WO2019228529A1 - 一种照明系统、曝光系统及光刻设备 - Google Patents

一种照明系统、曝光系统及光刻设备 Download PDF

Info

Publication number
WO2019228529A1
WO2019228529A1 PCT/CN2019/089645 CN2019089645W WO2019228529A1 WO 2019228529 A1 WO2019228529 A1 WO 2019228529A1 CN 2019089645 W CN2019089645 W CN 2019089645W WO 2019228529 A1 WO2019228529 A1 WO 2019228529A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens group
pupil
illumination
adjustment module
Prior art date
Application number
PCT/CN2019/089645
Other languages
English (en)
French (fr)
Inventor
尉佩
田毅强
徐建旭
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2019228529A1 publication Critical patent/WO2019228529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Definitions

  • the embodiments of the present application relate to semiconductor technology, for example, to an illumination system, an exposure system, and a lithographic apparatus.
  • CDU refers to the actual exposure on the substrate.
  • HV bias Horizontal Vertical bias
  • the exposure system needs to add additional device components such as a baffle and a glass plate with a change in transmittance distribution, and it is also difficult to control the energy distribution of the baffle and the glass plate to change the energy distribution.
  • the precision of the design of the baffle or glass plate is high, which requires high costs.
  • Embodiments of the present application provide an illumination system, an exposure system, and a lithographic apparatus, so as to provide a simple structure and low cost pupil ellipse adjustment scheme.
  • an embodiment of the present application provides a lighting system, including:
  • Light source set to output a linearly polarized illumination beam
  • a light beam adjustment module which is located on the light exit side of the light source and is configured to receive the illumination light beam and form a pupil having a specific shape
  • the beam adjustment module includes a cone lens group, the cone lens group is plated with an optical film layer, and the optical film layers have different transmittances for s light and p light;
  • a polarization state adjustment module is further provided between the light source and the beam adjustment module.
  • the polarization state adjustment module includes a wave plate, and the wave plate has a first angle with a plane perpendicular to the optical axis of the illumination beam.
  • the pupil In order to change the polarization state of the illumination beam from linear polarization to partial polarization, the pupil has an energy distribution in both horizontal and vertical directions, thereby changing the ellipticity of the pupil.
  • the wave plate is a quarter wave plate or a half wave plate or a full wave plate.
  • the polarization state adjustment module further includes an angle adjuster connected to the wave plate, and the angle adjuster is configured to adjust the first included angle.
  • the beam adjustment module includes:
  • the pupil forming unit is disposed in front of the cone lens group along the optical path direction, and is configured to adjust the illumination beam to form a pupil of a predetermined shape on the pupil surface.
  • the beam adjustment module further includes: a zoom lens group, which is arranged along the optical path after the pupil forming unit, and is configured to image an exiting beam of the pupil forming unit on an image surface;
  • the light incident surface of the cone lens group is located on the image surface of the zoom lens group, and the cone lens group is set to adjust a coherence factor of the pupil of the preset shape.
  • the cone lens group includes a positive axis cone lens and a negative axis cone lens which are oppositely disposed, and the positive axis cone lens is disposed behind the negative axis cone lens along the optical path direction. And / or the negative-axis cone lens is plated with the optical film layer.
  • the bottom surfaces of the positive-axis cone lens and the negative-axis cone lens are circular or regular polygons, and the number of sides of the regular polygon is a multiple of four.
  • the lighting system further includes:
  • a condensing lens group is arranged along the optical path on the light exit side of the beam adjustment module and is configured to converge the illumination beam;
  • the relay lens group is arranged along the optical path on the light-exiting side of the converging lens group, and is arranged to project the illumination light beam.
  • the lighting system further includes: a uniform light module configured to uniformly emit the illumination light beam.
  • the light uniformizing module is a micro lens array, and is disposed between the light beam adjusting module and the converging lens group along an optical path.
  • the light uniformity module is a light uniformity quartz rod, and is arranged between the converging lens group and the relay lens group along an optical path.
  • the light source is a laser.
  • an embodiment of the present application further provides an exposure system including the illumination system described in any of the embodiments of the present application, and further includes a first worktable, a projection objective lens system, and a second worktable;
  • the first workbench is located on the light-exiting side of the lighting system and is arranged to place a mask;
  • the projection objective system is located on the side of the first workbench away from the lighting system and is set to focus on the light-out of the lighting system. Radiate light to an exposure substrate;
  • the second table is located on the side of the projection objective system away from the first table, and is arranged to place the exposure substrate.
  • an embodiment of the present application further provides a lithographic apparatus including the exposure system described in any embodiment of the present application.
  • the illumination system includes a cone lens group, the cone lens group is plated with an optical film layer, and the optical film layer has transmittance of s light and p light.
  • the o- and e-lights have different phase delays, and the incident cone is changed The polarization state of the incident light of the group, thereby achieving adjustment of the pupil ellipticity.
  • the solution in the embodiment of the present application does not need to add additional device components, and has a simple structure and low cost.
  • the wave plate has a large angle adjustment range, simple control, and can freely adjust the pupil ellipse.
  • FIG. 1 is a schematic structural diagram of a lighting system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a cone lens provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of a certain incident light entering a cone lens according to an embodiment of the present application
  • FIG. 4 is an exploded schematic view of another incident light entering a cone lens according to an embodiment of the present application.
  • FIG. 5 is a simulation pupil of a cone lens group with illumination beams of different polarization states provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of another lighting system according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another lighting system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the working principle of a cone lens group provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another cone lens provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another lighting system according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an exposure system according to an embodiment of the present application.
  • FIG. 13 is a width data curve of HV lines of an exposure system in which a wave plate is placed on a vertical optical axis according to an embodiment of the present application;
  • FIG. 14 is a width data curve of HV lines of an exposure system in which a wave plate is placed at a non-vertical optical axis according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an illumination system according to an embodiment of the present application.
  • the illumination system includes: a light source 11 configured to output a linearly polarized illumination beam; a beam adjustment module 12 located on a light emitting side of the light source 11, It is configured to receive the illumination beam and form a pupil having a specific shape; the beam adjustment module 12 includes a cone lens group 123, and the cone lens group 123 is plated with an optical film layer (not shown in FIG. 1).
  • the transmittance of p light is different; a polarization adjustment module 13 is further provided between the light source 11 and the beam adjustment module 12, and the polarization adjustment module 13 includes a wave plate 131, and the plane of the wave plate 131 and the vertical axis of the optical beam of illumination has a first
