WO2019228441A1 - 植酸酶突变体 - Google Patents

植酸酶突变体 Download PDF

Info

Publication number
WO2019228441A1
WO2019228441A1 PCT/CN2019/089212 CN2019089212W WO2019228441A1 WO 2019228441 A1 WO2019228441 A1 WO 2019228441A1 CN 2019089212 W CN2019089212 W CN 2019089212W WO 2019228441 A1 WO2019228441 A1 WO 2019228441A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
position corresponding
phytase
acid residue
Prior art date
Application number
PCT/CN2019/089212
Other languages
English (en)
French (fr)
Inventor
白挨玺
李峰
Original Assignee
南京百斯杰生物工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京百斯杰生物工程有限公司 filed Critical 南京百斯杰生物工程有限公司
Priority to EP19810542.1A priority Critical patent/EP3805381A4/en
Priority to CN202410520326.0A priority patent/CN118440920A/zh
Priority to CN201980036097.2A priority patent/CN112204136B/zh
Priority to EA202092569A priority patent/EA202092569A1/ru
Priority to US17/059,696 priority patent/US20210207112A1/en
Publication of WO2019228441A1 publication Critical patent/WO2019228441A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030264-Phytase (3.1.3.26), i.e. 6-phytase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030083-Phytase (3.1.3.8)

