WO2019228094A1 - 一种中高温热泵混合工质 - Google Patents

一种中高温热泵混合工质 Download PDF

Info

Publication number
WO2019228094A1
WO2019228094A1 PCT/CN2019/083403 CN2019083403W WO2019228094A1 WO 2019228094 A1 WO2019228094 A1 WO 2019228094A1 CN 2019083403 W CN2019083403 W CN 2019083403W WO 2019228094 A1 WO2019228094 A1 WO 2019228094A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
medium
heat pump
temperature heat
high temperature
Prior art date
Application number
PCT/CN2019/083403
Other languages
English (en)
French (fr)
Inventor
王斌辉
张品杰
童灿辉
王金明
Original Assignee
Wang Binhui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Binhui filed Critical Wang Binhui
Publication of WO2019228094A1 publication Critical patent/WO2019228094A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons

Definitions

  • the invention belongs to a refrigerant in a heat pump or a refrigeration and air-conditioning system, and particularly relates to a mixed working medium for a high-temperature and high-temperature heat pump.
  • a heat pump is a device that can obtain low-level thermal energy from air, water, or soil in nature, and use electrical energy to do work to provide high-level thermal energy that can be used by people.
  • global heat pump technology has developed rapidly, and Japan and Europe are already developed regions for heat pump technology.
  • China's heat pump market is in its infancy, but as air quality (such as smog) and environmental issues become increasingly prominent, the heat pump market will grow rapidly.
  • Medium and high temperature heat pumps are mainly used for rapid dehydration of vegetables and tobacco fumigation. Compared with traditional coal burning or boiler heating, high temperature heat pumps are safe and environmentally friendly and can be automated.
  • the working medium of heat pumps is mostly 1,1,2-tetrafluoroethane (HFC-134a), but it cannot provide a high outlet temperature.
  • HFC-134a unit for air-conditioning heat pump chiller provides hot water at 60-65 ° C. If it is higher, the condensing pressure will be too high, and the cycle performance will be deteriorated, which will seriously affect the equipment, system and pipeline configuration of the heat pump unit. Therefore, it is necessary to use a refrigerant with a relatively high normal boiling point, a so-called medium-high temperature refrigerant, to ensure a suitable heating effect while taking into account the air conditioning effect.
  • Refrigerants and lubricants must be circulated in the system without undergoing phase separation over a wide temperature range.
  • refrigerants and lubricants have low and high temperature regions where they are subject to phase separation. Excessive miscibility can be problematic.
  • a high concentration of refrigerant in a lubricant can greatly reduce the viscosity of the lubricant, adversely affect the ability of the lubricant to lubricate and protect components of a heat transfer device, resulting in increased wear, shortened life, and Lower performance.
  • Dissolved refrigerant in the lubricant may also cause foaming and bubbling of the lubricant mixture as it flows from one area of the compressor to another (e.g., low to high temperature area).
  • the refrigerant dissolved in the lubricant is basically captured and taken out of the cycle, thereby reducing the capacity of the system. Because the effective operation of a refrigeration lubricant requires not only proper lubrication characteristics and proper viscosity, but also appropriate compatibility with the refrigerant, changes in the refrigerant often require corresponding changes in the lubricant.
  • EP0422182 discloses lubricants prepared by the condensation of pentaerythritol and C6-8 monocarboxylic acids. These lubricants are almost completely miscible with the following highly or fully fluorinated hydrocarbons: for example 1,1,1,2-tetrafluoroethane (Commonly known as HFC-134a), difluoromethane (HFC-32), trifluoromethane (HFC-23), pentafluoroethane (HFC-125), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1-trifluoroethane (HFC-143a), and the like. Similar lubricants are also disclosed in US Patent No. 5,964,581.