  • the included angle a is set to change the polarization state of the illumination beam from linear polarization to partial polarization, so that the pupil has an energy distribution in both the horizontal and vertical directions, thereby changing the ellipticity of the pupil.
  • the beam adjustment module 12 forms a pupil of a specific shape by adjusting the illumination beam to form different illumination modes, for example, a ring-shaped illumination mode.
  • the cone lens in the cone lens group 123 in the beam adjustment module 12 is coated with an optical film layer (not shown in FIG. 1), and the optical film layer is usually s-light and p-light.
  • the transmittance is different.
  • s light and p light are for the convenience of description and calculation.
  • FIG. 2 is a schematic structural diagram of a cone lens provided in an embodiment of the present application.
  • the cone lens in the cone lens group may select a cone lens
  • FIG. FIG. 4 is an exploded view of incident light.
  • FIG. 4 is an exploded view of another incident light entering the cone lens provided in the embodiment of the present application.
  • FIG. 3 may be regarded as the cone lens in FIG. 1.
  • a front view of the cone lens 1232 in the group 123, and FIG. 4 can be regarded as a top view of the cone lens 1232 in the cone lens group 123 in FIG. 1, wherein the difference between FIG. 3 and FIG. 4 is that two incident lights enter the cone lens 1232.
  • the two incident lights Due to different positions, the two incident lights have different incident surfaces, so the directions of the s and p light decomposed by the two incident lights decomposed with reference to the incident surface are different, and because the polarization directions of the different incident lights are the same linear polarization, As a result, there is also a difference in the size of the decomposed s-light and p-light.
  • the s-light and p-light have different transmittances, resulting in linearly polarized illumination beams at different positions in the incident cone lens group.
  • the incident light is circularly polarized light
  • the directions of the decomposed s-light and p-light are different.
  • the decomposed s-light and p-light have the same size, and then transmit When passing through the optical film, they have the same change, so that the pupils formed by the beam adjustment module 12 have the same energy distribution in the horizontal and vertical light.
  • the polarization state can be adjusted by a wave plate, so that the linearly polarized illumination beam becomes circularly polarized.
  • a linearly polarized illumination light beam enters the wave plate, it can be decomposed into e light and o light that propagate along the original direction but the vibration directions are perpendicular to each other.
  • the wave plate 131 is directed to the vertically incident illumination light beam, which causes o Phase delay between light, specific phase delay
  • n e, n o denotes the refractive index of the e-wave plate light o light
  • d is the thickness of wave plate
  • is the wavelength of the illumination beam.
  • a wave plate with an appropriate thickness can be selected, and the angle between the fast axis of the wave plate and the linear polarization direction of the illumination beam can be set appropriately, so that the linearly polarized illumination beam becomes circularly polarized light after passing through the wave plate, thereby making the incident cone
  • the incident light of the lens group 123 becomes circularly polarized light, which improves the influence of the optical film layer on the cone lens group 123 on the incident light at different positions.
  • the phase delay of the e-light and o-light caused by the wave plate is related to the incident angle of the illumination beam, and the phase delay
  • is an incident angle of the illumination beam with respect to the wave plate, that is, a first angle between the wave plate and a plane perpendicular to the optical axis of the illumination beam.
  • FIG. 6 is a relationship curve between the incident angle ⁇ and ⁇ / ⁇ provided by the embodiment of the present application. Referring to FIG.
  • the illumination system provided in this embodiment is provided with a polarization adjustment module between a light source and a beam adjustment module, wherein the polarization adjustment module includes a wave plate disposed at a certain angle with the plane of the optical axis of the vertical illumination beam.
  • the angle between the sheet and the plane of the optical axis of the vertical illumination beam causes different phase delays for o light and e light, changes the polarization state of the incident light of the incident cone lens group, and further achieves adjustment of the pupil ellipse.
  • the solution does not need to add additional device components, and has a simple structure and low cost.
  • the wave plate has a large angle adjustment range, simple control, and can freely adjust the pupil ellipse.
  • the phase delay ⁇ can be equal to an integer multiple of the illumination beam wavelength ⁇ .
  • the illumination beam The polarization state of is the same as the initial polarization state, that is, the gradual increase of the incident angle ⁇ can change the polarization state of the illumination beam periodically.
  • the incident angle ⁇ can be adjusted from 0 ° to the incident angle ⁇ 0 when the phase delay ⁇ is equal to the wavelength ⁇ Ensure that the polarization state of the illumination beam changes for one cycle. Therefore, when the angle ⁇ between the wave plate and the plane of the optical axis of the vertical illumination beam is adjusted to obtain a better pupil ellipse, the adjustment can be performed within the range of 0 ° to ⁇ 0.
  • the wave plate may be a quarter wave plate, a half wave plate, or a full wave plate, and is incident on the quarter wave plate, the half wave plate, and the full wave plate at normal incidence.
  • the phase delay of the corresponding o-light and e-light is a quarter wavelength, a half wavelength, and a wavelength, thereby changing the polarization state of the incident light, while tilting the quarter wave plate and the half
  • One wave plate and full wave plate can also achieve different polarization state changes of the linearly polarized illumination beam, thereby ensuring the change of the horizontal and vertical light content on the cross section of the illumination beam after passing through the cone lens group, thereby adjusting the light
  • the ellipticity of the pupil and the type of the wave plate can be selected according to the polarization state of the illumination light beam emitted from the light source, which is not limited in this embodiment.
  • FIG. 7 is a schematic structural diagram of another lighting system provided by the embodiment of the present application.
  • the polarization state adjustment module 13 further includes an angle adjuster 132, which is configured to adjust the first included angle so as to accurately adjust the inclination angle of the wave plate 131.
  • the angle adjuster 132 is connected to the wave plate 131.
  • FIG. 8 is a schematic structural diagram of still another lighting system according to an embodiment of the present application.
  • the light source 11 is a laser.
  • the beam adjustment module 12 includes a pupil forming unit 121 disposed along the optical path after the wave plate 131 and configured to adjust the illumination beam to form a pupil of a predetermined shape on the pupil surface.
  • a pupil forming unit 121 disposed along the optical path after the wave plate 131 and configured to adjust the illumination beam to form a pupil of a predetermined shape on the pupil surface.
  • different off-axis illumination modes are generally required for different mask structures to enhance lithographic resolution, increase focal depth, and improve imaging contrast, thereby obtaining more Good imaging performance.
  • These illumination modes use special-designed optical elements to adjust the intensity or phase distribution of the incident laser beam in the lithography illumination system, so as to form the specific light intensity distribution required on the pupil surface.
  • the pupil forming unit 121 may use a diffractive optical element.
  • the beam adjustment module 12 further includes a zoom lens group 122; the zoom lens group 122 is disposed along the optical path after the pupil forming unit 121 and is configured to image the exit beam of the pupil forming unit 121 on Image plane; the light incident surface of the cone lens group 123 is located on the image surface of the zoom lens group 122, and the cone lens group 123 is set to adjust a coherence factor of a pupil of a preset shape.
  • the zoom lens group 122 zooms the light beam emitted from the pupil forming unit 121, emits a light beam parallel to the optical axis, and changes the size of the pupil cross section.