Definitions

  • the invention belongs to the field of protein engineering, and relates to phytase derived from Gram-negative bacteria, especially E. coli phytase. After being modified by introducing one or more pairs of disulfide bonds, the thermal stability is improved.
  • Phytase myo-Inositol hexakisphosphate phosphohydrolase, belongs to orthophosphate monoester phosphate hydrolase, which catalyzes the hydrolysis of phytic acid to generate lower inositol phosphate derivatives and inorganic phosphate.
  • Phytic acid can be hydrolyzed to free inositol in the case.
  • Phytic acid is most abundant in the seeds of crops such as cereals, legumes, and oilseeds, up to 1% to 3%, accounting for 60% to 80% of the total phosphorus content in plants.
  • phosphorus in phytic acid cannot be directly absorbed and utilized, and it must be hydrolyzed to inorganic phosphate in the digestive tract.
  • Phytase was added as a feed additive in advance to feed ingredients, and after high temperature granulation (70-95 degrees, time 30 seconds-120 seconds), feed was produced for animal feeding. Therefore, in order to maximize the effect of phytase, it needs to withstand higher temperature, or phytase should have good heat resistance.
  • Commercial phytases are mainly derived from Aspergillus niger (as described in US5436156), E. coli (as described in US7432098), citric acid bacteria (as Citrobacter braakii described in US20100261259), and Brucella (as described in US8143046) Buttiauxella sp.). These phytases have different acid and heat resistance properties due to different sources.
  • E. coli phytase product described here is a protein engineered mutant and therefore has better thermal stability.
  • US8540984, US9765313, US7432098, and US8877478 describe mutant enzymes with improved thermostability obtained by random and site-directed mutation screening of E. coli phytase sequences, and US20130017185 and US20170240872 patent applications mention the use of E. coli phytate
  • the introduction of specific disulfide bonds in the three-dimensional structure of the enzyme protein can also improve the thermal stability of the enzyme.
  • thermostable phytases There is also a need in the art to provide more thermostable phytases.
  • the present inventors have discovered that by using a wild-type phytase in E. coli (for example, a person having a sequence identity greater than 85% with the wild-type phytase of E. coli shown in SEQ ID NO: 1) or a mutant of E. coli (For example, those with greater than 75% sequence identity with the E. coli phytase mutant shown in SEQ ID NO: 2)
  • a wild-type phytase in E. coli for example, a person having a sequence identity greater than 85% with the wild-type phytase of E. coli shown in SEQ ID NO: 1
  • a mutant of E. coli for example, those with greater than 75% sequence identity with the E. coli phytase mutant shown in SEQ ID NO: 2
  • the introduction of one or more pairs of disulfide bonds at specific positions in the amino acid sequence can improve its stability And thus achieve the purpose of the invention.
  • a specific position in the amino acid sequence of an E. coli phytase mutant having greater than 85% sequence identity with the E. coli wild-type phytase shown in SEQ ID ID NO: 1 is introduced as shown in Table 1 One or more pairs of disulfide bonds are shown.
  • the E. coli wild-type phytase shown in SEQ ID NO: 1 has greater than 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%,
  • One or more pairs of disulfide bonds shown in Table 1 were introduced at specific positions in the amino acid sequence of E. coli phytase with 96%, 97%, 98%, or 99% sequence identity.
  • the E. coli phytase mutant shown in SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 79, or SEQ ID NO: 99 has a sequence identity greater than 75%
  • One or more pairs of disulfide bonds as shown in Table 1 are introduced at specific positions in the amino acid sequence of the E. coli phytase variant.
  • the E. coli phytase mutant shown in SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 79, or SEQ ID NO: 99 has greater than 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity E. coli phytase variants
  • One or more pairs of disulfide bonds as shown in Table 1 are introduced at specific positions in the amino acid sequence of.
  • the mutant E. coli phytase has a mutation in at least one position compared to a wild-type E. coli phytase as shown in SEQ ID NO: 1: 1,25,30, 36,37,38,39,46,55,60,62,65,69,70,73,74,75,76,77,79,80,85,101,108,109,111,114,116,118,120,123,126,127,133,137,138,139,141,142,146,151,157,159,161,173,176,178,180,183,184,185,186,187,188,189,204,211,233,235,245,253,255,267,276,282,283,284,286,287,288,291,295,297,311,315,317,318,327,341,354,363,367,369,370,380,382,383,385,391,402,408.
  • the mutant E. coli phytase has a mutation in at least one position compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: 25, 46, 62 , 70, 73, 74, 75, 76, 114, 137, 142, 146, 159, 173, 204, 255, 282, 283, 284.
  • the mutant E. coli phytase has a mutation in at least one position compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: 25, 46 , 62, 70, 73, 74, 75, 76, 114, 137, 142, 146, 159, 173, 204, 255.
  • the mutant E. coli phytase contains mutations at the following positions compared to the wild type E. coli phytase as shown in SEQ ID NO: 1: 46, 62, 73, 75 , 146, 159, 204, 255. In other specific embodiments, the mutant E. coli phytase contains mutations at the following positions compared to the wild type E. coli phytase as shown in SEQ ID NO: 1: 25, 46, 62, 70, 73, 75, 114, 137, 142, 146, 159, 255. In some specific embodiments, the mutant E. coli phytase contains mutations at the following positions compared to the wild-type E.
  • the mutant E. coli phytase contains mutations at the following positions compared to the wild type E. coli phytase as shown in SEQ ID NO: 1: 25, 46, 62, 70, 73, 74, 75, 114, 137, 142, 146, 159, 173, 255, 282, 283, 284.
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E. coli phytase as shown in SEQ ID NO: 1: Q1S, Q1V, Q1N, A25F, Q30K , A36K, W37F, P38Y, T39D, W46E, I55V, H60S, H60Q, Q62W, R65H, D69N, G70E, A73P, A73D, A73E, K74D, K74P, K74L, K74N, K75C, K75Q, G76T, C77A79, Q79L, , Q79A, Q79G, Q79F, S80P, I85V, A101L, C108A, A109D, A109E, A109G, A109F, A109P, T111S, T111D, T111Q, T114H, T116A, T118R, T118S, S120R, P123
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: A25F, W46E, Q62W, G70E, A73P, K74N, K75C, K75Q, G76T, T114H, N137V, D142R, S146E, R159Y, P173S, N204C, Y255D, H282N, P283G, P284T.
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E.
  • SEQ ID NO: 1 A25F, W46E, Q62W, G70E, A73P, K74N, K75C, K75Q, G76T, T114H, N137V, D142R, S146E, R159Y, P173S, N204C, Y255D.
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: W46E, Q62W, A73P, K75C, S146E , R159Y, N204C, Y255D. In other embodiments, the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E. coli phytase as shown in SEQ ID NO: 1: A25F, W46E, Q62W, G70E, A73P, K75C, T114H, N137V, D142R, S146E, R159Y, Y255D.
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: W46E, Q62W, G70E, A73P, K74N , K75Q, G76T, S146E, R159Y, P173S, Y255D, H282N, P283G, P284T.
  • the mutant E. coli phytase has at least one of the following mutations compared to the wild-type E.
  • SEQ ID NO: 1 A25F, W46E, Q62W, G70E, A73P, K74N, K75Q, T114H, N137V, D142R, S146E, R159Y, P173S, Y255D, H282N, P283G, P284T.
  • the mutant E. coli phytase contains the following mutations compared to the wild-type E. coli phytase as shown in SEQ ID NO: 1: W46E, Q62W, A73P, K75C, S146E, R159Y, N204C, Y255D. In other specific embodiments, the mutant E. coli phytase contains the following mutations compared to the wild-type E. coli phytase shown in SEQ ID NO: 1: A25F, W46E, Q62W, G70E, A73P , K75C, T114H, N137V, D142R, S146E, R159Y, Y255D. In some specific embodiments, the mutant E.
  • coli phytase contains the following mutations compared to the wild type E. coli phytase shown in SEQ ID NO: 1: W46E, Q62W, G70E, A73P, K74N, K75Q, G76T, S146E, R159Y, P173S, Y255D, H282N, P283G, P284T.
  • the mutant E. coli phytase contains the following mutations compared to the wild-type E.
  • SEQ ID NO: 1 A25F, W46E, Q62W, G70E, A73P , K74N, K75Q, T114H, N137V, D142R, S146E, R159Y, P173S, Y255D, H282N, P283G, P284T.
  • the present inventors found that in the E. coli wild-type phytase sequence as shown in SEQ ID NO: 1 or as SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 79 or SEQ ID NO
  • the one or more pairs of disulfide bond combinations shown in Table 1 in the E. coli mutant phytase sequence shown in: 99 can improve its thermal stability.
  • one or more pairs of disulfide bonds introduced in wild-type or mutant E. coli phytase are selected from the group consisting of (A), (B), (C), (D ), (E), (J), (M), or (O), and the conditional expressions (C) and (D) are not satisfied at the same time.
  • a pair of disulfide bonds introduced in wild-type or mutant E. coli phytase said disulfide bonds being selected from (A), (B), (C), (D), ( E), (J), (M) or (O).
  • multiple pairs of disulfide bonds are introduced simultaneously in a wild-type or mutant E. coli phytase, preferably, (B) + (O), ( C) + (O), (M) + (O), (B) + (D) + (O), or (D) + (M) + (O) disulfide bond; more preferably, at The wild type or mutant E. coli phytase simultaneously introduces the disulfide bond described in (B) + (O) or (C) + (O).
  • introduction does not limit that the disulfide bond is generated in any particular way.
  • "introducing" a disulfide bond may include replacing an amino acid residue at a corresponding position in the phytase sequence to be introduced into a disulfide bond with an amino acid residue capable of forming a disulfide bond (including, for example, cysteine) Residues Cys, homocysteine residues Hcy, etc.); and / or amino acid residues capable of forming disulfide bonds are inserted at corresponding positions.
  • Such substitutions and / or insertions can be achieved, for example, by site-directed mutagenesis methods known in the art.
  • “Introduction” also includes situations where any one or two amino acid residues forming the disulfide bond are due to a natural mutation.
  • microbial bacteria such as E. coli, fungi such as yeast (Pichia, Schizosaccharomyces pombe, etc.) and filamentous fungi (such as Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, etc.) can be used , And plants (such as corn, soybean, wheat, etc.) as hosts for expression.
  • conventional site-directed mutagenesis methods can be used based on existing wild-type nucleic acid sequences, or gene synthesis methods can be used to synthesize de novo. After ligating the promoter and terminator, they are introduced into host cells and expressed under appropriate culture conditions. The above methods are conventional methods in the art.
  • Wild type phytase refers to phytase expressed by naturally occurring microorganisms, such as E. coli cells found in nature.
  • a “variant” or “mutant” refers to a change, that is, a substitution, insertion, and / or substitution of one or more (several) amino acid residues having one or more (several) positions with phytase activity. Missing polypeptide. Substitution means replacing the amino acid occupying a certain position with a different amino acid; deletion means removing the amino acid occupying a certain position; and insertion means adding 1-5 amino acids adjacent to the amino acid occupying a certain position.
  • Mutating a wild-type phytase also refers to amino acid substitutions, insertions, and / or deletions at at least one position compared to wild-type phytase, preferably, amino acid substitutions at at least one position
  • “A25F” is the phenylalanine at the alanine substitution position 25 of the wild-type phytase.
  • (B) + (O) refers to the introduction of two disulfide bonds into a wild-type or mutant phytase sequence, both in ( A disulfide bond is formed at the two positions described in item B), and a disulfide bond is formed at the two positions described in item (O); Similarly, the item (C) + (O) described in the invention, ( The descriptions with “+”, such as M) + (O), (B) + (D) + (O) and (D) + (M) + (O), have similar explanations.
  • Sequence identity is defined as an amino acid in a candidate sequence that is specific to a peptide or polypeptide sequence after comparing the sequences and introducing gaps if necessary to obtain the maximum percentage of sequence identity without considering any conservative substitutions as part of the sequence identity Percentage of amino acid residues with the same residues. Sequence alignments can be performed in a variety of ways within the skill of the art to determine percent amino acid sequence identity, for example using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximum alignment over the full length of the sequences being compared.
  • thermostable phytase characterized in that the amino acid sequence of wild-type E. coli phytase or mutant E. coli phytase contains at least one pair of introduced disulfide bonds, said wild-type large intestine
  • the amino acid sequence of Bacillus phytase is shown in SEQ ID NO: 1
  • the mutant E. coli phytase is at least 1 position compared to the wild type E. coli phytase shown in SEQ ID NO: 1. Mutations,
  • the introduced disulfide bond is selected from:
  • thermostable phytase according to embodiment 2 the mutant E. coli phytase has at least one mutation compared to the wild-type E. coli phytase as shown in SEQ ID NO: 1. : Q1S, Q1V, Q1N, A25F, Q30K, A36K, W37F, P38Y, T39D, W46E, I55V, H60S, H60Q, Q62W, R65H, D69N, G70E, A73P, A73D, A73E, K74D, K74P, K74L75, K74N , K75Q, G76T, C77A, Q79L, Q79R, Q79A, Q79G, Q79F, S80P, I85V, A101L, C108A, A109D, A109E, A109G, A109F, A109P, T111S, T111D, T111Q, T114H, T116A, T118R, T118S ,