  • lubricants are added to the system to lubricate moving parts of the compressor, they also function as hot fluids, affecting capacity and efficiency.
  • lubricants can affect capacity by changing the heat transfer coefficient, reducing the pressure required to reach operating temperatures, and increasing the pressure drop.
  • Lubricants also affect efficiency by changing the isentropic efficiency of the compressor, which will increase or decrease the discharge temperature for a given discharge pressure.
  • the lubricants currently commercially used with refrigerants such as R-410A may not be R-32 and HFC / HFO blends compatible under all conditions of use, causing inadequate lubrication in the system, poor oil return, And concerns about the possibility of excess lubricant hold-up.
  • the lubricant must exhibit proper miscibility with the refrigerant while maintaining a suitable operating viscosity for the lubricant / refrigerant mixture.
  • a refrigeration, air conditioning, or heat transfer system it is desirable that the lubricating oil and refrigerant can come into contact with each other in at least some parts of the system, as explained in the ASHRAE Manual: HVAC Systems and Equipment. Therefore, whether the lubricant and refrigerant are added to a refrigeration, air conditioning, or heat transfer system separately or as part of a premixed package, they are still expected to come into contact in the system and must therefore be compatible of.
  • the purpose of the present invention is to provide a technical solution of a mixed working medium for a high-temperature heat pump in response to the shortcomings of the existing technology, so that it can meet the environmental protection requirements of protecting the ozone layer and reducing the greenhouse effect, and has good thermal parameters. And thermal performance, safe and reliable, and compatible with the existing HFC-134a chiller equipment and refrigeration oil, can be directly filled, under the direct use of normal temperature heat source, to provide a higher outlet temperature (above 70 °C).
  • the technical solution adopted by the present invention is a medium-high temperature heat pump mixed working medium, which is characterized by:
  • the working fluid consists of 1,1,2,2-tetrafluoroethane, difluoroethane and a lubricant compatibilizer.
  • Lubricant compatibilizer 0.1% to 1%.
  • the preparation method of the lubricating compatibilizer is as follows: 100 parts by weight of poly-butene-1, 1 to 5 parts of 1,4,8,11-tetraazatetradecane [4,11] Diene, 0.01 to 0.06 parts of 2,4,6-tripyridyltriazine hydrazone, 1 to 4 parts of benzoyl peroxide and 5 to 20 parts of white oil, react at a temperature of 40 to 60 ° C. 7 Product was obtained in ⁇ 15 hours.
  • the ODP value of the refrigerant of the present invention is 0, and the GWP value is lower than HFC-134a.
  • the invention fully meets the environmental protection requirements of protecting the ozone layer and reducing the greenhouse effect.
  • Lubricant compatibilizer makes refrigerator oil and refrigerant have moderate mutual solubility and solubility, reduce friction and improve heat transfer efficiency.
  • the invention provides a medium and high temperature heat pump mixed working medium, which can not only meet the environmental protection requirements for protecting the ozone layer and reduce the greenhouse effect, but also have better thermal parameters and performance, which is safe, reliable, and compatible with the existing HFC-134a chiller equipment is compatible with refrigeration oil, can be directly filled, and provides a higher outlet temperature (above 70 ° C) under the direct use of normal temperature heat sources.
  • the invention is a medium-high temperature heat pump mixed working medium.
  • the working medium is composed of 1,1,2,2-tetrafluoroethane, difluoroethane and a lubricant compatibilizer.
  • Lubricant compatibilizer 0.1% to 1%.
  • the preparation method of the lubricating compatibilizer is as follows: 100 parts by weight of poly-butene-1, 1 to 5 parts of 1,4,8,11-tetraazatetradecene [4,11] diene , 0.01 to 0.06 parts of 2,4,6-tripyridyltriazine hydrazone, 1 to 4 parts of benzoyl peroxide and 5 to 20 parts of white oil, reacted at a temperature of 40 to 60 ° C for 7 to 15 Get the product in hours.