  • any cross section of the light beam emitted by the zoom lens group 122 is a pupil surface, and the ellipticity of the pupil can be acquired here.
  • the pupil of the light beam emitted by the zoom lens group 122 has been determined, the size of the pupil may not meet the requirements and the shape needs to be fine-tuned.
  • the cone lens group 123 can be used for adjustment.
  • the cone lens group 123 includes a positive-axis cone lens 1232 and a negative-axis cone lens 1231 which are oppositely disposed.
  • the positive-axis cone lens 1232 is disposed behind the negative-axis cone lens 1231 along the optical path direction.
  • the cone lens 1232 and / or the negative-axis cone lens 1231 are plated with an optical film layer, and the optical film layers have different transmittances for s light and p light.
  • FIG. 9 is a schematic diagram of the working principle of the cone lens group provided in the embodiment of the present application.
  • the size of the inner ring of the ring is adjusted by the cone lens group 123.
  • the ring shape can be represented by a coherence factor.
  • the size of the inner ring of the ring-shaped illumination pupil can be adjusted by the distance L between the positive-axis cone lens 1232 and the negative-axis cone lens 1231 in the cone lens group.
  • FIG. 10 is a schematic structural diagram of another cone lens provided in an embodiment of the present application.
  • the bottom surfaces of the positive-axis cone lens and the negative-axis cone lens are circular or regular polygons, and The number of sides of the polygon is a multiple of four.
  • the illumination beam passing through the cone lens can be guaranteed to have uniform energy in the transverse and longitudinal directions of the cross section, so that the pupil has a better ovality.
  • the lighting system further includes a converging lens group 124 disposed along the optical path on the light exit side of the beam adjustment module 12 to converge the illumination beam; a relay mirror group 125 is disposed along the optical path on the light exit side of the converging lens group 124 , Set to project the illumination beam.
  • the illuminating light beam emitted by the cone lens group 123 is parallel light
  • the converging lens group 124 can focus the parallel light beam
  • the relay lens group 125 can change the direction of the illuminating light beam and focus it on the mask plate.
  • the size of the light field focused on the mask can be adjusted to suit different masks.
  • the lighting system further includes a light homogenizing module configured to uniformly emit the illumination light beam.
  • the light uniformizing module may select a microlens array 126 and be disposed between the cone lens group 123 and the converging lens group 124 along the optical path.
  • the microlens array 126 is an array composed of lenses with a clear aperture and a relief depth of micron order, which includes a plurality of tiny lenses.
  • the illumination beam emitted by the cone lens group 123 passes through the microlens array 126 and is regularly arranged by the micro lenses. The lenses focus the light beams to their respective focal planes, thereby achieving the function of uniform light.
  • FIG. 11 is a schematic structural diagram of still another lighting system according to an embodiment of the present application.
  • a uniform light module in the lighting system is a uniform light quartz rod 127, and is arranged along the optical path in the converging lens group 124 and the relay lens group. Between 125.
  • the homogeneous quartz rod 127 has the effect of destroying the polarization state.
  • the polarized light after the homogeneous quartz rod 127 is non-polarized light, so that the exposure field is not affected by the polarized illumination beam. Light, but it will not affect the ratio of the horizontal and vertical energy sum of the illumination beam in the cross section, that is, it will not affect the ovality of the pupil.
  • FIG. 12 is a schematic structural diagram of an exposure system according to an embodiment of the present application.
  • the exposure system includes an illumination system 10 provided by any embodiment of the present application, and further includes a first workbench 20, a projection objective system 30, and The second workbench 40;
  • the first workbench 20 is located on the light-exit side of the lighting system 10 and is set to place a mask;
  • the projection objective system 30 is located on the side of the first workbench 20 away from the lighting system 10 and is set to focus on the output of the lighting system 10
  • the second working stage 40 is located on the side of the projection objective system 30 away from the first working stage 20 and is configured to place the exposure base.
  • a comparison experiment was performed.
  • FIG. 13 is a width data curve of HV lines of an exposure system in which a wave plate is placed vertically on an optical axis according to an embodiment of the present application.
  • the exposure system shown in FIG. 12 includes an illumination system as shown in FIG. 8.
  • the wave plate is a quarter wave plate.
  • the fast axis direction of the wave plate is 45 ° from the polarization direction of the linearly polarized light emitted by the laser 11. Comparing FIG. 13 and FIG. 14, when the quarter wave plate is placed vertically, the average value of the V line width on the exposure field is 100.51.
  • the average value of H line width is 106.93nm; when a quarter wave plate is placed non-vertically, the average value of V line width on the corresponding exposure field is 96.83nm, and the average value of H line width is 96.59nm
  • the HV bias on the exposure field is reduced by about 7nm, and the ellipticity of the pupil on the pupil surface after the cone lens group 123 is measured compared to the quarter place vertically
  • One wave plate, non-vertical placement quarter Sheet wave ellipticity variation of 7% It can be obtained that by setting the wave plate 131 and the plane of the optical axis of the vertical illumination beam at a certain angle, the ellipticity of the pupil can be adjusted, and then the HV bias of the exposure field in the exposure system can be adjusted.
  • a polarization state adjustment module is provided between a light source of the illumination system and a beam adjustment module, wherein the polarization state adjustment module includes a wave plate disposed at a certain angle with a plane perpendicular to the optical axis of the illumination beam.
  • the wave plate has a large angle adjustment range, simple control, and can freely adjust the pupil ellipse.
  • the exposure system provided by this embodiment can not only adjust the polarization state of the illumination beam, but also change the pupil ellipse by using a wave plate disposed at a certain angle with the plane of the optical axis of the vertical illumination beam, thereby effectively avoiding cones.
  • the influence of the optical film on the mirror on the energy distribution in the transverse and longitudinal directions of the beam cross section can also be adjusted by the included angle to further compensate for the negative effects of other optical elements in the exposure system on the pupil, ensuring that the exposure system has a better CDU.
  • This embodiment also provides a lithographic apparatus, which includes an exposure system as provided in any embodiment of the present application.
  • a polarization state adjustment module is provided between a light source of an illumination system and a beam adjustment module, wherein the polarization state adjustment module includes a wave plate disposed at a certain angle with a plane perpendicular to an optical axis of an illumination beam.
  • the wave plate has a large angle adjustment range, simple control, and can freely adjust the pupil ellipse.
  • the exposure system in the lithographic apparatus provided by this embodiment can not only adjust the polarization state of the illumination beam, but also change the pupil ellipse through the wave plate disposed at a certain angle with the plane of the optical axis of the vertical illumination beam. It can effectively avoid the influence of the optical film on the cone lens on the energy distribution in the transverse and longitudinal directions of the beam cross section. It can also adjust the included angle to further compensate the negative effects of other optical elements on the pupil in the exposure system, ensuring the light. Lithography performance of the engraving equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本申请公开了一种照明系统、曝光系统及光刻设备,其中,照明系统包括:光源,位于光源出光侧的光束调整模块以及设置在光源与光束调整模块之间的偏振态调节模块,光束调整模块包括锥镜组,锥镜组上镀有光学膜层,光学膜层对s光和p光的透过率不同;偏振态调节模块包括波片,波片与垂直照明光束光轴的平面具有第一夹角,设置为将照明光束的偏振态由线偏振改变为部分偏振,使所述光瞳在水平和竖直方向均具有能量分布,从而改变所述光瞳的椭圆度。

Description

一种照明系统、曝光系统及光刻设备
本申请要求在2018年05月31日提交中国专利局、申请号为201810550300.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及半导体技术,例如涉及一种照明系统、曝光系统及光刻设备。
背景技术
随着半导体技术的高速发展,光刻特征尺寸不断减小,对光刻机的套刻精度与特征尺寸均匀性(Critical dimension uniformity,CDU)的要求不断提高,其中,CDU是指基底上实际曝光线宽与期望线宽的标准偏差,影响CDU的重要因素为曝光图形内水平线条与垂直线条的平均宽度之差(Horizontal Vertical bias,HV bias)。而在光刻机曝光系统中,照明系统的光瞳面内竖直方向上的能量和∑E (y)和水平方向上能量和∑E (x)的比值即光瞳的椭圆度是影响HV bias的最主要因素,光瞳椭圆度可表示为
Figure PCTCN2019089645-appb-000001
相关技术中的通过调整照明系统的光瞳,减小曝光图形中的HV bias,进而改善曝光系统CDU的方案中,多是在照明系统的光瞳面直接放置挡板或者透过率变化分布的玻璃平板,通过改变光瞳面上光束的能量分布,对光瞳进行调整,以提高曝光系统CDU。然而上述方案中,曝光系统需要额外增加挡板和透过率变化分布的玻璃平板等额外的装置组件,挡板和玻璃平板改变能量分布也存在一定的控制难度。除此之外,挡板或玻璃平板的设计精度要求较高,需要较高的成本。
发明内容
本申请实施例提供了一种照明系统、曝光系统及光刻设备,以提供一种结构简单、成本低廉的光瞳椭圆度调节方案。
第一方面,本申请实施例提供了一种照明系统,包括:
光源,设置为输出线偏振的照明光束;
光束调整模块,位于所述光源的出光侧,设置为接收所述照明光束并形成具有特定形状的光瞳;
所述光束调整模块包括锥镜组,所述锥镜组上镀有光学膜层,所述光学膜 层对s光和p光的透过率不同;
所述光源与所述光束调整模块之间还设置有偏振态调节模块,所述偏振态调节模块包括波片,所述波片与垂直所述照明光束光轴的平面具有第一夹角,设置为将照明光束的偏振态由线偏振改变为部分偏振,使所述光瞳在水平和竖直方向均具有能量分布,从而改变所述光瞳的椭圆度。
在一实施例中,所述波片为四分之一波片或者二分之一波片或者全波片。
在一实施例中,所述偏振态调节模块还包括角度调节器,与所述波片连接,所述角度调节器设置为调节所述第一夹角。
在一实施例中,所述光束调整模块包括:
光瞳形成单元,沿光路方向设置于所述锥镜组之前,设置为调节所述照明光束在光瞳面上形成预设形状的光瞳。
在一实施例中,所述光束调整模块还包括:变焦镜组,所述变焦镜组沿光路设置于所述光瞳形成单元之后,设置为将所述光瞳形成单元的出射光束成像于像面;
所述锥镜组的光入射面位于所述变焦镜组的像面,所述锥镜组设置为调节所述预设形状的光瞳的相干因子。
在一实施例中,所述锥镜组包括相对设置的正轴锥镜和负轴锥镜,所述正轴锥镜沿光路方向设置于所述负轴锥镜之后,所述正轴锥镜和/或所述负轴锥镜上镀有所述光学膜层。
在一实施例中,所述正轴锥镜和所述负轴锥镜的底面为圆形或正多边形,所述正多边形的边数为4的倍数。
在一实施例中,所述照明系统还包括:
会聚镜组,沿光路设置于所述光束调整模块的出光侧,设置为会聚所述照明光束;
中继镜组,沿光路设置于所述会聚镜组的出光侧,设置为将所述照明光束进行投影。
在一实施例中,所述照明系统还包括:匀光模块,设置为使所述照明光束均匀出射。
在一实施例中,所述匀光模块为微透镜阵列,沿光路设置于所述光束调整模块和所述会聚镜组之间。
在一实施例中,所述匀光模块为匀光石英棒,沿光路设置于所述会聚镜组 和所述中继镜组之间。
在一实施例中,所述光源为激光器。
第二方面,本申请实施例还提供了一种曝光系统,包括本申请任意实施例所述的照明系统,还包括第一工作台,投影物镜系统以及第二工作台;
所述第一工作台位于所述照明系统的出光侧,设置为放置掩模板;所述投影物镜系统位于所述第一工作台远离所述照明系统一侧,设置为聚焦所述照明系统的出射光至曝光基底;所述第二工作台位于所述投影物镜系统远离所述第一工作台一侧,设置为放置所述曝光基底。
第三方面,本申请实施例还提供了一种光刻设备,包括本申请任意实施例所述的曝光系统。
本申请实施例提供的照明系统、曝光系统及光刻设备,照明系统包括锥镜组,所述锥镜组上镀有光学膜层,所述光学膜层对s光和p光的透过率不同;通过调节设置在光源与光束调整模块之间的偏振态调节模块中的波片与垂直照明光束光轴的平面的夹角,使o光和e光产生不同的相位延迟,改变入射锥镜组的入射光的偏振状态,进而实现对光瞳椭圆度进行调节。本申请实施例的方案无需添加额外的装置组件,结构简单、成本低廉。并且,相对于相关技术的方案波片的角度调节范围大,控制简单,可以实现自由调节光瞳椭圆度。
附图说明
图1为本申请实施例提供的一种照明系统的结构示意图;
图2是本申请实施例提供的一种锥镜的结构示意图;
图3为本申请实施例提供的进入锥镜的某一入射光的分解示意图;
图4是本申请实施例提供的进入锥镜的另一入射光的分解示意图;
图5是本申请实施例提供的不同偏振态的照明光束通过锥镜组的仿真光瞳;
图6是本申请实施例提供的入射角α与δ/λ的关系曲线;
图7是本申请实施例提供的另一种照明系统的结构示意图;
图8是本申请实施例提供的另一种照明系统的结构示意图;
图9是本申请实施例提供的锥镜组的工作原理示意图;
图10是本申请实施例提供的另一种锥镜的结构示意图;
图11是本申请实施例提供的又一种照明系统的结构示意图;
图12是本申请实施例提供的一种曝光系统的结构示意图;
图13为本申请实施例提供的垂直光轴放置波片的曝光系统的HV线条的宽度数据曲线;
图14为本申请实施例提供的非垂直光轴放置波片的曝光系统的HV线条的宽度数据曲线。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请实施例提供的一种照明系统的结构示意图,参考图1,该照明系统包括:光源11,设置为输出线偏振的照明光束;光束调整模块12,位于光源11的出光侧,设置为接收照明光束并形成具有特定形状的光瞳;光束调整模块12包括锥镜组123,锥镜组123上镀有光学膜层(图1中未示出),光学膜层对s光和p光的透过率不同;光源11与光束调整模块12之间还设置有偏振态调节模块13,偏振态调节模块13包括波片131,波片131与垂直照明光束光轴的平面具有第一夹角a,设置为将照明光束的偏振态由线偏振改变为部分偏振,使光瞳在水平和竖直方向均具有能量分布,从而改变光瞳的椭圆度。
本实施例中,光束调整模块12通过调节照明光束形成特定形状的光瞳以形成不同的照明模式,例如形成环形的照明模式。光束调整模块12中的锥镜组123中的锥镜为了增加透过率,锥镜的表面会镀有光学膜层(图1中未示出),而光学膜层通常对s光和p光的透过率不同。本实施例中,s光和p光是人们为了方便描述和计算,在光入射至某一界面的情况下,会参考入射面进行矢量分解,将入射光分解为垂直入射面的光分量(s光)和平行入射面的光分量(p光)。图2是本申请实施例提供的一种锥镜的结构示意图,如图2所示,锥镜组中的锥镜可选择圆锥镜,图3为本申请实施例提供的进入锥镜的某一入射光的分解示意图,图4是本申请实施例提供的进入锥镜的另一入射光的分解示意图,参考图3和图4,为方便理解,图3所示可视为图1中锥镜组123中锥镜1232的正视图,图4所示可视为图1中锥镜组123中锥镜1232的俯视图,其中,图3和图4的区别在于两束入射光入射锥镜1232的位置不同,两束入射光对应的入射面不同,因此参考入射面分解的两束入射光分解的s光和p光的方向不同,且由于不同的入射光的偏振方向均为相同的线偏振,由此导致分解的s光和p光的大小也存在差异,在通过光学膜层的过程中,s光和p光的透过率不同,导致不同位置的线偏振的照明光束在入射锥镜组123后会发生不同的变化,则导致了 光束调整模块12形成的光瞳在横向和纵向的光能量分布不均匀,使对光瞳椭圆度产生一定的影响。以锥镜上镀有p光透过率为100%,s光透过率为20%的光学膜层建立光学模型,在输入不同偏振态的照明光束的情况下,不同偏振态的照明光束通过锥镜组的仿真光瞳的仿真结果见图5,由锥镜组形成的光瞳的椭圆度见表1。由图5和表1可知,入射到锥镜组的照明光束的偏振态不同,光瞳具有不同的椭圆度。
表1
Figure PCTCN2019089645-appb-000002
当入射光为圆偏光时,即使不同位置入射光的入射面不同,分解的s光和p光方向不同,但由于圆偏光本身的偏振性质,分解的s光和p光的大小相同,进而透过光学膜时,具有相同的变化,从而能够保证光束调整模块12形成的光瞳在横向和纵向的光具有相同的能量分布。
而对于线偏振照明光束可以通过波片对偏振态进行调节,使线偏振照明光束变为圆偏光。在一实施例中,线偏振的照明光束入射波片时,可分解为沿原方向传播但振动方向互相垂直的e光和o光,波片131针对垂直入射的照明光束,会使e光和o光之间产生相位延迟,具体相位延迟
Figure PCTCN2019089645-appb-000003
其中,n e,n o表示波片对e光和o光的折射率,d为波片的厚度,λ为照明光束的波长。由此,可选择适当厚度的波片,并适当地设置波片快轴与照明光束线偏振方向 的夹角,使线偏振的照明光束在透过波片后变为圆偏光,从而使入射锥镜组123的入射光变为圆偏光,改善锥镜组123上光学膜层对不同位置的入射光的影响。除此之外,对于非垂直入射的照明光束,波片使e光和o光产生的相位延迟与照明光束的入射角有关,相位延迟
Figure PCTCN2019089645-appb-000004
其中,α为照明光束相对于波片的入射角,也即波片与垂直照明光束光轴的平面的第一夹角。图6是本申请实施例提供的入射角α与δ/λ的关系曲线,参考图6,由该曲线可知,照明光束在以不同入射角α透过波片后,e光和o光之间具有不同的相位延迟δ,也即使得透过波片后的光束由线偏振态变为其它偏振态,在透过锥镜组123上的光学膜层后,使得照明光束横截面上的横向和纵向的光含量不同,因此,通过调节线偏振的照明光束入射波片的入射角α,并配合锥镜组中的锥镜,可以实现对照明光束的横截面上的横向和纵向的光含量的调节,也即实现对光瞳椭圆度的调节。
本实施例提供的照明系统,通过在光源与光束调整模块之间设置偏振态调节模块,其中,偏振态调节模块包括与垂直照明光束光轴的平面呈一定夹角设置的波片,通过调节波片与垂直照明光束光轴的平面的夹角使o光和e光产生不同的相位延迟,改变入射锥镜组的入射光的偏振状态,进而实现对光瞳椭圆度的调节,本实施例的方案无需添加额外的装置组件,结构简单、成本低廉。并且,相对于相关技术的方案波片的角度调节范围大,控制简单,可以实现自由调节光瞳椭圆度。
在一实施例中,由图6可知,入射角α由0°逐渐增加时,相位延迟δ可以等于照明光束波长λ的整数倍,当相位延迟δ等于照明光束波长λ的整数倍时,照明光束的偏振态与初始偏振态相同,即入射角α的逐渐增加,可使照明光束的偏振状态周期变化,入射角α由0°调节至相位延迟δ等于波长λ时的入射角α0 时,即可保证照明光束的偏振状态变化一个周期。由此,在调节波片与垂直照明光束光轴的平面的夹角α,以获得较好的光瞳椭圆度时,可在0°至α0范围内进行调节即可。
在一实施例中,波片可采用四分之一波片、二分之一波片或全波片,在垂直入射至四分之一波片、二分之一波片和全波片的情况下,对应的o光和e光的相位延迟为四分之一波长、二分之一波长和一个波长,从而改变了入射光的偏振态,而同时倾斜四分之一波片、二分之一波片和全波片,亦可将线偏振的照明光束实现不同的偏振状态的变化,从而保证照明光束在透过锥镜组后截面上横向和纵向的光含量的变化,进而调节光瞳的椭圆度,波片的类型可以根据光源出射的照明光束的偏振状态等进行选择,本实施例并不做限定。
在实际的波片调节时,可以通过手动调节。但当对角度调节的精确控制要求较高时,手动调节存在一定的难度,因此,偏振态调节模块还可设置角度调节器,图7是本申请实施例提供的另一种照明系统的结构示意图,参考图7,偏振态调节模块13中还包括角度调节器132,该角度调节器132设置为调节第一夹角,从而精确地调节波片131的倾斜角度。
在一实施例中,角度调节器132与波片131连接。
需要说明的是,图7中仅示例性的示出了角度调节器的位置,并非对本申请的限定。
图8是本申请实施例提供的又一种照明系统的结构示意图,参考图8,在一实施例中,光源11为激光器。
继续参考图8,在一实施例中,光束调整模块12包括:光瞳形成单元121,沿光路设置于波片131之后,设置为调节照明光束在光瞳面上形成预设形状的光瞳。在一实施例中,在光刻设备的照明系统中,通常需要针对不同的掩模结构采用不同的离轴照明模式,以增强光刻分辨力、增大焦深、提高成像对比度,从而得到更好的成像性能。而这些照明模式就是通过在光刻照明系统中采用特殊设计的光学元件调节入射激光束的强度或相位分布,从而在光瞳面上形成所需要的特定光强分布。在一实施例中,该光瞳形成单元121可采用衍射光学元件。
继续参考图8,在一实施例中,光束调整模块12还包括变焦镜组122;变焦镜组122沿光路设置于光瞳形成单元121之后,设置为将光瞳形成单元121的出射光束成像于像面;锥镜组123的光入射面位于变焦镜组122的像面,锥镜组123设置为调节预设形状的光瞳的相干因子。本实施例中,变焦镜组122将光瞳形成单元121出射的光束变焦,出射平行于光轴的光束,且改变了光瞳截面的大小。此时,由变焦镜组122出射的光束任一截面均为光瞳面,光瞳的椭圆度可由此处采集获得。此外,变焦镜组122出射光束的光瞳虽已确定,但光瞳的大小可能不满足要求,且形状需要微调,此时可由锥镜组123进行调节。
继续参考图8,在一实施例中,锥镜组123包括相对设置的正轴锥镜1232和负轴锥镜1231,正轴锥镜1232沿光路方向设置于负轴锥镜1231之后,正轴锥镜1232和/或负轴锥镜1231上镀有光学膜层,光学膜层对s光和p光的透过率不同。
示例性地,图9是本申请实施例提供的锥镜组的工作原理示意图,参考图9,光瞳形成单元形成环形的照明光瞳后,环形的内环大小由锥镜组123进行调节, 其中,环形的照明模式中,环形形状可由相干因子进行表示。在一实施例中,环形照明光瞳内环的大小可通过该锥镜组中正轴锥镜1232和负轴锥镜1231的距离L来进行调节。
图10是本申请实施例提供的另一种锥镜的结构示意图,参考图2和图10,在一实施例中,正轴锥镜和负轴锥镜的底面为圆形或正多边形,正多边形的边数为4的倍数。通过设置底面形状为圆形或边数为4的倍数的正多边形,可以保证通过锥镜的照明光束在截面的横向和纵向上能量均匀,使光瞳具有较好的椭圆度。
继续参考图8,该照明系统还包括会聚镜组124,沿光路设置于光束调整模块12的出光侧,设置为会聚照明光束;中继镜组125,沿光路设置于会聚镜组124的出光侧,设置为将照明光束进行投影。
在照明系统中,由锥镜组123出射的照明光束为平行光,会聚镜组124可将平行光束聚焦,并且,通过中继镜组125可将照明光束的方向进行改变,聚焦至掩模板上,并且可以调节聚焦至掩模板的光场的大小,以适应不同的掩膜板。
在一实施例中,该照明系统中还包括匀光模块,设置为使照明光束均匀出射。继续参考图8,该匀光模块可选择微透镜阵列126,沿光路设置于锥镜组123和会聚镜组124之间。微透镜阵列126由通光孔径及浮雕深度为微米级的透镜组成的阵列,其中包含多个微小的透镜,锥镜组123出射的照明光束,通过微透镜阵列126后,由规则排布的微小的透镜将光束分别聚焦至各自焦平面上,从而实现匀光的功能。
图11是本申请实施例提供的又一种照明系统的结构示意图,参考图11,该 照明系统中的匀光模块为匀光石英棒127,沿光路设置于会聚镜组124和中继镜组125之间。匀光石英棒127具有破坏偏振态的效果,经过匀光石英棒127之后的偏振光为非偏振光,使曝光场不会受偏振态照明光束的影响,且匀光石英棒虽然可以用于匀光,但不会对照明光束在截面上横向和纵向的能量和的比产生影响,也即不会影响光瞳的椭圆度。
图12是本申请实施例提供的一种曝光系统的结构示意图,参考图12,该曝光系统包括如本申请任意实施例提供的照明系统10,还包括第一工作台20,投影物镜系统30以及第二工作台40;第一工作台20位于照明系统10的出光侧,设置为放置掩模板;投影物镜系统30位于第一工作台20远离照明系统10一侧,设置为聚焦照明系统10的出射光至曝光基底;第二工作台40位于投影物镜系统30远离第一工作台20一侧,设置为放置曝光基底。为验证上述的曝光系统的曝光性能,进行了对比实验,图13为本申请实施例提供的垂直光轴放置波片的曝光系统的HV线条的宽度数据曲线,图14为本申请实施例提供的非垂直光轴放置波片的曝光系统的HV线条的宽度数据曲线,其中,该曝光系统如图12所示,包括如图8所示的照明系统,其中,波片为四分之一波片,波片的快轴方向与激光器11出射的线偏光的偏振方向呈45°,对比图13和图14,垂直放置四分之一波片时,曝光场上的V线条宽度的平均值为100.51纳米(nm),H线条宽度的平均值为106.93nm;非垂直放置四分之一波片时,对应的曝光场上的V线条宽度的平均值为96.83nm,H线条宽度平均值为96.59nm,相比于垂直放置的四分之一波片,曝光场上的HV bias约减少了7nm,并且,锥镜组123后的光瞳面上光瞳的椭圆度经过测算相比垂直放置四分之一波片,非垂直放置四分之一波片时椭圆度变化了7%。由此可得,将波片131与垂直照明光束光轴的平面呈一定夹角设置,可以调节光瞳的椭圆度,进而调节了曝光系统中曝光场的 HV bias。
本实施例提供的曝光系统,通过在照明系统的光源与光束调整模块之间设置偏振态调节模块,其中,偏振态调节模块包括与垂直照明光束光轴的平面呈一定夹角设置的波片,通过调节波片与垂直照明光束光轴的平面的夹角使o光和e光产生不同的相位延迟,改变入射锥镜组的入射光的偏振状态,进而实现对光瞳椭圆度进行调节。本实施例的方案无需添加额外的装置组件,结构简单、成本低廉。并且,相对于相关技术的方案波片的角度调节范围大,控制简单,可以实现自由调节光瞳椭圆度。除此之外,本实施例提供的曝光系统,通过与垂直照明光束光轴的平面呈一定夹角设置的波片,不仅可以调节照明光束的偏振态,进而改变光瞳椭圆度,有效避免锥镜上光学薄膜对光束截面横向和纵向上能量的分布的影响,还可以通过夹角的调节,进一步地补偿曝光系统中其它光学元件对光瞳的产生的消极影响,保证曝光系统具有较好的CDU。本实施例还提供了一种光刻设备,该光刻设备包括如本申请任意实施例提供的曝光系统。
本实施例提供的光刻设备,通过在照明系统的光源与光束调整模块之间设置偏振态调节模块,其中,偏振态调节模块包括与垂直照明光束光轴的平面呈一定夹角设置的波片,通过调节波片与垂直照明光束光轴的平面的夹角使o光和e光产生不同的相位延迟,改变入射锥镜组的入射光的偏振状态,进而实现对光瞳椭圆度进行调节。本实施例的方案无需添加额外的装置组件,结构简单、成本低廉。并且,相对于相关技术的方案波片的角度调节范围大,控制简单,可以实现自由调节光瞳椭圆度。除此之外,本实施例提供的光刻设备中的曝光系统,通过与垂直照明光束光轴的平面呈一定夹角设置的波片,不仅可以调节照明光束的偏振态,进而改变光瞳椭圆度,有效避免锥镜上光学薄膜对光束截面横向和纵向上能量的分布的影响,还可以通过夹角的调节,进一步地补偿曝 光系统中其它光学元件对光瞳的产生的消极影响,保证光刻设备的光刻性能。

Claims (14)

  1. 一种照明系统,包括:
    光源,设置为输出线偏振的照明光束;
    光束调整模块,位于所述光源的出光侧,设置为接收所述照明光束并形成具有特定形状的光瞳;
    所述光束调整模块包括锥镜组,所述锥镜组上镀有光学膜层,所述光学膜层对s光和p光的透过率不同;
    所述光源与所述光束调整模块之间还设置有偏振态调节模块,所述偏振态调节模块包括波片,所述波片与垂直所述照明光束光轴的平面具有第一夹角,设置为将所述照明光束的偏振态由线偏振改变为部分偏振,使所述光瞳在水平和竖直方向均具有能量分布,从而改变所述光瞳的椭圆度。
  2. 根据权利要求1所述的照明系统,其中,所述波片为四分之一波片或者二分之一波片或者全波片。
  3. 根据权利要求1所述的照明系统,其中,所述偏振态调节模块还包括角度调节器,与所述波片连接,所述角度调节器设置为调节所述第一夹角。
  4. 根据权利要求1所述的照明系统,其中,所述光束调整模块还包括:
    光瞳形成单元,沿光路方向设置于所述锥镜组之前,设置为调节所述照明光束在光瞳面上形成预设形状的光瞳。
  5. 根据权利要求4所述的照明系统,其中,所述光束调整模块还包括:变焦镜组,所述变焦镜组沿光路设置于所述光瞳形成单元之后,设置为将所述光瞳形成单元的出射光束成像于像面;
    所述锥镜组的光入射面位于所述变焦镜组的像面,所述锥镜组设置为调节所述预设形状的光瞳的相干因子。
  6. 根据权利要求1或5所述的照明系统,其中,所述锥镜组包括相对设置的正轴锥镜和负轴锥镜,所述正轴锥镜沿光路方向设置于所述负轴锥镜之后,所述正轴锥镜和所述负轴锥镜中的至少之一上镀有所述光学膜层。
  7. 根据权利要求6所述的照明系统,其中,所述正轴锥镜和所述负轴锥镜的底面均为圆形或正多边形,所述正多边形的边数为4的倍数。
  8. 根据权利要求1所述的照明系统,还包括:
    会聚镜组,沿光路设置于所述光束调整模块的出光侧,设置为会聚所述照明光束;
    中继镜组,沿光路设置于所述会聚镜组的出光侧,设置为将所述照明光束 进行投影。
  9. 根据权利要求8所述的照明系统,还包括:
    匀光模块,设置为使所述照明光束均匀出射。
  10. 根据权利要求9所述的照明系统,其中,
    所述匀光模块为微透镜阵列,沿光路设置于所述光束调整模块和所述会聚镜组之间。
  11. 根据权利要求9所述的照明系统,其中,
    所述匀光模块为匀光石英棒,沿光路设置于所述会聚镜组和所述中继镜组之间。
  12. 根据权利要求1所述的照明系统,其中,
    所述光源为激光器。
  13. 一种曝光系统,包括如权利要求1-12任一所述的照明系统,还包括第一工作台,投影物镜系统以及第二工作台;
    所述第一工作台位于所述照明系统的出光侧,设置为放置掩模板;所述投影物镜系统位于所述第一工作台远离所述照明系统一侧,设置为聚焦所述照明系统的出射光至曝光基底;所述第二工作台位于所述投影物镜系统远离所述第一工作台一侧,设置为放置所述曝光基底。
  14. 一种光刻设备,包括如权利要求13所述的曝光系统。
PCT/CN2019/089645 2018-05-31 2019-05-31 一种照明系统、曝光系统及光刻设备 WO2019228529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810550300.5A CN110554571B (zh) 2018-05-31 2018-05-31 一种照明系统、曝光系统及光刻设备
CN201810550300.5 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228529A1 true WO2019228529A1 (zh) 2019-12-05

Family

ID=68696803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089645 WO2019228529A1 (zh) 2018-05-31 2019-05-31 一种照明系统、曝光系统及光刻设备

Country Status (3)

Country Link
CN (1) CN110554571B (zh)
TW (1) TWI704427B (zh)
WO (1) WO2019228529A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343368A (zh) * 2020-02-18 2020-06-26 清华大学 基于偏振的散射介质深度恢复方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20060192149A1 (en) * 2005-02-25 2006-08-31 Asml Netherlands B.V. Parameter control in a lithographic apparatus using polarization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201551A (zh) * 2002-12-03 2008-06-18 株式会社尼康 光学照明装置、曝光装置以及曝光方法
EP1754111A1 (de) * 2004-06-10 2007-02-21 Carl Zeiss SMT AG Beleuchtungssystem einer mikrolithographischen projektionsbelichtungsanlage
CN103207530B (zh) * 2013-03-22 2014-12-17 中国科学院上海光学精密机械研究所 光刻机光瞳整形光学系统及产生离轴照明模式的方法
CN103149809B (zh) * 2013-03-22 2014-12-17 中国科学院上海光学精密机械研究所 光刻机设备用离轴照明装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20060192149A1 (en) * 2005-02-25 2006-08-31 Asml Netherlands B.V. Parameter control in a lithographic apparatus using polarization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343368A (zh) * 2020-02-18 2020-06-26 清华大学 基于偏振的散射介质深度恢复方法及装置

Also Published As

Publication number Publication date
CN110554571B (zh) 2021-04-30
TW202004364A (zh) 2020-01-16
CN110554571A (zh) 2019-12-10
TWI704427B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
TWI514002B (zh) 光學投影陣列曝光系統與其方法
US20100283985A1 (en) Microlithographic projection exposure apparatus
JP2010004008A (ja) 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法
JP2015046601A (ja) 照明光学系、露光装置、光学素子およびその製造方法、並びにデバイス製造方法
JP5404931B2 (ja) 偏向ミラーを含む反射屈折投影対物系及び投影露光方法
TWI240853B (en) Lithographic processing method, and device manufactured thereby
US9671699B2 (en) Illumination system of a microlithographic projection exposure apparatus
EP2253997A2 (en) Illumination system for a microlithographic contact and proximity exposure apparatus
JP2005503011A (ja) ズーム系、特にマイクロリソグラフィ投影露光システムの照明装置用のズーム系
JP2007501528A (ja) アキシコンシステムおよびアキシコンシステムを備える照明システム
WO2019228529A1 (zh) 一种照明系统、曝光系统及光刻设备
JP2004198748A (ja) オプティカルインテグレータ、照明光学装置、露光装置および露光方法
TWI768243B (zh) 確定用於微影光罩基材之複數個像素的位置之方法和裝置
TWI645261B (zh) Illumination optical system, lithography apparatus, and article manufacturing method
JP5182588B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP2010097975A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
KR101369132B1 (ko) 마이크로구조화된 구성요소들을 제조하기 위한 마이크로리소그래픽 투사 조명 시스템, 및 방법
JP6140290B2 (ja) マイクロリソグラフィー投影露光装置用光学システム及びマイクロリソグラフィー露光方法
US9122170B2 (en) Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP2004311742A (ja) 光学系の調整方法、照明光学装置、露光装置、および露光方法
US9733571B2 (en) Illumination optical device, exposure apparatus, and method of manufacturing article
JP5839076B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
CN112445074B (zh) 一种照明装置、曝光系统及光刻设备
KR100865554B1 (ko) 노광 장치
JP6652948B2 (ja) マイクロリソグラフィ投影露光装置の照明システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811390

Country of ref document: EP

Kind code of ref document: A1