  • thermostable phytase according to embodiment 4 said mutant E. coli phytase has a member selected from the group consisting of wild type E. coli phytase as shown in SEQ ID NO: 1. Any mutation combination of
  • thermostable phytase according to embodiment 3 wherein the amino acid sequence of the mutant E. coli phytase is SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 79 or SEQ ID NO : 99.
  • thermostable phytase according to any one of embodiments 1-6, wherein the disulfide bond is selected from (A), (B), (C), (D), (E) At least one of (J), (M), or (O), provided that (C) and (D) are not satisfied at the same time.
  • thermostable phytase according to embodiment 10 wherein the amino acid sequence satisfies the item (D) above.
  • thermostable phytase according to embodiment 10 wherein the amino acid sequence satisfies the above item (O).
  • thermostable phytase according to embodiment 13 wherein the amino acid sequence satisfies the items (B) and (O) above.
  • thermostable phytase according to embodiment 13 wherein the amino acid sequence satisfies the above items (C) and (O).
  • thermostable phytase according to embodiment 13 wherein the amino acid sequence satisfies the above items (M) and (O).
  • thermostable phytase according to embodiment 13 wherein the amino acid sequence satisfies the above items (B), (D), and (O).
  • thermostable phytase according to embodiment 13 wherein the amino acid sequence satisfies the above items (D), (M), and (O).
  • the condition is that (i) and (ii) are not satisfied at the same time.
  • thermostable phytase according to embodiment 1, wherein the thermostable phytase comprises any amino acid sequence selected from the group consisting of SEQ ID NOs: 4-40, SEQ ID NOs: 80- 88 and SEQ ID NOs: 100-108.
  • thermostable phytase according to any one of the preceding embodiments, wherein the thermostable phytase is obtained by heterologous expression in a Pichia or Aspergillus niger host.
  • thermostable phytase according to any one of the preceding embodiments, wherein the amino acid residue capable of forming a disulfide bond is a cysteine residue or a homocysteine residue.
  • thermostable phytase according to any one of embodiments 1-22.
  • polynucleotide of embodiment 23 comprising the nucleotide sequence shown in any one of SEQ ID NOs: 41-77, SEQ ID NOs: 90-98, and SEQ ID NOs: 110-118.
  • a host cell comprising the polynucleotide of any one of embodiments 23-25.
  • a method for improving the thermal stability of a phytase comprising changing an amino acid sequence of a phytase of interest or a nucleic acid sequence encoding the phytase such that the amino acid sequence of the phytase is selected from the following (A) to A disulfide bond can be formed between the amino acid residues at the two positions described in at least one of (P):
  • the phytase of interest is a mutant E. coli phytase, preferably comprising, for example, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 79, or SEQ ID
  • SEQ ID NO: 99 The amino acid sequence shown by NO: 99.
  • the host cell is a fungal cell, preferably a yeast cell or a filamentous fungal cell, more preferably a Pichia cell or an Aspergillus niger cell.
  • the introduction of one or more pairs of disulfide bonds to phytase and mutants according to the present invention especially the simultaneous introduction of multiple pairs of disulfide bonds.
  • the introduction of at least one pair of disulfide bonds into the wild-type or mutant phytase of the present invention improves the residual activity of the wild-type phytase by about 1-8 times. Therefore, the technical solution of the present invention can improve the enzyme activity of phytase, especially in terms of heat stability, steam resistance, and pelleting stability, which are significantly better than existing wild-type or mutant phytase ; Compared with the existing engineering phytase that introduces disulfide bonds, its heat stability is also significantly improved.
  • Figure 1 is a map of the pPIC9K-WT plasmid.
  • FIG. 2 is a graph showing the results of measuring the thermal stability of wild-type and disulfide mutants.
  • Fig. 3 is a graph showing the results of measuring the thermal stability of APPA-M1 and mutants.
  • FIG. 4 is a graph showing the measurement results of APPAan-WT and mutant thermal stability.
  • Fig. 5 is a graph showing the results of measuring the thermal stability of APPA-M2 and mutants.
  • the amino acid sequence of wild-type phytase is shown in SEQ ID NO: 1, and the nucleic acid sequence of Pichia pastoris is shown in SEQ ID NO: 78.
  • the expression vector is pPIC9K.
  • the Saccharomyces cerevisiae Alpha factor is used as the signal peptide.
  • the wild-type phytase expression plasmid pPIC9K-WT is shown in Figure 1.
  • primers were designed for PCR, and the primers are shown in the table below.
  • the plasmid pPIC9K-WT was used as a template, and F1 / R2 and F2 / R1 were used as introduction pairs. Two PCR amplification reactions were performed. High-Fidelity DNA polymerase was completed (New England Biolabs, article number M0530L), and set according to its instructions. After the amplification is complete, DpnI endonuclease (New England Biolabs) is added to digest the template, followed by Gibson The Master Mix Kit (New England Biolabs, article number E2611) was used for fragment recombination, and sequencing confirmed that the mutant plasmid was successfully constructed. The mutant plasmids were named pPIC9K-A to pPIC9K-Y according to the disulfide bond names in the table above.
  • Pichia expression kit Invitrogen instructions were used to manipulate Pichia GS115 and plasmids. Specifically, the Pichia GS115 strain was cultured in a YPD medium (1% yeast extract, 2% protein, 2% glucose, and 1.5% agar) at 30 ° C for 48 hours, and then a single clone was picked into 4 mL of YPD liquid medium ( 1% yeast extract, 2% protein, 2% glucose), incubate at 200 ° M at 30 ° C for 12h, then transfer to a 30mLYPD liquid culture flask, and incubate at 30 ° C and 220rpm for 4-5h.
  • YPD medium 1% yeast extract, 2% protein, 2% glucose, and 1.5% agar
  • the OD600 value was detected at 1.1 After the range of –1.3, centrifuge the culture solution at 9,000 rpm at 4 degrees for 2 min. Collect 4 mL of bacterial cells into sterilized EP tubes, gently discard the supernatant, dry the remaining supernatant with sterilized filter paper, and use pre-cooled The cells were resuspended in 1 mL of sterilized water, centrifuged at 4 ° C, 9,000 rpm for 2 min, and the supernatant was discarded.
  • the clones obtained from the above screening were transferred to BMGY medium, cultured in a shaking shaker at 30 ° C and 250rpm for 24 hours, and then transferred to BMMY medium, maintained at 30 ° C and 250rpm, and 0.5% methanol was added daily to induce After 120 hours of expression; centrifugation at 9000-12000 rpm for 10 minutes to remove bacteria, a fermentation supernatant containing phytase APPA-WT and its 25 mutants was obtained. SDS-PAGE results showed APPA-S, APPA-X and APPA-Y Three mutants failed to express, and the remaining 22 mutants all expressed.
  • Example 2 The determination of phytase activity follows GBT 18634-2009 document standard.
  • the 23 samples in Example 1 were diluted with water to 100 U / mL. Take 9mL of water in a 25mL colorimetric tube and preheat them in a constant temperature water bath at 80 ° C. Pipet 1mL of the enzyme sample with a pipette, and quickly add it to the corresponding test tube. Quickly cooled to room temperature, diluted with water, and measured the residual viability of each sample. Therefore, the enzyme activity retention rate at different treatment temperatures was calculated (the enzyme activity was determined to be 100% before heat treatment). The thermal stability data are shown in Figure 2. Some mutants show good thermal stability.
  • APPA-B, APPA-C, APPA-D, APPA-M, APPA-O and APPA-P perform best, and Compared with APPA, the residual vitality is increased by about 20-25%, which is about 2-3 times.
  • Nov9X is a heat-resistant excellent mutant obtained by mutation screening of wild-type phytase (as described in US7432098), which introduces 8 mutations on the basis of wild-type, and the specific sequence is shown in SEQ ID NO: 2.
  • SEQ ID NO: 2 the specific sequence is shown in SEQ ID NO: 2.
  • APPA-M1 the specific sequence was shown in SEQ ID NO: 3.
  • APPA-M1 the sequence became described in SEQ ID NO: 3
  • the stability is further improved.
  • the disulfide bonds D, O, and the disulfide bond combinations B + O, C + O, D + O, M + O, B + D + O, and D + were introduced on the basis of APPA-M1 according to the method in Example 1.
  • M + O, each mutant was named APPA-M1-D, APPA-M1-O, APPA-M1-BO, APPA-M1-CO, APPA-M1-DO, APPA-M1-MO, APPA-M1- BDO and APPA-M1-DMO.
  • the amplitude is as high as 35.5%.
  • the combined introduction of disulfide bond mutants APPA-M1-CO and APPA-M1-DO showed similar stability to APPA-M1-O.
  • Other combination mutations such as APPA-M1-BO, APPA-M1-MO, APPA-M1-BDO and APPA-M1-DMO have higher stability.
  • the best APPA-M1-BO residual activity can reach 77.2%, which is about 1-1.5 times higher than APPA-M1 and has significant resistance.
  • the thermal characteristics can be expected to perform well in feed pelleting. The above results show that a suitable combination can create more stable mutants.
  • Example 4 Aspergillus niger expressing E. coli wild-type phytase and introducing a disulfide mutant phytase
  • the E. coli phytase wild type (SEQ ID NO: 1) and mutants (A to P) were expressed according to the description of patent application CN107353327.
  • the wild-type phytase was named APPAan-WT, and each mutant was named according to APPAan- A to APPAan-P for naming.
  • the thermostability measurement was performed as described in Example 2. The different parameters were incubated at 85 ° C for 3 minutes.
  • the experimental results are shown in Figure 4. We found that the wild-type phytase expressed by Aspergillus niger showed significant stability compared to the enzyme expressed by Pichia, which may be due to their different glycosylation status.
  • the experiment also found that the mutant APPAan-P could not be expressed, APPAan-G showed similar stability to WT, and APPAan-H stability decreased significantly. The remaining 13 mutants all showed significant stability performance improvements, all showing a minimum of 5% and a maximum of 20.5% improvement. We also found that the magnitude of the stability improvement was not consistent with the mutants expressed in Pichia. The above results indicate that 16 mutants are expressed in at least one host cell and exhibit better stability than the wild type, and the above-mentioned disulfide bond combinations can be properly introduced to obtain mutants with higher stability.
  • Nov9X is a heat-resistant excellent mutant obtained by mutation screening of wild-type phytase (as described in US7432098), which introduces 8 mutations on the basis of wild-type, and the specific sequence is shown in SEQ ID NO: 2.
  • SEQ ID NO: 2 Based on the Nov9X sequence, according to literature reports (Improving specific activity and thermal stability of Escherichia coliphytase by structure-based design), the glycosylation site was introduced, and its sequence became described in SEQ ID ID NO: 79, named APPA- M2 can further improve its thermal stability.
  • APPA- M2 can further improve its thermal stability.
  • Disulfide bonds B, C, D, M, O and disulfide bond combinations B + O, D + O, M + O, C + O, and each mutant were introduced on the basis of APPA-M2 according to the method in Example 1.
  • the amino acid sequence of each mutant is shown in SEQ ID NOs: 80-88, and the corresponding nucleotide sequence is shown in SEQ ID NOs: 90-98.
  • each mutant was expressed using Aspergillus niger, and then the thermal stability was measured according to the method in Example 2. The results are shown in Figure 5.
  • the disulfide bonds used in this experiment significantly improved the thermal stability of the mutant.
  • the combined disulfide bond C + O had the best effect, and its residual activity after heat treatment could reach 84.5%. It has significant heat resistance and can be expected to perform well in feed pelleting.
  • the above results show that a suitable combination can create more stable mutants.
  • the above results show that the introduction of the disulfide bond proposed by the inventors still shows very effective results for the phytase mutant sequence.
  • APPA-M3 The sequence is shown in SEQ ID NO: 99 and named APPA-M3, which can also improve its thermal stability.
  • Disulfide bonds B, C, D, M, O and disulfide bond combinations B + O, D + O, M + O, C + O, and each mutant were introduced on the basis of APPA-M3 according to the method in Example 1. Named APPA-M3-B, APPA-M3-C, APPA-M3-D, APPA-M3-M, APPA-M3-O, APPA-M3-BO, APPA-M3-DO, APPA-M3-MO And APPA-M3-CO.
  • each mutant is shown in SEQ ID NOs: 100-108, and the corresponding nucleotide sequence is shown in SEQ ID NOs: 110-118.
  • Aspergillus niger was used to express each mutant, and the stability was measured according to the method in Example 2. It was found that the mutants that introduced disulfide bonds had the same heat resistance characteristics as the mutants that introduced disulfide bonds in AMMA-M2. It is expected to perform well in feed pelleting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了热稳定性植酸酶,在野生型大肠杆菌植酸酶或突变型大肠杆菌植酸酶的氨基酸序列中包含至少一对引入的二硫键,引入后可以提升植酸酶的性质,特别是在于耐热稳定性,耐蒸汽稳定性,制粒稳定性方面,优于现有的野生型或者突变型植酸酶;相比于现有的引入二硫键的工程改造植酸酶,其耐热稳定性也有显著提高。

