンソー | アクチュエータ及びセンサ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3565077A (en) * | 1968-05-06 | 1971-02-23 | American Cyanamid Co | Densified absorbably polyglycolic acid suture braid, and method for preparing same |
US4047533A (en) * | 1976-09-20 | 1977-09-13 | American Cyanamid Company | Absorbable surgical sutures coated with polyoxyethylene-polyoxypropylene copolymer lubricant |
US4733603A (en) | 1983-11-21 | 1988-03-29 | Mirko Kukolj | Axially contractable actuator |
JP4771759B2 (ja) | 2005-07-05 | 2011-09-14 | 株式会社ミノウラ | ゴム紐及びこれを用いた衣料品 |
KR100829586B1 (ko) * | 2007-02-28 | 2008-05-14 | 삼성전자주식회사 | 레이저 광학 엔진의 스펙클 저감 방열 구조 및 이를 채용한레이저 디스플레이 장치 |
CN102017022B (zh) * | 2008-03-07 | 2016-06-01 | 通用汽车环球科技运作公司 | 形状记忆合金缆线 |
US20130298549A1 (en) * | 2012-04-04 | 2013-11-14 | Samuel Michael Manriquez, JR. | Actuator and Method |
CN104769834B (zh) | 2012-08-01 | 2020-02-07 | 德克萨斯州大学系统董事会 | 卷曲和非卷曲加捻纳米纤维纱线及聚合物纤维扭转和拉伸驱动器 |
WO2014138049A2 (en) * | 2013-03-04 | 2014-09-12 | Syracuse University | Reversible shape memory polymers exhibiting ambient actuation triggering |
US10113537B2 (en) * | 2016-04-08 | 2018-10-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Variable stiffness device and method of manufacturing the same |
-
2019
- 2019-03-06 WO PCT/JP2019/008786 patent/WO2019230102A1/ja active Application Filing
-
2020
- 2020-07-21 US US16/935,180 patent/US11952683B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079462A (ja) * | 2006-09-22 | 2008-04-03 | Toyota Motor Corp | アクチュエータとアクチュエータの製造方法 |
JP2012087434A (ja) * | 2010-10-20 | 2012-05-10 | Toyota Boshoku Corp | 発熱糸及びそれを用いた織編物 |
JP6111438B1 (ja) * | 2015-08-04 | 2017-04-12 | パナソニックIpマネジメント株式会社 | アクチュエータ |
JP2017118811A (ja) * | 2015-12-18 | 2017-06-29 | パナソニックIpマネジメント株式会社 | アクチュエータ、アクチュエータセットおよび収縮ベルト |
JP2018019500A (ja) * | 2016-07-27 | 2018-02-01 | 株式会社デンソー | アクチュエータ及びセンサ装置 |
Also Published As
Publication number | Publication date |
---|---|
US11952683B2 (en) | 2024-04-09 |
US20200347525A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6837246B2 (ja) | アクチュエータ装置 | |
WO2019230102A1 (ja) | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 | |
JP7168728B2 (ja) | 人工筋肉アクチュエータの改良 | |
WO2016181690A1 (ja) | 導電性伸縮編地及び導電用ハーネス | |
PL186947B1 (pl) | Rękaw z tkaniny zwłaszcza do osłaniania i przykrywania długich przedmiotów | |
WO2019230103A1 (ja) | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 | |
US20180266400A1 (en) | Braided shape memory actuator | |
JP2018099016A (ja) | アクチュエータ装置 | |
CN112888817A (zh) | 带电极配线的布料 | |
JP4634636B2 (ja) | 電熱糸及び該電熱糸を用いたヒーター | |
SK284583B6 (sk) | Lisovací vankúš | |
JP2021132415A (ja) | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 | |
JP5657170B2 (ja) | モノフィラメント織物の音響サスペンション要素 | |
WO2019106944A1 (ja) | アクチュエータ、アクチュエータ装置、およびマッサージ機器 | |
JP2021145392A (ja) | アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 | |
KR100985330B1 (ko) | 도전성을 갖는 신축성 선형부재 | |
JP6534134B1 (ja) | アクチュエータを駆動する方法、アクチュエータ、およびアクチュエータを製造する方法 | |
JP2021168526A (ja) | アクチュエータ装置およびアクチュエータ器具 | |
TW202304678A (zh) | 彎曲結構體及其製造方法 | |
JP2008113544A (ja) | アクチュエータ | |
JP2020056437A (ja) | 複合型マッキベン人工筋 | |
US11338432B2 (en) | Bending muscle sleeve | |
JP2022180839A (ja) | アクチュエータ装置 | |
JP2020072573A (ja) | アクチュエータ装置 | |
JP2017212818A (ja) | 電線保護部材、電線保護部材付電線及び電線保護部材付電線の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19811141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19811141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |