WO2019228472A1 - 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 - Google Patents
一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 Download PDFInfo
- Publication number
- WO2019228472A1 WO2019228472A1 PCT/CN2019/089344 CN2019089344W WO2019228472A1 WO 2019228472 A1 WO2019228472 A1 WO 2019228472A1 CN 2019089344 W CN2019089344 W CN 2019089344W WO 2019228472 A1 WO2019228472 A1 WO 2019228472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- denitrification
- tank
- nitrogen
- treatment
- short
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/305—Nitrification and denitrification treatment characterised by the denitrification
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/286—Anaerobic digestion processes including two or more steps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/307—Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/101—Sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/166—Nitrites
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/002—Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/14—NH3-N
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/15—N03-N
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/16—Total nitrogen (tkN-N)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/345—Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
Definitions
- the invention belongs to the technical field of deep denitrification, and particularly relates to a method of deep denitrification coupled with two-stage autotrophic denitrification coupled with short-range nitrification and denitrification.
- Nitrogen in sewage can cause severe eutrophication and anoxia in the water body, causing toxicity to aquatic organisms. At the same time, the nitrogenous substances in the water body can inhibit the effect of chlorine sterilization, which makes it necessary to reduce the nitrogen content in the sewage.
- Biological wastewater treatment method has been widely used in municipal sewage, industrial wastewater and landfill leachate treatment due to its high efficiency and economic feasibility.
- denitrification includes three processes: ammoniation, nitrification, and denitrification.
- the organic nitrogen in the water body is first converted into ammonia nitrogen (NH4 + ) by the action of ammoniating bacteria, which is the so-called ammoniation stage.
- ammonia conversion under aerobic conditions by nitrosation bacteria and nitrifying bacteria is NO 2 - or NO 3 -; and finally denitrification phase, i.e., under anaerobic conditions, by denitrifying bacteria to nitrite And nitrate is converted to nitrogen (N 2 ).
- the leachate treatment facilities in most of the landfills in China at this stage are mainly based on the three-level emission standards of the Domestic Waste Landfill Pollution Control Standard (GB16889-1997), that is, COD ( ⁇ 1000mg / L) and BOD ( ⁇ 600mg / L) are designed to meet the discharge requirements, and the removal of high-concentration ammonia nitrogen from leachate is basically not considered.
- COD ⁇ 1000mg / L
- BOD ⁇ 600mg / L
- the purpose of the present invention is to overcome the defect that the effluent of the landfill leachate treatment technology in the prior art still contains a small amount of nitrate and nitrogen, and provide a method for deep denitrification coupled with short-range nitrification and denitrification coupled with two-stage autotrophic denitrification.
- the method provided by the invention has high sewage treatment efficiency, and the effluent is free of nitrate and nitrogen, which can meet the discharge standards of the "Standard for Pollution Control of Domestic Waste Landfill Sites" (GB16889-2008).
- a method for deep denitrification coupled with short-range nitrification and denitrification coupled with two-stage autotrophic denitrification includes the following steps:
- S1 The sewage is introduced into a partial nitrification and denitrification tank for short-range nitrification and denitrification, and then is introduced into the adjustment tank 1 to control the dissolved oxygen content in the partial nitrification and denitrification tank to be 0.4 to 0.6 mg / L.
- the molar ratio of nitros nitrogen and ammonia nitrogen is 1.0 ⁇ 1.3: 1, water will be produced;
- the invention combines a short-range nitrification and denitrification tank, an anaerobic ammonia oxidation tank, and a sulfur autotrophic denitrification tank to perform short-range nitrification and denitrification, anaerobic ammonia oxidation, and denitrification treatment on sewage, and controls each reaction by adjusting tanks 1 and 2
- the inlet and outlet conditions of the pond and other reaction conditions can reduce the ammonia nitrogen in the effluent after the final treatment to less than 10 mg / L and nitrate nitrogen to less than 5 mg / L.
- the effluent meets the "Pollution Control Standards for Domestic Waste Landfill Sites" ( GB16889-2008) emission standards, high processing efficiency.
- nitrate nitrogen is NO 3 - -N
- nitrosous nitrogen is NO 2 - -N
- ammonia nitrogen is NH 4 + -N
- concentrations of nitrate, nitros, and ammonia are all measured in nitrogen.
- the mass ratio of sulfur and nitrogen refers to the mass ratio of sulfur and nitrate.
- the method provided by the present invention can treat various kinds of sewage, especially landfill leachate with higher discharge standards.
- the sewage in S1 is landfill leachate.
- the dissolved oxygen content in S1 is 0.5 mg / L.
- the molar ratio of the nitrous nitrogen to the ammonia nitrogen is 1.0 to 1.3: 1.
- water is produced when the molar ratio of nitrous nitrogen to ammonia nitrogen in the regulating tank 1 is 1.2: 1.
- the effluent after the anaerobic ammonia oxidation treatment in S2 is returned to the regulating tank 1 so that the total nitrogen concentration of the regulating tank 1 is 500-600 mg / L. More preferably, the total nitrogen concentration in the regulating tank 1 is 500 mg / L.
- the total nitrogen in the present invention refers to the sum of nitrate, nitros, and ammonia nitrogen, and is calculated based on the mass of N.
- the reaction efficiency of the anaerobic ammonia oxidation tank can be further improved.
- the molar ratio of sulfur and nitrogen in S3 is 2: 1.
- the effluent from the sulfur autotrophic denitrification tank in S3 is returned to the regulating tank 2 so that the concentration of nitrate and nitrogen in the regulating tank 2 is 90-120 mg / L. More preferably, the nitrate nitrogen concentration in the adjustment tank 2 is 70 to 120 mg / L.
- the sulfide in S3 is sodium sulfide. More preferably, the sodium sulfide is derived from hydrogen sulfide generated from a landfill.
- the hydrogen sulfide generated from the landfill is converted into sodium sulfide and used in the present invention, which can reduce the hydrogen sulfide emissions from the landfill.
- the present invention has the following beneficial effects:
- the invention combines a short-range nitrification and denitrification tank, an anaerobic ammonia oxidation tank, and a sulfur autotrophic denitrification tank to perform short-range nitrification and denitrification, anaerobic ammonia oxidation, and denitrification treatment on sewage, and controls the inlet and outlet water of each reaction tank.
- Conditions, and other reaction conditions can reduce the ammonia nitrogen in the effluent after the final treatment to less than 10mg / L, nitrate nitrogen to less than 5mg / L, and the effluent meets the "Pollution Control Standards for Domestic Waste Landfill Sites" (GB16889-2008). Emission standard, high processing efficiency.
- the landfill leachate of a certain landfill site is used as a sewage source for treatment.
- the COD of the leachate is 4,000 to 5000 mg / L, and the ammonia nitrogen concentration is 2500 to 3000 mg / L.
- the leachate stock solution collected in the storage tank is processed, the leachate is sent to the short-range nitrification and denitrification tank for reaction.
- the conditions of the leachate are shown in Table 1 below.
- the leachate as sewage to feed water (non-restrictive aeration) into the short-range nitrification and denitrification tank for 10 minutes, and stir (simultaneous aeration, control DO to 0.4-0.6 mg / L) for 10 hours and 50 minutes, sediment for 0.5 hours, and effluent for 10 minutes.
- the cycle water treatment volume is 1L. It runs two cycles every day, that is, the daily treatment water volume is 2L as the operating condition of the short-range nitrification and denitrification tank, and the water is discharged to the adjustment tank 1.
- the external reflux ratio of the tank is set to 3, that is, in the control tank 1, the total concentration of NH 4 + -N and NO 2 -- N is about 500 to 600 mg / L.
- the anaerobic ammonia oxidation tank is used for further treatment and the water is effluent, and the water is introduced into the regulating tank 2.
- NO 3 -- N concentration determine the dosage of sodium sulfide and make the mass ratio of sulfur and nitrogen.
- the temperature is 1.9 ⁇ 2.0, the pH is 7.5 ⁇ 0.1, and the temperature is 30 ⁇ 1 ° C.
- NO 3 -- N is further removed, and all sulfur ions are removed.
- Table 1 The condition setting and processing results of each embodiment are shown in Table 1 below.
- the comparative examples 1 to 2 provide a method for deep denitrification coupled with short-range nitrification and denitrification coupled with two-stage autotrophic denitrification.
- the method provided in Comparative Example 1 controls the dissolved oxygen content in the short-range nitrification and denitrification tank to 0.3 mg / L, and the remaining conditions are the same as in Example 1.
- the method provided in Comparative Example 2 controls the sulfur and nitrogen in the sulfur autotrophic denitrification tank. The mass ratio was 2.5: 1, and the remaining conditions were the same as in Example 1.
- the condition settings and processing results of Comparative Examples 1 to 2 are shown in Table 1 below.
- the effluent reaches the discharge standard of the "Standard for Pollution Control of Domestic Waste Landfill Sites" (GB16889-2008).
- the concentration of ammonia, nitros, and nitrate in the effluent of the method provided by the comparative example are higher than those of the embodiment, and the total nitrogen of the effluent is difficult to meet the latest discharge requirements. Therefore, compared with the comparative example, the embodiment has a better operating effect.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法,该方法包括如下步骤:S1:将污水引入硝化反硝化池中进行短程硝化反硝化处理后引入调节池1中,控制硝化反硝化池中溶解氧含量为0.4~0.6mg/L,调节池1中亚硝氮与氨氮的摩尔比为1.0~1.3:1时出水;S2:将调节池1中的出水引入厌氧氨氧化池中进行厌氧氨氧化处理后引入调节池2中,控制厌氧氨氧化池中的pH为7.0~7.4,温度为22~28℃;S3:将调节池2中的出水和1.1~1.5g/L的硫化物引入硫自养反硝化池中进行反硝化处理后出水,控制硫自养反硝化池中pH为7.5~8.0,温度为28~32℃,硫氮的质量比为1.9~2.0:1。该方法污水处理效率高,出水氨氮降至10mg/L以下,出水硝氮降至5mg/L以下,处理效果好。
Description
本发明属于深度脱氮技术领域,具体涉及一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法。
污水中的含氮物质会导致严重的富营养化和水体缺氧,对水生生物产生毒性。与此同时,水体中的含氮物质还会抑制氯杀菌消毒的效果,这使得降低污水中的氮含量变得非常必要。生物污水处理法由于其处理高效性和经济可行性,已经广泛应用在市政污水、工业废水和垃圾渗滤液处理。传统的污水处理工艺中脱氮包括氨化、硝化和反硝化三个过程,即水体中的有机氮首先在氨化菌的作用下转化为氨氮(NH4
+),也就是所谓的氨化阶段,之后是硝化阶段,氨氮在好氧的条件下通过亚硝化菌和硝化菌转化为NO
2
﹣或者NO
3
﹣;最后是反硝化阶段,即在缺氧条件下,通过反硝化菌将亚硝氮和硝氮转化为氮气(N
2)。
在垃圾渗滤液处理处置技术方面,现阶段我国绝大部分垃圾填埋场的渗滤液处理处置设施主要根据《生活垃圾填埋场污染控制标准》(GB16889-1997)的三级排放标准,即COD(≤1000mg/L)和BOD(≤600mg/L)的达标排放要求而设计,基本未考虑渗滤液高浓度氨氮的脱除。随着《生活垃圾填埋场污染控制标准》(GB16889-2008)的颁布与实施,垃圾渗滤液处理出水排放标准大幅度提高(COD≤100mg/L,氨氮≤25mg/L,TN≤40mg/L)。因此,垃圾渗滤液的脱氮处理成为不得不重视的问题。目前处理垃圾渗滤液比较常见的方法是用短程硝化反硝化脱氮,然而处理完的出水仍然会有少量的硝氮。
因此,在现有的基础研究上,突破传统工艺,开发运行费用低、处理效率高、操作维护方便、出水满足《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准的渗滤液处理技术已是当务之急。
发明内容
本发明的目的在于克服现有技术中垃圾渗滤液处理技术出水仍然含有少量的硝氮的缺陷,提供一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法。本发明提供的方法污水处理效率高,出水无硝氮,可满足《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准。
为实现上述发明目的,本发明采用如下技术方案:
一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法,所述方法包括如下步骤:
S1:将污水引入部分硝化反硝化池中进行短程硝化反硝化处理后引入调节池1中,控制所述部分硝化反硝化池中溶解氧含量为0.4~0.6mg/L,所述调节池1中亚硝氮与氨氮的摩尔比为1.0~1.3:1时出水;
S2:将调节池1中的出水引入厌氧氨氧化池中进行厌氧氨氧化处理后引入调节池2中,控制所述厌氧氨氧化池中的pH为7.0~7.4,温度为22~28℃;
S3:将调节池2中的出水和1.1~1.5g/L的硫化物引入硫自养反硝化池中进行反硝化处理后出水,控制所述硫自养反硝化池中pH为7.5~8.0,温度为28~32℃,硫氮的摩尔比为1.9~2.0:1。
本发明将短程硝化反硝化池、厌氧氨氧化池和硫自养反硝化池联合起来对污水进行短程硝化反硝化、厌氧氨氧化和反硝化处理,并通过调节池1和2控制各反应池的入水、出水条件,及其它反应条件,可使得最终处理后的出水中氨氮降至10mg/L以下,硝氮降至5mg/L以下,出水达到《生活垃圾填埋场污染控制标准》(GB16889-2008)的排放标准,处理效率高。
本发明所述的硝氮为NO
3
﹣-N,亚硝氮为NO
2
﹣-N,氨氮为NH4
+-N,均以N计;,硫化物以硫化钠计。硝氮、亚硝氮和氨氮的浓度均以氮计,硫氮的质量比指的是以硫计和硝态氮计的质量比。
本发明提供的方法可处理各种污水,特别是排放标准较高的垃圾渗滤液。
优选地,S1中污水为垃圾渗滤液。
优选地,S1中溶解氧含量为0.5mg/L。
优选地,S1中的污水经短程硝化反硝化处理后亚硝氮与氨氮的摩尔比为1.0~1.3:1。
优选地,所述调节池1中亚硝氮与氨氮的摩尔比为1.2:1时出水。
优选地,S2中厌氧氨氧化处理后的出水回流至调节池1中使得调节池1总氮浓度为500~600mg/L。更为优选地,所述调节池1中总氮浓度为500mg/L。
本发明中的总氮指的是硝氮、亚硝氮和氨氮的总和,以N的质量计。
将厌氧氨氧化处理后的出水回流至调节池1对总氮进行调节,可进一步厌氧 氨氧化池的反应效率。
优选地,S3中硫氮的摩尔比为2:1。
优选地,S3中硫自养反硝化池的出水回流至调节池2中使得调节池2中的硝氮浓度为90~120mg/L。更为优选地,调节池2中的硝氮浓度为70~120mg/L。
优选地,S3中硫化物为硫化钠。更为优选地,所述硫化钠来源于垃圾填埋场产生的硫化氢。
将垃圾填埋产生的硫化氢转化为硫化钠应用于本发明中,可减少填埋场的硫化氢排放。
与现有技术相比,本发明具有如下有益效果:
本发明将短程硝化反硝化池、厌氧氨氧化池和硫自养反硝化池联合起来对污水进行短程硝化反硝化、厌氧氨氧化和反硝化处理,并通过控制各反应池的入水、出水条件,及其它反应条件,可使得最终处理后的出水中氨氮降至10mg/L以下,硝氮降至5mg/L以下,出水达到《生活垃圾填埋场污染控制标准》(GB16889-2008)的排放标准,处理效率高。
图1和2为实施例1提供的工艺流程图。
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
实施例1~3
以某垃圾填埋场的垃圾渗滤原液作为污水源进行处理,该渗滤原液COD为4000~5000mg/L,氨氮浓度为2500~3000mg/L。调蓄池收集的垃圾渗滤液原液进行处理后得渗滤液输送到短程硝化反硝化池中进行反应,该渗滤液的各条件情况如下表1。
实施例1~3提供的短程硝化反硝化耦合两级自养反硝化深度脱氮的方法的工艺流程图如图1和2所示,具体如下:
以该渗滤液作为污水向短程硝化反硝化池中进水(非限制性曝气)10min,搅拌(同时曝气,控制DO为0.4~0.6mg/L)10h 50min,沉淀0.5h,出水10min,静置20min,周期处理水量为1L,每天运行两个周期,即日处理水量为2L作为短程硝化反硝化池运行条件,出水至调节池1中。同时考虑短程硝化反硝化池出水水质波动,设定该池的外回流比为3,即控制调节池1中,NH
4
+-N与NO
2
--N总浓度为500~600mg/L左右,进水pH=7.0~7.5之间,该池HRT=3h。利用厌氧氨氧化池进行进一步处理后出水,并引水至调节池2中。将硫自养反硝化池的出水回流4L至调节池使NO
3
--N浓度为70mg/L~120mg/L,根据NO
3
--N浓度确定硫化钠的投加量,使硫氮质量比为1.9~2.0,控制PH为7.5±0.1,温度为30±1摄氏度,通过硫自养反硝化池后,NO
3
--N得到进一步去除,硫离子全部去除。各实施例的条件设置和处理结果如下表1所示。
对照例1~2
本对照例1~2提供了一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法。其中对照例1提供的方法中控制短程硝化反硝化池中溶解氧含量为0.3mg/L,其余条件与实施例1中一致;对照例2提供的方法中控制硫自养反硝化池中硫氮质量比为2.5:1,其余条件与实施例1中一致。对照例1~2的各条件设置和处理结果如下表1所示。
表1实施例1~3和对照例1~2提供的方法的条件设置及处理结果
由表1可知,实施例1~3提供的方法,硫自养反硝化池处理厌氧氨氧化池出水的NO
3
--N去除率达到95%;硫的去除效率达到100%。垃圾渗滤液经过短程硝化反硝化耦合两级自养反硝化工艺处理进行深度脱氮后,COD、氨氮、总氮得到进一步去除,出水氨氮降至10mg/L以下,硝氮降至5mg/L以下,出水达到《生活垃圾填埋场污染控制标准》(GB16889-2008)的排放标准。而对照例提供的方法出水的氨氮和亚硝氮以及硝氮的浓度都比实施例高,且出水的总氮难满足最新排放要求,所以相较对照例,实施例的运行效果更好。
Claims (10)
- 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法,其特征在于,所述方法包括如下步骤:S1:将污水引入短程硝化反硝化池中进行短程硝化反硝化处理后引入调节池1中,控制所述部分硝化反硝化池中溶解氧含量为0.4~0.6mg/L,所述调节池1中亚硝氮与氨氮的摩尔比为1.0~1.3:1时出水;S2:将调节池1中的出水引入厌氧氨氧化池中进行厌氧氨氧化处理后引入调节池2中,控制所述厌氧氨氧化池中的pH为7.0~7.4,温度为22~28℃;S3:将调节池2中的出水和1.1~1.5g/L的硫化物引入硫自养反硝化池中进行反硝化处理后出水,控制所述硫自养反硝化池中pH为7.5~8.0,温度为28~32℃,硫氮的质量比为1.9~2.0:1。
- 根据权利要求1所述方法,其特征在于,S1中污水为垃圾渗滤液。
- 根据权利要求1所述方法,其特征在于,S1中溶解氧含量为0.5mg/L。
- 根据权利要求1所述方法,其特征在于,S1中污水经短程硝化反硝化处理后亚硝氮与氨氮的摩尔比为1.0~1.3:1。
- 根据权利要求1所述方法,其特征在于,所述调节池1中亚硝氮与氨氮的摩尔比为1.2:1时出水。
- 根据权利要求1所述方法,其特征在于,S2中厌氧氨氧化处理后的出水回流至调节池1中使得调节池1总氮为500~600mg/L。
- 根据权利要求1所述方法,其特征在于,S3中硫氮的质量比为2:1。
- 根据权利要求1所述方法,其特征在于,S3中硫自养反硝化池的出水回流至调节池2中使得调节池2中的硝氮浓度为90~120mg/L。
- 根据权利要求1所述方法,其特征在于,S3中硫化物为硫化钠。
- 根据权利要求9所述方法,其特征在于,所述硫化钠来源于垃圾填埋场产生的硫化氢。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/996,179 US11203541B2 (en) | 2018-05-31 | 2020-08-18 | Partial nitrification-denitrification coupled two-stage autotrophic denitrification advanced nitrogen removal method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810549180.7A CN108483655B (zh) | 2018-05-31 | 2018-05-31 | 一种短程硝化反硝化耦合厌氧氨氧化和硫自养反硝化深度脱氮的方法 |
CN201810549180.7 | 2018-05-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/996,179 Continuation US11203541B2 (en) | 2018-05-31 | 2020-08-18 | Partial nitrification-denitrification coupled two-stage autotrophic denitrification advanced nitrogen removal method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019228472A1 true WO2019228472A1 (zh) | 2019-12-05 |
Family
ID=63350933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/089344 WO2019228472A1 (zh) | 2018-05-31 | 2019-05-30 | 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11203541B2 (zh) |
CN (1) | CN108483655B (zh) |
WO (1) | WO2019228472A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112266128A (zh) * | 2020-09-23 | 2021-01-26 | 佛山市绿能环保有限公司 | 一种垃圾卫生填埋场渗滤液处理工艺及系统 |
CN114149147A (zh) * | 2021-12-06 | 2022-03-08 | 中国市政工程华北设计研究总院有限公司滨海新区分公司 | 一种处理初期雨水的海绵小区lid设施及方法 |
CN115353254A (zh) * | 2022-07-29 | 2022-11-18 | 上海同济建设科技股份有限公司 | 一种渗滤液处理系统碳减排工艺及装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108483655B (zh) * | 2018-05-31 | 2021-07-30 | 中山大学 | 一种短程硝化反硝化耦合厌氧氨氧化和硫自养反硝化深度脱氮的方法 |
CN109574258B (zh) * | 2019-01-21 | 2021-05-28 | 南京大学 | 一种实现反硝化生物滤池快速启动的方法 |
CN111573830A (zh) * | 2019-02-18 | 2020-08-25 | 桂林理工大学 | 厌氧氨氧化与氢自养反硝化耦合深度脱氮的装置与方法 |
CN110040848B (zh) * | 2019-03-13 | 2020-06-30 | 苏州科技大学 | 一种基于硫循环实现含氨氮和硫酸盐无机废水的处理方法 |
CN109867352B (zh) * | 2019-03-19 | 2021-05-11 | 中山大学 | 一种利用厌氧mbr实现含氮废水自养深度脱氮的方法 |
CN109809558B (zh) * | 2019-03-19 | 2021-08-17 | 东北大学 | 一种基于硫基填料的复合脱氮反应器及脱氮处理工艺 |
CN110028155B (zh) * | 2019-05-23 | 2024-03-26 | 天津城建大学 | 厌氧氨氧化耦合硫自养反硝化脱氮装置及废水处理方法 |
CN111484136B (zh) * | 2020-05-18 | 2021-12-07 | 北京工业大学 | 一种节能的高出水标准污水处理系统及工艺 |
CN112551688B (zh) * | 2020-11-18 | 2022-11-29 | 三桶油环保科技(宜兴)有限公司 | 一种硫循环厌氧mbr耦合厌氧氨氧化处理石油化工废水的方法 |
CN114590892B (zh) * | 2020-12-04 | 2023-05-26 | 中国石油天然气集团有限公司 | 稀土尾水脱氮装置及方法 |
CN113024032B (zh) * | 2021-03-15 | 2022-11-11 | 浙江双益环保科技发展有限公司 | 一种短程硝化反硝化耦合厌氧氨氧化-mbr-硫自养反硝化脱氮工艺及系统 |
CN113716689B (zh) * | 2021-08-11 | 2023-06-16 | 中国长江三峡集团有限公司 | 一种基于硫还原与硫自养反硝化的混合营养型脱氮方法 |
CN115385447A (zh) * | 2021-09-01 | 2022-11-25 | 上海大学 | 一种处理垃圾渗滤液的方法 |
CN113735377B (zh) * | 2021-09-14 | 2022-06-03 | 南京大学 | 一种耦合硫离子除铜和脱氮的铜氨络废水处理方法 |
CN113817647A (zh) * | 2021-10-13 | 2021-12-21 | 天津大学 | 一种脱氮复合菌剂的制备方法及应用 |
CN113845273B (zh) * | 2021-10-18 | 2023-03-17 | 大连理工大学 | 一种养猪废水厌氧出水高效脱氮除碳的方法 |
CN113955902A (zh) * | 2021-11-01 | 2022-01-21 | 绿源(北京)环保设备股份有限公司 | 一种污水深度处理的方法和系统 |
CN114230100A (zh) * | 2021-12-20 | 2022-03-25 | 湖南军信环保股份有限公司 | 一种老龄渗滤液的处理方法 |
CN117776386A (zh) * | 2023-12-19 | 2024-03-29 | 北京城市排水集团有限责任公司 | 一种连续流多级自养脱氮工艺和系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH067789A (ja) * | 1992-06-29 | 1994-01-18 | Masatoshi Matsumura | 微生物固定化担体およびこの担体を用いた生物学的窒素除去装置 |
CN105330023A (zh) * | 2015-12-01 | 2016-02-17 | 杭州师范大学 | 一种集成化自流式生物脱氮除硫反应器 |
CN107140735A (zh) * | 2017-05-15 | 2017-09-08 | 煤科集团杭州环保研究院有限公司 | 一种煤气化废水生物脱氮系统和方法 |
CN107285465A (zh) * | 2017-06-30 | 2017-10-24 | 青岛大学 | 多段排水式同步短程硝化反硝化除磷并联厌氧氨氧化处理低碳污水的装置和方法 |
CN107364967A (zh) * | 2016-05-12 | 2017-11-21 | 福建省凌安环保科技有限公司 | 一种高效全程耦合自养脱氮的废水处理方法 |
CN108483655A (zh) * | 2018-05-31 | 2018-09-04 | 中山大学 | 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8902573A (nl) * | 1989-10-17 | 1991-05-16 | Ecotechniek Bv | Werkwijze en inrichting voor het verwerken van mest. |
EP1630139A1 (en) * | 2004-08-23 | 2006-03-01 | Amecon Environmental Consultancy | Process for the biological denitrification of ammonium containing wastewater |
US7575686B2 (en) * | 2005-12-23 | 2009-08-18 | University Of Massachusetts | Process for autotrophic perchlorate reduction using elemental sulfur and mollusk shells |
US8932847B2 (en) * | 2009-04-28 | 2015-01-13 | The Board Of Trustees Of The Leland Stanford Junior University | Microbial production of nitrous oxide coupled with chemical reaction of gaseous nitrous oxide |
WO2011119982A1 (en) * | 2010-03-26 | 2011-09-29 | Severn Trent Water Purification, Inc. | Mainstream wastewater treatment |
EP4279459A3 (en) * | 2012-09-13 | 2023-12-13 | D.C. Water & Sewer Authority | Method and apparatus for nitrogen removal in wastewater treatment |
ES2466090B2 (es) * | 2012-12-07 | 2014-09-17 | Hidrotec Tecnología Del Agua, S.L. | Método de puesta en marcha y control de un proceso biológico para eliminación de amonio mediante la acción de bacterias autótrofas en aguas residuales |
CN103265121B (zh) * | 2013-05-10 | 2014-10-15 | 杭州师范大学 | 一种半短程硝化工艺的启动方法 |
CN104071892B (zh) * | 2014-06-06 | 2016-08-24 | 中山大学 | 一种硫自养反硝化颗粒污泥及其制备方法和应用 |
CN105923759B (zh) * | 2016-06-14 | 2018-12-18 | 中山大学 | 一种去除水中新兴有机污染物的生物处理方法及其应用 |
JP2018103080A (ja) * | 2016-12-22 | 2018-07-05 | 株式会社日立製作所 | 排水処理装置及び排水処理方法 |
KR101875024B1 (ko) * | 2017-12-14 | 2018-08-02 | 경기도 | 암모니아 함유 하폐수에서 암모니아를 부분질산화하는 장치 및 방법 |
-
2018
- 2018-05-31 CN CN201810549180.7A patent/CN108483655B/zh active Active
-
2019
- 2019-05-30 WO PCT/CN2019/089344 patent/WO2019228472A1/zh active Application Filing
-
2020
- 2020-08-18 US US16/996,179 patent/US11203541B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH067789A (ja) * | 1992-06-29 | 1994-01-18 | Masatoshi Matsumura | 微生物固定化担体およびこの担体を用いた生物学的窒素除去装置 |
CN105330023A (zh) * | 2015-12-01 | 2016-02-17 | 杭州师范大学 | 一种集成化自流式生物脱氮除硫反应器 |
CN107364967A (zh) * | 2016-05-12 | 2017-11-21 | 福建省凌安环保科技有限公司 | 一种高效全程耦合自养脱氮的废水处理方法 |
CN107140735A (zh) * | 2017-05-15 | 2017-09-08 | 煤科集团杭州环保研究院有限公司 | 一种煤气化废水生物脱氮系统和方法 |
CN107285465A (zh) * | 2017-06-30 | 2017-10-24 | 青岛大学 | 多段排水式同步短程硝化反硝化除磷并联厌氧氨氧化处理低碳污水的装置和方法 |
CN108483655A (zh) * | 2018-05-31 | 2018-09-04 | 中山大学 | 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112266128A (zh) * | 2020-09-23 | 2021-01-26 | 佛山市绿能环保有限公司 | 一种垃圾卫生填埋场渗滤液处理工艺及系统 |
CN114149147A (zh) * | 2021-12-06 | 2022-03-08 | 中国市政工程华北设计研究总院有限公司滨海新区分公司 | 一种处理初期雨水的海绵小区lid设施及方法 |
CN115353254A (zh) * | 2022-07-29 | 2022-11-18 | 上海同济建设科技股份有限公司 | 一种渗滤液处理系统碳减排工艺及装置 |
Also Published As
Publication number | Publication date |
---|---|
US11203541B2 (en) | 2021-12-21 |
US20200377398A1 (en) | 2020-12-03 |
CN108483655A (zh) | 2018-09-04 |
CN108483655B (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019228472A1 (zh) | 一种短程硝化反硝化耦合两级自养反硝化深度脱氮的方法 | |
Wu et al. | Advanced nitrogen removal using bio-refractory organics as carbon source for biological treatment of landfill leachate | |
CN104961305B (zh) | 一种畜禽养殖废水厌氧发酵液的处理方法 | |
CN102633359B (zh) | 一种适用于含氮化工废水总氮的处理方法 | |
CN102190398B (zh) | 一种焦化废水处理方法 | |
CN101993169A (zh) | 一种烧结烟气脱硫废水的处理方法 | |
CN110642474B (zh) | 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺 | |
CN104961304A (zh) | 一种高浓度氟化工废水处理工艺 | |
CN109467186B (zh) | 一种氨氮废水部分预亚硝化-厌氧氨氧化高效脱氮方法 | |
CN103253824A (zh) | 一种臭氧与曝气生物滤池组合处理含氰电镀废水的方法 | |
CN111039500A (zh) | 一种处理电镀废水的短程与全程耦合的生物脱氮工艺 | |
CN102515352A (zh) | 一种合成氨工业废水中氨氮脱除方法 | |
CN110759604B (zh) | 一种低碳源污水两级sbr串联高效生物脱氮方法 | |
CN104108794A (zh) | 一种实现废水短程硝化的序批式a/o联动系统废水处理装置与方法 | |
CN111196663A (zh) | 一种印染染色废水生物处理方法和装置 | |
CN111995181B (zh) | 一种光伏产业废水的处理方法 | |
CN211595368U (zh) | 一种印染染色废水生物处理装置 | |
CN112250188A (zh) | 一种含硫脲氨氮废水的脱氮处理方法及脱氮处理系统 | |
CN110902828B (zh) | 一种高氨氮废水的综合处理工艺 | |
CN213707877U (zh) | 一种含硫脲氨氮废水的脱氮处理系统 | |
CN114573185A (zh) | 一种光伏企业含氟废水的处理方法 | |
CN112408699B (zh) | 一种含毒害有机物废水的脱氮集成方法 | |
CN106145505A (zh) | 处理焦化废水的系统及基于该系统的污水处理方法 | |
CN105366887A (zh) | 炼油厂废水综合处理工艺 | |
CN220642843U (zh) | 一种氮磷零排放系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19811700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19811700 Country of ref document: EP Kind code of ref document: A1 |