Description

植酸酶突变体 技术领域
本发明属于蛋白质工程领域,涉及来源于革兰氏阴性菌的植酸酶,尤其是大肠杆菌植酸酶,此类经引入一对或多对二硫键而改造后,热稳定性得到提升。
背景技术
植酸酶(Phytase),即肌醇六磷酸磷酸水解酶(myo-Inositol hexakisphosphate phosphohydrolase),属于正磷酸单酯磷酸水解酶,催化植酸水解生成低级肌醇磷酸衍生物和无机磷酸,在某些情况下可将植酸水解为游离的肌醇。植酸在谷物、豆类、油料等作物种子中含量最为丰富,高达1%~3%,占植物总磷含量的60%~80%。但植酸中的磷不能被直接吸收利用,必须在消化道内先水解为无机磷酸盐。研究表明,单胃动物(猪、鸡、鸭、鹅等)因为缺乏植酸酶而对植酸中磷的利用率很低。同时,植酸强烈电负性导致其通常与二价或三价阳离子,如Ca 2+、Zn 2+、Fe 2++等形成不溶性盐类,阻碍小肠对矿物质的吸收。还会与蛋白质,氨基酸以及脂肪酸等形成络合物,影响他们的吸收利用,植酸还会与胃蛋白酶、胰凝乳酶、胰蛋白酶等结合,降低消化酶活性。因此,在单胃动物饲料中添加植酸酶可提高动物饲料中磷的利用率,降低动物排泄物中的磷含量,同时能提高蛋白和饲料能量利用率。
植酸酶作为饲料添加剂预先加入饲料原料中,经高温制粒等过程(70-95度,时间为30秒-120秒)后,生产出饲料用于动物饲养。因此为了最大化发挥植酸酶作用,需要其耐受较高的温度,或者说植酸酶应有良好的耐热性。商业化的植酸酶主要来源于黑曲霉(如US5436156所述),大肠杆菌(如US7432098所述),柠檬酸细菌属(如US20100261259所述Citrobacter braakii菌),布氏杆菌(如US8143046所述的Buttiauxella sp.菌)等。这些植酸酶由于来源不同,导致他们具有不同的耐酸耐热性质。Nielsen等(J Agric Food Chem.2015,63(3):943-50)比较了商业化的植酸酶性质,结果显示大肠杆菌植酸酶显示出最好的特性。文中描述的大肠杆菌植酸酶产品是经过蛋白质工程修饰的突变体,因此具有更好热稳定性。US8540984,US9765313,US7432098和US8877478描述了通过对大肠杆菌植酸酶序列进行随机突变和定点突变筛选后获得的热稳定性提高的突变体酶,而US20130017185以及US20170240872专利申请中提到了根据大肠杆菌植酸酶蛋白质三维结构进行特定二硫键引入也可以提高酶热稳定性。
本领域还需要提供更多的具有热稳定性的植酸酶。
发明内容
本发明人发现,通过在大肠杆菌野生型植酸酶(例如与SEQ ID NO:1所示的大肠杆菌野生型植酸酶具有大于85%的序列一致性者)或者大肠杆菌植酸酶突变体(例如与SEQ ID NO:2所示的大肠杆菌植酸酶突变体具有大于75%的序列一致性者)的氨基酸序列中的特定位置上引入一对或多对二硫键,可以提高其稳定性,从而实现了发明的目的。
在一些实施方案中,在与SEQ ID NO:1所示的大肠杆菌野生型植酸酶具有大于85%的序列一致性的大肠杆菌植酸酶突变体的氨基酸序列中特定位置上引入如表1所示的一对或多对二硫键。在一些优选实施方案中,在与SEQ ID NO:1所示的大肠杆菌野生型植酸酶具有大于88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的序列一致性的大肠杆菌植酸酶的氨基酸序列中特定位置上引入如表1所示的一对或多对二硫键。
在另一些实施方案中,在与SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的大肠杆菌植酸酶突变体具有大于75%的序列一致性的大肠杆菌植酸酶变体的氨基酸序列中特定位置上引入如表1所示的一对或多对二硫键。在一些优选实施方案中,在与SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的大肠杆菌植酸酶突变体具有大于80%、82%、84%、86%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的序列一致性的大肠杆菌植酸酶变体的氨基酸序列中特定位置上引入如表1所示的一对或多对二硫键。
在一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个位置上具有突变:1,25,30,36,37,38,39,46,55,60,62,65,69,70,73,74,75,76,77,79,80,85,101,108,109,111,114,116,118,120,123,126,127,133,137,138,139,141,142,146,151,157,159,161,173,176,178,180,183,184,185,186,187,188,189,204,211,233,235,245,253,255,267,276,282,283,284,286,287,288,291,295,297,311,315,317,318,327,341,354,363,367,369,370,380,382,383,385,391,402,408。在一些优选实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个位置上具有突变:25,46,62,70,73,74,75,76,114,137,142,146,159,173,204,255,282,283,284。在一些更优选的实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个位置上具有突变:25,46,62,70,73,74,75,76,114,137,142,146,159,173,204,255。
在一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型 大肠杆菌植酸酶相比,在如下位置上包含突变:46,62,73,75,146,159,204,255。在另一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在如下位置上包含突变:25,46,62,70,73,75,114,137,142,146,159,255。在一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在如下位置上包含突变:46,62,70,73,74,75,76,146,159,173,255,282,283,284。在另一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在如下位置上包含突变:25,46,62,70,73,74,75,114,137,142,146,159,173,255,282,283,284。
在一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:Q1S,Q1V,Q1N,A25F,Q30K,A36K,W37F,P38Y,T39D,W46E,I55V,H60S,H60Q,Q62W,R65H,D69N,G70E,A73P,A73D,A73E,K74D,K74P,K74L,K74N,K75C,K75Q,G76T,C77A,Q79L,Q79R,Q79A,Q79G,Q79F,S80P,I85V,A101L,C108A,A109D,A109E,A109G,A109F,A109P,T111S,T111D,T111Q,T114H,T116A,T118R,T118S,S120R,P123E,N126Y,P127V,P127L,C133A,N137V,N137E,N137S,N137P,A138V,A138H,A138D,A138P,N139P,N139A,N139H,T141R,T141E,T141G,T141A,D142R,S146E,S146R,S151P,G157R,G157Q,G157N,G157L,G157A,R159Y,T161P,P173Y,P173S,N176P,N176K,C178A,K183R,Q184S,D185N,D185L,E186V,E186A,S187P,C188A,S189T,N204C,V211W,G233E,G235Y,T245E,Q253V,Y255D,R267A,H282N,P283G,P284T,K286F,Q287Y,A288E,A288R,A288V,V291I,T295I,V297T,G311S,E315G,E315S,N317L,W318Y,T327Y,L341Y,L341V,F354Y,K363A,K363L,S367F,N369P,T370P,A380P,A380R,A380T,C382A,E383S,R385S,R385V,R385T,C391A,E402R,E402T,E402D,E402P,E402N,C408A。在一些优选实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:A25F,W46E,Q62W,G70E,A73P,K74N,K75C,K75Q,G76T,T114H,N137V,D142R,S146E,R159Y,P173S,N204C,Y255D,H282N,P283G,P284T。在一些更优选的实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:A25F,W46E,Q62W,G70E,A73P,K74N,K75C,K75Q,G76T,T114H,N137V,D142R,S146E,R159Y,P173S,N204C,Y255D。
在一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:W46E,Q62W,A73P,K75C,S146E,R159Y, N204C,Y255D。在另一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D。在一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。在另一些实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:A25F,W46E,Q62W,G70E,A73P,K74N,K75Q,T114H,N137V,D142R,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
在一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,包含如下突变:W46E,Q62W,A73P,K75C,S146E,R159Y,N204C,Y255D。在另一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,包含如下突变:A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D。在一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,包含如下突变:W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。在另一些具体实施方案中,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,包含如下突变:A25F,W46E,Q62W,G70E,A73P,K74N,K75Q,T114H,N137V,D142R,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
具体而言,本发明人发现,在如SEQ ID NO:1所示的大肠杆菌野生型植酸酶序列或如SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的大肠杆菌突变型植酸酶序列中分别引入如表1中所示的一对或多对二硫键组合,可以提高其热稳定性。
表1:引入二硫键名称和位置(氨基酸位置编号以SEQ ID NO:1为准)
二硫键名称 二硫键位点
A P34/Q174
B A56/G103
C Y57/L366
D Y61/L366
E Q82/S296
F L128/D203
G V140/E262
H T156/T191
I E165/T245
J T191/A210
K S196/V211
L A264/G312
M E315/A380
N G322/T356
O Q346/L393
P Q349/M390
在一些实施方案中,在野生型或突变型大肠杆菌植酸酶中引入的一对或多对二硫键,所述二硫键选自(A)、(B)、(C)、(D)、(E)、(J)、(M)或(O)中的至少一项,条件式(C)和(D)项不同时满足。
在一些实施方案中,在野生型或突变型大肠杆菌植酸酶中引入的一对二硫键,所述二硫键选自(A)、(B)、(C)、(D)、(E)、(J)、(M)或(O)项。
在一些实施方案中,在野生型或突变型大肠杆菌植酸酶中同时引入多对二硫键,优选地,在野生型或突变型植酸酶中同时引入(B)+(O)、(C)+(O)、(M)+(O)、(B)+(D)+(O)或(D)+(M)+(O)所述的二硫键;更优选地,在野生型或突变型大肠杆菌植酸酶中同时引入(B)+(O)或(C)+(O)所述的二硫键。
为本发明的目的,“引入”不限定二硫键是以任何特定的方式生成的。例如,“引入”二硫键,可以包括将待引入二硫键的植酸酶序列的相应位置上的氨基酸残基替换成能够形成二硫键的氨基酸残基(包括,例如,半胱氨酸残基Cys,同型半胱氨酸残基Hcy,等等);和/或在相应位置上插入能够形成二硫键的氨基酸残基。这样的替换和/或插入可以,例如,通过本领域公知的定点诱变方法来实现。“引入”亦包括形成所述二硫键的任何一个或两个氨基酸残基是由于自然突变而产生的情况。
为了生产经过如此改造的突变体,可以使用微生物细菌如大肠杆菌,真菌如酵母(毕赤酵母,粟酒裂殖酵母等)和丝状真菌(如黑曲霉,米曲霉,里氏木霉等),以及植物(如玉米,大豆,小麦等)作为宿主进行表达。
表达和生产上述突变体使用通用的和已知技术即可完成。如APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2004,3041–3046描述了大肠杆菌植酸酶及突变体在大肠杆菌中的表达,Journal of Biotechnology 175(2014)1–6描述了植酸酶及突变体在毕赤酵 母中的表达,专利申请CN107353327描述了植酸酶及突变体在黑曲霉中表达。
为了构建上述突变,可以在已有野生型核酸序列基础上使用常规的定点突变方法,也可以使用基因合成方法从头合成。在连接启动子和终止子后导入到宿主细胞中,在合适的培养条件下进行表达。上述方法为本领域常规方法。
“野生型植酸酶”中是指植酸酶由天然存在的微生物,如在自然界中发现的大肠杆菌细胞中表达的植酸酶。
“变体”或“突变型”是指具有植酸酶活性的包含在一个或多个(数个)位置的一个或多个(数个)氨基酸残基的变更,即取代、插入和/或缺失的多肽。取代是指用不同的氨基酸替代占据某位置的氨基酸;缺失是指除去占据某位置的氨基酸;而插入是指在占据某位置的氨基酸邻接处且在之后添加1-5个氨基酸。对野生型植酸酶进行突变,也是指与野生型植酸酶相比,在至少一个位置上进行氨基酸的取代、插入和/或缺失,优选地,是指在至少一个位置上进行氨基酸的取代,如“A25F”,即为野生型植酸酶第25位丙氨酸取代位苯丙氨酸。
“(B)+(O)”、“B+O”或“(B)项+(O)项”指在野生型或突变型植酸酶序列的中引入两个二硫键,既在(B)项所述的两个位置上形成二硫键,又在(O)项所述的两个位置上形成二硫键;同理发明中所述(C)项+(O)项,(M)项+(O)项,(B)项+(D)项+(O)项和(D)项+(M)项+(O)项等带“+”的描述具有类似的解释。
“序列一致性”定义为对比序列并在必要时引入缺口以获取最大百分比序列同一性后,且不将任何保守替代视为序列同一性的一部分,候选序列中与特定肽或多肽序列中的氨基酸残基相同的氨基酸残基的百分率。可以本领域技术范围内的多种方式进行序列对比以测定百分比氨基酸序列同一性,例如使用公众可得到的计算机软件,诸如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)软件。本领域技术人员可决定测量对比的适宜参数,包括对所比较的序列全长获得最大对比所需的任何算法。
基于该发现,本申请提供下述技术方案。
1.一种热稳定性植酸酶,其特征在于,在野生型大肠杆菌植酸酶或突变型大肠杆菌植酸酶的氨基酸序列中包含至少一对引入的二硫键,所述野生型大肠杆菌植酸酶的氨基酸序列如SEQ ID NO:1所示,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个位置上具有突变,
并且,所述引入的二硫键选自:
(A)与SEQ ID NO:1的第34位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第174位对应的位置上的氨基酸残基之间形成的二硫键;
(B)与SEQ ID NO:1的第56位对应的位置上的氨基酸残基、且与SEQ ID NO:1的第103位对应的位置上的氨基酸残基之间形成的二硫键;
(C)与SEQ ID NO:1的第57位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第366位对应的位置上的氨基酸残基之间形成的二硫键;
(D)与SEQ ID NO:1的第61位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第366位对应的位置上的氨基酸残基之间形成的二硫键;
(E)与SEQ ID NO:1的第82位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第296位对应的位置上的氨基酸残基之间形成的二硫键;
(F)与SEQ ID NO:1的第128位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第203位对应的位置上的氨基酸残基之间形成的二硫键;
(G)与SEQ ID NO:1的第140位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第262位对应的位置上的氨基酸残基之间形成的二硫键;
(H)与SEQ ID NO:1的第156位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第191位对应的位置上的氨基酸残基之间形成的二硫键;
(I)与SEQ ID NO:1的第165位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第245位对应的位置上的氨基酸残基之间形成的二硫键;
(J)与SEQ ID NO:1的第191位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第210位对应的位置上的氨基酸残基之间形成的二硫键;
(K)与SEQ ID NO:1的第196位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第211位对应的位置上的氨基酸残基之间形成的二硫键;
(L)与SEQ ID NO:1的第264位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第312位对应的位置上的氨基酸残基之间形成的二硫键;
(M)与SEQ ID NO:1的第315位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第380位对应的位置上的氨基酸残基之间形成的二硫键;
(N)与SEQ ID NO:1的第322位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第356位对应的位置上的氨基酸残基之间形成的二硫键;
(O)与SEQ ID NO:1的第346位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第393位对应的位置上的氨基酸残基之间形成的二硫键;
(P)与SEQ ID NO:1的第349位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第390位对应的位置上的氨基酸残基之间形成的二硫键;
条件是:
(C)项和(D)项不同时满足;
(H)项和(J)项不同时满足。
2.如实施方案1所述的热稳定性植酸酶,其中所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个下述位置上具有突变:1,25,30,36,37,38,39,46,55,60,62,65,69,70,73,74,75,76,77,79,80,85,101,108,109,111,114,116,118,120,123,126,127,133,137,138,139,141,142,146,151,157,159,161,173,176,178,180,183,184,185,186,187,188,189,204,211,233,235,245,253,255,267,276,282,283,284,286,287,288,291,295,297,311,315,317,318,327,341,354,363,367,369,370,380,382,383,385,391,402,408。
3.如实施方案2所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:Q1S,Q1V,Q1N,A25F,Q30K,A36K,W37F,P38Y,T39D,W46E,I55V,H60S,H60Q,Q62W,R65H,D69N,G70E,A73P,A73D,A73E,K74D,K74P,K74L,K74N,K75C,K75Q,G76T,C77A,Q79L,Q79R,Q79A,Q79G,Q79F,S80P,I85V,A101L,C108A,A109D,A109E,A109G,A109F,A109P,T111S,T111D,T111Q,T114H,T116A,T118R,T118S,S120R,P123E,N126Y,P127V,P127L,C133A,N137V,N137E,N137S,N137P,A138V,A138H,A138D,A138P,N139P,N139A,N139H,T141R,T141E,T141G,T141A,D142R,S146E,S146R,S151P,G157R,G157Q,G157N,G157L,G157A,R159Y,T161P,P173Y,P173S,N176P,N176K,C178A,K183R,Q184S,D185N,D185L,E186V,E186A,S187P,C188A,S189T,N204C,V211W,G233E,G235Y,T245E,Q253V,Y255D,R267A,H282N,P283G,P284T,K286F,Q287Y,A288E,A288R,A288V,V291I,T295I,V297T,G311S,E315G,E315S,N317L,W318Y,T327Y,L341Y,L341V,F354Y,K363A,K363L,S367F,N369P,T370P,A380P,A380R,A380T,C382A,E383S,R385S,R385V,R385T,C391A,E402R,E402T,E402D,E402P,E402N,C408A。
4.如实施方案3所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有选自下组的任一突变组合:W46E,Q62W,A73P,K75C,S146E,R159Y,N204C,Y255D;
A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D;
W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T;和
A25F,W46E,Q62W,G70E,A73P,K74N,K75Q,T114H,N137V,D142R,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
5.如实施方案4所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有选自下组的任一突变组合:
W46E,Q62W,A73P,K75C,S146E,R159Y,N204C,Y255D;
A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D;和W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
6.如实施方案3所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶的氨基酸序列为SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99。
7.如实施方案1-6中任一项所述的热稳定性植酸酶,其中,所述二硫键选自(A)、(B)、(C)、(D)、(E)、(J)、(M)或(O)中的至少一项,条件是(C)项和(D)项不同时满足。
8.如实施方案7所述的热稳定性植酸酶,其中,所述氨基酸序列满足下组中的任意两项、三项以上:(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项和(O)项,条件是(C)项和(D)项不同时满足。
9.如实施方案7所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(A)项、(B)项、(C)项、(E)项、(J)项或(M)项。
10.如实施方案7所述的热稳定性植酸酶,其中,所述氨基酸序列至少满足上述(D)项或(O)项。
11.如实施方案10所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(D)项。
12.如实施方案10所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(O)项。
13.如实施方案7所述的热稳定性植酸酶,其中所述氨基酸序列满足上述(B)项和(O)项;(C)项和(O)项;(D)项和(O)项;(M)项和(O)项;(B)项、(D)项和(O)项;或(D)项、(M)项和(O)项。
14.如实施方案13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(B)项和(O)项。
15.如实施方案13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(C)项和(O)项。
16.如实施方案13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(M)项和(O)项。
17.如实施方案13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(B)项、(D)项和(O)项。
18.如实施方案13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(D)项、(M)项 和(O)项。
19.如实施方案1-18中任一项所述的热稳定性植酸酶,还进一步包含至少一对引入的二硫键,所述二硫键选自:
(i)与SEQ ID NO:1的第31位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第176位对应的位置上的氨基酸残基之间形成的二硫键;
(ii)与SEQ ID NO:1的第31位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第177位对应的位置上的氨基酸残基之间形成的二硫键;
(iii)与SEQ ID NO:1的第52位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第99位对应的位置上的氨基酸残基之间形成的二硫键;
(iv)与SEQ ID NO:1的第59位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第100位对应的位置上的氨基酸残基之间形成的二硫键;
(v)与SEQ ID NO:1的第91位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第46位对应的位置上的氨基酸残基之间形成的二硫键;
(vi)与SEQ ID NO:1的第141位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第200位对应的位置上的氨基酸残基之间形成的二硫键;
(vii)与SEQ ID NO:1的第162位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第248位对应的位置上的氨基酸残基之间形成的二硫键;
(viii)与SEQ ID NO:1的第205位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第257位对应的位置上的氨基酸残基之间形成的二硫键;
条件是:(i)项和(ii)项不同时满足。
20.如实施方案1所述的热稳定性植酸酶,其中,该热稳定性植酸酶包含选自下组的任一氨基酸序列:SEQ ID NOs:4-40、SEQ ID NOs:80-88和SEQ ID NOs:100-108。
21.如前述任一项实施方案所述的热稳定性植酸酶,其中,该热稳定性植酸酶是通过在毕赤酵母或者黑曲霉宿主中异源表达而获得的。
22.如前述任一项实施方案所述的热稳定性植酸酶,其中,能够形成二硫键的氨基酸残基为半胱氨酸残基或同型半胱氨酸残基。
23.一种多核苷酸,其编码如实施方案1-22中任一项所述的热稳定性植酸酶。
24.实施方案23的多核苷酸,其编码序列是为在毕赤酵母或者黑曲霉中表达而密码子优化的。
25.实施方案23的多核苷酸,其包含SEQ ID NOs:41-77、SEQ ID NOs:90-98和SEQ ID  NOs:110-118中任一项所示的核苷酸序列。
26.一种宿主细胞,其包含实施方案23-25中任一项所述的多核苷酸。
27.实施方案26所述的宿主细胞,其中该宿主细胞是真菌细胞、细菌细胞或植物细胞。
28.实施方案27所述的宿主细胞,其为酵母细胞或丝状真菌细胞。
29.实施方案28所述的宿主细胞,其为毕赤酵母细胞或者黑曲霉细胞。
30.一种提高植酸酶的热稳定性的方法,其包括对感兴趣的植酸酶的氨基酸序列或其编码核酸序列进行改变,使得植酸酶的氨基酸序列中选自如下(A)至(P)中的至少一项所述的两个位置上的氨基酸残基之间能够形成二硫键:
(A)与SEQ ID NO:1的第34位对应的位置,以及与SEQ ID NO:1的第174位对应的位置;
(B)与SEQ ID NO:1的第56位对应的位置,以及与SEQ ID NO:1的第103位对应的位置;
(C)与SEQ ID NO:1的第57位对应的位置,以及与SEQ ID NO:1的第366位对应的位置;
(D)与SEQ ID NO:1的第61位对应的位置,以及与SEQ ID NO:1的第366位对应的位置;
(E)与SEQ ID NO:1的第82位对应的位置,以及与SEQ ID NO:1的第296位对应的位置;
(F)与SEQ ID NO:1的第128位对应的位置,以及与SEQ ID NO:1的第203位对应的位置;
(G)与SEQ ID NO:1的第140位对应的位置,以及与SEQ ID NO:1的第262位对应的位置;
(H)与SEQ ID NO:1的第156位对应的位置,以及与SEQ ID NO:1的第191位对应的位置;
(I)与SEQ ID NO:1的第165位对应的位置,以及与SEQ ID NO:1的第245位对应的位置;
(J)与SEQ ID NO:1的第191位对应的位置,以及与SEQ ID NO:1的第210位对应的位置;
(K)与SEQ ID NO:1的第196位对应的位置,以及与SEQ ID NO:1的第211位对应的位置;
(L)与SEQ ID NO:1的第264位对应的位置,以及与SEQ ID NO:1的第312位对应的位置;
(M)与SEQ ID NO:1的第315位对应的位置,以及与SEQ ID NO:1的第380位对应的位置;
(N)与SEQ ID NO:1的第322位对应的位置,以及与SEQ ID NO:1的第356位对应的位置;
(O)与SEQ ID NO:1的第346位对应的位置,以及与SEQ ID NO:1的第393位对应的位置;
(P)与SEQ ID NO:1的第349位对应的位置,以及与SEQ ID NO:1的第390位对应的位置;
条件是
(C)项和(D)项不同时被选择;
(H)项和(J)项不同时被选择。
31.如实施方案30所述的方法,其中,所述改变使得感兴趣的植酸酶的氨基酸序列的如(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项或(O)项中至少一项所述的两个位置上的氨基酸残基之间能够形成二硫键,条件是(C)项和(D)项不同时被选择。
32.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如选自下组的任意两项、三项以上所述的两个位置上的氨基酸残基之间能够形成二硫键:(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项和(O)项,条件是(C)项和(D)项不同时被选择。
33.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(A)项、(B)项、(C)项、(E)项、(J)项或(M)项中所述的两个位置上的氨基酸之间能够形成二硫键。
34.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的至少如(D)项或(O)项中所述的两个位置上的氨基酸之间能够形成二硫键。
35.如实施方案34所述的方法,其中,所述改变使得所述氨基酸序列的如(D)项所述的两个位置上的氨基酸之间能够形成二硫键。
36.如实施方案34所述的方法,其中,所述改变使得所述氨基酸序列的如(O)项所述的两个位置上的氨基酸之间能够形成二硫键。
37.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(B)项和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
38.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(C)项和(O)项分别 所述的两个位置上的氨基酸之间能够形成二硫键。
39.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(M)项和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
40.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(B)项、(D)和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
41.如实施方案31所述的方法,其中,所述改变使得所述氨基酸序列的如(D)项、(M)和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
42.如实施方案30-41中任一项所述的方法,其中感兴趣的植酸酶来源于大肠杆菌,且包含与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的氨基酸序列具有至少75%序列一致性的氨基酸序列。
43.如实施方案42所述的方法,其中感兴趣的植酸酶是野生型大肠杆菌植酸酶,优选包含如SEQ ID NO:1所示的氨基酸序列。
44.如实施方案42所述的方法,其中感兴趣的植酸酶是突变型大肠杆菌植酸酶,优选包含如SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的氨基酸序列。
45.如实施方案30-44中任一项所述的方法,其中经过改变后的植酸酶包含选自下组的氨基酸序列、或者其编码核酸包含编码选自下组的氨基酸序列的核苷酸序列:SEQ ID NOs:4-40、SEQ ID NOs:80-88和SEQ ID NOs:100-108。
46.如实施方案30-45中任一项所述的方法,其中该方法还包括生成包含经改造的氨基酸序列的植酸酶,并将其置于容许二硫键形成的环境中。
47.如实施方案46所述的方法,其中生成包含经改造的氨基酸序列的植酸酶包括将编码该植酸酶的多核苷酸在宿主细胞中表达。
48.如实施方案47所述的方法,其中所述宿主细胞是真菌细胞,优选酵母细胞或丝状真菌细胞,更优选毕赤酵母细胞或黑曲霉细胞。
本发明的有益效果:
如本发明所述对植酸酶和突变体引入一对或多对二硫键,尤其是同时引入多对二硫键。本发明在野生型或突变型植酸酶中的引入至少一对二硫键,比野生型植酸酶的残余活力约提高了1-8倍。因此,本发明的技术方案可以提升植酸酶的酶活性质,特别是在于耐热稳定性,耐蒸汽稳定性,制粒稳定性方面,显著优于现有的野生型或者突变型植酸酶;相比于现有的引入二硫键的工程改造植酸酶,其耐热稳定性也有显著提高。
附图说明
图1是pPIC9K-WT质粒图谱。
图2是显示野生型及二硫键突变体热稳定性测定结果的图。
图3是APPA-M1及突变体热稳定性测定结果的图。
图4是APPAan-WT及突变体热稳定性测定结果的图。
图5是APPA-M2及突变体热稳定性测定结果图。
具体实施方式
实施例1构建二硫键突变体,毕赤酵母表达野生型和突变体
大肠杆菌植酸酶3D结构已发布(参见Lim D et al,Nat Struct Biol.2000,7(2):108-13),根据3D结构文件PDB ID 1DKO作为参考,设计引入如下表所述二硫键。
二硫键名称 二硫键位点
A P34C/Q174C
B A56C/G103C
C Y57C/L366C
D Y61C/L366C
E Q82C/S296C
F L128C/D203C
G V140C/E262C
H T156C/T191C
I E165C/T245C
J T191C/A210C
K S196C/V211C
L A264C/G312C
M E315C/A380C
N G322C/T356C
O Q346C/L393C
P Q349C/M390C
Q T33C/L170C
R I55C/A99C
S A268C/N309C
T I85C/G97C
U P123C/T130C
V A226C/M360C
W W243C/P324C
X W347C/M390C
Y I348C/F396C
野生型植酸酶氨基酸序列如SEQ ID NO:1所示,其在毕赤酵母表达核酸序列如SEQ ID NO:78所示。表达载体为pPIC9K,使用酿酒酵母Alpha因子作为信号肽,野生型植酸酶表达质粒pPIC9K-WT如图1所示。
为构建上表所述突变体,分别设计引物进行PCR,引物如下表所示。
Figure PCTCN2019089212-appb-000001
Figure PCTCN2019089212-appb-000002
Figure PCTCN2019089212-appb-000003
Figure PCTCN2019089212-appb-000004
Figure PCTCN2019089212-appb-000005
为引入A-Y的25对二硫键,以质粒pPIC9K-WT为模板,使用F1/R2和F2/R1为引入对,分别进行两个PCR扩增反应,扩增反应使用
Figure PCTCN2019089212-appb-000006
High-Fidelity DNA聚合酶完成(New England Biolabs,货号M0530L),参照其说明书进行设置。在扩增完成后,加入DpnI内切酶(New England Biolabs)消化模板,随后使用Gibson
Figure PCTCN2019089212-appb-000007
Master Mix Kit(New England Biolabs,货号E2611)进行片段重组,经测序确认突变体质粒构建成功。突变体质粒按照上表二硫键名称分别命名为pPIC9K-A至pPIC9K-Y。
为了将植酸酶及突变体进行表达,参考Pichia expression kit(Invitrogen)说明书对毕赤酵母GS115和质粒进行操作。具体如下,将毕赤酵母GS115菌株使用YPD培养基(1%酵母提取物、2%蛋白、2%葡萄糖和1.5%琼脂)平板30℃培养48h后,挑取单克隆到4mL YPD液体培养基(1%酵母提取物、2%蛋白、2%葡萄糖)中,30度200RPM培养12h,随后转接到30mLYPD液体培养基的三角瓶中,30℃、220rpm培养4-5h,检测到OD600值在1.1–1.3范围后,将培养液在4度9,000rpm离心2min,分别收集4mL菌体至灭菌EP管中,轻轻弃上清,用灭菌的滤纸吸干残留的上清后用预冷的1mL灭菌水重悬菌体,4℃、9,000rpm离心2min,弃上清。重复上述步骤,将预冷的1mL山梨醇(1mol/L)重悬菌体;4℃、9,000rpm离心2min,弃上清,预冷的100-150μl山梨醇(1mol/L)重悬菌体,至此感受态制备完成。将表达质粒pPIC9K-WT和剩余25个二硫键突变体用BglII进行线性化,线性化片段纯化回收后通过电穿孔法转化上述毕赤酵母GS115感受态中,将混合物均匀涂布于MD平板上,30℃倒置培养2–3天,将平板上所有的菌落都用无菌水洗下来后涂布在含不同浓度遗传霉素的YPD(0.5mg/mL-8mg/mL)平板上筛选多拷贝的转化子。在MD平板上筛选得到毕赤酵母重组菌株命名为APPA-WT和APPA-A,APPA-B,APPA-C,APPA-D,APPA-E,APPA-F,APPA-G,APPA-H,APPA-I,APPA-J,APPA-K,APPA-L,APPA-M,APPA-N,APPA-O,APPA-P,APPA-Q,APPA-R,APPA-S,APPA-T,APPA-U,APPA-V,APPA-W,APPA-X和APPA-Y。将上述筛选获得的克隆分别转接于BMGY培养基中,在30℃、250rpm振荡摇床中培养 24h,再转入BMMY培养基中,维持30℃、250rpm条件,每天添加0.5%的甲醇,诱导表达120h后;9000-12000rpm离心10min以去除菌体,得到含植酸酶APPA-WT和其25个突变体的发酵上清液,SDS-PAGE结果显示APPA-S,APPA-X和APPA-Y三个突变体未能表达,剩余的22个突变体都有表达。
实施例2热稳定性测定
植酸酶活力测定遵循GBT 18634-2009文件标准。将实施例1中的23个样品用水稀释至100U/mL。取9mL水于25mL比色管中分别在80℃恒温水浴中预热,用移液枪吸取酶样品1mL,快速加入到各对应试管中,混匀器快速混匀放置3min。迅速冷却至室温,用水进行稀释,测定各样品残余活力。从而计算不同处理温度下的酶活存留率(热处理前酶活定为100%)。热稳定性数据如图2所示,有一些突变体显示出好的热稳定性,APPA-B,APPA-C,APPA-D,APPA-M,APPA-O和APPA-P表现最好,与APPA相比,残余活力提高了20-25%左右,提高了约2-3倍。上述结果表明二硫键的引入对突变体有显著影响,有的突变甚至导致了不能正常表达,如APPA-S,APPA-X和APPA-Y;另外一些特定二硫键引入会导致稳定性降低,如APPA-Q和APPA-V,上述两个突变体导致了显著低于野生型的热稳定性;还有一些引入的二硫键对于酶结构稳定是有利的,如APPA-A至APPA-P,能够提高野生型的抗热能力。
实施例3突变体基础上引入二硫键及测定其稳定性
Nov9X是野生型植酸酶经突变筛选获得的耐热优良突变体(如US7432098所述),其在野生型基础上引入8个突变,具体序列如SEQ ID NO:2所示。在Nov9X序列基础上继续引入其他突变,其序列变为SEQ ID NO:3所述,命名为APPA-M1,可以进一步提高其热稳定性。为了测试实施例1中描述的二硫键突变体是否在植酸酶突变体上也可以发挥功能,进一步提高稳定性。按照实施例1中的方法在APPA-M1基础上引入二硫键D,O,以及二硫键组合B+O,C+O,D+O,M+O,B+D+O和D+M+O,各突变体分别命名为APPA-M1-D,APPA-M1-O,APPA-M1-BO,APPA-M1-CO,APPA-M1-DO,APPA-M1-MO,APPA-M1-BDO和APPA-M1-DMO。同时根据US20170240872和US20130017185描述,在APPA-M1基础上引入各自实施例中最好的两个突变体二硫键,分别命名为US20170240872-A,US20170240872-B,US20130017185-B和US20130017185-C。使用毕赤酵母表达各突变体,随后按照实施例2中的方法测定热稳定性,不同参数在于85度条件下孵育3分钟。结果如图3所示,二硫键D和O都进一步提高了突变体的热稳定性,而二硫键O对于APPA-M1 突变体稳定性提高要比野生型APPA-WT提高更加有效,提高幅度高达35.5%。组合引入二硫键突变体APPA-M1-CO和APPA-M1-DO都表现出了与APPA-M1-O相似的稳定性,其他组合突变,如APPA-M1-BO、APPA-M1-MO、APPA-M1-BDO和APPA-M1-DMO则具有更高的稳定性,最好的APPA-M1-BO残余活力可达到77.2%,比APPA-M1提高了约1-1.5倍,具有显著的耐热特性,可以预见其在饲料制粒中会有良好表现,上述结果显示出合适的组合可以创造出更稳定的突变体。在本方法下测定的US20170240872-A和US20170240872-B稳定性比APPA-M1提高1.1-8.7%,US20130017185-B和US20130017185-C稳定性提高5.0-14.8%,可以看到,发明人所提出的二硫键引入显示出更加有效的结果。
实施例4黑曲霉表达大肠杆菌野生型植酸酶和引入二硫键突变体植酸酶
按照专利申请CN107353327的描述对大肠杆菌植酸酶野生型(SEQ ID NO:1)及突变体(A到P)进行表达,野生型植酸酶命名为APPAan-WT,各突变体分别按照APPAan-A到APPAan-P进行命名。获得摇瓶上清液后按照实施例2描述进行热稳定性测定,不同参数在于85度条件下孵育3分钟。实验结果如图4所示。我们发现黑曲霉表达的野生型植酸酶较毕赤酵母表达的酶体现出明显的稳定性,这可能是由于他们的糖基化状态不同造成的。实验还发现突变体APPAan-P不能够表达,APPAan-G表现出和WT差不多的稳定性,而APPAan-H稳定性显著下降。剩余的13个突变体都表现出显著的稳定性性能提升,都表现出最低5%最高20.5%的提升。我们还发现稳定性提高的幅度与毕赤酵母中表达的突变体并不一致。上述结果表明,16个突变体至少在一种宿主细胞中表达并体现出比野生型较为优秀的稳定性,而合适地引入上述二硫键组合可以获得更高稳定性的突变体。
实施例5植酸酶突变体引入二硫键后稳定性检测结果
Nov9X是野生型植酸酶经突变筛选获得的耐热优良突变体(如US7432098所述),其在野生型基础上引入8个突变,具体序列如SEQ ID NO:2所示。在Nov9X序列基础上,根据文献报道(Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design)继续引入糖基化位点,其序列变为SEQ ID NO:79所述,命名为APPA-M2,可以进一步提高其热稳定性。为了测试实施例1中描述的二硫键突变体是否在植酸酶突变体APPA-M2上也可以发挥功能,进一步提高稳定性。按照实施例1中的方法在APPA-M2基础上引入二硫键B,C,D,M,O以及二硫键组合B+O,D+O,M+O,C+O,各突变体分别命名为APPA-M2-B,APPA-M2-C,APPA-M2-D,APPA-M2-M,APPA-M2-O,APPA-M2-BO,APPA-M2-DO,APPA-M2-MO和APPA-M2-CO。各突变体的氨基酸序列如SEQ ID NOs:80-88所示,对应的核苷酸序列如SEQ ID NOs:90-98所示。使用黑曲霉表达各 突变体,随后按照实施例2中的方法测定热稳定性。结果如图5所示,该实验中采用的二硫键都显著的提高了突变体的热稳定性,其中组合二硫键C+O效果最佳,其耐热处理后残余活力可达到84.5%,具有显著的耐热特性,可以预见其在饲料制粒中会有良好表现,上述结果显示出合适的组合可以创造出更稳定的突变体。上述结果显示,发明人所提出的二硫键的引入对植酸酶突变体序列依旧显示出非常有效的结果。
发明人也尝试了在Nov9X序列基础上,继续引入糖基化位点,其序列如SEQ ID NO:99所示,命名为APPA-M3,也可以提高其热稳定性。按照实施例1中的方法在APPA-M3基础上引入二硫键B,C,D,M,O以及二硫键组合B+O,D+O,M+O,C+O,各突变体分别命名为APPA-M3-B,APPA-M3-C,APPA-M3-D,APPA-M3-M,APPA-M3-O,APPA-M3-BO,APPA-M3-DO,APPA-M3-MO和APPA-M3-CO。各突变体的氨基酸序列如SEQ ID NOs:100-108所示,对应的核苷酸序列如SEQ ID NOs:110-118所示。使用黑曲霉表达各突变体,按照实施例2中的方法测定稳定性,发现引入二硫键的突变体与AMMA-M2引入二硫键的突变体一样,具有较好的耐热特性,同样可以预见其在饲料制粒中会有良好的表现。
本发明所述方法的各种修饰和变型对于本领域技术人员是显而易见的,并不脱离本发明的范围。尽管本发明结合特定实施方案进行了描述,应当理解的是,要求保护的本发明并未不恰当地限定于这些特定优选实施方案。事实上,对本领域技术人员显而易见的用于实现本发明的所述技术效果的野生型植酸酶的各种突变修饰都包含在权利要求的范围内。