  • the test unit is a small scroll unit.
  • the evaporation section and the condensation section are both water-cooled.
  • the compressor model is QRB12FC-A
  • the power supply system is 380V / 50Hz
  • the rated cooling (heat) capacity is 13.7kw
  • the rated power is 3.48kw
  • rated current is 7.4A
  • the refrigerant charge is 8.5kg.
  • a lubricant compatibilizer is added, and after full circulation, it is sub-packaged into a small package of 11 kg, and then the test unit is filled and tested.
  • lubricating compatibilizer 100 parts by weight of poly-butene-1, 3 parts of 1,4,8,11-tetraazatetradecene [4,11] diene, 0.03 parts of 2,4, 6-tripyridyltriazine hydrazone, 2 parts of benzoyl peroxide, 13 parts of white oil, reacted at 48 ° C for 11 hours to obtain the product.
  • the working medium of the present invention is directly poured into the existing HFC-134a air-conditioning unit (without changing the lubricating oil), and it is converted into a medium-high temperature heat pump unit of the new working medium, which can ensure the cycle energy efficiency and the main hardware matching degree of the unit.
  • the design conditions of the heat pump system are as follows: the average evaporation temperature is 15 ° C, the average condensation temperature is 70 ° C, the constant entropy efficiency of the compression process is 80%, and there is no overcooling and overheating adjustment.
  • lubricating compatibilizer 100 parts by weight of poly-butene-1, 1 part of 1,4,8,11-tetraazatetradecene [4,11] diene, 0.01 part of 2,4, 6-tripyridyltriazine hydrazone, 1 part of benzoyl peroxide, 5 parts of white oil, reacted at 40 ° C for 15 hours to obtain the product.
  • the design conditions of the heat pump system are as follows: the average evaporation temperature is 15 ° C, the average condensation temperature is 75 ° C, the constant entropy efficiency of the compression process is 80%, and there is no overcooling and overheating adjustment.
  • Lubricant compatibilizer 100 parts by weight of poly-butene-1, 5 parts of 1,4,8,11-tetraazatetradecene [4,11] diene, 0.05 parts of 2,4,6- Tripyridyltriazine hydrazone, 4 parts of benzoyl peroxide, 20 parts of white oil, reacted at 60 ° C for 7 hours to obtain the product.
  • the design conditions of the heat pump system are as follows: the average evaporation temperature is 15 ° C, the average condensation temperature is 80 ° C, the constant entropy efficiency of the compression process is 80%, and there is no overcooling and overheating adjustment.
  • Poly-butene-1 was not added to the lubricant compatibilizer, and the others were the same as in Example 1.
  • refrigerant 134a is used, and the others are the same as those in the first embodiment.
  • Table 1 is an example data table:
  • the ODP value of the refrigerant of the present invention is 0, and the GWP value is lower than HFC-134a.
  • the invention fully meets the environmental protection requirements of protecting the ozone layer and reducing the greenhouse effect.
  • Lubricant compatibilizer makes refrigerator oil and refrigerant have moderate mutual solubility and solubility, reduce friction and improve heat transfer efficiency.
  • the invention provides a medium and high temperature heat pump mixed working medium, which can not only meet the environmental protection requirements for protecting the ozone layer and reduce the greenhouse effect, but also have better thermal parameters and performance, which is safe, reliable, and compatible with the existing HFC-134a chiller equipment is compatible with refrigeration oil, can be directly filled, and provides a higher outlet temperature (above 70 ° C) under the direct use of normal temperature heat sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种中高温热泵混合工质,适合作为冷凝温度为60~110℃的中高温热泵系统的制冷剂。该组混合工质由HFC-134、HFC-152a和润滑相容剂按不同的质量比例组成的三元混合物。其制备方法是,将上述各种组元按指定的配比在常温下进行物理混合,得到相应的混合工质。本发明工质不破坏臭氧层,符合环保要求;热工参数适宜,循环性能优良,既可采用HFC-134a空调压缩机优化设计新工质中高温热泵系统,又可将新工质直接应用于原HFC-134a空调机组,将原空调机组转换为新工质中高温热泵机组。