Claims (48)

  1. 一种热稳定性植酸酶,其在野生型大肠杆菌植酸酶或突变型大肠杆菌植酸酶的氨基酸序列中包含至少一对引入的二硫键,其中所述野生型大肠杆菌植酸酶的氨基酸序列如SEQ ID NO:1所示,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个位置上具有突变,
    并且,所述引入的二硫键选自:
    (A)与SEQ ID NO:1的第34位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第174位对应的位置上的氨基酸残基之间形成的二硫键;
    (B)与SEQ ID NO:1的第56位对应的位置上的氨基酸残基、且与SEQ ID NO:1的第103位对应的位置上的氨基酸残基之间形成的二硫键;
    (C)与SEQ ID NO:1的第57位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第366位对应的位置上的氨基酸残基之间形成的二硫键;
    (D)与SEQ ID NO:1的第61位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第366位对应的位置上的氨基酸残基之间形成的二硫键;
    (E)与SEQ ID NO:1的第82位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第296位对应的位置上的氨基酸残基之间形成的二硫键;
    (F)与SEQ ID NO:1的第128位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第203位对应的位置上的氨基酸残基之间形成的二硫键;
    (G)与SEQ ID NO:1的第140位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第262位对应的位置上的氨基酸残基之间形成的二硫键;
    (H)与SEQ ID NO:1的第156位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第191位对应的位置上的氨基酸残基之间形成的二硫键;
    (I)与SEQ ID NO:1的第165位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第245位对应的位置上的氨基酸残基之间形成的二硫键;
    (J)与SEQ ID NO:1的第191位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第210位对应的位置上的氨基酸残基之间形成的二硫键;
    (K)与SEQ ID NO:1的第196位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第211位对应的位置上的氨基酸残基之间形成的二硫键;
    (L)与SEQ ID NO:1的第264位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第312位对应的位置上的氨基酸残基之间形成的二硫键;
    (M)与SEQ ID NO:1的第315位对应的位置上的氨基酸残基、以及与SEQ ID NO: 1的第380位对应的位置上的氨基酸残基之间形成的二硫键;
    (N)与SEQ ID NO:1的第322位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第356位对应的位置上的氨基酸残基之间形成的二硫键;
    (O)与SEQ ID NO:1的第346位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第393位对应的位置上的氨基酸残基之间形成的二硫键;
    (P)与SEQ ID NO:1的第349位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第390位对应的位置上的氨基酸残基之间形成的二硫键;
    条件是:
    (C)项和(D)项不同时满足;
    (H)项和(J)项不同时满足。
  2. 如权利要求1所述的热稳定性植酸酶,其中所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,在至少1个下述位置上具有突变:1,25,30,36,37,38,39,46,55,60,62,65,69,70,73,74,75,76,77,79,80,85,101,108,109,111,114,116,118,120,123,126,127,133,137,138,139,141,142,146,151,157,159,161,173,176,178,180,183,184,185,186,187,188,189,204,211,233,235,245,253,255,267,276,282,283,284,286,287,288,291,295,297,311,315,317,318,327,341,354,363,367,369,370,380,382,383,385,391,402,408。
  3. 如权利要求2所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有至少一个如下突变:Q1S,Q1V,Q1N,A25F,Q30K,A36K,W37F,P38Y,T39D,W46E,I55V,H60S,H60Q,Q62W,R65H,D69N,G70E,A73P,A73D,A73E,K74D,K74P,K74L,K74N,K75C,K75Q,G76T,C77A,Q79L,Q79R,Q79A,Q79G,Q79F,S80P,I85V,A101L,C108A,A109D,A109E,A109G,A109F,A109P,T111S,T111D,T111Q,T114H,T116A,T118R,T118S,S120R,P123E,N126Y,P127V,P127L,C133A,N137V,N137E,N137S,N137P,A138V,A138H,A138D,A138P,N139P,N139A,N139H,T141R,T141E,T141G,T141A,D142R,S146E,S146R,S151P,G157R,G157Q,G157N,G157L,G157A,R159Y,T161P,P173Y,P173S,N176P,N176K,C178A,K183R,Q184S,D185N,D185L,E186V,E186A,S187P,C188A,S189T,N204C,V211W,G233E,G235Y,T245E,Q253V,Y255D,R267A,H282N,P283G,P284T,K286F,Q287Y,A288E,A288R,A288V,V291I,T295I,V297T,G311S,E315G,E315S,N317L,W318Y,T327Y,L341Y,L341V,F354Y,K363A,K363L,S367F,N369P,T370P,A380P,A380R,A380T,C382A,E383S,R385S,R385V,R385T,C391A,E402R,E402T,E402D,E402P, E402N,C408A。
  4. 如权利要求3所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有选自下组的任一突变组合:
    W46E,Q62W,A73P,K75C,S146E,R159Y,N204C,Y255D;
    A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D;
    W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T;和
    A25F,W46E,Q62W,G70E,A73P,K74N,K75Q,T114H,N137V,D142R,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
  5. 如权利要求4所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶与如SEQ ID NO:1所示的野生型大肠杆菌植酸酶相比,具有选自下组的任一突变组合:
    W46E,Q62W,A73P,K75C,S146E,R159Y,N204C,Y255D;
    A25F,W46E,Q62W,G70E,A73P,K75C,T114H,N137V,D142R,S146E,R159Y,Y255D;和
    W46E,Q62W,G70E,A73P,K74N,K75Q,G76T,S146E,R159Y,P173S,Y255D,H282N,P283G,P284T。
  6. 如权利要求3所述的热稳定性植酸酶,所述突变型大肠杆菌植酸酶的氨基酸序列为SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99。
  7. 如权利要求1-6中任一项所述的热稳定性植酸酶,其中,所述二硫键选自(A)、(B)、(C)、(D)、(E)、(J)、(M)或(O)中的至少一项,条件是(C)项和(D)项不同时满足。
  8. 如权利要求7所述的热稳定性植酸酶,其中,所述氨基酸序列满足下组中的任意两项、三项以上:(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项和(O)项,条件是(C)项和(D)项不同时满足。
  9. 如权利要求7所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(A)项、(B)项、(C)项、(E)项、(J)项或(M)项。
  10. 如权利要求7所述的热稳定性植酸酶,其中,所述氨基酸序列至少满足上述(D)项或(O)项。
  11. 如权利要求10所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(D)项。
  12. 如权利要求10所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(O)项。
  13. 如权利要求7所述的热稳定性植酸酶,其中所述氨基酸序列满足上述(B)项和(O) 项;(C)项和(O)项;(D)项和(O)项;(M)项和(O)项;(B)项、(D)项和(O)项;或(D)项、(M)项和(O)项。
  14. 如权利要求13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(B)项和(O)项。
  15. 如权利要求13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(C)项和(O)项。
  16. 如权利要求13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(M)项和(O)项。
  17. 如权利要求13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(B)项、(D)项和(O)项。
  18. 如权利要求13所述的热稳定性植酸酶,其中,所述氨基酸序列满足上述(D)项、(M)项和(O)项。
  19. 如权利要求1-18中任一项所述的热稳定性植酸酶,还进一步包含至少一对引入的二硫键,所述二硫键选自:
    (i)与SEQ ID NO:1的第31位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第176位对应的位置上的氨基酸残基之间形成的二硫键;
    (ii)与SEQ ID NO:1的第31位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第177位对应的位置上的氨基酸残基之间形成的二硫键;
    (iii)与SEQ ID NO:1的第52位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第99位对应的位置上的氨基酸残基之间形成的二硫键;
    (iv)与SEQ ID NO:1的第59位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第100位对应的位置上的氨基酸残基之间形成的二硫键;
    (v)与SEQ ID NO:1的第91位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第46位对应的位置上的氨基酸残基之间形成的二硫键;
    (vi)与SEQ ID NO:1的第141位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第200位对应的位置上的氨基酸残基之间形成的二硫键;
    (vii)与SEQ ID NO:1的第162位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第248位对应的位置上的氨基酸残基之间形成的二硫键;
    (viii)与SEQ ID NO:1的第205位对应的位置上的氨基酸残基、以及与SEQ ID NO:1的第257位对应的位置上的氨基酸残基之间形成的二硫键;
    条件是:(i)项和(ii)项不同时满足。
  20. 如权利要求1所述的热稳定性植酸酶,其中,该热稳定性植酸酶包含选自下组的任一氨基酸序列:SEQ ID NOs:4-40、SEQ ID NOs:80-88和SEQ ID NOs:100-108。
  21. 如前述任一项权利要求所述的热稳定性植酸酶,其中,该热稳定性植酸酶是通过在毕赤酵母或者黑曲霉宿主中异源表达而获得的。
  22. 如前述任一项权利要求所述的热稳定性植酸酶,其中,能够形成二硫键的氨基酸残基为半胱氨酸残基或同型半胱氨酸残基。
  23. 一种多核苷酸,其编码如权利要求1-22中任一项所述的热稳定性植酸酶。
  24. 权利要求23的多核苷酸,其编码序列是为在毕赤酵母或者黑曲霉中表达而密码子优化的。
  25. 权利要求23的多核苷酸,其包含SEQ ID NOs:41-77、SEQ ID NOs:90-98和SEQ ID NOs:100-118中任一项所示的核苷酸序列。
  26. 一种宿主细胞,其包含权利要求23-25中任一项所述的多核苷酸。
  27. 权利要求26所述的宿主细胞,其中该宿主细胞是真菌细胞、细菌细胞或植物细胞。
  28. 权利要求27所述的宿主细胞,其为酵母细胞或丝状真菌细胞。
  29. 权利要求28所述的宿主细胞,其为毕赤酵母细胞或者黑曲霉细胞。
  30. 一种提高植酸酶的热稳定性的方法,其包括对感兴趣的植酸酶的氨基酸序列或其编码核酸序列进行改变,使得植酸酶的氨基酸序列中选自如下(A)至(P)中的至少一项所述的两个位置上的氨基酸残基之间能够形成二硫键:
    (A)与SEQ ID NO:1的第34位对应的位置,以及与SEQ ID NO:1的第174位对应的位置;
    (B)与SEQ ID NO:1的第56位对应的位置,以及与SEQ ID NO:1的第103位对应的位置;
    (C)与SEQ ID NO:1的第57位对应的位置,以及与SEQ ID NO:1的第366位对应的位置;
    (D)与SEQ ID NO:1的第61位对应的位置,以及与SEQ ID NO:1的第366位对应的位置;
    (E)与SEQ ID NO:1的第82位对应的位置,以及与SEQ ID NO:1的第296位对应的位置;
    (F)与SEQ ID NO:1的第128位对应的位置,以及与SEQ ID NO:1的第203位对 应的位置;
    (G)与SEQ ID NO:1的第140位对应的位置,以及与SEQ ID NO:1的第262位对应的位置;
    (H)与SEQ ID NO:1的第156位对应的位置,以及与SEQ ID NO:1的第191位对应的位置;
    (I)与SEQ ID NO:1的第165位对应的位置,以及与SEQ ID NO:1的第245位对应的位置;
    (J)与SEQ ID NO:1的第191位对应的位置,以及与SEQ ID NO:1的第210位对应的位置;
    (K)与SEQ ID NO:1的第196位对应的位置,以及与SEQ ID NO:1的第211位对应的位置;
    (L)与SEQ ID NO:1的第264位对应的位置,以及与SEQ ID NO:1的第312位对应的位置;
    (M)与SEQ ID NO:1的第315位对应的位置,以及与SEQ ID NO:1的第380位对应的位置;
    (N)与SEQ ID NO:1的第322位对应的位置,以及与SEQ ID NO:1的第356位对应的位置;
    (O)与SEQ ID NO:1的第346位对应的位置,以及与SEQ ID NO:1的第393位对应的位置;
    (P)与SEQ ID NO:1的第349位对应的位置,以及与SEQ ID NO:1的第390位对应的位置;
    条件是
    (C)项和(D)项不同时被选择;
    (H)项和(J)项不同时被选择。
  31. 如权利要求30所述的方法,其中,所述改变使得感兴趣的植酸酶的氨基酸序列的如(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项或(O)项中至少一项所述的两个位置上的氨基酸残基之间能够形成二硫键,条件是(C)项和(D)项不同时被选择。
  32. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如选自下组的任意两项、三项以上,或者全部项中所述的两个位置上的氨基酸残基之间能够形成二硫键:(A)项、(B)项、(C)项、(D)项、(E)项、(J)项、(M)项和(O)项,条件是(C)项和(D)项不同时被 选择。
  33. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(A)项、(B)项、(C)项、(E)项、(J)项或(M)项中所述的两个位置上的氨基酸之间能够形成二硫键。
  34. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的至少如(D)项或(O)项中所述的两个位置上的氨基酸之间能够形成二硫键。
  35. 如权利要求34所述的方法,其中,所述改变使得所述氨基酸序列的如(D)项所述的两个位置上的氨基酸之间能够形成二硫键。
  36. 如权利要求34所述的方法,其中,所述改变使得所述氨基酸序列的如(O)项所述的两个位置上的氨基酸之间能够形成二硫键。
  37. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(B)项和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
  38. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(C)项和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
  39. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(M)项和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
  40. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(B)项、(D)和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
  41. 如权利要求31所述的方法,其中,所述改变使得所述氨基酸序列的如(D)项、(M)和(O)项分别所述的两个位置上的氨基酸之间能够形成二硫键。
  42. 如权利要求30-41中任一项所述的方法,其中感兴趣的植酸酶来源于大肠杆菌,且包含与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的氨基酸序列具有至少75%序列一致性的氨基酸序列。
  43. 如权利要求42所述的方法,其中感兴趣的植酸酶是野生型大肠杆菌植酸酶,优选包含如SEQ ID NO:1所示的氨基酸序列。
  44. 如权利要求42所述的方法,其中感兴趣的植酸酶是突变型大肠杆菌植酸酶,优选包含如SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:79或SEQ ID NO:99所示的氨基酸序列。
  45. 如权利要求30-44中任一项所述的方法,其中经过改变后的植酸酶包含选自下组的氨基酸序列、或者其编码核酸包含编码选自下组的氨基酸序列的核苷酸序列:SEQ ID NOs:4-40、SEQ ID NOs:80-88和SEQ ID NOs:100-118。
  46. 如权利要求30-45中任一项所述的方法,其中该方法还包括生成包含经改造的氨基 酸序列的植酸酶,并将其置于容许二硫键形成的环境中。
  47. 如权利要求46所述的方法,其中生成包含经改造的氨基酸序列的植酸酶包括将编码该植酸酶的多核苷酸在宿主细胞中表达。
  48. 如权利要求47所述的方法,其中所述宿主细胞是真菌细胞,优选酵母细胞或丝状真菌细胞,更优选毕赤酵母细胞或黑曲霉细胞。
PCT/CN2019/089212 2018-05-30 2019-05-30 植酸酶突变体 WO2019228441A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19810542.1A EP3805381A4 (en) 2018-05-30 2019-05-30 MUTATED PHYTASE
CN202410520326.0A CN118440920A (zh) 2018-05-30 2019-05-30 植酸酶突变体
CN201980036097.2A CN112204136B (zh) 2018-05-30 2019-05-30 植酸酶突变体
EA202092569A EA202092569A1 (ru) 2018-05-30 2019-05-30 Модифицированные фитазы
US17/059,696 US20210207112A1 (en) 2018-05-30 2019-05-30 Phytase mutant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810540167.5 2018-05-30
CN201810540167 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019228441A1 true WO2019228441A1 (zh) 2019-12-05

Family

ID=68698518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089212 WO2019228441A1 (zh) 2018-05-30 2019-05-30 植酸酶突变体

Country Status (6)

Country Link
US (1) US20210207112A1 (zh)
EP (1) EP3805381A4 (zh)
CN (2) CN112204136B (zh)
EA (1) EA202092569A1 (zh)
TW (1) TW202012621A (zh)
WO (1) WO2019228441A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218269A1 (zh) 2020-04-29 2021-11-04 南京百斯杰生物工程有限公司 一种亲本植酸酶变体
WO2022034211A1 (en) * 2020-08-13 2022-02-17 Novozymes A/S Phytase variants and polynucleotides encoding same
EP4155396A4 (en) * 2020-05-22 2024-06-26 Qingdao Vland Biotech Group Co. Ltd. PHYTASE MUTANT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004627A1 (en) * 2016-06-30 2018-01-04 Fornia Biosolutions, Inc. Novel phytases and uses thereof
EP4119661A1 (en) * 2021-07-16 2023-01-18 AB Enzymes Oy Phytase variants with improved stability and ip4 activity
EP4119658A1 (en) * 2021-07-16 2023-01-18 AB Enzymes Oy Phytase variants
EP4370670A1 (en) * 2021-07-16 2024-05-22 AB Enzymes Oy Phytase variants with improved stability and ip4 activity
KR20230048891A (ko) * 2021-10-05 2023-04-12 씨제이제일제당 (주) 피타아제 변이체

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436156A (en) 1989-09-27 1995-07-25 Gist-Brocades, N.V. Cloning and expression of phytase from aspergillus
US7432098B2 (en) 1997-08-13 2008-10-07 Verenium Corporation Phytases and methods for making and using them
US20100261259A1 (en) 2006-08-08 2010-10-14 Novozymes A/S Expression of Genes from Gram Negative Bacteria in Fungi
WO2011117396A2 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
WO2011117397A1 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
WO2011117406A1 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
US8143046B2 (en) 2007-02-07 2012-03-27 Danisco Us Inc., Genencor Division Variant Buttiauxella sp. phytases having altered properties
US8540984B2 (en) 2006-08-03 2013-09-24 Cornell Research Foundation, Inc. Phytases with improved thermal stability
US8877478B2 (en) 2006-09-21 2014-11-04 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
US20170240872A1 (en) 2016-02-18 2017-08-24 Dongguan APAC Biotechnology Co., Ltd. Phytase having improved thermostability
US9765313B2 (en) 2013-11-12 2017-09-19 Feed Research Institute, Chinese Academy Of Agricultural Sciences Method for producing a phytase variant with improved thermal stability, and a phytase variant and the use thereof
CN107353327A (zh) 2017-03-30 2017-11-17 南京百斯杰生物工程有限公司 植酸酶在黑曲霉中表达

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010005693A (es) * 2007-12-03 2010-06-01 Syngenta Participations Ag Proteinas suceptibles diseñadas enzimaticamente.
CN102002487B (zh) * 2010-11-03 2014-04-30 广东溢多利生物科技股份有限公司 一种优化改良的耐高温植酸酶phyth及其基因和应用
CN102943083B (zh) * 2012-11-27 2013-12-25 青岛根源生物技术集团有限公司 一种定点突变的耐高温植酸酶基因tp及其表达载体和应用
US11104908B2 (en) * 2014-11-21 2021-08-31 Qingdao Vland Biotech Group Co., Ltd. Phytase mutants
DK3316699T3 (da) * 2015-07-02 2021-11-22 Dsm Ip Assets Bv Dyrefodersammensætninger med GH25 lysozym og 4-fytase og anvendelser deraf
CN105219749B (zh) * 2015-11-04 2019-08-27 广东溢多利生物科技股份有限公司 优化改良的植酸酶突变体及其编码基因和应用
CN107236717B (zh) * 2016-03-28 2021-03-30 青岛蔚蓝生物集团有限公司 植酸酶突变体
CN105969750B (zh) * 2016-06-24 2019-04-26 北京昕大洋科技发展有限公司 一种植酸酶突变体及其应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436156A (en) 1989-09-27 1995-07-25 Gist-Brocades, N.V. Cloning and expression of phytase from aspergillus
US7432098B2 (en) 1997-08-13 2008-10-07 Verenium Corporation Phytases and methods for making and using them
US8540984B2 (en) 2006-08-03 2013-09-24 Cornell Research Foundation, Inc. Phytases with improved thermal stability
US20100261259A1 (en) 2006-08-08 2010-10-14 Novozymes A/S Expression of Genes from Gram Negative Bacteria in Fungi
US8877478B2 (en) 2006-09-21 2014-11-04 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
US8143046B2 (en) 2007-02-07 2012-03-27 Danisco Us Inc., Genencor Division Variant Buttiauxella sp. phytases having altered properties
WO2011117406A1 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
US20130017185A1 (en) 2010-03-26 2013-01-17 Novozymes A/S Thermostable Phytase Variants
WO2011117397A1 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
WO2011117396A2 (en) * 2010-03-26 2011-09-29 Novozymes A/S Thermostable phytase variants
US9765313B2 (en) 2013-11-12 2017-09-19 Feed Research Institute, Chinese Academy Of Agricultural Sciences Method for producing a phytase variant with improved thermal stability, and a phytase variant and the use thereof
US20170240872A1 (en) 2016-02-18 2017-08-24 Dongguan APAC Biotechnology Co., Ltd. Phytase having improved thermostability
CN107353327A (zh) 2017-03-30 2017-11-17 南京百斯杰生物工程有限公司 植酸酶在黑曲霉中表达

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, pages 3041 - 3046
JOURNAL OF BIOTECHNOLOGY, vol. 175, 2014, pages 1 - 6
LIM D ET AL., NAT STRUCT BIOL, vol. 7, no. 2, 2000, pages 108 - 13
NIELSEN ET AL., J AGRIC FOOD CHEM, vol. 63, no. 3, 2015, pages 943 - 50

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218269A1 (zh) 2020-04-29 2021-11-04 南京百斯杰生物工程有限公司 一种亲本植酸酶变体
CN114761549A (zh) * 2020-04-29 2022-07-15 南京百斯杰生物工程有限公司 一种亲本植酸酶变体
EP4144840A4 (en) * 2020-04-29 2024-06-05 Nanjing Bestzyme Bio-engineering Co., Ltd. PARENT PHYTASE VARIANT
EP4155396A4 (en) * 2020-05-22 2024-06-26 Qingdao Vland Biotech Group Co. Ltd. PHYTASE MUTANT
WO2022034211A1 (en) * 2020-08-13 2022-02-17 Novozymes A/S Phytase variants and polynucleotides encoding same
US12037613B2 (en) 2020-08-13 2024-07-16 Novozymes A/S Phytase variants and polynucleotides encoding same

Also Published As

Publication number Publication date
CN112204136A (zh) 2021-01-08
CN118440920A (zh) 2024-08-06
EA202092569A1 (ru) 2021-07-08
CN112204136B (zh) 2024-05-14
US20210207112A1 (en) 2021-07-08
EP3805381A4 (en) 2022-04-20
EP3805381A1 (en) 2021-04-14
TW202012621A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2019228441A1 (zh) 植酸酶突变体
US11739336B2 (en) Phytase mutants
Tye et al. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis á168 and B. licheniformis
JP5340138B2 (ja) 新規なフィターゼのクローニング及び発現
US20200277582A1 (en) Phytase mutant
CN110042092B (zh) 一类稳定性提高的木聚糖酶突变体及其编码基因和应用
US20230242890A1 (en) Phytase mutant
CN102392002B (zh) 一种改进的大肠杆菌植酸酶htp6m及其基因和应用
TW201917213A (zh) 具提升酶活性的溶菌酶
WO2021218269A1 (zh) 一种亲本植酸酶变体
CN109997970A (zh) 一类酶活和耐热性提高的酸性木聚糖酶突变体及其编码基因和应用
CN110724676B (zh) 一种植酸酶突变体及其载体与应用
CN110117583A (zh) 热稳定和比活提高的植酸酶ecappa突变体及其基因和应用
CN103898081A (zh) 一种角蛋白酶突变体及其应用
Boukhris et al. Cloning and characterization of the first actinomycete β‐propeller phytase from Streptomyces sp. US42
TWI512107B (zh) 具提升酶產量及活性之甘露聚醣酶
EP4249590A1 (en) Thermotolerant protein glutaminase
Borshchevskaya et al. Comparison of β-Glucanases from Bacillus pumilus, Paenibacillus polymyxa, Bacillus subtilis, and Bacillus amyloliquefaciens in the Expression System of Pichia pastoris: Biochemical Characteristics and Potential in Fodder Production
CN116121222A (zh) 一种中性植酸酶突变体及其应用
CN117106753A (zh) 一种木聚糖酶XynZT-2突变体及其应用
WO2023285734A1 (en) Phytase variants
CN118480535A (zh) 一种复合酶及其在芽麦型饲料生产中的应用
CN114634942A (zh) 一种耐冷木聚糖酶及其基因、含有该基因的工程菌及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810542

Country of ref document: EP

Effective date: 20210111