Description

一种中高温热泵混合工质 技术领域
本发明属于热泵或制冷、空调系统中的制冷剂,具体涉及一种中高温热泵混合工质。
背景技术
热泵是一种能从自然界的空气、水或土壤中获取低位热能,经过电能做功,提供可被人们所用的高位热能的装置。近年全球热泵技术快速发展,日本和欧洲等已是热泵技术发达地区。中国热泵市场处于起步阶段,但随空气质量(如雾霾)、环保等问题日益突出,热泵市场将快速发展。中高温热泵主要应用于蔬菜快速脱水、烟草熏蒸;相比于传统的烧煤或者锅炉加热,高温热泵安全环保,可自动化。为满足工业要求,热泵技术正向中高温(冷凝温度为70~100℃),高温(冷凝温度高于100℃)热泵方向发展。制约中高温热泵技术发展的关键问题之一,就是缺乏适合的循环工质。
以往通常用热泵的工质为CFC-11和CFC-114等。但由于CFC-11和CFC-114均属CFC类物质,其臭氧损耗潜值ODP分别为1.0和0.85,对大气臭氧层有严重的破坏作用,而且它们的温室效应影响也很大,其温室效应潜能值GWP分别为4600和9800,发达国家已于1996年禁用,而发展中国家也将于2010年禁用。
目前,热泵所用工质大多为1,1,2-四氟乙烷(HFC-134a),但不能提供很高的出水温度。通常空调热泵冷水机组用的HFC-134a机组提供热水是60~65℃,再高则冷凝压力过高,循环性能恶化,严重影响热泵机组的设备、系统和管路的配置。因此需要采用正常沸点相对较高的制冷工质,即所谓中高温工质,以保证合适的供热效果,同时又兼顾空调效果。
制冷剂和润滑油必须在系统中循环而在宽的温度范围内不经受相分离。典型地,制冷剂和润滑油具有其中它们经受相分离的低温和高温区域。过度的可混溶性可能是有问题的。例如,在润滑剂中的高浓度的制冷剂可大大降低该润 滑剂的粘度,不利地影响该润滑剂润滑并且保护传热装置的部件的能力,导致该装置的增加的磨损、缩短的寿命和更低的性能。润滑剂中溶解的制冷剂在其从压缩机的一个区域流向另一个区域(例如,低温至高温区域)时也可引起润滑剂混合物的发泡和鼓泡。此外,溶解在润滑剂中的制冷剂基本上被捕获并且从循环中取出,由此降低系统的能力。因为制冷润滑剂的有效运行不仅要求合适的润滑特性和适当的粘度,而且还要求与制冷剂的适当相容性,在制冷剂上的变化时常需要润滑剂上的相应变化。
EP0422182披露了通过季戊四醇和C6-8一元羧酸的缩合制备的润滑剂,这些润滑剂与以下高度或完全氟化的烃几乎完全可混溶:例如1,1,1,2-四氟乙烷(通常被称为HFC-134a)、二氟甲烷(HFC-32)、三氟甲烷(HFC-23)、五氟乙烷(HFC-125)、1,1,2,2-四氟乙烷(HFC-134)、1,1,1-三氟乙烷(HFC-143a)和类似物。类似的润滑剂还被披露于美国专利号5,964,581中。
尽管将润滑剂加入到系统中用于润滑压缩机的移动部件,但是润滑剂还起到热流体的作用,影响能力和效率。例如,润滑剂可以通过改变传热系数、降低达到操作温度需要的压力、并且增加压力降来影响能力。润滑剂还通过改变压缩机的等熵效率影响效率,这将提高或降低对于给定排放压力的排放温度。目前商业上与制冷剂如R-410A一起使用的润滑剂未必是在所有使用条件下相容的R-32和HFC/HFO共混物,引起对系统中不充分的润滑、差的回油、以及过量润滑剂滞留(hold-up)的可能性的关注。
出于各种商业、安全性和生态考虑,将令人希望的是具有包含用于被设计为平衡成本、可燃性和性能的应用的低GWP制冷剂的共混物的工作流体,这些应用是例如热泵和用于住宅的空调、用于汽车的空调以及其他传热装置。如在其他含有氟化制冷剂的工作流体中,润滑剂必须展示适当的与该制冷剂的可混溶性,同时维持适合的对于润滑剂/制冷混合物的运行粘度。
在一个制冷、空调、或热传递系统中,期望润滑油和制冷剂在该系统的至少一些部分中可以彼此相接触,如在ASHRAE手册:HVAC系统和设备中所说明的。因此,不论该润滑剂和制冷剂是被单独还是作为一个预混合包装中的一部分而 加入到一个制冷、空调、或热传递系统中,仍期望它们在该系统中相接触并且因此必须是相容的。
发明内容
本发明目的在于针对现有技术所存在的不足而提供一种中高温热泵混合工质的技术方案,使其既能符合保护臭氧层,减少温室效应的环境保护要求,又具有较好的热工参数和热工性能,安全、可靠,并与现有的HFC-134a冷水机组设备和冷冻油相容,可直接充灌,在直接利用常温热源下,提供较高的出水温度(70℃以上)。
为了解决上述技术问题,本发明采用的技术方案为一种中高温热泵混合工质,其特征在于:
工质由1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂组成。
进一步,1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂的质量百分比含量分别为:
1,1,2,2-四氟乙烷       60%~94%
二氟乙烷               5%~39.9%
润滑相容剂             0.1%~1%。
进一步,润滑相容剂的制备方法为:按重量份,取100份的聚-丁烯-1、1~5份的1,4,8,11-四氮杂十四环〔4,11〕二烯、0.01~0.06份的2,4,6-三吡啶基三嗪铕、1~4份的过氧化苯甲酰和5~20份的白油,在40~60℃的温度下反应7~15小时得到产品。
采用如上述一种中高温热泵混合工质的制备方法,其特征在于:
将1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂按照配比在液相状态下进行物理混合,即得到适用于常温热泵机组中的中高温新工质。
本发明由于采用了上述技术方案,具有以下有益效果:
(1)环境性能:本发明的制冷剂的ODP值为0,GWP值低于HFC-134a。本发明完全符合保护臭氧层,减少温室效应的环境保护要求。
(2)热工参数:在相同工况下,本发明混合制冷剂的蒸发压力和冷凝压力均低于HFC-134a,说明本发明可直接充灌于原HFC-134a的系统,而不需改动其它部件,就可提供较高的出水温度(70℃以上)。
(3)热工性能:本发明在蒸发温度为15℃时,出水温度在70℃时,无过冷过热情况下,供热COP为3.0左右,热工性能较好。
(4)润滑相容剂使冷冻机油与制冷剂具有适度的互溶溶解性,减少摩擦、提高传热效率。
本发明提供了一种中高温热泵混合工质,使其既能符合保护臭氧层,减少温室效应的环境保护要求,又具有较好的热工参数和热工性能,安全、可靠,并与现有的HFC-134a冷水机组设备和冷冻油相容,可直接充灌,在直接利用常温热源下,提供较高的出水温度(70℃以上)。
具体实施方式
本发明为一种中高温热泵混合工质,工质由1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂组成。
1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂的质量百分比含量分别为:
1,1,2,2-四氟乙烷       60%~94%
二氟乙烷               5%~39.9%
润滑相容剂             0.1%~1%。
润滑相容剂的制备方法为:按重量份,取100份的聚-丁烯-1、1~5份的1,4,8,11-四氮杂十四环〔4,11〕二烯、0.01~0.06份的2,4,6-三吡啶基三嗪铕、1~4份的过氧化苯甲酰和5~20份的白油,在40~60℃的温度下反应7~15小时得到产品。
采用如上述一种中高温热泵混合工质的制备方法:
将1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂按照配比在液相状态下进行物理混合,即得到适用于常温热泵机组中的中高温新工质。
下面通过具体的实施例对本发明做进一步解释,这些实施例仅用于例证的 目的,并不限制本发明的保护范围。
实验方法:测试机组为小型蜗旋机组,蒸发段与冷凝段都为水冷方式,压缩机型号为QRB12FC-A,电源制式为380V/50Hz,额定制冷(热)量为13.7kw,额定功率为3.48kw,额定电流为7.4A,充注的制冷剂为8.5公斤。制冷剂配比按GC气相色谱方法进行定量后,附加润滑相容剂,充分循环后,进行分包成11公斤的小包装后进行测试机组充填后测试。
实施例1
润滑相容剂的制备:按重量份,100份聚-丁烯-1,3份1,4,8,11-四氮杂十四环〔4,11〕二烯、0.03份2,4,6-三吡啶基三嗪铕,2份过氧化苯甲酰,13份白油,48℃反应11小时得到产品。
制冷工质的制备:
1,1,2,2-四氟乙烷       71%
二氟乙烷               28.5%
润滑相容剂             0.5%
将上述各种组分按其相应的配比在液相状态下进行物理混合即可得到适用于常温热泵机组的中高温新工质。
将本发明工质直接灌注于现有HFC-134a空调机组(不更换润滑油),将其转化为新工质的中高温热泵机组,且能够保证循环能效和机组主要硬件匹配度。
热泵系统的设计工况取为:平均蒸发温度为15℃,平均冷凝温度为70℃,压缩过程定熵效率为80%,无过冷与过热调节。
实施例2:
润滑相容剂的制备:按重量份,100份聚-丁烯-1,1份1,4,8,11-四氮杂十四环〔4,11〕二烯、0.01份2,4,6-三吡啶基三嗪铕,1份过氧化苯甲酰,5份白油,40℃反应15小时得到产品。
制冷工质的制备:
1,1,2,2-四氟乙烷         60%
二氟乙烷               39.9%
润滑相容剂             0.1%
将上述各种组分按其相应的配比在液相状态下进行物理混合即可得到适用于常温热泵机组的中高温新工质。
热泵系统的设计工况取为:平均蒸发温度为15℃,平均冷凝温度为75℃,压缩过程定熵效率为80%,无过冷与过热调节。
实施例3:
润滑相容剂:按重量份,100份聚-丁烯-1,5份1,4,8,11-四氮杂十四环〔4,11〕二烯、0.05份2,4,6-三吡啶基三嗪铕,4份过氧化苯甲酰,20份白油,60℃反应7小时得到产品。
制冷工质的制备:
1,1,2,2-四氟乙烷       94%
二氟乙烷               5%
润滑相容剂             1%
将上述各种组分按其相应的配比在液相状态下进行物理混合即可得到适用于常温热泵机组的中高温新工质。
热泵系统的设计工况取为:平均蒸发温度为15℃,平均冷凝温度为80℃,压缩过程定熵效率为80%,无过冷与过热调节。
对比例1
润滑相容剂中不加入1,4,8,11-四氮杂十四环〔4,11〕二烯,其它同实施例1。
对比例2
润滑相容剂中不加入2,4,6-三吡啶基三嗪铕,其它同实施例1。
对比例3
润滑相容剂中不加入聚-丁烯-1,其它同实施例1。
对比例4
不加润滑相容剂,其它同实施例2,
其制冷工质质量百分比含量分别为:
1,1,2,2-四氟乙烷       60%
二氟乙烷               40%。
对比例5
不加润滑相容剂,其它同实施例3,
其制冷工质质量百分比含量分别为:
1,1,2,2-四氟乙烷       95%
二氟乙烷               5%。
对比例6
不加润滑相容剂,其它同实施例1,
其制冷工质质量百分比含量分别为:
1,1,2,2-四氟乙烷       71%
二氟乙烷               29%。
对比例7
制冷剂采用134a,其它同实施例1。
表1 为实施例数据表:
  排气温度(℃) 排气压力(KPa) COP
实施例1 95.2 1885.34 2.79
实施例2 102.5 2150.81 2.55
实施例3 102.1 2267.76 2.18
对比例1 95.8 1892.37 2.74
对比例2 95.5 1885.54 2.72
对比例3 95.6 1890.15 2.70
对比例4 103.7 2167.68 2.36
对比例5 103.8 2282.63 2.08
对比例6 97.7 1934.75 2.62
对比例7 102.85 2268.85 2.46
表1 实施例1热工性能环境性质
从表1可以看出,润滑剂相容剂的加入可以增加制冷剂的COP与减低了排气压力与排气温度,这是由于润滑相容剂的存在提高了制冷剂与润滑油的相容性并在热交换器中提高了热交换效果。
本发明由于采用了上述技术方案,具有以下有益效果:
(1)环境性能:本发明的制冷剂的ODP值为0,GWP值低于HFC-134a。本发明完全符合保护臭氧层,减少温室效应的环境保护要求。
(2)热工参数:在相同工况下,本发明混合制冷剂的蒸发压力和冷凝压力均低于HFC-134a,说明本发明可直接充灌于原HFC-134a的系统,而不需改动其它部件,就可提供较高的出水温度(70℃以上)。
(3)热工性能:本发明在蒸发温度为15℃时,出水温度在70℃时,无过冷过热情况下,供热COP为3.0左右,热工性能较好。
(4)润滑相容剂使冷冻机油与制冷剂具有适度的互溶溶解性,减少摩擦、提高传热效率。
本发明提供了一种中高温热泵混合工质,使其既能符合保护臭氧层,减少温室效应的环境保护要求,又具有较好的热工参数和热工性能,安全、可靠,并与现有的HFC-134a冷水机组设备和冷冻油相容,可直接充灌,在直接利用常温热源下,提供较高的出水温度(70℃以上)。
以上仅为本发明的具体实施例,但本发明的技术特征并不局限于此。任何以本发明为基础,为实现基本相同的技术效果,所作出地简单变化、等同替换或者修饰等,皆涵盖于本发明的保护范围之中。

Claims (4)

  1. 一种中高温热泵混合工质,其特征在于:所述工质由1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂组成。
  2. 根据权利要求1所述的一种中高温热泵混合工质,其特征在于:所述1,1,2,2-四氟乙烷、所述二氟乙烷和所述润滑相容剂的质量百分比含量分别为:
    1,1,2,2-四氟乙烷        60%~94%
    二氟乙烷              5%~39.9%
    润滑相容剂             0.1%~1%。
  3. 根据权利要求1所述的一种中高温热泵混合工质,其特征在于:所述润滑相容剂的制备方法为:按重量份,取100份的聚-丁烯-1、1~5份的1,4,8,11-四氮杂十四环〔4,11〕二烯、0.01~0.06份的2,4,6-三吡啶基三嗪铕、1~4份的过氧化苯甲酰和5~20份的白油,在40~60℃的温度下反应7~15小时得到产品。
  4. 采用如权利要求2所述的一种中高温热泵混合工质的制备方法,其特征在于:将1,1,2,2-四氟乙烷、二氟乙烷和润滑相容剂按照配比在液相状态下进行物理混合,即得到适用于常温热泵机组中的工质。
PCT/CN2019/083403 2018-05-30 2019-04-19 一种中高温热泵混合工质 WO2019228094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810540618.5A CN108676547B (zh) 2018-05-30 2018-05-30 一种中高温热泵混合工质
CN201810540618.5 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019228094A1 true WO2019228094A1 (zh) 2019-12-05

Family

ID=63808902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083403 WO2019228094A1 (zh) 2018-05-30 2019-04-19 一种中高温热泵混合工质

Country Status (2)

Country Link
CN (1) CN108676547B (zh)
WO (1) WO2019228094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676547B (zh) * 2018-05-30 2020-09-11 浙江巨化新材料研究院有限公司 一种中高温热泵混合工质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308084A (ja) * 1987-06-09 1988-12-15 Asahi Glass Co Ltd 作動媒体混合物
CN1061791A (zh) * 1990-10-19 1992-06-10 大金工业株式会社 共沸和/或类似共沸的混合物以及把它们作为工作介质的制冷或空调系统
CN1431270A (zh) * 2003-01-08 2003-07-23 苏州联氟化学有限公司 一种新型环保制冷剂
CN102504764A (zh) * 2011-11-08 2012-06-20 天津大学 适用于燃气机热泵系统的环保制冷剂
CN107592879A (zh) * 2015-05-07 2018-01-16 科慕埃弗西有限公司 包含1,1,2,2‑四氟乙烷的组合物及其用途
CN108676547A (zh) * 2018-05-30 2018-10-19 浙江巨化新材料研究院有限公司 一种中高温热泵混合工质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103689A (ja) * 1987-10-15 1989-04-20 Daikin Ind Ltd 冷媒
JPH0625340B2 (ja) * 1988-03-07 1994-04-06 株式会社日立製作所 作動媒体及びその用途
US5021180A (en) * 1989-01-18 1991-06-04 The Dow Chemical Company Polyglycol lubricants for refrigeration compressors
EP0430170B1 (en) * 1989-11-30 1994-08-03 Matsushita Electric Industrial Co., Ltd. Working fluid
JPH04270795A (ja) * 1991-02-25 1992-09-28 Kyoseki Seihin Gijutsu Kenkyusho:Kk 冷凍機油
EP0536940B1 (en) * 1991-10-11 2001-11-21 Imperial Chemical Industries Plc Working fluids
GB0105065D0 (en) * 2001-03-01 2001-04-18 Ici Plc Lubricant compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308084A (ja) * 1987-06-09 1988-12-15 Asahi Glass Co Ltd 作動媒体混合物
CN1061791A (zh) * 1990-10-19 1992-06-10 大金工业株式会社 共沸和/或类似共沸的混合物以及把它们作为工作介质的制冷或空调系统
CN1431270A (zh) * 2003-01-08 2003-07-23 苏州联氟化学有限公司 一种新型环保制冷剂
CN102504764A (zh) * 2011-11-08 2012-06-20 天津大学 适用于燃气机热泵系统的环保制冷剂
CN107592879A (zh) * 2015-05-07 2018-01-16 科慕埃弗西有限公司 包含1,1,2,2‑四氟乙烷的组合物及其用途
CN108676547A (zh) * 2018-05-30 2018-10-19 浙江巨化新材料研究院有限公司 一种中高温热泵混合工质

Also Published As

Publication number Publication date
CN108676547A (zh) 2018-10-19
CN108676547B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
AU2017302342B2 (en) Heat transfer compositions, methods and systems
US9809734B2 (en) Heat transfer compositions and methods
US20180244969A1 (en) Heat transfer compositions, methods and systems
JP2017025321A (ja) 低gwpの熱伝達組成物
JP2017201016A (ja) 熱伝達組成物および熱伝達方法
WO2019124396A1 (ja) 空調機
CA2863552C (en) Heat transfer compositions and methods
JP6418284B1 (ja) 冷媒を含有する組成物、その使用、それを用いた冷凍方法、及びそれを含む冷凍機
JP6392527B2 (ja) 高温ヒートポンプ用途のための低gwp流体
JP2014514423A (ja) 熱伝達組成物及び方法
CN110878195B (zh) 一种含三氟碘甲烷的冷媒和含有其的混合物和换热系统
CN110845997A (zh) 一种热传递介质及适用于冷却器的组合物
WO2011035546A1 (zh) 一种环保制冷剂
WO2019228094A1 (zh) 一种中高温热泵混合工质
CN102241962A (zh) 一种低gwp值的组合物
CN102229793A (zh) 一种低gwp值的制冷剂
CN112552875B (zh) 一种新型环保制冷剂及其制备方法
JP6211068B2 (ja) 冷媒ガス組成物
CN113025279B (zh) 一种含有氟代烯烃的组合物及其制备方法
CN111019610B (zh) 一种温度应用范围在-17℃~-42℃的节能环保型混合制冷剂
CN113789156B (zh) 一种传热组合物及其应用与传热系统
CN113046029B (zh) 一种含有氟代烯烃的组合物及其制备方法
US10035939B2 (en) Refrigerant composition and its preparation method
AU2013260262B2 (en) Refrigerant gas composition
JP2016513749A (ja) 低gwpの熱伝達組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812211

Country of ref document: EP

Kind code of ref document: A1